IONA

>3 Artix™

Getting Started with
Artix Relay

Version 1.2, September 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Artix Relay,
Artix Encompass, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive
Runtime Technology, Transparent Enterprise Deployment, and Total Business Integra-
tion are trademarks or registered trademarks of IONA Technologies PLC and/or its sub-
sidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 I0ONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 22-0ct-2003

M3109

Contents

List of Figures \
Preface vii
Chapter 1 Artix Relay Concepts 1
Introduction to Artix Relay 2

The Elements of Artix 4

The Artix Bus 5

Artix Service Access Points 6

Artix Contracts 7

The Artix Designer 10
Chapter 2 Using Artix Designer to Develop an Integrated System 21
The Integration Project 23
Using Artix Designer 24
Starting Artix Designer 28
Creating an Artix Project 31
Describing the Server 36
Describing the CORBA Client 37
Adding the CORBA Binding and Type Mapping 38

Adding the CORBA Port 43

Developing the CORBA Interface 47
Describing the Artix Service 50
Deploying the Artix Service 56
Running the Integrated System 59

Chapter 3 Using Artix Command Line Tools to Develop an Integrated System61

The Integration Project 63
Using Artix 64
Adding the CORBA Information 68
Adding the Routing Information 70
Developing the CORBA Interface 71

Configuring the Artix Switch 72

CONTENTS

Running the Integrated System
Appendix A Building the Widget Web Server
Using Artix Designer

Using the Command Line Tools
Server Implementation Code

Appendix B The CORBA Client Code
Glossary

Index

74

77
79
82
84

87

95

99

List of Figures

Figure 1: Artix High-Performance Architecture
Figure 2: The Artix Bus

Figure 3: Client-Server System Diagram
Figure 4: Artix Contract Editor

Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Editing a complexType

Adding Parts to a Message

Editing a PortType
Editing an Operation

Artix Service Editor

: Editing the Properties of an HTTP Port
: Development Tool

: Deployment Tool

: Welcome Screen

: Artix Designer

: Select Project Type

: New project details

: System Configuration

: WSDL File Selection

: Widget Service Starting Point
: Binding Location Dialog

: Select Binding Type

: Interface Selection Screen

: Binding review

: Binding Location

: Select Binding Dialog

: Port Attributes

13
14
15
16
17
18
19
20
29
30
31
32
33
34
35
39
40
41
42
44
45
46

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:

Vi

Client Development Screen

Select Route WSDL

Route Source and Destinations
Select Routing Operations

Select Routing Port Attributes
Widget Route Summary
Deployment Screen

Widget Server Development Screen

48
51
52
53
54
55
57
80

Preface

Overview The Artix Getting Started Guide provides a brief overview of Artix Relay and
a simple example of how to use Artix Relay to solve a real world integration
problem.

Audience The Artix Getting Started Guide is for anyone who needs to understand the

concepts and terms used in the IONA Artix product, as well as anyone who
needs to maintain installed Artix systems.

Organization of this guide This guide is divided as follows:

® “Artix Relay Concepts” provides general information about Artix and
how it is used.

® “Using Artix Designer to Develop an Integrated System” presents a
walk through of how to solve an integration problem with the Artix
Designer.

® “Using Artix Command Line Tools to Develop an Integrated System”
presents a walk through of the same integration scenario using the
Artix command line tools.

® “Building the Widget Web Server” shows how to use Artix to build a
C++ Web service from an Artix contract.

Related documentation The document set for IONA Artix includes the following:
® Getting Started With Artix
® Artix User’s Guide

vii

PREFACE

Online help

Reading path

viii

® Artix Installation Guide
® Artix Tutorial
® Artix C++ Programming Guide

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs/artix/1.2/index.xml.

Artix includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® Adescription of each screen.

® A comprehensive index and glossary.

® Afull search feature.

® Context-sensitive help.

The Help menu of Artix Designer provides access to this online help.

If you are new to Artix, you should read the documentation in the following

order:

1. Getting Started with Artix
The Getting Started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial
The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. The Artix User’s Guide
The User's Guide describes the development pattern for designing and
deploying Artix enabled systems. It provides detailed examples for a
number of typical use cases.

4. GUI Online Help
The Artix design tools have context sensitive online help that provides
information specific to the tools that you are using.

5. Artix C++ Programmer’s Guide
The programmer’s guide discusses the technical aspects of
programming applications using the Artix C++ API.

http://www.iona.com/support/docs/artix/1.2/index.xml
http://www.iona.com/support/docs/artix/1.2/index.xml

Additional resources

Typographical conventions

PREFACE

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
Relay and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Const ant wi dth

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

[1]

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

In this chapter

CHAPTER 1

Artix Relay
Concepts

Artix Relay enables the seamless interoperability of diverse
middleware platforms without the use of messaging hubs or
intermediate message formats.

This chapter discusses the following topics:

Introduction to Artix Relay page 2

The Elements of Artix page 4

The Artix Designer page 10

CHAPTER 1 | Artix Relay Concepts

Introduction to Artix Relay

Overview Artix Relay is a new approach to application integration, one that exploits
the middleware technologies and products already present within an
enterprise. It provides a rapid integration approach that increases
operational efficiencies and makes it easier for an enterprise to adopt or
extend a Service Oriented Architecture (SOA).

Benefits of Artix Relay The Artix Relay approach differs from the approach used by Enterprise
Application Integration (EAI) products. The EAI approach typically uses a
“canonical” format in an EAIl hub. All messages are transformed from a
source application’s native format to this canonical format, and then
transformed again to the format of the target application. Each application
requires two adapters that translate to and from the canonical format.

However, requiring two translations for every message incurs high overhead.
Many enterprises prefer high-performance solutions that directly transform a
small set of message types over a more general solution with lower
performance.

No Canonical Format: Direct On-The-Wire Transformation |

Tuxedo Artix MQSeries

—P binding T FV binding 1—

L Transport of Choice J

Figure 1: Artix High-Performance Architecture

Artix Relay Features

Supported transports

Supported payload formats

Introduction to Artix Relay

Because Artix connects applications at the middleware transport level, Artix
connections resemble the way network switches connect telephones. Like
network switching, Artix hides the details of the connection and provides
very high performance.

Artix

Relay has the following unique features:

Extends enterprise quality of service features, such as security and
transactions, across middleware boundaries.

Supports the linking of applications using asynchronous or
synchronous communication paradigms.

Supports the linking of object-oriented and message-based
applications.

supports the following message transports:
HTTP

Tuxedo

IBM WebSphere MQ

TIBCO Rendezvous™

[oP

[IOP Tunnel

can automatically transform between the following payload formats:
G2+ +

FML — Tuxedo format

CORBA (GIOP) — CORBA format

FRL — fixed record length

VRL - variable record length

SOAP

TibrvMsg - TIBCO Rendezvous format

The mapping of logical data items between payload formats is supported by

Artix

tools.

CHAPTER 1 | Artix Relay Concepts

The Elements of Artix

Overview Artix’s unique features are implemented by a number of plug-ins to IONA'’s
Adaptive Runtime Technology (ART) platform. These plug-ins form the core
of Artix, the Artix Bus. Applications that make use of Artix connect to the
Bus using Artix Service Access Points (SAPs). SAPs are described by Artix
Contracts.

Figure 2 shows how all of the Artix elements fit together.

SOAP/HTTP CORBA

Artix Bus
Figure 2: The Artix Bus
In this Section This section discusses the following topics:
The Artix Bus page 5
Artix Service Access Points page 6
Artix Contracts page 7

The Elements of Artix

The Artix Bus

Overview

Benefits

The Artix Bus is a set of plug-ins that work in much the same way as the
simultaneous translators at the United Nations. The plug-ins read data that
can be in a number of disparate formats, the Bus directly translates the data
into another format, and the plug-ins write the data back out to the wire in
the new format. In this way Artix enables all of the applications in your
company to communicate over the Web without needing to understand
SOAP or HTTP. It also means that clients can contact Web services without
understanding the native language of the server handling requests.

While other Web service suites provide some ability to expose enterprise
applications as Web services, they frequently require a good deal of coding.
The Artix Bus eliminates the need to modify your applications or write code
by directly translating between the enterprise application’s native
communication protocol and SOAP over HTTP, the prevalent protocol for
Web services. For example, by deploying an Artix instance with a SOAP over
WebSphere MQ SAP and a SOAP over HTTP SAP, you can expose a
WebSphere MQ application directly as a Web service. The WebSphere MQ
application would not need to be altered or made aware that it was being
exposed using SOAP over HTTP.

The Artix Bus’ translation ability also makes it a powerful integration tool.
Unlike EAI applications, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted
through the Bus.

CHAPTER 1 | Artix Relay Concepts

Artix Service Access Points

Overview

Reconfigurable connection

An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

In essence, an SAP provides an abstract connection point between
applications. The benefit of using this abstract connection is that it allows
you to change the underlying communication mechanisms without recoding
any of your applications. You simply need to modify the contract describing
the SAP. For example, if one of your backend service providers is a Tuxedo
application and you want to swap out Tuxedo for a CORBA implementation,
you would simply change the SAP’s contract to contain a CORBA
connection to the Bus. The clients accessing the backend service provider
never need to be aware that the application has changed.

The Elements of Artix

Artix Contracts

Overview

WSDL concepts

The Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics like service operations and messages in an
abstract way — independent of the actual transport or protocol used to
implement the SAP — these characteristics can be bound to a variety of a
specific protocols and formats. In fact, Artix allows an abstract definition to
be bound to multiple specific protocols and formats. This means that the
same definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

Understanding Artix contracts requires some familiarity with WSDL,
including the definitions of the following terms:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a portType.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.

CHAPTER 1 | Artix Relay Concepts

The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components.

The logical contract specifies things that are independent of the underlying
transport and wire format; it fully specifies the data structure and the
possible operations or interactions with the interface. The logical contract
allows Artix to generate skeletons and stubs without having to define the
physical characteristics of the connection (wire format and transport).

The physical component of an Artix contract defines:

® The wire format, middleware transport, and service groupings

® The connection between the PortType ‘operations’ and wire formats
Buffer layout for fixed formats
Artix extensions to WSDL

Example 1: Artix WSDL Contract Elements

Logical Contract:

<Schema>

<Type> (analogous to typedefs)

<Message> (analogous to parameter)

<Por t Type> (analogous to class or CORBA interface definition)
<Qper at i ons> (analogous to methods)

Physical Contract:

<Bi ndi ng> (payload format)

<Servi ces> (groups of ports)

<Port > (transport addressing information)

<Rout e> (rules governing system interaction)

Payload Formats A payload format controls the layout of a message delivered over a

transport. The WSDL definition of a Port and its binding together associate a
payload format with a transport. A binding can be specified in the logical

The Elements of Artix

portion of an Artix contract (port Type), which allows for a logical contract to
have multiple bindings and thus allow multiple on-the-wire formats to use
the same contract.

CHAPTER 1 | Artix Relay Concepts

The Artix Designer

Overview The Artix Designer is a tool for creating and managing Artix contracts. It
provides editors for creating contracts from standard WSDL files as well as
from CORBA IDL files. The Designer also makes it easy to define new data
types, logical interfaces, payload bindings, and transports by providing
editors to walk you through each step.

The Artix Designer generates all of the Artix components you need to

complete your project. These components include:

® Artix contracts describing each of the services in your system.

® An Artix contract describing how Artix integrates your services.

® Any Artix stub and skeleton code needed to write Artix application
code.

® The needed configuration information to deploy your Artix instances.

In addition, the Artix Designer can also generate CORBA IDL from any
contracts that have a CORBA binding.

System Diagram The first screen you see when using the Artix Designer is the system
diagram. The system diagram displays all of the services in your system and
the Artix instances deployed to integrate the services. This diagram is
updated as you add services and Artix instances to your system. Figure 3
shows a system diagram containing a client and server being integrated

10

Project Tree

The Artix Designer

using a standalone Artix instance.

fle Edi Contract lelp |
ESRHD 98 EWdEA =GV

I vdgets
= =] Rsiedrin
1[4 Consguration
= (5] Chant
| t g Disnapirnind
Durplonyrsent
o (5 At
Development
‘ ; [
2 |a] Senver
Development
; [
=~ [Contracts
1= [B) wedgerOedesF oo wadl

Client Artin Sarver

Curmend View

Figure 3: Client-Server System Diagram

To the left of the Designer’s editor panel is the project tree. The project tree
lists all of the system diagram components with nodes for generating code,
generating deployment information, and, if you are using CORBA,
generating IDL. The project tree also lists all of the contracts imported into
your project.

The drop down list at the bottom of the project tree panel controls the
amount of detail shown in the tree at a time. The default is to show all the
information about the project. You can chose to view only the contracts
imported into the project or just the system components.

11

CHAPTER 1 | Artix Relay Concepts

Contract Editor The contract editor of the Artix Designer is where most of the work is done
when developing an Artix project. As shown in Figure 4, the contract editor
presents you with a graphical representation of an Artix contract. By
selecting the different nodes in the diagram you bring up editors that allow
you to add to or edit each of the parts of an Artix contract.

=0l x|

@ widgetOrderForm_wsdl - Artix Designer

File Edit Contract Help
EEERE 22 88/ @k 208
£ widgsts \ Moo

J; E Readme
=14 Configuration
Client —»M
dﬁ Develapment o
&% Deployment
Artix

dﬁ Develapment

& Deployment . @
Server

dﬁ Development Messages

&% Deployment
=+ Contracts S
L widgetOrderF arm.wsdl
j— Fort Types

widdgetOrderForm wes E !

Bindings

—©

Services

—\\

Routing

Current View

Al |E“ Graph [WSDL

Figure 4: Artix Contract Editor

12

Type Editor

The Artix Designer

The type editor is invoked from the contract editor and allows you to create
new logical types in your contract or modify existing types. When editing
existing types, the editor screen is tailored to match the kind of data type
you are editing. Figure 5 shows the screen for editing a conpl exType.

& Edit Attributes - Artix Designer

Elements in complexType - "widgetOrderBilllnfo"

Element Data

Marne | | Add

e |] [ctear
Min Occurrence |:|

Max Occurrence |:|] Unbounded

Element List
Mame | Type | Min Oceurs | Max Occurs | | Remave
armount wsdiint 1 1 e
order_date ¥sdstring 1 1
type xad 1 widgetSize 1 1
amtDue xsifloat 1 1
orderdumber ¥sdstring 1 1
shippingAddress ¥=dl Address 1 1
| QK H Cancel H Anply || Help

Figure 5: Editing a complexType

When adding a new type the editor walks you through the creation of your
data type.

13

CHAPTER 1 | Artix Relay Concepts

The message editor is invoked from the contract editor and allows you to
add new messages to your contract and to edit existing messages. Using the
editor you can add new parts to existing messages from the types existing in
your contract and the editor ensures that there are no naming conflicts.
Figure 6 shows the message editor's main dialog.

Message Editor

£ Edit Parts - Artix Designer : x|
Parts for Message - "widgetOrderBill*

Name | | p—

.

e | -l [clear |

Part List

MName Type Remove
widgetOrderCanformation wsdwidgetOrderBillinfa
| OK H Cancel H Apply || Help

Figure 6: Adding Parts to a Message

14

Interface Editor

Operation Editor

The Artix Designer

The interface editor is invoked from the contract editor and allows you to
edit existing logical interfaces or add new logical interfaces. Logical
interfaces are referred to as port Types in a WSDL document and the editor
dialogs rely on WSDL terminology. The output of this editor will be entered
in a port Type element in your contract. Figure 7 shows the interface editor.

Port Type Definitions

Part Twpes

Mame

| Remove

Operations

| New... ‘ Remaove

Messages

Type \ Message MNarne
input widgetOrder order

output widgetOrderBill hill

| Eot

| OK ” Cancel H Apply || Help

Figure 7: Editing a PortType

The operation editor is part of the interface editor. It allows you to modify

existing operations defined on the interface or to add new operations to the
interface. When adding messages to an operation, the editor will only allow
you to select from messages already defined in the contract. The editor also

15

CHAPTER 1 | Artix Relay Concepts

checks for any naming conflicts. Figure 8 shows the operation editor.

& Edit Operation Messages - Artix Designer x|
Messages for Port Type Operation - "placewvidgetOrder”
wm |] | ———
| 0 (o
Name [|
Operation Messages
Type I Message J Name Remove
input tnswidgetCrder order P —
output tnswidgetCrderBill bill
| OK ” Cancel H Apply || Help

Figure 8: Editing an Operation

Binding Editor The binding editor is invoked from the contract editor and allows you to map
any interface described in your contract to one of the payload formats
supported by Artix. The editor asks you to select the payload format and the
interface. It then performs the mapping automatically.

Service Editor The service editor is invoked from the contract editor and allows you to edit
existing WSDL service definitions in your contract and to add new WSDL
service definitions in your contract. As shown in Figure 9, the editor shows

16

you the name of service, the ports defined as part of the service, the
transport used by the selected port, and any properties set on the selected
port.

The Artix Designer

5 Edit Services - Artix Designer

Service Definitions

Senices

Marme

| Remave
Parts
Mame Binding
OrderPort ng
| New... ‘ Remaove
Extensors
Name ‘
Properties
MName | Wvalue \
location hitp:filocalhost 8080
| Eot

| OK ” Cancel H Apply || Help

Figure 9: Artix Service Editor

17

CHAPTER 1 | Artix Relay Concepts

Port Editor The port editor is part of the service editor and it allows you to modify the
properties of an existing port or add a new port to an existing service. It
provides you with a list of properties you can set on each type of port Artix
supports and ensures that the required values are supplied. Figure 10
shows the properties for an Artix HTTP port.

% Edit Port Praperties - Artix Designer x|
Property Definitions in Port - "widgetOrderPort’
Transport
Transpor Type
Affributes
Address
Attribute \ Walug
location (REQUIRED) hitp:iflocalhost:8080
Client
Aftribute Wvalue |
SendTimeout
ReceiveTimeout
AutoRedirect
UserName -
Sener
Aftribute Wvalue |
SendTimeout
ReceiveTimeout
SuppressClientSendErrors
SuppressClientReceiveErrars -
‘ ok H Cancel H Apply H Help
Figure 10: Editing the Properties of an HTTP Port
Routing Editor The routing editor is invoked from the contract editor and allows you to

create routes between compatible ports. For this editor to be used, your
contract must have more than one port defined and the ports must be
compatible. For a detailed discussion on port compatibility and routing see
the Artix Users’ Guide.

18

Development Tool

£ widgetDrderForm wsdl - Artix Designer : : 10l =|

File Edit Contract Help

DEEdH 28

The Artix Designer

The development tool is invoked by selecting the Development icon under
one of the services in the project tree. Using this tool, shown in Figure 11,
you can generate Artix C++ stub and skeleton code for the interfaces
defined by the selected service's contract. The tool will also generate a make
file and sample server and client mainlines for you.

ERIgdlmA 2@ N

[widgets

E Readme
=LA Configuration
Client
dﬁ Develapment
&% Deployment
Artix
dﬁ Develapment
&% Deployment
Server
dﬁ Develapment
&% Deployrment
= [0 Contracts

[@ widgetOrderF arm.wsdl

Systermn Development Options

Develapment Environment

]

C++ Code Generation Options

Code Location |.IServerIsrcIcpp | I Browse...

¥ Generate Implementation Code
Code Generation Options
[CopyWSDL from Project Directory

C++ Mamespace |Widgets |
Select Service | |EH
Select Port | -]
@ Windows MMAKE Makefile
Generate Makefile 2 Unix Makefile
O Nane

Current View

[ok | [meset | [Hew | =

All

[-]

Figure 11: Development Tool

If the service's contract contains a CORBA binding, the development tool
will also generate IDL describing the service's interfaces.

19

CHAPTER 1 | Artix Relay Concepts

Deployment Tool The deployment tool is invoked by selecting the Deployment icon under one
of the services in the project tree. The deployment tool, show in Figure 12,
generates an Artix configuration file that is optimized for the selected
service, a script for setting up your Artix runtime environment, and a
composite Artix contract that is suitable for deployment into a runtime
system. The generated configuration file contains all of the information
needed to deploy your service using Artix. In the case of a standalone Artix
service the deployment tool also generates start and stop scripts for the Artix

service.
-loix]
File Edit Contract Help
DERE R 888 2 mi 20w
D NP2 Deplayment Bundle
EReadme
- 14 Configuration
Bl client Domain name |Client |
*§ Devetopment File locati [ClientisreiCiientcry 2 | | B
P ile location AClientisre/ClientCy.zip Browse...
B Artix
Logging Output Standard Output
d’1iDeveI0;:|ment B P | Y lz“
':P Deployment Logging Level |Err0rs Qnly |E“
@Server
dﬁ Develapment
&% Deployment
B[Contracts
L B muttipartidi
| ok | | ciear || Hep |
Current View
Al -]

Figure 12: Deployment Tool

20

In this chapter

CHAPTER 2

Using Artix
Designer to
Develop an
ntegrated System

The Artix Designer simplifies the work of creating integrated
software applications that use multiple transports and payload
formats.

This chapter discusses the following topics:

The Integration Project page 23
Using Artix Designer page 24
Starting Artix Designer page 28
Creating an Artix Project page 31
Describing the Server page 36
Describing the CORBA Client page 37

21

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

22

Developing the CORBA Interface page 47
Describing the Artix Service page 50
Deploying the Artix Service page 56
Running the Integrated System page 59

The Integration Project

The Integration Project

The problem scenario

How Artix simplifies solving the
problem

Your company’s inventory control and just-in-time ordering system is
implemented using CORBA. When the manufacturing floor needs more
parts, the system generates a purchase order and e-mails it to the vendor.
When the vendor fulfills the order, they e-mail a bill to your company’s
billing department.

In order to cut labor costs, one of your company’s largest vendors has just
updated their ordering system to use a Web service front end, and has
provided a description of this Web service front end in a WSDL file. The
vendor still fulfills orders placed by e-mail but now charges a 10% premium
for any order that is not processed via the new Web service.

Your company has determined that it will cost too much to continue
e-mailing orders to this vendor, that there is no other vendor whose offerings
are competitive, and that it is far too expensive to develop an entirely new
inventory control and ordering system. Your company decides to modify the
existing ordering system to use the vendor's Web service front end.

As the CORBA expert, you are given the task of integrating the two systems.

You are the only person assigned to the task and given two weeks to
complete it.

Artix simplifies the solution to this problem by providing the following:

® Automated generation of the IDL that describes the CORBA
components of the project, from the WSDL provided by the vendor

® Automated generation of the binding information needed to map
CORBA constructs to Web services constructs

®* Arouting editor that simplifies the creation of the rule directing
messages to the proper interfaces

® Automated generation of the required configuration information

® The ability to implement the solution using a familiar programming
model

® Alightweight runtime service that provides high-speed translation
between the components of the integrated system

23

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Using Artix Designer

Overview

Starting the integration project

Artix Designer lets you define and build many different types of integration
solutions. In this case, the problem is one of integrating with an existing
Web service, so the first step is obtaining a description of that service. A full
description includes:

® The structure of the data the service sends and receives

® The operations offered by the service

® The order in which the data is encoded

® The payload format the service uses

® The transport the service uses

® The location of the service.

An operating Web service is defined in a WSDL document, and a CORBA
application’s interfaces are described in IDL. Artix can import IDL and
WSDL directly, and convert them into Artix contracts (which are themselves
WSDL files that may include IONA’s extensions). Even if a service
description is less formal than an existing IDL or WSDL file (e.g., in the case
where a service is under development), Artix designer provides a series of

wizards to guide you through the process of creating an Artix contract based
on the information available.

You contact the vendor’s IT department in order to obtain a description of
the Web service interface. The IT department might provide the Internet
address of the WSDL file that defines this service, or their e-mail reply might
include the file itself. In any case, the required WSDL document is shown in
Example 2.

Example 2: Vendor WSDL document

<?xm version="1.0" encodi ng="UTF- 8" ?>

24

Example 2: Vendor WSDL document

<defi ni ti ons nane="wi dget O der For m wsdl "
t ar get Nanmespace="ht t p: / / wi dget Vendor . com wi dget O der For n¥
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: tns="htt p: //w dget Vendor . com w dget O der For n¥
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="htt p: / / wan. W3. or g/ 2001/ XM_Schema"
xm ns: xsd1="ht t p: / / wi dget Vendor . coni t ypes/ wi dget Types" >
<t ypes>
<schera t ar get Namespace="htt p: / / wi dget Vendor . con t ypes/ wi dget Types"
xm ns="ht t p: / / waw. w3. or g/ 2001/ XM_-Scherma"
xm ns: wsdl ="ht t p: // schenas. xm soap. org/ wsdl / " >
<xsd: si npl eType nane="wi dget Si ze" >
<xsd:restricti on base="xsd:string">
<xsd: enuner ati on val ue="bi g"/ >
<xsd: enuner ati on val ue="1|arge"/>
<xsd: enuner ati on val ue="rungo"/>
<xsd: enuner ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType nane="Address">
<xsd: sequence>
<xsd: el ement nane="nanme" type="xsd:string"/>
<xsd: el enent nanme="street 1" type="xsd:string"/>
<xsd: el ement nane="street2" type="xsd:string"/>
<xsd: el ement nane="city" type="xsd:string"/>
<xsd: el enent nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el enent nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:wi dgetSi ze"/>
<xsd: el enent nanme="shi ppi ngAddr ess" type="xsdl: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>

Using Artix Designer

25

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Example 2: Vendor WSDL document

<xsd: conpl exType name="wi dget O derBil || nfo">
<xsd: sequence>
<xsd: el ement nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="am Due" type="xsd:float"/>
<xsd: el ement nane="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schena>
</ types>
<nessage nane="w dget O der ">
<part nanme="w dget O der Form{ type="xsdl:w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">
<part nanme="w dget O der Conf or mati on" type="xsdl:w dget OderBilllnfo"/>
</ message>
<port Type nane="order Wdget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCrderBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng name="or der W dget sBi ndi ng" type="t ns: order Wdget s">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas.xn soap. or g/ soap/ http"/>
<oper ati on name="pl aceW dget O der" >
<soap: operati on soapAction="" style="rpc"/>
<i nput nane="wi dget O der ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="http: //w dget Vendor . coni wi dget O der For ni' use="encoded"/ >
</i nput >
<out put nane="wi dget OrderBi || ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: / / wi dget Vendor . coni wi dget O der For nf use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="order W dget sServi ce">
<port name="w dget O derPort" bi ndi ng="t ns: or der W dget sBi ndi ng" >
<soap: address | ocati on="http://| ocal host : 8080"/ >
</ port>
</ servi ce>
</ defi ni ti ons>

26

Using Artix Designer

This WSDL document completely describes how to interact with the
vendor's ordering system by way of XML documents. Artix Designer can
import this file directly and use it in the Artix contract that describes the
entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<t ypes>

<nessage>

<port Type>

<bi ndi ng>

<servi ce>

Defines the complex data types used by the service. This
service uses an enumerated type, wi dget Si ze, to
describe the widgets, a structure, Addr ess, to hold the
shipping address, and two structures, wi dget O der I nf o
and wi dget Order Bi | | I nf o, for the data needed to
process the order.

Defines the messages by which the service
communicates.

Defines the operations offered by the service.

Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

Defines the address where the service can be contacted.

27

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Starting Artix Designer

Overview

Windows

UNIX

28

Artix Designer is a suite of tools for developing Artix integration solutions and
managing Artix projects.

On a Windows system you can start Artix Designer from the Start menu.
Select Programs | IONA | Artix | Artix Designer. You can also start Artix
Designer from the command line with the following command:

start_desi gner
The executable for this command is installed in the following directory:

% T_PRODUCT DI Rdartix\ 1. 2\ bin

On a UNIX system you must start Artix Designer from the command line. To

start Designer, complete the following steps:

1. Run $IT_PRODUCT_DIR artix\1. 2\bin\artix_env to source the Artix
environment.

2. Run $I T_PRODUCT_DiR artix\ 1. 2\ bi n\start_desi gner to start the
GUL.

Starting Artix Designer

Once the GUI is running 1. Select Go straight to designer on the welcome screen shown in
Figure 13.

£ Artix Welcome : |

Welcome to Arix, please select an aption:

® |Create a new project|
@] Open an existing project.

O Go straight to designer

[Don't show me this panel again Cancel

Figure 13: Welcome Screen

2. You will see a screen like Figure 14.

29

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

5 Artix Designer i =]
File Edit Contract Help

21T 11 BYIEIET Y K
4

T Mo Project b

Current View

Al -]

Figure 14: Artix Designer

30

Creating an Artix Project

Creating an Artix Project

Overview An Artix project consists of one or more Artix contracts, a system design
diagram, and a number of source code files. Artix Designer creates a special
directory and project structure to manage these artifacts.

Procedure To create a new Artix Designer project complete the following steps:

1. Create a new Artix project by selecting New | Project from the
designer’s File menu.

2. You will see a screen like Figure 15.

5 Select Project Type X|

Selectthe type of project to create.

Select Project Type

® Integrate with an existing weh service
O Integrate with an existing COREA application

O Other

I Lot T il i

Figure 15: Select Project Type

3. Select Integrate with an existing web service.
4. Click Next.

31

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

32

£ Add Project Details

Select P

Add Projec

5. You will see a screen like Figure 16.

E
Add the project details.

MName [widgets |

Save Location |C:1Documents ang Settingslernjohnsan | Change

aiciisned Raniicatas TR L il B ool

Figure 16: New project details

6. Type Wdget s in the Name field.
7. Click Change.

Using the file navigation dialog box, navigate to your home directory
and click Select Project Directory.

9. Click Next.

Creating an Artix Project

10. A screen like that shown in Figure 17 appears:.

5 Select Configuration X|
| Indicate how Artix will be used.
ct Project Type
® Standalone
O Embedded
{ Prev JI Mext I ’ Finish ” Help J {gancel]

Figure 17: System Configuration

11. Select Standalone.
12. Click Next.

33

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

34

) Select WSDL or IDL

Select Project Type

13.

You will see a screen like Figure 18.

Specify a WSDL or IDL file.

File |1gs1.emj0hn501ru1yD0cumentsLArtix’twidgets‘twidgets.wsdl| Select

Walidate File

e J[wet | [fmsh |[wew] [cancel]

Figure 18: WSDL File Selection

14.
15.

16.

17.
18.
19.
20.

Click the Select button.

Using the file navigation dialog box, navigate to your Artix installation
directory.

Under your Artix installation directory, locate the denos/ wi dget s
directory.

Select wi dget s. wsdl from the file selection box.

Click the Validate File button.

When Finish becomes available, click it to create your project.
The Designer screen now looks like Figure 19.

Artix Designer

Creating an Artix Project

File Edit Contract Help

‘AR 28 R/ 2 EAla2@\n
Ll

[widgets)
E Readme

= Canfiguration

Client

“i Develapment

&% Deployrment

Artix

“i Develapment

&% Deployrment

Server

“i Develapment

&% Deployment

= [0 contracts

L @ widgetOrderFarm wsdl .I

Client

Current View

Al -]

Artix

Server

Figure 19: Widget Service Starting Point

35

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Describing the Server

Overview

Procedure

36

The WSDL file that was imported when you created the new project fully

describes the server process for your project. This is the web service your
CORBA system will need to send information to when placing an order for
widgets.

To describe the server in your Artix project complete the following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Server icon under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Server.

Describing the CORBA Client

Describing the CORBA Client

Overview

In this section

To describe the CORBA client you need to modify the WSDL document that
describes the server so that it includes the information needed to represent a
CORBA object capable of implementing the same logical interface as the
Web service. The needed information consists of a CORBA binding for the
Web service’s port Type, a CORBA type map which maps the logical data
described in the contract to concrete CORBA data types, and a CORBA port
that defines the IOR used by the CORBA client to invoke on the server. In
this case however, the server is going to be an Artix instance mimicking a
CORBA server and passing the request on to the Web service.

This section discusses the following topics:

Adding the CORBA Binding and Type Mapping page 38

Adding the CORBA Port page 43

37

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Adding the CORBA Binding and Type Mapping

Overview Artix Designer provides a tool to automatically generate a CORBA binding
and the associated type map from a logical interface defined in an imported
Artix contract. The Designer generates a new contract fragment, that
imports the original contract, to hold the CORBA information.

Procedure To add the CORBA binding and type map information to your CORBA client
complete the following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Client icon under the Configuration and drop
it on the icon.

3. The contract will appear under the Client.
Select the widgetOrderForm contract from under the Client icon.

5. Select Contract|New |Binding from the menu at the top of the
Designer.

38

Describing the CORBA Client

6. You will see a screen like Figure 20.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 20: Binding Location Dialog

7. Select Add to New WSDL.
8. Enter wi dget s- cor ba into the field provided for the new WSDL's name.

9. Click Next to select the type of binding to add.

39

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

10. You will see a screen like Figure 21.

[] Binding Editor - Artix Designer

~Binding Type
® CORBA
O 50AP

O ML

SelectWSDL

P Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract

I Previous I" Mext “ Finish ” Cancel ” Help

Figure 21: Select Binding Type

11. Select CORBA.
12. Click Next to select the interface to bind.

40

Describing the CORBA Client

13. You will see a screen like Figure 22.

[] Binding Editor - Artix Designer

~Port Type

Port Type [oraenwidgets -]

Binding Name [arderwidgetsCORBABINding |

Operations Ta Bind

placeWwidgetOrder

SelectWSDL

Select Binding Type
P Select Part Type

Edit Binding

Wiew W3DL Contract

I Previous ” Mext ” Finish ” Cancel ” Help

Figure 22: Interface Selection Screen

14. From the PortType pull-down list select orderWidgets.
15. Enter or der W dget sOORBABI ndi ng for the Binding Name.
16. Click Next to review the binding and type map information

41

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

17. You will see a screen similar to Figure 23.

[] Binding Editor - Artix Designer

~CORBA Binding

[ordertidgetsCORBARInding

[Binding
- [B) placeWidgetorder]
02 Type Mapping

=] widoetSize

=] Address

=] widnetOrderinfo

=] widgetOrderBillinfa

P

~Port Type Operation: "placeWidgetOrder"

Type 1] 18] Marne
ingLt {tnswidgetOrder Jarder
output {tns:widgetOrderBill hill
SelectWSDL
Select Binding Type
Eiellom B T{DE - CORBA Operation: "placeWidgetOrder”
FE.dnElmdmg Extensoritess. M 1e Name| Param Type |IDL TypelExce...| Param Mode | Param Mame
Yiew WSDL Contract cothaoperation placeyyidgetO... param ns1 widgetOr... in widgetOrderF ..
return nslwidgetor... widgetOrders...
input arder
output hill
I Previous ” Mext ” Finish ” Cancel ” Help

Figure 23: Binding review

18. Click on the elements on the CORBA Binding tree to review how they
are mapped to a CORBA binding.

19. Click Finish to add the CORBA binding to your contract.

20. A new binding, widgets-corba, will be added under the Client node of
the project tree.

42

Describing the CORBA Client

Adding the CORBA Port

Overview

Procedure

Because CORBA is a unique protocol in that it specifies both a payload
format and a transport, you cannot create a CORBA port in an Artix contract
until it has a valid CORBA binding. After creating the CORBA binding and
type map, you can now add a CORBA port to your client.

In WSDL ports are described within service elements. You can either define
the new CORBA port inside the service describing the HTTP port. However,
because in this example the HTTP port and the CORBA port are part of
separate applications and are hosted by different organizations, it make
sense to describe the CORBA port in a separate service.

To add a new service containing a CORBA port to your client complete the
following steps:

1. Select the Client node on the project tree.
2. Select Contract| New | Service from the menu.

43

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

3. You will see a screen similar to Figure 24.

5 Hew Service - Artix Designer X|

~SelectWSDL

Selectthe WSDL file this new

contract itern should be added to.

O Add to existing wepL Client’

(®) Add to new WEDL widnets-corba-service|

P SelectWSDL
Define Service
Define Port
Define Extensar Properties
Fort Summary
Service Summary
’ Previous] ’ Mewt] ’ Finish] ’ Cancel] ’ Help

Figure 24: Binding Location

Select Add to new WSDL.

Enter wi dget s- cor ba- servi ce in the field provided.
Click Next.

Enter or der W dget sOCRBASer vi ce in the Name field.
Click Next to define the port.

© N o o s

44

Describing the CORBA Client

9. You will see a screen similar to Figure 25.

5 Hew Service - Artix Designer X|
~Port Definition
~Port Definition in Service - "ordertidgets CORBAService"

Mame [orderwidgetsCOREAPoI |

Bindind |orgerwidyets CORBABINding =]
SelectWSDL
Define Service

P Define Port
Define Extensar Properies
Fort Summary
Service Summary
I Previous I ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 25: Select Binding Dialog

10. Enter order Wdget sCCRBAPort in the Name field.
11. Select or der W dget sOORBABI ndi ng from the Binding pull-down list.
12. Click Next to enter the port attributes.

45

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

13. You will see a screen similar to Figure 26.

5 Hew Service - Artix Designer X|

~Property Definitions in Part - "orderidgetsCORBAPort"
~Transport
Transpor Type m|
~Atribute
Address
Attribute] Yalue J
location (REQUIRED) fileMohirefior |
Folicy
Attribute Walue
poanarne
SelectWSDL serviceid
Diefine Service persistent
Define Port
P> Define Extensar Properties
Fort Summary
Service Summary
I Previous I [Mext J ’ Finish] ’ Cancel] ’ Help

Figure 26: Port Attributes

14. Select corba from the Transport Type pull-down list.
15. Enterfile:\\objref.ior in the location field.

16. Click Next to review the port settings.

17. Click Next to review the service settings.

18. Click Finish the add the new service.

19. A new contract, widgets-corba-service, will be added under the Client
node of the project tree.

46

Developing the CORBA Interface

Developing the CORBA Interface

Overview

Procedure

Artix generates IDL describing the logical interfaces that are bound to a
CORBA binding. Once Artix has generated the IDL, you are responsible for
developing the application code to support the interface in your CORBA
application. The application code can be written using either the CORBA
model, as shown in this example, or using Artix generated stub and skeleton
code which is linked with the existing CORBA application.

To develop a simple CORBA client to implement the new interface complete
the following steps:

47

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

In Artix Designer
1. Select the Development icon under the Client node on the project tree.

2. You will see a screen similar to Figure 27.

£ widgets-corba-service - Artix Designer ’ ; ; 10l =|
File Edit Contract Help

DEEE 28 B8 2 mi @ ¢

[widgets Systern Development Options
E Readme
- IEA Configuration Develapment Environment |C++ E
= B client il
5] widgetorderForm.w C++ Code Generation Options H
@ widgets-corba
@ widgets-carba-servi Code Location |.ICIientfsrcIcpp | I Browse...
dﬁ Development
cP_ Deployment ¥ Generate Implementation Code
- (B artix Code Generation Options
“§ Development [Copy WSDL fram Project Directory
&% Deployment
B @ Senver C++ Mamespace |Widgets |
@ widgetOrderF orm.w
“§ Develapment Select Senice |0rder‘v’\fidgetSSer\fice |EH
&% Deployment
= [Contracts Select Port |widget0rderP0n |EH
L @ widgetOrderF arm.wsdl
@ wWindows NMAKE Makefile
Generate Makefile (2 Unix Makefile
O Mone
A Jrmmmm] [
Current View I OK l I Reset l I Help l =

o B

Figure 27: Client Development Screen

3. Select IDL from the Development Environment pull-down list.
4. Enter widgets.idl inthe IDL Location field.
5. Click OK to generate the IDL.

48

Developing the CORBA Interface

In your development environment

6. Use the CORBA IDL compiler to generate the stub code from
wi dgets.idl.
If you have IONA's Application Server Platform v6.0 or later installed
on your system use the following command:

idl -base widgets.idl

7. Copy the client mainline code from Appendix B into a file called
client.cxx.
8. Build the simple CORBA client.

49

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Describing the Artix Service

Overview The actual integration of your client and server are done by a standalone
instance of the Artix service. The service’s behavior is completely described
by an Artix contract. This contract needs to contain descriptions of all of the
services which will be integrated by this instance of the Artix service and the
routing rules describing how each of the services are integrated. The
Designer provides straightforward tools for describing the service integration
rules.

Procedure To describe your Artix service complete the following steps:

Adding the interface and service descriptions to the Artix service
1. Select the widgetOrderForm from under the Client node and drag it to
the Artix node of the project tree.

This adds the logical interfaces and the server's SOAP over HTTP
service to the Artix service.

2. Select widgets-corba from under the Client node and drag it to the
Artix node of the project tree.

This adds the CORBA binding information for the client to the Artix
service.

3. Select widgets-corba-service from under the Client node and drag it to
the Artix node of the project tree.

This adds the client's CORBA service and port information to the Artix
service.

Adding the routing information to the Artix service
4. Select the Artix node on the project tree.

5. Select Contract| New | Route from the menu at the top of the Designer.

50

Describing the Artix Service

6. You will see a screen like Figure 28.

[] Routing - Artix Designer X|

SelectWSDL
Select the WSDL file this new contract itern should be added to.
(2 Add to existing WEDL At
(®) Add to new WIDL widgets-route
P SelectWsDL
Source and Destinations
Mame, Multi-Route options
Operations
Transport Attributes
Route Summary
’ Previous] ’ Mext] ’ Cancel] ’ Help

Figure 28: Select Route WSDL

7. Select Add to new WSDL.
8. Enter wi dget s-rout e into the space provided.
9. Click Next.

51

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

52

10. You will see a screen like Figure 29.

[] Routing - Artix Designer X|

SelectWSDL
P Source and Destinations

Mame, Multi-Route aptions
Operations

Transport Attributes

Route Summary

~Select Port Types, Source and Destination Endpaoint
Fort Types

Fource Endpoints ordertiidgetsCORBASerice | ordertidgetsCORBAPOr

Destination Endpoints ordentiidoetsService : widoetOrderPort

|widgetOrderForm:order‘v’\fidgetsE]J

orderidgetzService | widgetOrderPort

IErevious ” Mext ” Cancel ” Help

Figure 29: Route Source and Destinations

11.

12.

13.

14.
15.
16.

Select widgetOrderForm:OrderWidgets from the PortTypes pull-down
list.

Select orderWidgetsCORBAService:orderWidgetsCORBAPort in the
Source Endpoints field.

Select orderWidgetsService:widgetOrderPort in the Destinations
Endpoints field.

Select Next to name the route.
Enter wi dget Rout e in the Route Name field.
Click Next to select the operations to route between.

5 Routing - Artix Designer

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions
P Cperations

Transport Attributes

Route Summary

Describing the Artix Service

17. You will see a screen like Figure 30.

~Specify Operations to be Routed

~Routed Operation

¥ placewidgetOrder

IErevious I" Next “ Cancel H Help

Figure 30: Select Routing Operations

18. Select placeWidgetOrder in the Routed Operations field.
19. Click Next to select the port attributes to use in routing.

53

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

20. You will see a screen like Figure 31.

[] Routing - Artix Designer X|

~Specify Transport Aftribute

~Transport Attribute Rule Set:
| =] [Asgruesst | [Remove Rule Set

~Transport Attribute Rule

Name | | [s atrioute

Walue | |

~Transport Attribute

Mame J Relation J Value J Case Sensitive J

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions

Operations = Pl
emove Attribute
P Transport Attributes

Route Summary

IErevious I" Mext H’ Cancel ” Help]

Figure 31: Select Routing Port Attributes

21. For this example port attributes are not used for routing, so click Next.

54

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions
Operations
Transport Attributes

P Route Summary

Describing the Artix Service

22. You will see a screen like Figure 32 which summarizes the route you

added to the contract.

~Route Summary

~Route Endpoint

Source order®idoets CORBAService | orderWidoets CORBAPart

Destination(s) |ordernidgetsService : widgetOrderPort

SWSDL view of the updated Route

Route: hitp:ifeeans iona.comfartian . 2.1 WidgetsiAdirouteshwidgets-ro ute:widgetRouteE]]

<rxml wersion="1.0" encoding="TUTF-5"2>
<definitions name="widgets-route >
<route name="widgetRoute >

</routex
</definitions>

<nsd:source port="orderiidgetsCORBAPOrt” service="ns3:orderiidgeq=
<nsd:rdestination port="widgetlrderPort” service="nsl:orderlidgets

T [|

Help

Figure 32: Widget Route Summary

23. Select Finish to create the route.

24. A new contract called widgets-route will be added to the Artix node of

the project tree.

55

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Deploying the Artix Service

Overview

56

The Artix standalone service requires some configuration information and
the assembled Artix contracts to run properly. Designer packages the
configuration, the composite Artix contract, and start and stop scripts for the
service into a deployment bundle for you. This bundle simply needs to be
unpacked and the service is ready to integrate your systems.

Deploying the Artix Service

Procedure To deploy your Artix standalone service complete the following steps:
1. Select the Deployment icon under the Artix node in the project tree.

2. You will see a screen similar to Figure 33.

@ widgets-route - Artix Designer ! i ;Iglll

File Edit Contract Help

DEEEH 28 BE 2mi 2@\

0 widgets Deployment Bundle
B Readme

=14 Configuration
=8 Bl client Domain name |widgets |

— @ widgetOrderF orm.w
— @ widgets-corba
— @ widgets-corba-sen
—dﬁ Develapment
_—cP Deployment Lagging Level |§Err0rs Only ||E]|
B[] Artix
— widgetOrderF orm.w
— widgets-corba
— widgets-corba-sen
— @ widgets-route
—dﬁ Develapment
L ¢ Deployment
= @ Server
— @ widgetOrderF orm.w
—dﬁ Develapment
L &% Deployment
= [0 Contracts

L @ widgetOrderF arm.wsdl

File lacation |widgets.zip | | Browse...

Logging Output |Standard Qutput |EH

) e R T T -
Current View

o g

Figure 33: Deployment Screen

Enter wi dget s for the Domain Name.

Enter wi dget s. zi p for the File Location.

Select Standard Output from the Logging Output pull-down list.
Select Errors Only from the Logging Level pull-down list.

N o o s~ w

Click OK to generate the configuration file.

57

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

8. An archive file containing the configuration for your Artix service, the
contracts describing its behavior, and start and stop scripts is placed in
your project directory.

58

Running the Integrated System

Running the Integrated System

Overview

Procedure

Once all of the components are generated, your system is ready to be tested.
You will need to start the Artix service before starting the CORBA client
because the Artix service needs to generate the IOR for the CORBA client.

Note: The directions for building the Web service for this example are
shown in Appendix A.

To test your Artix project complete the following steps:

1. Go to the widget project directory you created.

2. Unpack the widgets deployment bundle.

3. Runartix_env.

4. Start the Artix standalone service with the following command:

start_artix_service

5. Go to the server directory.

If you built the server using Artix Designer, the server will be located in
the Server\ src\ cpp folder of your project directory.

If you built the server using the Artix command line tools, the server
will be located in % T_PRCDUCT_DI R% arti x\ 1. 2\ denos\ wi dget s.

6. Start the server with the following command:
start server

7. Go to the widgets project directory.
8. Go to the client directory, Qi ent\ src\ cpp.
9. Start the client with the following command:

client

10. Answer the questions to complete the widget order form.

59

CHAPTER 2 | Using Artix Designer to Develop an Integrated System

Sample output

60

11. The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Example 3 shows the output from a sample run of the Artix project.
Example 3: Sample Widget Order

C\IONA artix\ 1. 2\ denos\ wi dget s\ cor ba>cl i ent

initializing CRB

narrow ng OCRBA: : Chj ect to order Wdgets

How many wi dgets do you want to order 2123

Wiat type of w dgets do you want to order?

1- Bg
2 - Large
3 - Mingo

4 - @rgantuan
Sel ection [1-4]4

Enter Street Address: 123 E m Street
Enter Apt. or Suite Nunber:
Enter Gty: Wl ford

Enter State: CT

Enter ZI P Code: 02343

Sendi ng Wdget O der

Bill for Your Wdgets

O der Nunber: 23:12: 4807/ 31/ 03
Date: 07/31/03

Quantity: 123

Type: Gargant uan

Amount Due: 123

Ship To:

123 B m Street

Val ford, CT
02343
Wdget Order deno conpl ete.

In this chapter

CHAPTER 3

Using Artix
Command Line
Tools to Develop
an Integrated
System

Artix command line tools simplify the work of creating
integrated software applications that use multiple transports
and payload formats.

This chapter discusses the following topics:

The Integration Project page 63
Using Artix page 64
Adding the CORBA Information page 68
Adding the Routing Information page 70

61

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Developing the CORBA Interface page 71
Configuring the Artix Switch page 72
Running the Integrated System page 74

62

The Integration Project

The Integration Project

The problem scenario

How Artix helps

Your company’s inventory control and just-in-time ordering system is
implemented using CORBA. When the manufacturing floor needs more
parts, the system generates a purchase order and e-mails it to the vendor.
When the vendor fulfills the order, they e-mail a bill to your company’s
billing department.

In order to cut labor costs, one of your company’s largest vendors has just
updated their ordering system to use a Web service front end, and has
provided a description of this Web service front end in a WSDL file. The
vendor still fulfills orders placed by e-mail but now charge a 10% premium
for any order that is not processed via the new Web service.

Your company has determined that it will cost too much to continue
e-mailing orders to this vendor, that there is no other vendor whose offerings
are competitive, and that it is far too expensive to develop an entirely new
inventory control and ordering system. Your company decides to modify the
existing ordering system to use the vendor's Web service front end.

As the CORBA expert, you are given the task of integrating the two systems.
You are the only person assigned to the task and given two weeks to
complete it.

Artix simplifies the solution to this problem by providing the following:

® Automated generation of the IDL that describes the CORBA
components of the project, from the WSDL provided by the vendor

® Automated generation of the binding information needed to map
CORBA constructs to Web services constructs

® The ability to implement the solution using a familiar programming
model

® Alightweight runtime service that provides high-speed translation
between the components of the integrated system

63

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Using Artix

Overview

Starting the integration project

Artix lets you define and build many different types of integration solutions.
In this case, the problem is one of integrating with an existing Web service,
so the first step is obtaining a description of that service. A full description
includes:

® The structure of the data the service sends and receives

® The operations offered by the service

® The order in which the data is encoded

® The payload format the service uses

® The transport the service uses

® The location of the service.

An operating Web service is defined in a WSDL document, and a CORBA
application’s interfaces are described in IDL. Artix can import IDL and
WSDL directly, and convert them into Artix contracts (which are themselves
WSDL files that may include IONA’s extensions). Even if a service
description is less formal than an existing IDL or WSDL file (e.g., in the case
where a service is under development), Artix designer provides a series of

wizards to guide you through the process of creating an Artix contract based
on the information available.

You contact the vendor’s IT department in order to obtain a description of
the Web service interface. The IT department might provide the Internet
address of WSDL file that defines this service, or their e-mail reply might
include the file itself. In any case, the required WSDL document is shown in
Example 4.

Example 4: Vendor WSDL document

<?xm version="1.0" encodi ng="UTF- 8" ?>

64

Example 4: Vendor WSDL document

<defi ni ti ons nane="wi dget O der For m wsdl "
t ar get Nanmespace="ht t p: / / wi dget Vendor . com wi dget O der For n¥
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: tns="htt p: //w dget Vendor . com w dget O der For n¥
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="htt p: / / wan. W3. or g/ 2001/ XM_Schema"
xm ns: xsd1="ht t p: / / wi dget Vendor . coni t ypes/ wi dget Types" >
<t ypes>
<schera t ar get Namespace="htt p: / / wi dget Vendor . con t ypes/ wi dget Types"
xm ns="ht t p: / / waw. w3. or g/ 2001/ XM_-Scherma"
xm ns: wsdl ="ht t p: // schenas. xm soap. org/ wsdl / " >
<xsd: si npl eType nane="wi dget Si ze" >
<xsd:restricti on base="xsd:string">
<xsd: enuner ati on val ue="bi g"/ >
<xsd: enuner ati on val ue="1|arge"/>
<xsd: enuner ati on val ue="rungo"/>
<xsd: enuner ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType nane="Address">
<xsd: sequence>
<xsd: el ement nane="nanme" type="xsd:string"/>
<xsd: el enent name="street1" type="xsd:string"/>
<xsd: el ement nane="street2" type="xsd:string"/>
<xsd: el ement nane="city" type="xsd:string"/>
<xsd: el ement name="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el enent name="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:wi dgetSi ze"/>
<xsd: el enent nanme="shi ppi ngAddr ess" type="xsdl: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>

Using Artix

65

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Example 4: Vendor WSDL document

<xsd: conpl exType name="wi dget O derBil || nfo">
<xsd: sequence>
<xsd: el ement nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="am Due" type="xsd:float"/>
<xsd: el ement nane="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schena>
</ types>
<nessage nane="w dget O der ">
<part nanme="w dget O der Form{ type="xsdl:w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">
<part nanme="w dget O der Conf or mati on" type="xsdl:w dget OderBilllnfo"/>
</ message>
<port Type nane="order Wdget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCrderBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng name="or der W dget sBi ndi ng" type="t ns: order Wdget s">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas.xn soap. or g/ soap/ http"/>
<oper ati on name="pl aceW dget O der" >
<soap: operati on soapAction="" style="rpc"/>
<i nput nane="wi dget O der ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="http: //w dget Vendor . coni wi dget O der For ni' use="encoded"/ >
</i nput >
<out put nane="wi dget OrderBi || ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: / / wi dget Vendor . coni wi dget O der For nf use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="order W dget sServi ce">
<port name="w dget O derPort" bi ndi ng="t ns: or der W dget sBi ndi ng" >
<soap: address | ocati on="http://| ocal host : 8080"/ >
</ port>
</ servi ce>
</ defi ni ti ons>

66

Using Artix

This WSDL document completely describes how to interact with the
vendor's ordering system by way of XML documents. Artix Designer can
import this file directly and use it in the Artix contract that describes the
entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<t ypes>

<nessage>

<port Type>

<bi ndi ng>

<servi ce>

Defines the complex data types used by the service. This
service uses an enumerated type, wi dget Si ze, to
describe the widgets, a structure, Addr ess, to hold the
shipping address, and two structures, wi dget O der I nf o
and wi dget Order Bi | | I nf o, for the data needed to
process the order.

Defines the messages by which the service
communicates.

Defines the operations offered by the service.

Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

Defines the address where the service can be contacted.

67

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Adding the CORBA Information

Overview Artix provides the command line tool wsdl t ocor ba to generate the
appropriate CORBA binding in your Artix contract. wsdl t ocor ba also
generates the IDL needed to develop the CORBA components of your
system.

Procedure To generate the appropriate CORBA bindings and IDL file complete the
following steps:

1. Goto % T _PRODUCT DI Rartix\bin.

2. Runthe artix_env script to set up the Artix environment.
3. Goto % T_PRODUCT_Di Rharti x\ 1. 2\ denos\ wi dget s.

4. Run wsdl t ocor ba using the following command:

wsdl tocorba -corba -idl -i orderWdgets
-b order Wdget sSCCRBABI ndi ng wi dget s. wsdl

5. The following files will be generated:

wi dget s- corba. wsdl A modified version of the original contract that
includes the information needed to describe the
CORBA system.

wi dget s. i dl The IDL file describing the interface for the CORBA
system.

6. Edit wi dget s- corba. wsdl to include a CORBA port by adding the
portion of the code below in bold.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ...>
<t ypes>
</ types>
<nessage nanme="w dget O der" >
<part name="wi dget O der Form type="xsdl: w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">

<part name="wi dget O der Conf or mati on" type="xsdl:w dget OrderBillInfo"/>
</ message>

68

Adding the CORBA Information

<port Type nane="or der Wdget s">

</ por t Type>
<bi ndi ng name="or der Wdget sBi ndi ng" type="t ns: or der Wdget s">

</ bi ndi ng>
<bi ndi ng name="or der W dget sCORBABi ndi ng" type="t ns: or der Wdget s">

</ bi ndi ng>
<servi ce name="or der Wdget sServi ce">
<port bi ndi ng="t ns: or der Wdget sBi ndi ng" nanme="w dget O der Port" >
<soap: address | ocati on="http://| ocal host: 8080"/ >
</ port >
</ servi ce>
<servi ce nanme="or der W dget OORBASer vi ce" >
<port bi ndi ng="t ns: or der Wdget sCORBABi ndi ng” name="wi dget CCRBAPort " >
<cor ba: address | ocati on="file://objref.ior” />
</ port >
</ servi ce>
<cor ba: t ypeMappi ng t ar get Namespace="htt p: / / wav. i ona. cond cor ba/ t ypermap/ or der W dget s. i dl ">

</ cor ba: t ypeMappi ng>
</ defini ti ons>

69

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Adding the Routing Information

Overview The details of how Artix decides where to forward messages is defined using
IONA extensions to WSDL. These are defined within the namespace
http://schemas. i ona. com routi ng and the namespace is typically given
the short name routi ng. For all integrations using the Artix standalone
service, you need to specify at least one source and one destination.

Procedure To add the routing information to your Artix contract complete the following:

1. Add the following to the namespace declarations at the beginning of
wi dget s- cor ba. wsdl .

xm ns: routing="http://schenas. i ona. con rout i ng"

2. Add the highlighted code to the end of wi dget s- cor ba. wsdl .
<definitions ...>

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // ww. i ona. coni cor ba/ t ypermap/ or der W dget s. i dl ">

</ cor ba: t ypeMappi ng>
<routing: route name="w dget Rout e" >
<routing: source service="tns: order Wdget CORBASer vi ce" port ="t ns: wi dget CCRBAPort" />
<routing: destination service="tns: order Wdget sServi ce" port="tns:w dget O derPort" />
</routi ng: rout e>
</ defi ni ti ons>

70

Developing the CORBA Interface

Developing the CORBA Interface

Overview

Procedure

Artix can generate the IDL describing the interface when it creates the
CORBA binding and type map information in your Artix contract. However,
you are responsible for developing the application code to support the
interface in your CORBA application. The application code can be written
using either the CORBA model, as shown in this example, or using
Artix-generated stub and skeleton code which is linked with the existing
CORBA application.

To develop a simple CORBA client to implement the new interface complete
the following steps:

1. Use the CORBA IDL compiler to generate the stub code from
w dgets.idl .
If you have IONA'’s Application Server Platform v6.0 or later installed
on your system use the following command:

idl -base widgets.idl

2. Copy the client mainline code from Appendix B into a file called
client.cxx.

3. Build the simple CORBA client.

71

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Configuring the Artix Switch

Overview

Procedure

72

The Artix standalone service provides an easy and fast mechanism for
connecting two services that speak different languages. It reads the
contract, parses it, generates the ports needed for each service, intercepts
the messages, and performs the required translations. All it requires is the
Artix contract describing the services and their integration that you
generated in the previous steps. In addition the standalone service needs to
be configured to load the correct plugins and load the correct Artix contract.

To fully configure an instance of the Artix standalone service, you need to
create two configuration scopes. One for the service itself and one for the
process that stops the service. The most important values used in
configuring the standalone service are or b_pl ugi ns and

pl ugi ns: routing: wsdl _url . orb_pl ugi ns lists the plugins the service loads
when it starts up. For this example you need to load the plugins for CORBA,
HTTP, SOAP, and routing. pl ugi ns: routing: wsdl _url tells the service
where to find the Artix contract that defines its behavior. The path specified
is relative to the starting directory of the service.

To properly configure the Artix standalone service for your project complete
the following steps:

1. Locate the file the following file:

Windows

% T_PRCDUCT_DI Rddartix\ 1.2\ et c\donmai ns\artix.cfg
UNIX

$I T_PRCDUCT_DI R artix/ 1.2/ etc/ domai ns/artix.cfg

2. Open the file in a text editor.

Configuring the Artix Switch

3. Add the configuration scopes shown Example 5 to the very end of the
file.

Example 5: Widget Artix Configuration Scope

wi dget _arti x_servi ce

{ orb_plugins = ["xmfile_|og streant, "iiop_profile", "giop",

“iiop", "soap", "http", "ws_orb", "routing"];

event _log:filters = ["*=ERROR+FATAL"] ;
pl ugi ns: rout i ng: wsdl _ur| ="wi dget s- cor ba. wsdl ";
pl ugi ns: arti x_service:shlib_nane = "it_artix_service_svr";
pl ugi ns: artix_service:iiop:port= "8900";
pl ugi ns: arti x_service:iiop:host= "l ocal host";
pl ugi ns: arti x_servi ce: di rect _persi stence="true";

pol i ci es:iiop:server_address_node_pol i cy: publ i sh_host name=

"true";
ik
wi dget _arti x_servi ce_adm n
{
orb_plugins = ["iiop_profile", "giop", "iiop"];

initial _references: | T_ArtixServi ceAdm n: ref erence=
"corbal oc:iiop: 1. 2@ocal host: 8900/ | T_Arti xServi ceAdm n";
b

4. Save the file.

73

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Running the Integrated System

Overview

Procedure

74

Once all of the components are generated, your system is ready to be tested.
You will need to start the Artix service before starting the CORBA client
because the Artix service needs to generate the IOR for the CORBA client.

Note: The directions for build the Web service for this example are shown
in Appendix A.

To test your Artix project complete the following steps:
1. Go to the Artix bi n directory.

UNIX

$I T_PRCDUCT_DI R arti x/ 1. 2/ bin
Windows

% T_PRCDUCT_DI Rddartix\ 1.2\ bin

2. Runartix_env.

3. Go to the widgets demo directory.
UNIX

$I T_PRCDUCT_DI R/ arti x/ 1. 2/ denos/ wi dget s

Windows

% T_PRCDUCT_DI Rdarti x\ 1. 2\ denos\ wi dget s

4. Start the Artix standalone service with the following command:
itarti x_service -CORBnane wi dget _artix_service run -background

5. Go to the server directory.

If you built the server using the command line tools, the server will be
located at % T_PRCDUCT_Di Redarti x\ 1. 2\ denos\ wi dget s.

Sample output

6.

Running the Integrated System

If you built the server using Artix Designer, the server will be located in
the Server/ src/ cpp folder of your project directory.

Start the server with the following command:

start server

7. Go back to the widgets demo directory.

8. Start the client with the following command:

client

9. Answer the questions to complete the widget order form.

10. The server will return a bill containing the information you entered

along with a randomly generated order number and a price for the
widgets.

Example 6 shows the output from a sample run of the Artix project.

Example 6: Sample Widget Order

C\IONA artix\ 1. 2\ denos\ wi dget s\ cor ba>cl i ent
initializing CRB
narrowi ng CCRBA: : Chj ect to orderWdgets

How many wi dgets do you want to order?123

Wiat type of widgets do you want to order?

1- Bg
2 - Large
3 - Mungo

4 - @Grgantuan
Selection [1-4]4

Enter Street Address: 123 H m Street
Enter Apt. or Suite Nunber:

Enter Gty: Vél ford

Enter State: CT

Enter ZI P Code: 02343

Sendi ng Wdget O der

75

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System

Example 6: Sample Widget Order

Bill for Your Wdgets

Order Nunber: 23:12:4807/31/03
Dat e: 07/31/03

Quantity: 123

Type: Gargant uan

Amount Due: 123

Shi p To:

123 B m Street

wal ford, CT

02343
Wdget O der dermo conpl ete.

76

Overview

In this appendix

APPENDIX A

Building the
Widget Web
Server

In addition to providing middleware integration, Artix provides
the tools to create high-performance C++ Web services using
standard C++ programming techniques.

Both the Artix Designer and the Artix command line tools can generate C+ +
server stub code and C++ client proxy code for the interfaces described in
an Artix contract. The Artix-generated code hides the complexity of the
underlying transport implementation from the application developer and
exposes the objects generated from the contract so that they are usable as if
they were standard C+ + objects. This means that the application developer
can focus on implementing the application logic without worrying about how
the application communicates with the outside world.

For a detail description of programming with Artix read the Artix C++
Programmer’s Guide.

This appendix discusses the following topics:

Using Artix Designer page 79

77

APPENDIX A | Building the Widget Web Server

78

Using the Command Line Tools

page 82

Server Implementation Code

page 84

Using Artix Designer

Using Artix Designer

Overview

Procedure

Artix designer generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, the designer
generates a sample server mainline, and generates a makefile to build the
server.

Once Artix generates the stub code, you must write the implementation logic
using the C+ + development environment of your choice.

To develop the widget web server using Artix Designer complete the
following steps:

1. Start Artix Designer.

Windows
start _desi gner
UNIX

artix_env
start _desi gner

2. Follow the directions for creating an Artix project shown in “Creating an
Artix Project” on page 31.

3. Follow the directions for describing the widget server shown in
“Describing the Server” on page 36.

4. Select the Development icon under the Server node in the project tree.

79

APPENDIX A | Building the Widget Web Server

5. You will see a screen similar to Figure 34.

@ Server - Artix Designer s e =lojx|

Fle Edit Contract Help

DERE 28 EEIXEd 2@ W

[widgets System Development Oplions

- [E] Readme

&I Configuration Development Environment
B & Client

]

- (3] widgetorderForm.w
i [widgets-corba

I B widgets-corba-servi Code Location |.JSENEr/3rctupp ‘ | Browse..
9 Development

— & Deployment [Generate Implamentation Cote
e (5] A Code Generation Opfions

(@] widgetOrderForm w [Gapy WADL from Project Directory
(3] widgets-corba
(3] widgets-corba-seni

C++ Gode Generation Options

C++MNamespace |W\dgelsServeﬁ ‘
< Development i
4 Deployment Select Service [oruermingetssentcs 53] i
B+ [E] Server
- 5l widgetorderForm.w Salect Port [wingetorderport =]
9 Devslopmernt
¢ Deployment ® Windows MMAKE Makefile
-0 contracts
L B widgetOrderForm.wsdl Generate Makefile O Unix Makefile
O None
[[i—] [
Currertview Lok | [Resat | [b |
All [=]

Figure 34: Widget Server Development Screen

Select C++ from the Development Environment pull-down list.
Enter Wdget Server for the C++ Namespace.

© N o

Select the appropriate type of makefile generation for your platform.
9. Select orderWidgetsService from the Select Service pull-down list.
10. Select widgetOrderPort from the Select Port pull-down list.

11. Click OK.

12. The following files are generated in the Server/ src/ cpp directory of
your project folder:

order Wdgets. h order Wdget sd i ent . cxx
orderWdgetsdient.h or der Wdget sl npl . cxx
order Wdgetslnpl . h or der W dget sSer ver. cxx

or der Wdget sServer. h Sanpl ed i ent . cxx

Sanpl eSer ver . cxx Makefil e

Ser ver _wsdl TypesFact ory. cxx Server _wsdl TypesFactory. h

80

Using Artix Designer

wi dget s_wsdl Types. cxx wi dget s_wsdl Types. h

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Q i ent. *, source
files.

13. Insert the highlighted code shown in Example 7 on page 84, to
or der Wdget sl npl . cxx to add the application logic to the server.
14. Build the server.

UNIX
nake server.exe
Windows

nmake server. exe

81

APPENDIX A | Building the Widget Web Server

Using the Command Line Tools

Overview

Procedure

82

Artix has a command line tool, wsdl t ocpp, that generates server stubs and
client proxy code from Artix contracts. The benefit of this tool is that it can
be included in makefiles to help automate the building of applications that
incorporate Artix code and make migrating to newer versions of the product
easier.

To create the widget web server using wsdl t ocpp complete the following
steps:

1. Go to the Artix bi n directory.
UNIX

$I T_PRCDUCT_DI R arti x/ 1. 2/ bin
Windows
% T_PRODUCT_DI Roh arti x\ 1. 2\ bi n

2. Source the arti x_env script.
3. Go to the widgets demo directory.

UNIX

$I T_PRCDUCT_DI R/ arti x/ 1. 2/ denos/ wi dget s
Windows

% T_PRCDUCT_DI Rdarti x\ 1. 2\ denos\ wi dget s

4. Generate the server stubs from widget.wsdl using the wsdl t ocpp tool.

UNIX

wsdl tocpp -sanple -inpl -m UN X wi dget s. wsdl

Using the Command Line Tools

Windows
wsdl t ocpp -sanpl e -inpl -m NVAKE wi dget s. wsdl

5. The following files are generated:

order Wdget s. h or der Wdget sd i ent . cxx
orderWdgetsdient.h or der W dget sl npl . cxx
order Wdget sl npl . h or der W dget sSer ver . cxx

or der Wdget sServer. h Sanpl ed i ent . cxx

Server _wsdl TypesFact ory. cxx Server _wsdl TypesFactory. h
wi dget s_wsdl Types. cxx wi dget s_wsdl Types. h

Sanpl eSer ver. cxx Makefil e

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Q i ent. *, source
files.

6. Insert the highlighted code shown in Example 7 on page 84, to
or der Wdget sl npl . cxx to add the application logic to the server.

7. Build the server.

UNIX

nmake server.exe
Windows

nnake server. exe

83

APPENDIX A | Building the Widget Web Server

Server Implementation Code

Overview The logic of an Artix server is developed inside of an implementation class
generated by the Artix tools. This implementation code can typically be
written using standard C++. For more advanced functionality, like
transactions or security, you may need to use Artix-specific calls.

Code Example 7 shows the implementation code for the sample widget Web
service.

Example 7: Widget Server Implementation

#include <it_cal /i ostream h>
#include <it_cal/fstream h>
#include <it_cal/cal.h>

#i ncl ude <string. h>

#incl ude <stdlib. h>

#i ncl ude " or der Wdget sl npl . h"

| T_US| NG NAVESPACE_STD

or der Wdget sl npl : : order Wdget sl npl (I T_Bus: : Bus_ptr bus,
I T Bus::Port* port) : order Wdget sServer (bus, port)
{

}

or der W dget sl npl : : ~or der W dget sl npl ()
{
}

voi d order Wdget sl npl : : pl aceW dget O der (
const wi dget Order| nfo & wi dget O der For m
wi dget O derBilllnfo & w dget O der Conf or mat i on
) | T_THRONDEQ.((I T_Bus: : Excepti on))
{
wi dget O der Conf i r nmati on. set anount (
wi dget O der For m get amount ()) ;

wi dget O der Conf i rmat i on. set or der _dat e(
wi dget O der For m get order _date());

84

Server Implementation Code

Example 7: Widget Server Implementation

wi dget O der Confi r mat i on. sett ype(wi dget O der Form gettype());

wi dget O der Conf i r mat i on. set shi ppi ngAddr ess(
wi dget O der For m get shi ppi ngAddress());

I T_Bus:: Fl oat ant Due = wi dget O der For m get amount () * 1. 00;
wi dget O der Conf i r mat i on. set ant Due(ant Due) ;

char tenpQ dNunj 128], tenpBuf[20];
_strtinme(tenpOdNun;

_strdate(tenpBuf);

strcat (tenpQ dNum tenpBuf);

wi dget O der Conf i r mat i on. set or der Nunber (t enpQr dNunj ;

85

APPENDIX A | Building the Widget Web Server

86

Overview

Client source

APPENDIX B

The CORBA Client
Code

The mainline for the Demo CORBA client is pure CORBA code.

The CORBA portion of the widgets example is intended to be a CORBA
client. As such it does not require any CORBA services to be running. The
Artix switch publishes the IOR to a file which the client reads. This can be
modified to take advantage of a CORBA naming service, but that is beyond
the scope of this demo.

The mainline used in this demo is shown in Example 8.

Example 8: Widget CORBA client

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

<it_cal/iostream h>
<it_cal /fstream h>
<string. h>

<stdlib. h>

<tinme.h>

<ony/ or b. hh>

"wi dget s. hh"

| T_USI NG_NAMESPACE_STD

const char* const objref file ="../objref.ior";

87

APPENDIX B | The CORBA Client Code

88

Example 8: Widget CORBA client

| ong get_anount ()

{

-~

| ong anount ;

cout << endl;
cout << "How many widgets do you want to order?" << flush;

cin >> anount;

retur n(anount) ;

dget Si ze get _type()

wi dget Si ze type;
char sel ection;

cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

endl ;

"What type of wi dgets do you want to order?" << endl;
"1l - Big" << endl;

"2 - Large" << endl;

"3 - Mingo" << endl;

"4 - Gargantuan" << endl;

"Selection [1-4]" << flush;

Example 8: Widget CORBA client
cin >> sel ection;

swi tch (sel ection)

{

case '1':

type = big;
br eak;

case '2':

type = large;
br eak;

case '3':

type = nungo;
br eak;

case '4':
{
type = gargant uan;
br eak;

}

default : type = mungo;

}

return(type);
}

89

APPENDIX B | The CORBA Client Code

20

Example 8: Widget CORBA client

Addr ess get _address()

{

}

Addr ess addr ess;
char tenp[256];

cout << endl;
cout << "Enter Street Address:" << flush;

gets(tenp);

gets(tenp);
address. street1 = OCRBA :string_dup(tenp);

Il clears the buffer

cout << "Enter Apt. or Suite Nunber:" << flush;

gets(tenp);
address. street2 = OCRBA : string_dup(tenp);

cout << "Enter Gty:" << flush;

gets(tenp);
address.city = OCRBA :string_dup(tenp);

cout << "Enter State:" << flush;
cin >> tenp;
address. state = QORBA: : string_dup(tenp);

cout << "Enter ZIP Code:" << fl ush;
cin >> tenp;
addr ess. zi pCode =

return(address);

CCRBA: : string_dup(tenp);

void print_bill(wdgetCderBilllnfo *bill)

{

cout
cout
cout
cout

<<
<<
<<
<<

"Bill for Your Wdgets" << endl;

"Order Nunber: " << bill->order Nunber <<
"Date: " << bill->order_date << endl;
"Quantity: " << bill->anount << endl;

endl ;

Example 8: Widget CORBA client

swi tch(bill->type)
{
case big:
{
cout << "Type: Big" << endl;
br eak;
}
case | arge:
{
cout << "Type: Large" << endl;
br eak;
}
case nungo:
{
cout << "Type: Mungo" << endl;
br eak;
}

case gargantuan: cout << "Type: Gargantuan" << endl;

}

cout << "Anount Due: " << bill->antDue << endl;

cout << "Ship To:" << endl;

cout << bill->shi ppi ngAddress. streetl << endl ;

cout << bill->shi ppi ngAddr ess. street2 << endl;

cout << bill->shippingAddress.city << ", " <<
bi | | - >shi ppi ngAddr ess. state << endl ;

cout << bill->shi ppi ngAddr ess. zi pCode << endl ;

APPENDIX B | The CORBA Client Code

Example 8: Widget CORBA client

int main(int argc, char** argv)
{
/1 Initialize the CRB.
CORBA: : ORB_var orb;

try
{
cout << "initializing ORB' << endl;
orb = CCRBA :CRB init(argc, argv);
}
catch (OCRBA : Syst enExcepti on& se)
{
cerr << "CRB_init failed: " << se << endl;
return 1;
}
if (CORBA: :is_nil(orb))
{
cerr << "CRB_init returned nil object reference\n";
return 1;
}

// Cotain stringified object reference fromfile.
CORBA: : String_var objref_string;
{
const char* filenane = objref _file;
I T ifstreamis(fil enane);
if (lis.good())
{
cerr << "error opening " << fil ename << endl;
return 1;
}
is >> objref_string;
if (objref_string.in() == 0 || strlen(objref_string.in()) == 0)
{
cerr << "object reference string has zero |length\n";
return 1;
}
}

92

Example 8: Widget CORBA client

/1 Destringify the object reference.
CCRBA: : (hj ect _var tobj;
try
{
tobj = orb->string_to_object(objref_string.in());
}
cat ch (OCRBA: : Syst enExcept i on& se)
{
cerr << "string_to_object failed: " << se << endl;
return 1;

}

/1 Narrow t he obj ect reference.
or der Wdget s_var pr oxy;
try
{
cout << "narrowi ng GORBA: : (hbj ect to order Wdgets" << endl;
proxy = orderWdgets::_narrow(tobj);
}
catch (OCRBA: : Syst enExcepti on& se)
{
cerr << "orderWdgets:: _narrow failed: " << se << endl;
return 1;
}
if (CORBA: :is_nil(proxy.in()))
{
cerr << "orderWdgets::_narrow returned a nil object
reference\n";
return 1;

}
try
wi dget O der I nfo order_form

order _formanount = get_amount ();

char dat e[10] ;

_strdate(date);

order_formorder_date = CORBA: :string_dup(date);
order_formtype = get_type();

or der _f orm shi ppi ngAddress = get _address();

93

APPENDIX B | The CORBA Client Code

Example 8: Widget CORBA client
widget OderBilllnfo *hill;

cout << "Sending Wdget Oder" << endl;
bi Il = proxy->pl aceW dget O der (or der _forn);

print_bill(bill);

QORBA: : string_free(order_formorder_date);

}

catch (OCRBA : Syst enExcepti on& se)

{
cerr << "orderWdgets failed: " << se << endl;
return 1;

}

try

{
or b- >shut down(| T_TRUE) ;

}

catch (OCRBA : Syst enExcepti on& se)

{
cerr << "QOCRBA : CRB::shutdown failed: " << se << endl;
return 1;

}

cout << "Wdget Order deno conplete." << endl;
return O;

94

Glossary

Artix Designer
A suite of GUI tools for creating and deploying Artix integration solutions.

Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <port Type>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

Connection
An established communication link between any two Artix endpoints.

Contract

An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <por t Type>, <oper at i on>, <nessage>, <t ype>, and <schena> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.” The physical contract is specified in the <port >, <bi ndi ng> and
<servi ce> WSDL tags.

Contract Editor

A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.

95

GLOSSARY

96

Deployment Mode

One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

Embedded Mode

Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

End-point

The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application). Contrast with Service.

Host
The network node on which a particular service resides.

Marshalling Format

A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Payload Format

The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL via the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.

Routing

The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both end-points and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router

A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

Service

An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point

The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus

The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

Standalone Mode

An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch

A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.

97

GLOSSARY

98

Transport
An on-the-wire format for messages.

Transport Plug-In

A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port > element of a contract.

Index

A

Artix 64

Artix Bus 5

Artix contract 8

Artix Designer 24, 28
binding editor 16
contract editor 12
interface editor 15
message editor 14
operation editor 15
port editor 18
project tree 11
service editor 16
system diagram 10
type editor 13

B
binding 7, 27, 67

c

contract 7

contract editor
binding editor 16
interface editor 15
message editor 14
service editor 16
type editor 13

interface editor 15
operation editor 15

M
message 27, 67

o

operation 7

P

payload format 3, 8
portType 7, 27, 67

S

service 27, 67

Service Access Point 6, 7
Service Oriented Architecture 2

T
types 27, 67

W

Web Services Definition Language 7
WSDL 24, 64

99

INDEX

100

	List of Figures
	Preface
	Artix Relay Concepts
	Introduction to Artix Relay
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts

	The Artix Designer

	Using Artix Designer to Develop an Integrated System
	The Integration Project
	Using Artix Designer
	Starting Artix Designer
	Creating an Artix Project
	Describing the Server
	Describing the CORBA Client
	Adding the CORBA Binding and Type Mapping
	Adding the CORBA Port

	Developing the CORBA Interface
	Describing the Artix Service
	Deploying the Artix Service
	Running the Integrated System

	Using Artix Command Line Tools to Develop an Integrated System
	The Integration Project
	Using Artix
	Adding the CORBA Information
	Adding the Routing Information
	Developing the CORBA Interface
	Configuring the Artix Switch
	Running the Integrated System

	Building the Widget Web Server
	Using Artix Designer
	Using the Command Line Tools
	Server Implementation Code

	The CORBA Client Code
	Glossary
	Index

