IONA

>3 Artix™

Tutorial

Version 1.2, November 2003

Making Software Work Together™

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.

IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 17-Nov-2003

M3103

Contents

Preface

Chapter 1 Introduction
A Sample Artix Application
Compiling and Running the Sample Application

Chapter 2 Developing a Web Service Client
Coding the Artix C++ Web Service Client
Generating the Stub Code
Writing the Client Application Code
Compiling the Client Application

Chapter 3 Developing a Web Service Server
Coding the Artix C++ Web Service Server

Generating the Skeleton and Starting Point Implementation Code
Writing the Web Service Implementation Code

Writing the Server Mainline

Running the Artix C+-+ Web Service Application

Chapter 4 Configuring Artix™

Establishing the Host Computer Environment
Configuration During Installation
Running the artix_env.bat Script
Establishing the Runtime Environment
The orb_plugins Configuration Value
Configuration Scopes
Using Configuration Scopes

Controlling Application Logging
Using the Logging Functionality

Chapter 5 Using the 1HOP Transport
The 1IOP Tunneling Demo

Vii

=

27
28
29
32
33
34
35
38
40
41

43
44

CONTENTS

The HelloWorld.wsdl File
Compiling and Running the Application

Chapter 6 Using the Tuxedo Transport
The Demo Code
The HelloWorld.wsdl File
The Tuxedo Configuration
Configuring, Compiling and Running the Application

Chapter 7 Using the WebSphere™ MQ Transport
Creating the WebSphere MQ Queues
Creating the HW_REQUEST and HW_REPLY Queues
The Demo Code
Configuring, Compiling and Running the Application
Further Considerations

Chapter 8 Using the TIBCO Rendezvous™ Transport
The Demo Code
The HelloWorld.wsdl File
Compiling and Running the Application
Monitoring the TIBCO Rendezvous Environment

Chapter 9 Using CORBA Applications and Transport
The CORBA Client—Artix Server Demo
Compiling and Running the Application
The Artix Client—Artix Server Demo
Compiling and Running the Application
The Artix Client—CORBA Server Demo
Compiling and Running the Application

Chapter 10 Routing
The Routing Demos
The Protocol-Based Routing Demo
Compiling and Running the Application
Understanding the Application
The Operation-Based Routing Demo
Compiling and Running the Application

45
48

49
51
53
55
57

59
61
63
64
67
69

71
73
74
77
78

81
83
89
91
92
93
94

97

99
100
106
109
110
113

Understanding the Application
Embedding the Switch Functionality in a Process
The Content-Based Routing Demo
Compiling and Running the Application
Understanding the Application

Chapter 11 Accessing an Endpoint via Multiple Protocols
The Common Target Demos
The Demo Code

Chapter 12 Oneway Operations
Web Service Semantics
The WSDL File
Compiling and Running the Application

Chapter 13 Type Management
A More Complex Application
Compiling and Running the Application
Comparing SOAP/RPC and Document/Literal Semantics

CONTENTS

115
116
120
126
128

129
131
136

139
140
141
146

149
150
164
165

CONTENTS

vi

About this Guide

Audience

Related documentation

Organization of this guide

Preface

Artix can be used in many different ways. It can be used to:

® Code C++ Web service client applications that run against distributed
services.

® Develop and deploy a C++ Web service.
Create a switch or bridge between two applications based on different
middleware products, e.g., TIBCO Rendezvous and WebSphere MQ.

This document, and the accompanying coding examples, will teach you

about each of these types of applications and demonstrate the functionality
included in the Artix™ product.

This guide is aimed at new users of Artix who wish to see examples of Artix
in action, and gain an idea of the various capabilities of the product.

This guide assume you have read the following document:
Artix Getting Started

This guide also refers you to the following documents for more detail on the
GUI and programming issues respectively:

Artix User’s Guide

Artix Programmer’s Guide

This guide is divided as follows:

Chapter 1 gives a brief overview of the functionality of Artix using the
spellcheck service deployed by Google™.

vii

PREFACE

Additional related resources

viii

Chapter 2, Chapter 3, and Chapter 5 through Chapter 9 illustrate how to

use different transports for the same client and server code:

® In Chapter 2 and Chapter 3, you will first develop a simple C++
client, which uses SOAP over HTTP, to invoke on a Web service.

® In Chapter 5 you will change the transport from HTTP to 110OP.
In Chapter 6 you will change the transport to Tuxedo.
In Chapter 7 you will change the transport to WebSphere™ MQ.

® In Chapter 8 you will use the TIBCO encoding and the TIBCO
Rendezvous transport.

® In Chapter 9 you will use CORBA encoding and IIOP transport.

Chapter 4 introduces Artix configuration principles and includes an
elementary discussion of runtime configuration settings.

In Chapter 10 you will be introduced to routing, the ability to propagate a
request using multiple transport protocols.

Chapter 11 describes how you can use an Artix server can receive requests
over multiple protocols and pass the invocation to a common
implementation object.

Chapter 12 describes how you can specify that operations use oneway
semantics.

Finally, Chapter 13 delves into code generation, using complex data types in
your application code, and presents a comparison between the code
generated from SOAP/RPC and document/literal encoded WSDL files.

Note: The step-by-step instructions and PATHS to specific directories and
files are presented in Windows format. The demo code will run on UNIX
systems, and makefi | es and scripts to set required environment variables
are provided for both Windows and UNIX operating systems. If you want to
run these demos on a UNIX system, you are responsible for transposing
Windows syntax into UNIX syntax.

The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

http://www.iona.com/support/kb/
The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/kb/

PREFACE

http://www.iona.com/support/update/
If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

Typographical conventions

Const ant wi dth

Italic

This guide uses the following typographical conventions:

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (bj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd / users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying conventions

No prompt

%

This guide may use the following keying conventions:

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

http://www.iona.com/support/update/

PREFACE

[]

{}

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

In this chapter

CHAPTER 1

Introduction

This chapter uses the coding example in one of the product
demos to introduce you to the mechanics of working with Artix.

This chapter discusses the following topics:

A Sample Artix Application page 2

Compiling and Running the Sample Application page 5

CHAPTER 1 | Introduction

A Sample Artix Application

The SpellCheck Demo In this example, Artix is used to code a C++ Web service client that runs
against the spellcheck service deployed by Google™.

The WSDL file One of the interesting aspects about this example is that it does not require
a local copy of the WSDL file describing the service. This file is accessed
remotely and used by the Artix code generation utility to create the
necessary stub and helper classes. Consequently, this example represents
the simplest approach to using Artix.

When you run the Artix code generation utility — wsdl t ocpp — the WSDL file
is accessed remotely from the site api . googl e. con Googl eSear ch. wsdl .
The code generation utility uses information from the WSDL file to create
the classes your client application needs to contact the Web service. You
then write a client application that uses these classes.

Point your Web browser to http: //api . googl e. coni Googl eSear ch. wsdl to
display the WSDL file that describes the Web service. This service offers
three operations, which are described within the <port Type>..</ port Type>
tags. In this example, the client application is completely coded and uses
the doSpel | i ngSuggesti on operation. However, you can extend this
application to use other operations.

Notice that the url for the actual Web service, provided within the

<servi ce>..</ servi ce> tags, is different from the url through which you
view the WSDL file. The Google Web service is available at

http://api . googl e. conf sear ch/ bet a2. When the client application runs,
the stub/proxy code accesses the WSDL file again and extracts the service’s
actual url .

Within the WSDL file, the port Type section is particularly significant. The
por t Type is conceptually identical to a J2EE or CORBA interface definition;
it describes the operations available on an “object.” When the wsdl t ocpp
code generation utility creates application classes, it includes the value of

The makefile

The GoogleSearchPortClient class

A Sample Artix Application

the port Type name attribute within the names of the classes. In the Google
WSDL, the port Type name is Googl eSear chPort, and the names of the
generated classes all begin with Googl eSear chPort .

Note: You may give your portType any name. The wsdl t ocpp code
generation utility does, however, modify some names. If the name you
select ends with Port Type, such as Hel | ovr | dPort Type, the code
generation utility strips Port Type from the names of the generated
classes. The generated class names will start with Hel | over | d rather than
Hel | oWor | dPor t Type.

In more involved WSDL files, there may be multiple port Type sections.
When running the wsdl t ocpp code generation utility you will use command
line parameters to specify which port Type (and servi ce) should be
represented by the generated code. This concept is developed more
completely in later chapters.

Since there is a straight-forward logic to the naming convention for the
generated code, you will be able to write or edit your makefi | es as required.
The nakefile for this sample is complete. You can review its contents to
understand more completely the compilation and linking processes.

Basically building the application is a three-step process:

1. Use the WSDL file to generate the required stubs and helper classes.
2. Compile the application source code and the generated classes.

3. Link the compiled code to the required Artix libraries.

This generated class represents the stub, or proxy, to the distributed Web
service; its declaration and implementation are described in the files
CGoogl eSearchPortdient.h and Googl eSear chPort d i ent. cxx.

Your client application creates an instance of this class and then uses it to
invoke the desired Web service operation. Later chapters of this guide will
discuss this class in greater detail. To understand this example, you need
only appreciate the fact that this class includes the method

doSpel | i ngSuggest i on, which corresponds to the Web service operation
used by the client application.

CHAPTER 1 | Introduction

The client application

This application is fully coded and included in the file spel I check. cxx. The
application is quite simple: it obtains input from the command line, submits
a word for spell checking to the Web service, and displays the corrected
spelling. The significant code fragment is:

Googl eSearchPortdient the_client; // create stub/proxy instance

/] invoke the nethod
the_client.doSpel | i ngSuggesti on(user _key, phrase, result);

The parameters user _key, phrase, and resul t are string variables
representing the Google license key, the input word, and the corrected
spelling returned from the Web service. Note that Artix method invocations
use out parameters rather than return values to return data from the service
to the client application.

Compiling and Running the Sample Application

Compiling and Running the Sample

Application

Firewall restrictions

Compiling the Application Source
Code

Makefile processing

To successfully build and run this application, you must have access to the
public Internet. If your computer is behind a firewall that prevents Internet
access, you will not be able to build and run this example. The other
examples described in this guide are completely self-contained and will not
be affected by firewall restrictions.

Note: Throughout this guide, compilation instructions are presented that
assume you have not already built the sample applications. You can build
the entire suite of sample applications from the <i nstal | ati onD rect or y>
\artix\ 1.2\ denos directory. Alternatively, you can build each sample
application from its own directory, as described in this guide.

You must first set your environment to insure that the Artix libraries and
executables are accessible.

1. Open a command window and move to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].

2. Movetothe <installationDrectory>\artix\ 1.2\ denos\ spel | check
directory.

3. In the command window, issue the command

nmake al |

The nakefil e runs the batch file wsdl t ocpp. bat with the command,

wsdl t ocpp. bat
-w "http://api.googl e. com Googl eSear ch. wsdl "
-n GOOGLE

which runs the code generation utility; then the source code files are
compiled and linked into the executable client. exe.

CHAPTER 1 | Introduction

Running the Application From the command window used in the previous section, issue the
command

client[.exe] <someM sspel | edWord>

The correct spelling is displayed and the process ends.

Alternatively, issue the command
client[.exe]

followed by the enter key. Then type a misspelled word and press the enter
key again.

<soneM sspel | edWr d>

The correct spelling is displayed and the process ends.

In this chapter

CHAPTER 2

Developing a Web
Service Client

In this chapter, you will develop an Artix™ C++ client
application. In the following chapter, you will code an Artix
C++ server application.

This chapter discusses the following topics:

Coding the Artix C++ Web Service Client page 8

CHAPTER 2 | Developing a Web Service Client

Coding the Artix C++ Web Service Client

As a client application developer, your only information about the target
Web service comes from the WSDL file. Artix includes a utility that reads the
WSDL file and generates the client-side stubs (and server-side skeletons)
that you will use in coding your client application.

This chapter discusses the support Artix provides to the client application
developer. The server application will be compiled and run as part of the
following chapter.

Coding the Artix C++ Web Service Client

Generating the Stub Code

Makefile processing

Command-line arguments

The nakefil e specifies the WSDL file used to generate the stub and

skeleton code. Although the skeleton code is not needed to code a client

application, there is no way to suppress its generation. For this discussion,

you do not need to be concerned with the skeleton code.

1. Open a command window and move to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].

2. Move to the
<installationD rectory>\artix\1.2\denos\ hel |l o_world\http_soap
\client directory.

3. Use a text editor to open the nakefile. Observe that the $(WsDL)
variable now includes the relative path to the local WSDL file.

4. Close the file.

5. In the command window, issue the command

nnake al |

The nakefil e runs the batch file wsdl t ocpp. bat with the command,
wsdl t ocpp. bat -w $(WBDL) -n HW

The class xm bus. WBDLToCPPd i ent generates the stub and skeleton
classes. The $(WsDL) tag resolves to the file location for the WSDL file
describing the Web service you create and deploy in the following chapter.

WBDL=Hel | oWr | d. wsdl

Although the nakefil e includes the proper commands for this application,
the wsdl tocpp. bat file may use any, or all, of the following command line
arguments; only the first argument is required.

-w WBDL- URL

[-e Wb-service-nane] [-t port] [-b bindi ng- nane]
[-d output-directory] [-n nanespace] [-f]

[-inpl] [-v] [-license] [-7]

This example uses two command line arguments:

CHAPTER 2 | Developing a Web Service Client

® - w specifies the WSDL file’s path or URL. For this client application,
you download the WSDL file from the Web service container. In the
next chapter, you modify the makefil e and use the local copy of the
WSDL file.

® _n specifies a C++ namespace for the generated source code.

Generated files The following files are created from the WSDL file:

Table 1: Files generated by wsdltocpp utility

Generated files Description

Hel | oWrl d. h Describes the class that represents
the Web service API. This class is
the superclass for both client stubs
and server skeleton classes.

Hel | oVor| dd i ent. h, Client-side stub code
Hel | oWrl dd i ent . cxx

Hel | oWor | dSer ver . h, Server-side skeleton code
Hel | oWbr | dSer ver . cxx

Hel | oVr | dTypes. h, C++ class descriptions of

Hel | oWr | dTypes. cxx complex data types defined in the
WSDL file. In this example no
complex data types are defined, so
these files do not include code.

HelloWorld.h, HelloWorldTypes.h The Hel | owr | d. h and Hel | ovr | dTypes. h contain all the information you
need to write client code.

For this simple demo, the Hel | ovér | dTypes. h file does not include any
generated code.

10

HelloWorld.h file

HelloWorldClient.h,
HelloWorldClient.cxx

HelloWorldClient.h file

Coding the Artix C++ Web Service Client

The generated content of the Hel | ovorl d. h file is:
#i ncl ude <it_bus/ bus. h>

#i ncl ude <it_bus/types. h>

#i ncl ude "Hel | oWr | dTypes. h"

nanespace HW

{
class Hel | ovorld
{
publ i c:
Hel | oWor I d() {}
~Hel | oWor 1 d() {}
virtual void greetMe
(const | T_Bus::String& stringParan®,
I T_Bus:: String& var_return)
I T_THRONDECL((| T_Bus: : Exception)) = O;
virtual void sayH (I T_Bus:: String& var_return)
I T_THRONDECL((| T_Bus: : Exception)) = O;
s
b

The Hel I overl d class is the superclass for classes Hel | ovorl dd i ent and
Hel | over | dSer ver, and so provides a single service-oriented API for both
client and server processes.

The last parameter in each method declaration represents the method’s
return value.

These files contain client stub code. You do not work directly with the code
in these files. However, the client application instantiates instances of the
Hel | ovor | dd i ent class, so you should be familiar with its constructor
methods.

® For all of the constructors, the | T_Bus: : Bus_ptr parameter has an
assigned default value. You do not need to provide this value.

® The overloaded constructors take parameters let you specify a different
location for the WSDL file, service name and port name.

#i ncl ude "Hel | oWrl d. h"

11

CHAPTER 2 | Developing a Web Service Client

#i ncl ude <it_bus/ service. h>
#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/types. h>

namespace HW

{
class Hell oWrl dd i ent

public Hellowrld, public I T _Bus::dientProxyBase

{
private:

| T_Bus: : Bus_var m bus;

I T _Bus::Service * mservice;

I T Bus::String m port _narne;

I T_Bus::Port * m port;

publ i c:

Hel | oVor | dd i ent (
| T_Bus::Bus_ptr bus = 0

)

Hel | oVor | dd i ent (
const | T _Bus::String & wsdl,
| T_Bus::Bus_ptr bus = 0

)

Hel | oVor | dd i ent (
const | T Bus::String & wsdl,
const | T _Bus:: Q\ane & service_nane,
const | T _Bus::String & port_nare,
| T_Bus::Bus_ptr bus = 0

)

~Hel | oWor 1 dd i ent ();

virtual void

gr eet Me(
const | T_Bus::String & stringParan®,
I T Bus::String & var_return

) I T_THRONDEQ.((I T_Bus: : Exception));

virtual void

sayHi (
IT Bus::String & var_return

) I T_THRONDEQ.((I T_Bus: : Exception));

IE

12

Coding the Artix C++ Web Service Client

HelloWorldClient.cxx file In this example, the client application uses the single argument constructor
without providing a value for the 1 T_Bus: : Bus_ptr parameter. This
constructor calls service factory method creat e_servi ce(), whose first
argument specifies the WSDL file’s URL.

Hel | oWrl dQient:: Hel l oWrl dd i ent (
I T _Bus::Bus_ptr bus

)
{
if (bus == 0)
{
mbus = | T_Bus::Bus::create_reference();
}
el se
{
mbus = | T_Bus:: Bus::_duplicate(bus);
}
mservice =
Servi ceFactory: : get _i nstance(m bus. get()).create_service(
"../comon/ Hel | oWrl d. wsdl ",
Q\arre(", "Hel | oWor| dServi ce",
“http://xm bus. con Hel | oWor | d*)
)
mport_nane = "Hel | oWr| dPort*";
mport = mservice->create_port(mport_nane);
}

13

CHAPTER 2 | Developing a Web Service Client

Writing the Client Application Code

Client.cxx file

14

The following code shows a client application that invokes Web service
methods sayH and greet Me on an instance of the Hel | ovr| dd i ent
class. Artix does not create starting point code for the client application.

The client application includes the following code:

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_af ¢/ Exception. h>
#include <it_cal /i ostream h>

#include "../common/ Hel | oWrl dd i ent. h"

| T_USI NG_NAVESPACE_STD
usi ng namespace | T_Bus;

usi ng nanespace HW

i nt

mai n(
int argc,
char* argv[]

cout << "HellowWrld Aient" << endl;

try

{
I T Bus::init(argc, argv);
Hel | oWorl dd i ent hw,

String string_in;
String string_out;

hw. sayH (string_out);
cout << "sayH method ret urned:
<< string_out << endl;

if (argc > 1) {

string_in = argv[1];
} else {

string_in = "Early Adopter";
}

Coding the Artix C++ Web Service Client

hw greet Me(string_in, string_out);
cout << "greetMe nethod returned: "
<< string_out << endl;

}
catch(| T_Bus: : Excepti on& e)
{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.Message()
<< endl ;
return -1;
}
return O;

15

CHAPTER 2 | Developing a Web Service Client

Compiling the Client Application

Running the makefil e as described earlier generates all of the helper files
and compiles and links the client application.

Running the client application You will not be able to run this application until you complete coding the
server process as described in the next chapter.

16

In this chapter

CHAPTER 3

Developing a Web
Service Server

In this chapter, you will develop an Artix™ C++ server
application.

This chapter discusses the following topic:

Coding the Artix C++ Web Service Server page 18

17

CHAPTER 3 | Developing a Web Service Server

Coding the Artix C++ Web Service Server

As a server application developer, your only information about the Web
service comes from the WSDL file. Artix includes a utility that reads the
WSDL file and generates the server-side skeletons and starting point code
for your implementation object.

18

Coding the Artix C++ Web Service Server

Generating the Skeleton and Starting Point Implementation

Code

HelloWorldImpl.h and
HelloWorldImpl.cxx

HelloWorldImpl.h file

The makefil e inthe <installationD rectory>\artix\1.2

\ deros\ hel | o_wor | d\ htt p_soap\ server directory creates the skeleton
class code. For this first example, the starting point code for the
implementation object has been provided. However, you could use the
-inpl command line argument when running the wsdl t ocpp utility, which

would generate starting point code.

The following additional files are created in response to the -i npl

command line argument.

Table 2:

Generated files

Description

Hel | oWor | dI npl . h,
Hel | oVor | dI npl . cxx

Generated by the -i npl flag, these
files contain starting point code for
the target object that provides the
Web service functionality

The header file includes definitions for two classes:

® Helloverldi npl class, which is your Web service implementation

® HelloWrldinpl Factory class

This file is complete and does not require any customization or extension.

#i ncl ude "Hel | oWr | dServer. h"

cl ass Hel | ovr | dl npl

public HW: Hel | oWor | dSer ver

{
publ i c:

Hel | oWor | di npl (I T_Bus: :Bus_ptr bus, |T_Bus::Port *port);

~Hel | oWor | dI npl () ;

virtual void
gr eet Me(

const | T _Bus::String & stringParan®,

19

CHAPTER 3 | Developing a Web Service Server

HellowWorldImpl.cxx file

20

IT Bus::String & var_return
) I T_THRONDECL((!| T_Bus: : Exception));

virtual void
sayH (
I T _Bus::String & var_return
) I T_THRONDECL((!| T_Bus: : Exception));

I

class Hel | oWl dl npl Factory :
public I T_Bus:: Server Fact or yBase

{
publ i c:
Hel | oWor | dI npl Fact ory() ;
virtual ~Hel | oWr! dl npl Factory();
virtual |T_Bus:: Server St ubBase*
create_server (| T_Bus::Bus_ptr bus, |IT Bus::Port *port);
virtual const IT Bus::String &
get _wsdl _| ocation();
virtual void
destroy_server (I T_Bus:: Server St ubBase* server);
privat e:
I T _Bus::String mwsdl _| ocation;
IE

The generated code includes empty method bodies. You add your
processing logic to the method bodies in this implementation file.

#i ncl ude "Hel | oVor | dl npl . h"
#include <it_cal/cal.h>

Hel | oWor | di npl : : Hel | oVr | dI npl ()
{
}

Hel | oWor | dI npl : : ~Hel | oWor | dI npl ()
{
}

voi d Hel | oVor | dl npl : : greet Me

Coding the Artix C++ Web Service Server

(const | T _Bus::String& stringParand,
I T_Bus:: String& var_return)
| T_THRONDECQL((I T_Bus: : Excepti on))
{
}

voi d Hel | oWor | dl npl :: sayH (1 T_Bus:: String& var_return)
| T_THRON DECL((I T_Bus: : Excepti on))

{

}

21

CHAPTER 3 | Developing a Web Service Server

Writing the Web Service Implementation Code

sayHi method

greetMe method

Required namespace declarations

22

If desired, the wsdl t ocpp utility creates starting point source code files for
your implementation class. These files are generated into the same directory
as the stub, skeleton, and helper class files.

The Hel | owor | dinpl. h and Hel | ovorl di npl . cxx files contain properly
formatted method declarations and fully functional factory class methods,
but you must add the processing logic for each of your Web service’s
methods. For the HelloWorld Web service, you must complete the coding of
the greet Me and sayH methods. However, for this demo, the coding
within the Hel I ovor | dl npl . cxx file is already complete.

The sayH method simply returns a message to the client application.
Complete this method body by adding the following two lines of code:

cout << “Hel loWrldlnpl::sayH called” << endl;
var_return = | T_Bus::String
(“QGeetings fromthe Artix Hellowrld Server”);

The greet M method returns a message that includes the input parameter.
Complete this method by adding the following two lines of code:

cout << “HelloWrldinpl::greetM called with message: ”
<< stringParan® << endl;

var_return = | T_Bus:: String
(“Hello Artix User: ") + stringParan;

To enable std:: cout, and to simplify your coding, you must also add the
following declarations to the Hel | oVr | di npl . cxx file:

| T_USI NG NAVESPACE _STD
usi ng namespace | T_Bus;

Coding the Artix C++ Web Service Server

Writing the Server Mainline

Server.cxx file

Compiling the Server Application
Code

The server mainline is quite simple and basically unchanged for all of the
demos discussed in this document.

The server mainline process includes the following code:

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>
#i ncl ude <it_bus/faul t_exception. h>

| T_USI NG NAMESPACE_STD
usi ng namespace | T_Bus;

i nt
mai n(
int argc,
char* argv[]
)
{
cout << "HelloWrld Server" << endl;
try
{
IT Bus::init(argc, argv);
I T Bus::run();
}
catch (1T _Bus:: Exception& e)
{
cout << "Error occurred: " << e.Error() << endl;
return -1;
}
return O;
}

This file is complete and does not require editing.

Running the makefil e as described in Generating the Skeleton and Starting
Point Implementation Code generates all of the helper files and compiles
and links the server application. However, if you add or change the business
logic in your implementation class, you will need to recompile and create a
New Server process.

23

CHAPTER 3 | Developing a Web Service Server

24

Open a command window and move to the <instal | ati onDirectory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].

Move to the <installationDirectory>\artix\1.2\denos
\hel I o_wor | d\ htt p_soap\ server directory.

Use a text editor to open the nakefil e. Observe that the $(W8DL)
variable now includes the relative path to the local WSDL file.

Close the file.
In the command window, issue the command

nnake al |

CHAPTER 3 | Developing a Web Service Server

Running the Artix C++ Web Service Application

Terminating the server process

25

You must first start the server process and then run the client application.

1. Open a command window to the <installationD rectory>
\artix\ 1. 2\ bi n directory and run the artix_env[.bat] file.

2. Move tothe <installationDirectory>\artix\1.2\denos
\hel I o_wor | d\ htt p_soap\server subdirectory and issue the
command:

start server

3. Move tothe <installationDrectory>\artix\1.2\denos
\hel I o_worl d\http_soap\client subdirectory and issue the
command:

client
or the command:
client “<sone nane>"

Observe the messages in both the server and client command windows.

Issue the rl-C command in the corresponding command window.

CHAPTER 3 | Developing a Web Service Server

26

In this chapter

CHAPTER 4

Configuring Artix™

This chapter briefly introduces the process of configuring an
Artix installation. Configuration includes two aspects: setting
up the host computer environment; and setting up the common
and application specific runtime environment.

Also included in this chapter is a discussion of application
logging, which, as you will learn, is set through configuration
rather than through coding.

This chapter discusses the following topics:

Establishing the Host Computer Environment page 28

Controlling Application Logging page 40

27

CHAPTER 4 | Configuring Artix™

Establishing the Host Computer Environment

The host computer’s environment is configured during both the installation
process and through running the script arti x_env. bat, which is created
during the installation process.

28

Establishing the Host Computer Environment

Configuration During Installation

Prior to running the Artix installation procedure, you specified the path to
your JDK by setting the variable JAVA HOME. Generally, this variable is set
within the system environment, but you could set it only within the
command window used to run the installer.

During the installation process, you accept, or specify, various environment
settings, for example, the installation directory or whether to create/update
existing system environment variables (I T_PRODUCT_DI R and PATH).

The Artix installer uses your input to write the contents of the script file
arti x_env. bat . The installer may also create/update the | T_PRCDUCT_D R
and PATH system variables.

If you followed the standard product installation, the system environment
variables will be set for all users of your computer and your arti x_env. bat
file will include the following commands.

The artix_env.bat file The following extract includes the significant content of the arti x_env. bat
file.

IF "%T_IDL_CONFIG F LB == ""
(SET I T_I DL_CONFI G FI LE=
<instal |l ati onDi rectory>\
artix\1.2\etc\idl.cfg)

ELSE
(IF "94" == "preserve"
(ECHO Preserving | T_| DL_CONFI G Fl LE)
ELSE

(SET I T_IDL_CONFI G FI LE=
<instal |l ati onDi rectory>\
artix\1.2\etc\idl.cf)

)

IF "% T_PRCDUCT DI R% == ""
(SET | T_PRODUCT_DI R=<i nst al | ati onDi r ect or y>)
ELSE
(IF "94" == "preserve"
(ECHO Preserving | T_PRODUCT_DI R)
ELSE
(SET | T_PRODUCT_DI R=<i nst al | ati onDi r ect or y>)

)

29

CHAPTER 4 | Configuring Artix™

if "%T _PRODUCT_ DRA == ""
goto pronpt_for_it_product_dir
if "%JAVA HOVBG == ""

goto pronpt_for_java_hone

| F "O%PATHA == ""
(SET PATH=
% T_PRCDUCT_Dl R bi n;
% T_PRCDUCT_Dl R arti x\ 1. 2\ bi n; %PATHA
ELSE
(IF "%" == "preserve"
(ECHO Preservi ng PATH)
ELSE
(SET PATH=
% T_PRODUCT_DI R%A bi n;
% T_PRODUCT_DI Rt arti x\ 1. 2\ bi n; Y%°ATHY
)

IF"%T CONFIGDIRS == ""
(SET I T_CONFIG DI R=
% T_PRCDUCT_D RAartix\1. 2\etc)

ELSE
(IF "9d" == "preserve"
(ECHO Preserving | T_COWI G D R)
ELSE

(SET I T_CONFI G DI R=
% T_PRODUCT_Dl Rartix\ 1. 2\etc)
)

IF "%T CONFIGDOVAINS DR == ""
(SET | T_CONFI G DOVAI NS DI R=
% T_CONFI G_Dl RoA donai ns)

ELSE
(IF "94" == "preserve"
(ECHO Preserving | T_CONFI G DOVAINS D R
ELSE

(SET | T_CONFI G DOVAINS Dl R=
% T_CONFI G_Dl R4 donai ns)
)

IF "%T_DOVAI N NAVE%S == ""
(SET | T_DOVAI N_NAME=art i x)

ELSE
(IF "9d" == "preserve"
(ECHO Preserving | T_DOVAI N_NAME)
ELSE

(SET | T_DOMAI N NAVE=arti x)

30

Establishing the Host Computer Environment

)

IF "% T_LICENSE FI LE%S == ""
(SET | T_LI CENSE_FI LE=
% T_PRCDUCT_DI RMdetc\ | i censes. txt)

ELSE
(IF "9d" == "preserve"
(ECHO Preserving | T_LI CENSE _FI LE)
ELSE

(SET | T_LI CENSE_FI LE=
% T_PRODUCT_DI R et c\ | i censes. txt)

)

Note that this file sets the | T_PRCDUCT DI R and PATH environment
variables, if necessary. These are the system variables that could be set by
the installer, so there is actually no requirement that you accept the
installer’s offer to set these variables.

By placing the Artix bi n directories first on the PATH, this script insures that
the proper libraries, configuration files, and utilities, e.g., IDL compiler, are
used. Consequently, there should not be any problems if Orbix and/or
Tuxedo (both of which include IDL compilers and CORBA class libraries) are
installed on your host computer.

Note: The Orbix environment script, <donai nNane>_env. bat , also sets
the PATH, | T_PRODUCT_DI R and other product specific environment
variables to values appropriate to the installation. Consequently, there
should not be any problems running this product on a computer that also
hosts Artix and/or Tuxedo.

31

CHAPTER 4 | Configuring Artix™

Running the artix_env.bat Script

32

You must set the Artix environment in each command window. All of the
environment settings required by Artix are set by running the script
artix_env. bat.

Depending on other environment settings, you may need to set environment
variables for the Microsoft Visual C++ compiler. This is accomplished by
running the script vcvar s32. bat, which is located in the ..M crosoft
Visual Studio\VC98\ bi n directory.

Establishing the Host Computer Environment

Establishing the Runtime Environment

Artix is built upon IONA’s Adaptive Runtime Architecture (ART). Runtime
behaviors are established through common and application specific
configuration settings that are applied during application startup. As a
result, the same application code, without changes, may be run under
varied configuration environments.

With Artix, runtime configuration values are maintained in a configuration
file named arti x. cf g, which is found in the directory
<installationDirectory>\artix\1.2\etc\donai ns. For many of the
demos you do not need to edit any of the entries in this configuration file.
For some of the later demos, you will be editing/extending the contents of
this file.

33

CHAPTER 4 | Configuring Artix™

The orb_plugins Configuration Value

One of the configuration values that you will review most frequently is
orb_pl ugi ns. This variable is a list of runtime plugins — code libraries — that
should be loaded during application startup. It is through the orb_pl ugi ns
entry that you specify what transports, logging paradigms, or high level
middleware switching functionality will be available to an Artix process.

The default entry for the orb_pl ugi ns variable includes the commonly used
logging and transport plugins.

Global orb_plugins value The default value for the orb_pl ugi ns configuration entry is defined within
the global scope of the arti x. cfg file.

orb_plugins = [
“xmfile_log_streant,
“iiop_profile”,
“giop”,
“iiop”,
“soap”,
“http”,
“tunnel ",
‘g,
“ws_orb”

[E

This listing is suitable for Artix applications that use SOAP/HTTP,
SOAP/IIOP_Tunneling, SOAP/MQ, and CORBA/IIOP transports. In later
demos you will edit this listing so that the Tuxedo or TIBCO Rendezvous™
transports can be used and so that message requests can be routed from
one transport to another.

34

Establishing the Host Computer Environment

Configuration Scopes

Application specific configuration variables either override default values
assigned to common configuration variables or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon

(naneTag {.};). Additionally, a configuration scope may include nested
configuration scopes. Configuration variables set within nested configuration
scopes take precedence over values set in enclosing configuration scopes.

In the artix. cfg file, there are several predefined configuration scopes. For
example, the deno configuration scope includes nested configuration scopes
for some of the examples included with the product.

Demo configuration scope

product demos.

Within the arti x. cfg file, configuration scopes are defined for many of the

deno
{
fm _pl ugin
{
orb_plugins = ["l ocal _| og_streant,
"iiop_profile", "giop", "iiop",
"soap", "http", "&", "tunnel",
"ng", "ws_orb", "fm"];
s
tel co
{
orb_plugins = ["l ocal _| og_streant,
"iiop_profile", "giop", "iiop",
"Q@", "tunnel"];
pl ugi ns: tunnel :iiop: port = "55002";
poa: M/Tunnel : di rect _persistent = "true";
poa: MyTunnel : wel | _known_addr ess =
"pl ugi ns: tunnel ";
server
{
orb plugins = ["iiop_profile", "giop",
"iiop", "ots", "soap", "http",

35

CHAPTER 4 | Configuring Artix™

"@", "tunnel"];

pl ugi ns: t unnel : poa_name = "M/Tunnel ";
s
ik
sw tch
{
orb_plugins = ["xmfile_| og_streant,

“iiop_profile", "giop", "iiop",

"soap”, "http", "ng", "ws_orb",

"i nt er opbase_t ypef act ory",

"routing"];
event _log:filters = ["*=FATAL+ERRCR'] ;
pl ugi ns: routi ng: wsdl _url =

"1 nt er opBase. wsdl ";
pl ugi ns: i nt er opbase_t ypef act ory:

shlib_nanme =

"it_deno_switch_type factory";

IE
no_switch
{
orb_plugins = ["xmfile_| og_streant,

“iiop_profile", "giop", "iiop",

"soap", "ng", "ws_orbh",

"i nt eropbase_t ypefactory"];
event _log:filters = ["*=FATAL+ERRCR'] ;
pl ugi ns: i nt er opbase_t ypef act ory:

shli b_nane =
"it_denmo_switch_type_factory";
IE
tibrv
{
orb_plugins = ["local _| og_streant,

"“iiop_profile", "giop", "iiop",

"soap", "http", "tibrv'];
event _log:filters = ["*=FATAL+ERRCR'] ;

IE

}s

36

Establishing the Host Computer Environment

Note how the orb_pl ugi ns list is redefined within each configuration scope.
Demos within this document will refer to some of these configuration scopes and
you will be directed to define additional configuration scopes.

37

CHAPTER 4 | Configuring Artix™

Using Configuration Scopes

38

Generally when you create a new configuration scope you will force an Artix
process to run under the configuration by supplying an CRBnarme parameter to
the 1 T_Bus::init method invocation. During process initialization, Artix
searches for a configuration scope with the same name as the CRBnare
parameter. For example, to start an Artix process under the configuration
specified in the deno. ti brv configuration scope, your application would include
code similar to the following fragment.

IT Bus::init (argc, argv, “deno.tibrv”);

If a corresponding configuration scope is not located, the process starts under
the higher level configuration scope. If there are no configuration scopes
corresponding to the CRBnane parameter, the Artix process runs under the
default global scope. For example, if the nested configuration scope ti brv does
not exist, the process would start using the configuration specified in the deno
configuration scope; if the scope dermo does not exist, the process runs under
the default global scope.

Rather than supplying an CRBnanme parameter within your source code, you may
include this information as a command line argument when starting an Artix
process. Initialization values specified as command line arguments take
precedence over corresponding entries in the source code or system
environment.

For example, an application using the following initialization syntax
IT Bus::init (argc, argv);

will run using the CRBnarme and configuration scope deno. ti brv when the
following command is used to start the process.

<pr ocessNanme>. exe [application paraneters] -CRBname deno.tibrv

Establishing the Host Computer Environment

In following demos, you will use both the coding and command line techniques
to run your applications under modified configurations.

Note: The ordering of application parameters and initialization arguments
does not matter provided you invoke | T_Bus: :init before beginning your
application logic.

During process startup, the initialization parameters are removed from the
argv array. After the 1 T_Bus: :init invocation completes, the argv array
contains application parameters only.

It is critical, however, that initialization arguments be entered as flag/value

pairs. That is, the - CRBnane flag must be followed on the command line
by the desired value, e.g., deno. tibrv.

39

CHAPTER 4 | Configuring Artix™

Controlling Application Logging

Application logging is enable by including the xmi file_l og_stream plugin in
the orb_pl ugi ns list. Note that this plugin is included in the default

orb_pl ugi ns list, as shown above. Also note that the xn file_| og_stream
plugin is not included in the orb_pl ugi ns lists within many of the deno
configuration scopes. If you want to enable logging for these applications, and
the applications you develop as described in this document, you will need to
include this plugin in your orb_pl ugi ns list.

Global logging configuration To enable usage of the xm fil e_l og_st ream plugin, several other configuration
values variables must be set. These variable are all set within the default global scope
in the artix. cfg file.

plugins: xm file_log_streamshlib _name = "it_xmfile";

plugins:xmfile_log_streamfilenane = "artix_logfile.xm";
default: it_bus.|og

plugins: xmfile_log_streamnax_file_size = "2000000";
default: 2 nb

plugins: xmfile_log_streamuse pid = "false";
default: false

standard | oggi ng setting; logs errors and warni ngs
event_log:filters = ["*=FATAL+ERROR'];

very detail ed | oggi ng
#event _log:filters = ["*=*"];

transport buffer |ogging
#event _log:filters = ["*=FATAL+ERRCR+WARN NG+l NFO MED'] ;

high level informational |ogging
#event _log:filters = ["*=FATAL+ERRCR*WARN NGH NFO H "] ;

40

Controlling Application Logging

Using the Logging Functionality

The default configuration settings enable logging only of serious errors and
warnings. If you want more exhaustive information, you should either select a
different filter list at the default scope, or include a more expansive

event _| og: filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level of
logging, which will entail adding the xni fil e_l og_stream plugin to the
orb_pl ugi ns list and selecting the desired reporting level.

The log will be written into the directory from which the Artix process starts. You
can specify the name of the log file through the

pl ugins: xm file_l og_streamfil enane configuration variable. The artix.cfg
file sets the default log file name to arti x_| ogfile. xm.

41

CHAPTER 4 | Configuring Artix™

42

In this chapter

CHAPTER 5

Using the 1IOP
Transport

In previous chapters, you used Artix™ to implement a C++
Web service that uses SOAP over HTTP. In this chapter, you
will reconfigure your application to use [IOP tunneling of SOAP
messages as the transport protocol. As you will see, IIOP
tunneling simply requires minor changes to the WSDL file;
both the client and server code remain unchanged.

This chapter discusses the following topic:

The 11OP Tunneling Demo page 44

43

CHAPTER 5 | Using the I1OP Transport

The 1HOP Tunneling Demo

The starting point code for this demo is located in the directory

<instal l ationD rectory>\1. 2\ denos\ hel | o_wor | d\i i op_soap. This
example demonstrates that switching transport protocols from http to iiop
requires only modest reconfiguration within the WSDL file.

44

The IIOP Tunneling Demo

The HelloWorld.wsdl File

The iiop Namespace Prefix

This file has already been modified. In a text editor, open the file
<installationDrectory>artix\1.2\denos\hel |l o_worl d\iiop_soap
\client\Helloverld. wsdl . Three changes have been made to the file used
by the HTTP transport.

Note: The server directory contains the same WSDL file.

In the opening <defi ni ti ons> tag, the namespaces used within the WSDL
file are specified. The WSDL file used in the first demo did not have an entry
corresponding to the iiop transport available within Artix. Consequently,
the opening <def i ni ti ons> tag did not include a namespace to be used
when specifying information related to the iiop transport. To use Artix’
iiop transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <def i ni ti ons> tag. This attribute defines the namespace prefix
iiop.

<defi niti ons nane="Hel | oWr | dServi ce”

t ar get Nanespace="htt p: / / xm bus. coni Hel | oWor | d”

xm ns="ht t p: // schenas. xm soap. or g/ wsdl / *

xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/”

xm ns: tns="http://xm bus. con Hel | oWor | d” xm ns: xsd=

“http://ww w3. or g/ 2001/ XM_Schena”

xm ns: xsd1="ht t p: // xm bus. coni Hel | oWr | d/ xsd”

xm ns:iiop="http://schenas.iona.contransports/iiop_tunnel”
>

</ definitions>

There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications.

45

CHAPTER 5 | Using the I1OP Transport

The <binding> Specification

The <service> Specification

46

In this example, the application uses the [IOP transport to send SOAP
encoded content. Within the <bi ndi ng> tags the <soap: bi ndi ng> tag
specifies the style and transport used by the binding. In the earlier
example, this tag specified the HTTP transport. You must change this entry
to specify the IIOP transport.

<soap: bi ndi ng styl e="rpc"
transport="http://schenas. i ona. conitransports/iiop_tunnel"

In the original Hel I ovor | d. wsdl file, information within the

<servi ce>..</ servi ce> tags specified the url at which the Web service
could be contacted. When using the iiop transport you must replace this
entry with information relevant to the iiop transport.

The <servi ce>..</ servi ce> entry has been edited to include the following:

<definitions ...>

<servi ce name="Hel | oWr | dServi ce” >
<port bindi ng="t ns: Hel | oWr | dPor t Bi ndi ng”
nane="Hel | oWr | dPort " >
<i i op: addr ess
| ocati on=
“corbal oc:iiop: 1. 2@ocal host : 55002/ t unnel ”/ >
<i i op: payl oad type="octets"/>
</ port>
</ servi ce>

</ defi ni ti ons>
The iiop transport related specifications are included in the

<i i op: addr ess
| ocati on="corbal oc: i i op: 1. 2@ ocal host : 55002/ t unnel "/ >

tag. If you are familiar with CORBA’s cor bal oc URL format, you will
recognize the format of this specification. In CORBA, the corbal oc URL
format is used by client processes to obtain an object reference, where
@ocal host : 55002 refers to the host and port from which the client tries to
retrieve the object reference. With Artix, the port on which the server

The IIOP Tunneling Demo

process should listen for cor bal oc requests is specified in the configuration
file, which for this installation is the file
<installationD rectory>\artix\1.2\etc\donains\artix. cfg.

In a text editor open the configuration file

<installationDi rectory>\artix\1.2\etc\donains\artix. cfg. Find the
tunnel configuration scope, and create the nested scope deno. Within the
tunnel . deno scope, you will add the entry

pl ugi ns: tunnel :iiop: port ="55002";

to specify the port used by Artix as the endpoint for the iiop tunnel. You may
choose any port number you wish; just be certain that your entry in the
configuration file and the port number specified in the WSDL file are the
same.

The 1 ocati on attribute within the WSDL file is used by client processes and
the port number must be the same as the one specified in the configuration
file.

Note: Since iiop version 1.2 is the default protocol, the corbal oc URL
may be alternatively written as:
"corbal oc: : | ocal host : 55002/ t unnel ".

Artix supports other ways to specify the <i i op: addr ess ./ > entry. Instead of
the corbal oc format, you could use a file url, which provides the path to a
file into which Artix will write its object reference. Another alternative is to
use the cor baname format, which specifies the name which Artix should use
to bind an object reference into a CORBA name service. You will see both of
these approaches used in later demos when you learn about Artix/CORBA
integration.

The <iiop: payl oad .. > entry also has alternative values. Use of the type
attribute is optional; when it is not present, the value defaults to octets.
This specification indicates that the message format specifies the codeset
and that Artix does not need to perform codeset negotiation and conversion.
The alternative value, string, specifies that Artix is responsible for codeset
negotiation and conversion.

Since in this demo the message content is SOAP, which includes a codeset
specification, octets is the appropriate value for the type attribute.

47

CHAPTER 5 | Using the I1OP Transport

Compiling and Running the Application

The nakefil es include entries that generate the stub, skeleton, and helper
classes and build the application’s executables.

Compiling the application 1. Open acommand window and move to the
<installationDirectory>\artix\1.2\bin directory. Run the batch
file artix_env[.bat].

2. Move tothe <installationDirectory>\artix\1.2\denos
\hel I o_worl d\iiop_soap directory and issue the command

nnake al |

The compilation process creates the client.exe and server. exe files.

Running the application You must first start the server process and then run the client application.

1. Open a command window to the <installationD rectory>
\artix\1. 2\ bi n directory and run the artix_env[. bat] file.

2. Move tothe <installationDrectory>\artix\1.2\denos
\hel | o_wor | d\iiop_soap\server subdirectory and issue the
command:

start server -CRBnane tunnel.deno

Note the use of the command line arguments - CRBnane t unnel . deno,
which causes the server process to start under the similarly named
configuration scope.

3. Move tothe <installationDirectory>\artix\1.2\denos
\hel I o_worl d\iiop_soap\client subdirectory and issue the
command:

client
or the command:
client “<sone nane>"

Observe the messages in both the server and client command windows.

Terminating the server process Issue the rl-C command in the corresponding command window.

48

In this chapter

CHAPTER 6

Using the Tuxedo
Transport

In this chapter, you will reconfigure your application to use
Tuxedo as the transport protocol. As you will see, this process
simply requires minor changes to the WSDL file and
redefinition of the Tuxedo runtime environment. Additionally,
small changes to the client and server code are required.

This chapter discusses the following topics:

The Demo Code page 51
The HelloWorld.wsdl File page 53
The Tuxedo Configuration page 55

49

CHAPTER 6 | Using the Tuxedo Transport

Configuring, Compiling and Running the Application

page 57

50

The Demo Code

The Demo Code

The Client and Server Source Code

The demo.tuxedo scope

Edit the Artix configuration file

The starting point code for this demo is located in the

<installationD rectory>artix\1.2\denos\ hel | o_worl d\tux_tp
directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

This code is basically unchanged from earlier demos with one exception. In
both the client and server processes, initialization of the runtime
environment occurs during execution of the method

IT Bus::init(argc, argv);

Within this method, an ORB is initialized. In the demo that utilized the
HTTP transport, this ORB was configured under the default scope within the
configuration domain arti x. In the demo that utilized the 11OP_tunnel
transport, a different configuration scope, which included entries relevant to
the underlying iiop_tunneling functionality, was specified through the

- CRBnane command line parameter.

For this demo, it is important to configure the ORB under a scope that adds
the t uxedo plugin to the orb_pl ugi ns listing. To accomplish this, the
overloaded i nit method is used in both the client and server applications.

IT Bus::init(argc, argv, “deno.tuxedo”);

Alternatively, you could use the - CRBnane command line parameter when
starting each process.

The directory <installationDirectory>\artix\1. 2\ etc\domains includes
the configuration file artix. cf g. Open this file in a text editor and find the
deno scope. Note that the dermo scope contains multiple nested scopes. You
will add another nested scope- t uxedo —under deno.

Directly under the opening brace of the deno scope, add the nested t uxedo
configuration scope.

deno

51

CHAPTER 6 | Using the Tuxedo Transport

{

tuxedo {
orb_pl ugi ns=[“iiop_profile”, “giop”, “iiop”, “soap”,
“t uxedo”];
B
IE

The orb_pl ugi ns list specified within the deno. t uxedo scope will be used
by your client and server processes.

52

The HelloWorld.wsdl File

The HelloWorld.wsdl File

The tuxedo Namespace Prefix

This file has already been modified. In a text editor, open the file
<installationD rectory>artix\1. 2\denos\hel |l o_worl d\tux_tp\client
\ Hel | ovor | d. wsdl . Three changes have been made to the WSDL file used
in the earlier examples.

In the opening <defi nitions> tag, the namespaces used within the WSDL
file are specified. Previously used WSDL files obviously had no knowledge of
the Tuxedo transport support available within Artix. Consequently, the
opening <defi nitions> tag did not include a namespace to be used when
specifying information related to the Tuxedo transport. To use Artix’ Tuxedo
transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <defi ni ti ons> tag. This attribute defines the namespace prefix
t uxedo.

<defini tions name="Hel | oWr | dServi ce”
t ar get Nanespace="htt p: / / xm bus. coni Hel | oWor | d”
xm ns="ht tp: // schenas. xm soap. or g/ wsdl / ”
xm ns: soap="htt p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://xm bus. coni Hel | oWor | d” xm ns: xsd=
“http://ww w3. or g/ 2001/ XM_Schena”
xm ns: xsd1="htt p: // xm bus. con Hel | oVr | d/ xsd”
xm ns:iiop="http://schenas.iona.contransports/iiop_tunnel”
xm ns: t uxedo="htt p: // schemas. i ona. con t r ansport s/ t uxedo”
>

</ definitions>

There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications. In fact, note that this WSDL file also
includes the iiop namespace prefix declaration from the 110P_tunnel
example.

53

CHAPTER 6 | Using the Tuxedo Transport

The <binding> Specification In this example, the application uses the Tuxedo transport to send SOAP
encoded content. Within the <bi ndi ng> tags the <soap: bi ndi ng> tag
specifies the style and transport used by the binding. In the earlier
example, this tag specified the HTTP or IIOP transport. You must change
this entry to specify the Tuxedo transport.

<soap: bi ndi ng styl e="rpc"
transport="http://schenas. i ona. conitransport s/t uxedo"

The <service> Specification In the original Hel I ovor | d. wsdl file, information within the
<servi ce>..</ servi ce> tags specified the url at which the Web service
could be contacted. When using the Tuxedo transport you must replace this
entry with information relevant to the Tuxedo transport.

The <servi ce>..</ servi ce> entry has been edited to include the following:

<definitions ...>
<servi ce name="Hel | oWr | dServi ce” >
<port bindi ng="t ns: Hel | oWr | dPor t Bi ndi ng”
nane="Hel | oWr | dPort " >
<t uxedo: address servi ceNane="it_service”/>
</ port>
</ servi ce>
</ definitions>
The Tuxedo transport related specifications are included in the

<t uxedo: addr ess servi ceNane="it_service"/>

tag, which specifies the Tuxedo service name under which your server
application will run.

Note: The only value that can be assigned to the servi ceNane attribute
is "it_service".

54

The Tuxedo Configuration

The Tuxedo Configuration

Edit the setenv.cmd File

Edit the ubbhelloWorld
Configuration File

*SERVERS specification

You will need to set environment variables and generate an application
specific configuration file for the Tuxedo application.

This file sets the Tuxedo related environment variables.

Open the file <install ati onDirectory>\artix\ 1.2\ denos
\hel | o_wor | d\tux_tp\setenv.cnd in a text editor and confirm that the
TUXDI R and APPDI R entries are correct.

Open the file <install ati onDirectory>\artix\1.2\ denos
\ hel | o_wor | d\ t ux_t p\ ubbhel | ovér | d in a text editor. You must replace all
of the entries within the brackets (<...>) with valid entries.

With the exception of the machine name entry, it's important that you
accept the other suggested entries (modifying PATH values as appropriate).
While you are generally free to give these entries other values, there must be
consistency between these entries and the commands used to compile and
run the Tuxedo application. If you do not honor the suggested content, you
will have difficulty with subsequent steps.

At the bottom of the file, you specify the name of the server executable. In
this demo, the executable is server. exe; consequently, the corresponding
value for the <process name> tag under the *SERVERS section is ser ver .
Also, although your server code implements two methods— sayH and

gr eet Me —there is only one Tuxedo service— i t _servi ce —defined under the
*SERVI CES section. This entry corresponds to the servi ceNane attribute
value in the Hel | ovrl d. wsdl file.

* SERVERS
DEFAULT:
ACPT="-A

server SRVGRP=GROUP1 SRVI D=1
#Exanpl e:

#server

*SERVI CES
it_service

55

CHAPTER 6 | Using the Tuxedo Transport

The only value that can be assigned to the * SERVI CES section is
it_service.

56

Configuring, Compiling and Running the Application

Configuring, Compiling and Running the

Application

Generating the Application
Specific Tuxedo Binary
Configuration File

Compiling the Application Code

All of the source code and configuration files are in their appropriate
directories. You must first generate the Tuxedo binary configuration file and
then compile the C++ application.

This file includes the information specified in the ubbhel | oVerl d
configuration file.

1.

Open a command window to the <instal | ati onDirect ory>
\artix\1. 2\ bi n directory and run the artix_env[.bat] file.

Move to the <installationD rectory>\artix\ 1.2\ denos
\hel I o_worl d\tux_tp directory and run the file setenv[.cnd].

Issue the command
t ml oadcf ubbhel | oVorl d

Enter “y ” and press the return/enter key to confirm that you want to
create/recreate the binary configuration file.

The makefil es include entries that incorporate the copied files into your
executable.

1.

Open a command window and move to the <instal | ati onDi rect ory>
\artix\1. 2\ bin directory. Run the batch file artix_env[.bat].

Move to the <installationD rectory>\artix\1.2\denos
\hel I o_worl d\tux_tp directory and run the file setenv[.cnd].

Alternatively, you can continue to use the command window from the
section Generating the Application Specific Tuxedo Binary
Configuration File.

While in the tux_tp directory, issue the command

nnake al |

The compilation process creates the client.exe and server. exe files in
their respective directories.

57

Running the Application

Stopping the Tuxedo server
process

Configuring, Compiling and Running the Application

You must first start the Tuxedo runtime, which starts your server process.
Then you can run the client application.

1.

Open a command window to the <instal | ati onDirect ory>
\artix\1. 2\ bi n directory and run the artix_env[.bat] file.

Move to the <installationDirectory>\artix\ 1.2\ denos
\hel I o_worl d\tux_tp directory and run the file setenv[.cnd].

Alternatively, you can continue to use the command window from
steps Generating the Application Specific Tuxedo Binary Configuration
File or Compiling the Application Code.

While in the tux_t p directory, start the Tuxedo server process with the
command

tnmboot -y

Move to the <installationD rectory>\artix\1.2\denos
\hel I o_world\tux_tp\client subdirectory and issue the command:

client
or the command:

client “<some name>"

Observe the messages in both the client command window.

1.

Stop the process by issuing the command
t mshut down -y

in the command window.

58

In this chapter

CHAPTER 7

Using the
WebSphere™ MQ
Transport

In earlier chapters you used Artix™ to implement a C++ Web
service that sent SOAP over the HTTP, IIOP, and Tuxedo. In
this example, you will reconfigure your application to use
WebSphere MQ as the transport protocol. As you will see, this
process simply requires minor changes to the WSDL file and
creation of application specific queues.

This chapter discusses the following topics:

59

CHAPTER 7 | Using the WebSphere™ MQ Transport

60

Creating the WebSphere MQ Queues page 61
The Demo Code page 64
Configuring, Compiling and Running the Application page 67
Further Considerations page 69

Creating the WebSphere MQ Queues

Creating the WebSphere MQ Queues

Starting the WebSphere MQ
Service

Open the WebSphere MQ Explorer

The WebSphere MQ installation process deploys the product as a Windows
service, which starts automatically when you boot your computer. You may
have reconfigured this service for manual startup. Consequently, you will
need to start both the WebSphere MQ Service before you can create your
application’s queues.

You can start the WebSphere MQ Service from either a task bar icon or from
the Windows control panel Services window.

From the task bar, right click on the icon and select Start WebSphere MQ
from the popup menu. The task bar icon’s color changes from red to blue
during the startup process. When the services are fully operational, the
icon’s color changes to green.

From the Services window, highlight the IBM MQSeries entry and click on
the Start command button or menu selection. Again, the task bar icon’s
color changes from red to blue during the startup process. When the
services are fully operational, the icon’s color changes to green. Close the
Services window.

From the Start menu, select the WebSphere MQ Explorer entry.

T TR . e

& Adobe b g M Conter

_| Ainbal Fawder 50 i Frepatn wWabsphaos MO Wissrd
5 Gnagll .

MM At * Hley st phwcs MO Services |

61

CHAPTER 7 | Using the WebSphere™ MQ Transport

62

This opens the explorer.

'|--| ‘WehSphere MQ - [Conzole RootYWwWehSphee MO Duees Man . W= B
|1 Commle indm Helo D@ @@ .olx
|| toion wow || =+ @m| B @ JESET A
| Coivie Fioot e | LocelFlemots I Fer
5 M, WebSpheis D T OM_prrk2 Loce
="
B iiy) M _pmé2
F] Cheleis
i | |

Note that the default Queue Manager (QV <host Nane>) is already running.
Highlight the Queue Managers icon and either right click or click on the
Action menu bar button. Select the New > Queue Manager menu item and
create the queue manager My_DEF_QM

Note: This queue manager is also used by the swi t ch demo. If you have
already run the switch demo, you will have already created the queue
manager.

Creating the WebSphere MQ Queues

Creating the HW_REQUEST and HW_REPLY Queues

Your application requires two queues; the client will put requests onto the
request queue and the server will put responses onto the response queue. It
does not matter what you name these queues. You may also create
additional queue managers and possibly assign each queue to a different
manager. In this demo, you will simply create two queues and assign them
to the MY_DEF_QM queue manager.

Right click on the Queue icon under the MY_DEF_QM queue manager icon,
and select New > Local Queue from the popup menu. Alternatively, click on
the Action command button and select New > Local Queue from the drop
down menu. This opens the Create Local Queue window. You only need to
enter a name for the queue, click on the OK command button, and then, in
the WebSphere MQ message window, click on the Don’t Share in Cluster
command button.

Garvesl | Exendent | Churt | Triggering | Everts | Storsge |

| HwPaquest
D v [_Rmmmt
Ty |Locd
[esciphion | “fetisphere MO Detouk Lol Qus
But Message |.‘-hu.- ﬂ
Gl Mg [=]
Cielecdt Prpasity: o
Cembmaik Papsistence [ot Pessisient =]
foape [0usmsm Mg =]
Lisage [Foamal =]

[o] o | e |

Create two queues named: HW_REQUEST and HW_REPLY and close the
explorer window.

63

CHAPTER 7 | Using the WebSphere™ MQ Transport

The Demo Code

The client and server source code

The HelloWorld.wsdl File

The mqg namespace prefix

64

The starting point code for this demo is located in the

<installationD rectory\artix\ 1. 2\ dermos\ hel | o_wor | d\ ng_soap
directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

This code is unchanged from the earlier demos involving SOAP over HTTP
and SOAP over IIOP.

This file has already been modified. In a text editor, open the file
<installationD rectory\artix\ 1. 2\ dermos\ hel | o_wor | d\ ng_soap
\client\Hell overld.wsdl . Three changes have been made to the WSDL
file used in the earlier examples.

In the opening <defi ni ti ons> tag, the namespaces used within the WSDL
file are specified. The WSDL files used previously had no knowledge of the
WebSphere MQ transport support available within Artix. Consequently, the
opening <defi nitions> tag did not include a namespace to be used when
specifying information related to the WebSphere MQ transport. To use the

WebSphere MQ transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <defi ni ti ons> tag. This attribute defines the namespace prefix
no.

<definitions name="Hel | oWor | dSer vi ce”
t ar get Nanespace="ht t p: / / xm bus. coni Hel | oWor | d”
xm ns="ht t p: // schenas. xn soap. org/ wsdl / *
xm ns: soap="ht t p: // schenmas. xm soap. or g/ wsdl / soap/”
xm ns: tns="http://xm bus. conl Hel | oWr | d” xm ns: xsd=
“htt p: // wwv w8. or g/ 2001/ XM_Schena”
xm ns: xsd1="ht t p: // xm bus. cond Hel | oWr | d/ xsd”
xm ns:iiop="http://schenas.iona.conltransports/iiop_tunnel”
xm ns: t uxedo="ht t p: / / schenas. i ona. coni t r anspor t s/ t uxedo”
xm ns: ng="ht t p: / / schenas. i ona. coni t ransport s/ ng”

The <binding> Specification

The <service> specification

The Demo Code

</ definitions>

There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications. In fact, note that this WSDL file also
includes the iiop namespace prefix declaration and the Tuxedo namespace
prefix declaration from the earlier examples.

In this example, the application uses the WebSphere MQ transport to send
SOAP encoded content. Within the <bi ndi ng> tags the <soap: bi ndi ng>
tag specifies the style and transport used by the binding. In the earlier
example, this tag specified the http transport. You must change this entry to
specify the WebSphere MQ transport.

<soap: bi ndi ng styl e="rpc"
transport="http://schenas.iona. conitransports/ng"

When using the WebSphere MQ transport you must replace information
within the <servi ce>..</ servi ce> tags with information relevant to the
WebSphere MQ transport.

The <servi ce>..</ servi ce> entry has been edited to include the following:

<definitions ...>
<servi ce nanme="Hel | oWbr | dServi ce” >
<port bindi ng="t ns: Hel | oWr | dPor t Bi ndi ng”
name="Hel | oWr | dPort " >

<ny: client QueueManager="MW_DEF QVf
QueueNane=" HW REQUEST"
AccessMde="send”
Repl yQueueManager =" W\v_DEF_QVf
Repl yQueueNane="HW REPLY"

/>

<ny: server QueueManager =" MW_DEF QM
QueueNanme=" HW REQUEST”
Repl yQueueManager =" M\y_DEF_QVt
Repl yQueueNarme="HW REPLY"
Accesshbde="r ecei ve"

/>

</ port>
</ servi ce>>
</ definitions>

65

CHAPTER 7 | Using the WebSphere™ MQ Transport

The WebSphere MQ transport related specifications are included in the
<ng:client ./[>

and

<ny: server ../[>

tags.

66

Configuring, Compiling and Running the Application

Configuring, Compiling and Running the

Application

Editing the Artix configuration file

Compiling the Application Code

Running the Application

All of the source code and configuration files are in their appropriate
directories.

Because the Artix MQSeries plugin is a separately licensed component you

must update the default orb plugins list to include the MQSeries plugin. The

default Artix domain configuration file

<installationDirectory>artix\1.2\etc\donmains\artix.cfg contains

this line in the root scope:

orb_plugins = ["xmfile_log_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "tunnel","ws_orb", "fixed"];

You must add MQ as follows:

orb_plugins = ["xmfile_log_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "ng", "tunnel","ws_orb", "fixed"];

The makefi | es include entries that generate the stub, skeleton, and helper
classes and create your executable.

1. Open a command window and move to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory.

Run the batch file artix_env[.bat].

3. Move tothe <installationDirectory>\artix\1.2\denos
\hel I o_wor| d\ my_soap directory and issue the command

nmake al |

The compilation process creates the client.exe and server. exe files in
their respective directories.

Be certain that your WebSphere MQ Services and queue manager are
running.

1. Open a command window to the <installationD rectory>\artix
\'1. 2\ bi n directory and run the artix_env[.bat] file.

67

CHAPTER 7 | Using the WebSphere™ MQ Transport

Terminating the server process

Stopping the queue manager

Stopping the WebSphere MQ
services

68

2. Move tothe <installationDrectory>\artix\1.2\denos
\hel | o_wor | d\ ng_soap\ srv directory and issue the command

start server

3. Move tothe <installationDrectory>\artix\1.2\denos
\hel | o_wor | d\ my_soap\ cl i ent subdirectory and issue the command:

client
or the command:
client “<sone nane>"

Observe the messages in both the client command window.

Issue the Ctrl-C command in the corresponding command window.

If desired, you can stop and restart the queue manager from the WebSphere
MQ Explorer window. Open the explorer and highlight the icon
corresponding to your queue manager. Right click, or click on the Action
command button, and select the appropriate action from the menu.

You can stop the WebSphere MQ Service from either a task bar icon or from
the Windows control panel Services window.

From the task bar, right click on the icon and select Stop WebSphere MQ
from the popup menu; confirm your action in the message box. The task bar
icon’s color changes from green to blue during the shutdown process. When
shutdown has completed, the icon’s color changes to red.

From the Services window, highlight the IBM MQSeries entry and click on
the Stop command button or menu selection; confirm your action in the
message box. Close the Services window.

CHAPTER 7 | Using the WebSphere™ MQ Transport

Further Considerations

This example assumes there is one client process sending requests through
WebSphere MQ to a single server process. In a more realistic scenario, there
would be multiple clients issuing requests. Since all of the clients would be
using the same request and reply queues, it is possible that one client might
retrieve responses meant for another client. This problem can be easily
managed by specifying the Correl ationStyl e attribute with the

WebSphere MQ port information.

The Correl ationStyl e attribute specifies a mechanism that the processes
and queue manager will use to uniquely identify messages and their
corresponding clients. If you edit the WSDL file to include the

Correl ationStyl e attribute, responses will be returned to the client issuing

the corresponding request.

The following fragment illustrates how to add this information to the WSDL
file. Refer to the Artix product documentation for a more complete

discussion of this, and other, attributes.

<definitions ...>

<servi ce name="Hel | oWr| dServi ce” >
<port bi ndi ng="t ns: Hel | oWr | dPor t Bi ndi ng”

nane="Hel | oWr | dPort” >

<ng: client QueueManager="M_DEF QW
QueueNane="HW REQUEST"
AccessMde="send”
Repl yQueueManager =" \¥_DEF_Q\Vf
Repl yQueueNane="HW REPLY”
Correl ati onSt yl e=" nessagel d”

/>

<ny: server QueueManager =" W_DEF QM
QueueNanme="HW REQUEST”
Repl yQueueManager =" M\¥_DEF_QVf
Repl yQueueNarme="HW REPLY"
AccessMde="r ecei ve”
Correl ati onStyl e=" nessagel d”

/>
</ port>
</ servi ce>>
</ definitions>

69

CHAPTER 7 | Using the WebSphere™ MQ Transport

70

CHAPTER 8

Using the TIBCO
Rendezvous™
Transport

As with the other transport protocols, adapting your
HelloWorld application to the TIBCO Rendezvous transport
primarily involves changes to the WSDL file. Unlike the
WebSphere™ MQ transport, there is no need to create
“subjects” or “queues” as part of the reconfiguration. The only
change you must make to your application code is to insure
that the Artix TIBCO Rendezvous plugin is loaded during
initialization of the client and server applications.

71

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport

In this chapter This chapter discusses the following topics:
The Demo Code page 73
Compiling and Running the Application page 77
Monitoring the TIBCO Rendezvous Environment page 78

72

The Demo Code

The Demo Code

The artix.cfg File

The starting point code for this demo is located in the

<installationD rectory>\artix\1.2\denos\hell o_world\tibrv
directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

Both the client application and the server process become “Artix-aware”
during the execution of the | T_Bus: :init invocation. This method loads
the underlying Artix runtime environment into the running process. The
runtime services that each application uses are implemented through
libraries that are loaded during this initialization.

The Artix configuration file — arti x. cf g — includes all of the information
needed to start an Artix process under a default configuration. This default
configuration does not, however, include the library that provides access to
the TIBCO Rendezvous transport; you must use the alternative version of the
I T_Bus::init method, specifying the deno. tibrv scope, which adds the
tibrv plugin to the orb_pl ugi ns listing. As a result, the signature of the
overloaded i nit method used in both the client application and server
process is:

IT Bus::init(argc, argv, “deno.tibrv”);

Both the client.cxx and server. cxx files have been edited to include this
modification.

The configuration file — arti x. cf g — is located in the
<installationDirectory>artix\1. 2\etc\domains directory. Within this
file, the deno. ti brv scope redefines the orb_pl ugi ns variable, including
the tibrv plugin in the list.

73

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport

The HelloWorld.wsdl File

This file has already been modified. In a text editor, open the file
<installationDrectory>\artix\1. 2\ denos\hell o_world\tibrv
\client\Hell oVerld.wsdl . This file differs from the WSDL file used in the
earlier demos in three sections: an additional namespace prefix is defined;
the <bi ndi ng> specification includes entries specific to the TIBCO
Rendezvous transport; and the <servi ce> specification includes entries
needed to contact the transport.

The tibrv namespace prefix In the opening <defi ni ti ons> tag, the namespaces used within the WSDL
file are specified. To use the TIBCO Rendezvous transport, you need to add
another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <def i ni ti ons> tag. This attribute defines the namespace prefix
tibrv.

<definitions nane="Hel | oWr | dServi ce”
t ar get Nanespace="ht t p: / / xm bus. coni Hel | oWor | d”
xm ns="ht t p: // schenas. xn soap. org/ wsdl / *
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/”
xm ns: tns="http://xm bus. conl Hel | oWor | d” xm ns: xsd=
“htt p: // www w8. or g/ 2001/ XM_Schena”
xm ns: xsd1="ht t p: // xm bus. corm Hel | oWr | d/ xsd”
xm ns:iiop="http://schenas.iona.conitransports/iiop_tunnel”
xm ns: t uxedo="ht t p: / / schenas. i ona. coni t r anspor t s/ t uxedo”
xm ns: ng="ht t p: / / schenas. i ona. coni transport s/ ngy”
xm ns: tibrv="http://schenas.iona.conitransports/tibrv”
>

</ definitions>

The <binding> Specification This section now includes a description of each of the operations in a format
that has been developed to integrate Artix applications with the TIBCO
Rendezvous protocol.

<bi ndi ng name="Hel | oWr | dPort Bi ndi ng”
type="tns: Hel | oWor | dPor t Type” >
<ti brv: bi ndi ng/ >
<oper ati on name="gr eet " >

74

The <service> specification

The Demo Code

<ti brv:operation/>
<i nput nane="greet ">
<tibrv:input/>
</i nput >
<out put namne="gr eet MeResponse” >
<tibrv:output/>
</ out put >
</ oper at i on>
<oper ati on name="sayH ">
<ti brv:operation/>
<i nput nane="sayH ">
<tibrv:input/>
</i nput >
<out put nane="sayH Response” >
<tibrv:output/>
</ out put >
</ oper at i on>
</ bi ndi ng>

Obviously this section includes the same operations as the <bi ndi ng>
specification in previous WSDL files, but the namespace associated with the
operation signatures is ti brv rather than soap.

The <servi ce> specification now includes information that the Artix
runtime environment needs to interact with the TIBCO Rendezvous
transport.

The <servi ce>..</ service> entry has been edited to include the following:

<servi ce nanme="Hel | oWr | dServi ce” >
<port bindi ng="t ns: Hel | oWr | dPor t Bi ndi ng”
nane="Hel | oWr | dPort” >
<ti brv: port
subj ect ="Arti x. Hel | oVor| d”
t ransport Type="Ti br vNet Tr ansport”
transport Servi ce=""
t ranspor t Net wor k=""
transport Daenon=""
t ranspor t Bat chMbde="f al se”
|'i st ener Type="Ti brvLi stener”
st ri ngEncodi ng="1 SO 8859- 1"
/>
</ port>
</ servi ce>

75

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport

Within the application, this is the only information specific to the TIBCO
Rendezvous transport. There are no Rendezvous specific configuration
information or coding within the application files that you provide.

76

Compiling and Running the Application

Compiling and Running the Application

Compiling the Application Code

Running the Application

Terminating the server process

All of the source code and configuration files are in their appropriate
directories.

The makefil es include entries that incorporate the files into your
executable.

1. Open a command window and move to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].

2. Move tothe <installationDirectory>\artix\1.2\denos
\hel l o_worl d\tibrv directory and issue the command

nnake al |

The compilation process creates the client.exe and server. exe files in
their respective directories.

There is no need to start the TIBCO Rendezvous routing daemon before
running this application.

1. Open a command window to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory and run the artix_env[.bat] file.

2. Movetothe <installationD rectory>\artix\1.2
\hel I o_worl d\tibrv\server directory and issue the command

start server

3. Movetothe <installationDrectory>\artix\1.2
\hel l o_world\tibrviclient subdirectory and issue the command:

client
or the command:

client “<sonme nane>"

Observe the messages in both the client and server command windows.

Issue the Ctrl-C command in the corresponding command window.

Note: Do not stop the server until you complete the monitoring steps
described in the following section.

7

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport

Monitoring the TIBCO Rendezvous
Environment

The TIBCO Rendezvous routing daemon will not start until your server
process runs and the Artix runtime accesses Rendezvous.

After starting the server process, enter the URL htt p:// <host name>: 7850

into your browser. The initial screen provides general information about your
Rendezvous environment.

TIB/Rendezvous |1u'-"'EF!'|

higte;

GGl
Irlgrmrash o

CHhanks
Samces

Miscollpaaais:

78

SOOI - Dl N 0

C DI O0 n i

F] 7116

B Enie Hieksl ES53E
Bl AT LIFTERAT
ST N |

P addmiig 10014
Chidvt por Tsm
sebwark saraces 1
griztasc 1D 1900

Monitoring the TIBCO Rendezvous Environment

Click on the Clients hyperlink and the Clients (All Services) window confirms
that your server process is running as a TIBCO Rendezvous client.

TIB/Rendezvous LAIPTERY)
e R e B by
se: | [T
il [——— User |Savdes |idumiier
BursEanvid Trarsp o j¥er [7EO0 DD 1[4 S0 ES0CDF DI 1550
e H

Next, click on the Services hyperlink and the Services window includes the
default TIBCO Rendezvous routing daemon in the listing of active services.

TIB/Rendezvous

Communicatiorm Desman - 7.1.15

WLFTERI|

JNE3 -0 2

sue: | I T
'-f-l'ﬂ: Srndce Fabwerk Hipsst | (limn b

e 10.10.1.255 1] 1
Clenis

79

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport

Finally, click on the port number hyperlink (7500). This opens the Service
Information window in which you can monitor the messages passing through the
routing daemon.

TIB/Rendezvous

HLUETER |

I 3-04=-0E DA S H

Sene: | |
Genare | | T
% TEICE L
RAELE LY 1010 1355
— B0 sEcarda
Crexion AT N0
chemia: L
Saradic " TY a
iincniinnenys; | HEEIEE -
Capydghi Inbsiria Patis [er seoed] it oiiieedl Fa%es (pen seconid)
TE:D muE hytes pits L o Eyies phi=
Busdareiu 0o oo oo an 0. on
ki P
Inkaund Tetahl
s yies pis miggoil ko R lest FTP
1] 1] i] i} o 1}
Duthoesd Trriwls
g Bl pirts ialidirs T REE hest FTP
(] 1455 £y] i i
Ifarmation flers
ale i)

Now, run your client program several times and observe the updated service
information.

80

CHAPTER 9

Using CORBA
Applications and
Transport

In this chapter, you will learn how to integrate existing CORBA
applications with Artix™. You will study a demo in which a
CORBA client sends CORBA requests to an Artix server; the
server process then delivers the requests to a C++ object. You
must now edit the WSDL file to include the particulars of the
CORBA data types and to specify how the Artix process should
publish an object reference. Invocations sent to the Artix server
process are reformatted as C++ method calls against the Artix
implementation object. In a second example, you will deploy

81

CHAPTER 9 | Using CORBA Applications and Transport

In this chapter

82

an Artix client against the Artix server; communication
between the client and server processes uses CORBA
invocations over [IOP. Finally, you will deploy a CORBA server,
which will be used by your Artix client; again, communication
between the client and server processes will use CORBA
invocations over 11OP.

This chapter discusses the following topics:

The CORBA Client—Artix Server Demo page 83
The Artix Client—Artix Server Demo page 91
The Artix Client—CORBA Server Demo page 93

The CORBA Client—Artix Server Demo

The CORBA Client—Artix Server Demo

The HelloWorld.idl File

The HelloWorld.wsdl File

Generating the HelloWorld.wsdl
file

The starting point code for this demo is located in the

<installationD rectory>\ artix\1.2\denos\corba
\corba_client_artix_server directory. The source code and IDL file are
complete. The WSDL file, which is used by all the demos described in this
chapter, is created within the <install ati onDirectory>\artix\ 1.2\ denos
\ cor ba\ common directory.

The IDL file is only used by the client application, which is a CORBA
application. For this application, the IDL file contains only a single interface
definition within a single module.

nodul e HW {

interface Hel |l oWrld {

string sayH ();

string greetMe (in string user);
ik
b

When you create the WSDL file, you must provide data type definitions and
message declarations that correspond to these CORBA operations and
parameters.

Unlike the earlier demos, which used a prewritten WSDL file, this demo
uses IONA’s IDL compiler to generate a WSDL file directly from the IDL file.

IONA’s IDL compiler responds to several command line flags that specify
how to process an IDL file into a WSDL file. This is the same IDL compiler
used to produce CORBA stubs, skeletons, and starting point servant code.
By using the appropriate command line flags, the compiler produces a
WSDL file instead of the CORBA classes.

You can use four flags to control generation of the WSDL file.

® -wad
The flag that directs the IDL compiler to produce a WSDL file. This is
the only required flag and it must be followed by the name of the IDL
file.

83

CHAPTER 9 | Using CORBA Applications and Transport

84

- a<addr ess>

The flag that specifies an absolute address through which the object
reference may be accessed. The <address> may be a relative or
absolute path to a file, or a cor baname URL. There is no white space
between the -a and <addr ess> entries.

-f<file>

The flag that specifies a file containing a string representation of an
object reference. The contents of this file will be incorporated into the
WSDL file. The <fi| e> must exist when you run the IDL compiler.
There is no white space between the -f and <fi | e> entries.

-Odir>

The flag used to specify the directory into which the WSDL file should
be written. There is no white space between the - Oand <di r > entries.

To combine multiple flags in the same command, use a colon (*:)
delimited list. Note that the colon is only interpreted as a delimiter if it is
followed by a dash (“-). Consequently, the colons in a cor banane URL are
interpreted as part of the URL syntax and not as delimiters.

To create the WSDL file:

1.

Open a command window to the <instal | ati onD rectory>\artix\
1. 2\ bi n directory and issue the command
artix_env[. bat]
Move to the
<install ationDirectory>\artix\1. 2\ denos\corba\ common directory
and issue the command
idl -wsdl:-afile://../../common/HelloWrld.ior

Hel | oWor |l d.idl
This generates the Hel | owr | d. wsdl file that includes a direct
reference to the file into which the server process will write an object
reference.
Alternatively, issue the command
idl -wsdl:-acorbanane:rir:/NameServi ce#hel | oWr | d

Hel | oWorl d.idl
This generates the Hel | owr| d. wsdl file that includes a cor banane
URL. An object reference is bound under the name hel | over | d. Since

The namespace prefixes

The <types> Specification

The CORBA Client—Artix Server Demo

the object reference is bound at the root level of the name service, you
do not need to create a name context to run this demo.

Note: Be careful regarding capitalization. The command line flag entries
are case sensitive even on Windows. Capitalization in your generated
WSDL file must match the capitalization used in the prewritten code. The
name of the IDL file is Hel I oVor| d.idl .

In the opening <defi ni ti ons> tag, the namespaces used within the WSDL
file are specified.

Two attribute declarations have been added to the attribute listings within
the opening <defi niti ons> tag. These attributes define the namespace
prefixes corba and cor bat m Note that the xsd1 prefix has been associated

<definitions nane="Hel | oWrld.idl"”
t ar get Nanespace="htt p: // schemas. i ona. com i dl / Hel | oWrl d.idl”
xm ns="ht t p: // schenas. xm soap. or g/ wsdl / *
xm ns: tns="http://schemas. i ona. comidl/HelloWrld.idl”
xm ns: xsd="ht t p: / / ww. W3. or g/ 2001/ XM_Schena”
xm ns: xsd1="htt p: //schenas. i ona. conii dl t ypes/ Hel | oWr | d. i dl "
xm ns: cor ba="htt p: // schenas. i ona. coni bi ndi ngs/ cor ba”
xm ns: cor bat m=" ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap”
>

</ definitions>

with the IDL file used to generate the WSDL file.

In the earlier demos, since there were no complex or derived types that
needed further description, this section of the WSDL file was not used.
When using the CORBA transport, you must use this section to define each
of the types that are used by the application’s methods. For your HelloWorld
application, you must define the return values from the sayH and greet M
messages as well as the parameter to the greet M@ message, as shown in
the following extract.

<t ypes>
<schena t ar get Nanespace=
“http://schenas.iona. conlidltypes/Hell oWrld.idl”
xm ns="htt p: // waww wW3. or g/ 2001/ XM_Schena”
xm ns: wsdl =" htt p: // schemas. xni soap. or g/ wsdl /" >

85

CHAPTER 9 | Using CORBA Applications and Transport

<el enent name="HW Hel | oWr | d. sayH . ret urn”
type="xsd: string”/>

<el enent name="HW Hel | oWr | d. gr eet Me. user”
type="xsd: string”/>

<el enent name="HW Hel | oWr | d. gr eet Me. r et urn”
type="xsd: string”/>

</ schenma>
</types>

The <message> specification As in the earlier WSDL files, you must describe the messages. These
descriptions use the el enent attribute, which gives the fully qualified name
for each part of the message, as shown in the following extract.

<nessage nanme="HWHel | oWr | d. sayH "/ >
<nessage name="HW Hel | oWr | d. sayH Response” >
<part nane="return”
el enent =" xsd1: HW Hel | oWr | d. sayH . return”/ >
</ message>
<nessage nanme="HW Hel | oWr | d. gr eet Me” >
<part nane="user”
el ement =" xsd1: HW Hel | oWor | d. gr eet Me. user”/ >
</ message>
<nessage name="HW Hel | oWr | d. gr eet MeResponse” >
<part name="return”
el enent =" xsd1: HW Hel | oWr | d. greet Me. return”/ >
</ message>

The <portType> Specification The port type information corresponds exactly to the information provided in
the other WSDL files.

<port Type nane="HWV Hel | oVWor | d” >
<oper ati on nane="sayH ">
<i nput message="tns: HV Hel | oWr | d. sayH "
name="sayH "/ >
<out put nessage="tns: HW Hel | oWr | d. sayH Response”
name="sayH Response” />
</ oper at i on>
<oper ati on name="gr eet Me” >
<i nput message="tns: HV Hel | oWr | d. gr eet Me”
name="gr eet "/ >
<out put nessage="tns: HW Hel | oWr | d. gr eet MeResponse”
name="gr eet MeResponse” / >
</ oper at i on>
</ port Type>

86

The CORBA Client—Artix Server Demo

The <binding> specification This section differs significantly from your earlier WSDL files, which were
associated with the soap namespace. The corba namespace is used in this
application. Because there are no complex or derived types in this
application, the typeMappi ng section does not include any entries, but a
more involved application would have additional content within this section.

<bi ndi ng name="HW Hel | oWr | dBi ndi ng” type="tns: HW Hel | oWr | d” >
<cor ba: bi ndi ng
repositoryl D="1DL: HW Hel | oWr | d: 1. 2"/ >
<oper ati on name="sayH ">
<cor ba: operati on nanme="sayH ">
<corba:return nane="return”
idltype="corba:string”/>
</ cor ba: oper at i on>
<i nput />
<out put / >
</ oper ati on>
<oper ati on name="gr eet M&” >
<cor ba: operati on name="greet " >
<cor ba: par am nane="user” node="i n"
i dl type="corba:string"/>
<cor ba: return name="ret urn”
i dl type="corba:string”/>
</ cor ba: oper at i on>
<i nput/ >
<out put/ >
</ oper ati on>
</ bi ndi ng>

Note the value of the <cor ba: bi ndi ng reposi toryl D=..> entry. The value
you provide here becomes the type ID embedded in the object reference.
This value must match the type ID that would be created from the interface
definition by the IDL compiler. The IDL file used by the client application is
expecting an object reference of type | DL: HW Hel | oWr | d: 1. 2, where

Hel | ovor | d is the interface name and Hwthe module enclosing this
interface definition.

The <service> specification The content of the <servi ce> and <port> tags is similar to your earlier
WSDL files, it is the content of the <address> tag that specifies use of the
CORBA transport.

<servi ce nane="HW Hel | oWr | dSer vi ce” >

87

CHAPTER 9 | Using CORBA Applications and Transport

88

<port name="HW Hel | oWr| dPort”
bi ndi ng="t ns: HW Hel | oWr | dBi ndi ng” >
<cor ba: addr ess
location="file=./../comon/HelloWrld.ior"/>
</ port>
</ servi ce>

Note the contents of the <cor ba: addr ess> tag. The | ocati on attribute
specifies that the Artix process should write a string representation of its
interoperable object reference to the file Hel | ovor | d. i or. This file will be
written into the common directory so that it will be easily accessible by the
client application. Consequently, the CORBA client code must be able to
read this file and convert the string into an object reference. In this demo,
the location of the Hel | owor | d. i or file is hard-coded into the CORBA client
code.

If you installed the Artix product on top of (or with access to) an Orbix
installation, you can use the CORBA Name Service to hold the object
bindings instead of local files. In this situation, you would edit the
<ser vi ce> specification so that the I ocation attribute’s value is a
cor banane URL.

<cor ba: addr ess
| ocat i on="cor banare: ri r:/ NameSer vi ce#hel | oWor| d”/ >

Since the client code is hard-coded to source the object reference from a
file, you also need to edit this code.

Find the line of code:
tobj = orb->string_to_object(objref_string.in());
and change to:

tobj = orb->string_to_object
(“corbanane: rir:/ NanmeServi ce#hel | oVorl d”);

Note: Since you did not comment out the client code that reads the IOR
from a file, be certain not to try this change until after you have
successfully run the application using the file approach.

The CORBA Client—Artix Server Demo

Compiling and Running the Application

Compiling the Application Code

Running the Application

Using the CORBA Name Service

Since the coding is completed, you can simply compile and run the
application.

Open a command window and move to the <instal | ati onDi rect ory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].

Move to the <installationDi rectory>\artix\ 1.2\ denos\ cor ba
\corba_client_artix_server directory and issue the command

nnake al |

You must first start the server process and then run the client application.

1.

Open a command window to the <instal | ati onDirect ory>
\artix\1. 2\ bi n directory and run the batch file artix_env[. bat].

Move to the <installationDirectory>\artix\ 1.2\ denos\ cor ba
\corba_client_artix_server\server subdirectory and issue the
command:

start server
Note that the Hel I overl d.ior file is written into the common directory.

Move to the <installationDi rectory>\artix\ 1.2\ denos\ cor ba
\corba_client_artix_server\client subdirectory and issue the
command:

client
or the command:

client “<sonme nane>"

Observe the messages in both the server and client command windows.

If you want to run this application using the Orbix CORBA Name Service,
you should:

1.

Stop the server process.

89

CHAPTER 9 | Using CORBA Applications and Transport

2. Modify the artix. cfg configuration file, which is in the directory
<installationD rectory>\artix\1.2\etc\donai ns. You must add
the following three lines within the global scope; you may place these
entries at the top of the file.

initial _references: NaneServi ce: r ef erence=

“corbal oc: : | ocal host : 3075/ NarmeSer vi ce”;
url _resol ver s: cor banane: pl ugi n="nam ng_r esol ver”;
pl ugi ns: nam ng_r esol ver: shl i b_name="it_nam ng”;

Where 3075 is the port assigned to your Orbix Locator Daemon. You
may also substitute a machine name or IP address for the entry
I ocal host and a different port number, if appropriate.

3. Editthe HelloWrid.wsdl and client.cxx files as described in the
discussion of the <servi ce> specification.

4. Recompile and run the application as described earlier in this section.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

90

The Artix Client—Artix Server Demo

The Artix Client—Artix Server Demo

The starting point code for this demo is located in the

<installationD rectory>\ artix\1.2\denos\corba
\artix_client_artix_server directory. The WSDL file is located in the
<install ationDirectory>\artix\ 1.2\ denos\corba\ common directory.
Additionally, this demo uses the same server process as the CORBA
Client—Artix Server demo in the previous section. Consequently, the client
executable is built using the stub and helper classes originally generated into
the <installationDi rectory>\artix\ 1. 2\ denos\ cor ba
\corba_client_artix_server\server directory.

91

CHAPTER 9 | Using CORBA Applications and Transport

Compiling and Running the Application

Compiling the Application Code

Running the Application

Terminating the server process

92

Since the coding is completed, you can simply compile and run the
application.

Open a command window and move to the <instal | ati onDirect ory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].

Move to the <installationDirectory>\artix\ 1.2\ denos
\corba\artix_client_artix_server directory and issue the
command

nnake al |

You must first start the server process and then run the client application.

1.

Open a command window to the <instal | ati onDirect ory>
\artix\ 1. 2\ bi n directory and run the batch file artix_env[.bat].

Move to the <installationDirectory>\artix\1.2\denos
\corbal corba_client_artix_server\server subdirectory and issue
the command:

start server
Note that the Hel | overl d.ior file is written into the common directory.

Move to the <installationDirectory>\artix\1.2\denos
\corba\artix_client_artix_server\client subdirectory and issue
the command:

client
or the command:

client “<sone name>"

Observe the messages in both the server and client command windows. To
convince yourself that the Artix client application is using the CORBA object
reference to invoke on the Artix server, change the name of the

Hel | oworl d.ior file and try rerun the client.

Issue the Crl-C command in the corresponding command window.

The Artix Client—CORBA Server Demo

The Artix Client—CORBA Server Demo

The starting point code for this demo is located in the

<installationD rectory>\ artix\1.2\denos\corba
\artix_client_corba_server directory. This demo uses the same client
process as the Artix Client—Artix Server demo, so the only code in this
demo relates to the CORBA server process.

93

CHAPTER 9 | Using CORBA Applications and Transport

Compiling and Running the Application

Since the coding is completed, you can simply compile and run the

application.

Compiling the Application Code

Running the CORBA Server
Process

Testing the CORBA server

Running the CORBA Client
Process

94

Open a command window and move to the <instal | ati onDirect ory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].

Move to the <installationDirectory>\artix\ 1.2\ denos

\corba\ artix_client_corba_server directory and issue the
command

nnake al |

Open a command window to the <instal | ati onDirect ory>
\artix\1. 2\ bi n directory and run the batch file arti x_env[. bat] .
Move to the <installationDi rectory>\artix\1.2\denos
\corba\artix_client_corba_server\server subdirectory and issue
the command:

start server

The CORBA server process starts in a new command window and the
Hel | ovor | d.ior file is written into the common directory.

Between the client code included in the CORBA Client—Artix Server demo
and the server code from this Artix Client—CORBA Server demo, you have a
complete CORBA application. You will use the CORBA client application to
confirm that the CORBA server runs as anticipated.

From the command window used in Running the CORBA Server
Process, move to the <installationDirectory>\artix\1.2

\ denos\ cor ba\ cor ba_cl i ent _arti x_server\client subdirectory and
issue the command:

client
or the command:

client “<sone nane>"

Running the Artix Client Process

Terminating the server process

The Artix Client—CORBA Server Demo

Observe the messages in both the server and client command windows.

1.

From the command window used in Running the CORBA Server
Process, page 94, move to the

<installationD rectory>\artix\1. 2\ denos\ cor ba
\artix_client_artix_server\client subdirectory and issue the
command:

client

or the command:

client “<sone name>"

Observe the messages in both the server and client command
windows.

Issue the Ctrl-C command in the corresponding command window.

95

CHAPTER 9 | Using CORBA Applications and Transport

96

In this chapter

CHAPTER 10

Routing

In previous chapters, you learned the basics of writing an
Artix™ client and server process and how to use the WSDL file
to select a transport protocol. In this chapter you will learn how
to use the WSDL file to create a message routing, that is,
redirect an invocation using a different transport protocol and
to route requests for specific operations to different server
processes. You will also learn how to route requests to different
server processes based on the content of the request. Content
based routing differs from protocol and operation based
routing in that the routing logic is provided through your coding
rather than through the information within the WSDL file.

This chapter discusses the following topics:

The Routing Demos page 99

97

CHAPTER 10 | Routing

98

The Protocol-Based Routing Demo page 100
The Operation-Based Routing Demo page 111
Embedding the Switch Functionality in a Process page 117
The Content-Based Routing Demo page 121

The Routing Demos

The Routing Demos

Routing concepts

The starting point code for these demos is located in the

<installationD rectory>\artix\1.2\denos\routing\protocol _routing
and <installationD rectory> artix\1.2\denos\routing
\operation_routing directories. These demos are completely coded. All of
the important concepts involve editing the WSDL file and managing the Artix
configuration.

These demos are similar in design, and use the HelloWorld application of
the earlier demos. A client process sends the sayH or greet M messages
using the SOAP over HTTP protocol. However, rather than sending the
request directly to the server process, the request is actually sent to a
“switch,” or routing, process that redirects the request to the server process.
In the protocol routing demo, the transport protocol used between the
switch and the server process will be changed from SOAP over HTTP to
SOAP over MQ or IIOP tunneling. In the operation routing demo, sayH
requests are routed to one server process and greet Me requests are routed
to a different server process.

99

CHAPTER 10 | Routing

The Protocol-Based Routing Demo

This demo is located in the <installationDirectory>artix\1.2

\ denos\ rout i ng\ prot ocol _routi ng directory. This demo contains four
subdirectories: client, factory, server, and swi tch. The client and
server directories contain the corresponding applications. The coding
within the client and server processes is identical to the earlier demos and
need not be discussed.

The subdirectories factory and switch include new, routing specific,
code. Additionally, each directory includes a private, and slightly different,
copy of the Hel | ovr 1 d. wsdl file. To clarify what information is needed by
the various processes, each WSDL file includes only the information needed
by the code in the same directory. This is not actually required; the
processes will only use information that they need and will ignore entries
relevant to other processes. When you deploy a routing application, you will
probably use both approaches; for example, provide the client process with
only the information needed to initiate the request, while the switch and
server processes extract required information from a more involved WSDL
file.

The Client Process As noted above, the coding within the client. cxx file is unchanged from
earlier demos. The accompanying Hel | ovor| d. wsdl file is identical to the
WSDL file used in the SOAP over HTTP demao. This file includes only the
standard namespace declarations within the opening <defi ni ti ons> tag,
and the soap: addr ess declaration within the <servi ce>..</ servi ce> tags.

<soap: address | ocati on="http://| ocal host: 8080"/ >

As far as the client application is concerned, messages are exchanged with a
“server” process on port 8080. In actual fact, the client is communicating
with the “switch” or “router” process.

The Server Process Again, the coding within server. cxx, Hel | owr! dinpl . h and
Hel | over | dl npl . cxx is identical to the earlier demos. However, in this
demo the server process can use the MQ, 110OP tunneling or HTTP protocols.
Consequently, in the Hel | ovor | d. wsdl file, the opening <defi ni ti ons> tag

100

The Protocol-Based Routing Demo

includes both the ng and iiop_tunnel namespace declarations and the
iiop or ng transport related specifications are nested within the
<servi ce>..</ servi ce> tag.

For the IIOP Tunneling protocol:

<i i op: addr ess
| ocation="file://../tunnel.ior”/>

For the MQ protocol:

<ny: client QueueManager="M_DEF QVf
QueueNanme=" HW REQUEST”
AccessMde="send”
Repl yQueueManager =" M\¥_DEF_QVf
Repl yQueueNarme="HW REPLY"
/>

<ny: server QueueManager =" W_DEF M
QueueNane=" HW REQUEST"
Repl yQueueManager =" MY_DEF_QMVI
Repl yQueueNane=" HW REPLY”
AccessMbde="r ecei ve”

/>

Note that the value of the <servi ce> tag nane attribute, and the value of
the <port> tag nane attribute, have been changed from the earlier demos.
What names you give the service and port are unimportant. What is
important is that the names are different from the names of the service and
port used by the client application. In this routing application, the client
sends messages to the service named HelloWorldService, using the port
named HelloworldPort, which are offered by the switch process. The switch
subsequently redirects/routes the message to the service and port offered by
the server process.

The Switch Process If you examine the code in the swit ch. cxx file it will look similar to the
code in the server. cxx file. The only difference is the call to initialize the
underlying runtime,

IT Bus::init (argc, argv, “helloWrldSw tch”);

101

CHAPTER 10 | Routing

which includes a third parameter. Operationally this parameter has the
same effect as the CRBname parameter used during initialization of the ORB
within IONA’s Orbix; it specifies a configuration scope that contains
configuration information for this specific process.

102

The Protocol-Based Routing Demo

Modifying the artix.cfg file

Editing the Configuration File—
artix.cfg

The configuration file — arti x. cfg —is located in the directory
<installationDrectory> artix\ 1. 2\etc\domains. In the following
section, you will create the hel | ovor| dSwi t ch scope and add application
specific configuration information.

The Hel | ovor I d. wsdl file used by the switch process has several
significant differences from the WSDL files used by the client and server
processes. First, the opening <defi ni tions> tag includes a declaration for
the routing namespace.

xm ns: routing="http://schemas. i ona. com routi ng”

Second, there are four service definitions. The first <ser vi ce>. </ servi ce>
tag defines HellowWorldService and HelloWorldPort, through which the
switch process communicates with the client process, and the second, third
and fourth <servi ce>..</ servi ce> tags define the MQHelloWorldService
and MQHelloWorldPort, through which the switch process communicates
with the server process (using either HTTP, [IOP_Tunneling, or MQ
transports).

Finally, within the <routi ng: rout e>..</routi ng: rout e> tag, the
redirection/routing specifics for this switch process are specified.

<I-- Routes -->
<routing: route name="r1">
<routi ng: sour ce
servi ce="tns: Hel | oWr | dServi ce” port="Hel | oWr| dPort”/>
<routing: desti nati on
servi ce="t ns: Mg+el | oWr | dSer vi ce”
port ="M}kl | oWor | dPort”/ >
</routing: rout e>

Firstly, because the Artix MQSeries plugin is a separately licensed

component you must update the default orb plugins list to include the

MQSeries plugin. The default Artix domain configuration file

<installationD rectory>\artix\1.2\etc\domins

\artix. cf g contains this line in the root scope:

orb_plugins = ["xmfile_log_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "tunnel","ws_orb", "fixed"];

103

CHAPTER 10 | Routing

You must add MQ as follows:

orb_plugins = ["xmfile_log_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "mg", "tunnel","ws_orb", "fixed"];

Secondly, you must add configuration information specific to the switch

process to the configuration file. At the bottom of the file, append the

following:

hel | oWbr | dSwi t ch

{
orb_plugins = [“local _|og_streant, “iiop_profile”, “giop”,
“iiop”, “bus”, “soap”, “http’, “tunnel”, “nmy’,
“routing’];

event _log:filters = [“*=FATAL+ERRCR'] ;

pl ugi ns: routi ng: wsdl _ur| =" Hel | oWr| d. wsdl ”;
h

This entry creates a new configuration scope named hel | oVr | dSwi t ch.
This scope includes two configuration settings specific to the switch
process.

The orb_pl ugi ns list has been extended to include the “routing” plugin.
The “routing” plugin is part of the Artix product.

The plugins: routing: wsdl _url configuration value defines where the
switch process can obtain the redirection/routing specifications.

pl ugi ns: routi ng: wsdl _url ="Hel | oWr | d. wsdl ”;

This value references the Hel | owr| d. wsdl file, which includes the two
service and route declarations.

When configured in this way, Artix dynamically converts complex data types
from their input representation to their output representation. Alternatively,
your application can use a type factory plugin, which provides precompiled
class definitions. For this simple demo, there will be no differences in
performance. With more complex WSDL types, you may obtain improved
performance by using the type factory plugin.

Note: This section describes an optional alternative approach that may
provide increased performance. These demos do not require use of this
option.

104

Generating the
it_demo_hellowWorld_type_factory
library

The Protocol-Based Routing Demo

The type factory, “hel | owor| d_t ypef actory”, plugin is created in the
factory directory. It is a plugin that supplies the switch process with the
capability to create complex, application specific datatypes. In this
application, there are no complex datatypes, and this plugin does not
provide any functionality.

To use this plugin, you must add it to the orb_pl ugi ns listing in the
hel | oWr | dSwi t ch scope.

orb_plugins = [“local | og_streant, “iiop_profile”, “giop”,
“iiop”, “bus”, “soap’, “http’, “tunnel”, “nmy’,
“routing”, "helloworld_typefactory"];

You must also add two additional configuration variables to the
hel | oWr | dSwi t ch scope.

The pl ugi ns: routi ng: use_t ype_factory configuration value must be
assigned the value "t rue" and the

pl ugi ns: hel | owor | d_t ypef act ory: shl i b_nane configuration value
provides the name of the library file that includes the executable code for the
“hel | owor | d_t ypefactory” plugin.

pl ugi ns: routi ng: use_type_factory="true";

pl ugi ns: hel | owor | d_t ypef act ory: shl i b_nane=
“it_deno_hel | owor| d_type_factory”;

This library file is created in the factory subdirectory during the
compilation process. All of the information needed to create this library is
contained within the Hel I oworl d. wsdl file included in the factory
subdirectory.

Note: The naming convention used for the library entry is platform
independent. That is, the value of this configuration variable does not
indicate what platform or compiler was used to create the library. The
actual name of the library file does include this information. The Artix
runtime is aware of platform and compiler restrictions and uses this
knowledge and the value of the pl ugi ns: ...shl i b_nane variable to
identify the corresponding library file.

105

CHAPTER 10 | Routing

106

Examine the WSDL file in the factory subdirectory and note that it
contains only one <servi ce>..</ servi ce> tag and does not include the
<routing: route>..</routing: route> tag. As far as the type factory library
is concerned, the important information is contained within the
<types>.</types>, <port Type>..</ port Type> and <bi ndi ng>.</ bi ndi ng>
tags, which are identified through the entries within the

<servi ce>..</ servi ce> tag. Since all of the WSDL files used by this
application include the same <por t Type>. </ por t Type> and

<bi ndi ng>..</ bi ndi ng> tag content, either <ser vi ce>..</ servi ce> tag
would have been acceptable. Which <ser vi ce>..</ servi ce> tag you
choose does, however, affect the compilation process, as you will see in the
following section

The Protocol-Based Routing Demo

Compiling and Running the Application

Before you can fully appreciate the what is happening during the
compilation process, you need to review the what happens when you
process the WSDL file with the wsdl t ocpp. bat file.

The wsdl t ocpp. bat file may use any, or all, of the following command line
arguments.

-w WBDL- URL

[-e Web-service-nane] [-t port] [-b bi ndi ng- nane]
[-d output-directory] [-n nanespace] [-f]

[-inpl]

[-v] [-license] [-?]

Previous demos used only the -w, -n and -d command line arguments.
For this demo, you will also use the -e, -t, and -f command line
arguments.

The WSDL files currently included in the client and server subdirectories
contain only one <servi ce>..</ servi ce> tag and, as in the previous demos,
the wsdl tocpp. bat utility can determine what service and port need to be
supported in the generated code. However, in this demo the WSDL files
were edited so that they only included information relevant to the associated
process. You may want to use a common WSDL file for all processes within
your application or your routing paradigm require that multiple

<servi ce>..</ servi ce> tags be included in the WSDL files associated with
each process. In these situations, you need to specify which service should
be referenced from within the generated code. You do this via the -e and
-t command line arguments. To demonstrate usage, the makefil e in each
subdirectory includes these arguments.

What is the purpose of the -f command line argument? Including the -f
argument causes the wsdl t ocpp. bat utility to generate the type factory
library file. Consequently, the nakefile inthe factory subdirectory
includes this argument.

Note: If you have chosen to use the type factory approach to routing, the
switch process needs access to this library file. You must place the
<installationDrectory>\artix\1.2\denos\routing\protocol routing
\factory subdirectory on the PATH before running the application.

107

CHAPTER 10 | Routing

Code generation dependencies There are some dependencies between the wsdl t ocpp. bat utility’s
command line arguments.

In the earlier demos, you used the -w, -n and -d arguments. In this demo,
you use the -w, -n, -e, and -t arguments.

If you need to combine the -e and -t arguments with the -d argument,
you must also use the -f argument.

Compiling the Application Code Since all of the subdirectories already contain the required files, you can
simply compile the application from the <instal | ationDirectory>
\artix\ 1.2\ denos\routing\protocol _routing directory.
1. Open a command window and move to the <installationDirectory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].
2. Move tothe <installationDirectory>\artix\1.2\denos
\rout i ng\ prot ocol _routing directory and issue the command

nnake al |

Running the Application You must first start the server and switch processes and then run the client
application.

1. Open a command window to the <installationD rectory>
\artix\1. 2\ bi n directory and run the batch file artix_env[.bat].
2. [Only required if you have chosen to use the type factory approach to
routing.]
Add the factory subdirectory to the PATH by issuing the command:
set PATH=9®ATHY <i nstal | ati onD rectory>\artix\ 1. 2\ denos
\routing\ protocol _routing\factory

3. Move tothe <installationDrectory>\artix\1.2
\ denos\ rout i ng\ pr ot ocol _rout i ng\ server subdirectory and issue
the command:
start server

4. Move tothe <installationDrectory>\artix\1.2
\ denos\ rout i ng\ pr ot ocol _routi ng\swi tch subdirectory and issue
the command:

start switch

108

Using other transport protocols

Stopping the processes

The Protocol-Based Routing Demo

5. Movetothe <installationD rectory>\artix\1.2
\ denos\ rout i ng\ prot ocol _routing\client subdirectory and issue
the command:

client
or the command:
client “<sone nane>"

Observe the messages in both the server and client command windows.

Each of the WSDL files includes a <servi ce>. </ servi ce> entry that
specifies a SOAP over HTTP port definition for the MQHelloWorldService.
Alternatively, communication between the switch and server processes can
be SOAP over MQ or IIOP Tunneling.

In addition, when starting the server process that receives requests via II10P
tunneling, you must specify appropriate configuration information. As
described in the [IOP tunneling example, the configuration information is
included in the scope tunnel . deno. Consequently, start the server process
with the command:

start server -CRBname tunnel.deno

Stop the server and switch processes by giving the G rl-C command in
their respective command windows.

109

CHAPTER 10 | Routing

Understanding the Application

110

This is a basic illustration of how to propagate an invocation across multiple
transport protocols. The WSDL file used by the client application includes
one <servi ce><port> section that specifies what protocol (SOAP/HTTP)
and port (8080) the client application must use to communicate with the
switch process.

The WSDL file used by the server application includes one

<ser vi ce><port > section that specifies what protocol (SOAP/MQ,
SOAP/IIOP_Tunneling, or SOAP/HTTP), and related connection information,
the server process will use to receive requests from the switch process.

Note: Although the equivalent of multiple <servi ce><port> sections
exist, only one is active. The alternative connection information is
commented out.

The WSDL file used by the switch application includes two active

<ser vi ce><por t > sections; the first specifies communication between the
client and switch processes while the second describes communication
between the switch and server processes.

In addition, the WSDL file used by the switch application includes the
<rout e> section, which specifies that requests received via SOAP/HTTP on
port 8080 should be routed to the server using an alternative protocol.

All requests from the client are sent to the server process via the alternative
protocol. In the following demo, you will employ a more complex routing
paradigm in which specific operation invocations are routed to different
Server processes.

The Operation-Based Routing Demo

The Operation-Based Routing Demo

The switch process WSDL file

This demo is located in the <installationDi rectory>\artix\1.2
\ dero\ r out i ng\ oper ati on_routing directory. This demo contains five
subdirectories: client, factory, server, server2, and sw tch.

This demo is identical to the protocol routing demo with the exception that
you will start two server processes. The switch process will redirect/route
the sayH messages to the first server process and redirect/route the
greet M messages to the second server process.

The only differences between this demo and the protocol routing demo is in
the WSDL files associated with the switch and server processes.

As with the protocol routing demo, multiple <servi ce>..</ servi ce> entries

are used to specify the transports between the client and switch processes

and the switch and server processes. In this demo,

® The first <service>.</servi ce> tag defines the communication
between the client and switch processes — SOAP over HTTP — service
name HelloWorldService, with the switch using port 8080.

® The second <servi ce>..s/ servi ce> tag defines the communication
between the switch process and the first instance of the server — SOAP
over HTTP - service name MQHelloWorldService, with the server using
port 8090.

® The third <service>..</servi ce> tag defines the communication
between the switch process and the second instance of the server —
SOAP over HTTP — service name RTHelloWorldService, with the server
using port 8085.

Since the switch process needs to redirect/route sayH messages to the first
server process, and greet Me messages to the second server process, there
are two <routi ng: rout e>..</routing: route> tags. In addition to the
<routing: source> and <routing: destinati on> tags, the

<rout i ng: oper ati on> tag specifies which messages should be
redirected/routed to the destination service.

111

CHAPTER 10 | Routing

These specifications are summarized in the following extract from the WSDL
file.

<servi ce name="Hel | oWr | dServi ce” >
<port bi ndi ng="t ns: Hel | oWr | dPor t Bi ndi ng”
name="Hel | oWor | dPort " >
<soap: address | ocati on="http://| ocal host: 8080"/ >
</ port>
</ servi ce>

<servi ce name="RTHel | oWr | dSer vi ce” >
<port bi ndi ng="t ns: Hel | oWbr | dPor t Bi ndi ng”
name="RTHel | oWr | dPort " >
<soap: address | ocation="http://| ocal host : 8085/ "/ >
</ port>
</ servi ce>

<servi ce nane="MX}el | oWr| dServi ce” >
<port bi ndi ng="t ns: Hel | oWbr | dPor t Bi ndi ng”
name="Mx}%l | oWr | dPort ">
<soap: address | ocation="http://| ocal host: 8090/ "/ >
</ port>
</ servi ce>

<routing: route name="r1">
<routing: source service="tns: Hel | oWr | dServi ce”
port="Hel | oWr| dPort”/>
<routing: operati on name="sayH "/>
<routing: destination service="tns: MHel | oWr | dServi ce”
port ="MxXel | oVor | dPort”/>
</routing: rout e>

<routing: route name="r2">
<routing: source service="tns: Hel | oWr | dServi ce”
port="Hel | oWor| dPort”/>
<routing: operati on name="greet "/ >
<routing: destination service="tns: RTHel | oWr | dServi ce”
port="RTHel | oWr | dPort”/ >
</routi ng: rout e>

The Server Process WSDL file The WSDL files associated with each of the server processes are identical
with the exception of the <servi ce>..s/ servi ce> tag, which specifies a
unique service name and port. The first server process uses the service

112

The Operation-Based Routing Demo

name MQHelloWorldService and listens on port 8090. The second server
process uses the service name RTHelloWorldService and listens on port
8085.

The client process WSDL file The client process has no knowledge of the redirection/routing performed by
the switch. Its WSDL file includes only the <servi ce>. </ servi ce> tag that
specifies the HelloWorldService and SOAP over HTTP communication with
the switch on port 8080.

113

CHAPTER 10 | Routing

Compiling and Running the Application

Since all of the subdirectories already contain the required files, you can
simply compile the application from the <instal | ati onDi rect ory>
\artix\1.2\denos\routing\operation_routing directory.

Compiling the Application Code 1. Open a command window and move to the <instal |l ationD rectory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].

2. Move tothe <installationDirectory>\artix\1.2\denos
\routing\ operation_routing directory and issue the command

nnake al |

Running the Application You must first start the server process and then run the client application.

1. Open a command window to the <installationD rectory>
\artix\ 1. 2\ bi n directory and run the batch file arti x_env[. bat] .

2. [Only required if you have chosen to use the type factory approach to
routing.]
Add the factory subdirectory to the PATH by issuing the command:

set PATHEY®ATHY <i nstal | ati onDi rectory>\arti x\ 1. 2\ denos
\routing\ operation_routing\factory

3. Move tothe <installationDrectory>\artix\1.2
\rout i ng\ oper ati on_routi ng\ ser ver subdirectory and issue the
command:

start server

4. Move tothe <installationDrectory>\artix\ 1.2\ denos
\rout i ng\ oper ati on_routi ng\ server 2 subdirectory and issue the
command:

start server

5. Now move to the <installationDirectory> artix\1. 2\ denos
\rout i ng\ oper ati on_routing\ sw tch subdirectory and issue the
command:

start switch

114

The Operation-Based Routing Demo

6. Finally move to the <installationD rectory>\artix\1. 2\ denos
\routing\ operation_routing\client subdirectory and issue the
command:
client
or the command:
client “<sone name>"

Observe the messages in both the server and client command windows.

Note that each server processes only handles a single message. Stop the
server and switch processes.

Stopping the processes Stop the server and switch processes by giving the G rl-C command in
their respective command windows.

115

CHAPTER 10 | Routing

Understanding the Application

Monitoring the Runtime
Environment

116

This operation routing demo is a little more complex than the protocol
routing demo. In this example, the client process uses SOAP/HTTP to
communicate with the switch process, which is listening on port 8080. If
you examine the WSDL file included in the client subdirectory, you will
note that there is only one <servi ce><port> section, which provides this
connection information.

The server processes listen for SOAP/HTTP requests from the switch process
on port 8085 or 8090, respectively. If you examine the WSDL file included
in the server and server2 directories, you will note that there is only one
<ser vi ce><port > section in each file, which provides the relevant
connection information for that server.

The WSDL file within the swi tch directory is more complex. This file
includes three <servi ce><port> sections. The first entry, including
SOAP/HTTP and port 8080, specifies what protocol and port the switch
process uses to receive requests from the client process; this is the same
specification as contained in the WSDL file included in the cli ent
directory. The second entry, including SOAP/HTTP and port 8085, specifies
what protocol and port the switch process uses to send requests to one of
the server processes, while the third entry specifies the same information for
the other server process. These entries are the same as the corresponding
sections in the WSDL files included in the server and server2 directories.

In addition, the WSDL file used by the switch process includes multiple
<rout e> sections that specify which operation invocations should be
directed to each server process.

After starting the first server process, open a command window and issue
the command

netstat -a

Review the listing and confirm that port 8090 is listed. Now start the
second server process and again review the port usage; confirm that port
8085 is also listed. Finally, start the switch process and review the port
usage; confirm that port 8080 is included in the list.

Embedding the Switch Functionality in a Process

Embedding the Switch Functionality in a

Process

In the protocol routing and operation routing demos, request routing was
performed by a switch process that runs independently of the client and
server processes. If you examine the source code in the swi t ch. cxx file, it
is difficult to determine where the routing processing logic is coded. The
application simply initializes the runtime environment and enters a
processing loop.

usi ng namespace | T_Bus;

i nt
nmai n(int argc, char* argv[]
)
{
try
{
IT Bus::init(argc, argv, “hellowrldSw tch”);
I T _Bus::run();
}
catch (1T _Bus:: Exception& e)
{
printf(“Exception occurred: 9", e.Mssage());
return 1,
}
return O;
}

In actual fact, the “business end” of this application is performed by the
application specific and routing plugins that you added to the orb_pl ugi ns
list that this application uses. Recall that before you ran either demo, you
created the hel | oWr| dSwi tch configuration scope, which includes three
runtime specifications.

hel | oWor | dSwi t ch

{
orb_plugins = [“local _| og_streant, “iiop_profile”, “giop”,
“iiop”, “bus”, “soap”, “http’, “nmy’, “tunnel”,
“routing’];

117

CHAPTER 10 | Routing

Modifying the HelloWorld.wsdl
File

118

event _log:filters = [“*=FATAL+ERRCR'] ;
pl ugi ns: routi ng: wsdl _url ="Hel | oWr | d. wsdl ”;
bt

The orb_pl ugi ns list includes the routing plugin, which is part of the
Artix product.

The event_l og: filters entry allows the logging level to be set at the
application level. The pl ugi ns: routing: wsdl _url entry provides the path
to the WSDL file that includes the routing related entries, i.e., the multiple
<servi ce><port > sections and the <rout e> section.

By starting the switch process under the hel | owor| dSwi t ch configuration
scope, the plugins that provide routing functionality are automatically
loaded.

It would seem, therefore, that since routing is implemented through plugins,
simply loading the required plugins during process initialization should
provide routing functionality. This is, fortunately, the case, as is illustrated in
the next sections.

Recall that each application uses a different version of the Hel | oVer | d. wsdl
file. This is not actually required.

During code generation, you specified what service and port corresponded to
each process. For example, if you examine the makefil e in the client
subdirectory you will see that the client process runs against the
HellowWorldService/HelloWorldPort endpoint. This is specified through the
-e and -t flags to the wsdl t ocpp utility. The server process in the server
subdirectory runs as the MQHellowWorldService/MQHelloWorldPort endpoint
while the server process in the server2 subdirectory runs as the
RTHelloWorldService/RTHelloWorldPort endpoint.

Since the endpoint specifications are encoded into the classes generated by
the wsdl t ocpp utility, the stub and skeleton classes will only access the
<servi ce><port > information corresponding to the specified endpoint. The
fact that the WSDL file includes multiple <servi ce><port > sections for
multiple endpoints is immaterial.

Alter the WSDL file

Running the Application

Embedding routing functionality
within the first server process

Embedding routing functionality
within the second server process

Embedding the Switch Functionality in a Process

In the operation routing demo, copy the Hel | oWorl d. wsdl file from the
swi t ch subdirectory into the client, server, and server2 directories.

Note: Do not recompile this application. You will change how this
application runs through the WSDL file and runtime configuration.

By running an application under the hel | oWor | dSwi t ch configuration
scope, you enable basic routing functionality. You can specify which process
runs the embedded routing functionality by supplying the - CRBnane

hel | oWor | dSwi t ch command line arguments when starting the process.

Return to the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command
start server -CRBnane hel | oWr| dSwi t ch

Open a command window and issue the command
netstat -a

Review the listing and confirm that both ports 8080 and 8090 are listed.
Start the second server process with the command

start server

Review the port usage and confirm that port 8085 is also listed.

Run the client process and confirm that requests are properly routed to the
two servers.

Stop the server processes.

Rerun the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command

start server

119

CHAPTER 10 | Routing

Embedding routing functionality
within the client process

120

Open a command window and issue the command
netstat -a

Review the listing and confirm that port 8090 is listed.
Start the second server process with the command

start server -CRBnane hel | oWr| dSwi tch

Review the port usage and confirm that ports 8080 and 8085 are also
listed.

Run the client process and confirm that requests are properly routed to the
two servers.

Stop the server processes.

Rerun the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command
start server

Open a command window and issue the command
netstat -a

Review the listing and confirm that port 8090 is listed.
Start the second server process with the command

start server

Review the port usage and confirm that port 8085 is also listed.
Run the client process with the command

client <someName> - CRBnane hel | oWr | dSwi t ch

Confirm that requests are properly routed to the two servers.
Stop the server processes.

The Content-Based Routing Demo

The Content-Based Routing Demo

The HelloWorld.wsdl File

This demo is located in the <installationDirectory\artix\1.2
\ dermos\ rout i ng\ cont ent _routi ng directory. This demo contains four
subdirectories: client, server, server2, and swtch.

This demo accomplishes the same processing objectives as the operation
routing demo, that is, requests for the sayH operation are sent to one
server process and requests for the greet M= method are sent to a second
server process. The difference is that content based routing requires an
independent switch process, which now includes processing logic to
redirect/route the requests to the appropriate server processes.

In this demo, the switch process hosts an implementation object that
implements the same interface (WSDL contract) as the implementation
objects in your server processes. Within the switch process, each request is
delivered to the implementation object, which then redirects the request
based on your content routing paradigm. As you will see, the switch process
implementation object creates proxy objects and becomes a client to the
Artix server processes.

This file includes the same content as the Hel | ovor | d. wsdl file used in the
operation routing demo with the exception that the <rout e> tag content has
been removed. Request routing is no longer the responsibility of the
underlying Artix runtime; it will be implemented in code you write into the
switch process.

As in the operation routing demo, the Hel | owor | d. wsdl file includes
multiple <servi ce><port > sections, which specify the ports on which the
switch and server processes listen. Again, there is no harm in including all of
these entries in the WSDL file used by a process; directives used by the
wsdl t ocpp utility during the code generation step insure that each process
is properly coded to use a specific <servi ce><port > section. However, for
clarity, unnecessary <servi ce><port > sections are inactive in the WSDL
files used by each process.

121

CHAPTER 10 | Routing

The Server Applications

The Client Application

The Switch Application

122

The code within the server and server2 subdirectories is identical to the
corresponding directories in the previous routing demos. These server
processes run completely independently of the switch and client processes.
Regardless of the routing paradigm being used, the code within the target
objects remains unchanged.

This code is identical to the corresponding application in the previous
routing demos. The client process runs completely independently of the
switch and server processes. Regardless of the routing paradigm being used,
the code within the client application remains unchanged.

This application differs significantly from the switch processes of the
previous routing demos. For protocol or operation routing, a generic switch
process, configured to load the routing and application specific plugins,
implemented the routing logic. Application specific information was
provided through the application specific plugin and the information within
the WSDL file <route> tag.

For content based routing, the switch process becomes similar to a server
process and contains application specific code that provides the routing
logic. As an illustration of an alternative coding approach, all of the code for
the switch process has been included in a single source code file—

swi t ch. cxx.

The swi t ch. cxx source code file contains three “components”: a class
definition for the implementation object— Hel | ovor | dRout er | npl ; a class
definition for the implementation class factory object—

Hel | oWr | dRout er | npl Fact or y; and the process mainline— mai n() .
Examine each “component” and observe that they are conceptually identical
to the Hell ovor | dinpl and Hel | over |l di npl Factory classes generated by
the wsdl t ocpp utility; the Hel I ovor | dRout er | npl class implements the
same interface (WSDL contract) as the Hel | owor | di npl class, and the

Hel | oWor | dRout er | npl Fact ory class implements the same functionality as
the Hel | ovr | dl npl Factory class.

In writing the Hel | ovor| dRout er I npl and Hel | oVr | dRout er | npl Fact ory
classes you are creating code analogous to the proxy code generated by the
wsdl t ocpp utility.

The HelloWorldRouterImpl class

The Content-Based Routing Demo

This is the most interesting code. Although this class implements the same
interface (WSDL contract) as the Hel | over | dl npl class, the processing
logic is completely different.

This class includes two private variables — sayH d i ent and greet Med i ent
—that are of type Hel | oVer| dd i ent, the proxy class generated by the

wsdl t ocpp utility. The constructor code initializes each of these variables;
the Hel | ovor | dRout er I npl class uses the proxy class in a similar manner
as your client application. However, in all of the previous demos, the client
code used the default (no argument) constructor when creating an instance
of the proxy. This demo uses the overloaded proxy class constructor that
allows you to specify the WSDL file, service, and port targeted by the proxy.
The sayH Qi ent variable is initialized to use the target endpoint offered by
the process started in the server subdirectory, whereas the greet Med i ent
variable is initialized to use the target endpoint offered by the process
started in the server2 subdirectory.

class Hel | ovr| dRouter| npl: public Hel | oWrl dServer

{
publ i c:
Hel | oWor | dRout er | npl (I T_Bus: : Bus_ptr bus,
IT Bus::Port *port) : HelloWrldServer (bus, port),
sayH d i ent (
“Hel | oWbr | d. wsdl ",
Q\ane(““, “MXel | oWr | dServi ce”,
“http://xm bus. coml Hel | oVWr|d”),
“MXel | oWor | dPort”
)
greet Med i ent (
“Hel | oWbr | d. wsdl ",
Q\ane(““, “RTHel | oWr | dServi ce”,
“http://xm bus. con Hel | oWrl|d”),
“RTHel | oWor | dPor t”
)
{
}
pri vat e:
Hel | oWrl ddient sayH dient;
Hel | oWorl dd i ent greetMedient;
b

123

CHAPTER 10 | Routing

The
HelloWorldRouterImplFactory
class

124

The sayH and greet M method bodies are where you write the content
based routing logic, which, in this example, simply invokes the
corresponding method on the target endpoint processes. In a more
meaningful application, you would implement a more sophisticated routing
paradigm.

virtual void greetMe

(const | T _Bus::String& stringParand,
I T_Bus:: String& Response)

I T_THRON DECL((| T_Bus: : Excepti on))

{

cout << “Hel |l oWr| dRout erl npl :: greet Me
called with message: “
<< stringParan® << endl;

I T_Bus::String greet MResponse;
greet Med i ent. greet M
(stringParanD, greet MeResponse);
Response = greet MeResponse;
}

virtual void sayH
(1 T_Bus:: String& Response)
| T_THRON DECL((| T_Bus: : Exception))
{
cout << “Hel | oWr | dRout erl npl : : sayH
called” << endl;

I T_Bus::String sayH Response;
sayH d i ent. sayH

(sayH Response) ;
Response = sayH Response;

}

Because the sayH Qient and greet Med i ent proxies are targeted to
different endpoints, the Hel | owr | dRout er I npl object created within the
switch process will reinvoke the sayH and greet M2 methods within
different server processes.

The constructor and creat e_server methods contain the interesting code.
In the constructor, the Hel | ovor | dRout er | npl Fact ory class registers itself
as the target endpoint for the Hel | ovor | dServi ce. In the create_server
method, the factory creates an instance of the Hel | ovr| dRout er I npl

The Content-Based Routing Demo

class, which provides links to the target endpoints MXel | oVr | dSer vi ce
and RTHel | oWor | dSer vi ce. What happens in these methods is directly
analogous to the processing within the Hel | ovr I di npl Factory class
generated by the wsdl t ocpp utility.

cl ass Hel | oWr | dRout er | npl Factory :
publ i ¢ Server Fact or yBase
{
publ i c:
Hel | oWr | dRout er | npl Fact ory() :
mwsdl _| ocati on
(“Hel I oWorl d. wsdl "),
m servi ce_nane
(“*, “Hell oWrldService”,
“http://xm bus. coni Hel | oVor | d”)
{
I T_Bus:: Bus::register_server_factory(
m servi ce_nane,
this
Dk
}

virtual ~Hel | oWr| dRout er | npl Fact ory()
{

}

| T_Bus:: Bus::deregister_server_factory (mservice_nane);

virtual |T_Bus:: Server St ubBase*
create_server (| T_Bus::Bus_ptr bus, |T Bus::Port *port)

{
}

return new Hel | oWr | dRout er | npl (bus, port);

virtual const IT Bus::String &
get _wsdl _| ocati on()

{
}

return mwsdl _| ocati on;

virtual void
destroy_server (IT_Bus:: ServerStubBase* server)

{
}

private:
String mwsdl _| ocation;

del ete server;

125

CHAPTER 10 | Routing

Q\ane m servi ce_nane;

b
The switch mainline The mai n method is similar to the server mainline code except that you
must explicitly create an instance of the Hel | oWr | dRout er | npl Fact ory
class.
int
mai n(i nt argc, char* argv[])
{
try
{
Hel | oWor | dRout er | npl Factory factory;
IT Bus::init(argc, argv);
cout << “Switch service waiting for requests.”
<< endl ;
I T _Bus::run();
iatch (1 T_Bus: : Excepti on& e)
{ printf(“Exception occurred: %", e.Mssage());
return 1;
}
return O;
}

126

The Content-Based Routing Demo

Compiling and Running the Application

Compiling the Application Code

Running the Application

Since all of the subdirectories already contain the required files, you can
simply compile the application from the <instal | ati onDirectory>\arti x
\ 1. 2\ denos\ rout i ng\ cont ent Rout i ng directory.

1. Open a command window and move to the <install ationDi rectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].

2. Move tothe <installationDirectory>\artix\1.2\denos\
routing\ content _routing directory and issue the command

nnake al |

You must first start the server process and then run the client application.

1. Open a command window to the <instal | ationDirectory>
\artix\1. 2\ bi n directory and run the batch file artix_env[. bat].

2. Move to the <installationDrectory\artix\1. 2\denos\routing
\ cont ent _out i ng\ ser ver subdirectory and issue the command:

start server

3. In the command window from step 1, issue the command
netstat -a
and confirm that port 8090 is active.

4. Move tothe <installationD rectory>\artix\1. 2\ denos
\routing\ cont ent_routi ng\ server 2 subdirectory and issue the
command:

start server

In the command window from step 1, issue the command
netstat -a

and confirm that port 8085 is active.

5. Now move to the <installationD rectory>\artix\ 1.2\ denos
\rout i ng\ cont ent Rout i ng\ swi t ch subdirectory and issue the
command:

start switch

In the command window from step 1, issue the command

127

CHAPTER 10 | Routing

Stopping the processes

128

netstat -a
and confirm that port 8080 is active.

6. Finally move to the <installationD rectory>\artix\1. 2\ denos
\routing\content_routing\client subdirectory and issue the
command:
client
or the command:
client “<sone nanme>"

Observe the messages in both the server and client command windows.

Note that each server processes only handles a single message but that all

messages pass through the implementation object within the switch
process. Stop the server and switch processes.

Stop the server and switch processes by giving the & ri-C command in
their respective command windows.

The Content-Based Routing Demo

Understanding the Application

In this example, the client process uses SOAP/HTTP to communicate with
the switch process, which is listening on port 8080. If you examine the
WSDL file included in the client subdirectory, you will note that there is
only one <servi ce><port> section, which provides this connection
information.

The server processes listen for SOAP/HTTP requests from the switch process
on port 8085 or 8090, respectively. If you examine the WSDL file included
in the server and server2 directories, you will note that there is only one
<ser vi ce><port > section in each file, which provides the relevant
connection information for that server.

The WSDL file within the swi tch directory is more complex. This file
includes three <servi ce><port> sections. The first entry, including
SOAP/HTTP and port 8080, specifies what protocol and port the switch
process uses to receive requests from the client process; this is the same
specification as contained in the WSDL file included in the cli ent
directory. The second entry, including SOAP/HTTP and port 8085, specifies
what protocol and port the switch process uses to send requests to one of
the server processes, while the third entry specifies the same information for
the other server process. These entries are the same as the corresponding
sections in the WSDL files included in the server and server2 directories.

The client sends each request to the switch process. The switch process
unmarshals the request and makes the corresponding invocation on its
implementation object. Content routing logic is applied to each request and
the switch process propagates the request, using SOAP/HTTP, to the
appropriate server process. The server receives the request, unmarshals,
and makes the corresponding invocation on its implementation object. The
response from the server implementation object returns to the client via the
switch implementation object.

129

CHAPTER 10 | Routing

130

CHAPTER 11

Accessing an
Endpoint via
Multiple Protocols

In previous chapters, you developed a collection of demos that
showed how Artix™ can use a variety of transport protocols to
integrate the same client and server applications. You also
learned how Artix can function as a middleware switch and
reissue a request received on one protocol using a second
protocol. In this chapter, you will develop an example that
shows how a single Artix server process can use a single
implementation object to process requests received via
multiple protocols.

129

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols

In this chapter This chapter discusses the following topic:

The Common Target Demos page 131

130

The Common Target Demos

The Common Target Demos

Example design

The HelloWorld.wsdl File

The <definition>, <types> and
<portType= specifications

The starting point code for this demo is located in the

<installationDi rectory>\artix\1.2\denos\common_target directory.
This demo is completely coded. The important concepts involve editing the
WSDL file and one small change to the implementation object.

In this demo, two client applications send requests to a single Artix server.
One client is a C++ CORBA application that uses the CORBA/IIOP transport
protocol to send requests; the second client is a C++ application that uses
the SOAP/HTTP transport protocol to send requests. The server process
receives both types of requests and invokes on a common implementation
object. Neither client is aware of, nor cares about, the other.

The WSDL file now includes two <bi ndi ng> and <servi ce> specifications,
one for the CORBA/IIOP transport and one for the SOAP/HTTP transport.
Both <bi ndi ng> specifications refer to the same <port Type> specification,
so the operations available to each client are similar.

There is nothing new in this file. Although there are two <bi ndi ng> and
<servi ce> specifications, these sections simply contain copies of the
equivalent sections of earlier demos. As in the routing demos of the previous
chapter, you will need to use the -e and -t command line arguments to
the wsdl tocpp utility when processing the WSDL file.

These sections of the WSDL document are identical to the corresponding
sections within the WSDL document used in the CORBA/IIOP transport
demos.

<?xm versi on="1.2" encodi ng="UTF- 8" ?>
<definitions nane="Hel | oWorl d.idl"”
t ar get Nanmespace=
“http://schenas.iona.coniidl /HelloWrld.idl”
xm ns=
“http://schenas. xm soap. org/ wsdl / ”
xm ns: soap=
“http://schenas. xm soap. or g/ wsdl / soap/ "
xm ns: t ns=
“http://schenas.iona.coniidl /HelloWrld.idl”

131

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols

132

xn ns: xsd=
“http://ww w3. or g/ 2001/ XM_Schena”
xn ns: xsd1=
“http://schenas.iona.coniidltypes/HelloWrld.idl”
xn ns: cor ba=
“http://schenas. i ona. coni bi ndi ngs/ cor ba”
xni ns: cor bat n¥
“http://schenas. i ona. coni bi ndi ngs/ cor ba/ t ypemap” >

<t ypes>
<schema t ar get Nanespace=
“http://schenas.iona.coniidltypes/HelloWrld.idl”
xm ns=
“http://wwv w3. or g/ 2001/ XM_Schena”
xm ns: wsdl =
“http://schenas. xm soap. org/ wsdl /">
<el enent name="HW Hel | oWr | d. sayH . return”
type="xsd: stri ng”/>
<el enent name="HW Hel | oWr | d. gr eet Me. user”
type="xsd: string”/>
<el enent nanme="HW Hel | oWr | d. gr eet Me. r et urn”
type="xsd: stri ng”/>
</ schenma>
</ types>
<nessage nanme="HW Hel | oWr | d. sayH "/ >
<nessage name="HW Hel | oWr | d. sayH Response” >
<part nane="return”
el ement =" xsd1: HW Hel | oWbr | d. sayH . return”/>
</ message>
<nessage nanme="HW Hel | oWr | d. gr eet Me” >
<part nane="user”
el ement =" xsd1: HW Hel | oWr | d. gr eet Me. user”/ >
</ message>
<nessage name="HW Hel | oWr | d. gr eet MeResponse” >
<part nane="return”
el ement =" xsd1: HW Hel | oWor | d. greet Me. return”/ >
</ message>

<port Type nane="HW Hel | oVr | d” >
<oper ati on name="sayH ">
<i nput nessage="tns: HV Hel | oWr | d. sayH "
nanme="sayH "/ >
<out put nessage="tns: HW Hel | oWr | d. sayH Response”
name="sayH Response”/ >
</ oper ati on>
<oper ati on name="gr eet M&” >
<i nput nessage="tns: HV Hel | oWr | d. gr eet Me”

The Common Target Demos

name="gr eet "/ >
<out put message="tns: HV Hel | oWr| d. gr eet MeResponse”
name="gr eet MeResponse” / >
</ operati on>
</ por t Type>

</ definitions>

The <binding> specification There are two <bi ndi ng> specifications; the first describes the binding
within the corba namespace and the second describes the binding in the
soap namespace. The CORBA specification is identical to the corresponding
specification in the CORBA/IIOP demo and the soap specification is identical
to the corresponding specification in the SOAP/HTTP demo.

<bi ndi ng nane="HW Hel | oWr | dBi ndi ng”
type="tns: HW Hel | oVor | d” >
<cor ba: bi ndi ng repositoryl D="1DL: HW Hel | oWor | d: 1. 2"/ >
<oper ati on name="sayH ">
<cor ba: operati on nane="sayH ">
<cor ba: return name="return”
i dl type="corba:string”/>
</ cor ba: oper at i on>
<i nput/ >
<out put/ >
</ oper ati on>
<oper ati on name="gr eet M&” >
<cor ba: operati on name="greet \e" >
<cor ba: par am nane="user”
node="i n" idltype="corba:string’/>
<corba:return name="return’
i dl type="corba:string”/>
</ cor ba: oper at i on>
<i nput />
<out put/ >
</ oper at i on>
</ bi ndi ng>

<bi ndi ng name="SQAPHel | oWr | dPor t Bi ndi ng”
type="tns: HW Hel | oVér | d” >
<soap: bi ndi ng styl e="rpc”
transport ="http://schenas. xn soap. or g/ soap/ htt p”/>
<oper ati on name="gr eet M&” >
<soap: oper ati on soapActi on=
<i nput name="greet " >
<soap: body encodi ngStyl e=

style="rpc"/>

133

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols

“http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace=

“http://xm bus. conl Hel | oWr | d” use="encoded” />
</i nput >
<out put name="gr eet MeResponse” >
<soap: body encodi ngStyl e=
“http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace=
“http://xm bus. conl Hel | oWr | d” use="encoded” />
</ out put >
</ oper at i on>
<oper ati on name="sayH ">
<soap: operation soapAction="" style="rpc"/>
<i nput nane="sayH ">
<soap: body encodi ngStyl e=
“http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace=
“http://xm bus. conl Hel | oWr | d” use="encoded” />
</i nput >
<out put nane="sayH Response” >
<soap: body encodi ngStyl e=
“htt p://schemas. xm soap. or g/ soap/ encodi ng/ ”
namespace=
“http://xm bus. conl Hel | oWr | d” use="encoded” />
</ out put >
</ oper at i on>
</ bi ndi ng>
The <service> specifications There are two <servi ce> specifications. The CORBA specification is

identical to the corresponding specification in the CORBA/IIOP demo and
the soap specification is identical to the corresponding specification in the
SOAP/HTTP demo.

<servi ce name="SQAPHel | oWr | dServi ce” >
<port bi ndi ng="t ns: SOAPHel | oWor | dPor t Bi ndi ng”
name="SOAPHel | oWr | dPort” >
<soap: address | ocation="http://I| ocal host: 8080"/ >
</ port>
</ servi ce>

<servi ce nane="HW Hel | oWr | dSer vi ce” >
<port bi ndi ng="t ns: HW Hel | oWr | dBi ndi ng”
nane="HW Hel | oWr | dPort” >
<cor ba: address | ocati on=
“file://../HelloWrld.ior”/>

134

The Common Target Demos

<l--
<cor ba: address | ocati on=
“cor banane: ri r:/ NaneSer vi ce#hel | oWor | d”/ >
-->
</ port >
</ servi ce>

135

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols

The Demo Code

Modifying the Implementation
Class Code

136

There are no changes to the client. cxx, server.cxx, or
HW Hel | over | di npl . h files. Edits have been made to the
HW Hel | over | di npl . cxx file.

If you run the wsdl t ocpp utility with a WSDL file containing multiple
<ser vi ce> specifications (as is true in this demo), you must use the -e and
-t flags to indicate which <servi ce> the implementation object should
represent. When you use the -inpl flag, the wsdl t ocpp utility will also
generate starting point code for your implementation object; the <servi ce>
specified through the -e and -t flags will be incorporated into the
generated code. Yet, in this demo, you want the implementation object to
represent both <servi ce> specifications. Consequently, you must edit some
of the generated code within the HW Hel | ovor | di npl . cxx file. This edit has
no effect on the method bodies for your business methods; the editing
involves the processing logic within the constructor of the factory for your
implementation class.

HW Hel | owor | dI npl Fact ory: : HW Hel | oWr | dlI npl Fact or y()
{
mwsdl | ocation =
I T _Bus::String(“HelloWrld. wsdl”);
| T_Bus:: Q\ane servi ce_nane
(“*, “HWHell oWrl dService”,
“http://schenas.iona.condidl /HelloWrld.idl");
I T_Bus:: Bus: :register_server_factory(
servi ce_nane,
this
)i
/1 Register a second service with the sane inpl enentation object
| T_Bus: : Q\ane servi ce_nanmeSQOAP
(“*, “SOAPHel | oVr | dServi ce”,
“http://schenas.iona.comidl /HelloWrld.idl");
I T_Bus:: Bus::register_server_factory(
servi ce_nameSQOAP,
this
)
}

A second service registration is provided through the added code. This edit
has already been made to the demo’s code.

Compiling the Application Code

Running the Application

Terminating the server process

View the object reference

The Common Target Demos

Since all of the subdirectories already contain the required files, you can
simply compile the application from the <i nstal | ati onDirectory>\artix
\ 1. 2\ denos\ conmon_t ar get directory.
1. Open a command window and move to the <instal | ationDi rectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[.bat].
2. Movetothe <installationDrectory>\artix\1.2
\ denos\ conmon_t ar get directory and issue the command

nnake al |

You must first start the server and then run the client applications.

1. Open a command window to the <installationD rectory>artix
\'1. 2\ bi n directory and run the batch file artix_env[.bat].

2. Move to the <installationD rectory>\artix\1. 2\ denmos
\ common_t ar get\ arti x_server subdirectory and issue the command:

start server

3. Move tothe <installationDi rectory>\artix\1.2\denos
\ common_t ar get \ corba_cl i ent subdirectory and issue the command:

client
or the command:
client “<sone nane>"

4. Move tothe <installationD rectory>\artix\1. 2\ denos
\common_target\artix_client subdirectory and issue the command:

client
or the command:
client “<sone nane>"

Observe the messages in both the server and client command windows.
Invocations from both client applications are going to the same Artix server
and implementation object.

Issue the Ctrl-C command in the corresponding command window.

Note that a string version of the CORBA object reference is written to the
subdirectory <instal |l ationDirectory> artix\ 1.2\ denos\ common_t ar get .

137

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols

Move to this subdirectory and issue the command
i ordunp hel |l oWrld.ior

Confirm that the repository ID represented by this object reference is the
same as specified in the WSDL file.

138

In this chapter

CHAPTER 12

Oneway
Operations

This chapter describes how you specify oneway operations.

This chapter discusses the following topics:

Web Service Semantics page 140
The WSDL File page 141
Compiling and Running the Application page 146

139

CHAPTER 12 | Oneway Operations

Web Service Semantics

140

Using the <port Type> section of the WSDL file, you can specify the

semantics of your Web service operations. WSDL defines four types of

operations:

® Oneway Operation: The client process sends a message to the server
process; a corresponding return message from the server process to the
client process is not expected. The client process resumes processing
immediately after sending the message.

® Request-Response Operation: The client process sends a message to
the server process; the server process sends a corresponding return
message to the client process. The client process blocks until the
return message is received.

® Solicit-Response Operation: The server process sends a message to the
client process; the client process sends a corresponding return
message to the server process. The server process blocks until the
return message is received.

® Notification Operation: The server process sends a message to the
client process; a corresponding return message from the client process
to the server process is not expected. The server process resumes
processing immediately after sending the message.

Up to this point in the tutorial, all operations have been request-response.
Consequently, within the <port Type> section of the WSDL file, each
<oper at i on> includes both an <i nput > message and an <out put >
message.

Do not be confused by the fact that a <message> definition may not include
a <part> section. For example, a definition for a message that includes a
void return, or a message that does not require input or output parameters,
would not include <part> sections. You have already seen these types of
specifications in the Hel | oVer| d. wsdl file.

In this chapter you will learn how eliminating the <out put > tag from an
operation’s definition specifies oneway semantics.

The WSDL File

The WSDL File

To specify oneway versus request-response operations, you need to edit the

WSDL file.
The request-response The Hel | ovorld. wsdl file used in the previous examples included the
HelloWorld.wsdl file following <message> and <port Type> specifications.

<message nane="greet ">
<part name="stri ngParand"
type="xsd: stri ng"/>
</ message>

<nmessage nane="greet MeResponse" >
<part name="return"
type="xsd: string"/>
</ message>

<nessage name="sayH "/>

<nessage name="sayH Response">
<part name="return"
type="xsd: stri ng"/>
</ message>

<port Type nane="Hel | oWr | dPort Type" >
<oper ati on name="greet ">

<i nput nessage="t ns: gr eet M&"
name="gr eet Me"/ >
<out put nessage="t ns: gr eet MeResponse”
nane="gr eet MeResponse"/ >
</ oper at i on>

<oper ation name="sayH ">
<i nput nessage="tns: sayH "
name="sayH "/ >
<out put nessage="tns: sayH Response"
name="sayH Response"/ >
</ oper at i on>

</ por t Type>

141

CHAPTER 12 | Oneway Operations

In this fragment you can see that each operation defined within the

<port Type> section includes both an <i nput> and <out put > tag (although
the input message to the sayH operation does not include a <part >
representing an input parameter). That is, each operation definition includes
a request message (the <i nput > tag) and a response message (the

<out put > tag).

Corresponding to these logical operation definitions, the WSDL file also
includes a <bi ndi ng> section that specifies the encoding used for each
message. The following fragment is from the WSDL file that describes the
SOAP binding.

<bi ndi ng name="Hel | oWr | dPort Bi ndi ng"
type="t ns: Hel | oWor | dPor t Type" >
<soap: bi ndi ng styl e="rpc"
transport="htt p://schemas. xnl soap. or g/ soap/ http"/>

<oper ati on name="gr eet M" >
<soap: oper ati on soapActi on=""
style="rpc"/>
<i nput name="gr eet M&" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://xm bus. com Hel | oWr | d* use="encoded"/ >
</i nput >
<out put nane="gr eet MeResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://xm bus. con Hel | oWr | d* use="encoded"/ >
</ out put >
</ oper at i on>

<oper ati on name="sayH ">
<soap: oper ati on soapActi on=""
style="rpc"/>
<i nput name="sayH ">
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://xm bus. con Hel | oWr | d* use="encoded"/ >
</i nput >

142

The Generated Code

The oneway HelloWorld.wsdl file

The WSDL File

<out put nane="sayH Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "

namespace=
"http://xm bus. conl Hel | oWr | d* use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>

Note that within the <bi ndi ng>, each <operati on> includes both an

<i nput> and <out put > designation.

Bindings for other message encodings, for example, TIBCO Rendezvous™ or
WebSphere MQ™ contain equivalent entries.

When this WSDL file is processed by the wsdl t ocpp utility, the following
method declarations are created from the operation definitions.

virtual void

gr eet Mg(
const | T_Bus::String & stringParan®,
I T Bus::String & var_return

) | T_THRONDECL((I T_Bus:: Exception)) = O;

virtual void
sayH (
I T Bus::String & var_return
) I T_THRONDECL((I T_Bus: : Exception))

0;

Note that the greet M method signature contains two parameters:
stringParan® represents the part associated with the request message
greet Me and var_return represents the part associated with the response
message gr eet MeResponse.

The sayH method signature contains only one parameter — var _return —
that corresponds to the part associated with the response message

sayH Response. The request message sayH did not have a part element
and the generated method does not contain a corresponding parameter.

To define an operation as oneway, you simply remove references to the
output message from the <nessage>, <port Type> and <bi ndi ng> sections.

<nmessage nane="greet ">

143

CHAPTER 12 | Oneway Operations

<part name="stri ngParan?"
type="xsd: string"/>
</ message>

<nessage name="sayH "/>

<nessage name="sayH Response">
<part name="return"
type="xsd: string"/>
</ message>

<port Type nane="Hel | oWr | dPort Type" >
<oper ati on name="gr eet " >
<i nput nessage="tns: gr eet M&"
nane="gr eet Me"/ >
</ oper at i on>

<oper ati on name="sayH ">
<i nput nessage="tns:sayH "
name="sayH "/ >
<out put nessage="t ns: sayH Response"
nane="sayH Response"/ >
</ oper at i on>
</ port Type>

<bi ndi ng name="Hel | oWr | dPort Bi ndi ng"
type="t ns: Hel | oWor | dPor t Type" >
<soap: bi ndi ng styl e="rpc"
transport =
"http://schemas. xm soap. or g/ soap/ http"/>
<oper ati on name="gr eet M" >
<soap: oper ati on soapActi on=""
style="rpc"/>
<i nput name="gr eet M&" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://xm bus. con Hel | oWr | d* use="encoded"/ >
</i nput >
</ oper at i on>

<oper ati on name="sayH ">
<soap: operati on soapAction="" style="rpc"/>
<i nput name="sayH ">
<soap: body

144

The Generated Code

The WSDL File

encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=

"http://xm bus. com Hel | oWr| d" use="encoded"/ >
</i nput >
<out put nanme="sayH Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanmespace=

"http://xm bus. com Hel | oWr| d" use="encoded"/ >
</ out put >
</ oper at i on>

</ bi ndi ng>

The WSDL file does not include a definition of a gr eet MeResponse

message, and the greet Me operation and binding contain only an input
message and encoding specification.

In declaring a oneway operation, you remove the <out put > tags from the
<por t Type> and <bi ndi ng> sections.

When this WSDL file is processed by the wsdl t ocpp utility, the following
method declarations are created from the operation definitions.

virtual void
gr eet Me(

const | T_Bus::String & stringParan®
) I T_THRONDECL((! T_Bus:: Exception)) = 0;

virtual void
sayH (
I T Bus::String & var_return
) | T_THRONDECL((I T _Bus:: Exception)) = O;

Now the greet Me method signature only contains a single parameter that
represents the part associated with the request message gr eet Me.

145

CHAPTER 12 | Oneway Operations

Compiling and Running the Application

Compiling the Application Code

Running the Application

What you should observe

146

All the source code and configuration files are in their appropriate
directories.

The makefi | es include entries that incorporate the files into your
executable.

1.

The compilation process creates the client.exe and server. exe files in

Open a command window and move to the <instal | ati onDirectory>
\artix\ 1. 2\ bi n directory. Run the batch file artix_env[. bat].

Move to the <installationDirectory>\artix\1.2\denos
\oneway directory and issue the command

nnake al |

their respective directories.

Open a command window to the <instal | ationDirect ory>
\artix\ 1. 2\ bi n directory and run the artix_env[.bat] file.

Move to the <installationDirectory>\artix\1.2
\ oneway\ ser ver directory and issue the command

start server

Move to the <installationDirectory>\artix\1.2
\ oneway\ cl i ent subdirectory and issue the command:

client
or the command:

client “<sone name>"

Within the server code, a 5 second delay has been added to the greet Me
method body; the code prints a message before and after this delay. Note
that the client code completes and the process exits before the processing

within the greet M method completes.

Compiling and Running the Application

This is not the same outcome that would arise from a request-response
operation that includes a response message with no part. Although the
method signature in the generated code would not include an out parameter
(similar to the signature of your oneway greet M method), the client
process would block until the processing within the method body completes.

With a oneway operation, the client code does not block until the server-side
processing completes.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

147

CHAPTER 12 | Oneway Operations

148

In this chapter

CHAPTER 13

Type Management

In previous chapters you learned how Artix™ can use multiple
middleware transports. All of the coding examples were based
on a simple HelloWorld application, and String was the only
data type used. This chapter provides guidance on how to work
with other basic data types as well as complex types created
from entries in the WSDL file.

This chapter discusses the following topics:

A More Complex Application page 150

Comparing SOAP/RPC and Document/Literal Semantics page 165

149

CHAPTER 13 | Type Management

A More Complex Application

The code contained in the <installationDirectory>\artix\1. 2\ denos
\'si npl e_cl i ent _server directory implements a more complex application
that illustrates how to work with many basic types. Unfortunately, this demo
does not cover all of the types defined in the WSDL file. The code described
in this chapter presents a more complete review.

The BaseService.wsdl file This file, located in the <instal | ationDi rectory>\ artix\1. 2\ denos
\'si npl e_cl i ent_server\server directory, includes definitions of complex
types and messages and operations that use a variety of basic types as well
as the complex types. Do not try to read or completely understand the

<?xm version="1.2" encodi ng="UTF- 8" ?>
<definitions name="BaseService"
t ar get Nanmespace="ht t p: / / soapi nt er op. org/ "
xm ns="ht t p: // schenas. xm soap. or g/ wsdl / "
xm ns: SOAP- ENC="ht t p: / / schermas. xni soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://soapi nterop.org/"
xm ns: xsd="ht t p: / / www W3. or g/ 2001/ XM_Scherma"
xm ns: xsd1="ht t p: // soapi nt er op. or g/ xsd" >

<t ypes>
<schera t ar get Namespace="ht t p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. wW8. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: / / schermas. xm soap. or g/ wsdl /" >
<conpl exType nane="SOAPSt ruct ">
<al | >
<el enent nanme="var Fl oat" type="xsd:float"/>
<el ement nanme="varlnt" type="xsd:int"/>
<el enent name="var String" type="xsd:string"/>
</all>
</ conpl exType>
<conpl exType nane="ArrayC SOAPSt ruct " >
<conpl exCont ent >
<restriction base="SQOAP- ENC Array">
<attribute ref="SOAP-ENC arrayType"
wadl : arrayType="xsdl: SOAPStruct[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

150

A More Complex Application

<conpl exType nane="ArrayCf float">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd:float[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType nane="ArrayCfint">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="S0AP- ENC arrayType"
wsdl : arrayType="xsd:int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType nane="Arraydstri ng">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd: string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
</ schenma>
</ types>

<nessage nane="echoBase64">

<part name="i nput Base64" type="xsd: base64Bi nary"/>
</ message>
<nessage nane="echoBase64Response" >

<part name="return" type="xsd: base64Bi nary"/>
</ message>
<nessage nane="echoStruct">

<part name="input Struct" type="xsdl: SOAPStruct"/>
</ message>
<nessage nane="echoSt ruct Response" >

<part name="return" type="xsdl: SOAPStruct"/>
</ message>
<nessage nane="echoStruct Array">

<part name="i nput Struct Array"

type="xsdl: ArrayCf SOAPSt ruct "/ >

</ message>
<nessage nanme="echoSt ruct ArrayResponse" >

<part name="return" type="xsdl: ArrayCf SOAPStruct"/>
</ message>
<nessage nane="echoBool ean" >

151

CHAPTER 13 | Type Management

<part name="i nput Bool ean" type="xsd: bool ean"/>
</ message>
<message nane="echoBool eanResponse" >
<part name="return" type="xsd: bool ean"/>
</ message>
<message nane="echoFl oat">
<part name="inputFl oat" type="xsd:float"/>
</ message>
<message name="echoFl oat Response" >
<part name="return" type="xsd:float"/>
</ message>
<message name="echoFl oat Array" >
<part name="i nput Fl oat Array" type="xsdl: ArrayCffloat"/>
</ message>
<message nane="echoFl oat Arr ayResponse" >
<part name="return" type="xsdl: ArrayCffloat"/>
</ message>
<message nane="echol nt eger ">
<part name="inputlnteger" type="xsd:int"/>
</ message>
<message nane="echol nt eger Response" >
<part name="return" type="xsd:int"/>
</ message>
<message nane="echol nt eger Arr ay" >
<part name="i nput|nteger Array" type="xsdl: ArrayCfint"/>
</ message>
<message nane="echol nt eger Ar r ayResponse" >
<part name="return" type="xsdl:ArrayCfint"/>
</ message>
<message name="echoStri ng">
<part name="input String" type="xsd:string"/>
</ message>
<message nane="echoStri ngResponse" >
<part name="return" type="xsd:string"/>
</ message>
<message nane="echoStri ngArray">
<part nane="input StringArray" type="xsdl: ArrayCfstring"/>
</ message>
<message name="echoStri ngArrayResponse" >
<part name="return" type="xsdl: Array(fstring"/>
</ message>
<message nane="echoDeci mal ">
<part name="i nput Deci mal " type="xsd: deci mal "/>
</ message>
<message nane="echoDeci nal Response" >
<part name="return" type="xsd: decinal"/>
</ message>

152

A More Complex Application

<nessage nane="echoDat e" >
<part name="i nput Date" type="xsd: dateTi me"/>
</ message>
<nessage nane="echoDat eResponse" >
<part name="return" type="xsd: dateTi me"/>
</ message>
<nessage nane="echoVoi d"/>
<nessage nanme="echoVoi dResponse"/ >
<message name="echoHexBi nary" >
<part name="i nput HexBi nary" type="xsd: hexBi nary"/>
</ message>
<nessage nane="echoHexBi nar yResponse" >
<part name="return" type="xsd: hexBi nary"/>
</ message>

<por t Type nane="BasePort Type">
<oper ati on name="echoBase64" >
<i nput nessage="t ns: echoBase64" nane="echoBase64"/>
<out put message="t ns: echoBase64Response"
name="echoBase64Response" />
</ oper at i on>
<oper ati on name="echoStruct">
<i nput nessage="tns: echoStruct" nanme="echoStruct"/>
<out put message="t ns: echoSt r uct Response"
nane="echoSt r uct Response”/ >
</ oper at i on>
<oper ati on name="echoStruct Array" >
<i nput nessage="tns: echoStruct Array"
name="echoStruct Array"/>
<out put message="t ns: echoSt r uct Arr ayResponse”
nane="echoSt r uct Arr ayResponse"/ >
</ oper at i on>
<oper ati on name="echoBool ean" >
<i nput nessage="t ns: echoBool ean"
name="echoBool ean"/ >
<out put message="t ns: echoBool eanResponse"
nane="echoBool eanResponse" />
</ oper at i on>
<oper ati on name="echoFl oat " >
<i nput nessage="tns: echoFl oat" nane="echoFl oat"/>
<out put message="t ns: echoFl oat Response"
nane="echoFl oat Response"/ >
</ oper at i on>
<oper ati on name="echoFl oat Ar ray" >
<i nput nessage="t ns: echoFl oat Arr ay"
nanme="echoFl oat Array"/ >
<out put message="t ns: echoFl oat Arr ayResponse"

153

CHAPTER 13 | Type Management

nanme="echoFl oat Arr ayResponse"/ >
</ oper at i on>
<oper at i on nanme="echol nt eger" >
<i nput message="t ns: echol nt eger" name="echol nt eger"/>
<out put message="t ns: echol nt eger Response"
nane="echol nt eger Response"/ >
</ oper at i on>
<oper at i on name="echol nt eger Array" >
<i nput nessage="t ns: echol nt eger Arr ay"
name="echol nt eger Array"/ >
<out put message="t ns: echol nt eger Arr ayResponse"
nane="echol nt eger Ar r ayResponse"/ >
</ oper at i on>
<oper ati on name="echoStri ng">
<i nput nessage="t ns: echoStri ng" nane="echoString"/>
<out put message="t ns: echoStri ngResponse"
name="echoSt ri ngResponse"/ >
</ oper at i on>
<oper ati on name="echoStri ngArray" >
<i nput nessage="t ns: echoStri ngArray"
nanme="echoStri ngArray"/>
<out put message="tns: echoStri ngArr ayResponse"
name="echoSt ri ngAr r ayResponse" / >
</ oper at i on>
<oper ati on name="echoDeci nal ">
<i nput nessage="t ns: echoDeci nal "
nane="echoDeci nal "/ >
<out put message="t ns: echoDeci nal Response"
nanme="echoDeci nal Response"/ >
</ oper at i on>
<oper ati on name="echoDat ">
<i nput nessage="t ns: echoDat " nane="echoDat e"/>
<out put message="t ns: echoDat eResponse"
nane="echoDat eResponse"/ >
</ oper at i on>
<oper at i on name="echoVoi d">
<i nput nmessage="t ns: echoVoi d" nane="echoVoi d"/ >
<out put message="t ns: echoVoi dResponse"
nane="echoVoi dResponse"/ >
</ oper at i on>
<oper ati on name="echoHexBi nary" >
<i nput nessage="t ns: echoHexBi nar y"
nane="echoHexBi nary"/ >
<out put message="t ns: echoHexBi nar yResponse"
nane="echoHexBi nar yResponse"/ >
</ oper at i on>
</ por t Type>

154

A More Complex Application

<bi ndi ng nanme="BasePort Bi ndi ng" type="t ns: BasePort Type" >
<soap: bi ndi ng styl e="rpc"

transport="htt p://schemas. xnl soap. or g/ soap/ htt p"/>
<oper ati on name="echoBase64" >
<soap: oper at i on
soapAct i on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoBase64" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nane="echoBase64Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoStruct">
<soap: oper at i on
soapActi on=
"http://soapinterop.org/" style="rpc"/>
<i nput nanme="echoStruct ">
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nane="echoStruct Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoStruct Array" >
<soap: oper at i on
soapActi on=
"http://soapinterop.org/" style="rpc"/>

155

CHAPTER 13 | Type Management

156

<i nput nane="echoStruct Array">
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nanme="echoSt ruct Arr ayResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper at i on name="echoBool ean" >
<soap: oper at i on
soapActi on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoBool ean" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put name="echoBool eanResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xnm soap. or g/ soap/ encodi ng/ "
narrespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper at i on name="echoFl oat " >
<soap: oper ati on
soapActi on="htt p: // soapi nt erop. or g/ "
styl e="rpc"/>
<i nput nane="echoFl oat ">
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put name="echoFl oat Response" >
<soap: body

A More Complex Application

encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoFl oat Ar ray" >
<soap: oper at i on
soapActi on=
"http://soapinterop.org/" style="rpc"/>
<i nput nane="echoFl oat Array" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapi nterop.org/" use="encoded"/>
</i nput >
<out put nanme="echoFl oat Ar r ayResponse" >
<soap: body
encodi ngSt yl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapi nterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on nare="echol nt eger ">
<soap: oper at i on
soapActi on=
"http://soapinterop.org/" style="rpc"/>
<i nput nane="echol nt eger ">
<soap: body
encodi ngSt yl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nanme="echol nt eger Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echol nt eger Arr ay" >
<soap: oper at i on

157

CHAPTER 13 | Type Management

soapActi on=
"http://soapinterop.org/" style="rpc"/>
<i nput nane="echol nt eger Arr ay" >
<soap: body
encodi ngStyl e=
"http://schenas. xnm soap. or g/ soap/ encodi ng/ "
nanmespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put name="echol nt eger Arr ayResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoStri ng">
<soap: oper ati on
soapActi on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoStri ng">
<soap: body
encodi ngStyl e=
"http://schenas. xnm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nane="echoSt ri ngResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoStri ngArray" >
<soap: operat i on
soapActi on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoStri ngArray">
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >

158

A More Complex Application

<out put nane="echoStri ngArrayResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoDeci nal ">
<soap: oper at i on
soapAct i on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoDeci nal ">
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nane="echoDeci mal Response" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoDat e">
<soap: oper at i on
soapAct i on=
"http://soapinterop.org/" style="rpc"/>
<i nput nane="echoDat e" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put nane="echoDat eResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xn soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoVoi d">

159

CHAPTER 13 | Type Management

160

<soap: oper at i on
soapActi on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoVoi d">
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put name="echoVoi dResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
<oper ati on name="echoHexBi nary" >
<soap: oper at i on
soapActi on=
“http://soapinterop.org/" style="rpc"/>
<i nput nane="echoHexBi nary" >
<soap: body
encodi ngStyl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</i nput >
<out put name="echoHexBi nar yResponse" >
<soap: body
encodi ngStyl e=
"http://schenas. xnm soap. or g/ soap/ encodi ng/ "
nanespace=
"http://soapinterop.org/" use="encoded"/>
</ out put >
</ oper at i on>
</ bi ndi ng>

<servi ce name="BaseServi ce">
<port bi ndi ng="t ns: BasePort Bi ndi ng" name="BasePort ">
<soap: addr ess
| ocation="http://| ocal host: 12345"/ >
</ port>
</ servi ce>

</ definitions>

The Server Application Code

The Client Application Code

A More Complex Application

contents of this file. What is important is the fact that five complex types are
defined — SOAPStruct, ArrayCf SOAPStruct, ArrayCffloat, ArrayChint,
and ArrayCfstring —and that messages and operations include both the
basic types as well as these more complex types.

Also note that in defining these complex types within the <t ypes>..<\t ypes>
section, and in describing the encoding within the <bi ndi ng>..<\ bi ndi ng>
section, specific reference to SQAP- ENC data types and the soap namespace
prefix are used. This WSDL file uses SOAP/RPC semantics. A following
section of this chapter, discusses document/literal semantics.

When you run the wsdl tocpp utility, these complex types will be
represented by class definitions in the files BaseTypes. h and
BaseTypes. cxx. When you write your own applications, you will use the
contents of these files to understand the programming interface for your
complex types.

Note: In this demo, all of the files generated by the wsdl t ocpp code
generation utility are prefixed with the character string Base. This prefix is
derived from the value assigned to the nane attribute within the
<por t Type> tag. In the BaseServi ce. wsdl file, this value is

BasePor t Type, Which the code generation utility modifies to Base. Names
ending with Port Type will be modified; the code generation utility will not
modify other names.

If you examine the server application code in the <instal | ati onD rect ory>
\artix\ 1.2\ denos\sinpl e_client_server\server directory, you will see
that the implementation class simply returns the input parameter as each
method’s output. Consequently, you only need to study the code within the
client application to understand how you work with other basic data types
and the code generated from your complex type definitions.

This code is contained in the <instal | ationDirectory>\artix\ 1. 2\ denos
\ conpl ex_types\client directory. This chapter will not discuss the entire
application as the approach to coding many of the business methods is
similar; rather, the chapter presents an overview of where to find the
required application programming interface information.

161

CHAPTER 13 | Type Management

The complexClient.cxx File

The types.h file

162

This is the file that represents your client application. At the beginning of the
file the header file Based i ent. h, which was generated from the WSDL file
by the wsdl tocpp utility, is included in the application. Also, the
namespace | T_Bus is declared.

#i ncl ude "Based i ent. h"
usi ng nanespace | T_Bus;

These declarations provide access to the class definitions for the base types.

If you now examine the BaseQ ient.h file, you will note that several
generated and Artix product-related header files are included.

#i ncl ude "Base. h"

#i ncl ude <it_bus\service. h>
#i ncl ude <it_bus\bus. h>

#i ncl ude <it_bus\types. h>

#i ncl ude <it_bus\ operation. h>

For the purposes of this chapter, the two important header files are types. h
and Base. h.

The file types. h, which is located in the <instal |l ationD rectory>\artix
\'1.2\incl ude\it_bus directory, leads to definitions for the base types. The
types. h file includes declarations for many of the base types within the

I T_Bus namespace, such as, Decimal, String, Float, Boolean.

Some of these types are simply typedef declarations, and the actual data
type is a standard C++ type. For example, Double, Float, Character, Byte
and UByte are implemented as standard C++ types.

Other types are typedef declarations based on IONA’s platform neutral
types. For example, the Artix type 1 T_Bus: : String is implemented by the
type 1 T_String and the 1 T_Bus:: Short is implemented by the type

I T_short . The definitions of these types are contained in the header files
listed at the start of the types. h file, and may be found in the
subdirectories under the <instal l ationDi rectory>\artix\ 1. 2\i ncl ude
directory.

If you have a question about using one of these base types, you can find the

necessary application programming interface described in one of these
header files.

The Base.h File

The BaseTypes.h file

The BaseTypes.cxx file

The processing logic

A More Complex Application

The file Base. h is generated from the WSDL file by the wsdl t ocpp utility.
This file includes the class definitions and method signatures for your
application. Additionally, this file #i ncl udes the BaseTypes. h file that
contains the class definitions and method signatures for your application’s
complex types. You use the contents of Base. h to understand your
application’s methods and the file BaseTypes. h (and its corresponding
implementation file BaseTypes. cxx) to learn how to work with the
application’s complex types. This is discussed in greater detail later in this
section.

Use the Base. h file to determine the signatures for each of the operations
originally defined within the <port Type> section of the WSDL file. If
needed, you will use information from the types. h file, other Artix
product-related header files, and the BaseTypes. h and BaseTypes. cxx files
to manipulate your application’s data types.

This file contains the C++ class definitions for the objects that represent
the complex types defined in the WSDL file. Since this WSDL file employed
SOAP/RPC semantics, some of these generated classes, e.g., the array
classes, are derived from a template class — | T_Bus: : SoapEncArrayT — that
adheres to the requirements of the SOAP/RPC semantics. Consequently, you
will need to reference this class’ definition, which is located in the file
<installationD rectory>\artix\1.2\include\it_bus\soap_enc_array. h.

This file contains the C++ implementation for those complex types that are
not derived from the pre-existing Artix classes that support the SOAP/RPC
semantics. In this demo, only the class corresponding to the complex type
SOAPStruct is described in this file.

Now that you understand where to find class definitions for both the base
types and the code generated from the complex types of your WSDL file, you
can understand the processing logic within the conpl exd i ent. cxx file.
This code shows how to create and manipulate each of the base and
complex types.

163

CHAPTER 13 | Type Management

Compiling and Running the Application

Compiling the client application

Compiling the server application

Running the application

Terminating the server process

164

This demo includes code only for the client application, which runs against
the server application of the si npl e_cli ent _server demo; you must be
certain that the server process exists before you can run the application.

All of the required files are fully coded.

1. Open a command window and move to the <installationDirectory>
\artix\1. 2\ bi n directory. Run the batch file artix_env[. bat].

2. Move tothe <installationDrectory>\artix\1.2\denos
\ conpl ex_t ypes directory and issue the command

nmake al |

The compilation process creates the cli ent. exe and the BaseTypes. h and
BaseTypes. cxx files.

This application is fully coded, but it is located under the
sinpl e_client_server directory.

1. From the command window above, move to the
<installationD rectory>\artix\1.2\denos\sinple_client_server\
server directory.

2. Issue the command

nnake al |

The compilation process (re)creates the server. exe file.

You first start the server process and then run the client application.

1. Fromthe <installationDirectory>\artix\1. 2\denos
\'sinpl e_cl i ent _server\server directory, issue the command

start server

2. Move tothe <installationD rectory>\artix\1.2\denos
\ conpl ex_t ypes\ cl i ent directory and issue the command

client.

Issue the rl-C command in the corresponding window.

Comparing SOAP/RPC and Document/Literal Semantics

Comparing SOAP/RPC and Document/Literal

Semantics

Comparing the WSDL files

Code Generation

The WSDL file in the example developed in the previous section used
SOAP/RPC semantics. In this section, you will compare the code generated
by the wsdl t ocpp utility from two functionally equivalent WSDL files: one
file using SOAP/RPC semantics and the other file using document/literal
semantics.

The WSDL files for this example are located in the directory

<install ationD rectory>\artix\ 1. 2\ denos\ conpl ex_t ypes\ wsdl . The file
soapr pc. wsdl , in the subdirectory soap_r pc, represents the SOAP/RPC
encoding; the file docliteral .wsdl, in the subdirectory doc_literal,
represents the document/literal encoding.

This example illustrates that the code generated from document/literal
semantics is more extensive than SOAP/RPC derived code. Consequently,
you may find that WSDL files that use document/literal encoding provide
better support for your coding efforts.

The first thing you will notice about the two WSDL files is that the
docliteral.wsdl fileis larger than soaprpc. wsdl file. If you examine these
files in a text editor you will see that there is significantly more content
within the <types>..<\types> tags, as both base and complex types are
defined.

The <nessage>. <\ nessage> and <port Type>..<\port Type> entries are
similar, but the contents of the <bi ndi ng>..<\ bi ndi ng> sections are
different. This is where the use of SOAP/RPC or document/literal encoding is
specified.

You will use the wsdl tocpp code generation utility and review the contents
of the files.

In this example, the <port Type> is hamed | nt er opPort Type, which the
utility shortens to I nt er op. Consequently the files you need to review are
I nterop. h, I nteropTypes. h, and | nter opTypes. CXx.

165

CHAPTER 13 | Type Management

Interop.h file

InteropTypes.h file

InteropTypes.cxx file

166

The two versions of the I nterop. h file contain the same collection of
method signatures. If you look at the signatures for corresponding
operations, it appears that the parameter types are different, but this is not
really the case. For example, the echoSt ruct signature derived from the
SOAP/RPC encoded WSDL file is:

virtual void

echoStruct (
const SOAPStruct $ soapst ruct Paran®,
SOAPStruct & var_return

) | T_THRONWDECL((! T_Bus: : Excepti on)) =0;

The corresponding signature derived from the document/literal encoded
WSDL file is:

virtual void
echoStruct (

const echoStruct & echoStruct _in,

echoSt ruct response & echoSt ruct Response_out
) I T_THRONDECQL((I T_Bus: : Exception)) = O;

However, if you examine the <types>..<\types> section of the
docliteral .wsdl file, you will observe that the types echoStruct and
echoStruct response correspond to SOAPStruct, So these signatures are
actually identical.

You will see the same sort of type substitutions in the method signatures
and method bodies in the other files generated by the wsdltocpp utility.

The file generated from the document/literal encoded WSDL file is
significantly larger than the corresponding file from the SOAP/RPC encoded
WSDL file. This file now includes declarations for all of the types defined in
the <types>.<\types> section, both base and complex types.

Again the file generated from the document/literal encoded WSDL file is
significantly larger than the corresponding file from the SOAP/RPC encoded
WSDL file. This file now includes implementations for all of the methods
defined in the I nteropTypes. h file.

	Introduction
	A Sample Artix Application
	Compiling and Running the Sample Application

	Developing a Web Service Client
	Coding the Artix C++ Web Service Client
	Generating the Stub Code
	Writing the Client Application Code
	Compiling the Client Application

	Developing a Web Service Server
	Coding the Artix C++ Web Service Server
	Generating the Skeleton and Starting Point Implementation Code
	Writing the Web Service Implementation Code
	Writing the Server Mainline
	Running the Artix C++ Web Service Application

	Configuring Artix™
	Establishing the Host Computer Environment
	Configuration During Installation
	Running the artix_env.bat Script
	Establishing the Runtime Environment
	The orb_plugins Configuration Value
	Configuration Scopes
	Using Configuration Scopes

	Controlling Application Logging
	Using the Logging Functionality

	Using the IIOP Transport
	The IIOP Tunneling Demo
	The HelloWorld.wsdl File
	Compiling and Running the Application

	Using the Tuxedo Transport
	The Demo Code
	The HelloWorld.wsdl File
	The Tuxedo Configuration
	Configuring, Compiling and Running the Application

	Using the WebSphere™ MQ Transport
	Creating the WebSphere MQ Queues
	Creating the HW_REQUEST and HW_REPLY Queues

	The Demo Code
	Configuring, Compiling and Running the Application
	Further Considerations

	Using the TIBCO Rendezvous™ Transport
	The Demo Code
	The HelloWorld.wsdl File

	Compiling and Running the Application
	Monitoring the TIBCO Rendezvous Environment

	Using CORBA Applications and Transport
	The CORBA Client—Artix Server Demo
	Compiling and Running the Application

	The Artix Client—Artix Server Demo
	Compiling and Running the Application

	The Artix Client—CORBA Server Demo
	Compiling and Running the Application

	Routing
	The Routing Demos
	The Protocol-Based Routing Demo
	Modifying the artix.cfg file
	Compiling and Running the Application
	Understanding the Application

	The Operation-Based Routing Demo
	Compiling and Running the Application
	Understanding the Application

	Embedding the Switch Functionality in a Process
	The Content-Based Routing Demo
	Compiling and Running the Application
	Understanding the Application

	Accessing an Endpoint via Multiple Protocols
	The Common Target Demos
	The Demo Code

	Oneway Operations
	Web Service Semantics
	The WSDL File
	Compiling and Running the Application

	Type Management
	A More Complex Application
	Compiling and Running the Application

	Comparing SOAP/RPC and Document/Literal Semantics

