
Tutorial
Version 1.2, November 2003

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.
IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 17-Nov-2003

M 3 1 0 3

Contents

Preface vii

Chapter 1 Introduction 1
A Sample Artix Application 2
Compiling and Running the Sample Application 5

Chapter 2 Developing a Web Service Client 7
Coding the Artix C++ Web Service Client 8

Generating the Stub Code 9
Writing the Client Application Code 14
Compiling the Client Application 16

Chapter 3 Developing a Web Service Server 17
Coding the Artix C++ Web Service Server 18

Generating the Skeleton and Starting Point Implementation Code 19
Writing the Web Service Implementation Code 22
Writing the Server Mainline 23
Running the Artix C++ Web Service Application 25

Chapter 4 Configuring Artix™ 27
Establishing the Host Computer Environment 28

Configuration During Installation 29
Running the artix_env.bat Script 32
Establishing the Runtime Environment 33
The orb_plugins Configuration Value 34
Configuration Scopes 35
Using Configuration Scopes 38

Controlling Application Logging 40
Using the Logging Functionality 41

Chapter 5 Using the IIOP Transport 43
The IIOP Tunneling Demo 44
iii

CONTENTS
The HelloWorld.wsdl File 45
Compiling and Running the Application 48

Chapter 6 Using the Tuxedo Transport 49
The Demo Code 51
The HelloWorld.wsdl File 53
The Tuxedo Configuration 55
Configuring, Compiling and Running the Application 57

Chapter 7 Using the WebSphere™ MQ Transport 59
Creating the WebSphere MQ Queues 61

Creating the HW_REQUEST and HW_REPLY Queues 63
The Demo Code 64
Configuring, Compiling and Running the Application 67
Further Considerations 69

Chapter 8 Using the TIBCO Rendezvous™ Transport 71
The Demo Code 73

The HelloWorld.wsdl File 74
Compiling and Running the Application 77
Monitoring the TIBCO Rendezvous Environment 78

Chapter 9 Using CORBA Applications and Transport 81
The CORBA Client—Artix Server Demo 83

Compiling and Running the Application 89
The Artix Client—Artix Server Demo 91

Compiling and Running the Application 92
The Artix Client—CORBA Server Demo 93

Compiling and Running the Application 94

Chapter 10 Routing 97
The Routing Demos 99
The Protocol-Based Routing Demo 100

Compiling and Running the Application 106
Understanding the Application 109

The Operation-Based Routing Demo 110
Compiling and Running the Application 113
 iv

CONTENTS
Understanding the Application 115
Embedding the Switch Functionality in a Process 116
The Content-Based Routing Demo 120

Compiling and Running the Application 126
Understanding the Application 128

Chapter 11 Accessing an Endpoint via Multiple Protocols 129
The Common Target Demos 131

The Demo Code 136

Chapter 12 Oneway Operations 139
Web Service Semantics 140
The WSDL File 141
Compiling and Running the Application 146

Chapter 13 Type Management 149
A More Complex Application 150

Compiling and Running the Application 164
Comparing SOAP/RPC and Document/Literal Semantics 165
v

CONTENTS
 vi

Preface
About this Guide Artix can be used in many different ways. It can be used to:

• Code C++ Web service client applications that run against distributed
services.

• Develop and deploy a C++ Web service.

• Create a switch or bridge between two applications based on different
middleware products, e.g., TIBCO Rendezvous and WebSphere MQ.

This document, and the accompanying coding examples, will teach you
about each of these types of applications and demonstrate the functionality
included in the Artix™ product.

Audience This guide is aimed at new users of Artix who wish to see examples of Artix
in action, and gain an idea of the various capabilities of the product.

Related documentation This guide assume you have read the following document:

Artix Getting Started

This guide also refers you to the following documents for more detail on the
GUI and programming issues respectively:

Artix User’s Guide

Artix Programmer’s Guide

Organization of this guide This guide is divided as follows:

Chapter 1 gives a brief overview of the functionality of Artix using the
spellcheck service deployed by Google™.
vii

PREFACE
Chapter 2, Chapter 3, and Chapter 5 through Chapter 9 illustrate how to
use different transports for the same client and server code:

• In Chapter 2 and Chapter 3, you will first develop a simple C++
client, which uses SOAP over HTTP, to invoke on a Web service.

• In Chapter 5 you will change the transport from HTTP to IIOP.

• In Chapter 6 you will change the transport to Tuxedo.

• In Chapter 7 you will change the transport to WebSphere™ MQ.

• In Chapter 8 you will use the TIBCO encoding and the TIBCO
Rendezvous transport.

• In Chapter 9 you will use CORBA encoding and IIOP transport.

Chapter 4 introduces Artix configuration principles and includes an
elementary discussion of runtime configuration settings.

In Chapter 10 you will be introduced to routing, the ability to propagate a
request using multiple transport protocols.

Chapter 11 describes how you can use an Artix server can receive requests
over multiple protocols and pass the invocation to a common
implementation object.

Chapter 12 describes how you can specify that operations use oneway
semantics.

Finally, Chapter 13 delves into code generation, using complex data types in
your application code, and presents a comparison between the code
generated from SOAP/RPC and document/literal encoded WSDL files.

Additional related resources The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

Note: The step-by-step instructions and PATHs to specific directories and
files are presented in Windows format. The demo code will run on UNIX
systems, and makefiles and scripts to set required environment variables
are provided for both Windows and UNIX operating systems. If you want to
run these demos on a UNIX system, you are responsible for transposing
Windows syntax into UNIX syntax.
 viii

http://www.iona.com/support/kb/

PREFACE
http://www.iona.com/support/update/

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Typographical conventions This guide uses the following typographical conventions:

Keying conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.
ix

http://www.iona.com/support/update/

PREFACE
> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 x

CHAPTER 1

Introduction
This chapter uses the coding example in one of the product
demos to introduce you to the mechanics of working with Artix.

In this chapter This chapter discusses the following topics:

A Sample Artix Application page 2

Compiling and Running the Sample Application page 5
1

CHAPTER 1 | Introduction
A Sample Artix Application

The SpellCheck Demo In this example, Artix is used to code a C++ Web service client that runs
against the spellcheck service deployed by Google™.

The WSDL file One of the interesting aspects about this example is that it does not require
a local copy of the WSDL file describing the service. This file is accessed
remotely and used by the Artix code generation utility to create the
necessary stub and helper classes. Consequently, this example represents
the simplest approach to using Artix.

When you run the Artix code generation utility – wsdltocpp – the WSDL file
is accessed remotely from the site api.google.com/GoogleSearch.wsdl.
The code generation utility uses information from the WSDL file to create
the classes your client application needs to contact the Web service. You
then write a client application that uses these classes.

Point your Web browser to http://api.google.com/GoogleSearch.wsdl to
display the WSDL file that describes the Web service. This service offers
three operations, which are described within the <portType>…</portType>

tags. In this example, the client application is completely coded and uses
the doSpellingSuggestion operation. However, you can extend this
application to use other operations.

Notice that the url for the actual Web service, provided within the
<service>…</service> tags, is different from the url through which you
view the WSDL file. The Google Web service is available at
http://api.google.com/search/beta2. When the client application runs,
the stub/proxy code accesses the WSDL file again and extracts the service’s
actual url.

Within the WSDL file, the portType section is particularly significant. The
portType is conceptually identical to a J2EE or CORBA interface definition;
it describes the operations available on an “object.” When the wsdltocpp

code generation utility creates application classes, it includes the value of
 2

A Sample Artix Application
the portType name attribute within the names of the classes. In the Google
WSDL, the portType name is GoogleSearchPort, and the names of the
generated classes all begin with GoogleSearchPort.

In more involved WSDL files, there may be multiple portType sections.
When running the wsdltocpp code generation utility you will use command
line parameters to specify which portType (and service) should be
represented by the generated code. This concept is developed more
completely in later chapters.

The makefile Since there is a straight-forward logic to the naming convention for the
generated code, you will be able to write or edit your makefiles as required.
The makefile for this sample is complete. You can review its contents to
understand more completely the compilation and linking processes.

Basically building the application is a three-step process:

1. Use the WSDL file to generate the required stubs and helper classes.

2. Compile the application source code and the generated classes.

3. Link the compiled code to the required Artix libraries.

The GoogleSearchPortClient class This generated class represents the stub, or proxy, to the distributed Web
service; its declaration and implementation are described in the files
GoogleSearchPortClient.h and GoogleSearchPortClient.cxx.

Your client application creates an instance of this class and then uses it to
invoke the desired Web service operation. Later chapters of this guide will
discuss this class in greater detail. To understand this example, you need
only appreciate the fact that this class includes the method
doSpellingSuggestion, which corresponds to the Web service operation
used by the client application.

Note: You may give your portType any name. The wsdltocpp code
generation utility does, however, modify some names. If the name you
select ends with PortType, such as HelloWorldPortType, the code
generation utility strips PortType from the names of the generated
classes. The generated class names will start with HelloWorld rather than
HelloWorldPortType.
3

CHAPTER 1 | Introduction
The client application This application is fully coded and included in the file spellcheck.cxx. The
application is quite simple: it obtains input from the command line, submits
a word for spell checking to the Web service, and displays the corrected
spelling. The significant code fragment is:

The parameters user_key, phrase, and result are string variables
representing the Google license key, the input word, and the corrected
spelling returned from the Web service. Note that Artix method invocations
use out parameters rather than return values to return data from the service
to the client application.

GoogleSearchPortClient the_client; // create stub/proxy instance
...
// invoke the method

the_client.doSpellingSuggestion(user_key, phrase, result);
...
 4

Compiling and Running the Sample Application
Compiling and Running the Sample
Application

Firewall restrictions To successfully build and run this application, you must have access to the
public Internet. If your computer is behind a firewall that prevents Internet
access, you will not be able to build and run this example. The other
examples described in this guide are completely self-contained and will not
be affected by firewall restrictions.

Compiling the Application Source
Code

You must first set your environment to insure that the Artix libraries and
executables are accessible.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos\spellcheck

directory.

3. In the command window, issue the command

nmake all

Makefile processing The makefile runs the batch file wsdltocpp.bat with the command,

which runs the code generation utility; then the source code files are
compiled and linked into the executable client.exe.

Note: Throughout this guide, compilation instructions are presented that
assume you have not already built the sample applications. You can build
the entire suite of sample applications from the <installationDirectory>

\artix\1.2\demos directory. Alternatively, you can build each sample
application from its own directory, as described in this guide.

wsdltocpp.bat
-w "http://api.google.com/GoogleSearch.wsdl"
-n GOOGLE
5

CHAPTER 1 | Introduction
Running the Application From the command window used in the previous section, issue the
command

The correct spelling is displayed and the process ends.

Alternatively, issue the command

followed by the enter key. Then type a misspelled word and press the enter
key again.

The correct spelling is displayed and the process ends.

client[.exe] <someMisspelledWord>

client[.exe]

<someMisspelledWord>
 6

CHAPTER 2

Developing a Web
Service Client
In this chapter, you will develop an Artix™ C++ client
application. In the following chapter, you will code an Artix
C++ server application.

In this chapter This chapter discusses the following topics:

Coding the Artix C++ Web Service Client page 8
7

CHAPTER 2 | Developing a Web Service Client
Coding the Artix C++ Web Service Client
As a client application developer, your only information about the target
Web service comes from the WSDL file. Artix includes a utility that reads the
WSDL file and generates the client-side stubs (and server-side skeletons)
that you will use in coding your client application.

This chapter discusses the support Artix provides to the client application
developer. The server application will be compiled and run as part of the
following chapter.
 8

Coding the Artix C++ Web Service Client
Generating the Stub Code
The makefile specifies the WSDL file used to generate the stub and
skeleton code. Although the skeleton code is not needed to code a client
application, there is no way to suppress its generation. For this discussion,
you do not need to be concerned with the skeleton code.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the
<installationDirectory>\artix\1.2\demos\hello_world\http_soap

\client directory.

3. Use a text editor to open the makefile. Observe that the $(WSDL)

variable now includes the relative path to the local WSDL file.

4. Close the file.

5. In the command window, issue the command

nmake all

Makefile processing The makefile runs the batch file wsdltocpp.bat with the command,

The class xmlbus.WSDLToCPPClient generates the stub and skeleton
classes. The $(WSDL) tag resolves to the file location for the WSDL file
describing the Web service you create and deploy in the following chapter.

Command-line arguments Although the makefile includes the proper commands for this application,
the wsdltocpp.bat file may use any, or all, of the following command line
arguments; only the first argument is required.

This example uses two command line arguments:

wsdltocpp.bat -w $(WSDL) -n HW

WSDL=HelloWorld.wsdl

-w WSDL-URL
[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-n namespace] [-f]
[-impl] [-v] [-license] [-?]
9

CHAPTER 2 | Developing a Web Service Client
• -w specifies the WSDL file’s path or URL. For this client application,
you download the WSDL file from the Web service container. In the
next chapter, you modify the makefile and use the local copy of the
WSDL file.

• -n specifies a C++ namespace for the generated source code.

Generated files The following files are created from the WSDL file:

HelloWorld.h, HelloWorldTypes.h The HelloWorld.h and HelloWorldTypes.h contain all the information you
need to write client code.

For this simple demo, the HelloWorldTypes.h file does not include any
generated code.

Table 1: Files generated by wsdltocpp utility

Generated files Description

HelloWorld.h Describes the class that represents
the Web service API. This class is
the superclass for both client stubs
and server skeleton classes.

HelloWorldClient.h,

HelloWorldClient.cxx

Client-side stub code

HelloWorldServer.h,

HelloWorldServer.cxx

Server-side skeleton code

HelloWorldTypes.h,

HelloWorldTypes.cxx

C++ class descriptions of
complex data types defined in the
WSDL file. In this example no
complex data types are defined, so
these files do not include code.
 10

Coding the Artix C++ Web Service Client
HelloWorld.h file The generated content of the HelloWorld.h file is:

The HelloWorld class is the superclass for classes HelloWorldClient and
HelloWorldServer, and so provides a single service-oriented API for both
client and server processes.

The last parameter in each method declaration represents the method’s
return value.

HelloWorldClient.h,
HelloWorldClient.cxx

These files contain client stub code. You do not work directly with the code
in these files. However, the client application instantiates instances of the
HelloWorldClient class, so you should be familiar with its constructor
methods.

HelloWorldClient.h file • For all of the constructors, the IT_Bus::Bus_ptr parameter has an
assigned default value. You do not need to provide this value.

• The overloaded constructors take parameters let you specify a different
location for the WSDL file, service name and port name.

#include <it_bus/bus.h>
#include <it_bus/types.h>
#include "HelloWorldTypes.h"

namespace HW
{

class HelloWorld
{

public:
HelloWorld() {}
~HelloWorld() {}

virtual void greetMe
(const IT_Bus::String& stringParam0,
IT_Bus::String& var_return)

IT_THROW_DECL((IT_Bus::Exception)) = 0;

virtual void sayHi(IT_Bus::String& var_return)
IT_THROW_DECL((IT_Bus::Exception)) = 0;

};
};

#include "HelloWorld.h"
11

CHAPTER 2 | Developing a Web Service Client
#include <it_bus/service.h>
#include <it_bus/bus.h>
#include <it_bus/types.h>

namespace HW
{

class HelloWorldClient :
public HelloWorld, public IT_Bus::ClientProxyBase

{

private:
IT_Bus::Bus_var m_bus;
IT_Bus::Service * m_service;
IT_Bus::String m_port_name;
IT_Bus::Port * m_port;

public:
HelloWorldClient(

IT_Bus::Bus_ptr bus = 0
);

HelloWorldClient(
const IT_Bus::String & wsdl,
IT_Bus::Bus_ptr bus = 0

);

HelloWorldClient(
const IT_Bus::String & wsdl,
const IT_Bus::QName & service_name,
const IT_Bus::String & port_name,
IT_Bus::Bus_ptr bus = 0

);

~HelloWorldClient();

virtual void
greetMe(

const IT_Bus::String & stringParam0,
IT_Bus::String & var_return

) IT_THROW_DECL((IT_Bus::Exception));

virtual void
sayHi(

IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

};
 12

Coding the Artix C++ Web Service Client
HelloWorldClient.cxx file In this example, the client application uses the single argument constructor
without providing a value for the IT_Bus::Bus_ptr parameter. This
constructor calls service factory method create_service(), whose first
argument specifies the WSDL file’s URL.

};

HelloWorldClient::HelloWorldClient(
IT_Bus::Bus_ptr bus

)
{

if (bus == 0)
{

m_bus = IT_Bus::Bus::create_reference();
}
else
{

m_bus = IT_Bus::Bus::_duplicate(bus);
}
m_service =
ServiceFactory::get_instance(m_bus.get()).create_service(

"../common/HelloWorld.wsdl",
QName("", "HelloWorldService",

"http://xmlbus.com/HelloWorld")
);
m_port_name = "HelloWorldPort";
m_port = m_service->create_port(m_port_name);

}

13

CHAPTER 2 | Developing a Web Service Client
Writing the Client Application Code
The following code shows a client application that invokes Web service
methods sayHi and greetMe on an instance of the HelloWorldClient

class. Artix does not create starting point code for the client application.

Client.cxx file The client application includes the following code:

#include <it_bus/bus.h>
#include <it_afc/Exception.h>
#include <it_cal/iostream.h>

#include "../common/HelloWorldClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

using namespace HW;

int
main(

int argc,
char* argv[]

)
{

cout << "HelloWorld Client" << endl;

try
{

IT_Bus::init(argc, argv);
HelloWorldClient hw;

String string_in;
String string_out;

hw.sayHi(string_out);
cout << "sayHi method returned: "

<< string_out << endl;

if (argc > 1) {
string_in = argv[1];

} else {
string_in = "Early Adopter";

}

 14

Coding the Artix C++ Web Service Client
hw.greetMe(string_in, string_out);
cout << "greetMe method returned: "

<< string_out << endl;
}
catch(IT_Bus::Exception& e)
{

cout << endl << "Caught Unexpected Exception: "
<< endl << e.Message()
<< endl;

return -1;
}
return 0;

}

15

CHAPTER 2 | Developing a Web Service Client
Compiling the Client Application
Running the makefile as described earlier generates all of the helper files
and compiles and links the client application.

Running the client application You will not be able to run this application until you complete coding the
server process as described in the next chapter.
 16

CHAPTER 3

Developing a Web
Service Server
In this chapter, you will develop an Artix™ C++ server
application.

In this chapter This chapter discusses the following topic:

Coding the Artix C++ Web Service Server page 18
17

CHAPTER 3 | Developing a Web Service Server
Coding the Artix C++ Web Service Server
As a server application developer, your only information about the Web
service comes from the WSDL file. Artix includes a utility that reads the
WSDL file and generates the server-side skeletons and starting point code
for your implementation object.
 18

Coding the Artix C++ Web Service Server
Generating the Skeleton and Starting Point Implementation
Code

The makefile in the <installationDirectory>\artix\1.2

\demos\hello_world\http_soap\server directory creates the skeleton
class code. For this first example, the starting point code for the
implementation object has been provided. However, you could use the
-impl command line argument when running the wsdltocpp utility, which
would generate starting point code.

The following additional files are created in response to the -impl

command line argument.

HelloWorldImpl.h and
HelloWorldImpl.cxx

The header file includes definitions for two classes:

• HelloWorldImpl class, which is your Web service implementation

• HelloWorldImplFactory class

HelloWorldImpl.h file This file is complete and does not require any customization or extension.

Table 2:

Generated files Description

HelloWorldImpl.h,

HelloWorldImpl.cxx

Generated by the -impl flag, these
files contain starting point code for
the target object that provides the
Web service functionality

#include "HelloWorldServer.h"

class HelloWorldImpl :
public HW::HelloWorldServer
{
public:
HelloWorldImpl(IT_Bus::Bus_ptr bus, IT_Bus::Port *port);
~HelloWorldImpl();

virtual void
greetMe(

const IT_Bus::String & stringParam0,
19

CHAPTER 3 | Developing a Web Service Server
HelloWorldImpl.cxx file The generated code includes empty method bodies. You add your
processing logic to the method bodies in this implementation file.

IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

virtual void
sayHi(

IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

};

class HelloWorldImplFactory :
public IT_Bus::ServerFactoryBase
{
public:
HelloWorldImplFactory();
virtual ~HelloWorldImplFactory();

virtual IT_Bus::ServerStubBase*
create_server(IT_Bus::Bus_ptr bus, IT_Bus::Port *port);

virtual const IT_Bus::String &
get_wsdl_location();

virtual void
destroy_server(IT_Bus::ServerStubBase* server);

private:
IT_Bus::String m_wsdl_location;

};

#include "HelloWorldImpl.h"
#include <it_cal/cal.h>

HelloWorldImpl::HelloWorldImpl()
{
}

HelloWorldImpl::~HelloWorldImpl()
{
}

void HelloWorldImpl::greetMe
 20

Coding the Artix C++ Web Service Server
(const IT_Bus::String& stringParam0,
IT_Bus::String& var_return)

IT_THROW_DECL((IT_Bus::Exception))
{
}

void HelloWorldImpl::sayHi(IT_Bus::String& var_return)
IT_THROW_DECL((IT_Bus::Exception))
{
}

21

CHAPTER 3 | Developing a Web Service Server
Writing the Web Service Implementation Code
If desired, the wsdltocpp utility creates starting point source code files for
your implementation class. These files are generated into the same directory
as the stub, skeleton, and helper class files.

The HelloWorldImpl.h and HelloWorldImpl.cxx files contain properly
formatted method declarations and fully functional factory class methods,
but you must add the processing logic for each of your Web service’s
methods. For the HelloWorld Web service, you must complete the coding of
the greetMe and sayHi methods. However, for this demo, the coding
within the HelloWorldImpl.cxx file is already complete.

sayHi method The sayHi method simply returns a message to the client application.
Complete this method body by adding the following two lines of code:

greetMe method The greetMe method returns a message that includes the input parameter.
Complete this method by adding the following two lines of code:

Required namespace declarations To enable std::cout, and to simplify your coding, you must also add the
following declarations to the HelloWorldImpl.cxx file:

cout << “HelloWorldImpl::sayHi called” << endl;
var_return = IT_Bus::String

(“Greetings from the Artix HelloWorld Server”);

cout << “HelloWorldImpl::greetMe called with message: ”
<< stringParam0 << endl;

var_return = IT_Bus::String
(“Hello Artix User: ”) + stringParam0;

IT_USING_NAMESPACE_STD
using namespace IT_Bus;
 22

Coding the Artix C++ Web Service Server
Writing the Server Mainline
The server mainline is quite simple and basically unchanged for all of the
demos discussed in this document.

Server.cxx file The server mainline process includes the following code:

This file is complete and does not require editing.

Compiling the Server Application
Code

Running the makefile as described in Generating the Skeleton and Starting
Point Implementation Code generates all of the helper files and compiles
and links the server application. However, if you add or change the business
logic in your implementation class, you will need to recompile and create a
new server process.

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

int
main(

int argc,
char* argv[]

)
{

cout << "HelloWorld Server" << endl;

try
{

IT_Bus::init(argc, argv);
IT_Bus::run();

}
catch (IT_Bus::Exception& e)
{

cout << "Error occurred: " << e.Error() << endl;
return -1;

}
return 0;

}

23

CHAPTER 3 | Developing a Web Service Server
1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\http_soap\server directory.

3. Use a text editor to open the makefile. Observe that the $(WSDL)

variable now includes the relative path to the local WSDL file.

4. Close the file.

5. In the command window, issue the command

nmake all
 24

CHAPTER 3 | Developing a Web Service Server
Running the Artix C++ Web Service Application
You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\http_soap\server subdirectory and issue the
command:

start server

3. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\http_soap\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.
 25

CHAPTER 3 | Developing a Web Service Server
 26

CHAPTER 4

Configuring Artix™
This chapter briefly introduces the process of configuring an
Artix installation. Configuration includes two aspects: setting
up the host computer environment; and setting up the common
and application specific runtime environment.

Also included in this chapter is a discussion of application
logging, which, as you will learn, is set through configuration
rather than through coding.

In this chapter This chapter discusses the following topics:

Establishing the Host Computer Environment page 28

Controlling Application Logging page 40
27

CHAPTER 4 | Configuring Artix™
Establishing the Host Computer Environment
The host computer’s environment is configured during both the installation
process and through running the script artix_env.bat, which is created
during the installation process.
 28

Establishing the Host Computer Environment
Configuration During Installation
Prior to running the Artix installation procedure, you specified the path to
your JDK by setting the variable JAVA_HOME. Generally, this variable is set
within the system environment, but you could set it only within the
command window used to run the installer.

During the installation process, you accept, or specify, various environment
settings, for example, the installation directory or whether to create/update
existing system environment variables (IT_PRODUCT_DIR and PATH).

The Artix installer uses your input to write the contents of the script file
artix_env.bat. The installer may also create/update the IT_PRODUCT_DIR

and PATH system variables.

If you followed the standard product installation, the system environment
variables will be set for all users of your computer and your artix_env.bat

file will include the following commands.

The artix_env.bat file The following extract includes the significant content of the artix_env.bat

file.

IF "%IT_IDL_CONFIG_FILE%" == ""
(SET IT_IDL_CONFIG_FILE=

<installationDirectory>\
artix\1.2\etc\idl.cfg)

ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_IDL_CONFIG_FILE)
ELSE
(SET IT_IDL_CONFIG_FILE=
<installationDirectory>\
artix\1.2\etc\idl.cf)

)

IF "%IT_PRODUCT_DIR%" == ""
(SET IT_PRODUCT_DIR=<installationDirectory>)
ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_PRODUCT_DIR)
ELSE
(SET IT_PRODUCT_DIR=<installationDirectory>)

)

29

CHAPTER 4 | Configuring Artix™
if "%IT_PRODUCT_DIR%" == ""
goto prompt_for_it_product_dir
if "%JAVA_HOME%" == ""
goto prompt_for_java_home

IF "%PATH%" == ""
(SET PATH=

%IT_PRODUCT_DIR%\bin;
%IT_PRODUCT_DIR%\artix\1.2\bin;%PATH%)

ELSE
(IF "%1" == "preserve"
(ECHO Preserving PATH)
ELSE
(SET PATH=

%IT_PRODUCT_DIR%\bin;
%IT_PRODUCT_DIR%\artix\1.2\bin;%PATH%)

)

IF "%IT_CONFIG_DIR%" == ""
(SET IT_CONFIG_DIR=

%IT_PRODUCT_DIR%\artix\1.2\etc)
ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_CONFIG_DIR)
ELSE
(SET IT_CONFIG_DIR=

%IT_PRODUCT_DIR%\artix\1.2\etc)
)

IF "%IT_CONFIG_DOMAINS_DIR%" == ""
(SET IT_CONFIG_DOMAINS_DIR=

%IT_CONFIG_DIR%\domains)
ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_CONFIG_DOMAINS_DIR)
ELSE
(SET IT_CONFIG_DOMAINS_DIR=

%IT_CONFIG_DIR%\domains)
)

IF "%IT_DOMAIN_NAME%" == ""
(SET IT_DOMAIN_NAME=artix)
ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_DOMAIN_NAME)
ELSE
(SET IT_DOMAIN_NAME=artix)
 30

Establishing the Host Computer Environment
Note that this file sets the IT_PRODUCT_DIR and PATH environment
variables, if necessary. These are the system variables that could be set by
the installer, so there is actually no requirement that you accept the
installer’s offer to set these variables.

By placing the Artix bin directories first on the PATH, this script insures that
the proper libraries, configuration files, and utilities, e.g., IDL compiler, are
used. Consequently, there should not be any problems if Orbix and/or
Tuxedo (both of which include IDL compilers and CORBA class libraries) are
installed on your host computer.

)

IF "%IT_LICENSE_FILE%" == ""
(SET IT_LICENSE_FILE=

%IT_PRODUCT_DIR%\etc\licenses.txt)
ELSE
(IF "%1" == "preserve"
(ECHO Preserving IT_LICENSE_FILE)
ELSE
(SET IT_LICENSE_FILE=

%IT_PRODUCT_DIR%\etc\licenses.txt)
)

Note: The Orbix environment script, <domainName>_env.bat, also sets
the PATH, IT_PRODUCT_DIR and other product specific environment
variables to values appropriate to the installation. Consequently, there
should not be any problems running this product on a computer that also
hosts Artix and/or Tuxedo.
31

CHAPTER 4 | Configuring Artix™
Running the artix_env.bat Script
You must set the Artix environment in each command window. All of the
environment settings required by Artix are set by running the script
artix_env.bat.

Depending on other environment settings, you may need to set environment
variables for the Microsoft Visual C++ compiler. This is accomplished by
running the script vcvars32.bat, which is located in the …Microsoft

Visual Studio\VC98\bin directory.
 32

Establishing the Host Computer Environment
Establishing the Runtime Environment
Artix is built upon IONA’s Adaptive Runtime Architecture (ART). Runtime
behaviors are established through common and application specific
configuration settings that are applied during application startup. As a
result, the same application code, without changes, may be run under
varied configuration environments.

With Artix, runtime configuration values are maintained in a configuration
file named artix.cfg, which is found in the directory
<installationDirectory>\artix\1.2\etc\domains. For many of the
demos you do not need to edit any of the entries in this configuration file.
For some of the later demos, you will be editing/extending the contents of
this file.
33

CHAPTER 4 | Configuring Artix™
The orb_plugins Configuration Value
One of the configuration values that you will review most frequently is
orb_plugins. This variable is a list of runtime plugins – code libraries – that
should be loaded during application startup. It is through the orb_plugins

entry that you specify what transports, logging paradigms, or high level
middleware switching functionality will be available to an Artix process.

The default entry for the orb_plugins variable includes the commonly used
logging and transport plugins.

Global orb_plugins value The default value for the orb_plugins configuration entry is defined within
the global scope of the artix.cfg file.

This listing is suitable for Artix applications that use SOAP/HTTP,
SOAP/IIOP_Tunneling, SOAP/MQ, and CORBA/IIOP transports. In later
demos you will edit this listing so that the Tuxedo or TIBCO Rendezvous™
transports can be used and so that message requests can be routed from
one transport to another.

orb_plugins = [
“xmlfile_log_stream”,
“iiop_profile”,
“giop”,
“iiop”,
“soap”,
“http”,
“tunnel”,
“mq”,
“ws_orb”

];
 34

Establishing the Host Computer Environment
Configuration Scopes
Application specific configuration variables either override default values
assigned to common configuration variables or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon
(nameTag {…};). Additionally, a configuration scope may include nested
configuration scopes. Configuration variables set within nested configuration
scopes take precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the examples included with the product.

Demo configuration scope Within the artix.cfg file, configuration scopes are defined for many of the
product demos.

demo
{

fml_plugin
{

orb_plugins = ["local_log_stream",
"iiop_profile", "giop", "iiop",
"soap", "http", "G2", "tunnel",
"mq", "ws_orb", "fml"];

};

telco
{

orb_plugins = ["local_log_stream",
"iiop_profile", "giop", "iiop",
"G2", "tunnel"];

plugins:tunnel:iiop:port = "55002";
poa:MyTunnel:direct_persistent = "true";
poa:MyTunnel:well_known_address =

"plugins:tunnel";

server
{

orb_plugins = ["iiop_profile", "giop",
"iiop", "ots", "soap", "http",
35

CHAPTER 4 | Configuring Artix™
"G2", "tunnel"];
plugins:tunnel:poa_name = "MyTunnel";

};
};

switch
{

orb_plugins = ["xmlfile_log_stream",
"iiop_profile", "giop", "iiop",
"soap", "http", "mq", "ws_orb",
"interopbase_typefactory",
"routing"];

event_log:filters = ["*=FATAL+ERROR"];

plugins:routing:wsdl_url=
"InteropBase.wsdl";

plugins:interopbase_typefactory:
shlib_name =

"it_demo_switch_type_factory";
};

no_switch
{

orb_plugins = ["xmlfile_log_stream",
"iiop_profile", "giop", "iiop",
"soap", "mq", "ws_orb",
"interopbase_typefactory"];

event_log:filters = ["*=FATAL+ERROR"];

plugins:interopbase_typefactory:
shlib_name =

"it_demo_switch_type_factory";
};

tibrv
{

orb_plugins = ["local_log_stream",
"iiop_profile", "giop", "iiop",
"soap", "http", "tibrv"];

event_log:filters = ["*=FATAL+ERROR"];
};
};
 36

Establishing the Host Computer Environment
Note how the orb_plugins list is redefined within each configuration scope.
Demos within this document will refer to some of these configuration scopes and
you will be directed to define additional configuration scopes.
37

CHAPTER 4 | Configuring Artix™
Using Configuration Scopes
Generally when you create a new configuration scope you will force an Artix
process to run under the configuration by supplying an ORBname parameter to
the IT_Bus::init method invocation. During process initialization, Artix
searches for a configuration scope with the same name as the ORBname

parameter. For example, to start an Artix process under the configuration
specified in the demo.tibrv configuration scope, your application would include
code similar to the following fragment.

If a corresponding configuration scope is not located, the process starts under
the higher level configuration scope. If there are no configuration scopes
corresponding to the ORBname parameter, the Artix process runs under the
default global scope. For example, if the nested configuration scope tibrv does
not exist, the process would start using the configuration specified in the demo

configuration scope; if the scope demo does not exist, the process runs under
the default global scope.

Rather than supplying an ORBname parameter within your source code, you may
include this information as a command line argument when starting an Artix
process. Initialization values specified as command line arguments take
precedence over corresponding entries in the source code or system
environment.

For example, an application using the following initialization syntax

will run using the ORBname and configuration scope demo.tibrv when the
following command is used to start the process.

IT_Bus::init (argc, argv, “demo.tibrv”);

IT_Bus::init (argc, argv);

<processName>.exe [application parameters] -ORBname demo.tibrv
 38

Establishing the Host Computer Environment
In following demos, you will use both the coding and command line techniques
to run your applications under modified configurations.

Note: The ordering of application parameters and initialization arguments
does not matter provided you invoke IT_Bus::init before beginning your
application logic.

During process startup, the initialization parameters are removed from the
argv array. After the IT_Bus::init invocation completes, the argv array
contains application parameters only.

It is critical, however, that initialization arguments be entered as flag/value
pairs. That is, the -ORBname flag must be followed on the command line
by the desired value, e.g., demo.tibrv.
39

CHAPTER 4 | Configuring Artix™
Controlling Application Logging
Application logging is enable by including the xmlfile_log_stream plugin in
the orb_plugins list. Note that this plugin is included in the default
orb_plugins list, as shown above. Also note that the xmlfile_log_stream

plugin is not included in the orb_plugins lists within many of the demo

configuration scopes. If you want to enable logging for these applications, and
the applications you develop as described in this document, you will need to
include this plugin in your orb_plugins list.

Global logging configuration
values

To enable usage of the xmlfile_log_stream plugin, several other configuration
variables must be set. These variable are all set within the default global scope
in the artix.cfg file.

plugins:xmlfile_log_stream:shlib_name = "it_xmlfile";

plugins:xmlfile_log_stream:filename = "artix_logfile.xml";
default: it_bus.log

plugins:xmlfile_log_stream:max_file_size = "2000000";
default: 2 mb

plugins:xmlfile_log_stream:use_pid = "false";
default: false

standard logging setting; logs errors and warnings
event_log:filters = ["*=FATAL+ERROR"];

very detailed logging
#event_log:filters = ["*=*"];

transport buffer logging
#event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];

high level informational logging
#event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];
 40

Controlling Application Logging
Using the Logging Functionality
The default configuration settings enable logging only of serious errors and
warnings. If you want more exhaustive information, you should either select a
different filter list at the default scope, or include a more expansive
event_log:filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level of
logging, which will entail adding the xmlfile_log_stream plugin to the
orb_plugins list and selecting the desired reporting level.

The log will be written into the directory from which the Artix process starts. You
can specify the name of the log file through the
plugins:xmlfile_log_stream:filename configuration variable. The artix.cfg

file sets the default log file name to artix_logfile.xml.
41

CHAPTER 4 | Configuring Artix™
 42

CHAPTER 5

Using the IIOP
Transport
In previous chapters, you used Artix™ to implement a C++
Web service that uses SOAP over HTTP. In this chapter, you
will reconfigure your application to use IIOP tunneling of SOAP
messages as the transport protocol. As you will see, IIOP
tunneling simply requires minor changes to the WSDL file;
both the client and server code remain unchanged.

In this chapter This chapter discusses the following topic:

The IIOP Tunneling Demo page 44
43

CHAPTER 5 | Using the IIOP Transport
The IIOP Tunneling Demo
The starting point code for this demo is located in the directory
<installationDirectory>\1.2\demos\hello_world\iiop_soap. This
example demonstrates that switching transport protocols from http to iiop

requires only modest reconfiguration within the WSDL file.
 44

The IIOP Tunneling Demo
The HelloWorld.wsdl File
This file has already been modified. In a text editor, open the file
<installationDirectory>\artix\1.2\demos\hello_world\iiop_soap

\client\HelloWorld.wsdl. Three changes have been made to the file used
by the HTTP transport.

The iiop Namespace Prefix In the opening <definitions> tag, the namespaces used within the WSDL
file are specified. The WSDL file used in the first demo did not have an entry
corresponding to the iiop transport available within Artix. Consequently,
the opening <definitions> tag did not include a namespace to be used
when specifying information related to the iiop transport. To use Artix’
iiop transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <definitions> tag. This attribute defines the namespace prefix
iiop.

There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications.

Note: The server directory contains the same WSDL file.

<definitions name=”HelloWorldService”
targetNamespace=”http://xmlbus.com/HelloWorld”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=”http://xmlbus.com/HelloWorld” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema”

xmlns:xsd1=”http://xmlbus.com/HelloWorld/xsd”
xmlns:iiop=”http://schemas.iona.com/transports/iiop_tunnel”

>
...

</definitions>
45

CHAPTER 5 | Using the IIOP Transport
The <binding> Specification In this example, the application uses the IIOP transport to send SOAP
encoded content. Within the <binding> tags the <soap:binding> tag
specifies the style and transport used by the binding. In the earlier
example, this tag specified the HTTP transport. You must change this entry
to specify the IIOP transport.

The <service> Specification In the original HelloWorld.wsdl file, information within the
<service>…</service> tags specified the url at which the Web service
could be contacted. When using the iiop transport you must replace this
entry with information relevant to the iiop transport.

The <service>…</service> entry has been edited to include the following:

The iiop transport related specifications are included in the

tag. If you are familiar with CORBA’s corbaloc URL format, you will
recognize the format of this specification. In CORBA, the corbaloc URL
format is used by client processes to obtain an object reference, where
@localhost:55002 refers to the host and port from which the client tries to
retrieve the object reference. With Artix, the port on which the server

<soap:binding style="rpc"
transport="http://schemas.iona.com/transports/iiop_tunnel"

<definitions ...>

<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<iiop:address

location=
“corbaloc:iiop:1.2@localhost:55002/tunnel”/>

<iiop:payload type="octets"/>
</port>

</service>

</definitions>

<iiop:address
location=”corbaloc:iiop:1.2@localhost:55002/tunnel”/>
 46

The IIOP Tunneling Demo
process should listen for corbaloc requests is specified in the configuration
file, which for this installation is the file
<installationDirectory>\artix\1.2\etc\domains\artix.cfg.

In a text editor open the configuration file
<installationDirectory>\artix\1.2\etc\domains\artix.cfg. Find the
tunnel configuration scope, and create the nested scope demo. Within the
tunnel.demo scope, you will add the entry

to specify the port used by Artix as the endpoint for the iiop tunnel. You may
choose any port number you wish; just be certain that your entry in the
configuration file and the port number specified in the WSDL file are the
same.

The location attribute within the WSDL file is used by client processes and
the port number must be the same as the one specified in the configuration
file.

Artix supports other ways to specify the <iiop:address …/> entry. Instead of
the corbaloc format, you could use a file url, which provides the path to a
file into which Artix will write its object reference. Another alternative is to
use the corbaname format, which specifies the name which Artix should use
to bind an object reference into a CORBA name service. You will see both of
these approaches used in later demos when you learn about Artix/CORBA
integration.

The <iiop:payload …/> entry also has alternative values. Use of the type

attribute is optional; when it is not present, the value defaults to octets.
This specification indicates that the message format specifies the codeset
and that Artix does not need to perform codeset negotiation and conversion.
The alternative value, string, specifies that Artix is responsible for codeset
negotiation and conversion.

Since in this demo the message content is SOAP, which includes a codeset
specification, octets is the appropriate value for the type attribute.

plugins:tunnel:iiop:port=”55002”;

Note: Since iiop version 1.2 is the default protocol, the corbaloc URL
may be alternatively written as:
"corbaloc::localhost:55002/tunnel".
47

CHAPTER 5 | Using the IIOP Transport
Compiling and Running the Application
The makefiles include entries that generate the stub, skeleton, and helper
classes and build the application’s executables.

Compiling the application 1. Open a command window and move to the
<installationDirectory>\artix\1.2\bin directory. Run the batch
file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\iiop_soap directory and issue the command

nmake all

The compilation process creates the client.exe and server.exe files.

Running the application You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\iiop_soap\server subdirectory and issue the
command:

start server -ORBname tunnel.demo

Note the use of the command line arguments -ORBname tunnel.demo,
which causes the server process to start under the similarly named
configuration scope.

3. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\iiop_soap\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.
 48

CHAPTER 6

Using the Tuxedo
Transport
In this chapter, you will reconfigure your application to use
Tuxedo as the transport protocol. As you will see, this process
simply requires minor changes to the WSDL file and
redefinition of the Tuxedo runtime environment. Additionally,
small changes to the client and server code are required.

In this chapter This chapter discusses the following topics:

The Demo Code page 51

The HelloWorld.wsdl File page 53

The Tuxedo Configuration page 55
49

CHAPTER 6 | Using the Tuxedo Transport
Configuring, Compiling and Running the Application page 57
 50

The Demo Code
The Demo Code
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\hello_world\tux_tp

directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

The Client and Server Source Code This code is basically unchanged from earlier demos with one exception. In
both the client and server processes, initialization of the runtime
environment occurs during execution of the method

Within this method, an ORB is initialized. In the demo that utilized the
HTTP transport, this ORB was configured under the default scope within the
configuration domain artix. In the demo that utilized the IIOP_tunnel
transport, a different configuration scope, which included entries relevant to
the underlying iiop_tunneling functionality, was specified through the
-ORBname command line parameter.

For this demo, it is important to configure the ORB under a scope that adds
the tuxedo plugin to the orb_plugins listing. To accomplish this, the
overloaded init method is used in both the client and server applications.

Alternatively, you could use the -ORBname command line parameter when
starting each process.

The demo.tuxedo scope The directory <installationDirectory>\artix\1.2\etc\domains includes
the configuration file artix.cfg. Open this file in a text editor and find the
demo scope. Note that the demo scope contains multiple nested scopes. You
will add another nested scope– tuxedo –under demo.

Edit the Artix configuration file Directly under the opening brace of the demo scope, add the nested tuxedo

configuration scope.

IT_Bus::init(argc, argv);

IT_Bus::init(argc, argv, “demo.tuxedo”);

demo
51

CHAPTER 6 | Using the Tuxedo Transport
The orb_plugins list specified within the demo.tuxedo scope will be used
by your client and server processes.

{
tuxedo {
orb_plugins=[“iiop_profile”, “giop”, “iiop”, “soap”,

“tuxedo”];
};
…
};
 52

The HelloWorld.wsdl File
The HelloWorld.wsdl File
This file has already been modified. In a text editor, open the file
<installationDirectory>\artix\1.2\demos\hello_world\tux_tp\client

\HelloWorld.wsdl. Three changes have been made to the WSDL file used
in the earlier examples.

The tuxedo Namespace Prefix In the opening <definitions> tag, the namespaces used within the WSDL
file are specified. Previously used WSDL files obviously had no knowledge of
the Tuxedo transport support available within Artix. Consequently, the
opening <definitions> tag did not include a namespace to be used when
specifying information related to the Tuxedo transport. To use Artix’ Tuxedo
transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <definitions> tag. This attribute defines the namespace prefix
tuxedo.

There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications. In fact, note that this WSDL file also
includes the iiop namespace prefix declaration from the IIOP_tunnel
example.

<definitions name=”HelloWorldService”
targetNamespace=”http://xmlbus.com/HelloWorld”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=”http://xmlbus.com/HelloWorld” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema”

xmlns:xsd1=”http://xmlbus.com/HelloWorld/xsd”
xmlns:iiop=”http://schemas.iona.com/transports/iiop_tunnel”
xmlns:tuxedo=”http://schemas.iona.com/transports/tuxedo”

>
...

</definitions>
53

CHAPTER 6 | Using the Tuxedo Transport
The <binding> Specification In this example, the application uses the Tuxedo transport to send SOAP
encoded content. Within the <binding> tags the <soap:binding> tag
specifies the style and transport used by the binding. In the earlier
example, this tag specified the HTTP or IIOP transport. You must change
this entry to specify the Tuxedo transport.

The <service> Specification In the original HelloWorld.wsdl file, information within the
<service>…</service> tags specified the url at which the Web service
could be contacted. When using the Tuxedo transport you must replace this
entry with information relevant to the Tuxedo transport.

The <service>…</service> entry has been edited to include the following:

The Tuxedo transport related specifications are included in the

tag, which specifies the Tuxedo service name under which your server
application will run.

<soap:binding style="rpc"
transport="http://schemas.iona.com/transports/tuxedo"

<definitions ...>

<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<tuxedo:address serviceName=”it_service”/>

</port>
</service>

</definitions>

<tuxedo:address serviceName=”it_service”/>

Note: The only value that can be assigned to the serviceName attribute
is "it_service".
 54

The Tuxedo Configuration
The Tuxedo Configuration
You will need to set environment variables and generate an application
specific configuration file for the Tuxedo application.

Edit the setenv.cmd File This file sets the Tuxedo related environment variables.

Open the file <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp\setenv.cmd in a text editor and confirm that the
TUXDIR and APPDIR entries are correct.

Edit the ubbhelloWorld
Configuration File

Open the file <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp\ubbhelloWorld in a text editor. You must replace all
of the entries within the brackets (<…>) with valid entries.

With the exception of the machine name entry, it’s important that you
accept the other suggested entries (modifying PATH values as appropriate).
While you are generally free to give these entries other values, there must be
consistency between these entries and the commands used to compile and
run the Tuxedo application. If you do not honor the suggested content, you
will have difficulty with subsequent steps.

*SERVERS specification At the bottom of the file, you specify the name of the server executable. In
this demo, the executable is server.exe; consequently, the corresponding
value for the <process name> tag under the *SERVERS section is server.
Also, although your server code implements two methods– sayHi and
greetMe –there is only one Tuxedo service– it_service –defined under the
*SERVICES section. This entry corresponds to the serviceName attribute
value in the HelloWorld.wsdl file.

*SERVERS
DEFAULT:

CLOPT=”-A”

server SRVGRP=GROUP1 SRVID=1
#Example:
#server

*SERVICES
it_service
55

CHAPTER 6 | Using the Tuxedo Transport
The only value that can be assigned to the *SERVICES section is
it_service.
 56

Configuring, Compiling and Running the Application
Configuring, Compiling and Running the
Application

All of the source code and configuration files are in their appropriate
directories. You must first generate the Tuxedo binary configuration file and
then compile the C++ application.

Generating the Application
Specific Tuxedo Binary
Configuration File

This file includes the information specified in the ubbhelloWorld

configuration file.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp directory and run the file setenv[.cmd].

3. Issue the command

tmloadcf ubbhelloWorld

Enter “y ” and press the return/enter key to confirm that you want to
create/recreate the binary configuration file.

Compiling the Application Code The makefiles include entries that incorporate the copied files into your
executable.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp directory and run the file setenv[.cmd].

Alternatively, you can continue to use the command window from the
section Generating the Application Specific Tuxedo Binary
Configuration File.

3. While in the tux_tp directory, issue the command

nmake all

The compilation process creates the client.exe and server.exe files in
their respective directories.
57

Configuring, Compiling and Running the Application
Running the Application You must first start the Tuxedo runtime, which starts your server process.
Then you can run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp directory and run the file setenv[.cmd].

Alternatively, you can continue to use the command window from
steps Generating the Application Specific Tuxedo Binary Configuration
File or Compiling the Application Code.

3. While in the tux_tp directory, start the Tuxedo server process with the
command

tmboot -y

4. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\tux_tp\client subdirectory and issue the command:

client

or the command:

client “<some name>”

Observe the messages in both the client command window.

Stopping the Tuxedo server
process

1. Stop the process by issuing the command

tmshutdown -y

in the command window.
58

CHAPTER 7

Using the
WebSphere™ MQ
Transport
In earlier chapters you used Artix™ to implement a C++ Web
service that sent SOAP over the HTTP, IIOP, and Tuxedo. In
this example, you will reconfigure your application to use
WebSphere MQ as the transport protocol. As you will see, this
process simply requires minor changes to the WSDL file and
creation of application specific queues.

In this chapter This chapter discusses the following topics:
59

CHAPTER 7 | Using the WebSphere™ MQ Transport
Creating the WebSphere MQ Queues page 61

The Demo Code page 64

Configuring, Compiling and Running the Application page 67

Further Considerations page 69
 60

Creating the WebSphere MQ Queues
Creating the WebSphere MQ Queues
The WebSphere MQ installation process deploys the product as a Windows
service, which starts automatically when you boot your computer. You may
have reconfigured this service for manual startup. Consequently, you will
need to start both the WebSphere MQ Service before you can create your
application’s queues.

Starting the WebSphere MQ
Service

You can start the WebSphere MQ Service from either a task bar icon or from
the Windows control panel Services window.

From the task bar, right click on the icon and select Start WebSphere MQ
from the popup menu. The task bar icon’s color changes from red to blue
during the startup process. When the services are fully operational, the
icon’s color changes to green.

From the Services window, highlight the IBM MQSeries entry and click on
the Start command button or menu selection. Again, the task bar icon’s
color changes from red to blue during the startup process. When the
services are fully operational, the icon’s color changes to green. Close the
Services window.

Open the WebSphere MQ Explorer From the Start menu, select the WebSphere MQ Explorer entry.
61

CHAPTER 7 | Using the WebSphere™ MQ Transport
This opens the explorer.

Note that the default Queue Manager (QM_<hostName>) is already running.
Highlight the Queue Managers icon and either right click or click on the
Action menu bar button. Select the New > Queue Manager menu item and
create the queue manager MY_DEF_QM.

Note: This queue manager is also used by the switch demo. If you have
already run the switch demo, you will have already created the queue
manager.
 62

Creating the WebSphere MQ Queues
Creating the HW_REQUEST and HW_REPLY Queues
Your application requires two queues; the client will put requests onto the
request queue and the server will put responses onto the response queue. It
does not matter what you name these queues. You may also create
additional queue managers and possibly assign each queue to a different
manager. In this demo, you will simply create two queues and assign them
to the MY_DEF_QM queue manager.

Right click on the Queue icon under the MY_DEF_QM queue manager icon,
and select New > Local Queue from the popup menu. Alternatively, click on
the Action command button and select New > Local Queue from the drop
down menu. This opens the Create Local Queue window. You only need to
enter a name for the queue, click on the OK command button, and then, in
the WebSphere MQ message window, click on the Don’t Share in Cluster
command button.

Create two queues named: HW_REQUEST and HW_REPLY and close the
explorer window.
63

CHAPTER 7 | Using the WebSphere™ MQ Transport
The Demo Code
The starting point code for this demo is located in the
<installationDirectory\artix\1.2\demos\hello_world\mq_soap

directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

The client and server source code This code is unchanged from the earlier demos involving SOAP over HTTP
and SOAP over IIOP.

The HelloWorld.wsdl File This file has already been modified. In a text editor, open the file
<installationDirectory\artix\1.2\demos\hello_world\mq_soap

\client\HelloWorld.wsdl. Three changes have been made to the WSDL
file used in the earlier examples.

The mq namespace prefix In the opening <definitions> tag, the namespaces used within the WSDL
file are specified. The WSDL files used previously had no knowledge of the
WebSphere MQ transport support available within Artix. Consequently, the
opening <definitions> tag did not include a namespace to be used when
specifying information related to the WebSphere MQ transport. To use the
WebSphere MQ transport, you need to add another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <definitions> tag. This attribute defines the namespace prefix
mq.

<definitions name=”HelloWorldService”
targetNamespace=”http://xmlbus.com/HelloWorld”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=”http://xmlbus.com/HelloWorld” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema”

xmlns:xsd1=”http://xmlbus.com/HelloWorld/xsd”
xmlns:iiop=”http://schemas.iona.com/transports/iiop_tunnel”
xmlns:tuxedo=”http://schemas.iona.com/transports/tuxedo”
xmlns:mq=”http://schemas.iona.com/transports/mq”

>
...
 64

The Demo Code
There is no harm in including this namespace declaration in all of the WSDL
files used by Artix applications. In fact, note that this WSDL file also
includes the iiop namespace prefix declaration and the Tuxedo namespace
prefix declaration from the earlier examples.

The <binding> Specification In this example, the application uses the WebSphere MQ transport to send
SOAP encoded content. Within the <binding> tags the <soap:binding>

tag specifies the style and transport used by the binding. In the earlier
example, this tag specified the http transport. You must change this entry to
specify the WebSphere MQ transport.

The <service> specification When using the WebSphere MQ transport you must replace information
within the <service>…</service> tags with information relevant to the
WebSphere MQ transport.

The <service>…</service> entry has been edited to include the following:

</definitions>

<soap:binding style="rpc"
transport="http://schemas.iona.com/transports/mq"

<definitions ...>
<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<mq:client QueueManager=”MY_DEF_QM”

QueueName=”HW_REQUEST”
AccessMode=”send”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”

/>

<mq:server QueueManager=”MY_DEF_QM”
QueueName=”HW_REQUEST”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”
AccessMode=”receive”

/>
</port>

</service>>
</definitions>
65

CHAPTER 7 | Using the WebSphere™ MQ Transport
The WebSphere MQ transport related specifications are included in the

and

tags.

<mq:client …/>

<mq:server …/>
 66

Configuring, Compiling and Running the Application
Configuring, Compiling and Running the
Application

All of the source code and configuration files are in their appropriate
directories.

Editing the Artix configuration file Because the Artix MQSeries plugin is a separately licensed component you
must update the default orb plugins list to include the MQSeries plugin. The
default Artix domain configuration file
<installationDirectory>\artix\1.2\etc\domains\artix.cfg contains
this line in the root scope:

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "tunnel","ws_orb", "fixed"];

You must add MQ as follows:

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "mq", "tunnel","ws_orb", "fixed"];

Compiling the Application Code The makefiles include entries that generate the stub, skeleton, and helper
classes and create your executable.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory.

2. Run the batch file artix_env[.bat].

3. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\mq_soap directory and issue the command

nmake all

The compilation process creates the client.exe and server.exe files in
their respective directories.

Running the Application Be certain that your WebSphere MQ Services and queue manager are
running.

1. Open a command window to the <installationDirectory>\artix

\1.2\bin directory and run the artix_env[.bat] file.
67

CHAPTER 7 | Using the WebSphere™ MQ Transport
2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\mq_soap\srv directory and issue the command

start server

3. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\mq_soap\client subdirectory and issue the command:

client

or the command:

client “<some name>”

Observe the messages in both the client command window.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

Stopping the queue manager If desired, you can stop and restart the queue manager from the WebSphere
MQ Explorer window. Open the explorer and highlight the icon
corresponding to your queue manager. Right click, or click on the Action
command button, and select the appropriate action from the menu.

Stopping the WebSphere MQ
services

You can stop the WebSphere MQ Service from either a task bar icon or from
the Windows control panel Services window.

From the task bar, right click on the icon and select Stop WebSphere MQ
from the popup menu; confirm your action in the message box. The task bar
icon’s color changes from green to blue during the shutdown process. When
shutdown has completed, the icon’s color changes to red.

From the Services window, highlight the IBM MQSeries entry and click on
the Stop command button or menu selection; confirm your action in the
message box. Close the Services window.
 68

CHAPTER 7 | Using the WebSphere™ MQ Transport
Further Considerations
This example assumes there is one client process sending requests through
WebSphere MQ to a single server process. In a more realistic scenario, there
would be multiple clients issuing requests. Since all of the clients would be
using the same request and reply queues, it is possible that one client might
retrieve responses meant for another client. This problem can be easily
managed by specifying the CorrelationStyle attribute with the
WebSphere MQ port information.

The CorrelationStyle attribute specifies a mechanism that the processes
and queue manager will use to uniquely identify messages and their
corresponding clients. If you edit the WSDL file to include the
CorrelationStyle attribute, responses will be returned to the client issuing
the corresponding request.

The following fragment illustrates how to add this information to the WSDL
file. Refer to the Artix product documentation for a more complete
discussion of this, and other, attributes.

<definitions ...>
<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<mq:client QueueManager=”MY_DEF_QM”

QueueName=”HW_REQUEST”
AccessMode=”send”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”
CorrelationStyle=”messageId”

/>

<mq:server QueueManager=”MY_DEF_QM”
QueueName=”HW_REQUEST”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”
AccessMode=”receive”
CorrelationStyle=”messageId”

/>
</port>

</service>>
</definitions>
 69

CHAPTER 7 | Using the WebSphere™ MQ Transport
 70

CHAPTER 8

Using the TIBCO
Rendezvous™
Transport
As with the other transport protocols, adapting your
HelloWorld application to the TIBCO Rendezvous transport
primarily involves changes to the WSDL file. Unlike the
WebSphere™ MQ transport, there is no need to create
“subjects” or “queues” as part of the reconfiguration. The only
change you must make to your application code is to insure
that the Artix TIBCO Rendezvous plugin is loaded during
initialization of the client and server applications.
71

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport
In this chapter This chapter discusses the following topics:

The Demo Code page 73

Compiling and Running the Application page 77

Monitoring the TIBCO Rendezvous Environment page 78
 72

The Demo Code
The Demo Code
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\hello_world\tibrv

directory. The source code files, starting point configuration files, and WSDL
file have been placed into the appropriate directories.

Both the client application and the server process become “Artix-aware”
during the execution of the IT_Bus::init invocation. This method loads
the underlying Artix runtime environment into the running process. The
runtime services that each application uses are implemented through
libraries that are loaded during this initialization.

The Artix configuration file – artix.cfg – includes all of the information
needed to start an Artix process under a default configuration. This default
configuration does not, however, include the library that provides access to
the TIBCO Rendezvous transport; you must use the alternative version of the
IT_Bus::init method, specifying the demo.tibrv scope, which adds the
tibrv plugin to the orb_plugins listing. As a result, the signature of the
overloaded init method used in both the client application and server
process is:

Both the client.cxx and server.cxx files have been edited to include this
modification.

The artix.cfg File The configuration file – artix.cfg – is located in the
<installationDirectory>\artix\1.2\etc\domains directory. Within this
file, the demo.tibrv scope redefines the orb_plugins variable, including
the tibrv plugin in the list.

IT_Bus::init(argc, argv, “demo.tibrv”);
73

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport
The HelloWorld.wsdl File
This file has already been modified. In a text editor, open the file
<installationDirectory>\artix\1.2\demos\hello_world\tibrv

\client\HelloWorld.wsdl. This file differs from the WSDL file used in the
earlier demos in three sections: an additional namespace prefix is defined;
the <binding> specification includes entries specific to the TIBCO
Rendezvous transport; and the <service> specification includes entries
needed to contact the transport.

The tibrv namespace prefix In the opening <definitions> tag, the namespaces used within the WSDL
file are specified. To use the TIBCO Rendezvous transport, you need to add
another namespace.

The last attribute declaration has been added to the attribute listings within
the opening <definitions> tag. This attribute defines the namespace prefix
tibrv.

The <binding> Specification This section now includes a description of each of the operations in a format
that has been developed to integrate Artix applications with the TIBCO
Rendezvous protocol.

<definitions name=”HelloWorldService”
targetNamespace=”http://xmlbus.com/HelloWorld”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=”http://xmlbus.com/HelloWorld” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema”

xmlns:xsd1=”http://xmlbus.com/HelloWorld/xsd”
xmlns:iiop=”http://schemas.iona.com/transports/iiop_tunnel”
xmlns:tuxedo=”http://schemas.iona.com/transports/tuxedo”
xmlns:mq=”http://schemas.iona.com/transports/mq”
xmlns:tibrv=”http://schemas.iona.com/transports/tibrv”

>
...

</definitions>

<binding name=”HelloWorldPortBinding”
type=”tns:HelloWorldPortType”>

<tibrv:binding/>
<operation name=”greetMe”>
 74

The Demo Code
Obviously this section includes the same operations as the <binding>

specification in previous WSDL files, but the namespace associated with the
operation signatures is tibrv rather than soap.

The <service> specification The <service> specification now includes information that the Artix
runtime environment needs to interact with the TIBCO Rendezvous
transport.

The <service>…</service> entry has been edited to include the following:

<tibrv:operation/>
<input name=”greetMe”>

<tibrv:input/>
</input>
<output name=”greetMeResponse”>

<tibrv:output/>
</output>

</operation>
<operation name=”sayHi”>

<tibrv:operation/>
<input name=”sayHi”>

<tibrv:input/>
</input>
<output name=”sayHiResponse”>

<tibrv:output/>
</output>

</operation>
</binding>

<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<tibrv:port

subject=”Artix.HelloWorld”
transportType=”TibrvNetTransport”
transportService=””
transportNetwork=””
transportDaemon=””
transportBatchMode=”false”
listenerType=”TibrvListener”
stringEncoding=”ISO-8859-1”

/>
</port>

</service>
75

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport
Within the application, this is the only information specific to the TIBCO
Rendezvous transport. There are no Rendezvous specific configuration
information or coding within the application files that you provide.
 76

Compiling and Running the Application
Compiling and Running the Application
All of the source code and configuration files are in their appropriate
directories.

Compiling the Application Code The makefiles include entries that incorporate the files into your
executable.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\hello_world\tibrv directory and issue the command

nmake all

The compilation process creates the client.exe and server.exe files in
their respective directories.

Running the Application There is no need to start the TIBCO Rendezvous routing daemon before
running this application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2

\hello_world\tibrv\server directory and issue the command

start server

3. Move to the <installationDirectory>\artix\1.2

\hello_world\tibrv\client subdirectory and issue the command:

client

or the command:

client “<some name>”

Observe the messages in both the client and server command windows.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

Note: Do not stop the server until you complete the monitoring steps
described in the following section.
77

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport
Monitoring the TIBCO Rendezvous
Environment

The TIBCO Rendezvous routing daemon will not start until your server
process runs and the Artix runtime accesses Rendezvous.

After starting the server process, enter the URL http://<hostname>:7850

into your browser. The initial screen provides general information about your
Rendezvous environment.
 78

Monitoring the TIBCO Rendezvous Environment
Click on the Clients hyperlink and the Clients (All Services) window confirms
that your server process is running as a TIBCO Rendezvous client.

Next, click on the Services hyperlink and the Services window includes the
default TIBCO Rendezvous routing daemon in the listing of active services.
79

CHAPTER 8 | Using the TIBCO Rendezvous™ Transport
Finally, click on the port number hyperlink (7500). This opens the Service
Information window in which you can monitor the messages passing through the
routing daemon.

Now, run your client program several times and observe the updated service
information.
 80

CHAPTER 9

Using CORBA
Applications and
Transport
In this chapter, you will learn how to integrate existing CORBA
applications with Artix™. You will study a demo in which a
CORBA client sends CORBA requests to an Artix server; the
server process then delivers the requests to a C++ object. You
must now edit the WSDL file to include the particulars of the
CORBA data types and to specify how the Artix process should
publish an object reference. Invocations sent to the Artix server
process are reformatted as C++ method calls against the Artix
implementation object. In a second example, you will deploy
81

CHAPTER 9 | Using CORBA Applications and Transport
an Artix client against the Artix server; communication
between the client and server processes uses CORBA
invocations over IIOP. Finally, you will deploy a CORBA server,
which will be used by your Artix client; again, communication
between the client and server processes will use CORBA
invocations over IIOP.

In this chapter This chapter discusses the following topics:

The CORBA Client—Artix Server Demo page 83

The Artix Client—Artix Server Demo page 91

The Artix Client—CORBA Server Demo page 93
 82

The CORBA Client—Artix Server Demo
The CORBA Client—Artix Server Demo
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\corba

\corba_client_artix_server directory. The source code and IDL file are
complete. The WSDL file, which is used by all the demos described in this
chapter, is created within the <installationDirectory>\artix\1.2\demos

\corba\common directory.

The HelloWorld.idl File The IDL file is only used by the client application, which is a CORBA
application. For this application, the IDL file contains only a single interface
definition within a single module.

When you create the WSDL file, you must provide data type definitions and
message declarations that correspond to these CORBA operations and
parameters.

The HelloWorld.wsdl File Unlike the earlier demos, which used a prewritten WSDL file, this demo
uses IONA’s IDL compiler to generate a WSDL file directly from the IDL file.

Generating the HelloWorld.wsdl
file

IONA’s IDL compiler responds to several command line flags that specify
how to process an IDL file into a WSDL file. This is the same IDL compiler
used to produce CORBA stubs, skeletons, and starting point servant code.
By using the appropriate command line flags, the compiler produces a
WSDL file instead of the CORBA classes.

You can use four flags to control generation of the WSDL file.

• -wsdl

The flag that directs the IDL compiler to produce a WSDL file. This is
the only required flag and it must be followed by the name of the IDL
file.

module HW {
interface HelloWorld {
string sayHi ();
string greetMe (in string user);

};
};
83

CHAPTER 9 | Using CORBA Applications and Transport
• -a<address>

The flag that specifies an absolute address through which the object
reference may be accessed. The <address> may be a relative or
absolute path to a file, or a corbaname URL. There is no white space
between the -a and <address> entries.

• -f<file>

The flag that specifies a file containing a string representation of an
object reference. The contents of this file will be incorporated into the
WSDL file. The <file> must exist when you run the IDL compiler.
There is no white space between the -f and <file> entries.

• -O<dir>

The flag used to specify the directory into which the WSDL file should
be written. There is no white space between the -O and <dir> entries.

To combine multiple flags in the same command, use a colon (“:”)
delimited list. Note that the colon is only interpreted as a delimiter if it is
followed by a dash (“- ”). Consequently, the colons in a corbaname URL are
interpreted as part of the URL syntax and not as delimiters.

To create the WSDL file:

1. Open a command window to the <installationDirectory>\artix\

1.2\bin directory and issue the command

artix_env[.bat]

2. Move to the
<installationDirectory>\artix\1.2\demos\corba\common directory
and issue the command

idl -wsdl:-afile://../../common/HelloWorld.ior

HelloWorld.idl

This generates the HelloWorld.wsdl file that includes a direct
reference to the file into which the server process will write an object
reference.

3. Alternatively, issue the command

idl -wsdl:-acorbaname:rir:/NameService#helloWorld

HelloWorld.idl

This generates the HelloWorld.wsdl file that includes a corbaname

URL. An object reference is bound under the name helloWorld. Since
 84

The CORBA Client—Artix Server Demo
the object reference is bound at the root level of the name service, you
do not need to create a name context to run this demo.

The namespace prefixes In the opening <definitions> tag, the namespaces used within the WSDL
file are specified.

Two attribute declarations have been added to the attribute listings within
the opening <definitions> tag. These attributes define the namespace
prefixes corba and corbatm. Note that the xsd1 prefix has been associated

with the IDL file used to generate the WSDL file.

The <types> Specification In the earlier demos, since there were no complex or derived types that
needed further description, this section of the WSDL file was not used.
When using the CORBA transport, you must use this section to define each
of the types that are used by the application’s methods. For your HelloWorld
application, you must define the return values from the sayHi and greetMe

messages as well as the parameter to the greetMe message, as shown in
the following extract.

Note: Be careful regarding capitalization. The command line flag entries
are case sensitive even on Windows. Capitalization in your generated
WSDL file must match the capitalization used in the prewritten code. The
name of the IDL file is HelloWorld.idl.

<definitions name=”HelloWorld.idl”
targetNamespace=”http://schemas.iona.com/idl/HelloWorld.idl”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:tns=”http://schemas.iona.com/idl/HelloWorld.idl”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=”http://schemas.iona.com/idltypes/HelloWorld.idl”
xmlns:corba=”http://schemas.iona.com/bindings/corba”
xmlns:corbatm=”http://schemas.iona.com/bindings/corba/typemap”
>

...
</definitions>

<types>
<schema targetNamespace=

“http://schemas.iona.com/idltypes/HelloWorld.idl”
xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>
85

CHAPTER 9 | Using CORBA Applications and Transport
The <message> specification As in the earlier WSDL files, you must describe the messages. These
descriptions use the element attribute, which gives the fully qualified name
for each part of the message, as shown in the following extract.

The <portType> Specification The port type information corresponds exactly to the information provided in
the other WSDL files.

<element name=”HW.HelloWorld.sayHi.return”
type=”xsd:string”/>

<element name=”HW.HelloWorld.greetMe.user”
type=”xsd:string”/>

<element name=”HW.HelloWorld.greetMe.return”
type=”xsd:string”/>

</schema>
</types>

<message name=”HW.HelloWorld.sayHi”/>
<message name=”HW.HelloWorld.sayHiResponse”>

<part name=”return”
element=”xsd1:HW.HelloWorld.sayHi.return”/>

</message>
<message name=”HW.HelloWorld.greetMe”>

<part name=”user”
element=”xsd1:HW.HelloWorld.greetMe.user”/>

</message>
<message name=”HW.HelloWorld.greetMeResponse”>

<part name=”return”
element=”xsd1:HW.HelloWorld.greetMe.return”/>

</message>

<portType name=”HW.HelloWorld”>
<operation name=”sayHi”>
<input message=”tns:HW.HelloWorld.sayHi”

name=”sayHi”/>
<output message=”tns:HW.HelloWorld.sayHiResponse”

name=”sayHiResponse”/>
</operation>
<operation name=”greetMe”>
<input message=”tns:HW.HelloWorld.greetMe”

name=”greetMe”/>
<output message=”tns:HW.HelloWorld.greetMeResponse”

name=”greetMeResponse”/>
</operation>

</portType>
 86

The CORBA Client—Artix Server Demo
The <binding> specification This section differs significantly from your earlier WSDL files, which were
associated with the soap namespace. The corba namespace is used in this
application. Because there are no complex or derived types in this
application, the typeMapping section does not include any entries, but a
more involved application would have additional content within this section.

Note the value of the <corba:binding repositoryID=…> entry. The value
you provide here becomes the type ID embedded in the object reference.
This value must match the type ID that would be created from the interface
definition by the IDL compiler. The IDL file used by the client application is
expecting an object reference of type IDL:HW/HelloWorld:1.2, where
HelloWorld is the interface name and HW the module enclosing this
interface definition.

The <service> specification The content of the <service> and <port> tags is similar to your earlier
WSDL files, it is the content of the <address> tag that specifies use of the
CORBA transport.

<binding name=”HW.HelloWorldBinding” type=”tns:HW.HelloWorld”>
<corba:binding

repositoryID=”IDL:HW/HelloWorld:1.2”/>
<operation name=”sayHi”>
<corba:operation name=”sayHi”>
<corba:return name=”return”

idltype=”corba:string”/>
</corba:operation>
<input/>
<output/>

</operation>
<operation name=”greetMe”>
<corba:operation name=”greetMe”>
<corba:param name=”user” mode=”in”

idltype=”corba:string”/>
<corba:return name=”return”

idltype=”corba:string”/>
</corba:operation>
<input/>
<output/>

</operation>
</binding>

<service name=”HW.HelloWorldService”>
87

CHAPTER 9 | Using CORBA Applications and Transport
Note the contents of the <corba:address> tag. The location attribute
specifies that the Artix process should write a string representation of its
interoperable object reference to the file HelloWorld.ior. This file will be
written into the common directory so that it will be easily accessible by the
client application. Consequently, the CORBA client code must be able to
read this file and convert the string into an object reference. In this demo,
the location of the HelloWorld.ior file is hard-coded into the CORBA client
code.

If you installed the Artix product on top of (or with access to) an Orbix
installation, you can use the CORBA Name Service to hold the object
bindings instead of local files. In this situation, you would edit the
<service> specification so that the location attribute’s value is a
corbaname URL.

Since the client code is hard-coded to source the object reference from a
file, you also need to edit this code.

Find the line of code:

and change to:

<port name=”HW.HelloWorldPort”
binding=”tns:HW.HelloWorldBinding”>

<corba:address
location=”file=../../common/HelloWorld.ior”/>

</port>
</service>

<corba:address
location=“corbaname:rir:/NameService#helloWorld”/>

tobj = orb->string_to_object(objref_string.in());

tobj = orb->string_to_object
(“corbaname:rir:/NameService#helloWorld”);

Note: Since you did not comment out the client code that reads the IOR
from a file, be certain not to try this change until after you have
successfully run the application using the file approach.
 88

The CORBA Client—Artix Server Demo
Compiling and Running the Application
Since the coding is completed, you can simply compile and run the
application.

Compiling the Application Code 1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos\corba

\corba_client_artix_server directory and issue the command

nmake all

Running the Application You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos\corba

\corba_client_artix_server\server subdirectory and issue the
command:

start server

Note that the HelloWorld.ior file is written into the common directory.

3. Move to the <installationDirectory>\artix\1.2\demos\corba

\corba_client_artix_server\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.

Using the CORBA Name Service If you want to run this application using the Orbix CORBA Name Service,
you should:

1. Stop the server process.
89

CHAPTER 9 | Using CORBA Applications and Transport
2. Modify the artix.cfg configuration file, which is in the directory
<installationDirectory>\artix\1.2\etc\domains. You must add
the following three lines within the global scope; you may place these
entries at the top of the file.

Where 3075 is the port assigned to your Orbix Locator Daemon. You
may also substitute a machine name or IP address for the entry
localhost and a different port number, if appropriate.

3. Edit the HelloWorld.wsdl and client.cxx files as described in the
discussion of the <service> specification.

4. Recompile and run the application as described earlier in this section.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

initial_references:NameService:reference=
“corbaloc::localhost:3075/NameService”;

url_resolvers:corbaname:plugin=“naming_resolver”;
plugins:naming_resolver:shlib_name=“it_naming”;
 90

The Artix Client—Artix Server Demo
The Artix Client—Artix Server Demo
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\corba

\artix_client_artix_server directory. The WSDL file is located in the
<installationDirectory>\artix\1.2\demos\corba\common directory.
Additionally, this demo uses the same server process as the CORBA
Client—Artix Server demo in the previous section. Consequently, the client
executable is built using the stub and helper classes originally generated into
the <installationDirectory>\artix\1.2\demos\corba

\corba_client_artix_server\server directory.
91

CHAPTER 9 | Using CORBA Applications and Transport
Compiling and Running the Application
Since the coding is completed, you can simply compile and run the
application.

Compiling the Application Code 1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\corba\artix_client_artix_server directory and issue the
command

nmake all

Running the Application You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\corba\corba_client_artix_server\server subdirectory and issue
the command:

start server

Note that the HelloWorld.ior file is written into the common directory.

3. Move to the <installationDirectory>\artix\1.2\demos

\corba\artix_client_artix_server\client subdirectory and issue
the command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows. To
convince yourself that the Artix client application is using the CORBA object
reference to invoke on the Artix server, change the name of the
HelloWorld.ior file and try rerun the client.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.
 92

The Artix Client—CORBA Server Demo
The Artix Client—CORBA Server Demo
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\corba

\artix_client_corba_server directory. This demo uses the same client
process as the Artix Client—Artix Server demo, so the only code in this
demo relates to the CORBA server process.
93

CHAPTER 9 | Using CORBA Applications and Transport
Compiling and Running the Application
Since the coding is completed, you can simply compile and run the
application.

Compiling the Application Code 1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\corba\artix_client_corba_server directory and issue the
command

nmake all

Running the CORBA Server
Process

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\corba\artix_client_corba_server\server subdirectory and issue
the command:

start server

The CORBA server process starts in a new command window and the
HelloWorld.ior file is written into the common directory.

Testing the CORBA server Between the client code included in the CORBA Client—Artix Server demo
and the server code from this Artix Client—CORBA Server demo, you have a
complete CORBA application. You will use the CORBA client application to
confirm that the CORBA server runs as anticipated.

Running the CORBA Client
Process

1. From the command window used in Running the CORBA Server
Process, move to the <installationDirectory>\artix\1.2

\demos\corba\corba_client_artix_server\client subdirectory and
issue the command:

client

or the command:

client “<some name>”
 94

The Artix Client—CORBA Server Demo
Observe the messages in both the server and client command windows.

Running the Artix Client Process 1. From the command window used in Running the CORBA Server
Process, page 94, move to the
<installationDirectory>\artix\1.2\demos\corba

\artix_client_artix_server\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

2. Observe the messages in both the server and client command
windows.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.
95

CHAPTER 9 | Using CORBA Applications and Transport
 96

CHAPTER 10

Routing
In previous chapters, you learned the basics of writing an
Artix™ client and server process and how to use the WSDL file
to select a transport protocol. In this chapter you will learn how
to use the WSDL file to create a message routing, that is,
redirect an invocation using a different transport protocol and
to route requests for specific operations to different server
processes. You will also learn how to route requests to different
server processes based on the content of the request. Content
based routing differs from protocol and operation based
routing in that the routing logic is provided through your coding
rather than through the information within the WSDL file.

In this chapter This chapter discusses the following topics:

The Routing Demos page 99
97

CHAPTER 10 | Routing
The Protocol-Based Routing Demo page 100

The Operation-Based Routing Demo page 111

Embedding the Switch Functionality in a Process page 117

The Content-Based Routing Demo page 121
 98

The Routing Demos
The Routing Demos
The starting point code for these demos is located in the
<installationDirectory>\artix\1.2\demos\routing\protocol_routing

and <installationDirectory>\artix\1.2\demos\routing

\operation_routing directories. These demos are completely coded. All of
the important concepts involve editing the WSDL file and managing the Artix
configuration.

Routing concepts These demos are similar in design, and use the HelloWorld application of
the earlier demos. A client process sends the sayHi or greetMe messages
using the SOAP over HTTP protocol. However, rather than sending the
request directly to the server process, the request is actually sent to a
“switch,” or routing, process that redirects the request to the server process.
In the protocol routing demo, the transport protocol used between the
switch and the server process will be changed from SOAP over HTTP to
SOAP over MQ or IIOP tunneling. In the operation routing demo, sayHi

requests are routed to one server process and greetMe requests are routed
to a different server process.
99

CHAPTER 10 | Routing
The Protocol-Based Routing Demo
This demo is located in the <installationDirectory>\artix\1.2

\demos\routing\protocol_routing directory. This demo contains four
subdirectories: client, factory, server, and switch. The client and
server directories contain the corresponding applications. The coding
within the client and server processes is identical to the earlier demos and
need not be discussed.

The subdirectories factory and switch include new, routing specific,
code. Additionally, each directory includes a private, and slightly different,
copy of the HelloWorld.wsdl file. To clarify what information is needed by
the various processes, each WSDL file includes only the information needed
by the code in the same directory. This is not actually required; the
processes will only use information that they need and will ignore entries
relevant to other processes. When you deploy a routing application, you will
probably use both approaches; for example, provide the client process with
only the information needed to initiate the request, while the switch and
server processes extract required information from a more involved WSDL
file.

The Client Process As noted above, the coding within the client.cxx file is unchanged from
earlier demos. The accompanying HelloWorld.wsdl file is identical to the
WSDL file used in the SOAP over HTTP demo. This file includes only the
standard namespace declarations within the opening <definitions> tag,
and the soap:address declaration within the <service>…</service> tags.

As far as the client application is concerned, messages are exchanged with a
“server” process on port 8080. In actual fact, the client is communicating
with the “switch” or “router” process.

The Server Process Again, the coding within server.cxx, HelloWorldImpl.h and
HelloWorldImpl.cxx is identical to the earlier demos. However, in this
demo the server process can use the MQ, IIOP tunneling or HTTP protocols.
Consequently, in the HelloWorld.wsdl file, the opening <definitions> tag

<soap:address location=”http://localhost:8080”/>
 100

The Protocol-Based Routing Demo
includes both the mq and iiop_tunnel namespace declarations and the
iiop or mq transport related specifications are nested within the
<service>…</service> tag.

For the IIOP Tunneling protocol:

For the MQ protocol:

Note that the value of the <service> tag name attribute, and the value of
the <port> tag name attribute, have been changed from the earlier demos.
What names you give the service and port are unimportant. What is
important is that the names are different from the names of the service and
port used by the client application. In this routing application, the client
sends messages to the service named HelloWorldService, using the port
named HelloWorldPort, which are offered by the switch process. The switch
subsequently redirects/routes the message to the service and port offered by
the server process.

The Switch Process If you examine the code in the switch.cxx file it will look similar to the
code in the server.cxx file. The only difference is the call to initialize the
underlying runtime,

<iiop:address
location=”file://../tunnel.ior”/>

<mq:client QueueManager=”MY_DEF_QM”
QueueName=”HW_REQUEST”
AccessMode=”send”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”

/>

<mq:server QueueManager=”MY_DEF_QM”
QueueName=”HW_REQUEST”
ReplyQueueManager=”MY_DEF_QM”
ReplyQueueName=”HW_REPLY”
AccessMode=”receive”

/>

IT_Bus::init (argc, argv, “helloWorldSwitch”);
101

CHAPTER 10 | Routing
which includes a third parameter. Operationally this parameter has the
same effect as the ORBname parameter used during initialization of the ORB
within IONA’s Orbix; it specifies a configuration scope that contains
configuration information for this specific process.
 102

The Protocol-Based Routing Demo
Modifying the artix.cfg file
The configuration file – artix.cfg – is located in the directory
<installationDirectory>\artix\1.2\etc\domains. In the following
section, you will create the helloWorldSwitch scope and add application
specific configuration information.

The HelloWorld.wsdl file used by the switch process has several
significant differences from the WSDL files used by the client and server
processes. First, the opening <definitions> tag includes a declaration for
the routing namespace.

Second, there are four service definitions. The first <service>…</service>

tag defines HelloWorldService and HelloWorldPort, through which the
switch process communicates with the client process, and the second, third
and fourth <service>…</service> tags define the MQHelloWorldService
and MQHelloWorldPort, through which the switch process communicates
with the server process (using either HTTP, IIOP_Tunneling, or MQ
transports).

Finally, within the <routing:route>…</routing:route> tag, the
redirection/routing specifics for this switch process are specified.

Editing the Configuration File—
artix.cfg

Firstly, because the Artix MQSeries plugin is a separately licensed
component you must update the default orb plugins list to include the
MQSeries plugin. The default Artix domain configuration file
<installationDirectory>\artix\1.2\etc\domains

\artix.cfg contains this line in the root scope:

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "tunnel","ws_orb", "fixed"];

xmlns:routing=”http://schemas.iona.com/routing”

<!-- Routes -->
<routing:route name="r1">

<routing:source
service=”tns:HelloWorldService” port=”HelloWorldPort”/>

<routing:destination
service=”tns:MQHelloWorldService”

port=”MQHelloWorldPort”/>
</routing:route>
103

CHAPTER 10 | Routing
You must add MQ as follows:

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "mq", "tunnel","ws_orb", "fixed"];

Secondly, you must add configuration information specific to the switch
process to the configuration file. At the bottom of the file, append the
following:

This entry creates a new configuration scope named helloWorldSwitch.
This scope includes two configuration settings specific to the switch
process.

The orb_plugins list has been extended to include the “routing” plugin.
The “routing” plugin is part of the Artix product.

The plugins:routing:wsdl_url configuration value defines where the
switch process can obtain the redirection/routing specifications.

This value references the HelloWorld.wsdl file, which includes the two
service and route declarations.

When configured in this way, Artix dynamically converts complex data types
from their input representation to their output representation. Alternatively,
your application can use a type factory plugin, which provides precompiled
class definitions. For this simple demo, there will be no differences in
performance. With more complex WSDL types, you may obtain improved
performance by using the type factory plugin.

helloWorldSwitch
{
orb_plugins = [“local_log_stream”, “iiop_profile”, “giop”,

“iiop”, “bus”, “soap”, “http”, “tunnel”, “mq”,
“routing”];

event_log:filters = [“*=FATAL+ERROR”];

plugins:routing:wsdl_url=”HelloWorld.wsdl”;
};

plugins:routing:wsdl_url=”HelloWorld.wsdl”;

Note: This section describes an optional alternative approach that may
provide increased performance. These demos do not require use of this
option.
 104

The Protocol-Based Routing Demo
Generating the
it_demo_helloWorld_type_factory
library

The type factory, “helloworld_typefactory”, plugin is created in the
factory directory. It is a plugin that supplies the switch process with the
capability to create complex, application specific datatypes. In this
application, there are no complex datatypes, and this plugin does not
provide any functionality.

To use this plugin, you must add it to the orb_plugins listing in the
helloWorldSwitch scope.

You must also add two additional configuration variables to the
helloWorldSwitch scope.

The plugins:routing:use_type_factory configuration value must be
assigned the value "true" and the
plugins:helloworld_typefactory:shlib_name configuration value
provides the name of the library file that includes the executable code for the
“helloworld_typefactory” plugin.

This library file is created in the factory subdirectory during the
compilation process. All of the information needed to create this library is
contained within the HelloWorld.wsdl file included in the factory

subdirectory.

orb_plugins = [“local_log_stream”, “iiop_profile”, “giop”,
“iiop”, “bus”, “soap”, “http”, “tunnel”, “mq”,
“routing”, "helloworld_typefactory"];

plugins:routing:use_type_factory="true";

plugins:helloworld_typefactory:shlib_name=
“it_demo_helloworld_type_factory”;

Note: The naming convention used for the library entry is platform
independent. That is, the value of this configuration variable does not
indicate what platform or compiler was used to create the library. The
actual name of the library file does include this information. The Artix
runtime is aware of platform and compiler restrictions and uses this
knowledge and the value of the plugins:…:shlib_name variable to
identify the corresponding library file.
105

CHAPTER 10 | Routing
Examine the WSDL file in the factory subdirectory and note that it
contains only one <service>…</service> tag and does not include the
<routing:route>…</routing:route> tag. As far as the type factory library
is concerned, the important information is contained within the
<types>…</types>, <portType>…</portType> and <binding>…</binding>

tags, which are identified through the entries within the
<service>…</service> tag. Since all of the WSDL files used by this
application include the same <portType>…</portType> and
<binding>…</binding> tag content, either <service>…</service> tag
would have been acceptable. Which <service>…</service> tag you
choose does, however, affect the compilation process, as you will see in the
following section
 106

The Protocol-Based Routing Demo
Compiling and Running the Application
Before you can fully appreciate the what is happening during the
compilation process, you need to review the what happens when you
process the WSDL file with the wsdltocpp.bat file.

The wsdltocpp.bat file may use any, or all, of the following command line
arguments.

Previous demos used only the -w, -n and -d command line arguments.
For this demo, you will also use the -e, -t, and -f command line
arguments.

The WSDL files currently included in the client and server subdirectories
contain only one <service>…</service> tag and, as in the previous demos,
the wsdltocpp.bat utility can determine what service and port need to be
supported in the generated code. However, in this demo the WSDL files
were edited so that they only included information relevant to the associated
process. You may want to use a common WSDL file for all processes within
your application or your routing paradigm require that multiple
<service>…</service> tags be included in the WSDL files associated with
each process. In these situations, you need to specify which service should
be referenced from within the generated code. You do this via the -e and
-t command line arguments. To demonstrate usage, the makefile in each
subdirectory includes these arguments.

What is the purpose of the -f command line argument? Including the -f

argument causes the wsdltocpp.bat utility to generate the type factory
library file. Consequently, the makefile in the factory subdirectory
includes this argument.

-w WSDL-URL
[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-n namespace] [-f]
[-impl]
[-v] [-license] [-?]

Note: If you have chosen to use the type factory approach to routing, the
switch process needs access to this library file. You must place the
<installationDirectory>\artix\1.2\demos\routing\protocol_routing

\factory subdirectory on the PATH before running the application.
107

CHAPTER 10 | Routing
Code generation dependencies There are some dependencies between the wsdltocpp.bat utility’s
command line arguments.

In the earlier demos, you used the -w, -n and -d arguments. In this demo,
you use the -w, -n, -e, and -t arguments.

If you need to combine the -e and -t arguments with the -d argument,
you must also use the -f argument.

Compiling the Application Code Since all of the subdirectories already contain the required files, you can
simply compile the application from the <installationDirectory>

\artix\1.2\demos\routing\protocol_routing directory.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\routing\protocol_routing directory and issue the command

nmake all

Running the Application You must first start the server and switch processes and then run the client
application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. [Only required if you have chosen to use the type factory approach to
routing.]

Add the factory subdirectory to the PATH by issuing the command:

set PATH=%PATH%;<installationDirectory>\artix\1.2\demos

\routing\protocol_routing\factory

3. Move to the <installationDirectory>\artix\1.2

\demos\routing\protocol_routing\server subdirectory and issue
the command:

start server

4. Move to the <installationDirectory>\artix\1.2

\demos\routing\protocol_routing\switch subdirectory and issue
the command:

start switch
 108

The Protocol-Based Routing Demo
5. Move to the <installationDirectory>\artix\1.2

\demos\routing\protocol_routing\client subdirectory and issue
the command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.

Using other transport protocols Each of the WSDL files includes a <service>…</service> entry that
specifies a SOAP over HTTP port definition for the MQHelloWorldService.
Alternatively, communication between the switch and server processes can
be SOAP over MQ or IIOP Tunneling.

In addition, when starting the server process that receives requests via IIOP
tunneling, you must specify appropriate configuration information. As
described in the IIOP tunneling example, the configuration information is
included in the scope tunnel.demo. Consequently, start the server process
with the command:

Stopping the processes Stop the server and switch processes by giving the Ctrl-C command in
their respective command windows.

start server -ORBname tunnel.demo
109

CHAPTER 10 | Routing
Understanding the Application
This is a basic illustration of how to propagate an invocation across multiple
transport protocols. The WSDL file used by the client application includes
one <service><port> section that specifies what protocol (SOAP/HTTP)
and port (8080) the client application must use to communicate with the
switch process.

The WSDL file used by the server application includes one
<service><port> section that specifies what protocol (SOAP/MQ,
SOAP/IIOP_Tunneling, or SOAP/HTTP), and related connection information,
the server process will use to receive requests from the switch process.

The WSDL file used by the switch application includes two active
<service><port> sections; the first specifies communication between the
client and switch processes while the second describes communication
between the switch and server processes.

In addition, the WSDL file used by the switch application includes the
<route> section, which specifies that requests received via SOAP/HTTP on
port 8080 should be routed to the server using an alternative protocol.

All requests from the client are sent to the server process via the alternative
protocol. In the following demo, you will employ a more complex routing
paradigm in which specific operation invocations are routed to different
server processes.

Note: Although the equivalent of multiple <service><port> sections
exist, only one is active. The alternative connection information is
commented out.
 110

The Operation-Based Routing Demo
The Operation-Based Routing Demo
This demo is located in the <installationDirectory>\artix\1.2

\demo\routing\operation_routing directory. This demo contains five
subdirectories: client, factory, server, server2, and switch.

This demo is identical to the protocol routing demo with the exception that
you will start two server processes. The switch process will redirect/route
the sayHi messages to the first server process and redirect/route the
greetMe messages to the second server process.

The only differences between this demo and the protocol routing demo is in
the WSDL files associated with the switch and server processes.

The switch process WSDL file As with the protocol routing demo, multiple <service>…</service> entries
are used to specify the transports between the client and switch processes
and the switch and server processes. In this demo,

• The first <service>…</service> tag defines the communication
between the client and switch processes – SOAP over HTTP – service
name HelloWorldService, with the switch using port 8080.

• The second <service>…</service> tag defines the communication
between the switch process and the first instance of the server – SOAP
over HTTP – service name MQHelloWorldService, with the server using
port 8090.

• The third <service>…</service> tag defines the communication
between the switch process and the second instance of the server –
SOAP over HTTP – service name RTHelloWorldService, with the server
using port 8085.

Since the switch process needs to redirect/route sayHi messages to the first
server process, and greetMe messages to the second server process, there
are two <routing:route>…</routing:route> tags. In addition to the
<routing:source> and <routing:destination> tags, the
<routing:operation> tag specifies which messages should be
redirected/routed to the destination service.
111

CHAPTER 10 | Routing
These specifications are summarized in the following extract from the WSDL
file.

The Server Process WSDL file The WSDL files associated with each of the server processes are identical
with the exception of the <service>…</service> tag, which specifies a
unique service name and port. The first server process uses the service

<service name=”HelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”HelloWorldPort”>
<soap:address location=”http://localhost:8080”/>

</port>
</service>

<service name=”RTHelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”RTHelloWorldPort”>
<soap:address location=”http://localhost:8085/”/>

</port>
</service>

<service name=”MQHelloWorldService”>
<port binding=”tns:HelloWorldPortBinding”

name=”MQHelloWorldPort”>
<soap:address location=”http://localhost:8090/”/>

</port>
</service>

<routing:route name="r1">
<routing:source service=”tns:HelloWorldService”

port=”HelloWorldPort”/>
<routing:operation name=”sayHi”/>
<routing:destination service=”tns:MQHelloWorldService”

port=”MQHelloWorldPort”/>
</routing:route>

<routing:route name="r2">
<routing:source service=”tns:HelloWorldService”

port=”HelloWorldPort”/>
<routing:operation name=”greetMe”/>
<routing:destination service=”tns:RTHelloWorldService”

port=”RTHelloWorldPort”/>
</routing:route>
 112

The Operation-Based Routing Demo
name MQHelloWorldService and listens on port 8090. The second server
process uses the service name RTHelloWorldService and listens on port
8085.

The client process WSDL file The client process has no knowledge of the redirection/routing performed by
the switch. Its WSDL file includes only the <service>…</service> tag that
specifies the HelloWorldService and SOAP over HTTP communication with
the switch on port 8080.
113

CHAPTER 10 | Routing
Compiling and Running the Application
Since all of the subdirectories already contain the required files, you can
simply compile the application from the <installationDirectory>

\artix\1.2\demos\routing\operation_routing directory.

Compiling the Application Code 1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\routing\operation_routing directory and issue the command

nmake all

Running the Application You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. [Only required if you have chosen to use the type factory approach to
routing.]

Add the factory subdirectory to the PATH by issuing the command:

set PATH=%PATH%;<installationDirectory>\artix\1.2\demos

\routing\operation_routing\factory

3. Move to the <installationDirectory>\artix\1.2

\routing\operation_routing\server subdirectory and issue the
command:

start server

4. Move to the <installationDirectory>\artix\1.2\demos

\routing\operation_routing\server2 subdirectory and issue the
command:

start server

5. Now move to the <installationDirectory>\artix\1.2\demos

\routing\operation_routing\switch subdirectory and issue the
command:

start switch
 114

The Operation-Based Routing Demo
6. Finally move to the <installationDirectory>\artix\1.2\demos

\routing\operation_routing\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.
Note that each server processes only handles a single message. Stop the
server and switch processes.

Stopping the processes Stop the server and switch processes by giving the Ctrl-C command in
their respective command windows.
115

CHAPTER 10 | Routing
Understanding the Application
This operation routing demo is a little more complex than the protocol
routing demo. In this example, the client process uses SOAP/HTTP to
communicate with the switch process, which is listening on port 8080. If
you examine the WSDL file included in the client subdirectory, you will
note that there is only one <service><port> section, which provides this
connection information.

The server processes listen for SOAP/HTTP requests from the switch process
on port 8085 or 8090, respectively. If you examine the WSDL file included
in the server and server2 directories, you will note that there is only one
<service><port> section in each file, which provides the relevant
connection information for that server.

The WSDL file within the switch directory is more complex. This file
includes three <service><port> sections. The first entry, including
SOAP/HTTP and port 8080, specifies what protocol and port the switch
process uses to receive requests from the client process; this is the same
specification as contained in the WSDL file included in the client

directory. The second entry, including SOAP/HTTP and port 8085, specifies
what protocol and port the switch process uses to send requests to one of
the server processes, while the third entry specifies the same information for
the other server process. These entries are the same as the corresponding
sections in the WSDL files included in the server and server2 directories.

In addition, the WSDL file used by the switch process includes multiple
<route> sections that specify which operation invocations should be
directed to each server process.

Monitoring the Runtime
Environment

After starting the first server process, open a command window and issue
the command

Review the listing and confirm that port 8090 is listed. Now start the
second server process and again review the port usage; confirm that port
8085 is also listed. Finally, start the switch process and review the port
usage; confirm that port 8080 is included in the list.

netstat -a
 116

Embedding the Switch Functionality in a Process
Embedding the Switch Functionality in a
Process

In the protocol routing and operation routing demos, request routing was
performed by a switch process that runs independently of the client and
server processes. If you examine the source code in the switch.cxx file, it
is difficult to determine where the routing processing logic is coded. The
application simply initializes the runtime environment and enters a
processing loop.

In actual fact, the “business end” of this application is performed by the
application specific and routing plugins that you added to the orb_plugins

list that this application uses. Recall that before you ran either demo, you
created the helloWorldSwitch configuration scope, which includes three
runtime specifications.

using namespace IT_Bus;

int
main(int argc, char* argv[]
)
{

try
{

IT_Bus::init(argc, argv, “helloWorldSwitch”);

IT_Bus::run();
}
catch (IT_Bus::Exception& e)
{

printf(“Exception occurred: %s”, e.Message());
return 1;

}
return 0;

}

helloWorldSwitch
{
orb_plugins = [“local_log_stream”, “iiop_profile”, “giop”,

“iiop”, “bus”, “soap”, “http”, “mq”, “tunnel”,
“routing”];
117

CHAPTER 10 | Routing
The orb_plugins list includes the routing plugin, which is part of the
Artix product.

The event_log:filters entry allows the logging level to be set at the
application level. The plugins:routing:wsdl_url entry provides the path
to the WSDL file that includes the routing related entries, i.e., the multiple
<service><port> sections and the <route> section.

By starting the switch process under the helloWorldSwitch configuration
scope, the plugins that provide routing functionality are automatically
loaded.

It would seem, therefore, that since routing is implemented through plugins,
simply loading the required plugins during process initialization should
provide routing functionality. This is, fortunately, the case, as is illustrated in
the next sections.

Modifying the HelloWorld.wsdl
File

Recall that each application uses a different version of the HelloWorld.wsdl

file. This is not actually required.

During code generation, you specified what service and port corresponded to
each process. For example, if you examine the makefile in the client

subdirectory you will see that the client process runs against the
HelloWorldService/HelloWorldPort endpoint. This is specified through the
-e and -t flags to the wsdltocpp utility. The server process in the server

subdirectory runs as the MQHelloWorldService/MQHelloWorldPort endpoint
while the server process in the server2 subdirectory runs as the
RTHelloWorldService/RTHelloWorldPort endpoint.

Since the endpoint specifications are encoded into the classes generated by
the wsdltocpp utility, the stub and skeleton classes will only access the
<service><port> information corresponding to the specified endpoint. The
fact that the WSDL file includes multiple <service><port> sections for
multiple endpoints is immaterial.

event_log:filters = [“*=FATAL+ERROR”];

plugins:routing:wsdl_url=”HelloWorld.wsdl”;

};
 118

Embedding the Switch Functionality in a Process
Alter the WSDL file In the operation routing demo, copy the HelloWorld.wsdl file from the
switch subdirectory into the client, server, and server2 directories.

Running the Application By running an application under the helloWorldSwitch configuration
scope, you enable basic routing functionality. You can specify which process
runs the embedded routing functionality by supplying the -ORBname

helloWorldSwitch command line arguments when starting the process.

Embedding routing functionality
within the first server process

Return to the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command

Open a command window and issue the command

Review the listing and confirm that both ports 8080 and 8090 are listed.

Start the second server process with the command

Review the port usage and confirm that port 8085 is also listed.

Run the client process and confirm that requests are properly routed to the
two servers.

Stop the server processes.

Embedding routing functionality
within the second server process

Rerun the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command

Note: Do not recompile this application. You will change how this
application runs through the WSDL file and runtime configuration.

start server -ORBname helloWorldSwitch

netstat -a

start server

start server
119

CHAPTER 10 | Routing
Open a command window and issue the command

Review the listing and confirm that port 8090 is listed.

Start the second server process with the command

Review the port usage and confirm that ports 8080 and 8085 are also
listed.

Run the client process and confirm that requests are properly routed to the
two servers.

Stop the server processes.

Embedding routing functionality
within the client process

Rerun the operation routing demo. However, as you start the server
processes you will review port usage.

Start the first server process with the command

Open a command window and issue the command

Review the listing and confirm that port 8090 is listed.

Start the second server process with the command

Review the port usage and confirm that port 8085 is also listed.

Run the client process with the command

Confirm that requests are properly routed to the two servers.

Stop the server processes.

netstat -a

start server -ORBname helloWorldSwitch

start server

netstat -a

start server

client <someName> -ORBname helloWorldSwitch
 120

The Content-Based Routing Demo
The Content-Based Routing Demo
This demo is located in the <installationDirectory\artix\1.2

\demos\routing\content_routing directory. This demo contains four
subdirectories: client, server, server2, and switch.

This demo accomplishes the same processing objectives as the operation
routing demo, that is, requests for the sayHi operation are sent to one
server process and requests for the greetMe method are sent to a second
server process. The difference is that content based routing requires an
independent switch process, which now includes processing logic to
redirect/route the requests to the appropriate server processes.

In this demo, the switch process hosts an implementation object that
implements the same interface (WSDL contract) as the implementation
objects in your server processes. Within the switch process, each request is
delivered to the implementation object, which then redirects the request
based on your content routing paradigm. As you will see, the switch process
implementation object creates proxy objects and becomes a client to the
Artix server processes.

The HelloWorld.wsdl File This file includes the same content as the HelloWorld.wsdl file used in the
operation routing demo with the exception that the <route> tag content has
been removed. Request routing is no longer the responsibility of the
underlying Artix runtime; it will be implemented in code you write into the
switch process.

As in the operation routing demo, the HelloWorld.wsdl file includes
multiple <service><port> sections, which specify the ports on which the
switch and server processes listen. Again, there is no harm in including all of
these entries in the WSDL file used by a process; directives used by the
wsdltocpp utility during the code generation step insure that each process
is properly coded to use a specific <service><port> section. However, for
clarity, unnecessary <service><port> sections are inactive in the WSDL
files used by each process.
121

CHAPTER 10 | Routing
The Server Applications The code within the server and server2 subdirectories is identical to the
corresponding directories in the previous routing demos. These server
processes run completely independently of the switch and client processes.
Regardless of the routing paradigm being used, the code within the target
objects remains unchanged.

The Client Application This code is identical to the corresponding application in the previous
routing demos. The client process runs completely independently of the
switch and server processes. Regardless of the routing paradigm being used,
the code within the client application remains unchanged.

The Switch Application This application differs significantly from the switch processes of the
previous routing demos. For protocol or operation routing, a generic switch
process, configured to load the routing and application specific plugins,
implemented the routing logic. Application specific information was
provided through the application specific plugin and the information within
the WSDL file <route> tag.

For content based routing, the switch process becomes similar to a server
process and contains application specific code that provides the routing
logic. As an illustration of an alternative coding approach, all of the code for
the switch process has been included in a single source code file—
switch.cxx.

The switch.cxx source code file contains three “components”: a class
definition for the implementation object— HelloWorldRouterImpl; a class
definition for the implementation class factory object—
HelloWorldRouterImplFactory; and the process mainline— main().
Examine each “component” and observe that they are conceptually identical
to the HelloWorldImpl and HelloWorldImplFactory classes generated by
the wsdltocpp utility; the HelloWorldRouterImpl class implements the
same interface (WSDL contract) as the HelloWorldImpl class, and the
HelloWorldRouterImplFactory class implements the same functionality as
the HelloWorldImplFactory class.

In writing the HelloWorldRouterImpl and HelloWorldRouterImplFactory

classes you are creating code analogous to the proxy code generated by the
wsdltocpp utility.
 122

The Content-Based Routing Demo
The HelloWorldRouterImpl class This is the most interesting code. Although this class implements the same
interface (WSDL contract) as the HelloWorldImpl class, the processing
logic is completely different.

This class includes two private variables – sayHiClient and greetMeClient
– that are of type HelloWorldClient, the proxy class generated by the
wsdltocpp utility. The constructor code initializes each of these variables;
the HelloWorldRouterImpl class uses the proxy class in a similar manner
as your client application. However, in all of the previous demos, the client
code used the default (no argument) constructor when creating an instance
of the proxy. This demo uses the overloaded proxy class constructor that
allows you to specify the WSDL file, service, and port targeted by the proxy.
The sayHiClient variable is initialized to use the target endpoint offered by
the process started in the server subdirectory, whereas the greetMeClient

variable is initialized to use the target endpoint offered by the process
started in the server2 subdirectory.

class HelloWorldRouterImpl: public HelloWorldServer
{
public:
HelloWorldRouterImpl(IT_Bus::Bus_ptr bus,

IT_Bus::Port *port) : HelloWorldServer (bus, port),
sayHiClient(

“HelloWorld.wsdl”,
QName(““, “MQHelloWorldService”,

“http://xmlbus.com/HelloWorld”),
“MQHelloWorldPort”

),
greetMeClient(

“HelloWorld.wsdl”,
QName(““, “RTHelloWorldService”,

“http://xmlbus.com/HelloWorld”),
“RTHelloWorldPort”

)
{
}

...

private:
HelloWorldClient sayHiClient;
HelloWorldClient greetMeClient;

};
123

CHAPTER 10 | Routing
The sayHi and greetMe method bodies are where you write the content
based routing logic, which, in this example, simply invokes the
corresponding method on the target endpoint processes. In a more
meaningful application, you would implement a more sophisticated routing
paradigm.

Because the sayHiClient and greetMeClient proxies are targeted to
different endpoints, the HelloWorldRouterImpl object created within the
switch process will reinvoke the sayHi and greetMe methods within
different server processes.

The
HelloWorldRouterImplFactory
class

The constructor and create_server methods contain the interesting code.
In the constructor, the HelloWorldRouterImplFactory class registers itself
as the target endpoint for the HelloWorldService. In the create_server

method, the factory creates an instance of the HelloWorldRouterImpl

virtual void greetMe
(const IT_Bus::String& stringParam0,
IT_Bus::String& Response)
IT_THROW_DECL((IT_Bus::Exception))
{
cout << “HelloWorldRouterImpl::greetMe

called with message: “
<< stringParam0 << endl;

IT_Bus::String greetMeResponse;
greetMeClient.greetMe
(stringParam0, greetMeResponse);

Response = greetMeResponse;
}

virtual void sayHi
(IT_Bus::String& Response)
IT_THROW_DECL((IT_Bus::Exception))
{
cout << “HelloWorldRouterImpl::sayHi

called” << endl;

IT_Bus::String sayHiResponse;
sayHiClient.sayHi
(sayHiResponse);

Response = sayHiResponse;
}

 124

The Content-Based Routing Demo
class, which provides links to the target endpoints MQHelloWorldService

and RTHelloWorldService. What happens in these methods is directly
analogous to the processing within the HelloWorldImplFactory class
generated by the wsdltocpp utility.

class HelloWorldRouterImplFactory :
public ServerFactoryBase
{
public:
HelloWorldRouterImplFactory():
m_wsdl_location
(“HelloWorld.wsdl”),

m_service_name
(““, “HelloWorldService”,
“http://xmlbus.com/HelloWorld”)

{
IT_Bus::Bus::register_server_factory(

m_service_name,
this

);
}

virtual ~HelloWorldRouterImplFactory()
{
IT_Bus::Bus::deregister_server_factory (m_service_name);

}

virtual IT_Bus::ServerStubBase*
create_server(IT_Bus::Bus_ptr bus, IT_Bus::Port *port)
{
return new HelloWorldRouterImpl(bus, port);

}

virtual const IT_Bus::String &
get_wsdl_location()
{
return m_wsdl_location;

}

virtual void
destroy_server (IT_Bus::ServerStubBase* server)
{
delete server;

}
private:
String m_wsdl_location;
125

CHAPTER 10 | Routing
The switch mainline The main method is similar to the server mainline code except that you
must explicitly create an instance of the HelloWorldRouterImplFactory

class.

QName m_service_name;
};

int
main(int argc, char* argv[])
{
try
{
HelloWorldRouterImplFactory factory;
IT_Bus::init(argc, argv);
cout << “Switch service waiting for requests.”

<< endl;
IT_Bus::run();

}
catch (IT_Bus::Exception& e)
{
printf(“Exception occurred: %s”, e.Message());
return 1;

}
return 0;

}

 126

The Content-Based Routing Demo
Compiling and Running the Application
Since all of the subdirectories already contain the required files, you can
simply compile the application from the <installationDirectory>\artix

\1.2\demos\routing\contentRouting directory.

Compiling the Application Code 1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos\

routing\content_routing directory and issue the command

nmake all

Running the Application You must first start the server process and then run the client application.

1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the batch file artix_env[.bat].

2. Move to the <installationDirectory\artix\1.2\demos\routing

\content_outing\server subdirectory and issue the command:

start server

3. In the command window from step 1, issue the command

netstat -a

and confirm that port 8090 is active.

4. Move to the <installationDirectory>\artix\1.2\demos

\routing\content_routing\server2 subdirectory and issue the
command:

start server

In the command window from step 1, issue the command

netstat -a

and confirm that port 8085 is active.

5. Now move to the <installationDirectory>\artix\1.2\demos

\routing\contentRouting\switch subdirectory and issue the
command:

start switch

In the command window from step 1, issue the command
127

CHAPTER 10 | Routing
netstat -a

and confirm that port 8080 is active.

6. Finally move to the <installationDirectory>\artix\1.2\demos

\routing\content_routing\client subdirectory and issue the
command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.
Note that each server processes only handles a single message but that all
messages pass through the implementation object within the switch
process. Stop the server and switch processes.

Stopping the processes Stop the server and switch processes by giving the Ctrl-C command in
their respective command windows.
 128

The Content-Based Routing Demo
Understanding the Application
In this example, the client process uses SOAP/HTTP to communicate with
the switch process, which is listening on port 8080. If you examine the
WSDL file included in the client subdirectory, you will note that there is
only one <service><port> section, which provides this connection
information.

The server processes listen for SOAP/HTTP requests from the switch process
on port 8085 or 8090, respectively. If you examine the WSDL file included
in the server and server2 directories, you will note that there is only one
<service><port> section in each file, which provides the relevant
connection information for that server.

The WSDL file within the switch directory is more complex. This file
includes three <service><port> sections. The first entry, including
SOAP/HTTP and port 8080, specifies what protocol and port the switch
process uses to receive requests from the client process; this is the same
specification as contained in the WSDL file included in the client

directory. The second entry, including SOAP/HTTP and port 8085, specifies
what protocol and port the switch process uses to send requests to one of
the server processes, while the third entry specifies the same information for
the other server process. These entries are the same as the corresponding
sections in the WSDL files included in the server and server2 directories.

The client sends each request to the switch process. The switch process
unmarshals the request and makes the corresponding invocation on its
implementation object. Content routing logic is applied to each request and
the switch process propagates the request, using SOAP/HTTP, to the
appropriate server process. The server receives the request, unmarshals,
and makes the corresponding invocation on its implementation object. The
response from the server implementation object returns to the client via the
switch implementation object.
129

CHAPTER 10 | Routing
 130

CHAPTER 11

Accessing an
Endpoint via
Multiple Protocols
In previous chapters, you developed a collection of demos that
showed how Artix™ can use a variety of transport protocols to
integrate the same client and server applications. You also
learned how Artix can function as a middleware switch and
reissue a request received on one protocol using a second
protocol. In this chapter, you will develop an example that
shows how a single Artix server process can use a single
implementation object to process requests received via
multiple protocols.
129

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols
In this chapter This chapter discusses the following topic:

The Common Target Demos page 131
 130

The Common Target Demos
The Common Target Demos
The starting point code for this demo is located in the
<installationDirectory>\artix\1.2\demos\common_target directory.
This demo is completely coded. The important concepts involve editing the
WSDL file and one small change to the implementation object.

Example design In this demo, two client applications send requests to a single Artix server.
One client is a C++ CORBA application that uses the CORBA/IIOP transport
protocol to send requests; the second client is a C++ application that uses
the SOAP/HTTP transport protocol to send requests. The server process
receives both types of requests and invokes on a common implementation
object. Neither client is aware of, nor cares about, the other.

The WSDL file now includes two <binding> and <service> specifications,
one for the CORBA/IIOP transport and one for the SOAP/HTTP transport.
Both <binding> specifications refer to the same <portType> specification,
so the operations available to each client are similar.

The HelloWorld.wsdl File There is nothing new in this file. Although there are two <binding> and
<service> specifications, these sections simply contain copies of the
equivalent sections of earlier demos. As in the routing demos of the previous
chapter, you will need to use the -e and -t command line arguments to
the wsdltocpp utility when processing the WSDL file.

The <definition>, <types> and
<portType> specifications

These sections of the WSDL document are identical to the corresponding
sections within the WSDL document used in the CORBA/IIOP transport
demos.

<?xml version=”1.2” encoding=”UTF-8”?>
<definitions name=”HelloWorld.idl”

targetNamespace=
“http://schemas.iona.com/idl/HelloWorld.idl”

xmlns=
“http://schemas.xmlsoap.org/wsdl/”

xmlns:soap=
“http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:tns=
“http://schemas.iona.com/idl/HelloWorld.idl”
131

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols
xmlns:xsd=
“http://www.w3.org/2001/XMLSchema”

xmlns:xsd1=
“http://schemas.iona.com/idltypes/HelloWorld.idl”

xmlns:corba=
“http://schemas.iona.com/bindings/corba”

xmlns:corbatm=
“http://schemas.iona.com/bindings/corba/typemap”>

<types>
<schema targetNamespace=

“http://schemas.iona.com/idltypes/HelloWorld.idl”
xmlns=

“http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=

“http://schemas.xmlsoap.org/wsdl/”>
<element name=”HW.HelloWorld.sayHi.return”

type=”xsd:string”/>
<element name=”HW.HelloWorld.greetMe.user”

type=”xsd:string”/>
<element name=”HW.HelloWorld.greetMe.return”

type=”xsd:string”/>
</schema>

</types>
<message name=”HW.HelloWorld.sayHi”/>
<message name=”HW.HelloWorld.sayHiResponse”>

<part name=”return”
element=”xsd1:HW.HelloWorld.sayHi.return”/>

</message>
<message name=”HW.HelloWorld.greetMe”>

<part name=”user”
element=”xsd1:HW.HelloWorld.greetMe.user”/>

</message>
<message name=”HW.HelloWorld.greetMeResponse”>

<part name=”return”
element=”xsd1:HW.HelloWorld.greetMe.return”/>

</message>

<portType name=”HW.HelloWorld”>
<operation name=”sayHi”>
<input message=”tns:HW.HelloWorld.sayHi”

name=”sayHi”/>
<output message=”tns:HW.HelloWorld.sayHiResponse”

name=”sayHiResponse”/>
</operation>
<operation name=”greetMe”>
<input message=”tns:HW.HelloWorld.greetMe”
 132

The Common Target Demos
The <binding> specification There are two <binding> specifications; the first describes the binding
within the corba namespace and the second describes the binding in the
soap namespace. The CORBA specification is identical to the corresponding
specification in the CORBA/IIOP demo and the soap specification is identical
to the corresponding specification in the SOAP/HTTP demo.

name=”greetMe”/>
<output message=”tns:HW.HelloWorld.greetMeResponse”

name=”greetMeResponse”/>
</operation>

</portType>
...
</definitions>

<binding name=”HW.HelloWorldBinding”
type=”tns:HW.HelloWorld”>

<corba:binding repositoryID=”IDL:HW/HelloWorld:1.2”/>
<operation name=”sayHi”>
<corba:operation name=”sayHi”>
<corba:return name=”return”

idltype=”corba:string”/>
</corba:operation>
<input/>
<output/>

</operation>
<operation name=”greetMe”>
<corba:operation name=”greetMe”>
<corba:param name=”user”

mode=”in” idltype=”corba:string”/>
<corba:return name=”return”

idltype=”corba:string”/>
</corba:operation>
<input/>
<output/>

</operation>
</binding>

<binding name=”SOAPHelloWorldPortBinding”
type=”tns:HW.HelloWorld”>

<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”greetMe”>
<soap:operation soapAction=”” style=”rpc”/>
<input name=”greetMe”>
<soap:body encodingStyle=
133

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols
The <service> specifications There are two <service> specifications. The CORBA specification is
identical to the corresponding specification in the CORBA/IIOP demo and
the soap specification is identical to the corresponding specification in the
SOAP/HTTP demo.

“http://schemas.xmlsoap.org/soap/encoding/”
namespace=

“http://xmlbus.com/HelloWorld” use=”encoded”/>
</input>
<output name=”greetMeResponse”>
<soap:body encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”
namespace=

“http://xmlbus.com/HelloWorld” use=”encoded”/>
</output>

</operation>
<operation name=”sayHi”>
<soap:operation soapAction=”” style=”rpc”/>
<input name=”sayHi”>
<soap:body encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”
namespace=

“http://xmlbus.com/HelloWorld” use=”encoded”/>
</input>
<output name=”sayHiResponse”>
<soap:body encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”
namespace=

“http://xmlbus.com/HelloWorld” use=”encoded”/>
</output>

</operation>
</binding>

<service name=”SOAPHelloWorldService”>
<port binding=”tns:SOAPHelloWorldPortBinding”

name=”SOAPHelloWorldPort”>
<soap:address location=”http://localhost:8080”/>

</port>
</service>

<service name=”HW.HelloWorldService”>
<port binding=”tns:HW.HelloWorldBinding”

name=”HW.HelloWorldPort”>
<corba:address location=

“file://../HelloWorld.ior”/>
 134

The Common Target Demos
<!--
<corba:address location=

“corbaname:rir:/NameService#helloWorld”/>
-->
</port>

</service>
135

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols
The Demo Code
There are no changes to the client.cxx, server.cxx, or
HW_HelloWorldImpl.h files. Edits have been made to the
HW_HelloWorldImpl.cxx file.

Modifying the Implementation
Class Code

If you run the wsdltocpp utility with a WSDL file containing multiple
<service> specifications (as is true in this demo), you must use the -e and
-t flags to indicate which <service> the implementation object should
represent. When you use the -impl flag, the wsdltocpp utility will also
generate starting point code for your implementation object; the <service>

specified through the -e and -t flags will be incorporated into the
generated code. Yet, in this demo, you want the implementation object to
represent both <service> specifications. Consequently, you must edit some
of the generated code within the HW_HelloWorldImpl.cxx file. This edit has
no effect on the method bodies for your business methods; the editing
involves the processing logic within the constructor of the factory for your
implementation class.

A second service registration is provided through the added code. This edit
has already been made to the demo’s code.

HW_HelloWorldImplFactory::HW_HelloWorldImplFactory()
{

m_wsdl_location =
IT_Bus::String(“HelloWorld.wsdl”);

IT_Bus::QName service_name
(““, “HW.HelloWorldService”,
“http://schemas.iona.com/idl/HelloWorld.idl”);

IT_Bus::Bus::register_server_factory(
service_name,
this

);
// Register a second service with the same implementation object

IT_Bus::QName service_nameSOAP
(““, “SOAPHelloWorldService”,
“http://schemas.iona.com/idl/HelloWorld.idl”);

IT_Bus::Bus::register_server_factory(
service_nameSOAP,
this

);
}

 136

The Common Target Demos
Compiling the Application Code Since all of the subdirectories already contain the required files, you can
simply compile the application from the <installationDirectory>\artix

\1.2\demos\common_target directory.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2

\demos\common_target directory and issue the command

nmake all

Running the Application You must first start the server and then run the client applications.

1. Open a command window to the <installationDirectory>\artix

\1.2\bin directory and run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\common_target\artix_server subdirectory and issue the command:

start server

3. Move to the <installationDirectory>\artix\1.2\demos

\common_target\corba_client subdirectory and issue the command:

client

or the command:

client “<some name>”

4. Move to the <installationDirectory>\artix\1.2\demos

\common_target\artix_client subdirectory and issue the command:

client

or the command:

client “<some name>”

Observe the messages in both the server and client command windows.
Invocations from both client applications are going to the same Artix server
and implementation object.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.

View the object reference Note that a string version of the CORBA object reference is written to the
subdirectory <installationDirectory>\artix\1.2\demos\common_target.
137

CHAPTER 11 | Accessing an Endpoint via Multiple Protocols
Move to this subdirectory and issue the command

Confirm that the repository ID represented by this object reference is the
same as specified in the WSDL file.

iordump helloWorld.ior
 138

CHAPTER 12

Oneway
Operations
This chapter describes how you specify oneway operations.

In this chapter This chapter discusses the following topics:

Web Service Semantics page 140

The WSDL File page 141

Compiling and Running the Application page 146
139

CHAPTER 12 | Oneway Operations
Web Service Semantics
Using the <portType> section of the WSDL file, you can specify the
semantics of your Web service operations. WSDL defines four types of
operations:

• Oneway Operation: The client process sends a message to the server
process; a corresponding return message from the server process to the
client process is not expected. The client process resumes processing
immediately after sending the message.

• Request-Response Operation: The client process sends a message to
the server process; the server process sends a corresponding return
message to the client process. The client process blocks until the
return message is received.

• Solicit-Response Operation: The server process sends a message to the
client process; the client process sends a corresponding return
message to the server process. The server process blocks until the
return message is received.

• Notification Operation: The server process sends a message to the
client process; a corresponding return message from the client process
to the server process is not expected. The server process resumes
processing immediately after sending the message.

Up to this point in the tutorial, all operations have been request-response.
Consequently, within the <portType> section of the WSDL file, each
<operation> includes both an <input> message and an <output>

message.

Do not be confused by the fact that a <message> definition may not include
a <part> section. For example, a definition for a message that includes a
void return, or a message that does not require input or output parameters,
would not include <part> sections. You have already seen these types of
specifications in the HelloWorld.wsdl file.

In this chapter you will learn how eliminating the <output> tag from an
operation’s definition specifies oneway semantics.
 140

The WSDL File
The WSDL File
To specify oneway versus request-response operations, you need to edit the
WSDL file.

The request-response
HelloWorld.wsdl file

The HelloWorld.wsdl file used in the previous examples included the
following <message> and <portType> specifications.

<message name="greetMe">
<part name="stringParam0"

type="xsd:string"/>
</message>

<message name="greetMeResponse">
<part name="return"

type="xsd:string"/>
</message>

<message name="sayHi"/>

<message name="sayHiResponse">
<part name="return"

type="xsd:string"/>
</message>

<portType name="HelloWorldPortType">
<operation name="greetMe">

<input message="tns:greetMe"
name="greetMe"/>

<output message="tns:greetMeResponse"
name="greetMeResponse"/>

</operation>

<operation name="sayHi">
<input message="tns:sayHi"

name="sayHi"/>
<output message="tns:sayHiResponse"

name="sayHiResponse"/>
</operation>

</portType>
141

CHAPTER 12 | Oneway Operations
In this fragment you can see that each operation defined within the
<portType> section includes both an <input> and <output> tag (although
the input message to the sayHi operation does not include a <part>

representing an input parameter). That is, each operation definition includes
a request message (the <input> tag) and a response message (the
<output> tag).

Corresponding to these logical operation definitions, the WSDL file also
includes a <binding> section that specifies the encoding used for each
message. The following fragment is from the WSDL file that describes the
SOAP binding.

<binding name="HelloWorldPortBinding"
type="tns:HelloWorldPortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="greetMe">
<soap:operation soapAction=""
style="rpc"/>

<input name="greetMe">
<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</input>
<output name="greetMeResponse">

<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</output>
</operation>

<operation name="sayHi">
<soap:operation soapAction=""
style="rpc"/>

<input name="sayHi">
<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</input>
 142

The WSDL File
Note that within the <binding>, each <operation> includes both an
<input> and <output> designation.

Bindings for other message encodings, for example, TIBCO Rendezvous™ or
WebSphere MQ™ contain equivalent entries.

The Generated Code When this WSDL file is processed by the wsdltocpp utility, the following
method declarations are created from the operation definitions.

Note that the greetMe method signature contains two parameters:
stringParam0 represents the part associated with the request message
greetMe and var_return represents the part associated with the response
message greetMeResponse.

The sayHi method signature contains only one parameter – var_return –
that corresponds to the part associated with the response message
sayHiResponse. The request message sayHi did not have a part element
and the generated method does not contain a corresponding parameter.

The oneway HelloWorld.wsdl file To define an operation as oneway, you simply remove references to the
output message from the <message>, <portType> and <binding> sections.

<output name="sayHiResponse">
<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</output>
</operation>

</binding>

virtual void
greetMe(

const IT_Bus::String & stringParam0,
IT_Bus::String & var_return

) IT_THROW_DECL((IT_Bus::Exception)) = 0;

virtual void
sayHi(

IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

<message name="greetMe">
143

CHAPTER 12 | Oneway Operations
<part name="stringParam0"
type="xsd:string"/>

</message>

<message name="sayHi"/>

<message name="sayHiResponse">
<part name="return"

type="xsd:string"/>
</message>

<portType name="HelloWorldPortType">
<operation name="greetMe">

<input message="tns:greetMe"
name="greetMe"/>

</operation>

<operation name="sayHi">
<input message="tns:sayHi"

name="sayHi"/>
<output message="tns:sayHiResponse"

name="sayHiResponse"/>
</operation>

</portType>

<binding name="HelloWorldPortBinding"
type="tns:HelloWorldPortType">

<soap:binding style="rpc"
transport=
"http://schemas.xmlsoap.org/soap/http"/>

<operation name="greetMe">
<soap:operation soapAction=""

style="rpc"/>
<input name="greetMe">

<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</input>
</operation>

<operation name="sayHi">
<soap:operation soapAction="" style="rpc"/>
<input name="sayHi">

<soap:body
 144

The WSDL File
The WSDL file does not include a definition of a greetMeResponse

message, and the greetMe operation and binding contain only an input
message and encoding specification.

In declaring a oneway operation, you remove the <output> tags from the
<portType> and <binding> sections.

The Generated Code When this WSDL file is processed by the wsdltocpp utility, the following
method declarations are created from the operation definitions.

Now the greetMe method signature only contains a single parameter that
represents the part associated with the request message greetMe.

encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</input>
<output name="sayHiResponse">

<soap:body
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://xmlbus.com/HelloWorld" use="encoded"/>

</output>
</operation>

</binding>

virtual void
greetMe(

const IT_Bus::String & stringParam0
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

virtual void
sayHi(

IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
145

CHAPTER 12 | Oneway Operations
Compiling and Running the Application
All the source code and configuration files are in their appropriate
directories.

Compiling the Application Code The makefiles include entries that incorporate the files into your
executable.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\oneway directory and issue the command

nmake all

The compilation process creates the client.exe and server.exe files in
their respective directories.

Running the Application 1. Open a command window to the <installationDirectory>

\artix\1.2\bin directory and run the artix_env[.bat] file.

2. Move to the <installationDirectory>\artix\1.2

\oneway\server directory and issue the command

start server

3. Move to the <installationDirectory>\artix\1.2

\oneway\client subdirectory and issue the command:

client

or the command:

client “<some name>”

What you should observe Within the server code, a 5 second delay has been added to the greetMe

method body; the code prints a message before and after this delay. Note
that the client code completes and the process exits before the processing
within the greetMe method completes.
 146

Compiling and Running the Application
This is not the same outcome that would arise from a request-response
operation that includes a response message with no part. Although the
method signature in the generated code would not include an out parameter
(similar to the signature of your oneway greetMe method), the client
process would block until the processing within the method body completes.

With a oneway operation, the client code does not block until the server-side
processing completes.

Terminating the server process Issue the Ctrl-C command in the corresponding command window.
147

CHAPTER 12 | Oneway Operations
 148

CHAPTER 13

Type Management
In previous chapters you learned how Artix™ can use multiple
middleware transports. All of the coding examples were based
on a simple HelloWorld application, and String was the only
data type used. This chapter provides guidance on how to work
with other basic data types as well as complex types created
from entries in the WSDL file.

In this chapter This chapter discusses the following topics:

A More Complex Application page 150

Comparing SOAP/RPC and Document/Literal Semantics page 165
149

CHAPTER 13 | Type Management
A More Complex Application
The code contained in the <installationDirectory>\artix\1.2\demos

\simple_client_server directory implements a more complex application
that illustrates how to work with many basic types. Unfortunately, this demo
does not cover all of the types defined in the WSDL file. The code described
in this chapter presents a more complete review.

The BaseService.wsdl file This file, located in the <installationDirectory>\artix\1.2\demos

\simple_client_server\server directory, includes definitions of complex
types and messages and operations that use a variety of basic types as well
as the complex types. Do not try to read or completely understand the

<?xml version="1.2" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://soapinterop.org/xsd">

<types>
<schema targetNamespace="http://soapinterop.org/xsd"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="SOAPStruct">

<all>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>

</all>
</complexType>
<complexType name="ArrayOfSOAPStruct">

<complexContent>
<restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd1:SOAPStruct[]"/>

</restriction>
</complexContent>

</complexType>
 150

A More Complex Application
<complexType name="ArrayOffloat">
<complexContent>

<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:float[]"/>
</restriction>

</complexContent>
</complexType>
<complexType name="ArrayOfint">

<complexContent>
<restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</restriction>
</complexContent>

</complexType>
<complexType name="ArrayOfstring">

<complexContent>
<restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[]"/>

</restriction>
</complexContent>

</complexType>
</schema>

</types>

<message name="echoBase64">
<part name="inputBase64" type="xsd:base64Binary"/>

</message>
<message name="echoBase64Response">

<part name="return" type="xsd:base64Binary"/>
</message>
<message name="echoStruct">

<part name="inputStruct" type="xsd1:SOAPStruct"/>
</message>
<message name="echoStructResponse">

<part name="return" type="xsd1:SOAPStruct"/>
</message>
<message name="echoStructArray">

<part name="inputStructArray"
type="xsd1:ArrayOfSOAPStruct"/>

</message>
<message name="echoStructArrayResponse">

<part name="return" type="xsd1:ArrayOfSOAPStruct"/>
</message>
<message name="echoBoolean">
151

CHAPTER 13 | Type Management
<part name="inputBoolean" type="xsd:boolean"/>
</message>
<message name="echoBooleanResponse">

<part name="return" type="xsd:boolean"/>
</message>
<message name="echoFloat">

<part name="inputFloat" type="xsd:float"/>
</message>
<message name="echoFloatResponse">

<part name="return" type="xsd:float"/>
</message>
<message name="echoFloatArray">

<part name="inputFloatArray" type="xsd1:ArrayOffloat"/>
</message>
<message name="echoFloatArrayResponse">

<part name="return" type="xsd1:ArrayOffloat"/>
</message>
<message name="echoInteger">

<part name="inputInteger" type="xsd:int"/>
</message>
<message name="echoIntegerResponse">

<part name="return" type="xsd:int"/>
</message>
<message name="echoIntegerArray">

<part name="inputIntegerArray" type="xsd1:ArrayOfint"/>
</message>
<message name="echoIntegerArrayResponse">

<part name="return" type="xsd1:ArrayOfint"/>
</message>
<message name="echoString">

<part name="inputString" type="xsd:string"/>
</message>
<message name="echoStringResponse">

<part name="return" type="xsd:string"/>
</message>
<message name="echoStringArray">

<part name="inputStringArray" type="xsd1:ArrayOfstring"/>
</message>
<message name="echoStringArrayResponse">

<part name="return" type="xsd1:ArrayOfstring"/>
</message>
<message name="echoDecimal">

<part name="inputDecimal" type="xsd:decimal"/>
</message>
<message name="echoDecimalResponse">

<part name="return" type="xsd:decimal"/>
</message>
 152

A More Complex Application
<message name="echoDate">
<part name="inputDate" type="xsd:dateTime"/>

</message>
<message name="echoDateResponse">

<part name="return" type="xsd:dateTime"/>
</message>
<message name="echoVoid"/>
<message name="echoVoidResponse"/>
<message name="echoHexBinary">

<part name="inputHexBinary" type="xsd:hexBinary"/>
</message>
<message name="echoHexBinaryResponse">

<part name="return" type="xsd:hexBinary"/>
</message>

<portType name="BasePortType">
<operation name="echoBase64">

<input message="tns:echoBase64" name="echoBase64"/>
<output message="tns:echoBase64Response"

name="echoBase64Response"/>
</operation>
<operation name="echoStruct">

<input message="tns:echoStruct" name="echoStruct"/>
<output message="tns:echoStructResponse"

name="echoStructResponse"/>
</operation>
<operation name="echoStructArray">

<input message="tns:echoStructArray"
name="echoStructArray"/>

<output message="tns:echoStructArrayResponse"
name="echoStructArrayResponse"/>

</operation>
<operation name="echoBoolean">

<input message="tns:echoBoolean"
name="echoBoolean"/>

<output message="tns:echoBooleanResponse"
name="echoBooleanResponse"/>

</operation>
<operation name="echoFloat">

<input message="tns:echoFloat" name="echoFloat"/>
<output message="tns:echoFloatResponse"

name="echoFloatResponse"/>
</operation>
<operation name="echoFloatArray">

<input message="tns:echoFloatArray"
name="echoFloatArray"/>

<output message="tns:echoFloatArrayResponse"
153

CHAPTER 13 | Type Management
name="echoFloatArrayResponse"/>
</operation>
<operation name="echoInteger">

<input message="tns:echoInteger" name="echoInteger"/>
<output message="tns:echoIntegerResponse"

name="echoIntegerResponse"/>
</operation>
<operation name="echoIntegerArray">

<input message="tns:echoIntegerArray"
name="echoIntegerArray"/>

<output message="tns:echoIntegerArrayResponse"
name="echoIntegerArrayResponse"/>

</operation>
<operation name="echoString">

<input message="tns:echoString" name="echoString"/>
<output message="tns:echoStringResponse"

name="echoStringResponse"/>
</operation>
<operation name="echoStringArray">

<input message="tns:echoStringArray"
name="echoStringArray"/>

<output message="tns:echoStringArrayResponse"
name="echoStringArrayResponse"/>

</operation>
<operation name="echoDecimal">

<input message="tns:echoDecimal"
name="echoDecimal"/>

<output message="tns:echoDecimalResponse"
name="echoDecimalResponse"/>

</operation>
<operation name="echoDate">

<input message="tns:echoDate" name="echoDate"/>
<output message="tns:echoDateResponse"

name="echoDateResponse"/>
</operation>
<operation name="echoVoid">

<input message="tns:echoVoid" name="echoVoid"/>
<output message="tns:echoVoidResponse"

name="echoVoidResponse"/>
</operation>
<operation name="echoHexBinary">

<input message="tns:echoHexBinary"
name="echoHexBinary"/>

<output message="tns:echoHexBinaryResponse"
name="echoHexBinaryResponse"/>

</operation>
</portType>
 154

A More Complex Application
<binding name="BasePortBinding" type="tns:BasePortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="echoBase64">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoBase64">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoBase64Response">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoStruct">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoStruct">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoStructResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoStructArray">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
155

CHAPTER 13 | Type Management
<input name="echoStructArray">
<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoStructArrayResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoBoolean">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoBoolean">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoBooleanResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoFloat">

<soap:operation
soapAction="http://soapinterop.org/"

style="rpc"/>
<input name="echoFloat">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoFloatResponse">

<soap:body
 156

A More Complex Application
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

namespace=
"http://soapinterop.org/" use="encoded"/>

</output>
</operation>
<operation name="echoFloatArray">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoFloatArray">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoFloatArrayResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoInteger">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoInteger">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoIntegerResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoIntegerArray">

<soap:operation
157

CHAPTER 13 | Type Management
soapAction=
"http://soapinterop.org/" style="rpc"/>

<input name="echoIntegerArray">
<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoIntegerArrayResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoString">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoString">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoStringResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoStringArray">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoStringArray">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
 158

A More Complex Application
<output name="echoStringArrayResponse">
<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoDecimal">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoDecimal">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoDecimalResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoDate">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoDate">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoDateResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoVoid">
159

CHAPTER 13 | Type Management
<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoVoid">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoVoidResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
<operation name="echoHexBinary">

<soap:operation
soapAction=

"http://soapinterop.org/" style="rpc"/>
<input name="echoHexBinary">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</input>
<output name="echoHexBinaryResponse">

<soap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace=

"http://soapinterop.org/" use="encoded"/>
</output>

</operation>
</binding>

<service name="BaseService">
<port binding="tns:BasePortBinding" name="BasePort">

<soap:address
location="http://localhost:12345"/>

</port>
</service>

</definitions>
 160

A More Complex Application
contents of this file. What is important is the fact that five complex types are
defined – SOAPStruct, ArrayOfSOAPStruct, ArrayOffloat, ArrayOfint,
and ArrayOfstring – and that messages and operations include both the
basic types as well as these more complex types.

Also note that in defining these complex types within the <types>…<\types>

section, and in describing the encoding within the <binding>…<\binding>

section, specific reference to SOAP-ENC data types and the soap namespace
prefix are used. This WSDL file uses SOAP/RPC semantics. A following
section of this chapter, discusses document/literal semantics.

When you run the wsdltocpp utility, these complex types will be
represented by class definitions in the files BaseTypes.h and
BaseTypes.cxx. When you write your own applications, you will use the
contents of these files to understand the programming interface for your
complex types.

The Server Application Code If you examine the server application code in the <installationDirectory>

\artix\1.2\demos\simple_client_server\server directory, you will see
that the implementation class simply returns the input parameter as each
method’s output. Consequently, you only need to study the code within the
client application to understand how you work with other basic data types
and the code generated from your complex type definitions.

The Client Application Code This code is contained in the <installationDirectory>\artix\1.2\demos

\complex_types\client directory. This chapter will not discuss the entire
application as the approach to coding many of the business methods is
similar; rather, the chapter presents an overview of where to find the
required application programming interface information.

Note: In this demo, all of the files generated by the wsdltocpp code
generation utility are prefixed with the character string Base. This prefix is
derived from the value assigned to the name attribute within the
<portType> tag. In the BaseService.wsdl file, this value is
BasePortType, which the code generation utility modifies to Base. Names
ending with PortType will be modified; the code generation utility will not
modify other names.
161

CHAPTER 13 | Type Management
The complexClient.cxx File This is the file that represents your client application. At the beginning of the
file the header file BaseClient.h, which was generated from the WSDL file
by the wsdltocpp utility, is included in the application. Also, the
namespace IT_Bus is declared.

These declarations provide access to the class definitions for the base types.

If you now examine the BaseClient.h file, you will note that several
generated and Artix product-related header files are included.

For the purposes of this chapter, the two important header files are types.h

and Base.h.

The types.h file The file types.h, which is located in the <installationDirectory>\artix

\1.2\include\it_bus directory, leads to definitions for the base types. The
types.h file includes declarations for many of the base types within the
IT_Bus namespace, such as, Decimal, String, Float, Boolean.

Some of these types are simply typedef declarations, and the actual data
type is a standard C++ type. For example, Double, Float, Character, Byte
and UByte are implemented as standard C++ types.

Other types are typedef declarations based on IONA’s platform neutral
types. For example, the Artix type IT_Bus::String is implemented by the
type IT_String and the IT_Bus::Short is implemented by the type
IT_Short. The definitions of these types are contained in the header files
listed at the start of the types.h file, and may be found in the
subdirectories under the <installationDirectory>\artix\1.2\include

directory.

If you have a question about using one of these base types, you can find the
necessary application programming interface described in one of these
header files.

#include "BaseClient.h"
…
using namespace IT_Bus;

#include "Base.h"
#include <it_bus\service.h>
#include <it_bus\bus.h>
#include <it_bus\types.h>
#include <it_bus\operation.h>
 162

A More Complex Application
The Base.h File The file Base.h is generated from the WSDL file by the wsdltocpp utility.
This file includes the class definitions and method signatures for your
application. Additionally, this file #includes the BaseTypes.h file that
contains the class definitions and method signatures for your application’s
complex types. You use the contents of Base.h to understand your
application’s methods and the file BaseTypes.h (and its corresponding
implementation file BaseTypes.cxx) to learn how to work with the
application’s complex types. This is discussed in greater detail later in this
section.

Use the Base.h file to determine the signatures for each of the operations
originally defined within the <portType> section of the WSDL file. If
needed, you will use information from the types.h file, other Artix
product-related header files, and the BaseTypes.h and BaseTypes.cxx files
to manipulate your application’s data types.

The BaseTypes.h file This file contains the C++ class definitions for the objects that represent
the complex types defined in the WSDL file. Since this WSDL file employed
SOAP/RPC semantics, some of these generated classes, e.g., the array
classes, are derived from a template class – IT_Bus::SoapEncArrayT – that
adheres to the requirements of the SOAP/RPC semantics. Consequently, you
will need to reference this class’ definition, which is located in the file
<installationDirectory>\artix\1.2\include\it_bus\soap_enc_array.h.

The BaseTypes.cxx file This file contains the C++ implementation for those complex types that are
not derived from the pre-existing Artix classes that support the SOAP/RPC
semantics. In this demo, only the class corresponding to the complex type
SOAPStruct is described in this file.

The processing logic Now that you understand where to find class definitions for both the base
types and the code generated from the complex types of your WSDL file, you
can understand the processing logic within the complexClient.cxx file.
This code shows how to create and manipulate each of the base and
complex types.
163

CHAPTER 13 | Type Management
Compiling and Running the Application
This demo includes code only for the client application, which runs against
the server application of the simple_client_server demo; you must be
certain that the server process exists before you can run the application.

Compiling the client application All of the required files are fully coded.

1. Open a command window and move to the <installationDirectory>

\artix\1.2\bin directory. Run the batch file artix_env[.bat].

2. Move to the <installationDirectory>\artix\1.2\demos

\complex_types directory and issue the command

nmake all

The compilation process creates the client.exe and the BaseTypes.h and
BaseTypes.cxx files.

Compiling the server application This application is fully coded, but it is located under the
simple_client_server directory.

1. From the command window above, move to the
<installationDirectory>\artix\1.2\demos\simple_client_server\

server directory.

2. Issue the command

nmake all

The compilation process (re)creates the server.exe file.

Running the application You first start the server process and then run the client application.

1. From the <installationDirectory>\artix\1.2\demos

\simple_client_server\server directory, issue the command

start server

2. Move to the <installationDirectory>\artix\1.2\demos

\complex_types\client directory and issue the command

client.

Terminating the server process Issue the Ctrl-C command in the corresponding window.
 164

Comparing SOAP/RPC and Document/Literal Semantics
Comparing SOAP/RPC and Document/Literal
Semantics

The WSDL file in the example developed in the previous section used
SOAP/RPC semantics. In this section, you will compare the code generated
by the wsdltocpp utility from two functionally equivalent WSDL files: one
file using SOAP/RPC semantics and the other file using document/literal
semantics.

The WSDL files for this example are located in the directory
<installationDirectory>\artix\1.2\demos\complex_types\wsdl. The file
soaprpc.wsdl, in the subdirectory soap_rpc, represents the SOAP/RPC
encoding; the file docliteral.wsdl, in the subdirectory doc_literal,
represents the document/literal encoding.

This example illustrates that the code generated from document/literal
semantics is more extensive than SOAP/RPC derived code. Consequently,
you may find that WSDL files that use document/literal encoding provide
better support for your coding efforts.

Comparing the WSDL files The first thing you will notice about the two WSDL files is that the
docliteral.wsdl file is larger than soaprpc.wsdl file. If you examine these
files in a text editor you will see that there is significantly more content
within the <types>…<\types> tags, as both base and complex types are
defined.

The <message>…<\message> and <portType>…<\portType> entries are
similar, but the contents of the <binding>…<\binding> sections are
different. This is where the use of SOAP/RPC or document/literal encoding is
specified.

Code Generation You will use the wsdltocpp code generation utility and review the contents
of the files.

In this example, the <portType> is named InteropPortType, which the
utility shortens to Interop. Consequently the files you need to review are
Interop.h, InteropTypes.h, and InteropTypes.cxx.
165

CHAPTER 13 | Type Management
Interop.h file The two versions of the Interop.h file contain the same collection of
method signatures. If you look at the signatures for corresponding
operations, it appears that the parameter types are different, but this is not
really the case. For example, the echoStruct signature derived from the
SOAP/RPC encoded WSDL file is:

The corresponding signature derived from the document/literal encoded
WSDL file is:

However, if you examine the <types>…<\types> section of the
docliteral.wsdl file, you will observe that the types echoStruct and
echoStructresponse correspond to SOAPStruct, so these signatures are
actually identical.

You will see the same sort of type substitutions in the method signatures
and method bodies in the other files generated by the wsdltocpp utility.

InteropTypes.h file The file generated from the document/literal encoded WSDL file is
significantly larger than the corresponding file from the SOAP/RPC encoded
WSDL file. This file now includes declarations for all of the types defined in
the <types>…<\types> section, both base and complex types.

InteropTypes.cxx file Again the file generated from the document/literal encoded WSDL file is
significantly larger than the corresponding file from the SOAP/RPC encoded
WSDL file. This file now includes implementations for all of the methods
defined in the InteropTypes.h file.

virtual void
echoStruct (
const SOAPStruct $ soapstructParam0,
SOAPStruct & var_return

) IT_THROW_DECL((IT_Bus::Exception))=0;

virtual void
echoStruct (
const echoStruct & echoStruct_in,
echoStructresponse & echoStructResponse_out

) IT_THROW_DECL((IT_Bus::Exception)) = 0;
 166

	Introduction
	A Sample Artix Application
	Compiling and Running the Sample Application

	Developing a Web Service Client
	Coding the Artix C++ Web Service Client
	Generating the Stub Code
	Writing the Client Application Code
	Compiling the Client Application

	Developing a Web Service Server
	Coding the Artix C++ Web Service Server
	Generating the Skeleton and Starting Point Implementation Code
	Writing the Web Service Implementation Code
	Writing the Server Mainline
	Running the Artix C++ Web Service Application

	Configuring Artix™
	Establishing the Host Computer Environment
	Configuration During Installation
	Running the artix_env.bat Script
	Establishing the Runtime Environment
	The orb_plugins Configuration Value
	Configuration Scopes
	Using Configuration Scopes

	Controlling Application Logging
	Using the Logging Functionality

	Using the IIOP Transport
	The IIOP Tunneling Demo
	The HelloWorld.wsdl File
	Compiling and Running the Application

	Using the Tuxedo Transport
	The Demo Code
	The HelloWorld.wsdl File
	The Tuxedo Configuration
	Configuring, Compiling and Running the Application

	Using the WebSphere™ MQ Transport
	Creating the WebSphere MQ Queues
	Creating the HW_REQUEST and HW_REPLY Queues

	The Demo Code
	Configuring, Compiling and Running the Application
	Further Considerations

	Using the TIBCO Rendezvous™ Transport
	The Demo Code
	The HelloWorld.wsdl File

	Compiling and Running the Application
	Monitoring the TIBCO Rendezvous Environment

	Using CORBA Applications and Transport
	The CORBA Client—Artix Server Demo
	Compiling and Running the Application

	The Artix Client—Artix Server Demo
	Compiling and Running the Application

	The Artix Client—CORBA Server Demo
	Compiling and Running the Application

	Routing
	The Routing Demos
	The Protocol-Based Routing Demo
	Modifying the artix.cfg file
	Compiling and Running the Application
	Understanding the Application

	The Operation-Based Routing Demo
	Compiling and Running the Application
	Understanding the Application

	Embedding the Switch Functionality in a Process
	The Content-Based Routing Demo
	Compiling and Running the Application
	Understanding the Application

	Accessing an Endpoint via Multiple Protocols
	The Common Target Demos
	The Demo Code

	Oneway Operations
	Web Service Semantics
	The WSDL File
	Compiling and Running the Application

	Type Management
	A More Complex Application
	Compiling and Running the Application

	Comparing SOAP/RPC and Document/Literal Semantics

