
Getting Started with Artix
Version 2.0, March 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Mobile
Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent Enter-
prise Deployment, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 22-Apr-2004

M 3 1 9 3

Contents

List of Figures v

List of Tables vii

Preface ix
What is Covered in this Book ix
Who Should Read this Book ix
Organization of this Book ix
Related Documentation x
Online Help x
Suggested Path for Further Reading xi
Additional Resources for Help xi
Document Conventions xii

Chapter 1 Introduction to Artix 1
What is Artix? 2
Solving Problems with Artix 7
Using the Artix Documentation 9

Chapter 2 Artix Concepts 11
The Elements of Artix 12
The Artix Bus 13
Artix Service Access Points 14
Artix Contracts 15

Chapter 3 WSDL Concepts 19
Web Services Description Language Basics 20
Data Type Definitions 24
Message Definitions 27
Interface Definitions 30
Physical Definitions 33
iii

CONTENTS
Chapter 4 The Artix Designer 35
The Artix Designer Environment 36
The Contract Editor 40
Artix Deployment Tools 43

Glossary 47

Index 51
 iv

List of Figures

Figure 1: Artix High-Performance Architecture 3

Figure 2: Artix Designer GUI Tool 4

Figure 3: The Artix Bus 12

Figure 4: Welcome Dialog 36

Figure 5: Select WS Type Dialog 37

Figure 6: Designer Tree 38

Figure 7: Artix Designer Main Window 39

Figure 8: Contract Editor—Graph View 40

Figure 9: Edit Type Attributes Dialog 41

Figure 10: Contract Editor—WSDL View 42

Figure 11: Deployment Profile Wizard 43

Figure 12: Deployment Bundle Wizard 44

Figure 13: Run Deployer Dialog 45
v

LIST OF FIGURES
 vi

List of Tables

Table 1: Artix WSDL Contract Elements 16

Table 2: Part Data Type Attributes 28

Table 3: Operation Message Elements 30

Table 4: Attributes of Input and Output Elements 31
vii

LIST OF TABLES
 viii

Preface
What is Covered in this Book
Getting Started with Artix provides an introduction to IONA’s Artix
technology. This book gives a brief overview of the architecture and
functionality of Artix, and a brief introduction to Web Services Definition
Language (WSDL). This book also points you to other documents in the Artix
library for more detailed information and examples.

Who Should Read this Book
Getting Started with Artix is for anyone who needs to understand the
concepts and terms used in IONA’s Artix product.

Organization of this Book
This book contains the following chapters:

• Chapter 1 introduces the Artix product, and the kind of problems that
it is designed to solve.

• Chapter 2 explains the main concepts used in Artix.

• Chapter 3 explains the basics of Web Services Definition Language
(WSDL).

• Chapter 4 gives an overview of the Artix Designer GUI tool.
ix

PREFACE
Related Documentation
The documentation for Artix includes the following books:

• Artix Tutorial

• Designing Artix Solutions with Artix Designer

• Designing Artix Solutions from the Command Line

• Deploying and Managing Artix Solutions

• Designing Artix Applications in C++

• Designing Artix Applications in Java

• Artix Security Guide

• Artix Thread Library Reference

• IONA Tivoli Integration Guide

• IONA BMC Patrol Integration Guide

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs/artix/2.0/index.xml.

Online Help
The Artix Designer GUI includes a comprehensive online help system, which
includes:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index and glossary.

• A full search feature.

• Context-sensitive help.

The Help menu in Artix Designer provides access to this online help. In
addition, online help is provided for the Artix integration with BMC
Enterprise Management Systems. See the BMC Patrol Help menu for
details.
 x

http://www.iona.com/support/docs/artix/2.0/index.xml
http://www.iona.com/support/docs/artix/2.0/index.xml

PREFACE
Suggested Path for Further Reading
If you are new to Artix, we suggest you read the documentation in the
following order:

1. Getting Started with Artix

This guide describes the Artix product and its main concepts.

2. Artix Tutorial

This guide walks you through using the Artix tools to develop and
deploy simple example applications.

3. Deploying and Managing Artix Solutions

This guide describes deploying Artix enabled systems. It provides
detailed examples for a number of typical use cases.

4. Designing Artix Solutions with Artix Designer

This guide shows how to use the Artix GUI to describe your services in
an Artix contract.

5. Designing Artix Solutions from the Command Line

This guide provides detailed information about the WSDL extensions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

6. Developing Artix Applications in C++/Java

These guides discuss the technical aspects of programming
applications using the Artix API.

Additional Resources for Help
The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

xi

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xii

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Introduction to
Artix
This chapter introduces the main features of Artix, and
describes where to look in the documentation for further
information.

In this chapter This chapter discusses the following topics:

What is Artix? page 2

Solving Problems with Artix page 7

Using the Artix Documentation page 9
1

CHAPTER 1 | Introduction to Artix
What is Artix?

Overview Artix is a Web services-based solution for enterprise application integration.
It involves a new approach to application integration that exploits the
middleware technologies and the products already present within an
enterprise. Artix provides a rapid integration approach that increases
operational efficiencies, and enables an enterprise to adopt or extend a
Service-Oriented Architecture (SOA).

Artix technology Artix allows organizations to expose existing applications as Web services,
without changing underlying middleware. Artix enables developers to write
new Web service applications in C++ and Java. In addition, Artix provides
enterprise levels of service such as session management, service look-up,
security, and transaction propagation.

Artix uses IONA’s proven Adaptive Runtime Technology (ART) to provide a
high-speed, robust, and highly scalable backbone for Web service
deployments. In addition, Artix extends ART and the Web service metaphor
by using the Artix Bus, IONA’s transport and message format switching
technology. The Artix Bus enables you to create Web services that
communicate using protocols other than SOAP over HTTP. For example, you
can develop and deploy Web services using proven enterprise quality
communication mechanisms such as TIBCO Rendevous™, CORBA, and
IBM WebSphere MQ.

Benefits of Artix Artix differs from the typical approach used by Enterprise Application
Integration (EAI) products. The EAI approach typically uses a canonical
format in a centralized EAI hub. All messages are transformed from a source
application’s native format to this canonical format, and then transformed
again to the format of the target application. Each application requires two
adapters that translate to and from the canonical format.

Requiring two translations for every message incurs high overheads. Many
enterprises would prefer a high-performance solution that directly
transforms a small set of message types instead of a more general solution
with lower performance.
 2

What is Artix?

The Artix model connects applications at the middleware transport level and
translates messages only once. It hides the details of the connection and
provides very high performance. Figure 1 shows an example Artix
integration between BEA Tuxedo and IBM MQSeries.

Artix also enables you to obtain maximum value from your IT assets through
the reuse of your existing systems. You can lower operating costs by
consolidating diverse systems and existing infrastructure.

Finally, Artix provides a range of easy-to-use tools that enable you to create,
manage, and deploy your integration solutions. These include GUI tools,
command-line tools, and APIs. For example, Figure 2 shows the main
window of the Artix Designer GUI tool. This tool automates and simplifies
the creation of Web service integration applications.

Figure 1: Artix High-Performance Architecture

Tuxedo MQSeries

Transport of Choice

Artix
binding binding

No Canonical Format: Direct On-The-Wire Transformation
3

CHAPTER 1 | Introduction to Artix
Artix features Artix includes for the following unique features:

• Support for multiple transports and message data formats

• C++ and Java Web service development

• Message routing

• Transaction support for Web services

• Asynchronous Web services

• Role-based security, single sign on, and security integration.

• Session management and stateful Web services

• Look-up services and load-balancing

Figure 2: Artix Designer GUI Tool
 4

What is Artix?
• Support for EJBs and JMS

• Easy-to-use WSDL tools

• Support for .NET

• Integration with enterprise management tools such as IBM Tivoli and
BMC Patrol

• Internationalization

Supported transports and
protocols

A transport is an on-the-wire format for messages; while a protocol is a
transport that is defined by an open specification. For example, MQ and
Tuxedo are transports, while HTTP and IIOP are protocols.

In Artix, both protocols and transports are referred to as transports. Artix
supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ (formerly MQSeries)

• TIBCO Rendezvous™

• IIOP

• IIOP Tunnel

• Java Messaging Service

Supported payload formats A payload format controls the layout of a message delivered over a
transport. Artix can automatically transform between the following payload
formats:

• G2++

• FML (a Tuxedo format)

• GIOP (a CORBA format)

• FRL (fixed record length)

• Tagged (variable length)

Note: Single sign-on, locator look-up services, and session management
are not available in all editions of Artix. Please check the conditions of your
Artix license to see if your installation supports these features.
5

CHAPTER 1 | Introduction to Artix
• SOAP

• TibrvMsg (a TIBCO Rendezvous format)

• Pure XML

The mapping of logical data items between payload formats is supported by
the Artix tools.

Further information For more details information about supported transports and payload
formats, see Designing Artix Solutions on the Command Line.

For information about Artix mainframe support, see the Artix Mainframe
documentation.
 6

Solving Problems with Artix
Solving Problems with Artix

Overview Artix enables you to easily solve problems of how to integrate existing
back-end systems using Web services. It also enables you to develop new
Web services using C++ or Java, and retain all of the enterprise levels of
service that you require.

This section describes the three main phases in an Artix solution: design,
development, and deployment. Artix integration solutions that use a
standalone Artix service do not always require the development of any code,
and may involve design and deployment phases only.

Design phase In the design phase, you map out the architecture of the systems that you
wish to integrate or develop. You decide what services you wish to build,
what operations each service will need, and the data that the services will
need to exchange.

After making these decisions, you map the information into Artix contracts
that describe the services, operations, and data types. As part of this step,
you also map out the transports used by each service and any routing rules
that will be used.

The Artix Designer GUI and command line tools automate the mapping of
your service descriptions into WSDL-based Artix contracts. These tools
enable you to:

• Import existing WSDL documents (for example, those generated by
third-party tools).

• Generate a WSDL contract from scratch.

• Generate a WSDL contract from an external metadata source (for
example, CORBA IDL).

Development phase If your solution involves creating new applications, a custom router, or
locator or session management features, you will need to develop some Artix
application code (C++ or Java). This involves generating client stub code
and server skeleton code from the Artix contracts that you created in the
design phase. You can generate this code using the Artix Designer GUI and
command-line tools.
7

CHAPTER 1 | Introduction to Artix
When you have generated the client stub code and server skeleton code, you
can then develop the code that implements the business logic you require.
Artix takes care of generating the starting point code, and you can then use
your favorite development environment to develop and debug the
application code.

If necessary, Artix also provides advanced APIs for directly manipulating
SOAP messages, and for writing SOAP message handlers. These can be
plugged into the Artix runtime for custom-built processing of SOAP
messages.

Deployment phase In the deployment phase, you take the Artix contracts from the design
phase, and any applications created in the development phase, and deploy
your integrated system. You may need to modify the generated Artix
configuration files, or edit the Artix contracts describing your solution to fit
the exact circumstances of your deployment environment.

Applications that use Artix can be deployed in two different ways:

Embedded mode

In embedded mode, applications are modified to invoke Artix functions
directly and locally, instead of invoking a standalone Artix service. This
approach is the most invasive to the application, but also provides the
highest performance. Embedded mode requires linking the application with
the Artix-generated stub and skeleton code to connect the client and server
to the Artix Bus.

Standalone mode

In standalone mode, Artix runs as a separate process that is invoked as a
service. Standalone mode provides a zero-touch integration solution that
does not involve any coding. However, standalone mode is less efficient
than embedded mode.

When designing a system, you simply generate and deploy the Artix
contracts that specify each endpoint of the Artix Bus. Because a standalone
switch is not linked directly with the applications that use it (in embedded
mode), a contract for standalone mode deployment must specify routing
information.
 8

Using the Artix Documentation
Using the Artix Documentation

Overview The Artix documentation library consists of a number of guides to help you
understand and use Artix. The guides are broken down into groups reflecting
the three phases of Artix problem solving. In addition Artix provides a
Tutorial that provides a number of guided exercises to build your skill using
Artix.

If you are new to Artix If you are approaching Artix for the first time, it is suggested that you work
through the library in the following order:

1. Getting Started with Artix

2. Artix Tutorial

3. Deploying and Managing Artix Solutions

4. Designing Artix Solutions with Artix Designer

5. Designing Artix Solutions from the Command Line

6. Developing Artix Applications (C++/Java)

Design guides Designing Artix Solutions with Artix Designer explains how to create and
manage Artix contracts using the Artix Designer GUI. It also explains how to
generate stub and skeleton code for development, and configuration files for
deployment.

Designing Artix Solutions from the Command Line explains how to create
and manage Artix contracts using the Artix command line tools. It also
explains how to generate stubs, skeletons, and configuration files. This book
contains detailed descriptions of the Artix WSDL extensions used to define
routes, payload formats, and transports. It also provides an overview of
WSDL and how it maps to certain programming concepts.
9

CHAPTER 1 | Introduction to Artix
Development guides Artix includes two main development guides:

• Developing Artix Applications in C++

• Developing Artix Applications in Java

Both guides describe how to develop clients and servers using the Artix
APIs. They provide examples of advanced usages of Artix such as
transactions, using locator services, session management, and dynamic
configuration.

In addition, Artix provides the Artix Security Guide for security
programmers, and Artix Thread Library Reference, which explains the
thread control library used in the Artix API.

Deployment guides Deploying and Managing Artix Solutions explains how to configure and
deploy all aspects of an Artix solution. It describes the Artix configuration
file, where to locate the contracts that control your Artix services, and how
to run Artix applications. It also explains how to configure and deploy the
Artix locator and session manager.

In addition, Artix provides guides for integration with third party Enterprise
Management Systems (for example, IBM Tivoli and BMC Patrol). The IONA
Tivoli Integration Guide explains Artix integration with the IBM Tivoli suite
of management tools. The IONA BMC Patrol Integration Guide explains
Artix integration with BMC Patrol tools.

Latest updates The latest updates to the Artix documentation can be found at
http://www.iona.com/support/docs/artix/2.0/index.xml.
 10

http://www.iona.com/support/docs/artix/2.0/index.xml

CHAPTER 2

Artix Concepts
This chapter introduces the key concepts used in the Artix
product.

In this chapter This chapter discusses the following topics:

The Elements of Artix page 12

The Artix Bus page 13

Artix Service Access Points page 14

Artix Contracts page 15
11

CHAPTER 2 | Artix Concepts
The Elements of Artix

Overview This section gives a high-level overview of the main components in the Artix
product:

• The Artix Bus

• Artix Service Access Points

• Artix Contracts

Artix components Artix’s unique features are implemented by a number of plug-ins to IONA’s
ART platform. These plug-ins form the core of Artix, the Artix Bus.
Applications that make use of Artix connect to the Bus using Artix Service
Access Points (SAPs). Service Access Points are described by Artix
Contracts.

Figure 3 shows an example of how all of these Artix elements fit together.

The rest of this chapter describes each of these components in more detail.

Figure 3: The Artix Bus

Artix Bus

Client Server

SAP
contract

SAP
contract

CORBASOAP/HTTP
 12

The Artix Bus
The Artix Bus

Overview The Artix Bus is a set of plug-in that work in much the same way as
simultaneous translators at the United Nations. The plug-ins read data that
can be in a number of disparate formats, the Artix Bus directly translates the
data into another format, and the plug-ins write the data back out to the
wire in the new format.

In this way, Artix enables all of the applications in your company to
communicate over the Web, without needing to understand SOAP or HTTP.
It also means that clients can contact Web services without understanding
the native language of the server handling requests.

Benefits While other Web service product offerings provide some ability to expose
enterprise applications as Web services, they frequently require a good deal
of coding. The Artix Bus eliminates the need to modify your applications or
write code by directly translating between the enterprise application’s native
communication protocol and SOAP over HTTP, which is the prevalent
protocol used for Web services.

For example, by deploying an Artix instance with a SOAP over WebSphere
MQ Service Access Point and a SOAP over HTTP Service Access Point, you
can expose a WebSphere MQ application directly as a Web service. The
WebSphere MQ application would not need to be altered or made aware
that it was being exposed using SOAP over HTTP.

The Artix Bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI applications, Artix translates directly between different
middlewares, without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted
through the Artix Bus.
13

CHAPTER 2 | Artix Concepts
Artix Service Access Points

Overview An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection An Artix SAP provides an abstract connection point between applications,
shown in Figure 3 on page 12. The benefit of using this abstract connection
is that it allows you to change the underlying communication mechanisms
without recoding any of your applications. You simply need to modify the
contract describing the SAP.

For example, if one of your back-end service providers is a Tuxedo
application and you want to swap a Tuxedo for a CORBA implementation,
you would simply change the SAP’s contract to contain a CORBA
connection to the Bus. The clients accessing the back-end service provider
never need to be aware that the application has changed.
 14

Artix Contracts
Artix Contracts

Overview Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics like service operations and messages in an
abstract way—independent of the transport or protocol used to implement
the SAP—these characteristics can be bound to a variety of a specific
protocols and formats. Artix allows an abstract definition to be bound to
multiple specific protocols and formats. This means that the same
definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

WSDL basics Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL terms can be defined as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a portType.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.
15

CHAPTER 2 | Artix Concepts
The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components.

The logical contract

The logical contract specifies components that are independent of the
underlying transport and wire format. It fully specifies the data structure and
the possible operations or interactions with the interface. It enables Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (wire format and transport).

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details, for example:

• The wire format, middleware transport, and service groupings.

• The connection between the PortType operations and wire formats.

• Buffer layout for fixed formats.

• Artix extensions to WSDL.

Table 1: Artix WSDL Contract Elements

Logical contract:

<schema>

<types> (analogous to typedefs)

<message> (analogous to a parameter)

<portType> (analogous to a class or CORBA interface definition)

<operation> (analogous to a method)

Physical contract:

<binding> (payload format)

<service> (groups of ports)

<port> (transport addressing information)

<route> (rules governing system interaction)
 16

Artix Contracts
Payload formats A payload format controls the layout of a message delivered over a
transport. For example, SOAP payload controls the layout of messages
delivered over HTTP. For more details, see “Supported transports and
protocols” and “Supported payload formats” on page 5.

The WSDL definition of a port and its binding together associate a payload
format with a transport. A binding can be specified in the logical portion of
an Artix contract (portType). This allows a logical contract to have multiple
bindings and thus enable multiple on-the-wire formats to use the same
contract.

Further information For more a more detailed introduction to the WSDL concepts used in Artix
contracts, see Chapter 3.
17

CHAPTER 2 | Artix Concepts
 18

CHAPTER 3

WSDL Concepts
Artix contracts are WSDL documents that describe logical
abstract services and the data they use. This chapter provides
a more detailed introduction to WSDL concepts.

In this chapter This chapter discusses the following topics:

Web Services Description Language Basics page 20

Data Type Definitions page 24

Message Definitions page 27

Interface Definitions page 30

Physical Definitions page 33
19

CHAPTER 3 | WSDL Concepts
Web Services Description Language Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

The Artix Designer tool simplifies and automates the creation and
management of Artix contracts. You do not need to be a WSDL expert to use
Artix. However, a basic understand of WSDL concepts is recommended.

Web service endpoints and
service access points

WSDL documents describe a service as a collection of endpoints. Each
endpoint is defined by binding an abstract operation description to a
concrete data format, and specifying a network protocol and address for the
resulting binding.

Artix Service Access Points extend the concept of endpoint to include
services that are available over any computer network, not just over the
Web. A Service Access Point (SAP) can be bound to payload formats other
than SOAP, and can use transports other than HTTP.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Alternatively, one WSDL document can be used to define several
services that use the same abstract messages.

Port types A portType is a collection of abstract operations that defines the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.
 20

http://www.w3.org/TR/wsdl

Web Services Description Language Basics
Concrete details The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the <definition>
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

Elements of a WSDL document A WSDL document is made up of the following elements:

<types> The definition of complex data types based on
in-line type descriptions and/or external definitions
such as those in an XML Schema (XSD).

<message> The abstract definition of the data being
communicated.

<operation> The abstract description of an action.

<portType> The set of operations representing an abstract
endpoint.

<binding> The concrete or physical data format specification
for a port type.

<port> The endpoint defined by a binding and a physical
address.

<service> A set of ports.
21

CHAPTER 3 | WSDL Concepts
Example Example 1 shows a simple WSDL document. It defines a SOAP over HTTP
Service Access Point that returns the date.

Example 1: Simple WSDL

<?xml version="1.0"?>
<definitions name="DateService"

targetNamespace="urn:dateservice"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="urn:dateservice"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://iona.com/dates/schemas">

 <types>
 <schema targetNamespace="http://iona.com/dates/schemas"

xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="dateType">
 <complexType>>
 <all>
 <element name="day" type="xsd:int"/>
 <element name="month" type="xsd:int"/>
 <element name="year" type="xsd:int" />
 </all>
 </complexType>
 <element>
 </schema>
 </types>
 <message name="DateResponse">
 <part name="date" element="xsd1:dateType" />
 </message>
 <portType name="DatePortType">
 <operation name="sendDate">
 <output message="tns:DateResponse" name="sendDate" />
 </operation>
 </portType>
 22

Web Services Description Language Basics
 <binding name="DatePortBinding" type="tns:DatePortType">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="sendDate">
 <soap:operation soapAction="" style="rpc" />
 <output name="sendDate">
 <soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:dateservice" use="encoded" />

 </output>
 </operation>
 </binding>
 <service name="DateService">
 <port binding="tns:DatePortBinding" name="DatePort">
 <soap:address location="http://www.iona.com/DatePort/" />
 </port>
 </service>
</definitions>

Example 1: Simple WSDL
23

CHAPTER 3 | WSDL Concepts
Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, such as int, defined by most programming languages.
WSDL documents represent these complex data types using a combination
of schema types defined in referenced external XML schema documents and
complex types described in <types> elements.

Complex type definitions Complex data types are described in a <types> element. The W3C
specification states that XML Schema Names Definition language (XSD) is
the preferred canonical type system for a WSDL document. Therefore, XSD
schemas are treated as the intrinsic type system. Because these data types
are abstract descriptions of the data passed over the wire and not concrete
descriptions, there are a few guidelines on using XSD schemas to represent
them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

 24

Data Type Definitions
Example 3 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 2.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http:\\iona.com\personal\schema"

xmlns:xsd1="http:\\iona.com\personal\schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red" />
 <enumeration value="brunette" />
 <enumeration value="blonde" />
 </ restriction>
 </ simpleType>
 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 <element name="hairColor" type="xsd1:hairColorType" />
 </ complexType>
 </ element>
 </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http:\\iona.com\personal\schema"

xmlns:xsd1="http:\\iona.com\personal\schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
25

CHAPTER 3 | WSDL Concepts
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red" />
 <enumeration value="brunette" />
 <enumeration value="blonde" />
 </ restriction>
 </ simpleType>
 </ element>
 </ complexType>
 </ element>
 </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo
 26

Message Definitions
Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages, described in <message> elements. Each abstract message
consists of one or more parts, defined in <part> elements. These abstract
messages represent the parameters passed by the operations defined by the
WSDL document and are mapped to concrete data formats in the WSDL
document’s <binding> elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message (the representation of the operation’s incoming parameter
list), and one output message (the representation of the data returned by the
operation). In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part> elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in
Example 2 on page 24 and provided a method that returned an employee’s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 5.

Example 5: personalInfo lookup method

personalInfo lookup(long empId)
27

CHAPTER 3 | WSDL Concepts
This method signature could be mapped to the WSDL fragment shown in
Example 6.

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages, requests, or output messages,
responses.

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 2

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
<message />

Table 2: Part Data Type Attributes

Attribute Description

type="type_name" The data type of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The data type of the part is defined by an
element called elem_name.
 28

Message Definitions
Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in
Example 7.

Example 7: Reused part

<message name="fooRequest">
 <part name="foo" type="xsd:int" />
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int" />
<message>
29

CHAPTER 3 | WSDL Concepts
Interface Definitions

Overview WSDL <portType> elements define, in an abstract way, the operations
offered by a service. The operations defined in a port type list the input,
output, and any fault messages used by the service to complete the
transaction the operation describes.

Port types A portType can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <portType> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

Operations Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for ten widgets can
both be defined as operations.

Each operation within a port type must have a unique name, specified using
the name attribute. The name attribute is required to define an operation.

Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3.

Table 3: Operation Message Elements

Element Description

<input> Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.
 30

Interface Definitions
An operation is required to have at least one input or output element. The
elements are defined by two attributes listed inTable 4.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values Because the port type is an abstract definition of the data passed during in
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the output
message as the last <part> of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the <binding> section.

<output> Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

<fault> Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

Table 3: Operation Message Elements

Element Description

Table 4: Attributes of Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
31

CHAPTER 3 | WSDL Concepts
Example For example, in implementing a server that stored personal information in
the structure defined in Example 2 on page 24, you might use an interface
similar to the one shown in Example 8.

This interface could be mapped to the port type in Example 9.

Example 8: personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 9: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>
 32

Physical Definitions
Physical Definitions

Overview The abstract definitions in a WSDL document (types, messages, and port
types) are intended to be used to define the interaction of real applications.
These applications have specific network addresses, use specific network
protocols, and expect data in a particular format.

To fully define real applications, abstract definitions must be mapped to
concrete representations of the data passed between the applications, and
the details of the network protocols need to be added. This is done using
WSDL bindings and ports.

Binding syntax WSDL binding and port syntax is not tightly specified by W3C. While there
is a specification defining the mechanism for defining the syntax, the syntax
for bindings other than SOAP, and network transports other than HTTP, are
not bound to a W3C specification.

Bindings To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <binding> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.
33

CHAPTER 3 | WSDL Concepts
Ports and services The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example, all of the ports might be
bound to the same port type, but use different network protocols, like HTTP
and WebSphere MQ.
 34

CHAPTER 4

The Artix Designer
The Artix Designer GUI tool simplifies the creation and
management of Artix contracts. It also enables you to generate
source code, and runtime configuration files for your Artix
integration solution. This chapter provides a quick overview of
the main features in Artix Designer.

In this chapter This chapter discusses the following topics:

The Artix Designer Environment page 36

The Contract Editor page 40

Artix Deployment Tools page 43
35

CHAPTER 4 | The Artix Designer
The Artix Designer Environment

Overview Artix Designer is a GUI tool for creating, managing, and deploying Artix
contracts. It provides editing tools for creating contracts from standard
WSDL and CORBA IDL. Artix Designer also provides wizards to walk you
through each step of key tasks—for example, defining new data types,
logical interfaces, payload bindings, and transports.

Artix Designer generates all the components that you need to complete your
Artix solution, for example:

• Contracts describing your services.

• Stub or skeleton code for writing application code.

• Configuration files to deploy applications.

Artix Designer can also generate CORBA IDL from any contracts that have a
CORBA binding.

Artix Welcome dialog When you start Artix Designer, the Artix Welcome dialog is displayed, as
shown in Figure 4. This enables you specify whether to create a new or
open an existing workspace, start Artix Designer, or view a demo.

Figure 4: Welcome Dialog
 36

The Artix Designer Environment
New Workspace wizard An Artix workspace defines the structure of your Artix solution, and includes
all your WSDL contracts. Artix Designer provides a range of wizard
templates to help you get started.

For example, you can create a new workspace, a C++ Web Services client,
or a C++ Web services client and server. Figure 5 shows the new
workspace wizard selected in the Select WS Type dialog.

Designer Tree The Designer Tree is a navigation tree displayed on the left side of Artix
Designer. The Designer Tree displays the following information:

Figure 5: Select WS Type Dialog

Workspace An Artix Workspace includes all the WSDL
contracts in your Artix solution.

The Designer Tree displays the workspace name
(for example, HelloWorld), and contains its
collections and shared resources.

Shared Resources These are all the WSDL contracts that you want to
work with.

Shared resources are also displayed within
collections, by italicized text and a dimmed icon.

If you click on a shared resource, the pane on the
right of the screen displays the WSDL view of that
resource.
37

CHAPTER 4 | The Artix Designer
The Current View drop-down list at the bottom of the tree filters the amount
of detail shown in the tree. The default is to show all information in the
workspace. You can select to view only collections or shared resources.
Figure 6 shows a simple example of a workspace named GoogleSearch
displayed in the Designer Tree.

Collections These are groups of WSDL contracts that are
organized into logical collections for deployment
purposes. A collection maps to an executable or
process that implements the WSDL defined in it.

You can drag and drop resources between
collections and also from the shared resource folder
to a collection.

If you click on a collection, the pane on the right of
the screen displays the details of that collection.

Figure 6: Designer Tree
 38

The Artix Designer Environment
Artix Designer main window Figure 7 displays the entire Artix Designer main window. The right-hand
pane displays summary information for items displayed in the Designer
Tree. For example, clicking on your workspace folder in the tree displays the
Workspace Details, shown in Figure 7.

Similarly, clicking on the Shared Resources or Collections folder displays
summary information for these items in right pane.

Figure 7: Artix Designer Main Window
39

CHAPTER 4 | The Artix Designer
The Contract Editor

Overview The Contract Editor is the engine room of the Artix Designer GUI. It has two
main purposes—firstly, it provides a way for you to navigate around the
various components of your WSDL contract. Secondly, it provides you with
editing tools to add or update components in your Artix contract.

Contract Editor Clicking on a WSDL contract in the Designer Tree displays a graphical view
of the contract in the right-hand pane. This is the Contract Editor Graph
view, shown in Figure 8.

The icons representing the contract elements (types, messages, services,
and so on) in the graphical view may have a small plus sign attached. This
indicates that the element has children.

Figure 8: Contract Editor—Graph View
 40

The Contract Editor
You can view children (types, messages, and so on) by double clicking on
the element icon. You can then view or edit the individual items directly
from the Contract Editor. Each child component has an associated dialog to
enable viewing or editing. For example, double clicking on a type launches
the Edit Type Attributes dialog, shown in Figure 9.

Figure 9: Edit Type Attributes Dialog
41

CHAPTER 4 | The Artix Designer
Working with WSDL The Contract Editor also enables you to view and edit the contract WSDL
directly instead of working through the graphical representation as
previously described.

To access the WSDL view of the contract, shown in Figure 10, click on the
WSDL tab at the bottom of the Contract Editor pane.

Working in the WSDL view of the contract requires a sound knowledge of
WSDL. Be aware that if you make changes to the WSDL, it could easily
invalidate your contract.

If you do make a change to the WSDL that causes a problem, errors are
identified in a separate ERRORS panel directly under the WSDL. This
enables you to easily identify the exact position of the problem within the
WSDL file.

Figure 10: Contract Editor—WSDL View
 42

Artix Deployment Tools
Artix Deployment Tools

Overview Artix Designer provides deployment tools that enable you to generate Artix
stub and skeleton code and Artix configuration scripts for deployment on
different platforms.

Deployment Profiles The Deployment Profile wizard enables you to generate a reusable
deployment profile for your WSDL collection. A deployment profile defines
machine-specific details, for example:

• operating system

• location of the Artix installation

• programming language

A deployment profile can be reused and is not specific to any particular
collection. Typically, you would have one deployment profile for every
deployment machine.

Figure 11 shows the first screen of the Deployment Profile wizard.

Figure 11: Deployment Profile Wizard
43

CHAPTER 4 | The Artix Designer
Deployment Bundles The Deployment Bundle wizard enables you to create a reusable
deployment bundle for your WSDL collection. A deployment bundle defines
a collection’s deployment-specific details, for example:

• deployment type (client, server, or middleware switch)

• code generation options (C++, Java, or IDL)

• configuration options (security, management, locator, session
management).

Figure 12 shows the first screen of the Deployment Bundle wizard.

Note: You can create multiple deployment bundles for a collection, but
you must create at least one deployment profile before creating a bundle.

Figure 12: Deployment Bundle Wizard
 44

Artix Deployment Tools
Artix Deployer When you have created your deployment profile and bundle, you can then
use the Run Deployer dialog to deploy your WSDL collection. This deploys
your solution based on the information that you provided in the deployment
bundle. It generates the code, environment scripts, and configuration files in
the locations that you specified.

When your collection has successfully deployed, a green box is displayed
around the collection in the Designer Tree. If you make any change to the
collection after it has been deployed, you must deploy it again. This state is
indicated by a broken-lined red box around the collection icon to remind you
to redeploy the collection.

Further information For more detailed information, and step-by-step examples of how to use
Artix Designer, see Designing Artix Solutions with Artix Designer.

Artix Designer also provides online help, available from the Artix Designer
Help menu. You can access context-sensitive help by selecting the Help
buttons available on Artix Designer dialog boxes.

Figure 13: Run Deployer Dialog
45

CHAPTER 4 | The Artix Designer
 46

Glossary
A Artix Designer

A suite of GUI tools for creating, managing, and deploying Artix integration
solutions.

B Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Collection
A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA based applications. It can
also be deployed as a switch process.

Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <portType>, <operation>, <message>, <type>, and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.’ The physical contract is specified in the <port>, <binding> and
<service> WSDL tags.
47

GLOSSARY
Contract Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.

D Deployment Mode
One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

Endpoint
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an endpoint can be compiled into an
application). Contrast with Service.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.
 48

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL using the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.

R Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both endpoints and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point
The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.
49

GLOSSARY
Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.

T Transport
An on-the-wire format for messages.

Transport Plug-in
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port> element of a contract.

W Workspace
The Artix Workspace defines the structure of your Artix solution. It is the first
thing you need to create when using the Designer, and all of the solution’s
components are included within it.

A workspace will typically have one or more collections, which in turn contain
resources that define your solution's interface. A workspace also contains
shared resources that are common across one or more collections.
 50

Index

A
Artix

approach 2
documentation 9
features 4

Artix Bus 2, 12, 13
Artix contract 12, 16, 40
Artix demo 36
Artix tutorial 36
Artix Welcome dialog 36
Artix Workspace 37

B
binding 15, 21, 33

C
C++

client 37
options 44
server 37

collection 47
Collections 38
context-sensitive help 45
contract 15

graphical view 40
WSDL view 42

Contract Editor 40
CORBA 5
CORBA IDL 7, 36
Current View 38

D
demo 36
deployment

bundle 44
phase 8
profile 43

Designer Tree 37
design phase 7
development phase 8
E
editing WSDL 42
Edit Type Attributes 41
embedded mode 8
ERRORS panel 42

F
fault 31
FML 5
FRL 5

G
G2 5
Graph view 40

H
Help menu 45
HTTP 5

I
IDL 7

generating 36
options 44

IIOP 5
IIOP Tunnel 5
input 30
integration 2

J
Java Messaging Service 5
Java options 44

L
locator options 44

M
management options 44
message parts 28
messages 27
MQSeries 5
51

INDEX
N
name 30
navigation tree 37
new Artix workspace 36

O
online help 45
operation 15
operations 30
output 31

P
parts 28
payload format 5, 17
port 21, 34
portType 15, 20, 30
protocol 5

R
Request 31
Response 31
Run Deployer 45

S
security options 44
Select WS Type 37
Service Access Point 12, 14, 15, 20
services 34
session management options 44
Shared Resources 37
SOAP 6
standalone mode 8
supported transports 5

T
templates 37
TIBCO 5
TibrvMsg 6
transports 5
tutorial 36
Tuxedo 5

V
VRL 5
 52
W
W3C 20
Web Services Definition Language 15, 20
wizard templates 37
Workspace 37, 50
Workspace Details 39
World Wide Web Consortium 20
WSDL 20

editing 42
endpoint 20
view of contract 42

WSDL view 42

X
XML 6
XSD 24

INDEX
53

INDEX
 54

	List of Figures
	List of Tables
	Preface
	Introduction to Artix
	What is Artix?
	Solving Problems with Artix
	Using the Artix Documentation

	Artix Concepts
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts

	WSDL Concepts
	Web Services Description Language Basics
	Data Type Definitions
	Message Definitions
	Interface Definitions
	Physical Definitions

	The Artix Designer
	The Artix Designer Environment
	The Contract Editor
	Artix Deployment Tools

	Glossary
	Index

