IONA

>3 Artix™

Developing Artix Applications

in Java
Version 2.0, March 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 12-Apr-2004

M3192

Contents

List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
Online Help
Finding Your Way Around the Artix Library
Additional Resources for Information
Typographical Conventions
Keying conventions

Chapter 1 Understanding the Artix Java Development Model
Separating Transport Details from Application Logic
Representing Services in Artix Contracts
Mapping from an Artix Contract to Java

Chapter 2 Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code
Java Package Names
Developing a Server
Developing a Client
Building an Artix Application

Chapter 3 Working with Artix Data Types

Primitive Types
Simple Primitive Type Mapping
Special Primitive Type Mappings
Unsupported Primitive Types

Using XMLSchema Simple Types

Using XMLSchema Complex Types
Sequence and All Complex Types
Choice Complex Types

23
24
25
27
29
30
33
34
40

CONTENTS

Attributes
Nesting Complex Types
Deriving a Complex Type from a Simple Type
Occurrence Constraints
SOAP Arrays
Enumerations
Deriving Types Using <complexContent>
Holder Classes

Chapter 4 Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix Contract
How Artix Generates Java User-defined Exceptions
Working with User-defined Exceptions in Artix Applications

Chapter 5 Working with XMLSchema anyTypes
Introduction to Working with XMLSchema anyTypes
Registering Type Factories

Registering Type Factories with a Client Proxy
Registering Type Factories with a Servant
Setting anyType Values
Retrieving Data from anyTypes

Chapter 6 Artix IDL to Java Mapping
Introduction to IDL Mapping
IDL Basic Type Mapping
IDL Complex Type Mapping
IDL Module and Interface Mapping

Index

44
48
54
57
60
63
69
72

77
78
80
82

85
86
88
89
92
95
97

101
102
104
106
119

123

List of Tables

Table 1: Primitive Schema Type to Primitive Java Type Mapping 25
Table 2: Primitive Schema Type to Java Wrapper Class Mapping 28
Table 3: anyType Setter Methods for Primitive Types 95
Table 4: Methods for Extracting Primitives from AnyType 98

Table 5: Artix Mapping of IDL Basic Types to Java 104

LIST OF TABLES

vi

Preface

What is Covered in this Book

Developing Artix Applications in Java discusses the main aspects of

developing transport-independent services and service consumers using

Java stub and Java skeleton code generated by Artix. This book covers:

® how to access the Artix bus

® how to use generated data types

® how to create user defined exceptions

® how to access the header information for the transports supported by
Artix.

Who Should Read this Book

Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book

If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled service or
service consumer, Chapter 2 describes the basic steps to implement a
service, connect to the Artix bus, and create JAX-RPC compliant proxies
using Artix-generated code.

vii

PREFACE

If you are new to Artix

To design Artix solutions

viii

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 3 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 4 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

If you want to learn how to develop Java code to use XMLSchema anyType
elements, Chapter 5 describes how they are mapped into Java and
describes the Artix classes that allow you to work with them.

Online Help

While using the Artix Designer you can access contextual online help,

providing:

® Adescription of your current Artix Designer screen

® Detailed step-by-step instructions on how to perform tasks from this
screen

® A comprehensive index and glossary

® Afull search feature

There are two ways that you can access the Online Help:

® (Click the Help button on the Artix Designer panel, or
® Select Contents from the Help menu

Finding Your Way Around the Artix Library

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The remainder of the Artix library is listed
here, with a short description of each book.

You may be interested in reading:

® Getting Started with Artix - the getting started book describe basic
Artix concepts.

® Artix Tutorial - this book guides you through programming Artix
applications.

You should read one or more of the following:

To develop applications using
Artix stub and skeleton code

To manage and configure your
Artix solution

If you want to know more about
Artix security

Have you got the latest version?

PREFACE

® Designing Artix Solutions - this book provides detailed information
about using the Artix Designer to create WSDL-based Artix contracts,
Artix stub and skeleton code, and Artix deployment bundles.

® Designing Artix Solutions from the Command Line - this book provides
detailed information about the WSDL extensions used in Artix
contracts, and explains the mappings between data types and Artix
bindings.

Depending on your development environment you should read one or more

of the following:

® Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the Artix C++
API

® Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Artix Java API

You should read Deploying and Managing Artix Solutions. It describes how
to configure and deploy Artix-enabled systems. It also discusses how to
manage them once they are deployed.

You should read the Artix Security Guide. It outlines how to enable and
configure Artix’s security features. It also discusses how to integrate Artix
solutions into a secure environment.

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (at the bottom of the copyright notice).

Additional Resources for Information

If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

mailto:support@iona.com
http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:doc-feedback@iona.com

PREFACE

http://wmw i ona. cond support/ kb/

The IONA update center contains the latest releases and patches for IONA

products:

htt p: // wawv i ona. cond suppor t / updat e/

Typographical Conventions
This book uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying conventions
This book uses the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

http://www.iona.com/support/kb/
http://www.iona.com/support/update/

{}

PREFACE

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Xi

PREFACE

xii

In this chapter

CHAPTER 1

Understanding the
Artix Java
Development
Model

The Artix Java development tools generate JAX-RPC compliant
Java code from WSDL-based Artix contracts. Using the
generated code, you can develop transport-independent
applications that take advantage of the Artix bus.

This chapter discusses the following topics:

Separating Transport Details from Application Logic page 2
Representing Services in Artix Contracts page 4
Mapping from an Artix Contract to Java page 6

CHAPTER 1 | Understanding the Artix Java Development Model

Separating Transport Details from Application

Logic

Overview

Dividing the logical and physical

One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by limiting the types of messaging system the
application can work on. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application’s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.

The Artix bus

Separating Transport Details from Application Logic

The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.

CHAPTER 1 | Understanding the Artix Java Development Model

Representing Services in Artix Contracts

Overview

Data types

Messages

Service

Services, which are the operations exposed by an application, are described
in the logical section of an Artix contract. When defining a service in an Artix
contract, you break it down into three parts: the complex data types used in
the messages, the messages used by the operations, and the collection of
operations that make up the service.

Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL <t ypes> element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

Example 1: Array Description

<conpl exType nane="ArrayCf | nt">
<sequence>
<el enent maxCccur s="unbounded" m nCccurs="0" nane="itenY
type="xsd:int"/>
</ sequence>
</ conpl exType>

The described types are used to define the message parts used by the
service.

In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the <message> element and consist of one or more <part >
elements. Each message part represents an argument in an operation’s
parameter list or a piece of data returned as part of an exception.

In an Artix contract logical services are described using the <port Type>
element and consist of one or more <oper at i on> elements. Each

<oper at i on> element describes an operation that is to be exposed over the
network.

Representing Services in Artix Contracts

Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature

I ong nyQp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<nessage name="i nMessage" >
<part name="cl1" type="xsd:char" />
<part name="c2" type="xsd:char" />
</ message>
<message nane="out Message">
<part name="returnVal" type="xsd:int" />
</ message>
<port Type nane="nyServi ce">
<oper ati on name="nyp" >
<i nput nessage="i nMessage" nane="in" />
<out put message="out Message" nanme="out" />
</ oper at i on>
</ por t Type>

CHAPTER 1 | Understanding the Artix Java Development Model

Mapping from an Artix Contract to Java

Overview

Ports

Artix maps the WSDL-based Artix contract description of a service into Java
server skeletons and client stubs following the JAX-RPC specification. This
allows application developers to implement the service’s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

For each <port > element in an Artix contract, a Java interface that extends
j ava. rm . Renot e is generated. The name of the generated interface is taken
from the nane attribute of the <port > element. The interface’s name will be
identical to the <port >'s name unless the <port >'s name ends in Port. In
this case, the Port will be stripped off the interface’s name.

The generated interface will contain each of the operations of the
<por t Type> to which the <port > element is bound. For example, the
contract shown in Example 3 will generate an interface, sportsCenter,
containing one operation, updat e.

Example 3: SportsCenter Port

<message nane="scor eRequest ">
<part name="t eanNane" type="xsd:string" />
</ message>
<nessage nane="scor eRepl y">
<part name="score" type="xsd:int" />
</ message>
<port Type nane="sport sCent er Port Type" >
<oper at i on nane="updat e" >
<i nput nessage="scor eRequest" name="request" />
<ouput message="scoreRepl y* name="reply" />
</ operat i on>
</ port Type>
<bi ndi ng nanme="scor eBi ndi ng" type="tns: sport sCent er Port Type" >

<servi ce name="sportsService">
<port name="sportsCenterPort" bindi ng="tns: scoreBi ndi ng">

Operations

Message parts

Mapping from an Artix Contract to Java

The generated Java interface is shown in Example 4.
Example 4: SportsCenter Interface

/1 Java
public interface sportsCenter extends java.rm . Renote
{
int update(String team\ame)
throws java. rn . Renot eExcepti on;

Every <operati on> element in a contract generates a Java method within
the interface defined for the <oper at i on> element’s <port Type>. The
generated method’s name is taken from the <oper at i on> element’s nane
attribute. <oper at i on> elements with the same name attribute will generate
overloaded Java methods in the interface.

All generated Java methods throw a j ava. r m . Renot eExcept i on exception.
In addition, all <f aul t > elements listed as part of the operation create an
exception to the generated Java method.

The message parts of the operation’s <i nput > and <out put > elements are
mapped as parameters in the generated method’s signature. The order of
the mapped parameters can be specified using the <oper at i on> element’s
par anet er O der attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the par anet er O der
attribute will be placed in the generated method’s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the <nessage> elements of
the contract. The first unlisted output message part is mapped to the
generated method'’s return type. The parameter names are taken from the
<part > element’s name attribute. If the par anet er O der attribute is not
specified, input message parts are listed before output message parts.
Message parts that are listed in both the input and output messages are
considered i nout parameters and are listed only according to their position
in the input message.

All inout and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Hol der classes. For
the XML primitive types, the Java Holder class used is the standard Java

Hol der class, defined in j avax. xn . r pc. hol der s package, for the

CHAPTER 1 | Understanding the Artix Java Development Model

appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Hol der classes. For more

information on data type mapping, see “Working with Artix Data Types” on
page 23.

For example, the contract fragment shown in Example 5 would result in an
operation, final , with a return type of String and a parameter list that
contains two input parameters and three output parameters.

Example 5: SportsFinal Port

<nmessage nane="scor eRequest">
<part name="teanml" type="xsd:string" />
<part nanme="teanR" type="xsd:string" />
</ message>
<nessage name="scor eRepl y">
<part name="wi nTeanm type="xsd:string" />
<part name="t eanlscore" type="xsd:int" />
<part name="teanPscore" type="xsd:int" />
</ message>
<port Type nane="sport sFi nal Port Type">
<operation nanme="final ">
<i nput nessage="scor eRequest" name="request" />
<ouput nessage="scoreRepl y" name="reply" />
</ operati on>
</ port Type>
<bi ndi ng name="scor eBi ndi ng" type="tns: sport sFi nal Port Type">

<servi ce name="sportsService">
<port name="sportsFinal Port" bi ndi ng="t ns: scoreBi ndi ng" >

The generated Java interface is shown in Example 6.

Example 6: SportsFinal Interface

/1 Java
public interface sportsFinal extends java.rm . Renote
{

String final (String teanl, String tean®,
I nt Hol der teanilscore, |ntHol der teanRscore)
throws java.rm . Renot eExcepti on;

In this chapter

CHAPTER 2

Developing Artix
Enabled Clients
and Servers

Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

This chapter discusses the following topics:

Generating Stub and Skeleton Code page 10
Java Package Names page 12
Developing a Server page 14
Developing a Client page 18
Building an Artix Application page 21

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

Overview

Generated files

Generating code from the
command line

10

The Artix development tools include a utility to generate server skeleton and

client stub code from an Artix contract. The generated code is similar to

code generated by a CORBA IDL compiler. There are two major differences

between CORBA-generated code and Artix-generated code:

® Artix-generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

® Artix maps WSDL types to Java using the mapping described in the
JAX-RPC specification. The resulting types are very different from those
generated by an IDL-to-Java compiler.

The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

portTypeName.java defines the Java interface that both the client and
server implement.

portTypeNamelmpl.java defines the class used to implement the server.

portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 23.

You generate code at the command line using the command:

wsdl toj ava [-e service][-t port][-b binding][-i portType]
[-d output_dir][-p package][-inpl][-server][-client]
[-types][-interface][-sample][-all] artix-contract

Generating Stub and Skeleton Code

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdl t oj ava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

-e service

-t port

-b binding

-i portType

-d output_dir

-p package

-inpl

-server

-client

-types

-interface

-sanpl e

-all

Specifies the name of the service for which the tool will
generate code. The default is to use the first service listed
in the contract.

Specifies the name of the port for which code is
generated. The default is to use the first port listed in the
service.

Specifies the name of the binding to use when generating
code. The default is to use the first binding listed in the
contract.

Specifies the name of the portType for which code will be
generated. The default is to use the first portType in the
contract.

Specifies the directory to which the generated code is
written. The default is the current working directory.

Specifies the name of the Java package to use for the
generated code.

Generates the skeleton class for implementing the server
defined by the contract.

Generates a simple main class for the server.

Generates only the Java interface and code needed to
implement the complex types defined by the contract.
This flag is equivalent to specifying -i nterface -types.

Generates the code to implement the complex types
defined by the contract.

Generates the Java interface for the service.

Generates a sample client that can be used to test your
Java server.

Generates code for all portTypes in the contract.

11

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Java Package Names

Artix packages

Generated type packages

Java packages

12

The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com i ona. j bus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. Theleading http:// orurn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in . comor . gov, the leading waw. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern . xxx or . xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http:// wwmv wi dget Vendor . coni t ypes/ wi dget Types. xsd would be mapped
to the Java package name com wi dget vendor . t ypes. wi dget t ypes.

Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.

Java Package Names

java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.

13

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Developing a Server

Overview

Generating the server
implementation class

Generated code

Completing the server
implementation

14

The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing an
Artix-enabled server. The skeleton code hides the transport details, allowing
you to focus on business logic.

The Artix code generatition utility, wsdl t oj ava, will generate an
implementation class for your server when passed the -i npl command flag.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -t ypes flag.

The implementation class code consists of two files:
PortName.java contains the interface the server implements.
PortNamelmpl.java contains the class definition for the server's

implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in

Por t Narel npl . j ava. A generated implementation class for a contract
defining a service with two operations, sayH and greet Me, would resemble
Example 7. Only the code portions highlighted in bol d (in the bodies of the
greet Me() and sayH () methods) must be inserted by the programmer.

Example 7: Implementation of the HelloWorld PortType in the Server
Il Java

inport java.net.?*;
inport java.rm.?*;

Writing the server main()

Developing a Server

Example 7: Implementation of the HelloWorld PortType in the Server

public class Hel |l oWrldl npl {

/**
* greet M
*
* @aram stringParan® (String)
* @eturn: String
*/
public String greetMe(String stringParand) {
Systemout. println("HelloWrld.greetMe() called with
nessage: "+stringParanD);
return "Hello Artix User: "+stringParano;
}

/**

* sayH

* @eturn: String

*/

public String sayH () {
Systemout. println("Hell oWrl d.sayH () called");
return "Qeetings fromthe Artix Hel loWrld Server";

The server mai n() of an Artix Java server must do three things before it can
service requests:

1. Initialize the Artix bus.
2. Register the server implementation with the Artix bus.
3. Start the Artix bus.

You can use wsdl t oj ava to generate a server mai n() with the code to
perform these steps by using the - server flag. The mai n() shown in
Example 10 on page 17 was generated using wsdl t oj ava.

Initializing the bus

The Artix bus is initialized using com i ona. j bus. Bus. i ni t () . The method
has the following signature:

static Bus init(String args[]);

15

CHAPTER 2 | Developing Artix Enabled Clients and Servers

16

i nit() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Registering a servant for the server implementation

Before the bus can begin processing requests made on your server, you
must register the servant object that implements your server's business logic
with the bus. Registering the implementation object’s servant with the bus
allows the bus to create instances of the implementation object to service
requests.

To register your implementation object’s servant you create a

com i ona. j bus. Servant using the path of the WSDL file describing the
service interface, an instance of your implementation object, and an
instance of an initialized Artix bus. Example 8 shows the code to create a
servant for the Hel | oVor | d service.

Example 8: Creating a ServerFactoryBase

/1 Java
Servant servant =
new Si ngl el nst anceServant ("./Hel | oWr| d. wsdl ",
new Hel | oWor I dl npl (), bus);

After creating the servant, you register it with the bus using the bus’
regi st er Servant () method. The signature for r egi st er Servant () is shown
in Example 9.

Example 9: registerServerFactory()

voi d regi st er Server Fact ory(Servant servant
Q\ane servi ceNane,
String port Name)

t hrows BusException

In addition to the servant, regi st er Servant () takes the service’s QName as
specified in the contract defining the service and the name of the WSDL port
the service is instantiating.

Completed server main()

Developing a Server

Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus’ run() method. Once the bus
is started, it retains control of the process until it is shut down. The server's
mai n() will be blocked until run() returns.

Example 10 shows how the mai n() for a Java Artix server might look.
Example 10: Server main()

/1l Java
inport comiona.jbus. *;
inport javax.xm .namespace. Q\arre;

public class Server

{
public static void main(String args[])
throws Exception
{
/] Initialize the Artix bus
Bus bus = Bus.init(args);
I/ Register the inplenentation object factory
\ane name = new QNane("http://xm bus. coni Hel | oWor | d",
"Hel | oWor | dServi ce");
Servant servant =
new Si ngl el nst anceServant ("./ Hel | oWr| d. wsdl ",
new Hel | oVWr | dl npl ());
bus. regi st er Servant (servant, nane, "Hell oWrldPort");
/] Start the Bus
bus. run();
}

17

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Developing a Client

Overview

Initializing the bus

Instantiating a client proxy

18

Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix Java client initializes and shuts down the Artix bus.

Client applications initialize the bus in the same manner as server
applications, by calling the bus’ i ni t () method. Client applications,
however, do not need to make a call to the bus’ run() method.

Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the

j avax. xm . rpc. Servi ce interface. You need the Q\ane of the service for
which you are creating the proxy, the Q\ane of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of j avax. xn . r pc. Servi ceFact ory to create the
service.

2. Use the Servi ceFact ory to create a Servi ce instance for the service to
which the proxy will connect.

3. Use the Servi ce to instantiate the dynamic proxy.

Obtaining a ServiceFactory instance

To obtain an instance of the Servi ceFact ory you call

Ser vi ceFact ory. newl nst ance() . This returns the Servi ceFact ory. Only
one is created per application and the same Servi ceFact ory is returned for
each successive call.

Creating a Service instance

A servi ce instance is created from the Servi ceFact ory using
createService(). createServi ce() takes two arguments:

® the URL of the contract defining the service.

Shutting the bus down

Full client code

Developing a Client

® the service’s Q\ane.

Creating the dynamic proxy
The dynamic proxy is created from the Servi ce using get Port () . get Port ()
takes two arguments:
® the Q\ane of the endpoint with which the proxy contacts the service.
® the name of the generated Java interface in Port Nane. j ava with
.cl ass appended. For example, if the generated interface’s name is
Hel | owor | d, this argument would be Hel | ovér| d. cl ass.

get Port () returns an instance of j ava. rm . Renot e that must be cast to the
generated interface.

Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus’ run() method and can simply call

shut down() on the bus before the main thread exits. It is advisable to pass
true to shut down() to ensure that the bus is fully shutdown before exiting.

An Artix Java client developed to access Hel | oWr | dSer vi ce will ook
similar to Example 11.

Example 11: Client Code

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.?*;

inport javax.xnl.nanespace. Q\ane;
inport javax.xm.rpc.*;

inport comiona.j bus. Bus;

public class Hell owrl dd i ent
{

public static void main (String args[]) throws Exception
{
Bus bus = Bus.init(args);

\ane name = new Q\Nane("http://iona. cond Hel | oWor | d",
"Hel | oWor | dSer vi ce");

19

CHAPTER 2 | Developing Artix Enabled Clients and Servers

20

Example 11: Client Code

}

Q\ane portNane = new Q\ane("", " Hel | oWor I dPort ") ;

String wsdl Path = "file:/./HelloWrld. wsdl";
URL wadl Location = new Fi |l e(wsdl Path).toURL();

Servi ceFactory factory = ServiceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Hell oWorld i npl = (Hel | oWrl d) servi ce. get Port (port Nane,
Hel | oWor | d. cl ass) ;

String string_out;

string_out = inpl.sayH ();
Systemout. println(string_out);

bus. shut down(true);

}

The code does the following:

1.
2.
3.

The comiona. j bus. Bus. i ni t () function initializes the bus.
Creates the service's Q\ane.

Creates the Quane of the endpoint with which the proxy will contact the
service.

Creates the URL of the contract defining the service.
The newl nst ance() function returns the Servi ceFact ory.

The creat eSer vi ce() function instantiates the Ser vi ce from which the
dynamic proxy is created.

The get Port () function returns a dynamic proxy to the Hel I over i d
service. get Port () returns an instance of j ava. r mi . Renot e that must
be cast to the interface defining the service.

Makes a call on the proxy to request service.

Shuts down the bus.

Building an Artix Application

Building an Artix Application

Required jar files

Artix Java applications require that the following Artix jar files are in your
class path:

® it_bus.jar

® it_wsdl.jar

® it _ws_reflect.jar

® ifc.jar

You also need to ensure that the Artix version of j axr pc-api . j ar is used to
build your Artix application. The simplest way to make sure the correct
version is used is to prepend artix_instal | _dir\artix\2.0\lib to your
class path.

21

CHAPTER 2 | Developing Artix Enabled Clients and Servers

22

CHAPTER 3

Working with Artix
Data Types

Artix maps XMLSchema data types in an Artix contract into
Java data types. For primitive types the mapping is a
one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

In this chapter This chapter discusses the following topics:
Primitive Types page 24
Using XMLSchema Simple Types page 30
Using XMLSchema Complex Types page 33
SOAP Arrays page 60
Enumerations page 63
Deriving Types Using <complexContent> page 69
Holder Classes page 72

23

CHAPTER 3 | Working with Artix Data Types

Primitive Types

Overview

In this section

24

Artix follows the JAX-RPC specification for mapping primitive XMLSchema
types into Java. In most cases, the mapping from a primitive XMLSchema
type is to a primitive Java type. However, some instances require a more
complex mapping.

This section contains the following subsections:

Simple Primitive Type Mapping page 25
Special Primitive Type Mappings page 27
Unsupported Primitive Types page 29

Primitive Types

Simple Primitive Type Mapping

Overview

Types derived by restriction

Table of primitive type mappings

When a message part is described as being of one of the primitive
XMLSchema types, the generated parameter’s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 12 will cause a parameter, score, of type i nt to be
generated.

Example 12: Message Description Using a Primitive Type
<message nane="scor eResponse" >

<part name="score" type="xsd:int" />
</ message>

XMLSchema supports the definition of simple types by restricting a primitive
type using one of twelve facets. The primitive type from which the new type
is defined is called its base type. Types defined using restriction of a base
type are treated as if the new type were simply of the base type. So a type
derived by restricting xsd: f1 oat would be mapped to a fl oat in the
generated Java code.

The primitive type mappings are shown in Table 1.

Table 1: Primitive Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd: string java.lang. String
xsd: i nt int
xsd: i nsi gnedl nt | ong
xsd: | ong | ong
xsd: unsi gnedLong j ava. mat h. Bi gl nt eger
xsd: short short
xsd: unsi gnedShor t int

25

CHAPTER 3 | Working with Artix Data Types

26

Table 1: Primitive Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd: f | oat f1 oat

xsd: doubl e doubl e

xsd: bool ean bool ean

xsd: byt e byt e

xsd: i nt eger j ava. mat h. Bi gl nt eger

xsd: deci nal j ava. nat h. Bi gDeci nal

xsd: dat eTi ne java. util . Cal endar

xsd: Q\Nane j avax. xm . nanmespace. Q\ane

xsd: base64Bi nary byte[]

xsd: hexBi nary byte[]

Primitive Types

Special Primitive Type Mappings

Overview Mapping XMLSchema primitives to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema primitive is mapped to the Java primitive’s corresponding
wrapper type. These cases include:
® an <el enent > with its ni I | abl e attribute set to true as shown in
Example 13.

Example 13: Nillable Element
<el enent nane="finned" type="xsd: bool ean" nillabl e="true" />

® an <el enent > with its m nCccur s attribute set to 0 and its maxCccurs
attribute set to 1 or its maxCceur s attribute not specified as shown in
Example 14.

Example 14: minOccurs set to Zero
<el enent nane="pl ane" type="xsd:string" m nQccurs="0" />

® an<attribute> with its use attribute set to opt i onal , or not specified,
and having neither its def aul t attribute nor its fi xed attribute
specified as shown in Example 15.

Example 15: Optional Attribute Description

<el enent nane="dat e" >
<conpl exType>
<sequence/ >
<attribute nane="cal Type" type="xsd:string"
use="optional " />
</ conpl exType>
</ el enent >

Mappings Table 2 shows how primitive XMLSchema types are mapped into Java
wrapper classes in these special cases.

27

CHAPTER 3 | Working with Artix Data Types

Table 2: Primitive Schema Type to Java Wrapper Class Mapping

Schema Type Java Type
xsd: i nt j ava. |l ang. | nt eger
xsd: | ong j ava. | ang. Long
xsd: short j ava. | ang. Short
xsd: f| oat j ava. | ang. Fl oat
xsd: doubl e j ava. | ang. Doubl e
xsd: bool ean j ava. | ang. Bool ean
xsd: byte java.l ang. Byte

28

Primitive Types

Unsupported Primitive Types

List of unsupported primitive The following XMLSchema primitive types are currently not supported by
types Artix Java:

xsd: dur ati on

xsd: tine

xsd: dat e

xsd: gYear Mont h

xsd: gYear

xsd: ghont hDay

xsd: gDay

xsd: ghbnt h

xsd: anyUR

xsd: nonPosi ti vel nt eger
xsd: nonNegat i vel nt eger
xsd: negat i vel nt eger
xsd: posi ti vel nt eger
xsd: ENTI TY

xsd: NOTATI ON

xsd: | DREF

soapenc: base64

29

CHAPTER 3 | Working with Artix Data Types

Using XMLSchema Simple Types

Overview

Describing a simple type in
XMLSchema

30

XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
<t ypes> section of an Artix contract using a <si npl eType> element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

Example 16 shows the syntax for describing a simple type.

Example 16: Simple Type Syntax

<si npl eType nane="t ypeNane" >
<restriction base="baseType">
<facet val ue="val ue"/>
<f acet val ue="val ue"/>

</restriction>
</ si npl eType>

The type description is enclosed in a <si npl eType> element and identified
by the value of the nane attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the <restri cti on>
element. Each facet element is specified within the <restri cti on> element.
The available facets and their valid setting depends on the base type. For
example, xsd: string has six facets including:

® length

® ninLength

® maxLength

® pattern

® whitespace

Mapping simple types to Java

Unenforced facets

Using XMLSchema Simple Types

Example 17 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
XXX-XX-XXXX. <SSN>032- 43- 9876<SSN> is a valid value, but
<SSN>032439876</ SSN> is not valid.

Example 17: SSN Simple Type Description

<si npl eType name="SSN'>
<restriction base="xsd: string">
<pattern val ue="\d{3}-\d{2}-\d{4}" />
</restriction>
</ si npl eType>

Artix maps simple types to the type of the simple type's base type. So any
message using the simple type SSN, shown in Example 17, would be
mapped to a String because the base type of SSNis xsd: stri ng. For
example, the contract fragment shown in Example 18 would result in a Java
method, credi t I nfo(), which took a parameter, socNum of String.

Example 18: Credit Request with Simple Types

<nessage name="credit Request ">
<part name="socNuni type="SSN' />
</ message>

<port Type nane="credi t Agent ">
<oper ati on name="credit|nfo">
<i nput nessage="t ns: credit Request" nane="credRec" />
<out put message="tns: creditReport" nane="credRep" />
</ oper at i on>
</ por t Type>

Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you must ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Artix does not enforce the following facets:
® length
® mnLength

® nmaxLength

31

CHAPTER 3 | Working with Artix Data Types

® pattern

® enuneration
® whiteSpace

® naxl ncl usi ve
® naxExcl usive
® mnlnclusive
® mnExcl usive
® totalDgits

® fractionDigits

Enforced facets Artix enforces the following facets:
® enuneration

For more information on the enumeration facet, read “Enumerations” on
page 63.

32

Using XMLSchema Complex Types

Using XMLSchema Complex Types

Overview

In this section

Complex types are described in the <t ypes> section of an Artix contract.

Typically, they are described in XMLSchema using a <conpl exType>

element. In contrast to simple types, complex types can contain multiple

elements and carry attributes.

Complex types are generated into Java objects according to the mapping

specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a

method for stringifying the object.

This section contains the following subsections:

Sequence and All Complex Types page 34
Choice Complex Types page 40
Attributes page 44
Nesting Complex Types page 48
Deriving a Complex Type from a Simple Type page 54
Occurrence Constraints page 57

33

CHAPTER 3 | Working with Artix Data Types

Sequence and All Complex Types

Overview

Mapping to Java

34

Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a <sequence>
element. The other is to describe the structure inside of an <al | > element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using a <sequence> and an <al | > is in how the
elements of the structure are passed on the wire. When a structure is
described using a <sequence>, the elements are passed on the wire in the
exact order they are specified in the contract. When the structure is
described using an <al | >, the elements of the structure can be passed on
the wire in any order.

Note: If neither <sequence>, <al | >, nor <choi ce> is used to specify how
the elements of the complex type are to be transmitted, the default is
<seqguence>.

A complex type described with <sequence> or <al | > is mapped to a Java
class whose name is derived from the nane attribute of the <conpl exType>
element in the contract from which the type is generated. As specified in the
JAX-RPC specification, the generated class has a getter and setter method
for each element described in the type. The individual elements of the
complex type are mapped to private variables within the generated class.

Using XMLSchema Complex Types

The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 19, the generated setter
method would have the signature voi d set Name(String val).

Example 19: Element Name Description

<conpl exType nane="Address" >
<al | >
<el enent name="Nane" type="xsd:string" />
</all>
</ conpl exType>
The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter

method for the element described in Example 19 would the signature like
String get Nane().

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.

In addition to the getter and setter methods, Artix also generates a

toString() method for each complex type. The toString() method returns
a string containing a labeled list of the values for each element in the class.

35

CHAPTER 3 | Working with Artix Data Types

The maxOccurs attribute Any elements whose maxCccur s attribute is set to a value greater than one or

set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 20

would result in the generation of a private variable, obser vedSpeed,of type
float[].

Example 20: Element with MaxOccurs Greater than One

<conpl exType nane="drugTest Resul ts">
<sequence>

<el enent name="obser vedSpeed" type="xsd: fl oat"
maxQccur s="unbounded"/ >

</ sequence>
</ conpl exType>

The getter and setter methods for obser vedSpeed are shown in Example 21.

Example 21: observedSpeed Getter and Setter Methods

/1 Java
public class drugTest Results
{

private float[] observedSpeed;

voi d set ChservedSpeed(float[] val);
float[] getChservedSpeed();

i :

36

Using XMLSchema Complex Types

Example Suppose you had a contract with the complex type, monst er St at s, shown in

Example 22.

Example 22: monsterStats Description

<conpl exType nane="

<al | >
<el enent
<el enent
<el enent
<el enent
<el enent

</all>

name="
nane="
name="
name="
nane="

nonst er St at s" >

name" type="xsd:string" />

wei ght" type="xsd:|ong" />
origin" type="xsd:string" />
strength" type="xsd:float" />
speci al Attack" type="xsd: string"

maxQceur s="3" />

</ conpl exType>

The Java class generated to support nonst er St at s would be similar to

Example 23.

Example 23: monsterStats Java Class

/1 Java

public class nmonsterStats

{

public static final String TARGET _NAMESPACE =
"http:// nmonst er Boot Canp. coni t ypes/ nonst er Types";

private String nane;

private |ong wei ght;

private String origin;

private float strength;
private String[] special Attack;

public void setName(String val)

{

nane=val ;

}

public String get Name()

{

return nane;

}

37

CHAPTER 3 | Working with Artix Data Types

Example 23: monsterStats Java Class

publ i c voi d set Wi ght (I ong val)

{ wei ght =val ;

Lublic | ong get Wi ght ()

{ return wei ght;

}

public void setQigin(String val)
{ origi n=val ;

}String get i gin()

{ return origin;

}

public void setStrength(float val)
{

st rengt h=val ;

public float getStrength()
{

return strength;

}

public void setSpecial Attack(String[] val)
{

speci al Attack=val ;

public String[] getSpecial Attack()
{

return speci al Attack;

}

38

Using XMLSchema Complex Types

Example 23: monsterStats Java Class

public String toString()

{

StringBuffer buffer = new StringBuffer();
if (nane !'= null) {
buf f er. append(" nane: "+nane+"\n");
}
if (weight !'= null) {
buf f er. append(“wei ght: " +wei ght +'\n");
}
if (origin!=null) {
buf f er. append(“ori gin: “+origin+'\n");
}
if (strength !'=null) {
buf f er. append(“strength: "+strength+'\n");
}
if (special AAtack != null) {
buf f er. append(" speci al At tack: "+special Attack+"\n");

}
return buffer.toString();

39

CHAPTER 3 | Working with Artix Data Types

Choice Complex Types

Overview

Mapping to Java

40

XMLSchema allows you to describe a complex type that may contain any
one of a number of elements using a <choi ce> element as part of the
complex type description. When elements are contained within a <choi ce>
element, only one of the elements will be transmitted across the wire.
XMLSchema does not require that a discrimintator is specified as part of
complex type using a <choi ce> element and how to determine which
element is valid is left to the implementation.

Like complex types described with a <sequence> element or an <al | >
element, complex types described with a <choi ce> element are mapped to a
Java class with getter and setter methods for each possible element inside
the <choi ce> element. In addition, the generated Java class for a <choi ce>
complex type includes an additional element, _di scri ninat or, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method

i sSet el em nane() is generated. If the element is the currently valid value,
its i sSet method returns t rue. If not, the method returns f al se.

The discriminator is set in each of the complex type elements’ setter

methods. This means that while any of the elements in the Java object

representing the complex type may contain valid data, the discriminator

points to the last element whose value was set. As stated in the Web

services specification only the element to which the discriminator is set will

be placed on the wire by a server. For Artix developers this has two

implications:

1. Artix servers will only write out the value for the last element set on an
object representing a <choi ce> complex type.

2. When Artix clients receive an object representing a <choi ce> complex
type, only the element pointed to by the discriminator will contain valid
data.

Example

Using XMLSchema Complex Types

Suppose you had a contract with the complex type, t errai nReport, shown
in Example 24.

Example 24: terrainReport Description

<conpl exType nanme="terrai nReport">
<choi ce>
<el enent name="water" type="xsd:float" />
<el enent name="pi er" type="xsd:short" />
<el enent name="street" type="xsd:long" />
</ choi ce>
</ conpl exType>

The Java class generated to represent t errai nReport would be similar to
Example 25.

Example 25: terrainReport Java Class

/1l Java
public class Terrai nReport
{

public static final String TARGET _NAMESPACE =
"http://d obeStrol | ers. con';

private String _ discrininator;
private float water;

private short pier;
private long street;

41

CHAPTER 3 | Working with Artix Data Types

Example 25: terrainReport Java Class

public void setVWater(float _v)
{

this. water=_v;
_discrimnator="water"’

}
public float getVWater()

{

return water;

}
publ i c bool ean i sSetWater ()
{

if(__discrimnator !'= null &%
__discrimnator. equal s("water")) {
return true;

}

return fal se;

}

public void setPier(short _v)
{
this. pier=_v;
_discrimnator="pier";
}
public short getPier()

{

return pier;

publ i c bool ean i sSetPier ()
{

if(__discrimnator !'= null &%
__discrimnator.equal s("pier")) {
return true;

}

return fal se;

}

42

Using XMLSchema Complex Types

Example 25: terrainReport Java Class

public void setStreet(long _v)
{
this.street=_v;
_discrimnator="street";
}
public long getStreet()
{

return street;

}
publ i c bool ean isSet Street ()
{
if(__discrimnator !'= null &%
__discrimnator.equal s("street")) {
return true;

}
return fal se;
}
public void _set ToNoMenber ()
{
_discrimnator = null;
}
public String toString()
{
StringBuffer buffer = new StringBuffer();
if (water !'=null) {
buf f er. append(“water: "+water+"\n");
}
if (pier '=null) {
buf f er. append("pier: "+pier+'\n");
}
if (street !'=null) {
buf f er. append(“street: "+street+"'\n");
}
return buffer.toString();
}

43

CHAPTER 3 | Working with Artix Data Types

Attributes

Overview

Describing an attribute in
XMLSchema

44

Artix supports the use of <at t ri but e> declarations within the scope of a
<conpl exType> definition. When defining structures for an XML document
<at tri but e> declarations provide a means of adding information to be
specified within the tag, not the value that the tag contains. In other words,
when describing the XML element <val ue currency="eur 0" >410<\ val ue>
in XMLSchema currency would be described using an <at tri but e>
declaration as shown in Example 26.

Example 26: XMLSchema for value

<el enent name="val ue">
<conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: i nt eger" >
<xsd:attribute name="units" type="xsd:string"
use="requi red"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

When describing data types for use in developing application logic, however,
attributes are treated as elements of a structure. For each <attri but e>
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

An XMLSchema <at t ri but e> declaration has two required attributes. The
nare attribute identifies the attribute. The use attribute specifies if the
attribute is requi red, opti onal , or prohi bi ted..

An <at tri but e> declaration also has two optional attributes. The t ype
attribute specifies the type of value the attribute can take. It is used when
the attribute takes a value of a primitive type or of a type that is predefined
in the contract. If the type attribute is omitted from the <attri but e>
declaration, the format of the data value must be described as part of the

Using XMLSchema Complex Types

<attribut e> declaration. Example 27 shows an <at t ri but e> declaration
for an attribute, cat agory, that can take the values aut obi ogr aphy,
non-fiction, orfiction.

Example 27: Attribute with an In-Line Data Description

<attribute name="category" use="required">
<si npl eType>
<restriction base="xsd: string">
<enuner ati on val ue="aut obi ogr aphy"/ >
<enuner ati on val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
</attri bute>

Example 28 shows an alternate description of the cat agory attribute using
the type attribute.

Example 28: Category Attribute Using the type Attribute

<si npl eType nane="cat agor yType" >
<restriction base="xsd: string">
<enuner at i on val ue="aut obi ogr aphy" />
<enuner ation val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
<conpl exType nane="attri but ed">

<attribute name="category" type="catagoryType" use="required">
</ conpl exType>

The def aul t /fi xed attribute can be used when the use attribute is set to
optional . When the defaul t attribute is given, the value of the generated
element is defaulted to the value specified. When the fi xed attribute is
given, the value of the generated element is set to the value specified and
cannot be changed. In the generated Java class, using the fi xed attribute
results in the generated element not having a setter method.

45

CHAPTER 3 | Working with Artix Data Types

Example mapping to Java

46

Suppose you had a contract with the complex type, t er rai nReport, shown
in Example 29.

Example 29: techDoc Description

<conpl exType nanme="t echDoc" >
<al |l >
<el enent name="product" type="xsd:string" />
<el enent name="versi on" type="xsd: short" />
<al | >
<attribute nane="useful | ness" type="xsd:float" use="optional "
defaul t="0.01" />
</ conpl exType>

The Java class generated to represent t er rai nReport would be similar to
Example 30.

Example 30: techDoc Java Class

Il Java
public class TechDoc
{

public static final String TARGET _NAMESPACE =
"http://ww: docUSA or g/ usability";

private String product;
private short version;
private Fl oat usefull ness = new Fl oat (0. 01);

publ i c void setProduct (String val)
{

pr oduct =val ;

}
public String getProdcut ()

{

return product;

}

Using XMLSchema Complex Types

Example 30: techDoc Java Class

public void setVersion(short val)

{
ver si on=val ;
}
public short getVersion()
{
return version;
}
public void setUsefull ness(Fl oat val)
{
usef ul I ness=val ;
}
public Float getUsefull ness()
{
return useful | ness;
}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (prudcut !'= null) {
buf f er. append(" product : "-+product +*\ n");
}

if (version!=null) {
buf f er. append(" versi on: "+version+"\n");

if (usefullness !'=null) {
buf f er. append(" usef ul | ness: "+useful | ness+"\n");

return buffer.toString();

}
}

47

CHAPTER 3 | Working with Artix Data Types

Nesting Complex Types

Overview

Nesting with Named Types

48

XMLSchema allows you to create complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

® Nesting with Named Types
® Nesting with Anonymous Types

When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element’s data is placed in the element’s t ype attribute as
shown in Example 31.

Example 31: Nesting with a Named Type

<conpl exType nane="t weet yBi rd">
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enment nane="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
<conpl exType nane="syl vester State">
<sequence>
<el ement name="hunger" type="xsd:int" />
<el enent name="food" type="tweetyBird" />
</ sequence>
</ conpl exType>

The complex type syl vest er St at e includes an element, f ood, of type
tweet yBi rd. The advantage of using named types is that t weet yBi rd can be
reused as either a standalone complex type or nested in another complex
type description.

Nesting with Anonymous Types

Mapping to Java

Using XMLSchema Complex Types

When you nest with an anonymous type, the element declaration for the
nested complex type does not have a t ype attribute. Instead, the element’s
type description is provided as part of the element’s declaration.

Example 32 shows a description of syl vest er St at e using an anonymous
type.

Example 32: Nesting with an Anonymous Type

<conpl exType nanme="syl vester State">
<sequence>
<el enent name="hunger" type="xsd:int" />
<el enent nane="food" >
<conpl exType>
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enent name="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>

In this example, the f ood element of syl vest er St at e still contains a caged
sub-element and a granny_pr oxi m ty sub-element. However, the complex
type used to describe f ood cannot be re-used.

When a complex type containing nested complex types is mapped to Java,
each complex type that is nested creates a generated class to represent it.
The generated class for the top level complex type will have elements whose
elements are instances of the class generated to represent their type. For
example, the syl vest er St at e complex type, two Java classes will be
generated. One to represent the type of the f ood element and one to
represent syl vest er St at e.

The name of the classes generated to support the nested complex types
depends on the style of nesting used. For named nested complex types, the
generated class takes its name from the nane attribute of the complex type
used to describe it. So the nested type in Example 31 on page 48 would
result in a class called Tweet yBi rd and the f ood element of Syl vester State
would be an instance of Tweet yBi rd.

49

CHAPTER 3 | Working with Artix Data Types

Example using nested types

50

When you use anonymous nested complex types Artix names the class
generated to represent the nested class by appending _t ype to the name of
the parent complex type’s nare attribute. If that does not produce a unique
name, Artix will append _n, where n is an incrementing whole number, to
the name until it finds a unique name for the generated class. For example,
the nested type in Example 32 on page 49 would generate a class,

Syl vest er St at e_t ype, to represent the type of the food element in

Syl vest er St at e. If there were another complex type whose name was

Syl vest er St at e_t ype in the contract from which the code was generated,
Artix would name the class generated to support the f ood element

Syl vester State_type_ 1.

If you had an application using the complex type shown in Example 31 on
page 48 your application would include two classes to support it,
Tweet yBi rd and Syl vester St ate.

Example 33 shows the generated Java class for t weet yBi r d.
Example 33: TweetyBird Class

/1 Java
public class TweetyBird

{
public static final String TARGET _NAMESPACE =
"http://toonville.org/foodstuffs";

private bool ean caged;
private int granny_proximty;

publ i ¢ bool ean i sCaged()
{

}

return caged;

publ i c voi d set Caged(bool ean val)
{

caged=val ;

}

Using XMLSchema Complex Types

Example 33: TweetyBird Class

public int get@anny_proxi mty()
{

}

return granny_proximty;

public void setGanny_proximty(int val)

{
granny_proxi mty=val ;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (caged != null) {
buf f er. append(" caged: "+caged+"'\n");

}
if (granny_proximty !'= null) {
buf f er. append(" granny_proxi mty: "+granny_proxi mty+'\n");

return buffer.toString();

}
}

The generated class for syl vest er St at e, shown in Example 34, has one
element, f ood, that is an instance of Tweet yBi rd.

Example 34: SylvesterState Class

/[Java

public class Syl vesterState

{
public static final String TARGET _NAMESPACE =
"http://toonville.org/cats";

private int hunger;
private TweetyBird food,;

51

CHAPTER 3 | Working with Artix Data Types

Example 34: SylvesterState Class

public int getHunger()
{

}

return hunger;

public voi d setHunger (int val)

{
}

hunger =val ;

publ i c TweetyBird get Food()
{

}

return food;

public voi d set Food(TweetyBird val)
{

}

f ood=val ;

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (caged !'= null) {
buf f er. append(" hunger: "+hunger+'\n");

}
if (granny_proximty !'= null) {
buf f er. append("food: "+food+'\n");

return buffer.toString();
}
}

When you set the value of Syl vester Stat e. f ood, you must pass a valid
Tweet yBi r d object to set Food() . Also, when you get the value of

Syl vest er St at e. f ood, you are returned a Tweet yBi r d object which has its
own getter and setter methods. Example 35 shows an example of using the
nested type syl vest er St at e in using the generated Java classes.

Example 35: Working with Nested Complex Types

/1 Java

52

Using XMLSchema Complex Types

Example 35: Working with Nested Complex Types

Syl vesterState hunter = new Syl vesterState();
hunt er . set Hunger (25) ;

TweetyBird prey = new TweetyBird();
prey. set Caged(fal se);
prey. set G anny_proxi mty(0);

hunt er . set Food(pery);

Systemout. println("The cat is this hungry:
"+hunt er. get Hunger ()) ;

Systemout. println("The food is caged:
"+hunt er . get Food() . i sCaged());

Tweet yBi rd out Prey = hunter. get Food();
Systemout. println("Ganny is this many feet away:
"+out Prey. get Ganny_proxi mty());

The code in Example 35 does the following:

1. Instantiates a new Syl vest er St at e object and sets its hunger element
to 25.

2. Instantiates a new Tweet yBi rd object and sets its values.
Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the f ood
element’s caged element.

5. Gets the f ood element, assigns it to out Prey then prints out the
granny_proxi mty element.

53

CHAPTER 3 | Working with Artix Data Types

Deriving a Complex Type from a Simple Type

Overview

Java mapping

54

Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

Example 36 shows an example of a complex type, i nt er nati onal Pri ce,
derived by extension from the xsd: deci mal simple type to include a
currency attribute.

Example 36: Deriving a Complex Type from a Simple Type by Extension

<conpl exType nane="i nternational Pri ce">
<si npl eCont ent >
<ext ensi on base="xsd: deci mal ">
<attribute name="currency" type="xsd:string"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

The <si npl eCont ent > tag indicates that the new type does not contain any
sub-elements and the <ext ensi on> element defines the derivation by
extension from xsd: deci nal .

A complex type derived from a simple type is mapped to a Java class. The
class will contain an element, val ue, of the simple type from which the
complex type is derived. The class will also have a get _val ue() and a

set _val ue() method. In addition, the generated class will have an element,
and the associated getter and setter methods, for each attribute that extends
the simple type.

Using XMLSchema Complex Types

Example 37 shows the generated Java class representing
i nternational Price class generated from Example 36.

Example 37:internationalPrice Java Class

/1 Java
public class International Price

{

}

public static final String TARGET _NAMESPACE =
"http://moneyTree. con;

private String currency;
private java. math. Bi gDeci mal _val ue;

public String getQurrency()
{

return currency;

}

public void setCQurrency(String val)
{

currency = val;

}

public java. nath. Bi gDeci mal get _val ue()

{

return _val ue;

}

public void set_val ue(java. mat h. Bi gDeci nal val)

{

_value = val;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (currency !'= null) {
buf f er. append("currency: "+currency+"\n");

if (_value !'=null) {
buf f er. append(" _val ue: "+ val ue+"\n");

}
return buffer.toString();

}

55

CHAPTER 3 | Working with Artix Data Types

The value of the currency attribute, which is added by extension, can be
accessed and modified using the get Qurrency() and set Qurrency()
methods. The simple type value (that is, the value enclosed between the
<international Price>and </international Pri ce>tags) can be accessed
and modified by the get _val ue() and set_val ue() methods.

56

Using XMLSchema Complex Types

Occurrence Constraints

Overview

Mapping to Java

XMLSchema allows you to specify the minimum and maximum number of
times that an element in a complex type can occur. You specify these
occurrence constraints on an element by setting the element’s m nCccur s
and naxCQccur s attributes. The ni nCeccur s attribute specifies the minimum
number of times the element must occur. The maxCQecur s attribute specifies
the upper limit for how many times the element can occur. For example, if
an element, | i ves, were to occur at least twice and no more than nine times
in a complex type it would be described as shown in Example 38.

Example 38: Occurrence Constraints Setting

<conpl exType nane="houseCat " >
<al | >
<el enent name="nane" type="xsd:string" />
<el enent name="I|ives" type="xsd:short" m nCccurs="2"
maxCceur s="9" />
</all>
</ conpl exType>

Given the description in Example 38, a valid houseCat element would have
a single nane and at least two | i ves. However, a valid houseCat element
could not have more than nine i ves.

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“SOAP Arrays” on page 60.

When a complex type contains an element with its maxCccur s attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxCceurs
attribute of an element is set to a value equal to or greater than the value of
the element’s m nCccur s, the code generator will generate a warning if the
m nCccur s attribute is set without a maxCeccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

57

CHAPTER 3 | Working with Artix Data Types

For example, the complex type, houseCat , shown in Example 38 will be
mapped to the Java class HouseCat shown in Example 39.

Example 39: HouseCat Java Class

/1 Java
public cl ass HouseCat
{

private String nane;
private short[] lives;

public void setNane(String val)
{

nane=val ;

{
public String get Name()

{

return nane;

}

public void setLives(short[] val)

{

i ves=val ;

public short[] getLives()
{

return lives;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (nane !'= null)

buf f er. append(" nane: "+name+"\n");

}
if (lives I'= null)
{

buf fer. append("lives: "+l ives+'\n");

return buffer.toString();

58

Using XMLSchema Complex Types

The generated code does not force you to obey the min. and max occurrence
rules from the contract, but your application code should be sure the obey
the contract rules. Attempting to send too few or too many occurrences of an
element across the wire will create unpredictable results.

59

CHAPTER 3 | Working with Artix Data Types

SOAP Arrays

Overview

Syntax of a SOAP Array

60

SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

SOAP arrays can be described by deriving from the SQAP- ENC Array base
type using the wsdl : ar r ayType. The syntax for this is shown in Example 40.

Example 40: Syntax for a SOAP Array derived using wsdl:arrayType

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : ar rayType="H enent Type<Ar r ayBounds>"/ >
</restriction>
</ conpl exCont ent >
</ conpl exType>

Using this syntax, TypeNane specifies the name of the newly-defined array
type. El erment Type specifies the type of the elements in the array.

<Ar r ayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use [] ; to specify a two-dimensional array
you would use either [1[] or[,].

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 41.

Example 41: Syntax for a SOAP Array derived using an Element

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<sequence>
<el enent nanme="HE enent Nane" type="FE enent Type"
maxCccur s="unbounded" / >
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Java mapping

SOAP Arrays

When using this syntax, the element’s maxCccurs attribute must always be
set to unbounded.

SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message that
was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPSt ri ngs, shown in Example 42 defines a
one-dimensional array of strings. The wsdl : ar r ay Type attribute specifies the
type of the array elements, xsd: string, and the number of dimensions, []
implying one dimension.

Example 42: Definition of a SOAP Array

<conpl exType nane="SOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP-ENC arrayType"
wsdl : arrayType="xsd: string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Any message of type SOAPSt ri ngs and any complex type element of type
SOAPSt ri ngs would be mapped to String[] . So the contract fragment
shown in Example 43, would result in the generation a Java method

cel ebVasher () that took a parameter, badLang, of type String[].

Example 43: Operation Using an Array

<nessage name="badLang" type="SOAPStrings" />
<port Type nane="censor">
<oper ati on name="cel ebWasher ">
<i nput nessage="badlLang" name="badLang" />
</ oper at i on>
</ por t Type>

61

CHAPTER 3 | Working with Artix Data Types

Multi-dimensional arrays

Sparse and partially transmitted
arrays

62

Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SQAPSt ri ngs were mapped to a two-dimensional array, as shown in
Example 44, the mapping of cel ebWasher () would take a parameter,
badLang, of type String[][].

Example 44: Definition of a two-dimensional SOAP Array

<conpl exType nanme="SQOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd: string[][]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, i nt Array[], of 10 integers and
only filled inintArray[1], i ntArray[6], and i nt Array[9], it would be
considered a sparse array.

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,

hot Mat ri x[x] [y] , and only set put values in elements where 9 > x > 5 and
4 >y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

Enumerations

Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 45.

Example 45: Syntax for an Enumeration

<si npl eType nane="Enuniane" >
<restriction base="Enunlype">
<enuner ati on val ue="CaselVal ue" />
<enuner ati on val ue="Case2Vval ue" />

<enuner ati on val ue="CaseNval ue" />
</restriction>
</ si npl eType>

EnuniNane specifies the name of the enumeration type. EnunType specifies
the type of the case values. CaseNval ue, where Nis any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration wi dget Si ze, shown in Example 46, would be valid if it were
<wi dget Si ze>bi g</ wi dget Si ze>, but not if it were

<wi dget Si ze>bi g, nungo</ wi dget Si ze>.

Example 46: widgetSize Enumeration

<si npl eType nane="wi dget Si ze" >
<restriction base="xsd: string">
<enuner ation val ue="bi g"/>
<enuner ation val ue="1|arge"/>
<enuner ati on val ue="nmungo"/>
<enuner ati on val ue="gar gant uan"/>
</restriction>
</ si npl eType>

63

CHAPTER 3 | Working with Artix Data Types

Mapping to a Java class

64

Artix maps enumerations to a Java class whose name is taken from the
schema type's nane attribute. So Artix would generate a class, Wdget Si ze,
to represent the wi dget Si ze enumeration.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in “Nesting with Anonymous Types” on page 49.

The generated class contains two static public data members for each
possible case value. One, _CaseNval ue, holds the data value of the
enumeration instance. The other, CaseNval ue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration’s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, Wdget Si ze, shown in
Example 47, to represent the enumeration, wi dget Si ze, shown in

Example 46 on page 63.

Example 47: WidgetSize Class

Il Java
public class WdgetSi ze
{

public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni t ypes/ wi dget Types";

Enumerations

Example 47: WidgetSize Class

private final String _val;

public static final
public static final

public static final
public static final

public static final
public static final

public static final
public static final

String _big = "big";
Wdget Si ze big = new Wdget Si ze(_big);

String _large = "large";
Wdget Size | arge = new Wdget Si ze(_I| arge);

String _mungo = "mungo";
Wdget S ze nungo = new Wdget Si ze(_mungo) ;

String _gargantuan = "gargantuan";
Wdget Si ze gar gantuan = new

W dget Si ze(_gar gant uan) ;

protected WdgetSi ze(String val ue)

{

_val = val ue;

}

public String getVal ue()

{

return _val;

IE

65

CHAPTER 3 | Working with Artix Data Types

Example 47: WidgetSize Class

public static WdgetSi ze fronVal ue(String val ue)

{
if (value.equal s("big"))

{
}

if (value.equals("large"))

{

return big;

return |arge;

if (val ue.equal s("mngo"))

{
}

if (val ue.equal s("gargantuan"))

{
}

throw new || | egal Argunent Exception("Invalid enureration
val ue: "+val ue);

return nmungo;

return gargant uan;

IE
public static WdgetSi ze fronBtring(String val ue)
{

if (value.equals("big"))

{

return big;

if (value.equals("large"))

{ return |arge;

i}f (val ue. equal s("mungo"))

{ return mungo;

i}f (val ue. equal s("gargant uan"))
{ return gargant uan;

}

throw new I | | egal Argunent Exception("Invalid enuneration
val ue: "+val ue);

}

66

Working with enumerations in
Java

Enumerations

Example 47: WidgetSize Class

public String toString()
{
return ""+ val;
}
}

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromval ue() or fronstring() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the get Val ue() method on that member to
determine the value for the member.

If you were working with the wi dget Si ze enumeration, shown in

Example 46 on page 63, to build an ordering system, you would need a way
to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 48 shows a simple text entry method
for getting the proper member of the enumeration using f r onval ue(),

Example 48: Using fromValue() to Get a Member of an Enumeration

/1 Java
temp = new String();
W dget Si ze ordered_si ze;

/l Get the type of w dgets to order

Systemout . printl n("Wat size wdgets do you want?");
Systemout . println("Big");

Systemout. println("Large");

Systemout . printl n("Mingo");

Systemout . print| n("Gargant uan");

tenp = i nput Buffer.readLine();

ordered_si ze = Wdget Si ze. fronVal ue(tenp);

Because the value used to define the cases of the enumeration is a string,
fromval ue() takes a String and returns the member based on the value of
the string. In this example, fronstring() is interchangeable with

fromval ue() . However, if the value of the enumeration were integers,
fromval ue() would take anint.

67

68

CHAPTER 3 | Working with Artix Data Types

To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the get Val ue() method
to retrieve the value of the enumeration or you could use the t oSt ri ng()
method to return the value as a String. Example 49 uses get Val ue() to
return the value of the enumeration retrieved in Example 48 on page 67

Example 49: Using getValue()

Il Java
String sizeVal = ordered_size. get Val ue();
Systemout. println("You ordered "+si zeVal +* si zed wi dgets.");

Deriving Types Using <complexContent>

Deriving Types Using <complexContent>

Overview

Schema syntax

Using XMLSchema, you can derive new complex types by extending other
complex types using the <conpl exCont ent > element. When generating the
Java class to represent the derived complex type, Artix extends the base
type's class. In this way, the Artix-generated Java preserves the inheritance
hierarchy intended in the XMLSchema.

You derive complex types from other complex types by using the

<conpl exCont ent > element and the <ext ensi on> element. The

<conpl exCont ent > element specifies that the included data description
includes more than one field. The <ext ensi on> element, which is part of the
<conpl exCont ent > definition, specifies the base type being extended to
create the new type. The base type is specified by the <ext ensi on>
element’s base attribute.

Within the <ext ensi on> element, you define the additional fields that make
up the new type. All elements that are allowed in a complex type description
are allowable as part of the new type’s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
<choi ce> element to specify that only one of the new fields is to be valid at
a time.

Example 50 shows an XMLSchema fragment that defines two complex
types, wi dget O der | nf o and wi dget - der Bi | | I nf o. wi dget OrderBi | | I nfo
is derived by extending wi dget Or der I nf o to include two new fields,

or der Nunber and ant Due.

Example 50: Deriving a Complex Type by Extension

<conpl exType nane="wi dget O der | nf 0" >
<sequence>
<el enent name="armount " type="xsd: deci nal "/ >
<el enent name="or der_dat e" type="xsd: dat eTi ne"/>
<el enent name="type" type="xsdl:w dgetS ze"/>
<el enent name="shi ppi ngAddr ess" type="xsdl: Addr ess"/ >
</ sequence>
<attribute name="rush" type="xsd: Q\Nane" use="optional " />
</ conpl exType>

69

CHAPTER 3 | Working with Artix Data Types

Generated Java code

70

Example 50: Deriving a Complex Type by Extension

<conpl exType nane="wi dgetOrderBil || nfo">
<conpl exCont ent >
<ext ensi on base="xsd1: w dget O der | nf 0" >
<sequence>
<el enent name="ant Due" type="xsd: bool ean"/ >
<el enent name="or der Nunber" type="xsd: string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

As with all complex types defined in a contract, Artix generates a class to
represent complex types derived by extension. When the complex type is
derived by extension, the generated class extends the base class generated
to support the base complex type in the contract.

For example, the schema in Example 50 on page 69 would result in the
generation of two Java classes, W dget O der I nf o and

Wdget Bi | | O der | nfo. Wdget Order Bi | | I nf o would extend

W dget Or der | nf o because wi dget O der Bi | | I nf o is derived by extension
from wi dget Or der I nf 0. Example 51 shows the generated class for

wi dget OrderBi | | | nfo.

Example 51: WidgetOrderBillinfo

/1l Java
public class WdgetOderBilllnfo extends Wdget O derlnfo

{
public static final String TARGET _NAMESPACE =

"http://w dget Vendor . coni t ypes/ wi dget Types";

private bool ean ant Due;
private String order Nunber;

publ i ¢ bool ean i sAnt Due()
{

}

return ant Due;

Deriving Types Using <complexContent>

Example 51: WidgetOrderBillinfo

public voi d set Ant Due(bool ean val)

{
this.antDue = val;
}
public String getQ der Nurber ()
{
return order Nunber ;
}
public void set O der Nunber (String val)
{
this. order Nunber = val;
}

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());

buf f er. append("ant Due: "+antDue+"\n");
if (orderNunber !'= null)

buf f er. append(" or der Nunber : " +or der Nunber +"\ n") ;

}
return buffer.toString();

71

CHAPTER 3 | Working with Artix Data Types

Holder Classes

Overview

Working with holder classes

72

WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C++ does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
infout parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in j avax. xm . r pc. hol der s.
The names of the holder classes start with a capital letter and end with the
Hol der postfix. The name of the holder class for | ong is LongHol der . For
primitive wrapper classes, W apper is placed after the class name and before
Hol der . For example, the holder class for Long is LongW apper Hol der .

For complex types, Artix generates holder classes to represent the complex

type when needed. The generated holder classes follows the same naming

convention as the primitive holder classes and implement the

j avax. xm . rpc. hol der s. Hol der interface. For example, the holder class for

a complex type, hand, would be HandHol der .

All holder classes provide the following:

® A public field named val ue of the mapped Java type. For example, a
HandHol der would have a val ue field of type Hand.

® A constructor that sets val ue to a default.

® A constructor that sets val ue to the value of the passed in parameter.

A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation’s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 52 shows an example of an operation that would
require holder classes in the generated Java code.

Example 52: Multiple Output Parts
<nessage nane="i ncom ngPackage">

<part nanme="|D' type="xsd:|ong" />
</ message>

Holder Classes

Example 52: Multiple Output Parts

<nessage nane="out goi ngPackage" >
<part name="rerouted" type="xsd:bool ean" />
<part name="destination" type="xsd:string" />
</ message>
<port Type nane="portal ">
<oper ati on name="router">
<i nput nessage="t ns: i ncom ngPackage" nane="reci eved" />
<out put message="t ns: out goi ngPackage" nane="shi pped" />
</ oper at i on>
</ por t Type>

Artix will use holder classes for the parameters of the Java method
generated to implement the operation, rout er, because the output message
has multiple parts. Example 53 shows the resulting Java method signature.

Example 53:/nterface Using Holders

/1 Java
inport java.net.*;
inport java.rm.?*;

public interface portal extends java.rm . Renote
{

publ i c bool ean router(long ID,

javax. xm . rpc. hol ders. Stri ngHol der desti nati on)
throws Renot eExcepti on;

}

The first part of the out goi ngPackage message, rer out ed, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, desti nati on, is mapped to a
holder class because it has to be mapped into the method’s parameter list.

73

CHAPTER 3 | Working with Artix Data Types

74

An example of an application that implements the port al interface might be
one that determines if a package has reached its final destination. The
rout er method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 54 shows how
a server might implement the router method.

Example 54: Portal Implementation

I/ Java
inport java.net.*;
inport java.rm.?*;

// The met hods bool ean bel ongsHere() and
/1 String getFinal Destination() are |eft
I/ for the reader to inplenent.

public class portall npl
{

publ i ¢ bool ean router(long ID,
javax. xm . rpc. hol ders. Stri ngHol der desti nati on)
{
i f (bel ongsHere(1D))

return fal se;

}

destination. value = getFinal Destination(lD);
return true;

}

Example 55 shows a client calling rout er () on a portal service.
Example 55: Client Calling router()

/1 Java

StringHol der destination = new StringHol der();
long I D = 1232;
bool ean cont i nui ng;

Holder Classes

Example 55: Client Calling router()
/1 proxy portal dient obtained earlier
continuing = portaldient.router(lID, destination);

if (continuing)

{

Systemout. printl n("Package "+l D+' is going to
"+desti nati on. val ue) ;

75

CHAPTER 3 | Working with Artix Data Types

76

In this chapter

CHAPTER 4

Creating
User-Defined
Exceptions

Artix supports the definition of user-defined exceptions using
the WSDL <fault> element. When mapped to Java, the

<fault> element is mapped to a throwable exception on the
associated Java method.

This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 78

How Artix Generates Java User-defined Exceptions page 80

Working with User-defined Exceptions in Artix Applications page 82

77

CHAPTER 4 | Creating User-Defined Exceptions

Describing User-defined Exceptions in an Artix

Contract

Overview

Describing the exception message

78

Artix allows you to create user-defined exceptions that your service can
propagate back to any client using it. As with any information that is
exchanged between a service and client in Artix, the exception must be
described in the Artix contract. Describing a user-defined exception in an
Artix contract involves the following:

® Describing the message that the exception will transmit.

® Associating the exception message to a specific operation.

® Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a
user-defined exception. The fourth task, describing the binding of the
exception to a payload format, is beyond the scope of this book. For
information on binding messages to specific payload formats in an Artix
contract read Designing Artix Applications from the Command Line or
Designing Artix Applications.

Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the <nessage> element. There
are no restrictions on the data types that can be passed as part of an
exception message or on the number of parts the message can contain.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

Example 56 shows a message description in an Artix contract.
Example 56: Message Description
<nessage nane="not Enoughl nvent ory">

<part name="num nventory" type="xsd:int" />
</ message

Associating the exception to an
operation

Describing User-defined Exceptions in an Artix Contract

For more information on describing a message in an Artix contract, read
Designing Artix Solutions with Artix Designer or Designing Artix Solutions
from the Command Line.

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a <f aul t > element to the operation’s
description. A <f aul t > element takes the same attributes as the <i nput >
and <out put > elements. The nessage attribute specifies the <nessage>
element describing the data passed by the exception. The nane attribute
specifies the name by which the exception will be referenced in the binding
section of the contract.

Example 57 shows an operation description that uses the message
described in Example 56 on page 78 as a user-defined exception.

Example 57: Operation with a User-defined Exception

<oper at i on nane="get W dget s" >
<i nput nessage="t ns: wi dget S zeMessage" nane="si ze" />
<out put nessage="tns: w dget Cost Message" nane="cost" />
<fault message="t ns: not Enoughl nvent ory" nane="not Enough" />
</ oper at i on>

The operation described in Example 57, get Wdget s, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

79

CHAPTER 4 | Creating User-Defined Exceptions

How Artix Generates Java User-defined

Exceptions

Overview

Example

80

As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Except i on class so that it can be thrown. It will have one private data
member of the type specified in the contract’'s message part to represent
each part of the message, a creation method that allows you to specify the
values of each data member, and the associated getter and setter methods
for each data member. In addition, the generated class will have a
toString() method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the nane attribute of the exception’s message description and
will always start with a capital letter.

Example 58 shows the generated exception class for the fault message in
Example 56 on page 78.

Example 58: Generated Java Class

/1 Java
inport java.util.*;

publ i c cl ass Not Enoughl nventory extends Exception
{
public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni wi dget O der Forni';

private int num nventory;

publ i ¢ Not Enoughl nvent ory(i nt nuni nvent ory)
{

super ();

this. num nventory = nuninventory;

}

How Artix Generates Java User-defined Exceptions

Example 58: Generated Java Class

public int get Num nventory()
{

return num nventory;

}

public void set Num nventory(int val)

{

num nventory = val ;

}

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());

if (size!=null)

{

buf f er. append(" num nvent ory: "+num nventory+"\n");

}
return buffer.toString();

}
}

The TARGET_NAVESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

81

CHAPTER 4 | Creating User-Defined Exceptions

Working with User-defined Exceptions in Artix

Applications

Overview

Example

82

Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception and inspect the contents using the standard methods.

Example 59 shows how a server implementing the get W dget s operation,
shown in Example 57 on page 79, might instantiate and throw a
Not Enoughl nvent ory exception.

Example 59: Throwing a User-defined Exception

//Java

I/ checklnventory() is left for the reader to inplement
I/ size and nuntrdered are paraneters passed into the operation
if (nunCrdered > checkl nventory(size))
{
t hr ow Not Enoughl nvent or y(checkl nvent or y(si ze));

}

Example 60 shows how a client might catch and report the exception
thrown by the server.

Example 60: Catching a User-defined Exception

/1 Java

try
{

| ong cost = get Wdget s(si ze, nuntrdered);
}

Working with User-defined Exceptions in Artix Applications

Example 60: Catching a User-defined Exception

cat ch(Not Enoughl nvent ory nei)

Il get the value stored in the exception

int numnventory = nei.get Num nventory();

Systemout. println("The factory only has "+nunm nvent or y+
' widgets of size "+size+'.");

83

CHAPTER 4 | Creating User-Defined Exceptions

84

In this chapter

CHAPTER 5

Working with
XMLSchema
anyTypes

The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 86
Registering Type Factories page 88
Setting anyType Values page 95
Retrieving Data from anyTypes page 97

85

CHAPTER 5 | Working with XMLSchema anyTypes

Introduction to Working with XMLSchema

anyTypes

XMLSchema anyType

Artix and anyType

Artix binding support

Using anyType in Java

86

The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

In Artix, an anyType can assume the value of any complex type defined
within the <t ypes> section of the Artix contract that describes the interface
and bindings used by an application. An anyType can also assume the value
of any XMLSchema primitive. For example, if your contract defines the
complex types j oeFri day, sanBpade, and m keHanmer , an anyType used as a
message part in an operation can assume the value of an element of type
sanBpade or an element of type xsd: i nt . However, it could not assume the
value of an element of type aceVent ur a because aceVent ura was not
defined in the contract.

Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

® SOAP
® Pure XML
®* CORBA

When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory class with either the client proxy or the
servant depending on which you are developing. Registering the generated
type factory with a client proxy is discussed in “Registering Type Factories

Java packages for anyType
support

Introduction to Working with XMLSchema anyTypes

with a Client Proxy” on page 89. Registering the generated type factory with
a servant is discussed in “Registering Type Factories with a Servant” on
page 92.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in “Retrieving Data from anyTypes” on page 97.

When using anyType data and the type factories you must import the
following:

® comiona.webservices. reflect.types. AnyType
® comiona. webservi ces.refl ect.types. TypeFact ory

87

CHAPTER 5 | Working with XMLSchema anyTypes

Registering Type Factories

Overview

In this section

88

When generating Java code, Artix automatically generates a type factory for
all user-defined types for contracts that contain an anyType. This type
factory provides the functionality needed to allow an anyType to assume the
data of any of the complex types defined in the contract from which the type
factory was generated.

You can generate and register more than one type factory per application if
you have multiple XMLSchema documents defining types. In the case when
you register multiple type factories with an application, the anyTypes used in
the application can assume the data of any complex type for which the type
factories were generated. For example, if you generated a type factory for a
schema type defining the data types I arry, noe, and curly and you
generated a separate type factory from a contract defining the complex type
shenp, the anyTypes used in your application could represent either l arry,
moe, curly, or shenp as long as you registered both type factories with the
application.

This section discusses the following topics:

Registering Type Factories with a Client Proxy page 89

Registering Type Factories with a Servant page 92

Registering Type Factories

Registering Type Factories with a Client Proxy

Overview

Procedure

Instantiating a type factory

Type factories are registered with an Artix client proxy using the St ub
object’s _set Property() operation. The client proxy is a child of the Stub
object so you can simply cast the client proxy to a St ub object.

_setProperty() takes an array of the type factory’s base class. You will
need to populate this array with instances of all the type factories you are
registering with the client proxy.

To register type factories with an Artix Java client proxy complete the
following steps:

1. Create the client proxy as described in “Instantiating a client proxy” on
page 18.

2. Cast the instantiated client proxy to a St ub as shown in Example 61.
Example 61: Casting a Client Proxy to a Stub

/1 Java
inport javax.xn.rpc.*;

Il client proxy, client, created earlier
Stub clientStub = (Stub) client;

3. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 89.

4. Create the TypeFacot ry array used to register the type factories as
shown in “Creating a TypeFactory array” on page 90.

5. Register the type factories using _set Property() on the St ub object as
shown in “Registering the type factories” on page 90.

When the Artix Java code generator encounters an anyType in a contract, it
automatically generates a type factory for all of the complex types defined in
the contract. The type factory class is named by postfixing TypeFact ory onto
the port type’s name. For example if you generated Java code for a port type
named packageDepot , the generated type factory class would be
packageDepot TypeFact ory.

89

CHAPTER 5 | Working with XMLSchema anyTypes

Creating a TypeFactory array

Registering the type factories

20

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 62 shows the code to
instantiate the type factory for packageDepot .

Example 62: Instantiating a TypeFactory

/1 Java
packageDepot TypeFactory factory = new packageDepot TypeFact ory();

The method for registering type factories with the client proxy takes an array
of the base type factory class. This class,

com i ona. webser vi ces. ref | ect. t ypes. TypeFact ory, is the class from
which all generated type factories inherit. You can instantiate and populate
an array of TypeFact ory objects using standard Java methods. Example 63
shows code for creating the type factory array to register the

packageDepot TypeFact ory instantiated in Example 62 on page 90.

Example 63: Creating a TypeFactory Array
[/ Java

i nport com i ona. webservices.refl ect.types.*;

/1 type factory factory created earlier
TypeFactory[] factArray = new TypeFactory[]{factory};

You register type factories with the client proxy using the St ub object’s
_setProperty() method. The property name for setting Artix type factories
isartix_java_type_factory. The property’s value is the array of

TypeFact ory objects containing all of the type factories you wish to register.
Example 64 shows code registering type factories using _set Property().

Example 64: Registering Type Factories with _setProperty()
[/ Java

// Stub clientStub and TypeFactory[] factArray obtai ned above
clientStub._setProperty("artix_java_type_factory", factArray);

Determining if the property is set

Example

Registering Type Factories

The client proxy stub provides a method, _get Property() that will return
the value of the arti x_j ava_t ype_factory property. You can use this
method to determine if the property is already set or to see what type
factories are registered with the client proxy. Example 65 shows a code for
determining if the type factories have been registered.

Example 65: Using _getProperty() to See if Type Factories are Registered

/'l Java
inport javax.xm.rpc.*;
inport comiona. webservices. reflect.types. *;

TypeFactory[] setFactory =
clientStub._getProperty("artix_java_type_factory");

Example 66 shows an example of registering two type factories,
packageDepot TypeFact ory and w dget sTypeFact ory, with a client proxy.

Example 66: Registering TypeFactories on a Client Proxy

/1 Java
inport javax.xn.rpc.*;
inport comiona. webservices. reflect.types. *;

/] Start the bus and create the Artix client proxy

Stub proxyStub = (Stub) cli entProxy;

packageDepot TypeFactory fact1l = new packageDepot TypeFact ory();
wi dget sTypeFactory fact2 = new wi dget sTypeFactory();
TypeFactory[] factArray = new TypeFactory[]{factl, fact2};
proxyStub. _setProperty("artix_java_type factory", factArray);

The code in Example 66 does the following:
1. Cast the client proxy to a St ub.

2. Instantiate the type factories that will be registered.

3. Create and populate an array of TypeFact ory objects containing the
type factories to register.

4. Register the type factories by setting arti x_j ava_type_fact ory using
_setProperty().

91

CHAPTER 5 | Working with XMLSchema anyTypes

Registering Type Factories with a Servant

Overview Type factories are registered with an Artix servant using the servant’s
regi st er TypeFact ory() method. Like the _set Property() method used to
register type factories with Artix client proxies, r egi st er TypeFact ory()
takes an array of the type factory base class.

Procedure To register type factories with an Artix Java servant complete the following

steps:

1. Create the servant and register it with the Artix bus as described in
“Developing a Server” on page 14.

2. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 92.

3. Create the TypeFactory array used to register the type factories as
shown in “Creating a TypeFactory array” on page 93.

4. Register the type factories using r esgi st er TypeFact ory() on the
servant as shown in “Registering the type factories” on page 93.

Instantiating a type factory When the Artix Java code generator encounters an anyType in a contract, it
automatically generates a type factory for all of the complex types defined in
the contract. The type factory class is named postfixing TypeFact ory onto
the port type’s name. For example if you generated Java code for a port type
named packageDepot , the generated type factory class would be
packageDepot TypeFact ory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 67 shows the code to
instantiate the type factory for packageDepot .

Example 67: /nstantiating a TypeFactory

[/ Java
packageDepot TypeFactory factory = new packageDepot TypeFactory();

92

Creating a TypeFactory array

Registering the type factories

Determining if type factories are
registered

Registering Type Factories

regi st er TypeFact ory() takes an array of the base type factory class. This
class, com i ona. webser vi ces. refl ect. t ypes. TypeFact ory, is the class
from which all generated type factories inherit. You can instantiate and
populate an array of TypeFact ory objects using standard Java methods.
Example 68 shows code for creating the type factory array to register the
packageDepot TypeFact ory instantiated in Example 67 on page 92.

Example 68: Creating a TypeFactory Array
/1 Java

inport comiona. webservices. reflect.types.*;

I/ type factory factory created earlier
TypeFactory[] factArray = new TypeFactory[]{factory};

You register type factories with the servant using its r egi st er TypeFact or y()
method with the newly created array of type factories. Example 69 shows
code registering type factories with a servant.

Example 69: Registering Type Factories with _setProperty()

/1 Java

I/ Servant servant and TypeFactory[] factArray obtai ned above
servant . regi st er TypeFact ory(fact Array) ;

You can get a hash table of the type factories registered with a servant using
get TypeFact or yMap() . The returned hash table, of type HashMap, contans
the Q\ane for the registered type factories and a TypeFact ory array
containing all of the registered type factories. shows code for returning the
hash table of registered type factories.

Example 70: Getting Hash Table of Registered Type Factories

/1 Java
HashMap fact Map=ser vant . get TypeFact or yMap() ;

93

CHAPTER 5 | Working with XMLSchema anyTypes

Example Example 66 shows an example of registering two type factories,
packageDepot TypeFact ory and wi dget sTypeFact ory, with a client proxy.

Example 71: Registering TypeFactories with a Servant

/] Java
inport comiona.webservices.refl ect.types.*;

/] Start the bus and create the Artix servant

1 packageDepot TypeFactory factl = new packageDepot TypeFactory();
wi dget sTypeFact ory fact2 = new w dget sTypeFactory();

2 TypeFactory[] factArray = new TypeFactory[]{factl, fact?2};

3 servant.registerTypeFactory(fact Array);

The code in Example 71 does the following:

1. Instantiate the type factories that will be registered.

2. Create and populate an array of TypeFact ory objects containing the
type factories to register.

3. Register the type factories.

94

Setting anyType Values

Setting anyType Values

Overview

Setting primitive data

In Artix Java xsd: anyType is mapped to

com i ona. webser vi ces. ref | ect . t ypes. AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the Q\arre for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data’'s schema type when the object is
transmitted.

The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 3.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 3: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
set Bool ean() bool ean bool ean
set Byte() byte byt e
set Short () short short
setlnt() int int
set Long() | ong | ong
set Fl oat () f1 oat f1 oat
set Doubl e() doubl e doubl e
setString() string string
set Short () short short
set UByt e() short ubyt e
set UShort () int ushort

95

CHAPTER 5 | Working with XMLSchema anyTypes

Table 3: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
setUnt() | ong ui nt
set ULong() Bi gl nt eger ul ong
set Deci nal () Bi gDeci nal deci nal

Setting complex type data

96

You set complex data into any AnyType using the set Type() method.

set Type() can be used two ways. The first is to provide the Q\ane of the
XMLSchema type describing the data to store in the AnyType along with the
data. Using this method makes it easier to query the contents of anyType
objects that were created in the current application space because Artix
does not set the type identifier until it sends the anyType across the wire.
Example 72 shows code for storing a wi dget Si ze in an anyType.

Example 72: Storing Complex Data and Specifying its Type

/1 Java
wi dget Si ze size = wi dgetSi ze. bi g;

Q\ane gn = new Q\ane("http://w dget Vendor. coml t ypes/",
"w dget Si ze");

AnyType aT =new AnyType();

aT. set Type(gn, size);

The other way is to simply provide the data value to store in the AnyType
and Artix will determine the XMLSchema type describing the data. From the
receiving end this method for storing data in an anyType is equivalent to the
first method because Artix identifies the contents schema type when it
transmits the data. However, the application that store the value will have
no way to determine the data type once the value is stored until it is used as
part of a remote invocation. Example 73 shows code for storing a

wi dget Si ze in an anyType without providing its QNane.

Example 73: Storing Complex Data without a QName

/1l Java

wi dget Si ze size = wi dgetSi ze. bi g;
AnyType aT =new AnyType();

aT. set Type(si ze);

Retrieving Data from anyTypes

Retrieving Data from anyTypes

Overview

Determining the type of an
anyType

Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value’s type you could

cast the value into the proper Java type and work with it using standard
Java methods.

Artix’s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not

specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java get A ass() method on the Java vj ect

returned from AnyType. get Coj ect () to get the Java class of the data stored
in the anyType.

The Artix Java AnyType provides a method, get SchemaTypeNane(), that
returns the Q\ane of the schema type of the data stored in the anyType.

Example 74 gets the schema type of an anyType and prints it out to the
console.

Example 74: Using getSchemaTypeName()

/1 Java
inport comiona. webservi ces. rel ect. types. *;

AnyType bl ackBox;

// dient proxy, proxy, instantiated previously
bl ackBox = proxy. newBox();
\ane schemaType = bl ackBox. get SchemaTypeNane() ;
Systemout. println("The type for blackBox is defined in "
+schemaType. get NamespaceUR ());
Systemout. println("bl ackBox is of type: "
+schemaType. get Local Part());

97

CHAPTER 5 | Working with XMLSchema anyTypes

Extracting primitive types from an
anyType

The data stored in an Artix AnyType is a stored as a standard Java j ect,
so when the data is extracted you can use the standard get d ass() method
on the returned oj ect to determine its Java type.

The Artix AnyType provides specific methods for extracting primitive types.
lists the getter methods for the supported primitive types and the local part
of the schema type name returned by get SchemaType() . All of the primitive
types have htt p: //ww w8. or g/ 2001/ XM_Schema as their namespace URI.

Table 4: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name
get Bool ean() bool ean bool ean
get Byt e() byt e byte
get Short () short short
getlnt() int int
get Long() | ong | ong
get Fl oat () f1 oat fl oat
get Doubl e() doubl e doubl e
get String() String string
get UByt e() short unsi gnedByt e
get Ushort () int unsi gnedShor t
getUnt() | ong unsi gnedl! nt
get ULong() Bi gl nt eger unsi gnedLong
get Deci mal () Bi gDeci nal deci nal

98

Extracting complex data from an
anyType

Example

Retrieving Data from anyTypes

The Artix AnyType provides a generic method, get Type(), that can be used
to extract complex data. get Type() returns the data store in the anyType as
a Java Object that you can then cast to the proper Java type. Example 75
shows an example of retrieving a wi dget Si ze from an anyType.

Example 75: Extracting a Complex Type from an anyType

/1 Java
AnyType any;

/l dient proxy, proxy, instantiated earlier
any = proxy.returnWdget();
wi dget Si ze size = (wi dget)any. get (bj ect();

If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and destops.
Because the laptops and desktops are configured differently you've decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, | apt opQrder and deskt opQr der, in the
namespace htt p: // nyAssenbl yLi ne. coni syst enTypes. Example 76 shows
code for receiving the order from the server, querying the returned AnyType
to see what type of order it is, and then extracting the order from the
AnyType.

Example 76: Working with anyTypes

/1l Java

inport javax.xnl.nanespace. Q\ane;

inport comiona. webservices. reflect.types.*;

AnyType anyQr der;

// dient proxy, proxy, instantiated earlier
anyQrder = proxy. get Syst enrder () ;

I/ Get the schema type of the returned order
Q\ane or der Type = anyQrder. get SchenaType() ;

99

CHAPTER 5 | Working with XMLSchema anyTypes

Example 76: Working with anyTypes

3 if (!(orderType. get NanespaceURl (). equal s(
"http://nyAssenbl yLi ne. coni syst enTypes"))

// handl e the fact that the schema type is fromthe wong
/'l nanespace.

}

4 if (orderType.getLocal Part().equal s("I aptopQder"))

{
LapTopQrder order = (LapTopQrder)anyQ der. get Type();
bui | dLapt op(order);

5 if (orderType. getlLocal Part (). equal s("desktopC der"))
{

DeskTopCrder order = (DeskTopCrder)anyQO der. get Type();
bui | dDeskt op(order) ;

}

The code in Example 76 on page 99 does the following:

1. Populate anyQrder.

2. Query anyQrder for its schema type information.

3. Check the namespace of the returned type to ensure it correct.

4

Check if anyQrder is a | apt opQOrder . If so, cast anyQrder into a
| apt opCr der .

5. Check if anyQrder is a deskt opQrder. If so, cast anyQrder into a
deskt opCr der .

100

In this chapter

CHAPTER 6

Artix IDL to Java
Mapping

This chapter describes how Artix maps IDL to Java; that is, the
mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to Java (using the
WSDL-to-Java compiler).

This chapter discusses the following topics:

Introduction to IDL Mapping page 102
IDL Basic Type Mapping page 104
IDL Complex Type Mapping page 106
IDL Module and Interface Mapping page 119

101

CHAPTER 6 | Artix IDL to Java Mapping

Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-Java mapping. Mapping

IDL to Java in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, Sanpl el DL. i dI , to a WSDL contract,
Sanpl el DL. wsdl , using the following command:
idl -wsdl SanplelDL.idl

2. Map the generated WSDL contract to Java using the WSDL-to-Java
compiler. For example, you could generate Java stub code from the
Sanpl el DL. wsdl file using the following command:
wsdl t oj ava Sanpl el DL. wsdl

For a detailed discussion of these command-line utilities, see the Artix
Command Line Reference Guide.

Alternative Java mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to Java directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to Java, as follows:
® Artix IDL-to-Java mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-Java. It is an IONA-proprietary mapping.

® CORBA IDL-to-Java mapping—as specified in the OMG Java Language
Mapping document (http://www.omg.org). This mapping is used, for
example, by the IONA’s Orbix.

102

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping

These alternative approaches are illustrated in Figure 1.

Unsupported IDL types

| |
IDL-to-WSDL : » WspL | WSDL-to-Java | j\artvl;(:
| |
Lo _|
IDL
CORBA
F- - - - — — — — — — — — a
| |
IDL-to-Java | »| CORBA |
| Java |
| |
o J

Figure 1: Artix and CORBA Alternatives for IDL to Java Mapping

The advantage of using the Artix IDL-to-Java mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-Java mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

The following IDL types are not supported by the Artix Java mapping:

| ong doubl e.

Value types.

Boxed values.

Abstract interfaces.
forward-declared interfaces.
Object.

103

CHAPTER 6 | Artix IDL to Java Mapping

IDL Basic Type Mapping

Overview Table 5 shows how IDL basic types are mapped to WSDL and then to Java.

Table 5: Artix Mapping of IDL Basic Types to Java

IDL Type WSDL Schema Type Java

bool ean xsd: bool ean bool ean

char xsd: byte byt e

string xsd: string java.lang. String

wchar xsd: string java.lang. String

wstring xsd: string java.lang. String

short xsd: short short

| ong xsd: i nt int

long | ong xsd: | ong | ong

unsi gned short xsd: unsi gnedShor t int

unsi gned | ong xsd: unsi gnedl| nt | ong

unsi gned | ong | ong xsd: unsi gnedLong j ava. mat h. Bi gl nt eger

f1 oat xsd: f| oat f1 oat

doubl e xsd: doubl e doubl e

oct et xsd: unsi gnedByt e I T _Bus:: WByte

fixed xsd: deci mal j ava. mat h. Bi gDeci nal
Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the stri ng,

wchar, and wstring IDL types all map to the same type, xsd: string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the

104

IDL Basic Type Mapping

scope of the <wsdl : bi ndi ng> </ wsdl : bi ndi ng> tags). Hence, whenever an
xsd: string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (stri ng, wchar, or wstri ng).

105

CHAPTER 6 | Artix IDL to Java Mapping

IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to Java:

enum type

struct type

union type

sequence types

array types

exception types

typedef of a simple type
typedef of a complex type

enum type Consider the following definition of an IDL enum type, Sanpl eTypes: : Shape:

/1 1DL
nmodul e Sanpl eTypes {

IE

enum Shape { Square, Grcle, Triangle };

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Shape enum to a WSDL
restricted simple type, Sanpl eTypes. Shape, as follows:

<xsd: si npl eType nane="Sanpl eTypes. Shape" >

<xsd:restriction base="xsd:string">

<xsd: enurrer ati on val ue="Square"/>
<xsd: enuneration value="Grcle"/>
<xsd: enurrer ati on val ue="Tri angl e"/>

</ xsd:restriction>

</ xsd: si npl eType>

106

IDL Complex Type Mapping

The WSDL-to-Java compiler maps the Sanpl eTypes. Shape type to a Java
class, Sanpl eTypesShape, as shown in Example 77.

Example 77:Java Enumeration

/1 Java
public class Sanpl eTypeShape
{

private final String _val;

public static final String _Square = "Square";

public static final Sanpl eTypeShape Square = new Sanpl eTypeShape(_Square);

public static final String _Grcle ="Qrcle";

public static final Sanpl eTypeShape G rcle = new Sanpl eTypeShape(_G rcle);

public static final String _Triangle = "Triangl e";

public static final Sanpl eTypeShape Tri angl e = new Sanpl eTypeShape(_Tri angl e) ;

prot ect ed Sanpl eTypeShape(String val ue)
{
_val = val ue;

}

public String get Val ue()
{

return _val;

}

public static Sanpl eTypeShape fronVal ue(String val ue)
{
if (val ue. equal s(_Square)) {
return Square;
}
if (value.equals(_Grcle)) {
return Arcle;
}
if (value.equal s(_Triangle)) {
return Triangl e;

}

throw new ||| egal Argunent Exception("Invalid enureration val ue:

"+val ue);

107

CHAPTER 6 | Artix IDL to Java Mapping

Example 77:Java Enumeration

public static Sanpl eTypeShape fronString(String val ue) {
if (value.equal s("Square")) {
return Square;

}
if (value.equals("Qrcle")) {
return Qrcle;

}
if (value.equal s("Triangle")) {
return Triangl e;

}

throw new ||| egal Argunent Exception("lnvalid enuneration val ue: "+val ue);

IE

public String toString() {
return ""+ val;

}

The value of the enumeration type can be accessed using the get Val ue()
member function.
Programming with the Enumeration Type

For details of how to use the enumeration type, see “Enumerations” on
page 63.

union type Consider the following definition of an IDL union type, Sanpl eTypes: : Pol y:

/1 1D
nodul e Sanpl eTypes {
union Poly sw tch(short) {
case 1: short theShort;
case 2: string theString;

}

108

IDL Complex Type Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Pol y union to an XML
schema choice complex type, Sanpl eTypes. Pol y, as follows:

<xsd: conpl exType nanme="Sanpl eTypes. Pol y">
<xsd: choi ce>
<xsd: el ement nanme="t heShort" type="xsd: short"/>
<xsd: el enent nanme="theString" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. Pol y type to a Java
class, Sanpl eTypesPol y, as shown in Example 78.

Example 78:Java Union

/1 Java
public class Sanpl eTypesPoly {

private String _ discrininator;

private short theShort;
private String theString;

public short get TheShort() {
return theShort;

}

public void set TheShort (short _v) {
this.theShort = _v;

__discrimnator = "theShort";
}
publ i c bool ean i sSet TheShort () {
if(_discrimpator != null &%
__discrimnator.equal s("theShort")) {
return true;
}
return fal se;
}

109

CHAPTER 6 | Artix IDL to Java Mapping

Example 78: Java Union

public String getTheString() {
return theString;

}

public void setTheString(String _v) {
this.theString = _v;
_discrimnator = "theString";

}

publ i c bool ean isSet TheString() {
if(_discrimpator != null &
__discrininator.equal s("theString")) {
return true;

}

return fal se;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
buf f er. append("t heShort: "+theShort+"\n");
if (theString !'= null) {
buf fer. append("theString: "+theString+'\n");

}
return buffer.toString();

The value of the union can be modified and accessed using the
get Uni onMenber () and set Uni onMenber () pairs of functions.

Programming with the Union Type

For details of how to use the union type, see “Choice Complex Types” on
page 40.

110

IDL Complex Type Mapping

struct type Consider the following definition of an IDL struct type,
Sanpl eTypes: : Sanpl eStruct :

/1 1DL
nodul e Sanpl eTypes {
struct Sanpl eStruct {
string theString;
| ong t helLong;
B

iE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eStruct struct to
an XML schema sequence complex type, Sanpl eTypes. Sanpl eStruct , as
follows:

<xsd: conpl exType name="Sanpl eTypes. Sanpl eStruct ">
<xsd: sequence>
<xsd: el ement nane="theString" type="xsd:string"/>
<xsd: el ement nane="t heLong" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. Sanpl eStruct type to a
Java class, Sanpl eTypesSanpl eSt ruct , as shown in Example 79.

Example 79:Java Struct

/1 Java
public class Sanpl eTypesSanpl eStruct {

private String theString;
private int thelLong;

public String getTheString() {
return theString;

}

public void setTheString(String val) {
this.theString = val;
}

111

CHAPTER 6 | Artix IDL to Java Mapping

Example 79: Java Struct

public int getTheLong() {
return thelong;

}

public void set TheLong(int val) {
this.theLong = val ;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (theString !'=null) {
buf fer. append("theString: "+theString+'\n");

}
buf f er. append("t heLong: "+t heLong+"\n");
return buffer.toString();

The members of the struct can be accessed and modified using the
get Struct Menber () and set Struct Menber() pairs of functions.
Programming with the Struct Type

For details of how to use the struct type, see “Sequence and All Complex
Types” on page 34.

sequence types Consider the following definition of an IDL sequence type,
Sanpl eTypes: : Seqtr Struct :
/1 1DL
nmodul e Sanpl eTypes {
typedef sequence< Sanpl eStruct > Seqtr Struct;

IE

112

IDL Complex Type Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Seqqf Struct sequence
to a WSDL sequence type with occurrence constraints,
Sanpl eTypes. SeqCf St ruct, as follows:

<xsd: conpl exType name="Sanpl eTypes. SeqCf Struct ">
<xsd: sequence>
<xsd: el erent name="iten
t ype="xsd1: Sanpl eTypes. Sanpl eStruct "
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. SeqCf Struct type to a
Java class, Sanpl eTypesSeq Struct , as shown in Example 80.

Example 80: Java Sequence

/1 Java
public class Sanpl eTypesSeqCf Struct {

private Sanpl eTypesSanpl eStruct[] item

publi ¢ Sanpl eTypesSanpl eStruct[] getlten() {
return item

}

public void setlten{Sanpl eTypesSanpl eStruct[] val) {
this.item= val;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (item!=null) {
buf fer. append("item "+Arrays.asList(item.toString()+"\n");

}
return buffer.toString();

Programming with Sequence Types
For details of how to use sequence types, see “Sequence and All Complex
Types” on page 34 .

113

CHAPTER 6 | Artix IDL to Java Mapping

array types Consider the following definition of an IDL union type,
Sanpl eTypes: : AirCf Struct :

/1 1DL
nodul e Sanpl eTypes {
typedef Sanpl eStruct ArrCf Struct[10];

iE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Arr & Struct array to a
WSDL sequence type with occurrence constraints,
Sanpl eTypes. Arr O Struct , as follows:

<xsd: conpl exType name="Sanpl eTypes. Arr Cf Struct ">
<xsd: sequence>
<xsd: el ement nane="itenl
t ype="xsd1: Sanpl eTypes. Sanpl eSt ruct "
m nCccur s="10" maxQccur s="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

114

IDL Complex Type Mapping

The WSDL-to-C++ compiler maps the Sanpl eTypes. Arr Of Struct type to a
C++ class, Sanpl eTypesArr O Struct , as shown in Example 81.

Example 81: Java Array

/1 Java
public class Sanpl eTypesArr&f Struct {

private Sanpl eTypesSanpl eStruct[] item

publ i ¢ Sanpl eTypesSanpl eStruct[] getlten() {
return item

}

public void setlten{Sanpl eTypesSanpl eStruct[] val) {
this.item= val;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (item!=null) {
buf fer. append("item "+Arrays.asList(item.toString()+"\n");

return buffer.toString();

}
}
Programming with Array Types
For details of how to use array types, see “Sequence and All Complex
Types” on page 34 ..
exception types Consider the following definition of an IDL exception type,

Sanpl eTypes: : Generi cExcepti on:

/1 1DL
nmodul e Sanpl eTypes {
exception GenericExc {
string reason;

}

115

CHAPTER 6 | Artix IDL to Java Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Generi cExc exception
to a WSDL sequence type, Sanpl eTypes. Gener i cExc, and to a WSDL fault
message, _except i on. Sanpl eTypes. Gener i cExc, as follows:

<xsd: conpl exType name="Sanpl eTypes. Gener i cExc" >
<xsd: sequence>
<xsd: el ement nanme="reason" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el enent nane="Sanpl eTypes. Generi cExc"
type="xsdl1: Sanpl eTypes. Generi cExc"/>

<nessage nane="_excepti on. Sanpl eTypes. Gener i cExc" >
<part nane="exception"
el enent =" xsd1: Sanpl eTypes. Generi cExc"/ >

</ message>

The WSDL-to-Java compiler maps the Sanpl eTypes. Gener i cExc type to the
Java class, Sanpl eTypesGeneri cExc, as shown in Example 82.

Example 82: SampleTypeGenericExc
public class Sanpl eTypesGeneri cExc {
private String reason;

public String get Reason() {
return reason;

}

public void setReason(String val) {
this.reason = val;

}
public String toString() {
StringBuf fer buffer = new StringBuffer();
if (reason != null) {
buf f er. append("“reason: "+reason+'\n");

return buffer.toString();

116

IDL Complex Type Mapping

In addition, the WSDL-to-Java compiler creates a class to map the message,
_except i on. Sanpl eTypes. Generi cExc, to a Java exception as shown in
Example 83.

Example 83: Java Excpetion

public class Sanpl eTypesGeneri cExcExcepti on extends Exception {
private String reason;

publ i ¢ Sanpl eTypesGeneri cExcException(String reason) {
super () ;
this. reason = reason;

}

publ i ¢ Sanpl eTypesCGeneri cExcException() {
super () ;

}

public String get Reason() {
return reason;

}

public void setReason(String val) {
this.reason = val;

}

public String toString() {
StringBuffer buffer = new StringBuffer(super.toString());
if (reason !'= null) {
buf f er. append("“reason: "+reason+'\n");

return buffer.toString();

Programming with Exceptions in Artix

For an example of how to use WSDL fault exceptions, see “Creating
User-Defined Exceptions” on page 77.

117

CHAPTER 6 | Artix IDL to Java Mapping

typedef of a simple type

typedef of a complex type

118

Consider the following IDL typedef that defines an alias of a f1 oat ,
Sanpl eTypes: : Fl oat Al i as:

/1 1DL
nodul e Sanpl eTypes {
typedef float FloatAli as;

iE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Fl oat Al i as typedef
directory to the type, xsd: f | oat . The WSDL-to-Java compiler then maps the
xsd: fl oat type directly to the f1 oat type.

Consider the following IDL typedef that defines an alias of a struct,
Sanpl eTypes: : Sanpl eStruct Al i as:

/1 1DL
nodul e Sanpl eTypes {
typedef SanpleStruct Sanpl eStructAli as;

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eStruct Al i as
typedef directly to the plain, unaliased Sanpl eTypes. Sanpl eStruct type.

The WSDL-to-Java compiler then maps the Sanpl eTypes. Sanpl eSt r uct
WSDL type directly to the Sanpl eTypesSanpl eSt ruct Java type. The Java
mapping uses the original, unaliased type.

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific Java class being generated to represent the
sequence or array type.

IDL Module and Interface Mapping

IDL Module and Interface Mapping

Overview

Module mapping

Interface mapping

This section describes the Artix C++ mapping for the following IDL
constructs:

® Module mapping

® |Interface mapping

® Operation mapping
® Attribute mapping

An IDL identifier appearing within the scope of an IDL module,

Modul eNane: : | dent i fi er, maps to a Java identifier of the form

Modul eNanel denti fi er. That is, the IDL scoping operator, : :, is removed in
Java.

Although IDL modules do not map to packages under the Artix Java
mapping, it is possible nevertheless to put generated Java code into a
package using the - p switch to the WSDL-to-Java compiler (see “Generating
Stub and Skeleton Code” on page 10). For example, if you pass a package
name, TEST, to the WSDL-to-Java - p switch, the Mdul eNane: : I dentifier
IDL identifier would map to TEST. Modul eNarel dent i fi er .

An IDL interface, I nt er f aceNane, maps to a Java class of the same name,
I nt er f aceNane. If the interface is defined in the scope of a module, that is
Modul eNarre: : | nt er f aceNane, the interface maps to the

Modul eNanel nt er f aceNare Java class.

If an IDL data type, TypeNane, is defined within the scope of an IDL
interface, that is Modul eNarre: : | nt er f aceNane: : TypeNane, the type maps to
the Mbdul eNanel nt er f aceNaneTypeNane Java class.

119

CHAPTER 6 | Artix IDL to Java Mapping

Operation mapping Example 84 shows two IDL operations defined within the

Sanpl eTypes: : Foo interface. The first operation is a regular IDL operation,

test_op(), and the second operation is a oneway operation,
test _oneway().

Example 84: Example IDL Operations

/1 1DL
nmodul e Sanpl eTypes {

interface Foo {
string test_op(
in |long inLong,
i nout |ong inoutLong,
out long outlLong

)

oneway void test_oneway(in string in_str);
b
bs

The operations from the preceding IDL, Example 84 on page 120, map to
Java as shown in Example 85.

Example 85: Mapping of CORBA Operations to Java

I/ Java
1 public class Fool npl {
public String test_op(
int inLong,
javax. xm . rpc. hol ders. | nt Hol der i nout Long,
javax. xm . rpc. hol ders. | nt Hol der out Long) {

}
public void test_oneway(String in_str) {

}

120

IDL Module and Interface Mapping

The preceding Java operation signatures can be explained as follows:

1. The Java mapping of an IDL operation retains a similar signiture to its
IDL definition.

The order of parameters in the Java function signature, test _op(), is
determined as follows:

+ First, the i n parameters appear in the same order as in IDL.
. Next, the and i nout parametersappear in the same order as in
IDL..
. Finally, the out parameters appear in the same order as in IDL.
2. The Java mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only i n parameters and a voi d
return type.

Attribute mapping Example 86 shows two IDL attributes defined within the Sanpl eTypes: : Foo
interface. The first attribute is readable and writable, str_attr, and the
second attribute is readonly, bool _attr.

Example 86: Example IDL Attributes

/1 1DL
nmodul e Sanpl eTypes {

interface Foo {
attribute string str_attr;
readonly attribute bool ean bool _attr;
IH
bé

The attributes from the preceding IDL, Example 86 on page 121, map to
Java as shown in Example 87.

Example 87: Mapping IDL Attributes to Java

/'l Java
public class Fool npl {

1 public String _get_str_attr() {
/1 User code goes in here.
return "";

}

121

CHAPTER 6 | Artix IDL to Java Mapping

Example 87: Mapping IDL Attributes to Java

public void _set_str_attr(String _arg) {
/1 User code goes in here.

2 publ i c bool ean _get _bool _attr() {
/1 User code goes in here.
return fal se;

}

The preceding C+ + attribute signatures can be explained as follows:

1. Anormal IDL attribute, At tri but eNane, maps to a pair of accessor and
modifier functions in Java, _get _Attri but eNare(),
_set _AttributeName() .

2. An IDL readonly attribute, At tri but eName, maps to a single accessor
function in Java, _get _Attri but eNare() .

122

Index

A

abstract interface type 103
AnyType
getBoolean() 98
getByte() 98
getDecimal() 98
getDouble() 98
getFloat() 98
getint() 98
getLong() 98
getSchemaTypeName() 97
getShort() 98
getString() 98
getType() 99
getUByte() 98
getUInt() 98
getULong() 98
getUShort() 98
setBoolean() 95
setByte() 95
setDecimal() 96
setDouble() 95
setFloat() 95
setint() 95
setLong() 95
setShort() 95
setString() 95
setType() 96
setUByte() 95
setUInt() 96
setULong() 96
setUShort() 95
anyType 86
arrayType attribute 61
Artix bus 3
initializing 15, 18
starting 17

binding nhame

specifying to code generator 11
boxed value type 103
Bus.init() 15, 18

C

client

developing 18
client proxy

instantiating 18

registering type factories 89
client stub code 10
code generation 10

from the command line 10

impl flag 14

server flag 15

types flag 14
code generator

command-line 10

files generated 10
com.iona.jbus.Bus.run() 17, 18
com.iona.jbus.Bus.shutdown() 19
com.iona.jbus.Servant 16
com.iona.jbus package 12
com.iona.webservices.reflect.types.AnyType 87
com.iona.webservices.reflect.types.TypeFactory 87,

90, 93

complex choice type

receiving 40

transmitting 40
complex types

attributes 44

derivation by extension 69

derivation by restriction 54

deriving from simple 54

description in XMLSchema 33

mapping to Java 33
contract type descriptions 30, 33
CORBA

abstract interface 103

basic types 104

boolean 104

boxed value 103

char 104

enum type 106

exception type 115

fixed 104

forward-declared interfaces 103

123

INDEX

sequence type 112

string 104

struct type 111

typedef 118

union type 108, 114

value type 103

wchar 104

wstring 104
createService() 18
creating a dynamic proxy 19
creating a Service instance 18

D

developing a server 14

dynamic proxies 18

dynamic proxy
instantiating 18

E

enumeration facet 32
enum type 106
exception handling
CORBA mapping 116
exceptions
associating to an operation 79
describing in a contract 78
exception type 115

F
facets 30

fault message 5
forward-declared interfaces 103
fractionDigits facet 32
fromString() 64

fromValue() 64

G

generated getter method 35
generated setter method 35
generated types

getter method 35

setter method 35
getBoolean() 98
getByte() 98
getClass() 97
getDecimal() 98
getDouble() 98

124

getFloat() 98

getint() 98

getLong() 98
_getProperty() 91
getSchemaTypeName() 97
getShort() 98
getString() 98

getType() 99
getTypeFactoryMap() 93
getUByte() 98

getUInt() 98
getULong() 98
getUShort() 98
getValue() 64

|
IDL
enum type 106
exception type 115
oneway operations 121
sequence type 112
struct type 111
typedef 118
union type 108, 114
IDL attributes
mapping to Java 121
IDL basic types 104
IDL interfaces
mapping to Java 119
IDL modules
mapping to C++ 119
IDL operations
mapping to C++ 120
parameter order 121
return value 121
IDL readonly attribute 122
IDL-to-Java mapping
Artix and CORBA 102
IDL types
unsupported 103
idl utility 102
init() function 15, 18
initializing the bus
client side 18
server side 15
inout parameters 121
in parameters 121
input message 5

instantiating a client proxy 18

J

java.io.* package 13

java.net.* package 13

java.rmi.Remote 6
java.rmi.RemoteException exception 7
Java Exception class 80

Java Holder class 7
javax.xml.namespace.QName package 12
javax.xml.rpc.* package 12
javax.xml.rpc.holders 72
javax.xml.rpc.holders.Holder interface 72
javax.xml.rpc.holders package 7
javax.xml.rpc.ServiceFactory 18
javax.xml.rpc.Service interface 18

L
length facet 31
logical contract 2

M
mapping
IDL attributes 121
IDL interfaces 119
IDL modules 119
IDL operations 120
IDL to Java 102
maxExclusive facet 32
maxlInclusive facet 32
maxLength facet 31
message part sharing 72
minExclusive facet 32
mininclusive facet 32
minLength facet 31
Multi-dimensional arrays 62

o

obtaining a ServiceFactory 18
occurrence constraints
overview of 57
oneway operations
inIDL 121
output message 5

P

parameters
in IDL-to-Java mapping 121
partially transmitted arrays

INDEX

SOAP arrays
partially transmitted 62

pattern facet 32
physical contract 2
port

specifying to code generator 11
portType 11
primitive types

Java 25

XMLSchema 25

R

receiving choice types 40
registering a servant instance 16
registerServant() 16
registerTypeFactory() 92
required java packages 12

S

sequence complex types 34
sequence type 112
servant
getTypeFactoryMap() 93
server
developing 14
implementation class 14
main() function 15
registering type factories 92
server skeleton code 10
Service.getPort() 19
ServiceFactory.newlInstance() 18
service hame
specifying to code generator 11
setBoolean() 95
setByte() 95
setDecimal() 96
setDouble() 95
setFloat() 95
setint() 95
setlLong() 95
setShort() 95
setString() 95
setType() 96
setUByte() 95
setUInt() 96
setULong() 96
setUShort() 95
shutting down the bus 19

125

INDEX

skeleton code

generating with wsdltojava 11
SOAP arrays

sparse 62

syntax 60
SOAP-ENC:Array type 60
sparse arrays 62
struct type 111
Stub._setProperty() 90

T
toString() 35, 64, 80
totalDigits facet 32
transmitting choice types 40
typedef 118
type derivation
by extension 54, 69
by restriction 25, 54
type factory
registering with a client proxy 89
registering with a servant 92

U
union type 108, 114
unsupported IDL types 103

\"
value type 103

w

whiteSpace facet 32

wsdl:arrayType 60

wsdl:arrayType attribute 61

WSDL <fault> element 7, 79
message attribute 79

WSDL <input> element 7

WSDL <message> element 4, 7,78

name attribute 80
WSDL <operation> element 4, 7
name attribute 7
parameterOrder attribute 7
WSDL <output> element 7
WSDL <part> element 4
WSDL <port> element 6
name attribute 6
WSDL <portType> element 4, 6

WSDL <types> element 4, 30, 33, 86

126

WSDL faults 116

wsdltojava 10, 14
command-line switches 10
files generated 10

wsdltojava utility 102

X
XMLSchema <all> element 34
XMLSchema <attribute> element 27, 44
default attribute 27, 45
fixed attribute 27, 45
name attribute 44
type attribute 44
use attribute 27, 44
XMLSchema <choice> element 40
XMLSchema <complexContent> element 69
XMLSchema <complexType> element 33
name attribute 34, 49
XMLSchema <element> element 27
maxOccurs attribute 27, 36, 57, 61
minOccurs attribute 27, 57
nillable attribute 27
type attribute 48
XMLSchema <extension> element 54, 69
base attribute 69
XMLSchema <restriction> element 30
base attribute 30
XMLSchema <sequence> element 34
XMLSchema <simpleContent> element 54
XMLSchema <simpleType> element 30
name attribute 30, 64
XMLSchema facets 30
xsd:anyType 86

INDEX

127

INDEX

128

	List of Tables
	Preface
	Understanding the Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java

	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Working with Artix Data Types
	Primitive Types
	Simple Primitive Type Mapping
	Special Primitive Type Mappings
	Unsupported Primitive Types

	Using XMLSchema Simple Types
	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Occurrence Constraints

	SOAP Arrays
	Enumerations
	Deriving Types Using <complexContent>
	Holder Classes

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Registering Type Factories
	Registering Type Factories with a Client Proxy
	Registering Type Factories with a Servant

	Setting anyType Values
	Retrieving Data from anyTypes

	Artix IDL to Java Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Index

