
Developing Artix Applications
in Java

Version 2.0, March 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 12-Apr-2004

M 3 1 9 2

Contents

List of Tables v

Preface vii
What is Covered in this Book vii
Who Should Read this Book vii
How to Use this Book vii
Online Help viii
Finding Your Way Around the Artix Library viii
Additional Resources for Information ix
Typographical Conventions x
Keying conventions x

Chapter 1 Understanding the Artix Java Development Model 1
Separating Transport Details from Application Logic 2
Representing Services in Artix Contracts 4
Mapping from an Artix Contract to Java 6

Chapter 2 Developing Artix Enabled Clients and Servers 9
Generating Stub and Skeleton Code 10
Java Package Names 12
Developing a Server 14
Developing a Client 18
Building an Artix Application 21

Chapter 3 Working with Artix Data Types 23
Primitive Types 24

Simple Primitive Type Mapping 25
Special Primitive Type Mappings 27
Unsupported Primitive Types 29

Using XMLSchema Simple Types 30
Using XMLSchema Complex Types 33

Sequence and All Complex Types 34
Choice Complex Types 40
iii

CONTENTS
Attributes 44
Nesting Complex Types 48
Deriving a Complex Type from a Simple Type 54
Occurrence Constraints 57

SOAP Arrays 60
Enumerations 63
Deriving Types Using <complexContent> 69
Holder Classes 72

Chapter 4 Creating User-Defined Exceptions 77
Describing User-defined Exceptions in an Artix Contract 78
How Artix Generates Java User-defined Exceptions 80
Working with User-defined Exceptions in Artix Applications 82

Chapter 5 Working with XMLSchema anyTypes 85
Introduction to Working with XMLSchema anyTypes 86
Registering Type Factories 88

Registering Type Factories with a Client Proxy 89
Registering Type Factories with a Servant 92

Setting anyType Values 95
Retrieving Data from anyTypes 97

Chapter 6 Artix IDL to Java Mapping 101
Introduction to IDL Mapping 102
IDL Basic Type Mapping 104
IDL Complex Type Mapping 106
IDL Module and Interface Mapping 119

Index 123
 iv

List of Tables

Table 1: Primitive Schema Type to Primitive Java Type Mapping 25

Table 2: Primitive Schema Type to Java Wrapper Class Mapping 28

Table 3: anyType Setter Methods for Primitive Types 95

Table 4: Methods for Extracting Primitives from AnyType 98

Table 5: Artix Mapping of IDL Basic Types to Java 104
v

LIST OF TABLES
 vi

Preface
What is Covered in this Book
Developing Artix Applications in Java discusses the main aspects of
developing transport-independent services and service consumers using
Java stub and Java skeleton code generated by Artix. This book covers:

� how to access the Artix bus

� how to use generated data types

� how to create user defined exceptions

� how to access the header information for the transports supported by
Artix.

Who Should Read this Book
Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book
If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled service or
service consumer, Chapter 2 describes the basic steps to implement a
service, connect to the Artix bus, and create JAX-RPC compliant proxies
using Artix-generated code.
vii

PREFACE
If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 3 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 4 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

If you want to learn how to develop Java code to use XMLSchema anyType
elements, Chapter 5 describes how they are mapped into Java and
describes the Artix classes that allow you to work with them.

Online Help
While using the Artix Designer you can access contextual online help,
providing:

� A description of your current Artix Designer screen

� Detailed step-by-step instructions on how to perform tasks from this
screen

� A comprehensive index and glossary

� A full search feature

There are two ways that you can access the Online Help:

� Click the Help button on the Artix Designer panel, or

� Select Contents from the Help menu

Finding Your Way Around the Artix Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The remainder of the Artix library is listed
here, with a short description of each book.

If you are new to Artix You may be interested in reading:

� Getting Started with Artix - the getting started book describe basic
Artix concepts.

� Artix Tutorial - this book guides you through programming Artix
applications.

To design Artix solutions You should read one or more of the following:
 viii

PREFACE
� Designing Artix Solutions - this book provides detailed information
about using the Artix Designer to create WSDL-based Artix contracts,
Artix stub and skeleton code, and Artix deployment bundles.

� Designing Artix Solutions from the Command Line - this book provides
detailed information about the WSDL extensions used in Artix
contracts, and explains the mappings between data types and Artix
bindings.

To develop applications using
Artix stub and skeleton code

Depending on your development environment you should read one or more
of the following:

� Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the Artix C++
API

� Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Artix Java API

To manage and configure your
Artix solution

You should read Deploying and Managing Artix Solutions. It describes how
to configure and deploy Artix-enabled systems. It also discusses how to
manage them once they are deployed.

If you want to know more about
Artix security

You should read the Artix Security Guide. It outlines how to enable and
configure Artix�s security features. It also discusses how to integrate Artix
solutions into a secure environment.

Have you got the latest version? The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (at the bottom of the copyright notice).

Additional Resources for Information
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:
ix

mailto:support@iona.com
http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:doc-feedback@iona.com

PREFACE
http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical Conventions
This book uses the following typographical conventions:

Keying conventions
This book uses the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.
 x

http://www.iona.com/support/kb/
http://www.iona.com/support/update/

PREFACE
> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
xi

PREFACE
 xii

CHAPTER 1

Understanding the
Artix Java
Development
Model
The Artix Java development tools generate JAX-RPC compliant
Java code from WSDL-based Artix contracts. Using the
generated code, you can develop transport-independent
applications that take advantage of the Artix bus.

In this chapter This chapter discusses the following topics:

Separating Transport Details from Application Logic page 2

Representing Services in Artix Contracts page 4

Mapping from an Artix Contract to Java page 6
1

CHAPTER 1 | Understanding the Artix Java Development Model
Separating Transport Details from Application
Logic

Overview One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by limiting the types of messaging system the
application can work on. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Dividing the logical and physical Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application�s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.
 2

Separating Transport Details from Application Logic
The Artix bus The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.
3

CHAPTER 1 | Understanding the Artix Java Development Model
Representing Services in Artix Contracts

Overview Services, which are the operations exposed by an application, are described
in the logical section of an Artix contract. When defining a service in an Artix
contract, you break it down into three parts: the complex data types used in
the messages, the messages used by the operations, and the collection of
operations that make up the service.

Data types Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL <types> element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

The described types are used to define the message parts used by the
service.

Messages In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the <message> element and consist of one or more <part>
elements. Each message part represents an argument in an operation�s
parameter list or a piece of data returned as part of an exception.

Service In an Artix contract logical services are described using the <portType>
element and consist of one or more <operation> elements. Each
<operation> element describes an operation that is to be exposed over the
network.

Example 1: Array Description

<complexType name="ArrayOfInt">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
 type="xsd:int"/>
 </sequence>
</complexType>
 4

Representing Services in Artix Contracts
Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature
long myOp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<message name="inMessage">
 <part name="c1" type="xsd:char" />
 <part name="c2" type="xsd:char" />
</message>
<message name="outMessage">
 <part name="returnVal" type="xsd:int" />
</message>
<portType name="myService">
 <operation name="myOp">
 <input message="inMessage" name="in" />
 <output message="outMessage" name="out" />
 </operation>
</portType>
5

CHAPTER 1 | Understanding the Artix Java Development Model
Mapping from an Artix Contract to Java

Overview Artix maps the WSDL-based Artix contract description of a service into Java
server skeletons and client stubs following the JAX-RPC specification. This
allows application developers to implement the service�s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

Ports For each <port> element in an Artix contract, a Java interface that extends
java.rmi.Remote is generated. The name of the generated interface is taken
from the name attribute of the <port> element. The interface�s name will be
identical to the <port>�s name unless the <port>�s name ends in Port. In
this case, the Port will be stripped off the interface�s name.

The generated interface will contain each of the operations of the
<portType> to which the <port> element is bound. For example, the
contract shown in Example 3 will generate an interface, sportsCenter,
containing one operation, update.

Example 3: SportsCenter Port

<message name="scoreRequest">
 <part name="teamName" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="score" type="xsd:int" />
</message>
<portType name="sportsCenterPortType">
 <operation name="update">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsCenterPortType">
...
<service name="sportsService">
 <port name="sportsCenterPort" binding="tns:scoreBinding">
...
 6

Mapping from an Artix Contract to Java
The generated Java interface is shown in Example 4.

Operations Every <operation> element in a contract generates a Java method within
the interface defined for the <operation> element�s <portType>. The
generated method�s name is taken from the <operation> element�s name
attribute. <operation> elements with the same name attribute will generate
overloaded Java methods in the interface.

All generated Java methods throw a java.rmi.RemoteException exception.
In addition, all <fault> elements listed as part of the operation create an
exception to the generated Java method.

Message parts The message parts of the operation�s <input> and <output> elements are
mapped as parameters in the generated method�s signature. The order of
the mapped parameters can be specified using the <operation> element�s
parameterOrder attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the parameterOrder
attribute will be placed in the generated method�s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the <message> elements of
the contract. The first unlisted output message part is mapped to the
generated method�s return type. The parameter names are taken from the
<part> element�s name attribute. If the parameterOrder attribute is not
specified, input message parts are listed before output message parts.
Message parts that are listed in both the input and output messages are
considered inout parameters and are listed only according to their position
in the input message.

All inout and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Holder classes. For
the XML primitive types, the Java Holder class used is the standard Java
Holder class, defined in javax.xml.rpc.holders package, for the

Example 4: SportsCenter Interface

//Java
public interface sportsCenter extends java.rmi.Remote
{
 int update(String teamName)
 throws java.rmi.RemoteException;
}

7

CHAPTER 1 | Understanding the Artix Java Development Model
appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Holder classes. For more
information on data type mapping, see �Working with Artix Data Types� on
page 23.

For example, the contract fragment shown in Example 5 would result in an
operation, final, with a return type of String and a parameter list that
contains two input parameters and three output parameters.

The generated Java interface is shown in Example 6.

Example 5: SportsFinal Port

<message name="scoreRequest">
 <part name="team1" type="xsd:string" />
 <part name="team2" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="winTeam" type="xsd:string" />
 <part name="team1score" type="xsd:int" />
 <part name="team2score" type="xsd:int" />
</message>
<portType name="sportsFinalPortType">
 <operation name="final">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsFinalPortType">
...
<service name="sportsService">
 <port name="sportsFinalPort" binding="tns:scoreBinding">
...

Example 6: SportsFinal Interface

//Java
public interface sportsFinal extends java.rmi.Remote
{
 String final(String team1, String team2,
 IntHolder team1score, IntHolder team2score)
 throws java.rmi.RemoteException;
}

 8

CHAPTER 2

Developing Artix
Enabled Clients
and Servers
Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

In this chapter This chapter discusses the following topics:

Generating Stub and Skeleton Code page 10

Java Package Names page 12

Developing a Server page 14

Developing a Client page 18

Building an Artix Application page 21
9

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code is similar to
code generated by a CORBA IDL compiler. There are two major differences
between CORBA-generated code and Artix-generated code:

� Artix-generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

� Artix maps WSDL types to Java using the mapping described in the
JAX-RPC specification. The resulting types are very different from those
generated by an IDL-to-Java compiler.

Generated files The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

portTypeName.java defines the Java interface that both the client and
server implement.

portTypeNameImpl.java defines the class used to implement the server.

portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see �Working with Artix
Data Types� on page 23.

Generating code from the
command line

You generate code at the command line using the command:

wsdltojava [-e service][-t port][-b binding][-i portType]
 [-d output_dir][-p package][-impl][-server][-client]
 [-types][-interface][-sample][-all] artix-contract
 10

Generating Stub and Skeleton Code
You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

-e service Specifies the name of the service for which the tool will
generate code. The default is to use the first service listed
in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to use the first port listed in the
service.

-b binding Specifies the name of the binding to use when generating
code. The default is to use the first binding listed in the
contract.

-i portType Specifies the name of the portType for which code will be
generated. The default is to use the first portType in the
contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-p package Specifies the name of the Java package to use for the
generated code.

-impl Generates the skeleton class for implementing the server
defined by the contract.

-server Generates a simple main class for the server.

-client Generates only the Java interface and code needed to
implement the complex types defined by the contract.
This flag is equivalent to specifying -interface -types.

-types Generates the code to implement the complex types
defined by the contract.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test your
Java server.

-all Generates code for all portTypes in the contract.
11

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Java Package Names

Artix packages The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com.iona.jbus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

Generated type packages The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in .com or .gov, the leading www. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped
to the Java package name com.widgetvendor.types.widgettypes.

Java packages Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.
 12

Java Package Names
java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.
13

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Developing a Server

Overview The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing an
Artix-enabled server. The skeleton code hides the transport details, allowing
you to focus on business logic.

Generating the server
implementation class

The Artix code generatition utility, wsdltojava, will generate an
implementation class for your server when passed the -impl command flag.

Generated code The implementation class code consists of two files:

PortName.java contains the interface the server implements.

PortNameImpl.java contains the class definition for the server�s
implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortNameImpl.java. A generated implementation class for a contract
defining a service with two operations, sayHi and greetMe, would resemble
Example 7. Only the code portions highlighted in bold (in the bodies of the
greetMe() and sayHi() methods) must be inserted by the programmer.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -types flag.

Example 7: Implementation of the HelloWorld PortType in the Server

// Java
import java.net.*;
import java.rmi.*;
 14

Developing a Server
Writing the server main() The server main() of an Artix Java server must do three things before it can
service requests:

1. Initialize the Artix bus.

2. Register the server implementation with the Artix bus.

3. Start the Artix bus.

You can use wsdltojava to generate a server main() with the code to
perform these steps by using the -server flag. The main() shown in
Example 10 on page 17 was generated using wsdltojava.

Initializing the bus

The Artix bus is initialized using com.iona.jbus.Bus.init(). The method
has the following signature:

public class HelloWorldImpl {

 /**
 * greetMe
 *
 * @param: stringParam0 (String)
 * @return: String
 */
 public String greetMe(String stringParam0) {
 System.out.println("HelloWorld.greetMe() called with

message: "+stringParam0);
 return "Hello Artix User: "+stringParam0;
 }

 /**
 * sayHi
 *
 * @return: String
 */
 public String sayHi() {
 System.out.println("HelloWorld.sayHi() called");
 return "Greetings from the Artix HelloWorld Server";
 }

Example 7: Implementation of the HelloWorld PortType in the Server

static Bus init(String args[]);
15

CHAPTER 2 | Developing Artix Enabled Clients and Servers
init() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Registering a servant for the server implementation

Before the bus can begin processing requests made on your server, you
must register the servant object that implements your server�s business logic
with the bus. Registering the implementation object�s servant with the bus
allows the bus to create instances of the implementation object to service
requests.

To register your implementation object�s servant you create a
com.iona.jbus.Servant using the path of the WSDL file describing the
service interface, an instance of your implementation object, and an
instance of an initialized Artix bus. Example 8 shows the code to create a
servant for the HelloWorld service.

After creating the servant, you register it with the bus using the bus�
registerServant() method. The signature for registerServant() is shown
in Example 9.

In addition to the servant, registerServant() takes the service�s QName as
specified in the contract defining the service and the name of the WSDL port
the service is instantiating.

Example 8: Creating a ServerFactoryBase

//Java
Servant servant =
 new SingleInstanceServant("./HelloWorld.wsdl",
 new HelloWorldImpl(), bus);

Example 9: registerServerFactory()

void registerServerFactory(Servant servant
 QName serviceName,
 String portName)
throws BusException
 16

Developing a Server
Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus� run() method. Once the bus
is started, it retains control of the process until it is shut down. The server�s
main() will be blocked until run() returns.

Completed server main() Example 10 shows how the main() for a Java Artix server might look.

Example 10:Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {
 // Initialize the Artix bus
 Bus bus = Bus.init(args);

 // Register the implementation object factory
 QName name = new QName("http://xmlbus.com/HelloWorld",
 "HelloWorldService");
 Servant servant =
 new SingleInstanceServant("./HelloWorld.wsdl",
 new HelloWorldImpl());
 bus.registerServant(servant, name, "HelloWorldPort");

 // Start the Bus
 bus.run();
 }
}

17

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Developing a Client

Overview Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix Java client initializes and shuts down the Artix bus.

Initializing the bus Client applications initialize the bus in the same manner as server
applications, by calling the bus� init() method. Client applications,
however, do not need to make a call to the bus� run() method.

Instantiating a client proxy Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the
javax.xml.rpc.Service interface. You need the QName of the service for
which you are creating the proxy, the QName of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of javax.xml.rpc.ServiceFactory to create the
service.

2. Use the ServiceFactory to create a Service instance for the service to
which the proxy will connect.

3. Use the Service to instantiate the dynamic proxy.

Obtaining a ServiceFactory instance

To obtain an instance of the ServiceFactory you call
ServiceFactory.newInstance(). This returns the ServiceFactory. Only
one is created per application and the same ServiceFactory is returned for
each successive call.

Creating a Service instance

A Service instance is created from the ServiceFactory using
createService(). createService() takes two arguments:

� the URL of the contract defining the service.
 18

Developing a Client
� the service�s QName.

Creating the dynamic proxy

The dynamic proxy is created from the Service using getPort(). getPort()
takes two arguments:

� the QName of the endpoint with which the proxy contacts the service.

� the name of the generated Java interface in PortName.java with
.class appended. For example, if the generated interface�s name is
HelloWorld, this argument would be HelloWorld.class.

getPort() returns an instance of java.rmi.Remote that must be cast to the
generated interface.

Shutting the bus down Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus� run() method and can simply call
shutdown() on the bus before the main thread exits. It is advisable to pass
true to shutdown() to ensure that the bus is fully shutdown before exiting.

Full client code An Artix Java client developed to access HelloWorldService will look
similar to Example 11.

Example 11:Client Code

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://iona.com/HelloWorld",
 "HelloWorldService");
19

CHAPTER 2 | Developing Artix Enabled Clients and Servers
The code does the following:

1. The com.iona.jbus.Bus.init() function initializes the bus.

2. Creates the service�s QName.

3. Creates the QName of the endpoint with which the proxy will contact the
service.

4. Creates the URL of the contract defining the service.

5. The newInstance() function returns the ServiceFactory.

6. The createService() function instantiates the Service from which the
dynamic proxy is created.

7. The getPort() function returns a dynamic proxy to the HelloWorld
service. getPort() returns an instance of java.rmi.Remote that must
be cast to the interface defining the service.

8. Makes a call on the proxy to request service.

9. Shuts down the bus.

3 QName portName = new QName("","HelloWorldPort");

4 String wsdlPath = "file:/./HelloWorld.wsdl";
 URL wsdlLocation = new File(wsdlPath).toURL();

5 ServiceFactory factory = ServiceFactory.newInstance();

6 Service service = factory.createService(wsdlLocation, name);

7 HelloWorld impl = (HelloWorld)service.getPort(portName,
 HelloWorld.class);

8 String string_out;

 string_out = impl.sayHi();
 System.out.println(string_out);

9 bus.shutdown(true);

 }
}

Example 11:Client Code
 20

Building an Artix Application
Building an Artix Application

Required jar files Artix Java applications require that the following Artix jar files are in your
class path:

� it_bus.jar

� it_wsdl.jar

� it_ws_reflect.jar

� ifc.jar

You also need to ensure that the Artix version of jaxrpc-api.jar is used to
build your Artix application. The simplest way to make sure the correct
version is used is to prepend artix_install_dir\artix\2.0\lib to your
class path.
21

CHAPTER 2 | Developing Artix Enabled Clients and Servers
 22

CHAPTER 3

Working with Artix
Data Types
Artix maps XMLSchema data types in an Artix contract into
Java data types. For primitive types the mapping is a
one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

In this chapter This chapter discusses the following topics:

Primitive Types page 24

Using XMLSchema Simple Types page 30

Using XMLSchema Complex Types page 33

SOAP Arrays page 60

Enumerations page 63

Deriving Types Using <complexContent> page 69

Holder Classes page 72
23

CHAPTER 3 | Working with Artix Data Types
Primitive Types

Overview Artix follows the JAX-RPC specification for mapping primitive XMLSchema
types into Java. In most cases, the mapping from a primitive XMLSchema
type is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:

Simple Primitive Type Mapping page 25

Special Primitive Type Mappings page 27

Unsupported Primitive Types page 29
 24

Primitive Types
Simple Primitive Type Mapping

Overview When a message part is described as being of one of the primitive
XMLSchema types, the generated parameter�s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 12 will cause a parameter, score, of type int to be
generated.

Types derived by restriction XMLSchema supports the definition of simple types by restricting a primitive
type using one of twelve facets. The primitive type from which the new type
is defined is called its base type. Types defined using restriction of a base
type are treated as if the new type were simply of the base type. So a type
derived by restricting xsd:float would be mapped to a float in the
generated Java code.

Table of primitive type mappings The primitive type mappings are shown in Table 1.

Example 12:Message Description Using a Primitive Type

<message name="scoreResponse">
 <part name="score" type="xsd:int" />
</message>

Table 1: Primitive Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd:string java.lang.String

xsd:int int

xsd:insignedInt long

xsd:long long

xsd:unsignedLong java.math.BigInteger

xsd:short short

xsd:unsignedShort int
25

CHAPTER 3 | Working with Artix Data Types
xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:integer java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:dateTime java.util.Calendar

xsd:QName javax.xml.namespace.QName

xsd:base64Binary byte[]

xsd:hexBinary byte[]

Table 1: Primitive Schema Type to Primitive Java Type Mapping

Schema Type Java Type
 26

Primitive Types
Special Primitive Type Mappings

Overview Mapping XMLSchema primitives to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema primitive is mapped to the Java primitive�s corresponding
wrapper type. These cases include:

� an <element> with its nillable attribute set to true as shown in
Example 13.

� an <element> with its minOccurs attribute set to 0 and its maxOccurs
attribute set to 1 or its maxOccurs attribute not specified as shown in
Example 14.

� an <attribute> with its use attribute set to optional, or not specified,
and having neither its default attribute nor its fixed attribute
specified as shown in Example 15.

Mappings Table 2 shows how primitive XMLSchema types are mapped into Java
wrapper classes in these special cases.

Example 13: Nillable Element

<element name="finned" type="xsd:boolean" nillable="true" />

Example 14: minOccurs set to Zero

<element name="plane" type="xsd:string" minOccurs="0" />

Example 15: Optional Attribute Description

<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>
27

CHAPTER 3 | Working with Artix Data Types
Table 2: Primitive Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte
 28

Primitive Types
Unsupported Primitive Types

List of unsupported primitive
types

The following XMLSchema primitive types are currently not supported by
Artix Java:

xsd:duration
xsd:time
xsd:date
xsd:gYearMonth
xsd:gYear
xsd:gMonthDay
xsd:gDay
xsd:gMonth
xsd:anyURI
xsd:nonPositiveInteger
xsd:nonNegativeInteger
xsd:negativeInteger
xsd:positiveInteger
xsd:ENTITY
xsd:NOTATION
xsd:IDREF
soapenc:base64
29

CHAPTER 3 | Working with Artix Data Types
Using XMLSchema Simple Types

Overview XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
<types> section of an Artix contract using a <simpleType> element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

Describing a simple type in
XMLSchema

Example 16 shows the syntax for describing a simple type.

The type description is enclosed in a <simpleType> element and identified
by the value of the name attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the <restriction>
element. Each facet element is specified within the <restriction> element.
The available facets and their valid setting depends on the base type. For
example, xsd:string has six facets including:

� length

� minLength

� maxLength

� pattern

� whitespace

Example 16:Simple Type Syntax

<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
</simpleType>
 30

Using XMLSchema Simple Types
Example 17 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value, but
<SSN>032439876</SSN> is not valid.

Mapping simple types to Java Artix maps simple types to the type of the simple type�s base type. So any
message using the simple type SSN, shown in Example 17, would be
mapped to a String because the base type of SSN is xsd:string. For
example, the contract fragment shown in Example 18 would result in a Java
method, creditInfo(), which took a parameter, socNum, of String.

Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you must ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Unenforced facets Artix does not enforce the following facets:

� length

� minLength

� maxLength

Example 17:SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}" />
 </restriction>
</simpleType>

Example 18:Credit Request with Simple Types

<message name="creditRequest">
 <part name="socNum" type="SSN" />
</message>
...
<portType name="creditAgent">
 <operation name="creditInfo">
 <input message="tns:creditRequest" name="credRec" />
 <output message="tns:creditReport" name="credRep" />
 </operation>
</portType>
31

CHAPTER 3 | Working with Artix Data Types
� pattern

� enumeration

� whiteSpace

� maxInclusive

� maxExclusive

� minInclusive

� minExclusive

� totalDigits

� fractionDigits

Enforced facets Artix enforces the following facets:

� enumeration

For more information on the enumeration facet, read �Enumerations� on
page 63.
 32

Using XMLSchema Complex Types
Using XMLSchema Complex Types

Overview Complex types are described in the <types> section of an Artix contract.
Typically, they are described in XMLSchema using a <complexType>
element. In contrast to simple types, complex types can contain multiple
elements and carry attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a
method for stringifying the object.

In this section This section contains the following subsections:

Sequence and All Complex Types page 34

Choice Complex Types page 40

Attributes page 44

Nesting Complex Types page 48

Deriving a Complex Type from a Simple Type page 54

Occurrence Constraints page 57
33

CHAPTER 3 | Working with Artix Data Types
Sequence and All Complex Types

Overview Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a <sequence>
element. The other is to describe the structure inside of an <all> element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using a <sequence> and an <all> is in how the
elements of the structure are passed on the wire. When a structure is
described using a <sequence>, the elements are passed on the wire in the
exact order they are specified in the contract. When the structure is
described using an <all>, the elements of the structure can be passed on
the wire in any order.

Mapping to Java A complex type described with <sequence> or <all> is mapped to a Java
class whose name is derived from the name attribute of the <complexType>
element in the contract from which the type is generated. As specified in the
JAX-RPC specification, the generated class has a getter and setter method
for each element described in the type. The individual elements of the
complex type are mapped to private variables within the generated class.

Note: If neither <sequence>, <all>, nor <choice> is used to specify how
the elements of the complex type are to be transmitted, the default is
<sequence>.
 34

Using XMLSchema Complex Types
The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 19, the generated setter
method would have the signature void setName(String val).

The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter
method for the element described in Example 19 would the signature like
String getName().

In addition to the getter and setter methods, Artix also generates a
toString() method for each complex type. The toString() method returns
a string containing a labeled list of the values for each element in the class.

Example 19:Element Name Description

<complexType name="Address">
 <all>
 <element name="Name" type="xsd:string" />
 ...
 </all>
</complexType>

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.
35

CHAPTER 3 | Working with Artix Data Types
The maxOccurs attribute Any elements whose maxOccurs attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 20
would result in the generation of a private variable, observedSpeed,of type
float[].

The getter and setter methods for observedSpeed are shown in Example 21.

Example 20:Element with MaxOccurs Greater than One

<complexType name="drugTestResults">
 <sequence>
 <element name="observedSpeed" type="xsd:float"
 maxOccurs="unbounded"/>
...
 </sequence>
</complexType>

Example 21:observedSpeed Getter and Setter Methods

// Java
public class drugTestResults
{
 private float[] observedSpeed;
...
 void setObservedSpeed(float[] val);
 float[] getObservedSpeed();
...
}

 36

Using XMLSchema Complex Types
Example Suppose you had a contract with the complex type, monsterStats, shown in
Example 22.

The Java class generated to support monsterStats would be similar to
Example 23.

Example 22:monsterStats Description

<complexType name="monsterStats">
 <all>
 <element name="name" type="xsd:string" />
 <element name="weight" type="xsd:long" />
 <element name="origin" type="xsd:string" />
 <element name="strength" type="xsd:float" />
 <element name="specialAttack" type="xsd:string"
 maxOccurs="3" />
 </all>
</complexType>

Example 23:monsterStats Java Class

// Java
public class monsterStats
{
 public static final String TARGET_NAMESPACE =

"http://monsterBootCamp.com/types/monsterTypes";

 private String name;
 private long weight;
 private String origin;
 private float strength;
 private String[] specialAttack;

 public void setName(String val)
 {
 name=val;
 }
 public String getName()
 {
 return name;
 }
37

CHAPTER 3 | Working with Artix Data Types
 public void setWeight(long val)
 {
 weight=val;
 }
 public long getWeight()
 {
 return weight;
 }

 public void setOrigin(String val)
 {
 origin=val;
 }
 String getOrigin()
 {
 return origin;
 }

 public void setStrength(float val)
 {
 strength=val;
 }
 public float getStrength()
 {
 return strength;
 }

 public void setSpecialAttack(String[] val)
 {
 specialAttack=val;
 }
 public String[] getSpecialAttack()
 {
 return specialAttack;
 }

Example 23:monsterStats Java Class
 38

Using XMLSchema Complex Types
 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null) {
 buffer.append("name: "+name+"\n");
 }
 if (weight != null) {
 buffer.append("weight: "+weight+"\n");
 }
 if (origin != null) {
 buffer.append("origin: "+origin+"\n");
 }
 if (strength != null) {
 buffer.append("strength: "+strength+"\n");
 }
 if (specialAttack != null) {
 buffer.append("specialAttack: "+specialAttack+"\n");
 }
 return buffer.toString();
 }
}

Example 23:monsterStats Java Class
39

CHAPTER 3 | Working with Artix Data Types
Choice Complex Types

Overview XMLSchema allows you to describe a complex type that may contain any
one of a number of elements using a <choice> element as part of the
complex type description. When elements are contained within a <choice>
element, only one of the elements will be transmitted across the wire.
XMLSchema does not require that a discrimintator is specified as part of
complex type using a <choice> element and how to determine which
element is valid is left to the implementation.

Mapping to Java Like complex types described with a <sequence> element or an <all>
element, complex types described with a <choice> element are mapped to a
Java class with getter and setter methods for each possible element inside
the <choice> element. In addition, the generated Java class for a <choice>
complex type includes an additional element, _discriminator, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method
isSetelem_name() is generated. If the element is the currently valid value,
its isSet method returns true. If not, the method returns false.

The discriminator is set in each of the complex type elements� setter
methods. This means that while any of the elements in the Java object
representing the complex type may contain valid data, the discriminator
points to the last element whose value was set. As stated in the Web
services specification only the element to which the discriminator is set will
be placed on the wire by a server. For Artix developers this has two
implications:

1. Artix servers will only write out the value for the last element set on an
object representing a <choice> complex type.

2. When Artix clients receive an object representing a <choice> complex
type, only the element pointed to by the discriminator will contain valid
data.
 40

Using XMLSchema Complex Types
Example Suppose you had a contract with the complex type, terrainReport, shown
in Example 24.

The Java class generated to represent terrainReport would be similar to
Example 25.

Example 24: terrainReport Description

<complexType name="terrainReport">
 <choice>
 <element name="water" type="xsd:float" />
 <element name="pier" type="xsd:short" />
 <element name="street" type="xsd:long" />
 </choice>
</complexType>

Example 25: terrainReport Java Class

// Java
public class TerrainReport
{
 public static final String TARGET_NAMESPACE =

"http://GlobeStrollers.com";

 private String __discriminator;

 private float water;
 private short pier;
 private long street;
41

CHAPTER 3 | Working with Artix Data Types
 public void setWater(float _v)
 {
 this.water=_v;
 _discriminator="water"’
 }
 public float getWater()
 {
 return water;
 }
 public boolean isSetWater()
 {
 if(__discriminator != null &&
 __discriminator.equals("water")) {
 return true;
 }

 return false;
 }

 public void setPier(short _v)
 {
 this.pier=_v;
 _discriminator="pier";
 }
 public short getPier()
 {
 return pier;
 }
 public boolean isSetPier()
 {
 if(__discriminator != null &&
 __discriminator.equals("pier")) {
 return true;
 }

 return false;
 }

Example 25: terrainReport Java Class
 42

Using XMLSchema Complex Types
 public void setStreet(long _v)
 {
 this.street=_v;
 _discriminator="street";
 }
 public long getStreet()
 {
 return street;
 }
 public boolean isSetStreet()
 {
 if(__discriminator != null &&
 __discriminator.equals("street")) {
 return true;
 }

 return false;
 }

 public void _setToNoMember()
 {
 __discriminator = null;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (water != null) {
 buffer.append("water: "+water+"\n");
 }
 if (pier != null) {
 buffer.append("pier: "+pier+"\n");
 }
 if (street != null) {
 buffer.append("street: "+street+"\n");
 }
 return buffer.toString();
 }
}

Example 25: terrainReport Java Class
43

CHAPTER 3 | Working with Artix Data Types
Attributes

Overview Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. When defining structures for an XML document
<attribute> declarations provide a means of adding information to be
specified within the tag, not the value that the tag contains. In other words,
when describing the XML element <value currency="euro">410<\value>
in XMLSchema currency would be described using an <attribute>
declaration as shown in Example 26.

When describing data types for use in developing application logic, however,
attributes are treated as elements of a structure. For each <attribute>
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

Describing an attribute in
XMLSchema

An XMLSchema <attribute> declaration has two required attributes. The
name attribute identifies the attribute. The use attribute specifies if the
attribute is required, optional, or prohibited..

An <attribute> declaration also has two optional attributes. The type
attribute specifies the type of value the attribute can take. It is used when
the attribute takes a value of a primitive type or of a type that is predefined
in the contract. If the type attribute is omitted from the <attribute>
declaration, the format of the data value must be described as part of the

Example 26:XMLSchema for value

<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="units" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>
 44

Using XMLSchema Complex Types
<attribute> declaration. Example 27 shows an <attribute> declaration
for an attribute, catagory, that can take the values autobiography,
non-fiction, or fiction.

Example 28 shows an alternate description of the catagory attribute using
the type attribute.

The default/fixed attribute can be used when the use attribute is set to
optional. When the default attribute is given, the value of the generated
element is defaulted to the value specified. When the fixed attribute is
given, the value of the generated element is set to the value specified and
cannot be changed. In the generated Java class, using the fixed attribute
results in the generated element not having a setter method.

Example 27:Attribute with an In-Line Data Description

<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>

Example 28:Category Attribute Using the type Attribute

<simpleType name="catagoryType">
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
</simpleType>
<complexType name="attributed">
...
 <attribute name="category" type="catagoryType" use="required">
</complexType>
45

CHAPTER 3 | Working with Artix Data Types
Example mapping to Java Suppose you had a contract with the complex type, terrainReport, shown
in Example 29.

The Java class generated to represent terrainReport would be similar to
Example 30.

Example 29: techDoc Description

<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 <all>
 <attribute name="usefullness" type="xsd:float" use="optional"
 default="0.01" />
</complexType>

Example 30: techDoc Java Class

// Java
public class TechDoc
{
 public static final String TARGET_NAMESPACE =

"http://www.docUSA.org/usability";

 private String product;
 private short version;
 private Float usefullness = new Float(0.01);

 public void setProduct(String val)
 {
 product=val;
 }
 public String getProdcut()
 {
 return product;
 }
 46

Using XMLSchema Complex Types
 public void setVersion(short val)
 {
 version=val;
 }
 public short getVersion()
 {
 return version;
 }

 public void setUsefullness(Float val)
 {
 usefullness=val;
 }
 public Float getUsefullness()
 {
 return usefullness;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (prudcut != null) {
 buffer.append("product: "+product+"\n");
 }
 if (version != null) {
 buffer.append("version: "+version+"\n");
 }
 if (usefullness != null) {
 buffer.append("usefullness: "+usefullness+"\n");
 }
 return buffer.toString();
 }
}

Example 30: techDoc Java Class
47

CHAPTER 3 | Working with Artix Data Types
Nesting Complex Types

Overview XMLSchema allows you to create complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

� Nesting with Named Types

� Nesting with Anonymous Types

Nesting with Named Types When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element�s data is placed in the element�s type attribute as
shown in Example 31.

The complex type sylvesterState includes an element, food, of type
tweetyBird. The advantage of using named types is that tweetyBird can be
reused as either a standalone complex type or nested in another complex
type description.

Example 31:Nesting with a Named Type

<complexType name="tweetyBird">
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
</complexType>
<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food" type="tweetyBird" />
 </sequence>
</complexType>
 48

Using XMLSchema Complex Types
Nesting with Anonymous Types When you nest with an anonymous type, the element declaration for the
nested complex type does not have a type attribute. Instead, the element�s
type description is provided as part of the element�s declaration.
Example 32 shows a description of sylvesterState using an anonymous
type.

In this example, the food element of sylvesterState still contains a caged
sub-element and a granny_proximity sub-element. However, the complex
type used to describe food cannot be re-used.

Mapping to Java When a complex type containing nested complex types is mapped to Java,
each complex type that is nested creates a generated class to represent it.
The generated class for the top level complex type will have elements whose
elements are instances of the class generated to represent their type. For
example, the sylvesterState complex type, two Java classes will be
generated. One to represent the type of the food element and one to
represent sylvesterState.

The name of the classes generated to support the nested complex types
depends on the style of nesting used. For named nested complex types, the
generated class takes its name from the name attribute of the complex type
used to describe it. So the nested type in Example 31 on page 48 would
result in a class called TweetyBird and the food element of SylvesterState
would be an instance of TweetyBird.

Example 32:Nesting with an Anonymous Type

<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food">
 <complexType>
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>
49

CHAPTER 3 | Working with Artix Data Types
When you use anonymous nested complex types Artix names the class
generated to represent the nested class by appending _type to the name of
the parent complex type�s name attribute. If that does not produce a unique
name, Artix will append _n, where n is an incrementing whole number, to
the name until it finds a unique name for the generated class. For example,
the nested type in Example 32 on page 49 would generate a class,
SylvesterState_type, to represent the type of the food element in
SylvesterState. If there were another complex type whose name was
SylvesterState_type in the contract from which the code was generated,
Artix would name the class generated to support the food element
SylvesterState_type_1.

Example using nested types If you had an application using the complex type shown in Example 31 on
page 48 your application would include two classes to support it,
TweetyBird and SylvesterState.

Example 33 shows the generated Java class for tweetyBird.

Example 33:TweetyBird Class

//Java
public class TweetyBird
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/foodstuffs";

 private boolean caged;
 private int granny_proximity;

 public boolean isCaged()
 {
 return caged;
 }

 public void setCaged(boolean val)
 {
 caged=val;
 }
 50

Using XMLSchema Complex Types
The generated class for sylvesterState, shown in Example 34, has one
element, food, that is an instance of TweetyBird.

 public int getGranny_proximity()
 {
 return granny_proximity;
 }

 public void setGranny_proximity(int val)
 {
 granny_proximity=val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("caged: "+caged+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("granny_proximity: "+granny_proximity+"\n");
 }
 return buffer.toString();
 }
}

Example 33:TweetyBird Class

Example 34:SylvesterState Class

//Java
public class SylvesterState
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/cats";

 private int hunger;
 private TweetyBird food;
51

CHAPTER 3 | Working with Artix Data Types
When you set the value of SylvesterState.food, you must pass a valid
TweetyBird object to setFood(). Also, when you get the value of
SylvesterState.food, you are returned a TweetyBird object which has its
own getter and setter methods. Example 35 shows an example of using the
nested type sylvesterState in using the generated Java classes.

 public int getHunger()
 {
 return hunger;
 }

 public void setHunger(int val)
 {
 hunger=val;
 }

 public TweetyBird getFood()
 {
 return food;
 }

 public void setFood(TweetyBird val)
 {
 food=val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("hunger: "+hunger+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("food: "+food+"\n");
 }
 return buffer.toString();
 }
}

Example 34:SylvesterState Class

Example 35:Working with Nested Complex Types

// Java
 52

Using XMLSchema Complex Types
The code in Example 35 does the following:

1. Instantiates a new SylvesterState object and sets its hunger element
to 25.

2. Instantiates a new TweetyBird object and sets its values.

3. Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the food
element�s caged element.

5. Gets the food element, assigns it to outPrey then prints out the
granny_proximity element.

1 SylvesterState hunter = new SylvesterState();
hunter.setHunger(25);

2 TweetyBird prey = new TweetyBird();
prey.setCaged(false);
prey.setGranny_proximity(0);

3 hunter.setFood(pery);

4 System.out.println("The cat is this hungry:
"+hunter.getHunger());

System.out.println("The food is caged:
"+hunter.getFood().isCaged());

5 TweetyBird outPrey = hunter.getFood();
System.out.println("Granny is this many feet away:

"+outPrey.getGranny_proximity());

Example 35:Working with Nested Complex Types
53

CHAPTER 3 | Working with Artix Data Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

Example 36 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type to include a
currency attribute.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> element defines the derivation by
extension from xsd:decimal.

Java mapping A complex type derived from a simple type is mapped to a Java class. The
class will contain an element, value, of the simple type from which the
complex type is derived. The class will also have a get_value() and a
set_value() method. In addition, the generated class will have an element,
and the associated getter and setter methods, for each attribute that extends
the simple type.

Example 36:Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
</complexType>
 54

Using XMLSchema Complex Types
Example 37 shows the generated Java class representing
internationalPrice class generated from Example 36.

Example 37: internationalPrice Java Class

//Java
public class InternationalPrice
{
 public static final String TARGET_NAMESPACE =

"http://moneyTree.com";

 private String currency;
 private java.math.BigDecimal _value;

 public String getCurrency()
 {
 return currency;
 }

 public void setCurrency(String val)
 {
 currency = val;
 }

 public java.math.BigDecimal get_value()
 {
 return _value;
 }

 public void set_value(java.math.BigDecimal val)
 {
 _value = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (currency != null) {
 buffer.append("currency: "+currency+"\n");
 }
 if (_value != null) {
 buffer.append("_value: "+_value+"\n");
 }
 return buffer.toString();
 }
}

55

CHAPTER 3 | Working with Artix Data Types
The value of the currency attribute, which is added by extension, can be
accessed and modified using the getCurrency() and setCurrency()
methods. The simple type value (that is, the value enclosed between the
<internationalPrice> and </internationalPrice> tags) can be accessed
and modified by the get_value() and set_value() methods.
 56

Using XMLSchema Complex Types
Occurrence Constraints

Overview XMLSchema allows you to specify the minimum and maximum number of
times that an element in a complex type can occur. You specify these
occurrence constraints on an element by setting the element�s minOccurs
and maxOccurs attributes. The minOccurs attribute specifies the minimum
number of times the element must occur. The maxOccurs attribute specifies
the upper limit for how many times the element can occur. For example, if
an element, lives, were to occur at least twice and no more than nine times
in a complex type it would be described as shown in Example 38.

Given the description in Example 38, a valid houseCat element would have
a single name and at least two lives. However, a valid houseCat element
could not have more than nine lives.

Mapping to Java When a complex type contains an element with its maxOccurs attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxOccurs
attribute of an element is set to a value equal to or greater than the value of
the element�s minOccurs, the code generator will generate a warning if the
minOccurs attribute is set without a maxOccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

Example 38:Occurrence Constraints Setting

<complexType name="houseCat">
 <all>
 <element name="name" type="xsd:string" />
 <element name="lives" type="xsd:short" minOccurs="2"
 maxOccurs="9" />
 </all>
</complexType>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
�SOAP Arrays� on page 60.
57

CHAPTER 3 | Working with Artix Data Types
For example, the complex type, houseCat, shown in Example 38 will be
mapped to the Java class HouseCat shown in Example 39.

Example 39:HouseCat Java Class

// Java
public class HouseCat
{
 private String name;
 private short[] lives;

 public void setName(String val)
 {
 name=val;
 {
 public String getName()
 {
 return name;
 }

 public void setLives(short[] val)
 {
 lives=val;
 {
 public short[] getLives()
 {
 return lives;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null)
 {
 buffer.append("name: "+name+"\n");
 }
 if (lives != null)
 {
 buffer.append("lives: "+lives+"\n");
 }
 return buffer.toString();
 }
}

 58

Using XMLSchema Complex Types
The generated code does not force you to obey the min. and max occurrence
rules from the contract, but your application code should be sure the obey
the contract rules. Attempting to send too few or too many occurrences of an
element across the wire will create unpredictable results.
59

CHAPTER 3 | Working with Artix Data Types
SOAP Arrays

Overview SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

Syntax of a SOAP Array SOAP arrays can be described by deriving from the SOAP-ENC:Array base
type using the wsdl:arrayType. The syntax for this is shown in Example 40.

Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
<ArrayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [][] or [,].

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 41.

Example 40:Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Example 41:Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
 60

SOAP Arrays
When using this syntax, the element�s maxOccurs attribute must always be
set to unbounded.

Java mapping SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message that
was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPStrings, shown in Example 42 defines a
one-dimensional array of strings. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:string, and the number of dimensions, []
implying one dimension.

Any message of type SOAPStrings and any complex type element of type
SOAPStrings would be mapped to String[]. So the contract fragment
shown in Example 43, would result in the generation a Java method
celebWasher() that took a parameter, badLang, of type String[].

Example 42:Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 43:Operation Using an Array

...
<message name="badLang" type="SOAPStrings" />
<portType name="censor">
 <operation name="celebWasher">
 <input message="badLang" name="badLang" />
 </operation>
</portType>
...
61

CHAPTER 3 | Working with Artix Data Types
Multi-dimensional arrays Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SOAPStrings were mapped to a two-dimensional array, as shown in
Example 44, the mapping of celebWasher() would take a parameter,
badLang, of type String[][].

Sparse and partially transmitted
arrays

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, intArray[], of 10 integers and
only filled in intArray[1], intArray[6], and intArray[9], it would be
considered a sparse array.

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,
hotMatrix[x][y], and only set put values in elements where 9 > x > 5 and
4 > y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

Example 44:Definition of a two-dimensional SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[][]"/>
 </restriction>
 </complexContent>
</complexType>
 62

Enumerations
Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 45.

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration widgetSize, shown in Example 46, would be valid if it were
<widgetSize>big</widgetSize>, but not if it were
<widgetSize>big,mungo</widgetSize>.

Example 45:Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value" />
 <enumeration value="Case2Value" />
 ...
 <enumeration value="CaseNValue" />
 </restriction>
</simpleType>

Example 46:widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>
</simpleType>
63

CHAPTER 3 | Working with Artix Data Types
Mapping to a Java class Artix maps enumerations to a Java class whose name is taken from the
schema type�s name attribute. So Artix would generate a class, WidgetSize,
to represent the widgetSize enumeration.

The generated class contains two static public data members for each
possible case value. One, _CaseNValue, holds the data value of the
enumeration instance. The other, CaseNValue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration�s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, WidgetSize, shown in
Example 47, to represent the enumeration, widgetSize, shown in
Example 46 on page 63.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in �Nesting with Anonymous Types� on page 49.

Example 47:WidgetSize Class

// Java
public class WidgetSize
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";
 64

Enumerations
 private final String _val;

 public static final String _big = "big";
 public static final WidgetSize big = new WidgetSize(_big);

 public static final String _large = "large";
 public static final WidgetSize large = new WidgetSize(_large);

 public static final String _mungo = "mungo";
 public static final WidgetSize mungo = new WidgetSize(_mungo);

 public static final String _gargantuan = "gargantuan";
 public static final WidgetSize gargantuan = new

WidgetSize(_gargantuan);

 protected WidgetSize(String value)
 {
 _val = value;
 }

 public String getValue()
 {
 return _val;
 };

Example 47:WidgetSize Class
65

CHAPTER 3 | Working with Artix Data Types
 public static WidgetSize fromValue(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

 public static WidgetSize fromString(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

Example 47:WidgetSize Class
 66

Enumerations
Working with enumerations in
Java

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromValue() or fromString() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the getValue() method on that member to
determine the value for the member.

If you were working with the widgetSize enumeration, shown in
Example 46 on page 63, to build an ordering system, you would need a way
to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 48 shows a simple text entry method
for getting the proper member of the enumeration using fromValue(),

Because the value used to define the cases of the enumeration is a string,
fromValue() takes a String and returns the member based on the value of
the string. In this example, fromString() is interchangeable with
fromValue(). However, if the value of the enumeration were integers,
fromValue() would take an int.

 public String toString()
 {
 return ""+_val;
 }
}

Example 47:WidgetSize Class

Example 48:Using fromValue() to Get a Member of an Enumeration

// Java
temp = new String();
WidgetSize ordered_size;

// Get the type of widgets to order
System.out.println("What size widgets do you want?");
System.out.println("Big");
System.out.println("Large");
System.out.println("Mungo");
System.out.println("Gargantuan");
temp = inputBuffer.readLine();

ordered_size = WidgetSize.fromValue(temp);
67

CHAPTER 3 | Working with Artix Data Types
To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the getValue() method
to retrieve the value of the enumeration or you could use the toString()
method to return the value as a String. Example 49 uses getValue() to
return the value of the enumeration retrieved in Example 48 on page 67

Example 49:Using getValue()

// Java
String sizeVal = ordered_size.getValue();
System.out.println("You ordered "+sizeVal+" sized widgets.");
 68

Deriving Types Using <complexContent>
Deriving Types Using <complexContent>

Overview Using XMLSchema, you can derive new complex types by extending other
complex types using the <complexContent> element. When generating the
Java class to represent the derived complex type, Artix extends the base
type�s class. In this way, the Artix-generated Java preserves the inheritance
hierarchy intended in the XMLSchema.

Schema syntax You derive complex types from other complex types by using the
<complexContent> element and the <extension> element. The
<complexContent> element specifies that the included data description
includes more than one field. The <extension> element, which is part of the
<complexContent> definition, specifies the base type being extended to
create the new type. The base type is specified by the <extension>
element�s base attribute.

Within the <extension> element, you define the additional fields that make
up the new type. All elements that are allowed in a complex type description
are allowable as part of the new type�s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
<choice> element to specify that only one of the new fields is to be valid at
a time.

Example 50 shows an XMLSchema fragment that defines two complex
types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetOrderInfo to include two new fields,
orderNumber and amtDue.

Example 50:Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:decimal"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:QName" use="optional" />
</complexType>
69

CHAPTER 3 | Working with Artix Data Types
Generated Java code As with all complex types defined in a contract, Artix generates a class to
represent complex types derived by extension. When the complex type is
derived by extension, the generated class extends the base class generated
to support the base complex type in the contract.

For example, the schema in Example 50 on page 69 would result in the
generation of two Java classes, WidgetOrderInfo and
WidgetBillOrderInfo. WidgetOrderBillInfo would extend
WidgetOrderInfo because widgetOrderBillInfo is derived by extension
from widgetOrderInfo. Example 51 shows the generated class for
widgetOrderBillInfo.

<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:boolean"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Example 50:Deriving a Complex Type by Extension

Example 51:WidgetOrderBillInfo

// Java
public class WidgetOrderBillInfo extends WidgetOrderInfo
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";

 private boolean amtDue;
 private String orderNumber;

 public boolean isAmtDue()
 {
 return amtDue;
 }
 70

Deriving Types Using <complexContent>
 public void setAmtDue(boolean val)
 {
 this.amtDue = val;
 }

 public String getOrderNumber()
 {
 return orderNumber;
 }

 public void setOrderNumber(String val)
 {
 this.orderNumber = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 buffer.append("amtDue: "+amtDue+"\n");
 if (orderNumber != null)
 {
 buffer.append("orderNumber: "+orderNumber+"\n");
 }
 return buffer.toString();
 }
}

Example 51:WidgetOrderBillInfo
71

CHAPTER 3 | Working with Artix Data Types
Holder Classes

Overview WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C++ does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
in/out parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in javax.xml.rpc.holders.
The names of the holder classes start with a capital letter and end with the
Holder postfix. The name of the holder class for long is LongHolder. For
primitive wrapper classes, Wrapper is placed after the class name and before
Holder. For example, the holder class for Long is LongWrapperHolder.

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the
javax.xml.rpc.holders.Holder interface. For example, the holder class for
a complex type, hand, would be HandHolder.

All holder classes provide the following:

� A public field named value of the mapped Java type. For example, a
HandHolder would have a value field of type Hand.

� A constructor that sets value to a default.

� A constructor that sets value to the value of the passed in parameter.

Working with holder classes A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation�s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 52 shows an example of an operation that would
require holder classes in the generated Java code.

Example 52:Multiple Output Parts

<message name="incomingPackage">
 <part name="ID" type="xsd:long" />
</message>
 72

Holder Classes
Artix will use holder classes for the parameters of the Java method
generated to implement the operation, router, because the output message
has multiple parts. Example 53 shows the resulting Java method signature.

The first part of the outgoingPackage message, rerouted, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, destination, is mapped to a
holder class because it has to be mapped into the method�s parameter list.

<message name="outgoingPackage">
 <part name="rerouted" type="xsd:boolean" />
 <part name="destination" type="xsd:string" />
</message>
<portType name="portal">
 <operation name="router">
 <input message="tns:incomingPackage" name="recieved" />
 <output message="tns:outgoingPackage" name="shipped" />
 </operation>
</portType>

Example 52:Multiple Output Parts

Example 53: Interface Using Holders

//Java
import java.net.*;
import java.rmi.*;

public interface portal extends java.rmi.Remote
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 throws RemoteException;
}

73

CHAPTER 3 | Working with Artix Data Types
An example of an application that implements the portal interface might be
one that determines if a package has reached its final destination. The
router method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 54 shows how
a server might implement the router method.

Example 55 shows a client calling router() on a portal service.

Example 54:Portal Implementation

//Java
import java.net.*;
import java.rmi.*;

// The methods boolean belongsHere() and
// String getFinalDestination() are left
// for the reader to implement.

public class portalImpl
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 {
 if(belongsHere(ID))
 {
 return false;
 }

 destination.value = getFinalDestination(ID);
 return true;
 }

}

Example 55:Client Calling router()

//Java
StringHolder destination = new StringHolder();
long ID = 1232;
boolean continuing;
 74

Holder Classes
// proxy portalClient obtained earlier
continuing = portalClient.router(ID, destination);

if (continuing)
{
 System.out.println("Package "+ID+" is going to

"+destination.value);
}

Example 55:Client Calling router()
75

CHAPTER 3 | Working with Artix Data Types
 76

CHAPTER 4

Creating
User-Defined
Exceptions
Artix supports the definition of user-defined exceptions using
the WSDL <fault> element. When mapped to Java, the
<fault> element is mapped to a throwable exception on the
associated Java method.

In this chapter This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 78

How Artix Generates Java User-defined Exceptions page 80

Working with User-defined Exceptions in Artix Applications page 82
77

CHAPTER 4 | Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix
Contract

Overview Artix allows you to create user-defined exceptions that your service can
propagate back to any client using it. As with any information that is
exchanged between a service and client in Artix, the exception must be
described in the Artix contract. Describing a user-defined exception in an
Artix contract involves the following:

� Describing the message that the exception will transmit.

� Associating the exception message to a specific operation.

� Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a
user-defined exception. The fourth task, describing the binding of the
exception to a payload format, is beyond the scope of this book. For
information on binding messages to specific payload formats in an Artix
contract read Designing Artix Applications from the Command Line or
Designing Artix Applications.

Describing the exception message Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the <message> element. There
are no restrictions on the data types that can be passed as part of an
exception message or on the number of parts the message can contain.

Example 56 shows a message description in an Artix contract.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

Example 56:Message Description

<message name="notEnoughInventory">
 <part name="numInventory" type="xsd:int" />
</message
 78

Describing User-defined Exceptions in an Artix Contract
For more information on describing a message in an Artix contract, read
Designing Artix Solutions with Artix Designer or Designing Artix Solutions
from the Command Line.

Associating the exception to an
operation

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a <fault> element to the operation�s
description. A <fault> element takes the same attributes as the <input>
and <output> elements. The message attribute specifies the <message>
element describing the data passed by the exception. The name attribute
specifies the name by which the exception will be referenced in the binding
section of the contract.

Example 57 shows an operation description that uses the message
described in Example 56 on page 78 as a user-defined exception.

The operation described in Example 57, getWidgets, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

Example 57:Operation with a User-defined Exception

<operation name="getWidgets">
 <input message="tns:widgetSizeMessage" name="size" />
 <output message="tns:widgetCostMessage" name="cost" />
 <fault message="tns:notEnoughInventory" name="notEnough" />
</operation>
79

CHAPTER 4 | Creating User-Defined Exceptions
How Artix Generates Java User-defined
Exceptions

Overview As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Exception class so that it can be thrown. It will have one private data
member of the type specified in the contract�s message part to represent
each part of the message, a creation method that allows you to specify the
values of each data member, and the associated getter and setter methods
for each data member. In addition, the generated class will have a
toString() method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the name attribute of the exception�s message description and
will always start with a capital letter.

Example Example 58 shows the generated exception class for the fault message in
Example 56 on page 78.

Example 58:Generated Java Class

//Java
import java.util.*;

public class NotEnoughInventory extends Exception
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/widgetOrderForm";

 private int numInventory;

 public NotEnoughInventory(int numInventory)
 {
 super();
 this.numInventory = numInventory;
 }
 80

How Artix Generates Java User-defined Exceptions
The TARGET_NAMESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

 public int getNumInventory()
 {
 return numInventory;
 }

 public void setNumInventory(int val)
 {
 numInventory = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 if (size != null)
 {
 buffer.append("numInventory: "+numInventory+"\n");
 }
 return buffer.toString();
 }
}

Example 58:Generated Java Class
81

CHAPTER 4 | Creating User-Defined Exceptions
Working with User-defined Exceptions in Artix
Applications

Overview Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception and inspect the contents using the standard methods.

Example Example 59 shows how a server implementing the getWidgets operation,
shown in Example 57 on page 79, might instantiate and throw a
NotEnoughInventory exception.

Example 60 shows how a client might catch and report the exception
thrown by the server.

Example 59:Throwing a User-defined Exception

//Java
...
// checkInventory() is left for the reader to implement
// size and numOrdered are parameters passed into the operation
if (numOrdered > checkInventory(size))
{
 throw NotEnoughInventory(checkInventory(size));
}

Example 60:Catching a User-defined Exception

// Java
...
try
{
 long cost = getWidgets(size, numOrdered);
}

 82

Working with User-defined Exceptions in Artix Applications
catch(NotEnoughInventory nei)
{
 // get the value stored in the exception
 int numInventory = nei.getNumInventory();
 System.out.println("The factory only has "+numInventory+
 " widgets of size "+size+".");
}

Example 60:Catching a User-defined Exception
83

CHAPTER 4 | Creating User-Defined Exceptions
 84

CHAPTER 5

Working with
XMLSchema
anyTypes
The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

In this chapter This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 86

Registering Type Factories page 88

Setting anyType Values page 95

Retrieving Data from anyTypes page 97
85

CHAPTER 5 | Working with XMLSchema anyTypes
Introduction to Working with XMLSchema
anyTypes

XMLSchema anyType The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

Artix and anyType In Artix, an anyType can assume the value of any complex type defined
within the <types> section of the Artix contract that describes the interface
and bindings used by an application. An anyType can also assume the value
of any XMLSchema primitive. For example, if your contract defines the
complex types joeFriday, samSpade, and mikeHammer, an anyType used as a
message part in an operation can assume the value of an element of type
samSpade or an element of type xsd:int. However, it could not assume the
value of an element of type aceVentura because aceVentura was not
defined in the contract.

Artix binding support Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

� SOAP

� Pure XML

� CORBA

Using anyType in Java When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory class with either the client proxy or the
servant depending on which you are developing. Registering the generated
type factory with a client proxy is discussed in �Registering Type Factories
 86

Introduction to Working with XMLSchema anyTypes
with a Client Proxy� on page 89. Registering the generated type factory with
a servant is discussed in �Registering Type Factories with a Servant� on
page 92.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in �Retrieving Data from anyTypes� on page 97.

Java packages for anyType
support

When using anyType data and the type factories you must import the
following:

� com.iona.webservices.reflect.types.AnyType

� com.iona.webservices.reflect.types.TypeFactory
87

CHAPTER 5 | Working with XMLSchema anyTypes
Registering Type Factories

Overview When generating Java code, Artix automatically generates a type factory for
all user-defined types for contracts that contain an anyType. This type
factory provides the functionality needed to allow an anyType to assume the
data of any of the complex types defined in the contract from which the type
factory was generated.

You can generate and register more than one type factory per application if
you have multiple XMLSchema documents defining types. In the case when
you register multiple type factories with an application, the anyTypes used in
the application can assume the data of any complex type for which the type
factories were generated. For example, if you generated a type factory for a
schema type defining the data types larry, moe, and curly and you
generated a separate type factory from a contract defining the complex type
shemp, the anyTypes used in your application could represent either larry,
moe, curly, or shemp as long as you registered both type factories with the
application.

In this section This section discusses the following topics:

Registering Type Factories with a Client Proxy page 89

Registering Type Factories with a Servant page 92
 88

Registering Type Factories
Registering Type Factories with a Client Proxy

Overview Type factories are registered with an Artix client proxy using the Stub
object�s _setProperty() operation. The client proxy is a child of the Stub
object so you can simply cast the client proxy to a Stub object.

_setProperty() takes an array of the type factory�s base class. You will
need to populate this array with instances of all the type factories you are
registering with the client proxy.

Procedure To register type factories with an Artix Java client proxy complete the
following steps:

1. Create the client proxy as described in �Instantiating a client proxy� on
page 18.

2. Cast the instantiated client proxy to a Stub as shown in Example 61.

3. Instantiate the type factories you wish to register with the client proxy
as shown in �Instantiating a type factory� on page 89.

4. Create the TypeFacotry array used to register the type factories as
shown in �Creating a TypeFactory array� on page 90.

5. Register the type factories using _setProperty() on the Stub object as
shown in �Registering the type factories� on page 90.

Instantiating a type factory When the Artix Java code generator encounters an anyType in a contract, it
automatically generates a type factory for all of the complex types defined in
the contract. The type factory class is named by postfixing TypeFactory onto
the port type�s name. For example if you generated Java code for a port type
named packageDepot, the generated type factory class would be
packageDepotTypeFactory.

Example 61:Casting a Client Proxy to a Stub

//Java
import javax.xml.rpc.*;

// client proxy, client, created earlier
Stub clientStub = (Stub) client;
89

CHAPTER 5 | Working with XMLSchema anyTypes
You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 62 shows the code to
instantiate the type factory for packageDepot.

Creating a TypeFactory array The method for registering type factories with the client proxy takes an array
of the base type factory class. This class,
com.iona.webservices.reflect.types.TypeFactory, is the class from
which all generated type factories inherit. You can instantiate and populate
an array of TypeFactory objects using standard Java methods. Example 63
shows code for creating the type factory array to register the
packageDepotTypeFactory instantiated in Example 62 on page 90.

Registering the type factories You register type factories with the client proxy using the Stub object�s
_setProperty() method. The property name for setting Artix type factories
is artix_java_type_factory. The property�s value is the array of
TypeFactory objects containing all of the type factories you wish to register.
Example 64 shows code registering type factories using _setProperty().

Example 62: Instantiating a TypeFactory

//Java
packageDepotTypeFactory factory = new packageDepotTypeFactory();

Example 63:Creating a TypeFactory Array

//Java
import com.iona.webservices.reflect.types.*;

...
// type factory factory created earlier
TypeFactory[] factArray = new TypeFactory[]{factory};

Example 64:Registering Type Factories with _setProperty()

//Java

...
// Stub clientStub and TypeFactory[] factArray obtained above
clientStub._setProperty("artix_java_type_factory", factArray);
 90

Registering Type Factories
Determining if the property is set The client proxy stub provides a method, _getProperty() that will return
the value of the artix_java_type_factory property. You can use this
method to determine if the property is already set or to see what type
factories are registered with the client proxy. Example 65 shows a code for
determining if the type factories have been registered.

Example Example 66 shows an example of registering two type factories,
packageDepotTypeFactory and widgetsTypeFactory, with a client proxy.

The code in Example 66 does the following:

1. Cast the client proxy to a Stub.

2. Instantiate the type factories that will be registered.

3. Create and populate an array of TypeFactory objects containing the
type factories to register.

4. Register the type factories by setting artix_java_type_factory using
_setProperty().

Example 65:Using _getProperty() to See if Type Factories are Registered

// Java
import javax.xml.rpc.*;
import com.iona.webservices.reflect.types.*;

TypeFactory[] setFactory =
 clientStub._getProperty("artix_java_type_factory");

Example 66:Registering TypeFactories on a Client Proxy

//Java
import javax.xml.rpc.*;
import com.iona.webservices.reflect.types.*;
...
// Start the bus and create the Artix client proxy

1 Stub proxyStub = (Stub) clientProxy;
2 packageDepotTypeFactory fact1 = new packageDepotTypeFactory();

widgetsTypeFactory fact2 = new widgetsTypeFactory();
3 TypeFactory[] factArray = new TypeFactory[]{fact1, fact2};
4 proxyStub._setProperty("artix_java_type_factory", factArray);
91

CHAPTER 5 | Working with XMLSchema anyTypes
Registering Type Factories with a Servant

Overview Type factories are registered with an Artix servant using the servant�s
registerTypeFactory() method. Like the _setProperty() method used to
register type factories with Artix client proxies, registerTypeFactory()
takes an array of the type factory base class.

Procedure To register type factories with an Artix Java servant complete the following
steps:

1. Create the servant and register it with the Artix bus as described in
�Developing a Server� on page 14.

2. Instantiate the type factories you wish to register with the client proxy
as shown in �Instantiating a type factory� on page 92.

3. Create the TypeFactory array used to register the type factories as
shown in �Creating a TypeFactory array� on page 93.

4. Register the type factories using resgisterTypeFactory() on the
servant as shown in �Registering the type factories� on page 93.

Instantiating a type factory When the Artix Java code generator encounters an anyType in a contract, it
automatically generates a type factory for all of the complex types defined in
the contract. The type factory class is named postfixing TypeFactory onto
the port type�s name. For example if you generated Java code for a port type
named packageDepot, the generated type factory class would be
packageDepotTypeFactory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 67 shows the code to
instantiate the type factory for packageDepot.

Example 67: Instantiating a TypeFactory

//Java
packageDepotTypeFactory factory = new packageDepotTypeFactory();
 92

Registering Type Factories
Creating a TypeFactory array registerTypeFactory() takes an array of the base type factory class. This
class, com.iona.webservices.reflect.types.TypeFactory, is the class
from which all generated type factories inherit. You can instantiate and
populate an array of TypeFactory objects using standard Java methods.
Example 68 shows code for creating the type factory array to register the
packageDepotTypeFactory instantiated in Example 67 on page 92.

Registering the type factories You register type factories with the servant using its registerTypeFactory()
method with the newly created array of type factories. Example 69 shows
code registering type factories with a servant.

Determining if type factories are
registered

You can get a hash table of the type factories registered with a servant using
getTypeFactoryMap(). The returned hash table, of type HashMap, contans
the QName for the registered type factories and a TypeFactory array
containing all of the registered type factories. shows code for returning the
hash table of registered type factories.

Example 68:Creating a TypeFactory Array

//Java
import com.iona.webservices.reflect.types.*;

...
// type factory factory created earlier
TypeFactory[] factArray = new TypeFactory[]{factory};

Example 69:Registering Type Factories with _setProperty()

//Java

...
// Servant servant and TypeFactory[] factArray obtained above
servant.registerTypeFactory(factArray);

Example 70:Getting Hash Table of Registered Type Factories

//Java
HashMap factMap=servant.getTypeFactoryMap();
93

CHAPTER 5 | Working with XMLSchema anyTypes
Example Example 66 shows an example of registering two type factories,
packageDepotTypeFactory and widgetsTypeFactory, with a client proxy.

The code in Example 71 does the following:

1. Instantiate the type factories that will be registered.

2. Create and populate an array of TypeFactory objects containing the
type factories to register.

3. Register the type factories.

Example 71:Registering TypeFactories with a Servant

//Java
import com.iona.webservices.reflect.types.*;
...
// Start the bus and create the Artix servant

1 packageDepotTypeFactory fact1 = new packageDepotTypeFactory();
widgetsTypeFactory fact2 = new widgetsTypeFactory();

2 TypeFactory[] factArray = new TypeFactory[]{fact1, fact2};
3 servant.registerTypeFactory(factArray);
 94

Setting anyType Values
Setting anyType Values

Overview In Artix Java xsd:anyType is mapped to
com.iona.webservices.reflect.types.AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the QName for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data�s schema type when the object is
transmitted.

Setting primitive data The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 3.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 3: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type

setBoolean() boolean boolean

setByte() byte byte

setShort() short short

setInt() int int

setLong() long long

setFloat() float float

setDouble() double double

setString() string string

setShort() short short

setUByte() short ubyte

setUShort() int ushort
95

CHAPTER 5 | Working with XMLSchema anyTypes
Setting complex type data You set complex data into any AnyType using the setType() method.
setType() can be used two ways. The first is to provide the QName of the
XMLSchema type describing the data to store in the AnyType along with the
data. Using this method makes it easier to query the contents of anyType
objects that were created in the current application space because Artix
does not set the type identifier until it sends the anyType across the wire.
Example 72 shows code for storing a widgetSize in an anyType.

The other way is to simply provide the data value to store in the AnyType
and Artix will determine the XMLSchema type describing the data. From the
receiving end this method for storing data in an anyType is equivalent to the
first method because Artix identifies the contents schema type when it
transmits the data. However, the application that store the value will have
no way to determine the data type once the value is stored until it is used as
part of a remote invocation. Example 73 shows code for storing a
widgetSize in an anyType without providing its QName.

setUInt() long uint

setULong() BigInteger ulong

setDecimal() BigDecimal decimal

Table 3: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type

Example 72:Storing Complex Data and Specifying its Type

//Java
widgetSize size = widgetSize.big;
QName qn = new QName("http://widgetVendor.com/types/",
 "widgetSize");
AnyType aT =new AnyType();
aT.setType(qn, size);

Example 73:Storing Complex Data without a QName

// Java
widgetSize size = widgetSize.big;
AnyType aT =new AnyType();
aT.setType(size);
 96

Retrieving Data from anyTypes
Retrieving Data from anyTypes

Overview Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value�s type you could
cast the value into the proper Java type and work with it using standard
Java methods.

Artix�s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not
specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java getClass() method on the Java Object
returned from AnyType.getObject() to get the Java class of the data stored
in the anyType.

Determining the type of an
anyType

The Artix Java AnyType provides a method, getSchemaTypeName(), that
returns the QName of the schema type of the data stored in the anyType.
Example 74 gets the schema type of an anyType and prints it out to the
console.

Example 74:Using getSchemaTypeName()

// Java
import com.iona.webservices.relect.types.*;

AnyType blackBox;

// Client proxy, proxy, instantiated previously
blackBox = proxy.newBox();
QName schemaType = blackBox.getSchemaTypeName();
System.out.println("The type for blackBox is defined in "
 +schemaType.getNamespaceURI());
System.out.println("blackBox is of type: "
 +schemaType.getLocalPart());
97

CHAPTER 5 | Working with XMLSchema anyTypes
The data stored in an Artix AnyType is a stored as a standard Java Object,
so when the data is extracted you can use the standard getClass() method
on the returned Object to determine its Java type.

Extracting primitive types from an
anyType

The Artix AnyType provides specific methods for extracting primitive types.
lists the getter methods for the supported primitive types and the local part
of the schema type name returned by getSchemaType(). All of the primitive
types have http://www.w3.org/2001/XMLSchema as their namespace URI.

Table 4: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name

getBoolean() boolean boolean

getByte() byte byte

getShort() short short

getInt() int int

getLong() long long

getFloat() float float

getDouble() double double

getString() String string

getUByte() short unsignedByte

getUShort() int unsignedShort

getUInt() long unsignedInt

getULong() BigInteger unsignedLong

getDecimal() BigDecimal decimal
 98

Retrieving Data from anyTypes
Extracting complex data from an
anyType

The Artix AnyType provides a generic method, getType(), that can be used
to extract complex data. getType() returns the data store in the anyType as
a Java Object that you can then cast to the proper Java type. Example 75
shows an example of retrieving a widgetSize from an anyType.

Example If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and destops.
Because the laptops and desktops are configured differently you�ve decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, laptopOrder and desktopOrder, in the
namespace http://myAssemblyLine.com/systemTypes. Example 76 shows
code for receiving the order from the server, querying the returned AnyType
to see what type of order it is, and then extracting the order from the
AnyType.

Example 75:Extracting a Complex Type from an anyType

// Java
AnyType any;

// Client proxy, proxy, instantiated earlier
any = proxy.returnWidget();
widgetSize size = (widget)any.getObject();

Example 76:Working with anyTypes

// Java
import javax.xml.namespace.QName;
import com.iona.webservices.reflect.types.*;

AnyType anyOrder;
1

// Client proxy, proxy, instantiated earlier
anyOrder = proxy.getSystemOrder();

2
// Get the schema type of the returned order
QName orderType = anyOrder.getSchemaType();
99

CHAPTER 5 | Working with XMLSchema anyTypes
The code in Example 76 on page 99 does the following:

1. Populate anyOrder.

2. Query anyOrder for its schema type information.

3. Check the namespace of the returned type to ensure it correct.

4. Check if anyOrder is a laptopOrder. If so, cast anyOrder into a
laptopOrder.

5. Check if anyOrder is a desktopOrder. If so, cast anyOrder into a
desktopOrder.

3 if (!(orderType.getNamespaceURI().equals(
 "http://myAssemblyLine.com/systemTypes"))
{
 // handle the fact that the schema type is from the wrong
 // namespace.
}

4 if (orderType.getLocalPart().equals("laptopOrder"))
{
 LapTopOrder order = (LapTopOrder)anyOrder.getType();
 buildLaptop(order);
}

5 if (orderType.getLocalPart().equals("desktopOrder"))
{
 DeskTopOrder order = (DeskTopOrder)anyOrder.getType();
 buildDesktop(order);
}

Example 76:Working with anyTypes
 100

CHAPTER 6

Artix IDL to Java
Mapping
This chapter describes how Artix maps IDL to Java; that is, the
mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to Java (using the
WSDL-to-Java compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 102

IDL Basic Type Mapping page 104

IDL Complex Type Mapping page 106

IDL Module and Interface Mapping page 119
101

CHAPTER 6 | Artix IDL to Java Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-Java mapping. Mapping
IDL to Java in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, SampleIDL.idl, to a WSDL contract,
SampleIDL.wsdl, using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to Java using the WSDL-to-Java
compiler. For example, you could generate Java stub code from the
SampleIDL.wsdl file using the following command:

wsdltojava SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix
Command Line Reference Guide.

Alternative Java mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to Java directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to Java, as follows:

� Artix IDL-to-Java mapping�this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-Java. It is an IONA-proprietary mapping.

� CORBA IDL-to-Java mapping�as specified in the OMG Java Language
Mapping document (http://www.omg.org). This mapping is used, for
example, by the IONA�s Orbix.
 102

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 1.

The advantage of using the Artix IDL-to-Java mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-Java mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix Java mapping:

� long double.

� Value types.

� Boxed values.

� Abstract interfaces.

� forward-declared interfaces.

� Object.

Figure 1: Artix and CORBA Alternatives for IDL to Java Mapping

IDL

WSDL
Artix
Java

CORBA
Java

Artix

CORBA

IDL-to-Java

IDL-to-WSDL WSDL-to-Java
103

CHAPTER 6 | Artix IDL to Java Mapping
IDL Basic Type Mapping

Overview Table 5 shows how IDL basic types are mapped to WSDL and then to Java.

Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the

Table 5: Artix Mapping of IDL Basic Types to Java

IDL Type WSDL Schema Type Java

boolean xsd:boolean boolean

char xsd:byte byte

string xsd:string java.lang.String

wchar xsd:string java.lang.String

wstring xsd:string java.lang.String

short xsd:short short

long xsd:int int

long long xsd:long long

unsigned short xsd:unsignedShort int

unsigned long xsd:unsignedInt long

unsigned long long xsd:unsignedLong java.math.BigInteger

float xsd:float float

double xsd:double double

octet xsd:unsignedByte IT_Bus::UByte

fixed xsd:decimal java.math.BigDecimal
 104

IDL Basic Type Mapping
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, or wstring).
105

CHAPTER 6 | Artix IDL to Java Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to Java:

� enum type

� struct type

� union type

� sequence types

� array types

� exception types

� typedef of a simple type

� typedef of a complex type

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
 106

IDL Complex Type Mapping
The WSDL-to-Java compiler maps the SampleTypes.Shape type to a Java
class, SampleTypesShape, as shown in Example 77.

Example 77: Java Enumeration

// Java
public class SampleTypeShape
{
 ...

 private final String _val;

 public static final String _Square = "Square";
 public static final SampleTypeShape Square = new SampleTypeShape(_Square);

 public static final String _Circle = "Circle";
 public static final SampleTypeShape Circle = new SampleTypeShape(_Circle);

 public static final String _Triangle = "Triangle";
 public static final SampleTypeShape Triangle = new SampleTypeShape(_Triangle);

 protected SampleTypeShape(String value)
 {
 _val = value;
 }

 public String getValue()
 {
 return _val;
 };

 public static SampleTypeShape fromValue(String value)
 {
 if (value.equals(_Square)) {
 return Square;
 }
 if (value.equals(_Circle)) {
 return Circle;
 }
 if (value.equals(_Triangle)) {
 return Triangle;
 }
 throw new IllegalArgumentException("Invalid enumeration value: "+value);
 };
107

CHAPTER 6 | Artix IDL to Java Mapping
The value of the enumeration type can be accessed using the getValue()
member function.

Programming with the Enumeration Type

For details of how to use the enumeration type, see �Enumerations� on
page 63.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

 public static SampleTypeShape fromString(String value) {
 if (value.equals("Square")) {
 return Square;
 }
 if (value.equals("Circle")) {
 return Circle;
 }
 if (value.equals("Triangle")) {
 return Triangle;
 }
 throw new IllegalArgumentException("Invalid enumeration value: "+value);
 };

 public String toString() {
 return ""+_val;
 }

}

Example 77: Java Enumeration

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};
 108

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

The WSDL-to-Java compiler maps the SampleTypes.Poly type to a Java
class, SampleTypesPoly, as shown in Example 78.

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>

Example 78: Java Union

// Java
public class SampleTypesPoly {

...

 private String __discriminator;

 private short theShort;
 private String theString;

 public short getTheShort() {
 return theShort;
 }

 public void setTheShort(short _v) {
 this.theShort = _v;
 __discriminator = "theShort";
 }

 public boolean isSetTheShort() {
 if(__discriminator != null &&
 __discriminator.equals("theShort")) {
 return true;
 }

 return false;
 }
109

CHAPTER 6 | Artix IDL to Java Mapping
The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions.

Programming with the Union Type

For details of how to use the union type, see �Choice Complex Types� on
page 40.

 public String getTheString() {
 return theString;
 }

 public void setTheString(String _v) {
 this.theString = _v;
 __discriminator = "theString";
 }

 public boolean isSetTheString() {
 if(__discriminator != null &&
 __discriminator.equals("theString")) {
 return true;
 }

 return false;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("theShort: "+theShort+"\n");
 if (theString != null) {
 buffer.append("theString: "+theString+"\n");
 }
 return buffer.toString();
 }
}

Example 78: Java Union
 110

IDL Complex Type Mapping
struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-Java compiler maps the SampleTypes.SampleStruct type to a
Java class, SampleTypesSampleStruct, as shown in Example 79.

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

Example 79: Java Struct

//Java
public class SampleTypesSampleStruct {

...
 private String theString;
 private int theLong;

 public String getTheString() {
 return theString;
 }

 public void setTheString(String val) {
 this.theString = val;
 }
111

CHAPTER 6 | Artix IDL to Java Mapping
The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

Programming with the Struct Type

For details of how to use the struct type, see �Sequence and All Complex
Types� on page 34.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

 public int getTheLong() {
 return theLong;
 }

 public void setTheLong(int val) {
 this.theLong = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (theString != null) {
 buffer.append("theString: "+theString+"\n");
 }
 buffer.append("theLong: "+theLong+"\n");
 return buffer.toString();
 }
}

Example 79: Java Struct

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};
 112

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-Java compiler maps the SampleTypes.SeqOfStruct type to a
Java class, SampleTypesSeqOfStruct, as shown in Example 80.

Programming with Sequence Types

For details of how to use sequence types, see �Sequence and All Complex
Types� on page 34 .

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Example 80: Java Sequence

// Java
public class SampleTypesSeqOfStruct {

 private SampleTypesSampleStruct[] item;

 public SampleTypesSampleStruct[] getItem() {
 return item;
 }

 public void setItem(SampleTypesSampleStruct[] val) {
 this.item = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (item != null) {
 buffer.append("item: "+Arrays.asList(item).toString()+"\n");
 }
 return buffer.toString();
 }
}

113

CHAPTER 6 | Artix IDL to Java Mapping
array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>
 114

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypesArrOfStruct, as shown in Example 81.

Programming with Array Types

For details of how to use array types, see �Sequence and All Complex
Types� on page 34 ..

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

Example 81: Java Array

//Java
public class SampleTypesArrOfStruct {

 private SampleTypesSampleStruct[] item;

 public SampleTypesSampleStruct[] getItem() {
 return item;
 }

 public void setItem(SampleTypesSampleStruct[] val) {
 this.item = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (item != null) {
 buffer.append("item: "+Arrays.asList(item).toString()+"\n");
 }
 return buffer.toString();
 }
}

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};
115

CHAPTER 6 | Artix IDL to Java Mapping
The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

The WSDL-to-Java compiler maps the SampleTypes.GenericExc type to the
Java class, SampleTypesGenericExc, as shown in Example 82.

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>

Example 82:SampleTypeGenericExc

public class SampleTypesGenericExc {

 private String reason;

 public String getReason() {
 return reason;
 }

 public void setReason(String val) {
 this.reason = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (reason != null) {
 buffer.append("reason: "+reason+"\n");
 }
 return buffer.toString();
 }
}

 116

IDL Complex Type Mapping
In addition, the WSDL-to-Java compiler creates a class to map the message,
_exception.SampleTypes.GenericExc, to a Java exception as shown in
Example 83.

Programming with Exceptions in Artix

For an example of how to use WSDL fault exceptions, see �Creating
User-Defined Exceptions� on page 77.

Example 83: Java Excpetion

public class SampleTypesGenericExcException extends Exception {
 private String reason;

 public SampleTypesGenericExcException(String reason) {
 super();
 this.reason = reason;
 }

 public SampleTypesGenericExcException() {
 super();
 }

 public String getReason() {
 return reason;
 }

 public void setReason(String val) {
 this.reason = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer(super.toString());
 if (reason != null) {
 buffer.append("reason: "+reason+"\n");
 }
 return buffer.toString();
 }
}

117

CHAPTER 6 | Artix IDL to Java Mapping
typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float. The WSDL-to-Java compiler then maps the
xsd:float type directly to the float type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-Java compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypesSampleStruct Java type. The Java
mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific Java class being generated to represent the
sequence or array type.
 118

IDL Module and Interface Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL
constructs:

� Module mapping

� Interface mapping

� Operation mapping

� Attribute mapping

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a Java identifier of the form
ModuleNameIdentifier. That is, the IDL scoping operator, ::, is removed in
Java.

Although IDL modules do not map to packages under the Artix Java
mapping, it is possible nevertheless to put generated Java code into a
package using the -p switch to the WSDL-to-Java compiler (see �Generating
Stub and Skeleton Code� on page 10). For example, if you pass a package
name, TEST, to the WSDL-to-Java -p switch, the ModuleName::Identifier
IDL identifier would map to TEST.ModuleNameIdentifier.

Interface mapping An IDL interface, InterfaceName, maps to a Java class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleNameInterfaceName Java class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type maps to
the ModuleNameInterfaceNameTypeName Java class.
119

CHAPTER 6 | Artix IDL to Java Mapping
Operation mapping Example 84 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 84 on page 120, map to
Java as shown in Example 85.

Example 84:Example IDL Operations

// IDL
module SampleTypes {

 interface Foo {
 string test_op(
 in long inLong,
 inout long inoutLong,
 out long outLong
);

 oneway void test_oneway(in string in_str);
 };
};

Example 85:Mapping of CORBA Operations to Java

//Java
1 public class FooImpl {

 public String test_op(
 int inLong,
 javax.xml.rpc.holders.IntHolder inoutLong,
 javax.xml.rpc.holders.IntHolder outLong) {
 ...
 }

2 public void test_oneway(String in_str) {
 ...
 }
}

 120

IDL Module and Interface Mapping
The preceding Java operation signatures can be explained as follows:

1. The Java mapping of an IDL operation retains a similar signiture to its
IDL definition.

The order of parameters in the Java function signature, test_op(), is
determined as follows:

♦ First, the in parameters appear in the same order as in IDL.

♦ Next, the and inout parametersappear in the same order as in
IDL..

♦ Finally, the out parameters appear in the same order as in IDL.

2. The Java mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 86 shows two IDL attributes defined within the SampleTypes::Foo
interface. The first attribute is readable and writable, str_attr, and the
second attribute is readonly, bool_attr.

The attributes from the preceding IDL, Example 86 on page 121, map to
Java as shown in Example 87.

Example 86:Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute boolean bool_attr;
 };
};

Example 87:Mapping IDL Attributes to Java

// Java
public class FooImpl {

1 public String _get_str_attr() {
 // User code goes in here.
 return "";
 }
121

CHAPTER 6 | Artix IDL to Java Mapping
The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in Java, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in Java, _get_AttributeName().

 public void _set_str_attr(String _arg) {
 // User code goes in here.
 }

2 public boolean _get_bool_attr() {
 // User code goes in here.
 return false;
 }

Example 87:Mapping IDL Attributes to Java
 122

Index

A
abstract interface type 103
AnyType

getBoolean() 98
getByte() 98
getDecimal() 98
getDouble() 98
getFloat() 98
getInt() 98
getLong() 98
getSchemaTypeName() 97
getShort() 98
getString() 98
getType() 99
getUByte() 98
getUInt() 98
getULong() 98
getUShort() 98
setBoolean() 95
setByte() 95
setDecimal() 96
setDouble() 95
setFloat() 95
setInt() 95
setLong() 95
setShort() 95
setString() 95
setType() 96
setUByte() 95
setUInt() 96
setULong() 96
setUShort() 95

anyType 86
arrayType attribute 61
Artix bus 3

initializing 15, 18
starting 17

B
binding name

specifying to code generator 11
boxed value type 103
Bus.init() 15, 18
C
client

developing 18
client proxy

instantiating 18
registering type factories 89

client stub code 10
code generation 10

from the command line 10
impl flag 14
server flag 15
types flag 14

code generator
command-line 10
files generated 10

com.iona.jbus.Bus.run() 17, 18
com.iona.jbus.Bus.shutdown() 19
com.iona.jbus.Servant 16
com.iona.jbus package 12
com.iona.webservices.reflect.types.AnyType 87
com.iona.webservices.reflect.types.TypeFactory 87,

90, 93
complex choice type

receiving 40
transmitting 40

complex types
attributes 44
derivation by extension 69
derivation by restriction 54
deriving from simple 54
description in XMLSchema 33
mapping to Java 33

contract type descriptions 30, 33
CORBA

abstract interface 103
basic types 104
boolean 104
boxed value 103
char 104
enum type 106
exception type 115
fixed 104
forward-declared interfaces 103
123

INDEX
sequence type 112
string 104
struct type 111
typedef 118
union type 108, 114
value type 103
wchar 104
wstring 104

createService() 18
creating a dynamic proxy 19
creating a Service instance 18

D
developing a server 14
dynamic proxies 18
dynamic proxy

instantiating 18

E
enumeration facet 32
enum type 106
exception handling

CORBA mapping 116
exceptions

associating to an operation 79
describing in a contract 78

exception type 115

F
facets 30
fault message 5
forward-declared interfaces 103
fractionDigits facet 32
fromString() 64
fromValue() 64

G
generated getter method 35
generated setter method 35
generated types

getter method 35
setter method 35

getBoolean() 98
getByte() 98
getClass() 97
getDecimal() 98
getDouble() 98
 124
getFloat() 98
getInt() 98
getLong() 98
_getProperty() 91
getSchemaTypeName() 97
getShort() 98
getString() 98
getType() 99
getTypeFactoryMap() 93
getUByte() 98
getUInt() 98
getULong() 98
getUShort() 98
getValue() 64

I
IDL

enum type 106
exception type 115
oneway operations 121
sequence type 112
struct type 111
typedef 118
union type 108, 114

IDL attributes
mapping to Java 121

IDL basic types 104
IDL interfaces

mapping to Java 119
IDL modules

mapping to C++ 119
IDL operations

mapping to C++ 120
parameter order 121
return value 121

IDL readonly attribute 122
IDL-to-Java mapping

Artix and CORBA 102
IDL types

unsupported 103
idl utility 102
init() function 15, 18
initializing the bus

client side 18
server side 15

inout parameters 121
in parameters 121
input message 5
instantiating a client proxy 18

INDEX
J
java.io.* package 13
java.net.* package 13
java.rmi.Remote 6
java.rmi.RemoteException exception 7
Java Exception class 80
Java Holder class 7
javax.xml.namespace.QName package 12
javax.xml.rpc.* package 12
javax.xml.rpc.holders 72
javax.xml.rpc.holders.Holder interface 72
javax.xml.rpc.holders package 7
javax.xml.rpc.ServiceFactory 18
javax.xml.rpc.Service interface 18

L
length facet 31
logical contract 2

M
mapping

IDL attributes 121
IDL interfaces 119
IDL modules 119
IDL operations 120
IDL to Java 102

maxExclusive facet 32
maxInclusive facet 32
maxLength facet 31
message part sharing 72
minExclusive facet 32
minInclusive facet 32
minLength facet 31
Multi-dimensional arrays 62

O
obtaining a ServiceFactory 18
occurrence constraints

overview of 57
oneway operations

in IDL 121
output message 5

P
parameters

in IDL-to-Java mapping 121
partially transmitted arrays
SOAP arrays
partially transmitted 62

pattern facet 32
physical contract 2
port

specifying to code generator 11
portType 11
primitive types

Java 25
XMLSchema 25

R
receiving choice types 40
registering a servant instance 16
registerServant() 16
registerTypeFactory() 92
required java packages 12

S
sequence complex types 34
sequence type 112
servant

getTypeFactoryMap() 93
server

developing 14
implementation class 14
main() function 15
registering type factories 92

server skeleton code 10
Service.getPort() 19
ServiceFactory.newInstance() 18
service name

specifying to code generator 11
setBoolean() 95
setByte() 95
setDecimal() 96
setDouble() 95
setFloat() 95
setInt() 95
setLong() 95
setShort() 95
setString() 95
setType() 96
setUByte() 95
setUInt() 96
setULong() 96
setUShort() 95
shutting down the bus 19
125

INDEX
skeleton code
generating with wsdltojava 11

SOAP arrays
sparse 62
syntax 60

SOAP-ENC:Array type 60
sparse arrays 62
struct type 111
Stub._setProperty() 90

T
toString() 35, 64, 80
totalDigits facet 32
transmitting choice types 40
typedef 118
type derivation

by extension 54, 69
by restriction 25, 54

type factory
registering with a client proxy 89
registering with a servant 92

U
union type 108, 114
unsupported IDL types 103

V
value type 103

W
whiteSpace facet 32
wsdl:arrayType 60
wsdl:arrayType attribute 61
WSDL <fault> element 7, 79

message attribute 79
WSDL <input> element 7
WSDL <message> element 4, 7, 78

name attribute 80
WSDL <operation> element 4, 7

name attribute 7
parameterOrder attribute 7

WSDL <output> element 7
WSDL <part> element 4
WSDL <port> element 6

name attribute 6
WSDL <portType> element 4, 6
WSDL <types> element 4, 30, 33, 86
 126
WSDL faults 116
wsdltojava 10, 14

command-line switches 10
files generated 10

wsdltojava utility 102

X
XMLSchema <all> element 34
XMLSchema <attribute> element 27, 44

default attribute 27, 45
fixed attribute 27, 45
name attribute 44
type attribute 44
use attribute 27, 44

XMLSchema <choice> element 40
XMLSchema <complexContent> element 69
XMLSchema <complexType> element 33

name attribute 34, 49
XMLSchema <element> element 27

maxOccurs attribute 27, 36, 57, 61
minOccurs attribute 27, 57
nillable attribute 27
type attribute 48

XMLSchema <extension> element 54, 69
base attribute 69

XMLSchema <restriction> element 30
base attribute 30

XMLSchema <sequence> element 34
XMLSchema <simpleContent> element 54
XMLSchema <simpleType> element 30

name attribute 30, 64
XMLSchema facets 30
xsd:anyType 86

INDEX
127

INDEX
 128

	List of Tables
	Preface
	Understanding the Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java

	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Working with Artix Data Types
	Primitive Types
	Simple Primitive Type Mapping
	Special Primitive Type Mappings
	Unsupported Primitive Types

	Using XMLSchema Simple Types
	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Occurrence Constraints

	SOAP Arrays
	Enumerations
	Deriving Types Using <complexContent>
	Holder Classes

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Registering Type Factories
	Registering Type Factories with a Client Proxy
	Registering Type Factories with a Servant

	Setting anyType Values
	Retrieving Data from anyTypes

	Artix IDL to Java Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Index

