
Developing Artix Applications
in C++

Version 2.0, March 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003–2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 13-Jul-2004

M 3 1 9 1

Contents

List of Tables vii

Preface ix
What is Covered in this Book ix
Who Should Read this Book ix
Organization of this guide ix
Related Documentation ix
Online Help x
Suggested Path for Further Reading x
Additional Resources for Information xi
Typographical Conventions xii
Keying Conventions xii

Chapter 1 Developing Artix Enabled Clients and Servers 1
Generating Stub and Skeleton Code 2
C++ Namespaces 5
Defining a WSDL Interface 6
Developing a Server 8
Developing a Client 12
Generating a Sample Application from WSDL 17
Compiling and Linking an Artix Application 22
Building Artix Stub Libraries on Windows 24

Chapter 2 Artix Programming Considerations 25
Operations and Parameters 26
Exceptions 30

Non-Propagating Exceptions 31
Propagating Exceptions 33

Memory Management 37
Managing Parameters 38
Assignment and Copying 43
Deallocating 45
Smart Pointers 46
iii

CONTENTS
Registering Servants 50
Registering a Static Servant 51
Registering a Transient Servant 56

Multi-Threading 62
Client Threading Issues 63
Servant Threading Models 65
Setting the Servant Threading Model 68
Thread Pool Configuration 71

Chapter 3 Artix References 75
Introduction to References 76
The WSDL Publish Plug-In 80
Programming with References 85

Bank WSDL Contract 86
Creating References 95
Resolving References 99

Callbacks 100
Overview of Artix Callbacks 101
Routing and Callbacks 103
Callback WSDL Contract 107
Client Implementation 109
Server Implementation 113

Chapter 4 The Artix Locator 117
Overview of the Locator 118
Locator WSDL 121
Registering Endpoints with the Locator 127
Reading a Reference from the Locator 128
Pausing and Resuming Endpoints 132

Chapter 5 Using Sessions in Artix 135
Introduction to Session Management in Artix 136
Registering a Server with the Session Manager 139
Working with Sessions 142

Chapter 6 Transactions in Artix 151
Introduction to Transactions 152
Transaction API 154
 iv

CONTENTS
Client Example 156

Chapter 7 Artix Contexts 159
Introduction to Contexts 160

Protocols that Support Contexts 161
Defining Context Data Types 163
Registering Context Types 165
Writing and Reading Context Data 169

Context Example 171
Custom SOAP Header Demonstration 172
Sample Context Schema 174
Client Main Function 177
Server Main Function 182
Service Implementation 185

Chapter 8 Message Attributes 189
Introduction to Message Attributes 190
Schemas 193
Name-Value API 195
Transport-Specific API 199
Using Message Attributes in a Client 202
Using Message Attributes in a Server 205

Chapter 9 Artix Data Types 209
Simple Types 210

Atomic Types 211
String Type 212
QName Type 217
Date and Time Types 219
Decimal Type 220
Binary Types 222
Deriving Simple Types by Restriction 224
Unsupported Simple Types 227

Complex Types 228
Sequence Complex Types 229
Choice Complex Types 232
All Complex Types 236
Attributes 239
v

CONTENTS
Nesting Complex Types 243
Deriving a Complex Type from a Simple Type 247
Deriving a Complex Type from a Complex Type 250
Occurrence Constraints 259
Arrays 263

anyType Type 268
Nillable Types 273

Introduction to Nillable Types 274
Nillable Atomic Types 276
Nillable User-Defined Types 280
Nested Atomic Type Nillable Elements 283
Nested User-Defined Nillable Elements 287
Nillable Elements of an Array 292

SOAP Arrays 295
Introduction to SOAP Arrays 296
Multi-Dimensional Arrays 300
Sparse Arrays 303
Partially Transmitted Arrays 306

IT_Vector Template Class 307
Introduction to IT_Vector 308
Summary of IT_Vector Operations 311

Chapter 10 Artix IDL to C++ Mapping 315
Introduction to IDL Mapping 316
IDL Basic Type Mapping 318
IDL Complex Type Mapping 320
IDL Module and Interface Mapping 329

Index 335
 vi

List of Tables

Table 1: Artix Import Libraries for Linking with an Application 22

Table 2: Artix Exception Error Codes 31

Table 3: String Arguments to the get_context_container() Function 166

Table 4: Transport Schemas with Message Attributes 193

Table 5: Simple Schema Type to Simple Bus Type Mapping 211

Table 6: IANA Character Set Names 213

Table 7: Member Fields of IT_Bus::DateTime 219

Table 8: Operators Supported by IT_Bus::Decimal 220

Table 9: Schema to Bus Mapping for the Binary Types 222

Table 10: Nillable Atomic Types 276

Table 11: Member Functions Not Defined in IT_Vector 308

Table 12: Member Types Defined in IT_Vector<T> 311

Table 13: Iterator Member Functions of IT_Vector<T> 312

Table 14: Element Access Operations for IT_Vector<T> 312

Table 15: Stack Operations for IT_Vector<T> 312

Table 16: List Operations for IT_Vector<T> 313

Table 17: Other Operations for IT_Vector<T> 313

Table 18: Artix Mapping of IDL Basic Types to C++ 318
vii

LIST OF TABLES
 viii

Preface
What is Covered in this Book
This book covers the information needed to develop applications using the
Artix C++ API.

Who Should Read this Book
This guide is intended for Artix C++ programmers. In addition to a
knowledge of C++, this guide assumes that the reader is familiar with
WSDL and XML schemas.

Organization of this guide
This guide is divided as follows:

Part I <PART-TITLE>

<PART-DESCRIPTION>

Related Documentation
The Artix library includes the following books:

• Getting Started with Artix

• Deploying and Managing Artix Solutions

• Designing Artix Solutions from the Command Line

• Designing Artix Solutions using Artix Designer

• Developing Artix Applications in C++

• Developing Artix Applications in Java

• Artix Security Guide

• Artix Tutorial Guide
ix

PREFACE
The latest updates to the Artix documentation can be found at http://
iona.com/docs.

Online Help
Artix includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index and glossary.

• A full search feature.

• Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Suggested Path for Further Reading
If you are new to Artix, we suggest you read the documentation in the
following order:

1. Getting Started with Artix Encompass

The Getting Started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

2. Artix Tutorial

The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. Deploying and Managing Artix Solutions

The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

4. Designing Artix Solutions with Artix Designer

The Artix Designer book describes how to use the Artix GUI to describe
your services in an Artix contract.

5. Developing Artix Applications in C++/Java

The development guide discusses the technical aspects of
programming applications using the Artix API.

6. Designing Artix Solutions from the Command Line
 x

http://iona.com/docs
http://iona.com/docs

PREFACE
This book provides detailed information about the WSDL extensions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

Additional Resources for Information
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/
xi

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
mailto:support@iona.com

PREFACE
Typographical Conventions
This book uses the following typographical conventions:

Keying Conventions
This book uses the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.
 xii

PREFACE
...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Developing Artix
Enabled Clients
and Servers
Artix generates stub and skeleton code that provides a
developer with a simple model to develop transport
independent applications.

In this chapter This chapter discusses the following topics:

Generating Stub and Skeleton Code page 2

C++ Namespaces page 5

Defining a WSDL Interface page 6

Developing a Server page 8

Developing a Client page 12

Generating a Sample Application from WSDL page 17

Compiling and Linking an Artix Application page 22

Building Artix Stub Libraries on Windows page 24
1

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code is similar to
code generated by a CORBA IDL compiler. There are two major differences
between CORBA generated code and Artix generated code:

• Artix generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

• Artix maps WSDL types to C++ using a proprietary WSDL-to-C++
mapping. The resulting types are very different from those generated by
an IDL-to-C++ compiler.

Generated files The Artix code generator produces a number of stub files from the Artix
contract. They are named according to the port type name, PortTypeName,
specified in the logical portion of the Artix contract. If the contract specifies
more than one port type, code will be generated for each one.

The following stub files are generated:

PortTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the
contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side
stubs for implementing a client to use the service defined by the contract.

PortTypeName_wsdlTypes.h and PortTypeName_wsdlTypes.cxx define the
complex datatypes defined in the contract (if any).

PortTypeName_wsdlTypesFactory.h and
PortTypeName_wsdlTypesFactory.cxx define factory classes for the
complex datatypes defined in the contract (if any).
 2

Generating Stub and Skeleton Code
Generating code from the
command line

You can generate code at the command line using the command:

You must specify the location of a valid WSDL contract file, WSDL_URL, for
the code generator to work. You can also supply the following optional
parameters:

wsdltocpp [options] { WSDL-URL | SCHEMA-URL }
[-e web_service_name] [-t port] [-b binding_name]
[-i port_type] [-d output-dir] [-n namespace]

 [-nimport namespace] [-impl [-m {NMAKE | UNIX}] | -jp
plugin_class] [-f] [-server] [-client] [-sample] [-plugin]
[-v] [-license] [-declspec declspec] [-all] [-?] [-flags]
[-upper|-lower|-minimal|-mapper class]

-i port_type Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract.

-e web_service_nameSpecifies the name of the service for which the tool
will generate code. The default is to use the first
service listed in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to used the first port listed
in the contract.

-b binding_name Specifies the name of the binding to use when
generating code. The default is the first binding listed
in the contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-n namespace Specifies the C++ namespace to use for the
generated code.

-impl Generates the skeleton code for implementing the
server defined by the contract.

-m {NMAKE | UNIX} Used in combination with -impl to generate a
makefile for the specified platform (NMAKE for
Windows or UNIX for UNIX). For example, the
options, -impl -m NMAKE, would generate a Windows
makefile.
3

CHAPTER 1 | Developing Artix Enabled Clients and Servers
-f Deprecated—No longer used (was needed to support
routing in earlier versions.

-server Generates code for a sample implementation of a
server.

-client Generates code for a sample implementation of a
client.

-sample Generates code for a sample implementation of a
client and a server (equivalent to -server -client).

-plugin Generates servant registration code as a Bus plug-in.
See “Customizing servant registration” on page 19 for
details.

-v Displays the version of the tool.

-license Displays the currently available licenses.

-declspec declspec Creates NT declaration specifiers for dllexport and
dllimport. This option makes it easier to package
Artix stubs in a DLL library. See “Building Artix Stub
Libraries on Windows” on page 24 for details.

-all Generate stub code for all of the port types and the
types that they use. This option is useful when
multiple port types are defined in a WSDL contract.

-? Displays help on using the command line tool.

-flags Displays detailed information about the options.

-nimport namespace Specifies the namespace under which code from
imported schema is generated. If namespace is left
blank, the code for the imported schema will be
generated in the global namespace.
 4

C++ Namespaces
C++ Namespaces

Artix namespaces Two built-in C++ namespaces widely used by the Artix runtime
infrastructure are: IT_Bus, and IT_WSDL. The first namespace is used for the
callable APIs and declarations, and the second is used for the functions that
parse the WSDL at runtime; these are needed only by highly dynamic
applications.

Solution specific namespaces You can optionally instruct the C++ client proxy generator to put the proxy
classes and complex data types into a custom C++ namespace. This is
useful if you plan on using many Web services from a single client
application. Consider the following sample application, where the GroupB
service was put into a namespace called GroupB. Also note the use of the
IT_Bus namespace for the data types.

#include "GroupBClient.h"
#include "GroupBClientTypes.h"

int main(int argc, char* argv[])
{
 GroupB::GroupBClient bc; // declare the client proxy class

 GroupB::SOAPStruct ssSend;
 ssSend.setvarFloat(IT_Bus::Float(5.67));
 ssSend.setvarInt(1234);
 ssSend.setvarString(IT_Bus::String("Embedded struct string"));

 IT_Bus::Int intValue = 0;
 IT_Bus::Float floatValue = IT_Bus::Float(0.0);

 IT_StringPtr pstring(bc.echoStructAsSimpleTypes(ssSend,
 intValue, floatValue));
}

5

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Defining a WSDL Interface

Overview This section defines the HelloWorld port type, which is used as the basis for
the server and client examples appearing in this chapter. The code for the
HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http

Restrictions The following restrictions currently apply when defining a WSDL interface
for Artix applications:

• Some simple atomic types are not supported—see “Unsupported
Simple Types” on page 227.

WSDL example Example 1 shows the WSDL for a HelloWorld port type, which defines two
operations, greetMe and sayHi.

Example 1: WSDL Definition of the HelloWorld Port Type

// C++
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://xmlbus.com/HelloWorld"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <message name="greetMe">
 <part name="stringParam0" type="xsd:string"/>
 </message>
 <message name="greetMeResponse">
 <part name="return" type="xsd:string"/>
 </message>
 <message name="sayHi"/>
 <message name="sayHiResponse">
 <part name="return" type="xsd:string"/>
 </message>
 <portType name="HelloWorldPortType">
 <operation name="greetMe">
 <input message="tns:greetMe" name="greetMe"/>
 <output message="tns:greetMeResponse"
 6

Defining a WSDL Interface
 name="greetMeResponse"/>
 </operation>
 <operation name="sayHi">
 <input message="tns:sayHi" name="sayHi"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 </portType>
 <binding ... >
 ...
 </binding>
 <service name="HelloWorldService">
 ...
 </service>
</definitions>

Example 1: WSDL Definition of the HelloWorld Port Type
7

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Developing a Server

Overview The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing a server
that uses the Artix Bus. This skeleton code hides the transport details from
the application developer, allowing them to focus on business logic.

Generating the server
implementation class

The Artix code generator utility, wsdltocpp, will generate an implementation
class for your server when passed the -impl command flag.

Generated code The implementation class code consists of two files:

PortTypeNameImpl.h contains the signatures and data types needed for the
server implementation.

PortTypeNameImpl.cxx contains empty shells for the methods that
implement the operations defined in the contract, as well as an empty
contstructor and destructor for the impl class. This file also contains a
factory class for the server implementation.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortTypeNameImpl.cxx. The generated impl class, HelloWorldImpl.cxx, for
the contract defined in this chapter would resemble Example 2. The
majority of the code in Example 2 is auto-generated by the WSDL-to-C++
compiler. Only the code portions highlighted in bold (in the bodies of the
greetMe() and sayHi() functions) must be inserted by the programmer.

Example 2: Implementation of the HelloWorld Port Type in the Server

// C++
#include "HelloWorldImpl.h"
#include <it_cal/cal.h>

IT_USING_NAMESPACE_STD
using namespace IT_Bus;
 8

Developing a Server
Writing the server main() The server main() handles the initialization of the Artix Bus, the running of
the Artix Bus, and the shutdown of the Artix Bus.

Initializing the Bus

The Bus is initialized using IT_Bus::init(). The method has the following
signature:

HelloWorldImpl::HelloWorldImpl(IT_Bus::Bus_ptr bus,
IT_Bus::Port* port)

 : HelloWorldServer(bus,port)
{
}

HelloWorldImpl::~HelloWorldImpl()
{
}

void
HelloWorldImpl::greetMe(
 const IT_Bus::String & stringParam0,
 IT_Bus::String & Response
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorldImpl::greetMe called with message: "
 << stringParam0 << endl;
 Response = IT_Bus::String("Hello Artix User: ")+stringParam0;
}

void
HelloWorldImpl::sayHi(
 IT_Bus::String & Response
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorldImpl::sayHi called" << endl;
 Response = IT_Bus::String("Greetings from the Artix

HelloWorld Server");
}

Example 2: Implementation of the HelloWorld Port Type in the Server

static Bus& init(int argc,
 char* argv[],
 const char* scope = "");
9

CHAPTER 1 | Developing Artix Enabled Clients and Servers
The third parameter is optional and is used to identify the configuration
scope used by the Bus for this application.

Example 3 shows an example of initializing the Artix bus in a server. It is
important to retain an instance of the initialized Bus as it is needed to
register your server implementation factories,

Registering the Servant Objects

To make the HelloWorldImpl servant object accessible to remote clients,
you must register it with the Bus instance. Registration also has the side
effect of activating the associated WSDL service, service_name.

Running the Bus

After the Bus is initialized it is ready to listen for requests and pass them to
the server for processing. To start the Bus, you use IT_Bus::run(). Once
the Bus is started, it retains control of the process until it is shut down. The
server’s main() will be blocked until run() returns.

Example 3: Initializing the Artix Bus in a Server main()

// C++
IT::Bus_var bus = IT_Bus::init(argc, argv);

Example 4: Registering a Servant Object for HelloWorld

// C++
// demos/uncategorized/transient_servants/server/server.cxx
...
try {
 ...
 HelloWorldImpl servant(bus);

 QName service_name("", "HelloWorldService",
"http://xmlbus.com/HelloWorld");

 bus->register_servant(
 servant,
 "./hello_world.wsdl",
 service_name,
 "HelloWorldPort"
);
 ...
} catch (IT_Bus::Exception& e) { ... }
 10

Developing a Server
Shutting the Bus down

Because IT_Bus::run() never returns control to the server’s main(), you
must kill the server process (for example, using Ctrl-C) to shut down the
server.

Completed server main() Example 5 on page 11 shows how the main() for the server defined by the
HelloWorld contract might look.

Example 5: ConverterServer main()

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

int main(int argc, char* argv[])
{
 try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 HelloWorldImpl servant(bus);

 QName service_name("", "HelloWorldService",
"http://xmlbus.com/HelloWorld");

 bus->register_servant(
 servant,
 "./hello_world.wsdl",
 service_name,
 "HelloWorldPort"
);

 IT_Bus::run();
 }
 catch (IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.Error() << endl;
 return -1;
 }

 return 0;
}

11

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Developing a Client

Overview The stub code for a client implementation for the service defined by the
contract is contained in the files PortTypeNameClient.h and
PortTypeNameClient.cxx. You should never make any modifications to the
generated code in these files. You also need to reference the files
PortTypeName.h and PortTypeNameTypes.h in your client code.

To access the operations defined in the port type, the client initializes the
Artix bus, instantiates an object of the generated client proxy class,
PortTypeNameClient, and makes method calls on the object. When the
client is finished, it then shuts down the bus.

Initializing the Bus Client applications initialize the bus in the same manner as server
applications, by calling IT_Bus::init(). Client applications, however, do
not need to make a call to IT_Bus::run().

Instantiating the client object The generated HelloWorld client proxy object has constructors as shown in
Example 6 on page 12.

Constructor with no arguments

The first constructor for the client proxy class takes no parameters. When
using this constructor, the client requires that the contract defining its
behavior be located in the same directory as the executable. The client uses
the port and service specified at code generation time using the -t and -b
flags.

Example 6: Generated Client Constructors

HelloWorldClient();

HelloWorldClient(const IT_Bus::String & wsdl);

HelloWorldClient(const IT_Bus::String & wsdl,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name);

HelloWorldClient(const IT_Bus::Reference & reference);
 12

Developing a Client
Constructor with WSDL URL argument

The second constructor takes one argument that allows you to specify the
URL of the contract defining the client’s behavior. The client uses the port
and service specified at code generation time using the -t and -b flags. This
is useful for situations where the contracts are stored in a central location.

Constructor with three arguments

The third constructor provides you the most flexibility in determining how
the client connects to its server. It takes three arguments:

The client code is binding and transport neutral. Hence, the only restriction
in specifying the port to use is that it have the same portType as the
generated proxy. The port details are read in from the WSDL contract file at
runtime. For example, if the contract for the conversion service is modified
to include a service definition like the one shown in Example 7 on page 13,
you could instantiate the client proxy to use either HTTP or Tuxedo.

wsdl Specifies the URL of the contract defining the client’s
behavior.

service_name Specifies the name of the service, defined in the contract
with a <service> tag, to use when connecting to the
server.

port_name Specifies the name of the port, defined in the contract
with a <port> tag, to use when connecting to the server.
The port name given must be defined in the specified
<service> tag.

Example 7: Multiple Ports Defined for HelloWorld

 <service name="HelloWorldService2">
 <port name="HelloWorldHTTPPort"

binding="tns:HelloWorldBinding">
 <soap:address location="http:\\localhost:8081"/>
 </port>
 <port name="HelloWorldTuxedoPort"
 binding="tns:HelloWorldBinding">
 <tuxedo:address serviceName="TuxQueue"/>
 </port>
 </service>
13

CHAPTER 1 | Developing Artix Enabled Clients and Servers
To specify that the proxy client is to connect to the server using the Tuxedo
server TuxQueue, you would instantiate the client using the following
constructor:

Constructor with a reference argument

The fourth constructor takes one argument representing an Artix reference,
IT_Bus::Reference. The Artix reference contains complete service and port
details, including addressing information, enabling the client proxy to open a
connection to a remote service. For a detailed discussion of Artix references,
see “Artix References” on page 75.

Invoking the operations To invoke the operations offered by the service, the client calls the methods
of the client proxy object. The generated client proxy class contains one
method for each operation defined in the contract. The generated methods
all return void. Any response messages are passed by reference as a
parameter to the method. For example, the greetMe operation defined in
Example 1 generates a method with the following signature:

Shutting the bus down Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to IT_Bus::run() and can simply call
IT_Bus::shutdown() before the main thread exits. It is advisable to pass
TRUE to IT_Bus:shutdown() to ensure that the bus is fully shut down before
exiting.

Full client code A client developed to access the service defined by the HelloWorldService
contract will look similar to Example 8.

HelloWorldClient proxy("HelloWorld.wsdl", "HelloWorldService2",
"HelloWorldTuxedoPort");

void greetMe(
 const IT_Bus::String & stringParam0,
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

Example 8: HelloWorld Client

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
 14

Developing a Client
#include <it_cal/iostream.h>

1 #include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

using namespace HW;

int main(int argc, char* argv[])
{
 cout << "HelloWorld Client" << endl;

 try
 {

2 IT_Bus::init(argc, argv);
3 HelloWorldClient hw;

 String string_in;
 String string_out;

4 hw.sayHi(string_out);
 cout << "sayHi method returned: " << string_out << endl;

 if (argc > 1) {
 string_in = argv[1];
 } else {
 string_in = "Early Adopter";
 }
 hw.greetMe(string_in, string_out);
 cout << "greetMe method returned: " << string_out << endl;
 }

5 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
 }

 return 0;
}

Example 8: HelloWorld Client
15

CHAPTER 1 | Developing Artix Enabled Clients and Servers
The code does the following:

1. The PortNameClient.h header includes the definitions for the client
proxy class.

2. The IT_Bus::init() static function initializes the bus.

3. This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory.

4. Invoke the sayHi() operation on the client proxy.

5. Catch any exceptions thrown by the bus. It is essential to enclose
remote operation invocations within a try/catch block which catches
the exception types derived from IT_Bus::Exception.
 16

Generating a Sample Application from WSDL
Generating a Sample Application from WSDL

Overview You can use the WSDL-to-C++ compiler to generate a working Web service
application, consisting of a sample client application and a sample server
application. You can then finish the application by editing the default client
and server code. This approach enables you to develop a Web service
application rapidly.

Sample WSDL file The examples in this section are based on the hello_world.wsdl file,
located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/etc

Generating the sample application To generate a complete sample application from the hello_world.wsdl file,
including a client and a server, enter the following command:

Windows
> wsdltocpp -sample -impl -m NMAKE -plugin hello_world.wsdl

UNIX
% wsdltocpp -sample -impl -m UNIX -plugin hello_world.wsdl

Generated files The preceding wsdltocpp command generates the following files:

Stub Files
PortType.h
PortTypeClient.h
PortTypeServer.h
PortTypeClient.cxx
PortTypeServer.cxx

Client Implementation Files
PortTypeClientSample.cxx

Server Implementation Files
PortTypeServerSample.cxx
PortTypeImpl.cxx
PortTypeServantBusPlugIn.cxx
17

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Makefile
Makefile

Building the sample application With the help of the generated makefile, Makefile, you can build the client
and server applications as follows:

Windows
> nmake -all

UNIX
% make -all

Customizing the servant
implementation

To complete the server implementation, you should edit the PortTypeImpl.h
file to fill in the missing operations in the PortTypeImpl servant class.

For example, Example 9 shows the generated servant class, GreeterImpl,
that implements the Greeter port type. To complete the sample
implementation, you should insert code after the // User code goes in
here comments (highlighted in bold font in Example 9).

Example 9: Generated Implementation of the Greeter Port Type

// C++
#include "GreeterImpl.h"
#include <it_cal/cal.h>

GreeterImpl::GreeterImpl(IT_Bus::Bus_ptr bus) :
GreeterServer(bus)

{
}

GreeterImpl::~GreeterImpl()
{
}

IT_Bus::Servant*
GreeterImpl::clone() const
{
 return new GreeterImpl(get_bus());
}

 18

Generating a Sample Application from WSDL
Customizing servant registration To activate a particular Web service, you must register a servant instance
with the Artix Bus. In a generated application, the servant registration code
appears in the PortTypeServantBusPlugIn.cxx file, which embeds the
servant registration code in an Artix plug-in.

For example, if you generate a sample application from hello_world.wsdl
(passing the -plugin flag to wsdltocpp), you obtain the file,
GreeterServantBusPlugIn.cxx, which defines the
GreeterServantBusPlugIn plug-in class. Example 10 is an extract from the
GreeterServantBusPlugIn.cxx file that shows the servant registration code.

void
GreeterImpl::sayHi(
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 // User code goes in here
}

void
GreeterImpl::greetMe(
 const IT_Bus::String &me,
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 // User code goes in here
}

Example 9: Generated Implementation of the Greeter Port Type

Example 10:Extract from the GreeterServantBusPlugIn Class

// C++
...
GreeterServantBusPlugIn::GreeterServantBusPlugIn(
 Bus_ptr bus
) IT_THROW_DECL((Exception))
 :
 BusPlugIn(bus),
 m_servant(bus),
 m_service_qname("", "SOAPService",

"http://www.iona.com/hello_world_soap_http")
{
 // complete
}

19

CHAPTER 1 | Developing Artix Enabled Clients and Servers
If you want to change the details of servant registration, you can edit the
register_servant() calls in the GreeterServantBusPlugIn.cxx file. For a
detailed discussion of servant registration, see “Registering Servants” on
page 50.

Automatic plug-in activation In order to have any effect, an Artix plug-in must register itself with the Artix
Bus and the Bus must be configured to activate the plug-in. In the case of
the generated plug-in class, however, registration and activation of the
plug-in occur automatically.

For example, the GreeterServantBusPlugIn.cxx file includes the following
call to construct a GlobalBusORBPlugIn object:

The GlobalBusORBPlugIn is an object that automatically registers and
activates the plug-in (whose name is given by the string
SOAPService@http://www.iona.com/hello_world_soap_http). In contrast

GreeterServantBusPlugIn::~GreeterServantBusPlugIn()
{
 // complete
}

void
GreeterServantBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 get_bus()->register_servant(
 m_servant,
 "hello_world.wsdl",
 m_service_qname
);
}
...

Example 10:Extract from the GreeterServantBusPlugIn Class

// C++
GlobalBusORBPlugIn bus_plugin(
 "SOAPService@http://www.iona.com/hello_world_soap_http",
 plugin_factory
);
 20

Generating a Sample Application from WSDL
to regular plug-in objects (of BusORBPlugIn type), it is not necessary to
activate the plug-in by adding the plug-in name to the orb_plugins list;
activation of GlobalBusORBPlugIn objects is automatic.
21

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Compiling and Linking an Artix Application

Compiler Requirements An application built using Artix requires a number of IONA-supplied C++
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the
compiler processes the generated files, it is able to find the necessary
included infrastructure header files.

The following include path directives should be given to the compiler:

Linker Requirements A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

Table 1 shows the libraries that are required for linking an Artix application
and their function.

-I"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\include"

-L"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib" it_bus.lib it_afc.lib it_art.lib it_ifc.lib

Table 1: Artix Import Libraries for Linking with an Application

Windows Libraries UNIX Libraries Description

it_bus.lib libit_bus.so

libit_bus.sl

libit_bus.a

The Bus library provides the functionality required to
access the Artix bus. Required for all applications that use
Artix functionality.

it_afc.lib libit_afc.so

libit_afc.sl

libit_afc.a

The Artix foundation classes provide Artix specific data
type extensions such as IT_Bus::Float, etc. Required for
all applications that use Artix functionality.

it_ifc.lib libit_ifc.so

libit_ifc.sl

libit_ifc.a

The IONA foundation classes provide IONA specific data
types and exceptions.

it_art.lib libit_art.so

libit_art.sl

libit_art.a

The ART library provides advanced programming
functionality that requires access to the Artix
infrastructure and the underlying ORB.
 22

Compiling and Linking an Artix Application
Runtime Requirements The following directories need to be in the path, either by copying them into
a location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

and

On some UNIX platforms you also have to update the SHLIB_PATH or
LD_LIBRARY_PATH variables to include the Artix shared library directory.

"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin"

"$(IT_PRODUCT_DIR)\bin"
23

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Building Artix Stub Libraries on Windows

Overview The Artix WSDL-to-C++ compiler features an option, -declspec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The -declspec option defines a macro that
automatically inserts export declarations into the stub header files.

Generating stubs with declaration
specifiers

To generate Artix stubs with declaration specifiers, use the -declspec option
to the WSDL-to-C++ compiler, as follows:

wsdltocpp -declspec MY_DECL_SPEC BaseService.wsdl

In this example, the -declspec option would add the following preprocessor
macro definition to the top of the generated header files:

#if !defined(MY_DECL_SPEC)
#if defined(MY_DECL_SPEC_EXPORT)
#define MY_DECL_SPEC IT_DECLSPEC_EXPORT
#else
#define MY_DECL_SPEC IT_DECLSPEC_IMPORT
#endif
#endif

Where the IT_DECLSPEC_EXPORT macro is defined as _declspec(dllexport)
and the IT_DECLSPEC_IMPORT macro is _declspec(dllimport).

Each class in the header file is declared as follows:

class MY_DECL_SPEC ClassName { ... };

Compiling stubs with declaration
specifiers

If you are about to package your stubs in a DLL library, compile your C++
stub files, StubFile.cxx, with a command like the following:

cl -DMY_DECLSPEC_EXPORT ... StubFile.cxx

By setting the MY_DECLSPEC_EXPORT macro on the command line,
_declspec(dllexport) declarations are inserted in front of the public class
declarations in the stub. This ensures that applications will be able to
import the public definitions from the stub DLL.
 24

CHAPTER 2

Artix Programming
Considerations
Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:

Operations and Parameters page 26

Exceptions page 30

Memory Management page 37

Registering Servants page 50

Multi-Threading page 62
25

CHAPTER 2 | Artix Programming Considerations
Operations and Parameters

Overview This section describes how to declare a WSDL operation and how the
operation and its parameters are mapped to C++ by the Artix
WSDL-to-C++ compiler.

Parameter direction in WSDL WSDL operation parameters can be sent either as input parameters (that is,
in the client-to-server direction or as output parameters (that is, in the
server-to-client direction). Hence, the following kinds of parameter can be
defined:

• in parameter—declared as an input parameter, but not as an output
parameter.

• out parameter—declared as an output parameter, but not as an input
parameter.

• inout parameter—declared both as an input and as an output
parameter.

How to declare WSDL operations You can declare a WSDL operation as follows:

1. Declare a multi-part input message, including all of the in and inout
parameters for the new operation (for example, the testParams
message in Example 11 on page 26).

2. Declare a multi-part output message, including all of the out and inout
parameters for the operation (for example, the testParamsResponse
message in Example 11 on page 26).

3. Within the scope of <portType>, declare a single operation which
includes a single input message and a single output message.

WSDL declaration of testParams Example 11 shows an example of a simple operation, testParams, which
takes two input parameters, inInt and inoutInt, and two output
parameters, inoutInt and outFloat.

Example 11:WSDL Declaration of the testParams Operation

<?xml version="1.0" encoding="UTF-8"?>
 26

Operations and Parameters
C++ mapping of testParams Example 12 shows how the preceding WSDL testParams operation (from
Example 11 on page 26) maps to C++.

Mapped parameters When the testParams WSDL operation maps to C++, the resulting
testParams() C++ function signature starts with the in and inout
parameters, followed by the out parameters. The parameters are mapped as
follows:

• in parameters—are passed by value and declared const.

• inout parameters—are passed by reference.

• out parameters—are passed by reference.

<definitions ...>
 ...
 <message name="testParams">
 <part name="inInt" type="xsd:int"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 <message name="testParamsResponse">
 <part name="inoutInt" type="xsd:int"/>
 <part name="outFloat" type="xsd:float"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testParams">
 <input message="tns:testParams" name="testParams"/>
 <output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </operation>
 ...
</definitions>

Example 11:WSDL Declaration of the testParams Operation

Example 12:C++ Mapping of the testParams Operation

// C++
void testParams(
 const IT_Bus::Int inInt,
 IT_Bus::Int & inoutInt,
 IT_Bus::Float & outFloat
) IT_THROW_DECL((IT_Bus::Exception));
27

CHAPTER 2 | Artix Programming Considerations
WSDL declaration of
testReverseParams

Example 13 shows an example of an operation, testReverseParams, whose
parameters are listed in the opposite order to that of the preceding
testParams operation.

C++ mapping of
testReverseParams

Example 14 shows how the preceding WSDL testReverseParams operation
(from Example 13 on page 28) maps to C++.

Example 13:WSDL Declaration of the testReverseParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 ...
 <message name="testReverseParams">
 <part name="inoutInt" type="xsd:int"/>
 <part name="inInt" type="xsd:int"/>
 </message>
 <message name="testReverseParamsResponse">
 <part name="outFloat" type="xsd:float"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testReverseParams">
 <output message="tns:testReverseParamsResponse"
 name="testReverseParamsResponse"/>
 <input message="tns:testReverseParams"
 name="testReverseParams"/>
 </operation>
 ...
</definitions>

Example 14:C++ Mapping of the testReverseParams Operation

// C++
void testReverseParams(
 IT_Bus::Int & inoutInt
 const IT_Bus::Int inInt,
 IT_Bus::Float & outFloat,
) IT_THROW_DECL((IT_Bus::Exception));
 28

Operations and Parameters
Order of in, inout and out
parameters

In C++, the order of the in and inout parameters in the function signature is
the same as the order of the parts in the input message. The order of the out
parameters in the function signature is the same as the order of the parts in
the output message.

Note: The parameter order is not affected by the relative order of the
<input> and <output> tags in the declaration of <operation>. In the
mapped C++ signature, the in and inout parameters always appear
before the out parameters.
29

CHAPTER 2 | Artix Programming Considerations
Exceptions

Overview Artix provides a variety of built-in exceptions, which can alert users to
problems with network connectivity, parameter marshalling, and so on. In
addition, Artix allows users to define their own exceptions, which can be
propagated across the network by declaring fault exceptions in WSDL.

In this section This section contains the following subsections:

Non-Propagating Exceptions page 31

Propagating Exceptions page 33
 30

Exceptions
Non-Propagating Exceptions

Overview The Artix libraries and generated code generate exceptions from classes
based on IT_Bus::Exception, defined in <it_bus/Exception.h>.
IT_Bus::Exception provides all Artix generated exceptions with two
methods for providing information back to the user:

IT_Bus::Exception::Message()

Message() returns an informative description of the error which generated
the exception. It has the following signature:

IT_Bus::Exception::Error()

Error() returns an error code, if one is assigned to the exception, that
identifies the exception. It has the following signature:

Currently only the following exceptions have been given error codes:

const char* Message() const;

IT_ULong Error() const;

Table 2: Artix Exception Error Codes

Error Code Description

IT_HTTP_E_COMM_ERROR A communication error occurred.

IT_HTTP_E_ACCESS_DENIED Username or password validation error by
the server.

IT_HTTP_E_BAD_CONFIG The configuration file is not valid.

IT_HTTP_E_NOT_FOUND The URL or file was not found.

IT_HTTP_E_SHUTTING_DOWN The system is entering a quiescent state.

IT_BUS_E_FAULT A SOAP fault was returned by the server.
31

CHAPTER 2 | Artix Programming Considerations
Exception types Artix defines the following exception types:

IT_Bus::ServiceException is thrown when there is a problem creating a
Service. It is defined in <it_bus/service_exception.h>.

IT_Bus::IOException is thrown if there is an error writing a wsdl model to a
stream. It is defined in <it_bus/io_exception.h>.

IT_Bus::TransportException is thrown if there is a communication failure. It
is defined in <it_bus/transport_exception.h>.

IT_Bus::ConnectException is thrown if there is a communication error. This
exception type is a specialization of a TransportException. It is defined in
<it_bus/connect_exception.h>.

IT_Bus::DeserializationException is thrown if there is a problem
unmarshaling data. Deserialization exceptions are propagated back to client
stub code. It is defined in <it_bus/deserialization_exception.h>.

IT_Bus::SerializationException is thrown if there is a problem marshaling
data. On the server-side if this is thrown as part of a dispatching an
invocation the runtime will catch this and propagate a Fault to the
client-side. On the client side these will get back to the application code. It
is defined in <it_bus/serialization_exception.h>.

IT_Routing::InvalidRouteException is thrown is a route is improperly
defined. It is defined in <it_bus/invalid_route_exception.h>.
 32

Exceptions
Propagating Exceptions

Overview Artix servers propagate certain exceptions, such as serialization and
deserialization exceptions, back to their clients so the client can handle the
error gracefully. This is done using the IT_Bus::FaultException class,
defined in <it_bus/fault_exception.h>. FaultException extends
Exception to provide connection awareness and serialization.

Artix propagates user-defined exceptions back to client processes. To specify
that an exception is to be propagated, you must declare the exception as a
fault in WSDL. The WSDL-to-C++ compiler then generates the stub code
that you need to raise and catch the exception.

Declaring a fault in WSDL Example 15 shows an example of a WSDL fault which can be raised on the
echoInteger operation. The format of the fault message is specified by the
tns:SampleFault message.

Example 15:Declaration of the SampleFault Fault

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

1 <complexType name="SampleFaultData">
 <all>
 <element name="lowerBound" type="xsd:int"/>
 <element name="upperBound" type="xsd:int"/>
 </all>
 </complexType>
 ...
 </schema>
 </types>

2 <message name="SampleFault">
 <part name="exceptionData"
 type="xsd1:SampleFaultData"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="echoInteger">
 <input message="tns:echoInteger" name="echoInteger"/>
33

CHAPTER 2 | Artix Programming Considerations
The preceding WSDL extract can be explained as follows:

1. If the fault is to hold more than one piece of data, you must declare a
complex type for the fault data (in this case, SampleFaultData holds a
lower bound and an upper bound).

2. Declare a message for the fault, containing just a single part. The
WSDL specification allows only single-part messages in a fault—
multi-part messages are not allowed.

3. The <fault> tag must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Raising a fault exception in a
server

Example 16 shows how to raise the SampleFault fault in the server code.
The implementation of echoInteger now checks the input integer to see if it
exceeds the given bounds.

The WSDL maps to C++ as follows:

• The WSDL SampleFaultData type maps to a C++ SampleFaultData
class.

• The WSDL SampleFault message maps to a C++
SampleFaultException class. This follows the general pattern that
ExceptionMessage maps to ExceptionMessageException.

 <output message="tns:echoIntegerResponse"
 name="echoIntegerResponse"/>

3 <fault message="tns:SampleFault"
 name="SampleFault"/>
 </operation>
 </portType>
 ...
</definitions>

Example 15:Declaration of the SampleFault Fault

Note: There is no limit to the number of <fault> tags that can be
included in an <operation> element.

Example 16:Raising the SampleFault Fault in the Server

// C++
void BaseImpl::echoInteger(const IT_Bus::Int

inputInteger,IT_Bus::Int& Response)
 34

Exceptions
Catching a fault exception in a
client

Example 17 shows how to catch the SampleFault fault on the client side.
The client uses the proxy instance, bc, to call the echoInteger operation
remotely.

 IT_THROW_DECL((IT_Bus::Exception))
{
 if (inputInteger<0 || 100<inputInteger)
 {
 // Create and initialize the SampleFaultData
 SampleFaultData ex_data;
 ex_data.setlowerBound(0);
 ex_data.setupperBound(100);

 // Create and initialize the fault.
 SampleFaultException ex;
 ex.setexceptionData(ex_data);

 // Throw the fault exception back to the client.
 throw ex;
 }
 cout << "BaseImpl::echoInteger called" << endl;
 Response = inputInteger;
}

Example 16:Raising the SampleFault Fault in the Server

Example 17:Catching the SampleFault Fault in the Client

// C++
...
try {
 Int int_out = 0;
 bc.echoInteger(int_in,int_out);
 if (int_in != int_out)
 {
 cout << endl << "echoInteger PASSED" << endl;
 }
}
catch (SampleFaultException &ex)
{
 cout << "Bounds exceeded:" << endl;
 cout << "lower bound = "
 << ex.getexceptionData().getlowerBound() << endl;
 cout << "upper bound = "
 << ex.getexceptionData().getupperBound() << endl;
35

CHAPTER 2 | Artix Programming Considerations
}
catch (IT_Bus::FaultException &ex)
{
 /* Handle other fault exceptions ... */
}
catch (...)
{
 /* Handle all other exceptions ... */
}

Example 17:Catching the SampleFault Fault in the Client
 36

Memory Management
Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:

Managing Parameters page 38

Assignment and Copying page 43

Deallocating page 45

Smart Pointers page 46
37

CHAPTER 2 | Artix Programming Considerations
Managing Parameters

Overview This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes
parameters by reference.

Memory management rules There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a
copy of the parameter. In general, parameters are deallocated as soon
as an operation returns.

WSDL example Example 18 shows an example of a WSDL operation, testSeqParams, with
three parameters, inSeq, inoutSeq, and outSeq, of sequence type,
xsd1:SequenceType.

Note: If you use pointer types to reference operation parameters, see
“Smart Pointers” on page 46 for advice on memory management.

Example 18:WSDL Example with in, inout and out Parameters

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
 </schema>
 38

Memory Management
Client example Example 19 shows how to allocate, initialize, and deallocate parameters
when calling the testSeqParams operation.

 </types>
 ...
 <message name="testSeqParams">
 <part name="inSeq" type="xsd1:SequenceType"/>
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 </message>
 <message name="testSeqParamsResponse">
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 <part name="outSeq" type="xsd1:SequenceType"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testSeqParams">
 <input message="tns:testSeqParams"
 name="testSeqParams"/>
 <output message="tns:testSeqParamsResponse"
 name="testSeqParamsResponse"/>
 </operation>
 ...
 </portType>
 ...
</definitions>

Example 18:WSDL Example with in, inout and out Parameters

Example 19:Client Calling the testSeqParams Operation

// C++
try
{
 IT_Bus::init(argc, argv);

1 BaseClient bc;

2 // Allocate all parameters
 SequenceType inSeq, inoutSeq, outSeq;

3 // Initialize in and inout parameters
 inSeq.setvarFloat((IT_Bus::Float) 1.234);
 inSeq.setvarInt(54321);
 inSeq.setvarString("One, two, three");
 inoutSeq.setvarFloat((IT_Bus::Float) 4.321);
39

CHAPTER 2 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, bc, which is used to
invoke the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and
out. In this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize
the out parameters.

4. It is the responsibility of the client to deallocate all kinds of parameter.
In this example, the parameters are all deallocated at the end of the
current scope, because they have been allocated on the stack.

Server example Example 20 shows how the parameters are used on the server side, in the
C++ implementation of the testSeqParams operation.

 inoutSeq.setvarInt(12345);
 inoutSeq.setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(inSeq, inoutSeq, outSeq);

4 // End of scope:
 // Implicit deallocation of inSeq, inoutSeq, and outSeq.
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 19:Client Calling the testSeqParams Operation

Example 20:Server Calling the testSeqParams Operation

// C++
void
BaseImpl::testSeqParams(
 const SequenceType & inSeq,
 SequenceType & inoutSeq,
 SequenceType & outSeq
) IT_THROW_DECL((IT_Bus::Exception))
 40

Memory Management
The preceding server example can be explained as follows:

1. The server programmer has read-only access to the in parameters (they
are declared const in the operation signature).

2. If you want to access data from in or inout parameters after the
operation returns, you must copy them (deep copy). It would be an
error to use the & operator to obtain a pointer to the parameter data,
because the Artix server stub deallocates the parameters as soon as
the operation returns.

See “Assignment and Copying” on page 43 for details of how to copy
Artix data types.

3. You have read/write access to the inout parameters.

{
 cout << "BaseImpl::testSeqParams called" << endl;

1 // Print inSeq
 cout << "inSeq.varFloat = " << inSeq.getvarFloat() << endl;
 cout << "inSeq.varInt = " << inSeq.getvarInt() << endl;
 cout << "inSeq.varString = " << inSeq.getvarString() << endl;

2 // (Optionally) Copy in/inout parameters
 // ...

3 // Print and change inoutSeq
 cout << "inoutSeq.varFloat = "
 << inoutSeq.getvarFloat() << endl;
 cout << "inoutSeq.varInt = "
 << inoutSeq.getvarInt() << endl;
 cout << "inoutSeq.varString = "
 << inoutSeq.getvarString() << endl;
 inoutSeq.setvarFloat(2.0);
 inoutSeq.setvarInt(2);
 inoutSeq.setvarString("Two");

4 // Initialize outSeq
 outSeq.setvarFloat(3.0);
 outSeq.setvarInt(3);
 outSeq.setvarString("Three");
}

Example 20:Server Calling the testSeqParams Operation
41

CHAPTER 2 | Artix Programming Considerations
4. You should initialize each of the out parameters (otherwise they will be
returned with default initial values).
 42

Memory Management
Assignment and Copying

Overview The WSDL-to-C++ compiler generates copy constructors and assignment
operators for all complex types.

Copy constructor The WSDL-to-C++ compiler generates a copy constructor for complex
types. For example, the SequenceType type declared in Example 18 on
page 38 has the following copy constructor:

// C++
SequenceType(const SequenceType& copy);

This enables you to initialize SequenceType data as follows:

Assignment operator The WSDL-to-C++ compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to
assign a SequenceType instance as follows:

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType copy_1(original);
SequenceType copy_2 = original;

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType assign_to;

assign_to = original;
43

CHAPTER 2 | Artix Programming Considerations
Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary
degree. When such a nested complex type is mapped to C++ by Artix, the
copy constructor and assignment operators are designed to copy the nested
members recursively (deep copy).
 44

Memory Management
Deallocating

Using delete In C++, if you allocate a complex type on the heap (that is, using pointers
and new), you can generally delete the data instance using the delete
operator. It is usually better, however, to use smart pointers in this
context—see “Smart Pointers” on page 46.

Recursive deallocation The Artix C++ types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other
complex types nested inside it, the entire memory for the complex type
including its nested members would be deallocated when you delete T. This
works for complex types nested to an arbitrary degree.
45

CHAPTER 2 | Artix Programming Considerations
Smart Pointers

Overview To help you avoid memory leaks when using pointers, the WSDL-to-C++
compiler generates a smart pointer class, ComplexTypePtr, for every
generated complex type, ComplexType. The following aspects of smart
pointers are discussed here:

• What is a smart pointer?

• Artix smart pointers.

• Assignment semantics.

• Client example using simple pointers.

• Client example using smart pointers.

What is a smart pointer? A smart pointer class is a C++ class that overloads the * (dereferencing)
and -> (member access) operators, in order to imitate the syntax of an
ordinary C++ pointer.

Artix smart pointers Artix smart pointers are defined using a template class, IT_AutoPtr<T>,
which has the same API as the standard auto pointer template,
auto_ptr<T>, from the C++ standard template library. If the standard
library is supported on the platform, IT_AutoPtr is simply a typedef of
std::auto_ptr.

For example, the SequenceTypePtr smart pointer class is defined by the
following generated typedef:

The key feature that makes this pointer type smart is that the destructor
always deletes the memory the pointer is pointing at. This feature ensures
that you cannot leak memory when it is referenced by a smart pointer.

// C++
typedef IT_AutoPtr<SequenceType> SequenceTypePtr;
 46

Memory Management
Assignment semantics The auto_ptr smart pointer types have destructive copy semantics. For
example, consider the following assignment between smart pointers of
SequenceTypePtr type:

After the assignment, the following facts hold:

• assign_to now owns the data previously owned by assign_from.

• assign_from is reset to a nil pointer (equals 0).

• The data previously owned by assign_to has been deleted.

Client example using simple
pointers

Example 21 shows how to call the testSeqParams operation using
parameters that are allocated on the heap and referenced by simple
pointers

// C++
SequenceTypePtr assign_from = new SequenceType();
// Initialize assign_from (not shown) ...

SequenceTypePtr assign_to = new SequenceType();
// Initialize assign_to (not shown) ...

// Assignment Statement
assign_to = assign_from;

Note: If you are familiar with the CORBA IDL-to-C++ mapping, you
should note that these assignment semantics are different from the
CORBA _var types’ assignment semantics.

Example 21:Client Calling testSeqParams Using Simple Pointers

// C++
try
{
 IT_Bus::init(argc, argv);

 BaseClient bc;

1 // Allocate all parameters
 SequenceType *inSeqP = new SequenceType();
 SequenceType *inoutSeqP = new SequenceType();
 SequenceType *outSeqP = new SequenceType();
47

CHAPTER 2 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly
delete the parameters or the memory will be leaked.

Client example using smart
pointers

Example 22 shows how to call the testSeqParams operation using
parameters that are allocated on the heap and referenced by smart pointers

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 delete inSeqP;
 delete inoutSeqP;
 delete outSeqP;
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 21:Client Calling testSeqParams Using Simple Pointers

Example 22:Client Calling testSeqParams Using Smart Pointers

// C++
try
{
 IT_Bus::init(argc, argv);

 BaseClient bc;

 // Allocate all parameters
 48

Memory Management
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

2. In this case, there is no need to deallocate the parameter data
explicitly. The smart pointers, inSeqP, inoutSeqP, and outSeqP,
automatically delete the memory they are pointing at when they go out
of scope.

1 SequenceTypePtr inSeqP = new SequenceType();
 SequenceTypePtr inoutSeqP = new SequenceType();
 SequenceTypePtr outSeqP = new SequenceType();

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 // Parameter data automatically deallocated by smart pointers
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 22:Client Calling testSeqParams Using Smart Pointers
49

CHAPTER 2 | Artix Programming Considerations
Registering Servants

Overview In order to make a servant accessible to remote clients, you must register
the servant with a Bus instance. The effect of registration is twofold:

• A service is activated and begins listening for incoming requests.

• A servant object is linked to the newly-activated service. Requests
received by the service are then dispatched to the linked servant
object.

This section describes how to register servant objects with the IT_Bus::Bus;
in particular, describing how to register both static and transient servants.

In this section This section contains the following subsections:

Registering a Static Servant page 51

Registering a Transient Servant page 56
 50

Registering Servants
Registering a Static Servant

Overview Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type)1, but has no association with any
physical contract (that is, WSDL service). The link between a servant
instance and a physical contract must be established explicitly by
registering the servant.

Figure 1 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the
WSDL model that represents a particular WSDL service.

Static servant The defining characteristic of a static servant is that, when registered, it is
associated with a service appearing explicitly in the original WSDL contract.
This implies that a static servant is restricted to using a service from the
fixed collection of services appearing in the WSDL contract.

1. Strictly speaking, this is not always the case. Advanced Artix applications could
associate a single servant class with multiple port types by overriding the servant
dispatch() function.

Figure 1: Relationship between a Static Servant and a WSDL Contract

<portType>
 ...
</portType>
...
<binding>
 ...
</binding>
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL Contract

physical contract

logical contract

static servant

IT_Bus::Servant IT_WSDL::WSDLService
51

CHAPTER 2 | Artix Programming Considerations
IT_Bus::Bus registration
functions

The IT_Bus::Bus class defines the functions in Example 23 to manage the
registration of static servants:

Example 23:The IT_Bus::Bus Static Servant Registration API

// C++
IT_Bus::Service &
register_servant(
 IT_Bus::Servant & servant,
 IT_WSDL::WSDLService & wsdl_service,
 const IT_Bus::String & port_name = ""
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service &
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name = ""
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service &
add_service(
 IT_WSDL::WSDLService & wsdl_service
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service &
add_service(
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service *
get_service(
 const IT_Bus::QName & service_name
);

void
remove_service(
 const QName & service_name
);
 52

Registering Servants
IT_Bus::Service register_servant()
function

In addition to the IT_Bus::Bus registration functions, the IT_Bus::Service
class also supports a register_servant() function. The
IT_Bus::Service::register_servant() function enables you to activate
ports individually. This contrasts with the
IT_Bus::Bus::register_servant() function, which activates all of the
ports simultaneously.

Activating single or multiple ports There are two different styles of programming servant registration,
depending on whether you want to activate ports individually or all together,
as follows:

• Activate ports individually—registration is a two-step process. First
you add a service to the Bus, then you activate individual ports. For
example:

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the
CORBAPort port are dispatched to the corba_servant servant instance.
Whereas, invocations arriving at the SOAPPort port are dispatched to
the soap_servant servant instance.

Example 24:The IT_Bus::Service register_servant() Function

// C++
void
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & port_to_register
);

// C++
IT_Bus::QName service_name("", "BankService",

"http://www.iona.com/bus/demos/bank");

IT_Bus::Service& bank_service =
 bus->add_service("bank.wsdl", service_name);
bank_service.register_servant(corba_servant, "CORBAPort");
bank_service.register_servant(soap_servant, "SOAPPort");
53

CHAPTER 2 | Artix Programming Considerations
• Activate all ports together—registration is a single step process. You
add the service to the Bus and activate all of its ports by calling
IT_Bus::Bus::register_servant(). For example:

In this case, all the service’s ports dispatch their invocations to the
same servant object, bank_servant.

Default threading model The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 65 for more information.

Static servant example Example 25 shows an example (taken from
demos/uncategorized/transient_servants) which shows how to register a
servant as a static servant.

// C++
IT_Bus::QName service_name("", "BankService",

"http://www.iona.com/bus/demos/bank");

bus->register_servant(
 bank_servant,
 "bank.wsdl",
 service_name
);

Example 25:Registering a Static Servant

// C++
// demos/uncategorized/transient_servants/server/server.cxx
...
try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, (char **)argv);

1 BankImpl my_bank(bus);

2 QName service_name("", "BankService",
"http://www.iona.com/bus/demos/bank");
 54

Registering Servants
The preceding code example can be explained as follows:

1. This line creates a servant instance, my_bank. At this point, we know
that the servant implements the Bank port type (logical contract), but
there is no association with any WSDL service (physical contract) yet.

2. This IT_Bus::QName instance refers to the BankService service from
the WSDL contract. This is the WSDL service that will be associated
with the servant.

3. The register_servant() function registers a static servant instance,
taking the following arguments:

♦ Servant instance.

♦ WSDL file location.

♦ Service QName.

The return value is an IT_Bus::Service object, which references the
BankService WSDL service.

Immediately after registration, the service starts to process incoming
invocations in a background thread.

4. The IT_Bus::run() function blocks the main thread of execution,
allowing the registered services to continue processing incoming
invocations in background threads.

5. The remove_service() function is called here to tidy up resources
before the server shuts down. It deactivates the service and joins the
background threads.

3 bus->register_servant(
 my_bank,
 "../wsdl/bank.wsdl",
 service_name
);

4 IT_Bus::run();

5 bus->remove_service(service_name);
}
catch (IT_Bus::Exception& e) { ... }

Example 25:Registering a Static Servant
55

CHAPTER 2 | Artix Programming Considerations
Registering a Transient Servant

Overview In contrast to a static servant, a transient servant is not limited to using
services that appear explicitly in the WSDL contract. A transient servant
creates a new service every time it is registered by cloning from an existing
service in the WSDL contract. This type of behavior is useful in cases where
you require an unlimited number of services of a particular kind.

For example, consider the WSDL contract for the
demos/uncategorized/transient_servant demonstration, which has a
Bank port type and an Account port type. If each customer’s bank account
maps to a service, it is clear that you require an unlimited number of
services to represent customer accounts.

Figure 2 illustrates the effect of registering a transient servant: registration
establishes an association between a servant instance and a cloned WSDL
service.

Figure 2: Relationship between a Transient Servant and a WSDL Contract

<portType>
 ...
</portType>
...
<binding>
 ...
</binding>
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL Contract

physical contract

logical contract

<service>
 <port>
 ...
 </port>
</service>

clone service

transient servant

IT_Bus::Servant IT_WSDL::WSDLService
 56

Registering Servants
Transient servant When a transient servant is registered, the following steps are implicitly
performed by the IT_Bus::Bus instance (see Figure 2):

1. A new WSDL service is cloned from an existing service in the WSDL
contract. The cloned service has the following characteristics:

♦ The cloned service is based on an existing <service> element
that appears in the WSDL contract.

♦ The clone’s service QName is replaced by a dynamically
generated, unique service QName.

♦ The clone’s addressing information is replaced such that each
address is unique per-clone and per-port.

2. The transient servant becomes associated with the newly cloned
service.

Reuse of IP ports To avoid over-use of IP ports, cloned services are designed to use the same
IP ports as the original service.

IT_Bus::Bus transient registration
functions

The IT_Bus::Bus class defines the functions in Example 26 to manage the
registration of transient servants.

Example 26:The IT_Bus::Bus Transient Servant Registration API

// C++
IT_Bus::Service &
register_transient_servant(
 IT_Bus::Servant & servant,
 IT_WSDL::WSDLService & wsdl_service,
 const IT_Bus::String & port_name = ""
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service &
register_transient_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name = ""
) IT_THROW_DECL((Exception)) = 0;
57

CHAPTER 2 | Artix Programming Considerations
IT_Bus::Service register_servant()
function

In addition to the IT_Bus::Bus registration functions, the IT_Bus::Service
class also supports a register_servant() function. The
IT_Bus::Service::register_servant() function enables you to activate
ports individually. This contrasts with the
IT_Bus::Bus::register_transient_servant() function, which activates all
of the ports simultaneously.

IT_Bus::Service &
add_transient_service(
 IT_WSDL::WSDLService & wsdl_service
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service &
add_transient_service(
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service *
get_service(
 const IT_Bus::QName & service_name
);

void
remove_service(
 const IT_Bus::QName & service_name
);

Example 26:The IT_Bus::Bus Transient Servant Registration API

Example 27:The IT_Bus::Service register_servant() Function

// C++
void
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & port_to_register
);
 58

Registering Servants
Activating single or multiple ports There are two different styles of programming transient servant registration,
depending on whether you want to activate ports individually or all together,
as follows:

• Activate ports individually—registration is a two-step process. First
you add a transient service to the Bus (thereby cloning the service),
and then you activate individual ports. For example:

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the
CORBAPort port are dispatched to the corba_servant servant instance.
Whereas, invocations arriving at the SOAPPort port are dispatched to
the soap_servant servant instance.

• Activate all ports together—registration is a single step process. You
add the transient service to the Bus and activate all of its ports by
calling IT_Bus::Bus::register_transient_servant(). For example:

In this case, all the service’s ports dispatch their invocations to the
same servant object, account_servant.

// C++
IT_Bus::QName service_name("", "AccountService",

"http://www.iona.com/bus/demos/bank");

IT_Bus::Service& acc_service =
 bus->add_transient_service("bank.wsdl", service_name);
acc_service.register_servant(corba_servant, "CORBAPort");
acc_service.register_servant(soap_servant, "SOAPPort");

// C++
IT_Bus::QName service_name("", "AccountService",

"http://www.iona.com/bus/demos/bank");

bus->register_transient_servant(
 account_servant,
 "bank.wsdl",
 service_name
);
59

CHAPTER 2 | Artix Programming Considerations
Default threading model The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 65 for more information.

Transient servant example Example 28 shows a sample implementation of the Bank port type’s
create_account operation (taken from
demos/uncategorized/transient_servants) which shows how to register a
servant as a transient servant.

Example 28:Registering a Transient Servant

// C++
...

1 const IT_Bus::QName AccountImpl::SERVICE_NAME("",
"AccountService", "http://www.iona.com/bus/demos/bank");

...
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 IT_Bus::Reference &account_reference
) IT_THROW_DECL((IT_Bus::Exception))
{
 AccountMap::iterator account_iter = m_account_map.find(
 account_name
);
 if (account_iter == m_account_map.end())
 {
 cout << "Creating new account: "
 << account_name.c_str() << endl;

2 AccountImpl * new_account = new AccountImpl(
 get_bus(), account_name, 0
);

3 Service& service = get_bus()->register_transient_servant(
 *new_account,
 "../wsdl/bank.wsdl",
 AccountImpl::SERVICE_NAME
);

 // Now put the details for the account into the map so
 60

Registering Servants
The preceding C++ code can be described as follows:

1. The AccountImpl::SERVICE_NAME constant holds the qualified name of
the AccountService service from the bank WSDL contract. This is the
WSDL service that will be associated with the servant.

2. This line creates an AccountImpl servant instance, which implements
the Account port type.

3. The register_transient_servant() function registers a transient
servant instance, taking the following arguments:

♦ Servant instance.

♦ WSDL file location.

♦ Service QName.

The return value is an IT_Bus::Service object, which references a
WSDL service cloned from AccountService.

 // we can retrieve it later.
 //
 AccountDetails details;
 details.m_service = &service;
 details.m_account = new_account;

 account_iter = m_account_map.insert(
 AccountMap::value_type(account_name, details)
).first;
 }

 account_reference =
 (*account_iter).second.m_service->get_reference()
}

Example 28:Registering a Transient Servant
61

CHAPTER 2 | Artix Programming Considerations
Multi-Threading

Overview This section provides an overview of threading in Artix and describes the
issues affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:

Client Threading Issues page 63

Servant Threading Models page 65

Setting the Servant Threading Model page 68

Thread Pool Configuration page 71
 62

Multi-Threading
Client Threading Issues

Client threading The client proxy classes and the runtime library are thread-safe, in that
multi-threaded applications may safely use the library from multiple threads
simultaneously. However, a single client proxy instance should not be
shared among multiple threads without serializing access to the instance.

Single client proxy in two threads Example 29 below is a correctly written example featuring a single client
proxy instance called from two different threads (assume T1func and T2func
are called from two different threads):

Example 29:Single Client Proxy in Two Threads

#include <it_ts/mutex.h>
#include <it_ts/locker.h>

#include "BaseClient.h"
#include "BaseClientTypes.h"

BaseClient g_bc;
IT_Mutex mutexBC;

T1func()
{
 IT_Locker<IT_Mutex> lock(mutexBC);
 g_bc.echoVoid();
}

T2func()
{
 IT_Locker<IT_Mutex> lock(mutexBC);
 g_bc.echoVoid();
}

63

CHAPTER 2 | Artix Programming Considerations
Two client proxies in two threads Example 30 below is another correctly written sample featuring two client
proxy instances called from two different threads (assume T1func and
T2func are called from two different threads):

Example 30:Two Client Proxies in Two Threads

#include "BaseClient.h"
#include "BaseClientTypes.h"
//nested inside BaseClient.h, may be omitted

T1func()
{
 BaseClient bc;
 bc.echoVoid();
}

T2func()
{
 BaseClient bc;
 bc.echoVoid();
}

 64

Multi-Threading
Servant Threading Models

Overview Artix supports a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see “Setting the Servant Threading Model” on page 68). This
subsection provides an overview of each of the servant threading models in
Artix, as follows:

• Multi-threaded.

• Serialized.

• Per-port.

• PerThread.

• PerInvocation.

Default threading model The default threading model is multi-threaded.

Multi-threaded The multi-threaded threading model implies that a single instance is
created and shared on multiple threads. The servant object must expect to
be called from multiple threads simultaneously.

Figure 3 shows an outline of the multi-threaded threading model. In this
case, the threads all share the same servant instance.

Figure 3: Outline of the Multi-Threaded Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
65

CHAPTER 2 | Artix Programming Considerations
Serialized The Serialized threading model implies that access to the servant is
serialized (implemented using mutex locks). The servant object can be
called from no more than one thread at a time.

Figure 4 shows an outline of the Serialized threading model. In this case,
the threads all share the same servant instance, but access is serialized.

Per-port The per-port threading model implies that a servant instance is created per
port. Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.

Figure 5 shows an outline of the PerPort threading model. In this case, the
threads in a thread pool share the same servant instance.

Figure 4: Outline of the Serialized Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2

12

Figure 5: Outline of the Per-Port Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
 66

Multi-Threading
PerThread The PerThread threading model implies that a servant instance is created
per thread. This allows the servant objects to use thread-local storage,
resources with thread affinity (like MQ), and reduces synchronization
overhead.

Figure 6 shows an outline of the PerThread threading model. An Artix
service can have multiple ports, and each of the ports is served by a work
queue that stores the incoming requests. A pool of threads is reserved for
each port, and each thread in the pool is associated with a distinct servant
instance.

PerInvocation The PerInvocation threading model implies that a servant instance is
created for every invocation. In this case, the servant implementation does
not need to be thread-safe, because a servant can be called from no more
than one thread at a time.

The relationship between threads and servants is similar to the case of the
PerThread threading model (see Figure 6 on page 67). There is a difference
in servant lifecycle management, however. Each thread is associated with a
servant for the duration of an operation invocation. At the end of the
invocation, the servant instance is destroyed.

Figure 6: Outline of the PerThread Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
67

CHAPTER 2 | Artix Programming Considerations
Setting the Servant Threading Model

Overview Some of the servant threading models are implemented using wrapper
servant classes, which work by overriding the default behavior of a servant’s
dispatch() function. Exceptions to this pattern are the default
multi-threaded model and the per-port threading model. This section
describes how to program the various servant threading models.

How to set a per-port threading
model

The per-port threading model can be enabled by employing the two-step
style of servant registration (see page 53 and see page 59). For example,
you could register distinct servants, corba_servant and soap_servant,
against distinct ports, CORBAPort and SOAPPort, using the following code
example:

Wrapper servants The only wrapper servant function that you need is a constructor.
Example 31 shows the constructors for each of the wrapper servant classes.

// C++
IT_Bus::QName service_name("", "BankService",

"http://www.iona.com/bus/demos/bank");

IT_Bus::Service& bank_service =
 bus->add_service("bank.wsdl", service_name);
bank_service.register_servant(corba_servant, "CORBAPort");
bank_service.register_servant(soap_servant, "SOAPPort");

Example 31:Constructors for the Wrapper Servant Classes

// C++
IT_Bus::SerializedServant(IT_Bus::Servant& servant);

IT_Bus::PerThreadServant(IT_Bus::Servant& servant);

IT_Bus::PerInvocationServant(IT_Bus::Servant& servant);
 68

Multi-Threading
How to set a threading model
using wrapper servants

To register a servant with a Serialized, PerThread or PerInvocation
threading model, perform the following steps:

• Step 1—Implement the servant clone() function (if required).

• Step 2—Register the wrapper servant.

Step 1—Implement the servant
clone() function (if required)

If you intend to use a PerThread or PerInvocation threading model, you
must implement the clone() function in your servant class. The clone()
function will be called automatically whenever the threading model
demands a new servant instance. Example 32 shows the default
implementation of the clone() function for the servant class, PortTypeImpl.

Step 2—Register the wrapper
servant

To register a wrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the
register_servant() function (or the register_transient_servant()
function in the case of transient servants).

For example, Example 33 shows how the main function of the bank server
example can be modified to register the BankImpl servant with a PerThread
threading model.

Example 32:Default Implementation of the clone() Function

// C++
IT_Bus::Servant*
PortTypeImpl::clone() const
{
 return new PortTypeImpl(get_bus());
}

Example 33:Registering a Servant with a PerThread Threading Model

// C++
...
try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, (char **)argv);

 BankImpl my_bank(bus);
1 IT_Bus::PerThreadServant per_thread_bank(my_bank);

 QName service_name("", "BankService",
"http://www.iona.com/bus/demos/bank");
69

CHAPTER 2 | Artix Programming Considerations
The preceding C++ code can be described as follows:

1. In this step, the BankImpl servant is wrapped by a new
IT_Bus::PerThreadServant instance.

2. When it comes to registering, you must register the wrapper servant,
per_thread_bank, instead of the original servant, my_bank.

2 bus->register_servant(
 per_thread_bank,
 "../wsdl/bank.wsdl",
 service_name
);

 IT_Bus::run();

 bus->deregister_servant(service_name);
}
catch (IT_Bus::Exception& e) { ... }

Example 33:Registering a Servant with a PerThread Threading Model
 70

Multi-Threading
Thread Pool Configuration

Thread pool settings The thread pool for each port is controlled by the following parameters
(which can be set in the configuration):

• Initial threads—the number of threads initially created for each port.

• Low water mark—the size of the dynamically allocated pool of threads
will not fall below this level.

• High water mark—the size of the dynamically allocated pool of threads
will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
ArtixInstallDir/artix/Version/etc/domains/artix.cfg configuration file. In
the following examples, it is assumed that the Artix application specifies its
configuration scope to be sample_config.

Thread pool configuration levels Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

• Global level.

• Service name level.

• Qualified service name level.

Note: You can specify the configuration scope at the command line by
passing the switch -ORBname ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to IT_Bus::init().
71

CHAPTER 2 | Artix Programming Considerations
Global level The variables shown in Example 34 can be used to configure thread pools at
the global level; that is, these settings would apply to all services by default.

The default settings are as follows:

thread_pool:initial_threads = "2";
thread_pool:low_water_mark = "5";
thread_pool:high_water_mark = "25";

Service name level To configure thread pools at the service name level (that is, overriding the
global settings for a specific service only), set the following configuration
variables:

thread_pool:initial_threads:ServiceName
thread_pool:low_water_mark:ServiceName
thread_pool:high_water_mark:ServiceName

Where ServiceName is the name of the particular service to configure, as it
appears in the WSDL <service name="ServiceName"> tag.

For example, the settings in Example 35 show how to configure the thread
pool for a service named SessionManager.

Example 34:Thread Pool Settings at the Global Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at global level
 thread_pool:initial_threads = "3";
 thread_pool:low_water_mark = "5";
 thread_pool:high_water_mark = "10";
};

Example 35:Thread Pool Settings at the Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:initial_threads:SessionManager = "1";
 thread_pool:low_water_mark:SessionManager = "5";
 thread_pool:high_water_mark:SessionManager = "10";
};
 72

Multi-Threading
Qualified service name level Occasionally, if the service names from two different namespaces clash, it
might be necessary to identify a service by its fully-qualified service name.
To configure thread pools at the qualified service name level, set the
following configuration variables:

thread_pool:initial_threads:NamespaceURI:ServiceName
thread_pool:low_water_mark:NamespaceURI:ServiceName
thread_pool:high_water_mark:NamespaceURI:ServiceName

Where NamespaceURI is the namespace URI in which ServiceName is
defined.

For example, the settings in Example 36 show how to configure the thread
pool for a service named SessionManager in the //my.tns1/ namespace
URI.

Example 36:Thread Pool Settings at the Qualified Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:initial_threads:http://my.tns1/:SessionManager =

"1";
 thread_pool:low_water_mark:http://my.tns1/:SessionManager =

"5";
 thread_pool:high_water_mark:http://my.tns1/:SessionManager =

"10";
};
73

CHAPTER 2 | Artix Programming Considerations
 74

CHAPTER 3

Artix References
An Artix reference is a handle to a particular service in a
particular Bus instance. Because references can be passed
around as parameters, they provide a convenient and flexible
way of identifying and locating specific services.

In this chapter This chapter discusses the following topics:

Introduction to References page 76

The WSDL Publish Plug-In page 80

Programming with References page 85

Callbacks page 100
75

CHAPTER 3 | Artix References
Introduction to References

Overview An Artix reference is an object that encapsulates endpoint and contract
information for a particular WSDL service. References have the following
features:

• A reference is a built-in type in Artix.

• A reference represents a <wsdl:service>.

• References can be sent across the wire as parameters of or return
values from operations.

• References are fully self-describing. They contain endpoint and
contract information in an optimised manner and they can be used
either by static or by dynamic clients.

• References are the building blocks for the Artix Services Locator and
the Session Manager, because they allow you to describe Web services
that reference other Web services.

• References in Artix are protocol and transport neutral. An Artix
reference can be used to represent any WSDL service.

Note: The Artix 2.0 reference definition differs from the Artix 1.x
reference definition. In Artix 1.x a reference is associated with a WSDL
port, whereas in Artix 2.0 a reference is associated with a WSDL service
(which could contain multiple ports). Artix references are in line with the
way WSDL 2.0 will handle service references.
 76

Introduction to References
Contents of an Artix reference An Artix reference encapsulates the following data:

• Service QName—the qualified name of the service with which this
reference is associated.

• WSDL location URL—the server’s copy of the WSDL contract. The
WSDL location URL in a reference serves two distinct purposes:

♦ Service identification—the service is uniquely identified by the
combination of a WSDL location URL and a service QName.

♦ WSDL backup—allows the reference to be fully self-describing.

• List of ports—an unbounded sequence of port elements, each of which
contains the following data:

♦ Port name—identifying the WSDL port.

♦ Binding QName—the qualified name of the binding with which
the port is associated.

♦ Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold binding-specific data and qualities of service. For
example, if the port uses a SOAP binding, the properties would
include a <soap:address> element specifying a host and IP port.

XML representation of a reference The XML representation of a reference is defined by the following schema:

ArtixInstallDir/artix/Version/schemas/references.xsd

The schema is also available online at:

http://schemas.iona.com/references/references.xsd

The XML representation is used when marshaling or unmarshaling a
reference as a WSDL parameter.

C++ representation of a
reference

In C++, an Artix reference is represented by an instance of the
IT_Bus::Reference class.

Note: If you have loaded the wsdl_publish plug-in on the server
side, the WSDL location URL will point at a dynamically updated
copy of the server’s WSDL contract. See page 80.
77

http://schemas.iona.com/references/references.xsd

CHAPTER 3 | Artix References
Logical and physical contracts It is helpful to differentiate between the logical and the physical parts of a
WSDL contract, as follows:

• Logical contract—the part of a contract that determines syntax and
semantics. In WSDL, a logical contract is effectively a combination of a
port type and a binding.

• Physical contract—the part of a contract that contains a service’s
connection details. In WSDL, a physical contract can be identified with
a service and its port details.

Static references A static reference is a reference for which both the logical contract and the
physical contract appear in the WSDL contract. Hence, static references can
only be created for services that are explicitly defined in WSDL.

Figure 7 illustrates the relationship between a static reference and the
WSDL contract.

Partial details of the physical contract (from the <service> element) are
cached in the static reference as embedded properties. Only properties that
would be relevant to a client are cached in the reference, however.

The version of the physical contract cached in the reference includes
dynamically updated data. For example, a port’s addressing data would be
substituted with the current host name and dynamically allocated IP port.

Figure 7: A Static Reference

<portType>
 ...
</portType>
...
<binding>
 ...
</binding>
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL ContractStatic Reference

Embedded properties

WSDL location

Service QName

physical contract

logical contract
 78

Introduction to References
Transient references A transient reference is a reference for which only the logical contract
appears in the WSDL contract. Hence, a transient reference is more flexible,
because it can refer to endpoints (represented by a physical contract)
created at runtime.

Figure 8 illustrates the relationship between a transient reference and the
WSDL contract.

As shown in Figure 8, the physical contract for a transient reference is
created at runtime by cloning the details from an existing <service>
element. A cloned service is created whenever you register a transient
servant with the Bus and it has the following characteristics:

• The cloned service is based on an existing <service> element that
appears in the WSDL contract.

• The clone’s service QName is replaced by a dynamically generated,
unique service QName.

• The clone’s addressing information is replaced such that each address
is unique per-clone and per-port.

Figure 8: A Transient Reference

<portType>
 ...
</portType>
...
<binding>
 ...
</binding>
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL ContractTransient Reference

Embedded properties

WSDL location

Service QName

physical contract

logical contract

<service>
 <port>
 ...
 </port>
</service>

clone service
79

CHAPTER 3 | Artix References
The WSDL Publish Plug-In

Overview It is strongly recommended that you activate the WSDL publish plug-in for
any applications that generate and export Artix references. This is because
references are generated with a WSDL location attribute, whose value is
virtually unusable unless the WSDL publish plug-in is enabled.

By default, a reference’s WSDL location attribute would reference a local file
on the server system. This suffers from the following drawbacks:

• It is typically impossible for clients to access the server’s copy of the
WSDL contract file.

• Endpoint information (the physical contract) might be incomplete,
because the server updates transport properties at runtime.

In both of these cases, the client needs to have a way of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest to achieve this is to configure the server to load the WSDL publish
plug-in. The WSDL publish plug-in automatically opens a HTTP port, from
which clients can download a copy of the server’s in-memory WSDL model.

Loading the WSDL publish plug-in To load the WSDL publish plug-in, edit the artix.cfg configuration file and
add wsdl_publish to the orb_plugins list in your application’s configuration
scope. For example, if your application’s configuration scope is
demos.server, you might use the following orb_plugins list:

Artix Configuration File
demos{
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
 ...
 };
};
 80

The WSDL Publish Plug-In
Generating references without the
WSDL publish plug-in

Figure 9 gives an overview of how an Artix reference is generated when the
WSDL publish plug-in is not loaded.

In this case, references generated by the IT_Bus::Bus object would, by
default, have their WSDL location set to point at the local WSDL file.

This way of setting the WSDL location suffers from the following
disadvantages:

• Clients are not able to access the server’s WSDL file, unless they
happen to share the same file system.

• Even if the server’s WSDL file is accessible to a client through a
Network File System (NFS) or similar, the WSDL contract in the file
does not reflect dynamic updates made by the server (in particular,
dynamically allocated IP ports would not be updated in the WSDL file).

WSDL model When an Artix server starts up, it reads the WSDL files needed by the
registered services—for example, in Figure 9, a single WSDL file is read and
parsed. After parsing, the WSDL definitions exist in memory in the form of a
WSDL model. The WSDL model is an XML parse tree containing all the
WSDL definitions imported into a particular IT_Bus::Bus instance at
runtime. Different IT_Bus::Bus instances have distinct WSDL models.

Figure 9: Generating References without the WSDL Publish Plug-In

WSDL

WSDL Model

Reference

WSDL

WSDL File

IT_Bus::Bus

Artix Server

Read and parse
81

CHAPTER 3 | Artix References
API for the WSDL Model

To access the nodes of the WSDL model, you can use the classes defined in
the IT_WSDL namespace—for example, see the header files in the
include/it_wsdl directory.

Dynamic Updates

The WSDL model is dynamically updated by the Artix server to reflect
changes in the physical contract at runtime. For example, if the server
dynamically allocates an IP port for a particular port on a WSDL service, the
port’s addressing information is updated in the WSDL model.

Generating references with the
WSDL publish plug-in

When the WSDL publish plug-in is loaded, the Artix server opens a HTTP
port which it uses to publish the in-memory WSDL model. Figure 10 gives
an overview of how an Artix reference is generated when the WSDL publish
plug-in is loaded.

In this case, references generated by the IT_Bus::Bus object have their
WSDL location set to the following URL:

http://host_name:WSDL_publish_port/WSDL_ID

Where host_name is the server host, WSDL_publish_port is an IP port used
specifically for the purpose of serving up WSDL contracts, and WSDL_ID is
a proprietary ID that identifies a particular WSDL contract.

Figure 10: Generating References with the WSDL Publish Plug-In

WSDL

WSDL Model

Reference

WSDL

WSDL File

IT_Bus::Bus

Artix Server

Read and parse

wsdl_publish plug-in

WSDL publish port

Artix Client

Reference
 82

The WSDL Publish Plug-In
If a client accesses the WSDL location URL, the server will convert the
WSDL model to XML on the fly and return the resulting WSDL contract in a
HTTP message.

Usefulness of the published
WSDL model

In most cases, clients do not need to download the published WSDL model
at all. Published WSDL is primarily useful for dynamic clients that try to
invoke an operation on the fly. Such dynamic clients would typically not be
compiled with Artix stub code. Hence, the only way the clients could obtain
the logical contract would be by downloading the published WSDL model.

The published WSDL model can be used as follows, depending on the type
of reference:

• Static reference—clients can use both the logical contract and the
physical contract from the published WSDL model. The physical model
for static references is always up-to-date, because of the dynamic
updates.

• Transient reference—clients can use the logical contract, but not the
physical contract, from the published WSDL model. Details of the
physical contract (actually a cloned service) are available only from the
reference’s embedded properties.
83

CHAPTER 3 | Artix References
Multiple Bus instances Occasionally, you might need to create an Artix server with more than one
IT_Bus::Bus instance. In this case, you should be aware that separate
WSDL models are created for each Bus instance and separate HTTP ports
are also opened to publish the WSDL models—see Figure 11.

Figure 11: WSDL Publish Plug-In and Multiple Bus Instances

WSDL

WSDL Model

IT_Bus::Bus

Artix Server

wsdl_publish plug-in

WSDL publish port

WSDL

WSDL Model

IT_Bus::Bus

WSDL publish port
 84

Programming with References
Programming with References

Overview This section explains how to program with Artix references, using a simple
bank application as a source of examples. The bank server supports a
create_account() operation and a get_account() operation, which return
references to Account objects.

To program with references, you need to know how to generate references
on the server side and how to resolve references on the client side.

In this section This section contains the following subsections:

Bank WSDL Contract page 86

Creating References page 95

Resolving References page 99
85

CHAPTER 3 | Artix References
Bank WSDL Contract

Overview This subsection describes the Bank WSDL contract, which demonstrates a
typical scenario where Artix transient references would be used.

The XML Reference type Artix defines a proprietary XML schema that defines the reference type for
use within WSDL contracts. The reference type is RefPrefix:Reference,
where RefPrefix is associated with the following namespace URI:

http://schemas.iona.com/references

The references XML schema The definition of the references schema can be found in the following file:

ArtixInstallDir/artix/Version/schemas/references.xsd

The schema is also available online at:

http://schemas.iona.com/references/references.xsd

The Bank example Figure 12 shows an overview of the Bank example, illustrating how the
Bank service uses references to give a client access to a specific account.

Figure 12: Using Bank to Obtain a Reference to an Account

Server

Bank servant

Account servant

Reference

Account DB

Client

Bank proxy

Account proxy

Reference

1

2

3
4

get_account()

get_balance()
 86

http://schemas.iona.com/references/references.xsd

Programming with References
The preceding Bank example can be explained as follows:

1. The client calls get_account() on the BankService service to obtain a
reference to a particular account, AccName.

2. The BankService creates a reference to the AccName account and
returns this reference in the response to get_account().

3. The client uses the returned reference to initialize an AccountClient
proxy.

4. The client invokes operations on the Account service through the
AccountClient proxy.

The Bank WSDL contract Example 37 shows the WSDL contract for the Bank example that is
described in this section. There are two port types in this contract, Bank and
Account. For each of the two port types there is a SOAP binding,
BankBinding and AccountBinding.

Example 37:Bank WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
1 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:stub="http://schemas.iona.com/transports/stub"
 xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
 xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:ns1="http://www.iona.com/corba/typemap/BasePortType.idl
"

 xmlns:references="http://schemas.iona.com/references"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:routing="http://schemas.iona.com/routing"
 xmlns:msg="http://schemas.iona.com/port/messaging"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BaseService" >
 <types>
87

CHAPTER 3 | Artix References
2 <xsd:import
schemaLocation="../../../../../schemas/references.xsd"
namespace="http://schemas.iona.com/references"/>

 <schema elementFormDefault="qualified"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="AccountNames">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0"
 name="name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>

 <message name="list_accounts" />
 <message name="list_accountsResponse">
 <part name="return" type="bank:AccountNames"/>
 </message>

 <message name="create_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="create_accountResponse">

3 <part name="return" type="references:Reference"/>
 </message>

 <message name="get_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="get_accountResponse">

4 <part name="return" type="references:Reference"/>
 </message>

 <message name="delete_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="delete_accountResponse" />

 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>

 <message name="deposit">

Example 37:Bank WSDL Contract
 88

Programming with References
 <part name="addition" type="xsd:float"/>
 </message>

 <message name="depositResponse"/>

 <portType name="Bank">
 <operation name="list_accounts">
 <input name="list_accounts"
 message="tns:create_account"/>
 <output name="list_accountsResponse"
 message="tns:list_accountsResponse"/>
 </operation>

5 <operation name="create_account">
 <input name="create_account"
 message="tns:create_account"/>
 <output name="create_accountResponse"
 message="tns:create_accountResponse"/>
 </operation>

6 <operation name="get_account">
 <input name="get_account" message="tns:get_account"/>
 <output name="get_accountResponse"

message="tns:get_accountResponse"/>
 </operation>

 <operation name="delete_account">
 <input name="delete_account"
 message="tns:delete_account"/>
 <output name="delete_accountResponse"
 message="tns:delete_accountResponse"/>
 </operation>
 </portType>

 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse"
 message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse"
 message="tns:depositResponse"/>

Example 37:Bank WSDL Contract
89

CHAPTER 3 | Artix References
 </operation>
 </portType>

 <binding name="BankBinding" type="tns:Bank">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="list_accounts">
 <soap:operation
 soapAction="http://www.iona.com/bus/demos/bank"
 style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </input>
 <output>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 <operation name="create_account">
 <soap:operation

soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </input>
 <output>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 <operation name="get_account">
 <soap:operation

soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </input>
 <output>

Example 37:Bank WSDL Contract
 90

Programming with References
 <soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 <operation name="delete_account">
 <soap:operation

soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </input>
 <output>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 </binding>

 <binding name="AccountBinding" type="tns:Account">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_balance">
 <soap:operation

soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </input>
 <output>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 <operation name="deposit">
 <soap:operation

soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

Example 37:Bank WSDL Contract
91

CHAPTER 3 | Artix References
The preceding WSDL contract can be described as follows:

1. The <definitions> tag associates the references prefix with the
http://schemas.iona.com/references namespace URI. This means
that the reference type is identified as references:Reference.

2. The xsd:import imports the <references:Reference> type definition
from the references schema, references.xsd. You must edit this line if
the references schema is stored at a different location relative to the
bank WSDL file.

 </input>
 <output>
 <soap:body use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>

 </output>
 </operation>
 </binding>

7 <service name="BankService">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address
 location="http://localhost:0/BankService/BankPort/"/>
 </port>
 </service>
 <service name="BankServiceRouter">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address

location="http://localhost:0/BankService/BankPort/"/>
 </port>
 </service>

8 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 </port>
 </service>
</definitions>

Example 37:Bank WSDL Contract

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the
xsd:import element.
 92

Programming with References
3. The create_accountResponse message (which is the out parameter of
the create_account operation) is defined to be of
references:Reference type.

4. The get_accountResponse message (which is the out parameter of the
get_account operation) is defined to be of references:Reference
type.

5. The create_account operation defined on the Bank port type is defined
to return a references:Reference type.

6. The get_account operation defined on the Bank port type is defined to
return a references:Reference type.

7. The information contained in this <service name="BankService">
element is approximately the same as the information that is held in a
BankService static reference, apart from the addressing information in
the <soap:address> element.

The BankService static reference generated at runtime would replace
the http://localhost:0/BankService/BankPort/ SOAP address with
http://host_name:IP_port/BankService/BankPort/ where
host_name and IP_port are substituted with the port address that the
server is actually listening on (dynamic port allocation).

8. The information contained in this <service name="AccountService">
element serves as a prototype for generating AccountService transient
references.

An AccountService transient reference is cloned from the
AccountService service at runtime by altering the following data:

♦ The service QName is replaced by a transient service QName,
which consists of AccountService concatenated with a unique ID
code.

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.
93

CHAPTER 3 | Artix References
♦ The http://localhost:0 SOAP address is replaced by
http://host_name:IP_port/TransientURLSuffix, where
host_name and IP_port are set to the port address that the server
is listening on and TransientURLSuffix is a suffix that is unique
for each transient reference.
 94

Programming with References
Creating References

Overview This subsection describes how to create Artix references, which can be
generated on the server side in order to advertise a service’s addressing
details to clients.

The following topics are discussed in this section:

• Factory pattern.

• Creating a static reference.

• Creating a transient reference.

Factory pattern References are usually created in the context of a factory pattern. This
pattern involves at least two kinds of object:

• One type of object, to which the references refer.

• Another type of object, the factory, which generates references to the
first type.

For example, the Bank is a factory that generates references to Accounts.

Creating a static reference Example 38 shows how to create a static BankService reference. The
distinguishing feature of a static reference is that it is generated from a static
servant object.

Example 38:Creating a Static Reference

// C++
...
try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, (char **)argv);

 IT_Bus::QName service_name(
 "", "BankService", "http://www.iona.com/bus/demos/bank"
);

1 BankImpl my_bank(bus);
95

CHAPTER 3 | Artix References
The preceding C++ code can be described as follows:

1. This line creates a BankImpl servant instance, which implements the
Bank port type.

2. The register_servant() function registers a static servant instance,
taking the following arguments:

♦ Servant instance.

♦ WSDL file location.

♦ Service QName.

♦ Port name (optional).

The return value is an IT_Bus::Service object, which references the
original BankService WSDL service.

3. The get_reference() function returns an Artix reference for the service
object, service.

2 IT_Bus::Service & service = bus->register_servant(
 my_bank,
 "../wsdl/bank.wsdl",
 service_name,
 "BankPort"
);

3 IT_Bus::Reference& bank_reference = service->get_reference();
 ...
}

Example 38:Creating a Static Reference

Note: If the port name argument is omitted, all of the service’s ports
will be activated.
 96

Programming with References
Creating a transient reference Example 39 gives the implementation of the BankImpl::create_account(),
function which shows how to create a transient AccountService reference.
The distinguishing feature of a transient reference is that it is generated from
a transient servant object.

Example 39:Creating a Transient Reference

// C++
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 IT_Bus::Reference &account_reference
) IT_THROW_DECL((IT_Bus::Exception))
{
 AccountMap::iterator account_iter = m_account_map.find(
 account_name
);
 if (account_iter == m_account_map.end())
 {
 cout << "Creating new account: "
 << account_name.c_str() << endl;

1 AccountImpl * new_account = new AccountImpl(
 get_bus(), account_name, 0
);

2 Service& service = get_bus()->register_transient_servant(
 *new_account,
 "../wsdl/bank.wsdl",
 AccountImpl::SERVICE_NAME
);

 // Now put the details for the account into the map so
 // we can retrieve it later.
 //
 AccountDetails details;
 details.m_service = &service;
 details.m_account = new_account;

 account_iter = m_account_map.insert(
 AccountMap::value_type(account_name, details)
).first;
 }

3 account_reference
 = (*account_iter).second.m_service->get_reference()
97

CHAPTER 3 | Artix References
The preceding C++ code can be described as follows:

1. This line creates an AccountImpl servant instance, which implements
the Account port type.

2. The register_transient_servant() function registers a transient
servant instance, taking the following arguments:

♦ Servant instance.

♦ WSDL file location.

♦ Service QName.

♦ Port name (optional).

The return value is an IT_Bus::Service object, which references a
WSDL service cloned from AccountService.

3. The get_reference() function returns an Artix reference for the
account service object.

}

Example 39:Creating a Transient Reference

Note: If the port name argument is omitted, all of the service’s ports
will be activated.
 98

Programming with References
Resolving References

Overview To a client, an IT_Bus::Reference object is just an opaque token that can
be used to open a connection to a particular Artix service. The basic usage
pattern on the client side, therefore, is for the client to obtain a reference
from somewhere and then uses the reference to initialize a proxy object.

Initializing a client proxy with a
reference

Client proxies include a special constructor to initialize the proxy from an
IT_Bus::Reference object. For example, the AccountClient proxy class
includes the following constructor:

The data to initialize the AccountClient object is obtained partly from the
IT_Bus::Reference object (service and port details) and partly from the
WSDL contract (port type and binding details).

Client example Example 40 shows some sample code from a client that obtains a reference
to an Account and then uses this reference to initialize an AccountClient
proxy object.

// C++
AccountClient(const IT_Bus::Reference&);

Example 40:Client Using an Account Reference

// C++
...
BankClient bankclient;

// 1. Retrieve an account reference from the remote Bank object.
IT_Bus::Reference account_reference;
bankclient.get_account("A. N. Other", account_reference);

// 2. Resolve the account reference.
AccountClient account(account_reference);

IT_Bus::Float balance;
account.get_balance(balance);
99

CHAPTER 3 | Artix References
Callbacks

Overview An Artix callback is an implementation pattern, where a client implements a
WSDL service (thus exhibiting hybrid client/server behavior). Because the
server initially does not know about the client's service, the client must
transmit a callback reference to the server (that is, register the callback).
The server is then able to call back on the client's service at any later time.

In this section This section contains the following subsections:

Overview of Artix Callbacks page 101

Routing and Callbacks page 103

Callback WSDL Contract page 107

Client Implementation page 109

Server Implementation page 113
 100

Callbacks
Overview of Artix Callbacks

Overview The callback example described in this section is based on Artix callback
demonstration, which is located in the following directory:

ArtixInstallDir/artix/Version/demos/advanced/callback

Callbacks rely, essentially, on Artix references. Using references, the client
can encapsulate the details of its callback service and pass on these details
to the server in a reference parameter. Figure 13 illustrates how this process
works.

Figure 13: Overview of the Callback Demonstration

WSDL

WSDL File

Artix Server

register_callback(Ref)

Artix Client

Ref

WSDL

WSDL File

ServerImpl

1 2

3
ServerSayHi("...")

ClientImpl
101

CHAPTER 3 | Artix References
Callback steps Example 13 on page 101 shows the callback proceeding according to the
following steps:

1. After the basic initialization steps, including registration of the
ClientImpl servant and ClientService service, the client generates a
reference for the callback service.

The client callback service is activated and capable of receiving
incoming invocations as soon as it is registered.

2. The client calls register_callback() on the remote server, passing
the reference generated in the previous step.

3. When the server receives the callback reference, it immediately calls
back on the ClientImpl servant by invoking ServerSayHi().

Threading By default, both the client and the server allocate a pool of threads to
process incoming requests (see “Multi-Threading” on page 62). One of the
positive side effects of this policy is that the callback scenario shown in
Figure 13 on page 101 is not subject to deadlock.

Note: In a more realistic application, it is likely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.

Note: In the current example, it is also significant that the client service is
activated as soon as it is registered. Otherwise the code shown in
Example 42 on page 109 would lead to deadlock.
 102

Callbacks
Routing and Callbacks

Overview Callbacks are fully compatible with Artix routers. Reference that passes
through a router are automatically proxified, if necessary. Proxification
means that the router automatically creates a new route for the references
that pass through it.

For example, consider the callback routing scenario shown in Figure 14. In
this scenario, a SOAP/HTTP Artix server replaces a legacy CORBA server. As
part of a migration strategy, legacy CORBA clients can continue to
communicate with the new server by interposing an Artix router to translate
between the IIOP and SOAP/HTTP protocols.

Note: Proxification is not necessary, if the transport protocols along the
route are the same.

Figure 14: Overview of a Callback Routing Scenario

ServerSayHi() ServerSayHi()

IDL

Callback IDL

Artix RouterCORBA Client

CORBA Ref

WSDL

Router Contract

Callback

WSDL

Target Contract

Artix Server

register_callback(Ref)

SOAP Ref

SOAP Ref

register_callback(Ref)

SvrSoapPort

RtrSoapPort

RtrCorbaPort

CltCorbaPort

Proxification
103

CHAPTER 3 | Artix References
Contracts The applications in Figure 14 are associated with three distinct, but related,
contracts as follows:

• Callback IDL.

• Target contract.

• Router contract.

Callback IDL The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). This IDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented
by the CORBA client).

Target contract In this scenario, the target contract is generated from the callback IDL using
the IDL-to-WSDL compiler. Hence, this WSDL contract contains both the
target interface and the callback interface as WSDL port types.

The target contract also contains a single WSDL service description, which
includes the SvrSoapPort port.

Router contract The router contract holds details about the CORBA side of the application as
well as the SOAP/HTTP side, including the following information:

• Target WSDL port type.

• Callback WSDL port type.

• CORBA WSDL binding for the target.

• SOAP/HTTP WSDL binding for the target.

• CORBA WSDL service, containing the RtrCorbaPort port.

• SOAP/HTTP WSDL service, containing the SvrSoapPort port.

• Prototype SOAP/HTTP WSDL service, needed for generating the
transient endpoint with RtrSoapPort port.

• Route information.

You can generate a router contract using the Artix Designer GUI tool. To
specify the location of the generated router contract, you can set the
plugins:routing:wsdl_url configuration variable in the router scope of the
artix.cfg configuration file.
 104

Callbacks
Routes As shown in Figure 14 on page 103, the following routes are created in this
scenario:

• Client-Router-Target route—this route is documented explicitly in the
router contract. The source port, RtrCorbaPort, and the destination
port, SvrSoapPort, are described in the router contract.

For example, when the client calls the register_callback()
operation, the request travels initially to the RtrCorbaPort on the
router (over IIOP) and then on to the SvrSoapPort on the target server
(over SOAP/HTTP).

• Target-Router-Client route (callback route)—the reverse route (for
callbacks) is not documented explicitly in the router contract. This
route is constructed at runtime to facilitate routing callback
invocations.

For example, when the Artix server calls the ServerSayHi() callback
operation, the request travels to the RtrSoapPort on the router (over
SOAP/HTTP) and then on to the CltCorbaPort on the client (over
IIOP).

Proxification Proxification refers to the process whereby a reference of a certain type (for
example, a CORBA reference) that passes through the router is
automatically converted to a reference of another type (for example, an Artix
SOAP reference).

The proxification process is of key importance to Artix callbacks. If the router
in Figure 14 on page 103 did not proxify register_callback()’s reference
argument, it would be impossible for the server to call back on the client.
The server can communicate only with SOAP/HTTP endpoints, not with IIOP
endpoints.
105

CHAPTER 3 | Artix References
In Figure 14 on page 103, the router proxifies the callback reference as
follows:

1. When the register_callback() operation is invoked, the router
recognizes that the reference argument must be converted into a
SOAP/HTTP-format reference.

2. The router dynamically creates a new service and port, RtrSoapPort,
to receive callback requests in SOAP/HTTP format. The new service is
a transient service cloned from a service in the router WSDL contract.
The router looks for a service that satisfies the following criteria:

♦ Supports the same port type as the original reference.

♦ Supports the same type of binding (for example, SOAP or CORBA)
as the target server.

3. The router creates a new SOAP/HTTP reference, encapsulating details
of the RtrSoapPort endpoint.

4. The router forwards the register_callback() operation on to the
target server in SOAP format, with the proxified SOAP/HTTP reference
as its argument.

5. The router dynamically constructs a callback route, with source port,
RtrSoapPort, and destination port, CltCorbaPort.
 106

Callbacks
Callback WSDL Contract

Overview This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client
and for the server applications.

WSDL contract Example 41 shows the WSDL contract used for the callback demonstration.

Example 41:Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="callback_demo"

targetNamespace="http://www.iona.com/callback"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration"

 xmlns:references="http://schemas.iona.com/references"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/callback"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <xsd:import

namespace="http://schemas.iona.com/references"
 schemaLocation="../../../../schemas/references.xsd"/>
 <schema targetNamespace="http://www.iona.com/callback"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="register_callback.c"

type="references:Reference"/>
 </schema>
 </types>
 <message name="ServerSayHi">
 <part name="param" type="xsd:string"/>
 </message>
 <message name="register_callback">
 <part element="tns:register_callback.c" name="c"/>
 </message>
 <portType name="ClientPortType">
 <operation name="ServerSayHi">
 <input message="tns:ServerSayHi" name="ServerSayHi"/>
107

CHAPTER 3 | Artix References
Port types and operations The WSDL contract in Example 41 on page 107 defines the following port
types and operations:

• ServerPortType port type—implemented on the server side. This
server port type supports a single WSDL operation:

♦ register_callback operation—takes a single Artix reference
argument, which is used to pass a reference to the client callback
object.

• ClientPortType port type—implemented on the client side. This
callback port type supports a single WSDL operation:

♦ ServerSayHi operation—takes a single string argument. The
server calls back on this operation after it has received a reference
to the client’s service.

 </operation>
 </portType>
 <portType name="ServerPortType">
 <operation name="register_callback">
 <input message="tns:register_callback"
 name="register_callback"/>
 </operation>
 </portType>
 ...
 <service name="ClientService">
 ...
 </service>
 <service name="ServerService">
 ...
 </service>
</definitions>

Example 41:Example Callback WSDL Contract
 108

Callbacks
Client Implementation

Overview In a callback scenario, the client plays a hybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main
parts, as follows:

• Client main function.

• ClientImpl servant class.

Client main function Example 42 shows the code for the callback client main function, which
instantiates and registers a ClientImpl servant before calling on the remote
server to register the callback.

Example 42:Callback Client Main Function

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

#include "ServerClient.h"
#include "ClientImpl.h"

IT_USING_NAMESPACE_STD

using namespace DemosCallback;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 cout << "Callback Client" << endl;

 try
 {
 cout << "Initializing Bus." << endl;
 Bus_var bus = IT_Bus::init(argc, argv);

1 ClientImpl servant(bus);
 cout << "Activating Service on Bus" << endl;
109

CHAPTER 3 | Artix References
The preceding code example can be explained as follows:

1. The ClientImpl servant class implements the ClientPortType port
type. The ClientImpl instance created on this line is the client
callback object.

2. The service_qname specifies the WSDL service to be activated on the
client side. This QName refers to the <service
name="ClientService"> element in Example 41 on page 107.

3. Register the callback servant with the Bus, thereby activating the
ClientService service. From this point on, the ClientService service
is active and able to process incoming callback requests in a
background thread.

2 QName service_qname(
 "", "ClientService", "http://www.iona.com/callback"
);

3 Service & service =
 bus->register_servant(
 servant,
 "../../etc/callback.wsdl",
 service_qname
);

4 IT_Bus::Reference & client_ref = service.get_reference();
 ServerClient sc("../../etc/callback.wsdl");

5 sc.register_callback(client_ref);

 cout << "Callback Service Ready." << endl;
6 bus->run();

 bus->shutdown(true);
 cout << "Done." << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 42:Callback Client Main Function
 110

Callbacks
4. A reference to the callback service is generated by calling
IT_Bus::Service::get_reference().

5. This line invokes the register_callback() operation on the remote
server, passing in the reference to the client callback object. From this
point on, the server could invoke an operation on the callback.

6. Just as in a normal server, the callback client calls the blocking
IT_Bus::run() function to allow the application to process incoming
requests.

ClientImpl servant class Example 43 shows the implementation of the ClientImpl servant class,
which is responsible for receiving the ClientImpl::ServerSayHi() callback
from the server. The implementation of this servant class is trivial. It follows
the usual pattern for a servant class implementation and the ServerSayHi()
function simply prints out its string argument.

Example 43:ClientImpl Servant Class Implementation

// C++
#include "ClientImpl.h"
#include <it_cal/cal.h>

IT_USING_NAMESPACE_STD
using namespace DemosCallback;

ClientImpl::ClientImpl(
 IT_Bus::Bus_ptr bus
) : DemosCallback::ClientServer(bus)
{
 // complete
}

ClientImpl::~ClientImpl()
{
 // Complete
}

void
ClientImpl::ServerSayHi(
 const IT_Bus::String & param
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout <<"ClientImpl::ServerSayHi() called"<<endl;
 cout << param <<endl;
111

CHAPTER 3 | Artix References
 cout <<"ClientImpl::ServerSayHi() ended"<<endl;
}

Example 43:ClientImpl Servant Class Implementation
 112

Callbacks
Server Implementation

Overview The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and
registers a servant object. A separate file contains the implementation of the
servant class, ServerImpl. The server implementation thus consists of two
main parts, as follows:

• Server main function.

• ServerPortType implementation.

Server main function Example 44 shows the code for the server main function, which instantiates
and registers a ServerImpl servant. The server then waits for the client to
register a callback using the register_callback operation.

Example 44:Server Main Function

// C++
#include <it_bus/bus.h>
#include <it_bus/service.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_bus/file_output_stream.h>

#include "ServerImpl.h"

IT_USING_NAMESPACE_STD

using namespace IT_Bus;
using namespace DemosCallback;

int
main(int argc, char* argv[])
{
 try
 {
 cout << "Initializing Bus." << endl;
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

1 ServerImpl servant(bus);
2 IT_Bus::QName service_qname(

 "", "ServerService", "http://www.iona.com/callback"
113

CHAPTER 3 | Artix References
The preceding code example can be explained as follows:

1. The ServerImpl servant class implements the ServerPortType port
type, which supports the register_callback operation.

2. The service_qname refers to the <service name="ServerService">
element in Example 41 on page 107.

3. Register the ServerImpl servant with the Bus, thereby activating the
ServerService service.

4. Call the blocking IT_Bus::run() function to allow the server
application to process incoming requests.

ServerPortType implementation Example 45 shows the implementation of the ServerImpl servant class.
There is just one WSDL operation, register_callback(), to implement in
this class.

);
3 bus->register_servant(

 servant,
 "../../etc/callback.wsdl",
 service_qname
);

 cout << "Service Ready." << endl;
4 IT_Bus::run();

 bus->shutdown(true);
 cout << "Done." << endl;
 }
 catch (IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.error() << endl;
 return -1;
 }
 return 0;
}

Example 44:Server Main Function

Example 45:ServerImpl Servant Class Implementation

// C++
#include "ServerImpl.h"
#include <it_cal/cal.h>
 114

Callbacks
IT_USING_NAMESPACE_STD
using namespace DemosCallback;

ServerImpl::ServerImpl(IT_Bus::Bus_ptr bus) :
DemosCallback::ServerServer(bus)

{
 // Complete
}

ServerImpl::~ServerImpl()
{
 // Complete
}

void
ServerImpl::register_callback(

1 const IT_Bus::Reference & c
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "ServerImpl::register_callback(): called"<< endl;
 cout << "Calling Back to client" << endl;

 try
 {

2 ClientClient cc(c);
3 cc.ServerSayHi("Server says hi to client");

 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Caught Unexpected Exception: " << e.message() <<

endl;
 }
 catch (...)
 {
 cout << "Unknown exception" << endl;
 }
 cout << "Finished callback to client" << endl;
 cout << "ServerImpl::register_callback(): returning"<< endl;
}

Example 45:ServerImpl Servant Class Implementation
115

CHAPTER 3 | Artix References
The preceding code example can be explained as follows:

1. The register_callback() function takes a reference argument, which
should be a reference to a callback object.

2. This line creates a client proxy, cc, for the ClientPortType port type
and initializes it with the callback reference, c. The reference, c,
encapsulates details of the ClientService service.

3. This line invokes the ServerSayHi() callback on the client.

This example, where the callback is invoked within the body of
register_callback(), is a little bit artificial. In a more typical use
case, the server would cache an instance of the callback client proxy
and then call back later, in response to some event that is of interest to
the client.
 116

CHAPTER 4

The Artix Locator
The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

In this chapter This chapter discusses the following topics:

Note: The Artix locator is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports the Artix locator.

Overview of the Locator page 118

Locator WSDL page 121

Registering Endpoints with the Locator page 127

Reading a Reference from the Locator page 128

Pausing and Resuming Endpoints page 132
117

CHAPTER 4 | The Artix Locator
Overview of the Locator

Overview The Artix locator is a service which can optionally be deployed for the
following purposes:

• Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

• Load balancing—if multiple service instances (identified by a WSDL
location and service QName) are registered against a single service
QName, the locator load balances over the different service instances
using a round-robin algorithm.

Figure 15 gives a general overview of the locator architecture.

Figure 15: Artix Locator Overview

B1

locator_endpoint
plug-in

Artix Client Artix Server X

locator_endpoint
plug-in

Artix Server Y

Artix Locator

A1

A2

A3

B2

Service A

Service B

Ports

A4

A5
Service A

X / A

X / B

A

B
Y / A

Service QName WSDL location/Service
 118

Overview of the Locator
Locator demonstration The locator demonstration, which forms the basis of the examples in this
section, is located in the following directory:

ArtixInstallDir/artix/Version/demos/uncategorized/locator

Locator service There are two basic options for deploying the locator service, as follows:

• Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 15). This approach is described in
detail in the “Using the Artix Locator Service” chapter from the Artix
User’s Guide. Sample source code for such a standalone locator
service is provided in the demos/uncategorized/locator
demonstration.

• Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

Endpoint definition An Artix endpoint is a particular WSDL service (identified by a service
QName) in a particular IT_Bus::Bus instance (identified by a WSDL location
URL). Hence, it is possible to have endpoints with the same service type
and service QName, as long as they are registered with different Bus
instances. A WSDL location URL and a service QName together identify an
endpoint.

Registering endpoints A server registers its endpoints with the locator in order to make them
accessible to Artix clients. When a server registers an endpoint in the
locator, it creates an entry in the locator that associates a service QName
with an Artix reference for that endpoint.

Looking up references An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.
119

CHAPTER 4 | The Artix Locator
Load balancing with the locator If multiple endpoints are registered against a single service QName in the
locator, the locator will employ a round-robin algorithm to pick one of the
endpoints. Hence, the locator effectively load balances a service over all of
its associated endpoints.

For example, Figure 15 on page 118 shows the Service A QName with two
endpoints registered against it:

• WSDL location X/Service A

• WSDL location Y/Service A

When the Artix client looks up a reference for Service A, it obtains a
reference to whichever endpoint is next in the sequence.
 120

Locator WSDL
Locator WSDL

Overview The locator WSDL contract, locator.wsdl, defines the public interface of
the locator through which the service can be accessed either locally or
remotely. This section shows extracts from the locator WSDL that are
relevant to normal user applications. The following aspects of the locator
WSDL are described here:

• Binding and protocol.

• WSDL contract.

• C++ mapping.

Binding and protocol The locator service is normally accessed through the SOAP binding and over
the HTTP protocol.

WSDL contract Example 46 shows an extract from the locator WSDL contract that focuses
on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, lookup_endpoint, that an Artix client
typically needs to call.

Note: Currently, the locator service is limited by the fact that most Artix
bindings do not support endpoint references. In future releases of Artix,
when the support for references is extended to other bindings, it should be
possible to use the locator with other bindings and transports.

Example 46:Extract from the Locator WSDL Contract

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ref="http://schemas.iona.com/references"
xmlns:ls="http://ws.iona.com/locator"
targetNamespace="http://ws.iona.com/locator">

 <types>
 <xs:schema targetNamespace="http://ws.iona.com/locator">

1 <xs:import
schemaLocation="../../../schemas/references.xsd"
namespace="http://schemas.iona.com/references"/>
121

CHAPTER 4 | The Artix Locator
 ...
2 <xs:element name="lookupEndpoint">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_qname"
 type="xs:QName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

3 <xs:element name="lookupEndpointResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_endpoint"
 type="ref:Reference"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType

name="EndpointNotExistFaultException">
 <xs:sequence>
 <xs:element name="error" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

4 <xs:element name="EndpointNotExistFault"
 type="ls:EndpointNotExistFaultException"/>
 </xs:schema>
 </types>
 ...
 <message name="lookupEndpointInput">
 <part name="parameters" element="ls:lookupEndpoint"/>
 </message>
 <message name="lookupEndpointOutput">
 <part name="parameters"

element="ls:lookupEndpointResponse"/>
 </message>
 <message name="endpointNotExistFault">
 <part name="parameters"

element="ls:EndpointNotExistFault"/>
 </message>

5 <portType name="LocatorService">
 ...

6 <operation name="lookup_endpoint">
 <input message="ls:lookupEndpointInput"/>
 <output message="ls:lookupEndpointOutput"/>

Example 46:Extract from the Locator WSDL Contract
 122

Locator WSDL
The preceding locator WSDL extract can be explained as follows:

1. This line imports the schema definition of the ref:Reference type. You
might have to edit the value of the schemaLocation attribute, if the
references.xsd schema file is stored in a different location relative to
the locator.wsdl file.

2. The lookupEndpoint type is the input parameter type for the
lookup_endpoint operation. It contains just the QName (qualified
name) of a particular WSDL service.

3. The lookupEndpointResponse type is the output parameter type for the
lookup_endpoint operation. It contains an Artix reference for the
specified service. If more than one endpoint is registered against a
particular service name, the locator picks one of the endpoints using a
round-robin algorithm.

4. The EndpointNotExist fault would be thrown if the lookup_endpoint
operation fails to find an endpoint registered against the requested
service type.

5. The LocatorService port type defines the public interface of the Artix
locator service.

6. The lookup_endpoint operation, which is called by Artix clients to
retrieve endpoint references, is the only operation from the
LocatorService port type that user applications would typically need.

 <fault name="fault"
 message="ls:endpointNotExistFault"/>
 </operation>
 </portType>
 <binding name="LocatorServiceBinding"
 type="ls:LocatorService">
 ...
 </binding>
 <service name="LocatorService">
 <port name="LocatorServicePort"
 binding="ls:LocatorServiceBinding">
 <soap:address

7 location="http://localhost:0/services/locator/LocatorService"/>
 </port>
 </service>
</definitions>

Example 46:Extract from the Locator WSDL Contract
123

CHAPTER 4 | The Artix Locator
7. The SOAP location attribute specifies the host and IP port for the
locator service. If you want the locator to run on a different host and
listen on a different IP port, you should edit this setting.

C++ mapping Example 47 shows an extract from the C++ mapping of the
LocatorService port type. This extract shows only the lookup_endpoint
WSDL operation—the other WSDL operations in this class are normally not
needed by user applications.

Example 47:C++ Mapping of the LocatorService Port Type

// C++
#include "LocatorService.h"
#include <it_bus/service.h>
#include <it_bus/bus.h>
#include <it_bus/reference.h>
#include <it_bus/types.h>
#include <it_bus/operation.h>

namespace IT_Bus_Services
{
 class LocatorServiceClient : public LocatorService, public

IT_Bus::ClientProxyBase
 {

 private:

 public:
 LocatorServiceClient(
 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 const IT_Bus::String & wsdl,
 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 const IT_Bus::String & wsdl,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name,
 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 124

Locator WSDL
The lookupEndpoint type The input parameter for the lookup_endpoint operation is of
lookupEndpoint type, which maps to C++ as follows:

 IT_Bus::Reference & reference,
 IT_Bus::Bus_ptr bus = 0
);

 ~LocatorServiceClient();
 ...
 virtual void
 lookup_endpoint(
 const IT_Bus_Services::lookupEndpoint &
 lookupEndpoint_in,
 IT_Bus_Services::lookupEndpointResponse &
 lookupEndpointResponse_out
) IT_THROW_DECL((IT_Bus::Exception));
 };
};

Example 47:C++ Mapping of the LocatorService Port Type

// C++
namespace IT_Bus_Services
{
 class lookupEndpoint : public IT_Bus::SequenceComplexType
 {
 public:
 lookupEndpoint();
 lookupEndpoint(const lookupEndpoint& copy);
 virtual ~lookupEndpoint();

 const IT_Bus::QName & getservice_qname() const;
 IT_Bus::QName & getservice_qname();
 void setservice_qname(const IT_Bus::QName & val);
 ...
 };
};
125

CHAPTER 4 | The Artix Locator
The lookupEndpointResponse
type

The output parameter for the lookup_endpoint operation is of
lookupEndpointResponse type, which maps to C++ as follows:

// C++
namespace IT_Bus_Services
{
 class lookupEndpointResponse
 : public IT_Bus::SequenceComplexType
 {
 public:
 lookupEndpointResponse();
 lookupEndpointResponse(const lookupEndpointResponse&

copy);
 virtual ~lookupEndpointResponse();
 ...
 const IT_Bus::Reference & getservice_endpoint() const;
 IT_Bus::Reference & getservice_endpoint();
 void setservice_endpoint(const IT_Bus::Reference & val);
 ...
 };
};
 126

Registering Endpoints with the Locator
Registering Endpoints with the Locator

Overview To register a server’s endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint (that is,
service/port combination) that is created on the server side.

There is currently no programming API for registering endpoints explicitly.

Configuring a server to register
endpoints

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and locator_endpoint plug-ins, as shown in the
following demo.locator.server configuration scope from artix.cfg:

When running the server, remember to select the appropriate configuration
scope by passing it as the -ORBname command-line parameter. For example,
the preceding configuration would be picked up by a MyArtixServer
executable, if the server is launched with the following command:

MyArtixServer -ORBname demo.locator.server

References For more details about configuring a server to register endpoints, see the
following references:

• “Using the Artix Locator Service” chapter from the Artix User’s Guide.

• The Artix locator demonstration in
artix/Version/demos/uncategorized/locator.

Artix Configuration File (artix.cfg)
...
demo {
 locator {
 server
 {
 plugins:locator:wsdl_url="../wsdl/locator.wsdl";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop", "soap", "http", "tunnel", "ots", "fixed",
"ws_orb", "locator_endpoint"];

 };
 };
 ...
};
127

CHAPTER 4 | The Artix Locator
Reading a Reference from the Locator

Overview After the target server (in this example, the SimpleService server) has
started up and registered its endpoints with the locator, an Artix client can
then bootstrap a connection to the target server by reading one of its
endpoint references from the locator. Figure 16 shows an outline of how a
client bootstraps a connection in this way.

Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 16, are as follows:

1. Construct a locator service proxy.

2. Use the locator proxy to invoke the lookup_reference operation.

3. Use the reference returned from lookup_reference to construct a
SimpleService proxy.

4. Invoke an operation using the SimpleService proxy.

Figure 16: Steps to Read a Reference from the Locator

locator_endpoint
plug-in

Artix Client
Artix

SimpleService
Server

Artix Locator
WSDL location / SOAPHTTPService

...

SOAPHTTPService

...

P1

lookup_endpoint()

SOAPHTTPService

1

2

3

4

Locator proxy

SimpleService proxy

Invoke operation
 128

Reading a Reference from the Locator
Example Example 48 shows an example of the code for an Artix client that retrieves a
reference to a SimpleService service from the Artix locator.

Example 48:Example of Reading a Reference from the Locator Service

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "SimpleServiceClient.h"
#include "LocatorServiceClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;
using namespace IT_Bus_Services;
using namespace SimpleServiceNS;

int
main(int argc, char* argv[])
{
 cout << " SimpleService Client" << endl;

 try
 {
 int my_argc = 2;
 const char * my_argv [] = {
 "-ORBname",
 "demo.locator.client"
 };

1 IT_Bus::init(my_argc, (char **)my_argv);

2 QName service_name(
 "","LocatorService", "http://ws.iona.com/locator"
);

3 QName sh_service_name(
 "","SOAPHTTPService", "http://www.iona.com/bus/tests"
);

4 String port_name("LocatorServicePort");

 // 1. Construct a locator service proxy
5 IT_Bus_Services::LocatorServiceClient*

 m_locator_client = new LocatorServiceClient(
 "../wsdl/locator.wsdl", service_name, port_name
129

CHAPTER 4 | The Artix Locator
);

 // Setup input and output parameters to locator
 lookupEndpoint sh_input;
 sh_input.setservice_qname(sh_service_name);
 lookupEndpointResponse sh_output;

 // 2. Invoke on locator
6 m_locator_client->lookup_endpoint(

 sh_input,
 sh_output
);

 // 3. Construct a new proxy to your target service with
 // the result from the locator

7 SimpleServiceClient sh_simple_client(
 sh_output.getservice_endpoint()
);

 // 4. Use your new proxy
8 String sh_my_greeting("SOAPHTTP ENDPOINT GREETING");

 String result;
 sh_simple_client.say_hello(sh_my_greeting, result);
 cout << "say_hello method returned: " << result << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

Example 48:Example of Reading a Reference from the Locator Service
 130

Reading a Reference from the Locator
The preceding C++ example can be explained as follows:

1. You should ensure that the client picks up the correct configuration by
passing the appropriate value of the -ORBname parameter. In this
example, the -ORBname parameter is hard-coded, but you might prefer
to take this parameter from the command line instead.

2. This line constructs a qualified name, service_name, that identifies the
<service name="LocatorService"> tag from the locator WSDL. See
the listing of the locator WSDL in Example 46 on page 121.

3. This line constructs a qualified name, sh_service_name, that identifies
the SOAPHTTPService service from the SimpleService WSDL.

4. This port name refers to the <port name="LocatorServicePort" ...>
tag in the locator WSDL (see Example 46 on page 121).

5. The locator service proxy is created by calling the three-argument
constructor for the LocatorServiceClient class. The three arguments
passed (locator WSDL, service name, and port name) specify the
locator endpoint exactly.

6. The lookup_endpoint() operation is invoked on the locator to find an
endpoint of SOAPHTTPService type (specified in the sh_input
parameter).

7. The call to sh_output.getservice_endpoint() extracts the returned
SimpleService reference which is then passed to a simple client proxy
constructor. The constructor is a special form that takes an
IT_Bus::Reference type as its argument:

8. You can now use the simple client proxy to make invocations on the
remote Artix server.

Note: If there is more than one WSDL port registered for the
SOAPHTTPService server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.

// C++
SimpleClient(
 IT_Bus::Reference & reference,
 IT_Bus::Bus_ptr bus = 0
);
131

CHAPTER 4 | The Artix Locator
Pausing and Resuming Endpoints

Overview As part of a load management strategy, it is useful if you can pause the
traffic of requests incoming to a server. For this purpose, the
IT_Bus::Service class provides a pair of functions to pause and resume a
service’s endpoints. The locator_endpoint plug-in supports this
functionality by de-registering the service’s endpoints from the locator. This
does not prevent existing clients from sending requests to the server, but it
does help to limit the load by making the server temporarily unavailable to
new clients.

IT_Bus::Service pause and
resume functions

The IT_Bus::Service class provides the following member functions for
pausing and resuming an Artix service:

IT_Bus::Service::reached_capacity()

Call the reached_capacity() function to pause a service’s endpoints. The
locator_endpoint plug-in listens for this event and, when the function is
called, the locator_endpoint plug-in deregisters the service’s endpoints
(ports) from the locator.

IT_Bus::Service::below_capacity()

Call the below_capacity() function to resume a service’s endpoints. The
locator_endpoint plug-in listens for this event and, when the function is
called, the locator_endpoint plug-in re-registers the service’s endpoints
with the locator.
 132

Pausing and Resuming Endpoints
C++ server example Example 49 shows how to pause and resume the endpoints for a
BookService service.

Example 49:Code to Pause and Resume a Service’s Endpoints

// C++
// Get handle to Service from Bus if available
IT_Bus::QName service_name(“”, “BookService”, “http://books”);
IT_Bus::Service* = bus->get_service(service_name);

// Trigger the de-register if registered
service->reached_capacity();
...
// Trigger the re-register if not register
service->below_capacity();
133

CHAPTER 4 | The Artix Locator
 134

CHAPTER 5

Using Sessions in
Artix
The Artix Session Manager helps you manage service
resources.

In this chapter This chapter discusses the following topics:

Note: The session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the session manager.

Introduction to Session Management in Artix page 136

Registering a Server with the Session Manager page 139

Working with Sessions page 142
135

CHAPTER 5 | Using Sessions in Artix
Introduction to Session Management in Artix

Overview The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (session_manager_service) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (session_endpoint_manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,
sm_simple_policy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each
group.
 136

Introduction to Session Management in Artix
How do the plug-ins interact? Figure 17 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy
plug-in.

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 17, but the process will have only
one endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on

Figure 17: The Session Manager Plug-ins

Client

Session
Manager
Service

Simple
Policy
Plug-in

Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Standalone Session Manager

Service A

Service B

Service C

Group 1

Group 2

Service D
137

CHAPTER 5 | Using Sessions in Artix
endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

What are sessions? The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide service references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session’s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

What are groups? The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service’s group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you edit the value for
plugins:session_endpoint_manager:default_group in the process’
configuration scope. For more information on Artix configuration see
Deploying and Managing Artix Solutions.
 138

Registering a Server with the Session Manager
Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Configuring the server Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

• soap

• http

• session_endpoint_manager

session_endpoint_manager allows the server to register with a running
session manager.

The server’s configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.
139

CHAPTER 5 | Using Sessions in Artix
Example 50 shows the configuration scope of a server that hosts services
managed by the session manager.

A server loaded into the qajaq_server configuration scope will be managed
by the session manager at the location specified in
session-manager-service.wsdl, its endpoint manager will come up at the
address specified in session-manager-endpoint.wsdl, and by default all
services instantiated by the server will belong to the session manager group
qajaq_group.

For more information on Artix configuration see Deploying and Managing
Artix Solutions.

You also need to configure the port on which the endpoint manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open
session-manager.wsdl and edit the <soap:address> entry for the
SessionEndpointManagerService to specify the proper address.
Example 51 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 50:Server Configuration Scope

qajaq_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "fixed", "session_endpoint_manager"];
 plugins:session_endpoint_manager:wsdl_url="session-manager-service.wsdl";
 plugins:session_endpoint_manager:endpoint_manager_url="session-manager-endpoint.wsdl";
 plugins:session_endpoint_manager:deafult_group="qajaq_group";
 };

Example 51:Endpoint Manager Address

<service name="SessionEndpointManagerService">
 <port name="SessionEndpointManagerPort" binding="sm:SessionEndpointManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionEndpointManager"/>
 </port>
</service>
 140

Registering a Server with the Session Manager
In the server’s configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
plugins:session_endpoint_manager:endpoint_manager_url to point to the
copy of session-manager.wsdl containing the address for this instance of
the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
plugins:session_endpoint_manager:wsdl_url.
141

CHAPTER 5 | Using Sessions in Artix
Working with Sessions

Overview Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with
the services.

Instantiating a session manager
proxy

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
session manager’s contract name, session-manager.wsdl.

Example 52 shows how to instantiate a session manager proxy.

For more information on instantiating Artix proxies, see the Artix C++
Programmer’s Guide.

Example 52: Instantiating a Session Manager Proxy

// C++
SessionManagerClient session_manager_proxy = new

SessionManagerClient("session_manager.wsdl");
 142

Working with Sessions
Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager’s
begin_session() method. begin_session() has the following signature:

input contains the name of the desired group and the desired duration of
the session. The group name is set using the setendpoint_group() method.
The group name can be any valid string and corresponds to the default
group name set in the service’s configuration scope as described in
“Configuring the server” on page 139.

The session duration is set using the setprefered_renew_timeout()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the session manager’s min_session_timeout
configuration setting, it will be set to the configured minimum value. If the
specified duration is higher than the value specified by the session
manager’s max_session_timeout configuration setting, it will be set the
configured max value.

output contains the information needed to use the session.

Once a session is returned in output, you will need to extract the session ID
to work with the session. This is done using getsession_id().
getsession_id() returns the session ID as an
IT_Bus_Services::SessionID.

void begin_session(IT_Bus_Services::BeginSession input,
 IT_Bus_Services::BeginSessionResponse output);
143

CHAPTER 5 | Using Sessions in Artix
Example 53 shows the client code to begin a session for qajaq_group.

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session’s group. The session manager proxy’s
get_all_endpoints() method returns a list of all endpoints registered to the
specified group. get_all_endpoints() has the following signature:

request contains the session ID for which you are requesting services. Set
the session ID using the setsession_id() method on request with the
session ID returned from the session manager.

response contains the list of services returned from get_all_endpoints().
If the group has no services, response will be empty.

Example 53:Beginning a Session

// C++
IT_Bus_Services::BeginSession begin_session_request;
IT_Bus_Services::BeginSessionResponse begin_session_response;

// set the group to request
begin_session_request.setendpoint_group("qajaq_group");
// set session renewal interval to 10 mins
begin_session_request.setpreferred_renew_timeout(600);

session_mgr.begin_session(begin_session_request,
 begin_session_response);

IT_Bus_Services::SessionId session;
session =

begin_session_response.getsession_info().getsession_id();

void get_all_endpoints(IT_Bus_Services::GetAllEndpoints request,
 IT_Bus_Services::GetAllEndpointsResponse response)
 144

Working with Sessions
Example 54 shows how to get the list of services for a group.

Create a proxy for the requested
service

The client can use any of the services returned by get_all_endpoints() to
instantiate a service proxy. To instantiate the proxy, you first need to narrow
down the list returned services to the desired one. GetAllEnpointsResponse
contains an array of references to active services that can be retrieved using
GetAllEndpointsResponse’s getendpoints() method. You can use simple
indexing to get one of the references. For example, to use the first service in
the list you would use the following:

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

Example 54:Retrieving the List of Services in a Group

//C++
IT_Bus_Services::GetAllEndpoints request;
IT_Bus_Services::GetAllEndpointsResponse response;

// group session initialized above.
get_all_endpoints_request.setsession_id(session);

session_mgr.get_all_endpoints(request, response);

response.getendpoints()[0]
145

CHAPTER 5 | Using Sessions in Artix
want to have your clients check each service to see if it implements the
correct interface by checking the reference’s service name as shown in
Example 55.

Example 56 shows the client code for creating a proxy qajaq server from a
group service.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy’s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy’s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get_port(), that provides
access to the port information used by the client to connect the service. One
of an Artix proxy’s port properties is use_input_message_attributes.

Example 55:Checking the Service Reference for its Interface

//C++
IT_Bus::Reference endpoint = response.getendpoints()[0];
if (endpoint.get_service_name() ==
 QName("", "QajaqService", "http://qajaqs.com"))
 {
 // instantiate a QajaqService using endpoint
 }
else
 {
 // do something else
 }

Example 56: Instantiate a Proxy Server

// C++
QajaqClient qajaq_proxy(response.getendpoints()[0]);
 146

Working with Sessions
Setting this property to true tells the bus to ensure the input message
attributes are propagated through to the server. Example 57 shows how to
set the client proxy port’s use_input_message_attributes property to true.

Getting a handle to the input message attributes

A pointer to the proxy port’s input message attributes is returned by the
port’s get_input_message_attributes() method. Example 58 shows how
to get a handle to the input message attributes.

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header’s against. The session name is returned by
invoking getname() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking getendpoint_group() on
the session ID of the active session.

Example 57:Use Input Message Attributes

//C++
// Get the proxy’s port
IT_Bus::Port proxy_port = qajaq_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Example 58:Getting the Input Message Attributes

MessageAttributes& input_attributes =
proxy_port().get_input_message_attributes();
147

CHAPTER 5 | Using Sessions in Artix
The input message attributes are set using the message attribute handle’s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 59 shows how to set the session
information in to the input message attributes.

Make requests on service proxy Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’s
renew_session() method. renew_session() has the following signature:

params contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using params’
setsession_id() method. The renewal duration is set using params’
setrenew_timeout() method.

If the renewal is successful, renewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

Example 59:Setting the Input Message Attributes

// C++
input_attributes.set_string("SessionName", session.getname());
input_attributes.set_string("SessionGroup",
 session.getendpoint_group());

void renew_session(IT_Bus_Services::RenewSession params,
 IT_Bus_Services::RenewSessionResponse renewed);
 148

Working with Sessions
Example 60 shows how to end a session.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end_session() method. end_session() has the following signature:

params contains the session ID of the session being ended. The session ID is
set using params’ setsession_id() method.

Example 61 shows how to end a session.

Example 60:Ending a Session

//C++
IT_Bus_Services::RenewSession params;
IT_Bus_Services::RenewSessionResponse renewed;
params.setsession_id(session);
parames.setrenewal_timeout(600);
try
{
 session_mgr.renew_session(params, renewed);
}
catch (IT_Bus_Services::renewSessionFaultException)
{
 // handle the exception
}

void end_session(IT_Bus_Services::EndSession params);

Example 61:Ending a Session

//C++
IT_Bus_Services::EndSession params;
params.setsession_id(session);
session_mgr.end_session(params);
149

CHAPTER 5 | Using Sessions in Artix
 150

CHAPTER 6

Transactions in
Artix
This chapter discusses the Artix support for distributed
transaction processing.

In this chapter This chapter discusses the following topics:

Introduction to Transactions page 152

Transaction API page 154

Client Example page 156
151

CHAPTER 6 | Transactions in Artix
Introduction to Transactions

Overview Artix supports a pluggable model of transaction support, which is currently
restricted to the CORBA Object Transaction Service (OTS) only and, by
default, supports client-side transaction demarcation only. Other transaction
services (such as MQ series transactions) will be supported in a future
release. The following transaction features are supported by Artix:

• Client-side transaction support.

• Compatibility with Orbix ASP.

• Pluggable transaction factory.

Client-side transaction support By default, Artix has only client-side support for CORBA OTS-based
transactions. Transaction demarcation functions (begin(), commit() and
rollback()) can be used on the client side to control transactions that are
hosted on a remote CORBA OTS server, as shown in Figure 18.

In Figure 18, the resource and the transaction factory are located on the
server side (in an Orbix ASP domain). Artix currently does not have the
capability to manage resources on the client side.

Figure 18: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

begin()

 invoke

commit()

Artix
Client

Orbix ASP Domain
 152

Introduction to Transactions
Compatibility with Orbix ASP The Artix transaction facility is fully compatible with CORBA OTS in Orbix
ASP. Hence, if you already have a transactional server implemented with
Orbix ASP, you can easily integrate this with an Artix client.

Pluggable transaction factory The underlying transaction factory used by Artix can be replaced within a
pluggable framework. In future, Artix will support multiple factories (for
example, OTS, MQ series, and so on). Currently, only the following
transaction factory is supported:

• ots
153

CHAPTER 6 | Transactions in Artix
Transaction API

Overview The Artix transaction API is provided by the following classes and modules:

• IT_Bus::Bus

IT_Bus::Bus member functions The IT_Bus::Bus class has the following member functions, which are used
to manage transactions:

Factory name parameter The factory name parameter, which is passed to each of the preceding API
functions, identifies the kind of transaction factory that is used. Currently,
only the CORBA OTS transaction factory is supported, which is specified by
the string, ots.

Note: You can also gain access to interfaces from the CosTransactions
module, which is part of CORBA OTS, if you have IONA’s Orbix ASP
product. This is not included with Artix.

// C++
void begin(const char* factory_name);

void commit(bool report_heuristics, const char* factory_name);

void rollback(const char* factory_name);

void rollback_only(const char* factory_name);

char* get_transaction_name(const char* factory_name);

IT_Bus::Boolean within_transaction(const char* factory_name);

void set_timeout(IT_Bus::UInt seconds, const char*
factory_name);

IT_Bus::Uint get_timeout(const char* factory_name);

CosTransactions::Coordinator*
get_coordinator(const char* factory_name);
 154

Transaction API
Client transaction functions The begin(), commit(), and rollback() functions are used to demarcate
transactions on the client side. The commit() function ends the transaction
normally, making any changes permanent. The rollback() function aborts
the transaction, rolling back any changes.

The within_transaction() function, which can be called in an execution
context on the server side, returns TRUE if the current operation is executing
within a transaction scope.

Server transaction functions The rollback_only() function can be called on the server side to mark the
current transaction for rollback. After this function is called, the current
transaction can only be rolled back, not committed.

Timeouts A client can use the set_timeout() function to impose a timeout on the
transactions it initiates. If the timeout is exceeded, the transaction is
automatically rolled back.

CosTransactions::Coordinator
class

The CosTransactions::Coordinator class enables you to exercise
fine-grained control over a transaction. The CosTransactions::Coordinator
class is defined by the CORBA Object Transaction Service (OTS).
155

CHAPTER 6 | Transactions in Artix
Client Example

Overview This section describes a transactional Artix client that connects to a remote
CORBA OTS server. The client uses the Artix transactional API to delimit
transactions, where the transactional resource and the transaction factory
are both located in the CORBA OTS server. This simple Artix client cannot
manage a transactional resource on its own.

WSDL sample Example 62 defines a WSDL port type, AccountPortType, with two
operations withdraw and deposit, which are used for withdrawing money
from or depositing money into personal accounts on the server.

Example 62:Definition of an AccountPortType Port

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <message name="withdraw">
 <part name="accName" type="xsd:string"/>
 <part name="amount" type="xsd:int"/>
 </message>
 <message name="withdrawResponse"/>
 <message name="deposit">
 <part name="accName" type="xsd:string"/>
 <part name="amount" type="xsd:int"/>
 </message>
 <message name="depositResponse"/>
 <portType name="AccountPortType">
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>
 ...
</definitions>
 156

Client Example
Client example Example 63 shows a client that executes a transfer of funds as a
transaction. After starting the transaction, the client withdraws $1000
dollars from Bill’s account and deposits the money into Ben’s account.

The preceding transactional client code can be explained as follows:

1. The AccountClient object, acc, is a client proxy representing the
AccountPortType port type.

2. The IT_Bus::Bus::begin() function initiates the transaction. The ots
string, which is passed as the argument to begin(), specifies that the
current transaction uses the CORBA OTS transaction factory.

3. The IT_Bus::Bus::commit() function attempts to commit the changes
in the server (withdrawal and deposit of money).

4. If an exception is thrown, the transaction must be aborted by calling
the IT_Bus::Bus::rollback() operation.

Example 63:Starting and Ending a Transaction on the Client Side

// C++
...
IT_Bus::Bus_var bvar = IT_Bus::Bus::create_reference();

1 AccountClient acc;

try {
 // start a txn

2 bvar->begin("ots");
 acc.withdraw("Bill", 1000);
 acc.deposit("Ben", 1000);

3 bvar->commit(IT_TRUE,"ots");
 cout << "Transaction completed successfully." << endl;
}
catch(IT_Bus::Exception& e) {

4 bvar->rollback("ots");
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message() << endl;
 return -1;
}

157

CHAPTER 6 | Transactions in Artix
 158

CHAPTER 7

Artix Contexts
Artix contexts enable you to send additional data with an
operation request, without having to declare the data as a
parameter. The mechanism for transmitting contexts is
binding-specific—for example, the context data might be
transmitted in a SOAP header or in a CORBA service context.

In this chapter This chapter discusses the following topics:

Introduction to Contexts page 160

Context Example page 171
159

CHAPTER 7 | Artix Contexts
Introduction to Contexts

Overview This section provides a conceptual overview of Artix contexts, including a
brief look at the programming interface required for using contexts with
different binding types.

In this section This section contains the following subsections:

Protocols that Support Contexts page 161

Defining Context Data Types page 163

Registering Context Types page 165

Writing and Reading Context Data page 169
 160

Introduction to Contexts
Protocols that Support Contexts

Overview Artix contexts provide a general purpose mechanism for embedding data in
message headers and they are designed to work independently of any
particular protocol or binding. Currently, you can embed context data in the
following types of protocol header:

• SOAP.

• CORBA.

SOAP You can send context data in a SOAP header, as shown in Figure 19, by
registering a context data type with the IT_Bus::SoapContextContainer
object.

The context data is sent in an Artix-specific SOAP header, whose format is
defined by the http://schemas.iona.com/custom_header schema.

Figure 19: Inserting Context Data into a SOAP Header

Context Data

SOAP Message SOAP Header

SOAP Context
161

CHAPTER 7 | Artix Contexts
CORBA You can send context data in a CORBA header, as shown in Figure 19, by
registering a context data type with the IT_Bus::CORBAContextContainer
object.

In CORBA, the message formats are defined by the General Inter-ORB
Protocol (GIOP) specification. In particular, the GIOP request and reply
message formats allow you to include arbitrary header data in GIOP Service
Context.

Figure 20: Inserting Context Data into a GIOP Service Context

Context Data

GIOP Message GIOP Header

GIOP Service Context
 162

Introduction to Contexts
Defining Context Data Types

Overview Although you can use simple data types for context data, in most cases you
would want to define a user-defined type, the context data type, to
represent your context data.

What is a context data type? A context data type is any schema type derived from xsd:anyType. In other
words, a context data type can be any simple or complex schema type.

Defining a context schema It is usually more appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
WSDL contract. This approach is more logical, because contexts are
normally used to implement features independently of any particular WSDL
contract.

For example, to define a complex context data type, ContextDataType, in
the namespace, ContextDataURI, you could define a context schema
following the outline shown in Example 64.

Example 64:Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="ContextDataURI"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="ContextDataType">
 ...
 </xs:complexType>
</xs:schema>
163

CHAPTER 7 | Artix Contexts
Generating stubs for a context
schema

To generate C++ stubs from a context schema file, ContextSchema.xsd,
enter the following command at the command line:

wsdltocpp ContextSchema.xsd

The WSDL-to-C++ compiler will generate the following C++ stub files:

ContextSchema_wsdlTypes.h
ContextSchema_wsdlTypesFactory.h
ContextSchema_wsdlTypes.cxx
ContextSchema_wsdlTypesFactory.cxx
 164

Introduction to Contexts
Registering Context Types

Overview Figure 21 shows an overview of what happens when you register a context
data type with a context container.

You register a context type by calling a register_context() function on a
context container instance. Typically, some variants of the
register_context() function are provided, but all of the variants include a
context data type QName as one of the arguments.

The main effect of registering a context type is that the context container
adds a type factory reference to its internal table. This type factory reference
enables the context container to create context data instances whenever
they are needed.

Getting a context container
instance

To get a reference to a context container instance, you call the
IT_Bus::get_context_container() function, shown in Example 65.

Figure 21: Registering Context Types with a Context Container

ContextContainer

Type Factory BType Factory A

register_context()register_context()

Note: This pre-supposes that the application is linked with the context
schema stub code, which creates static instances of the relevant type
factories.

Example 65:The IT_Bus::get_context_container() Function

// C++
namespace IT_Bus {
 class IT_BUS_API Bus : public BusPlugInManager
 {
 public:
165

CHAPTER 7 | Artix Contexts
The return type of the get_context_container() function depends on the
string argument, container_name. Table 3 shows the values allowed for the
container_name argument and the corresponding return types.

Registering a SOAP context Example 66 shows the signature of the register_context() function in the
SoapContextContainer class, which is used to register a context data type
with the SOAP context container.

The SoapContextContainer::register_context() function takes the
following arguments:

 virtual ContextContainer*
 get_context_container(const String& container_name) = 0;
 ...
 };
};

Example 65:The IT_Bus::get_context_container() Function

Table 3: String Arguments to the get_context_container() Function

container_name String Return Type

SoapContextContainer IT_Bus::SoapContextContainer

CorbaContextContainer IT_Bus::CORBAContextContainer

Example 66:The register_context() Function for SOAP Contexts

// C++
namespace IT_Bus {
 class IT_SOAP_API SoapContextContainer
 : public virtual ContextContainer
 {
 public:
 virtual void
 register_context(
 const QName& context_type,
 const QName& message_name,
 const String& part_name
) = 0;
 ...
 };
};
 166

Introduction to Contexts
• context_type—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd:anyType).

• message_name—the qualified name of the Artix-specific SOAP header
type that is used to encapsulates context data in a SOAP header.

Currently, the only message name you can select is the qualified name
with local part, header_content, and namespace URI,
http://schemas.iona.com/custom_header.

• part_name—the part of the Artix-specific SOAP header that contains
the context data. This argument must have the value, header_info.

Registering a CORBA context Example 67 shows the registration functions in the CORBAContextContainer
class, which are used to register a context data type with the CORBA
context container.

Example 67:The register_context() Function for CORBA Contexts

// C++
namespace IT_Bus {
 class IT_WS_ORB_API CORBAContextContainer
 : public virtual IT_Bus::ContextContainer
 {
 public:
 virtual void
 register_context(
 const IT_Bus::QName& context_name,
 const IT_Bus::QName& context_type
) = 0;

 virtual void
 register_context_as_string(
 const IT_Bus::QName& context_name
) = 0;

 virtual void
 register_context(
 const CORBAContextIdentifier& context_id,
 const IT_Bus::QName& context_type
) = 0;

 virtual const IOP::ServiceId
 get_context_id(
 const IT_Bus::QName& context_name
) = 0;
167

CHAPTER 7 | Artix Contexts
 };
};

Example 67:The register_context() Function for CORBA Contexts
 168

Introduction to Contexts
Writing and Reading Context Data

Overview Figure 22 shows an overview of how context data instances are created in a
multi-threaded application.

Each application thread, for example X in Figure 22, is associated with its
own context data instances, A1 and B1. Whenever an operation is invoked
from a particular thread, the thread-specific context data is automatically
inserted into the request message header.

Context current objects A context current is an object that holds references to thread-specific
context data. In particular, a context current holds reference to the context
data instances used for sending and receiving context data.

Figure 22: Overview of Context Data in a Multi-Threaded Application

Thread X

Context A1 Context B1ContextCurrent

Message Header

B1A1

Context A2 Context B2ContextCurrent

Message Header

B2A2

ContextContainer

Type Factory BType Factory A

Thread Y

createscreates creates
169

CHAPTER 7 | Artix Contexts
Writing thread-specific context
data to a request

Context data is initialized on a per-thread basis. Once you have initialized
the context data for a particular thread, the context data is included in all
request messages sent from this thread (but not in reply messages).

To write thread-specific context data, program the following steps:

1. Call the context container’s get_current() function to obtain a
reference to the context current object for this thread.

You must also dynamically cast the returned IT_Bus::ContextCurrent
object to the appropriate derived type (for example,
SoapContextCurrent or CORBAContextCurrent).

2. Call the current object’s get_context() function to obtain a concrete
instance of a context data type. The returned context data instance is
specific to the current thread.

You must dynamically cast the returned IT_Bus::AnyType object to the
context data type.

3. Initialize the context data instance. This context data will be included
in all subsequent operation requests invoked from the current thread.

Reading context data from an
incoming request

On the server side, you can access received context data within the scope of
a called operation. Received context data is available only in a calling
context; that is, in the context of servant code that services an incoming
operation request. Without a calling context, the received context data is
undefined.

To read context data from an incoming request, program the following steps:

1. Call the context container’s get_current() function to obtain a
reference to the context current object for this thread.

You must also dynamically cast the returned IT_Bus::ContextCurrent
object to the appropriate derived type (for example,
SoapContextCurrent or CORBAContextCurrent).

2. Call the current object’s get_context() function to obtain a reference
to the received context data instance. The returned context data
instance is specific to the current thread.

You must dynamically cast the returned IT_Bus::AnyType object to the
context data type.

3. Read the received context data using the type’s member functions.
 170

Context Example
Context Example

Overview This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate arbitrary context data in
a SOAP header.

In this section This section contains the following subsections:

Custom SOAP Header Demonstration page 172

Sample Context Schema page 174

Client Main Function page 177

Server Main Function page 182

Service Implementation page 185
171

CHAPTER 7 | Artix Contexts
Custom SOAP Header Demonstration

Overview The examples in this section are based on the custom SOAP header
demonstration, which is located in the following Artix directory:

ArtixInstallDir/artix/Version/demos/advanced/custom_soap_header

Figure 23 shows an overview of the custom SOAP header demonstration,
showing how the client piggybacks context data along with an invocation
request that is invoked on the sayHi operation.

Figure 23: Overview of the Custom SOAP Header Demonstration

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2
3

4

5

Context Context

Context

WSDL

XSD File

WSDL

XSD File

HelloWorld
Contract

SOAPHeaderInfo
Schema

Artix SOAP
Header Schema

WSDL

XSD File

WSDL

XSD File

WSDL

WSDL File

HelloWorld
Contract

Register context

Initialize context data

Register context
 172

Context Example
Transmission of context data As illustrated in Figure 23, SOAP context data is transmitted as follows:

1. The client registers the context type, SOAPHeaderInfo, with the Bus.

2. The client initializes the context data instance.

3. The client invokes the sayHi() operation on the server.

4. As the server starts up, it registers the SOAPHeaderInfo context type
with the Bus.

5. When the sayHi() operation request arrives on the server side, the
sayHi() operation implementation extracts the context data from the
request.

HelloWorld WSDL contract The HelloWorld WSDL contract defines the contract implemented by the
server in this demonstration. In particular, the HelloWorld contract defines
the Greeter port type containing the sayHi WSDL operation.

SOAPHeaderInfo schema The SOAPHeaderInfo schema (in the
demos/advanced/custom_soap_header/etc/contextTypes.xsd file) defines
the custom data type used as the context data type. This schema is specific
to the custom SOAP header demonstration.

Artix SOAP header schema The Artix SOAP header schema is used implicitly to define the overall
header format for custom headers containing context data. This schema is
generic to all Artix applications that send context data in a SOAP header.
173

CHAPTER 7 | Artix Contexts
Sample Context Schema

Overview This subsection describes how to define an XML schema for a context type.
In this example, the SOAPHeaderInfo type is declared in an XML schema.
The SOAPHeaderInfo type is then used by the custom SOAP header
demonstration to send custom data in a SOAP header.

SOAPHeaderInfo XML declaration Example 68 shows the schema for the SOAPHeaderInfo type, which is
defined specifically for the custom SOAP header demonstration to carry
some sample data in a SOAP header. Note that Example 68 is a pure
schema declaration, not a WSDL declaration.

The SOAPHeaderInfo complex type defines two member elements, as
follows:

• originator—holds an arbitrary client identifier.

• message—holds an arbitrary example message.

Example 68:XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:annotation>
 <xs:documentation>
 Content to be added to a SOAP header
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="originator" type="xs:string"/>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
 174

Context Example
Target namespace You can use any target namespace for a context schema (as long as it does
not clash with an existing namespace). This demonstration uses the
following target namespace:

http://schemas.iona.com/types/context

Compiling the SOAPHeaderInfo
schema

To compile the SOAPHeaderInfo schema, invoke the wsdltocpp compiler
utility at the command line, as follows:

wsdltocpp contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from
Example 68. This command generates the following C++ stub files:

contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes.cxx
contextTypes_xsdTypesFactory.cxx

SOAPHeaderInfo C++ mapping Example 69 shows how the schema from Example 68 on page 174 maps
to C++, to give the soap_interceptor::SOAPHeaderInfo C++ class.

Example 69:C++ Mapping of the SOAPHeaderInfo Context Type

// C++
...
namespace soap_interceptor
{
 ...
 class SOAPHeaderInfo : public IT_Bus::SequenceComplexType
 {
 public:
 static const IT_Bus::QName type_name;

 SOAPHeaderInfo();
 SOAPHeaderInfo(const SOAPHeaderInfo & copy);
 virtual ~SOAPHeaderInfo();
 ...
 IT_Bus::String & getoriginator();
 const IT_Bus::String & getoriginator() const;
 void setoriginator(const IT_Bus::String & val);

 IT_Bus::String & getmessage();
 const IT_Bus::String & getmessage() const;
 void setmessage(const IT_Bus::String & val);
 ...
175

CHAPTER 7 | Artix Contexts
 };
 ...
}

Example 69:C++ Mapping of the SOAPHeaderInfo Context Type
 176

Context Example
Client Main Function

Overview This subsection discusses the client for the custom SOAP header
demonstration. This client is designed to send a custom header, of
SOAPHeaderInfo type, every time it invokes an operation on the Greeter port
type.

To enable the sending of context data, the client performs two fundamental
tasks, as follows:

1. Register a context type with the SOAP container—registering the
context type is a prerequisite for sending context data in a request. By
registering the context type with the Bus, you give the Bus instance the
capability to marshal and unmarshal context data of that type.

2. Initialize the context data in the SOAP current object—before
invoking any operations, the client obtains an instance of the context
data from a SOAP current object. After initializing the context data, any
operations invoked from the current thread will include the context
data.

Client main function Example 70 shows sample code from the client main function, which shows
how to register a context type and initialize context data for the current
thread.

Example 70:Client Main Function Setting a SOAP Context

// C++
// GreeterClientSample.cxx File

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/soap_context_container.h>

#include <it_bus/context_exception.h>

// Include header files representing the soap header content
2 #include "contextTypes_xsdTypes.h"

#include "contextTypes_xsdTypesFactory.h"
177

CHAPTER 7 | Artix Contexts
#include "GreeterClient.h"

IT_USING_NAMESPACE_STD

using namespace soap_interceptor;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);
 GreeterClient client;

3 ContextContainer* container =
 (bus->get_context_container("SoapContextContainer"));

 // Create QName objects needed to define a context
4 const QName principal_ctx_type(

 "",
 "SOAPHeaderInfo",
 "http://schemas.iona.com/types/context"
);

5 const QName principal_message_name(
 "soap_header",
 "header_content",
 "http://schemas.iona.com/custom_header"
);
 const String principal_part_name("header_info");

6 SoapContextContainer* soap_container =
 dynamic_cast<SoapContextContainer*> (container);

7 soap_container->register_context(
 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

8 SoapContextCurrent& soap_current =
dynamic_cast<SoapContextCurrent&> (container->get_current());

9 AnyType& info = soap_current.get_context(

Example 70:Client Main Function Setting a SOAP Context
 178

Context Example
The preceding code example can be explained as follows:

1. The it_bus_pdk/soap_context_container.h header file contains the
declarations of the following classes:

♦ IT_Bus::SoapContextContainer and,

♦ IT_Bus::SoapContextCurrent.

2. The contextTypes_xsdTypes.h local header file contains the
declaration of the SOAPHeaderInfo class, which has been generated
from the context schema (see Example 68 on page 174).

 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

10 SOAPHeaderInfo& header_info =
 dynamic_cast<SOAPHeaderInfo&> (info);

 const String originator("IONA Technologies");
 const String message("Artix is Powerful!");

 // Add the header content
 header_info.setoriginator(originator);
 header_info.setmessage(message);

 // Invoke the Web service business methods
 String theResponse;

11 client.sayHi(theResponse);
 cout << "sayHi response: " << theResponse << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 70:Client Main Function Setting a SOAP Context
179

CHAPTER 7 | Artix Contexts
3. The IT_Bus::get_context_container() function is called with the
string argument, SoapContextContainer, to get an initial reference to
an IT_Bus::SoapContextContainer object. You can, in principle, use
get_context_container() to obtain references to context containers
for a variety of different bindings.

4. The QName with namespace URI,
http://schemas.iona.com/types/context, and local part,
SOAPHeaderInfo, identifies the context type from Example 68 on
page 174.

5. The QName with namespace URI,
http://schemas.iona.com/custom_header, and local part,
header_content, identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

6. The context container must be cast from its base type,
IT_Bus::ContextContainer, to the derived type,
IT_Bus::SoapContextContainer, in order to access the SOAP specific
methods on this object.

7. This call to register_context() tells the Artix Bus that the
SOAPHeaderInfo type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

8. Call IT_Bus::ContextContainer::get_current() to obtain a reference
to the IT_Bus::SoapContextCurrent object and cast it to the derived
type. The current object is needed in order to initialize the context data
that will accompany all operation requests originating from the current
thread.

9. This SoapContextCurrent::get_context() call returns a
thread-specific instance of a SOAPHeaderInfo object. Because multiple
context types could be registered against a SOAP header, it is
necessary to specify the exact type details in the arguments to
get_context().

10. The IT_Bus::AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, info, to its
derived type, SOAPHeaderInfo.
 180

Context Example
By setting the originator and message elements of this
SOAPHeaderInfo object, you are effectively fixing the context data for
all operations invoked from this thread.

11. When you invoke the sayHi() operation, the context data is included
in the SOAP header. From this point on, any WSDL operation invoked
from the current thread will include the SOAPHeaderInfo context data
in its SOAP header.
181

CHAPTER 7 | Artix Contexts
Server Main Function

Overview This subsection discusses the main function for the server in the custom
SOAP header demonstration. In addition to the usual boilerplate code for an
Artix server (that is, registering a servant and calling IT_Bus::run()), this
server also registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling
capability is then exploited in the implementation of the sayHi() operation
(see Example 72 on page 185).

Server main function Example 71 shows sample code from the server main function, which
registers the SOAPHeaderInfo context type and then creates and registers a
GreeterImpl servant object.

Example 71:Server Main Function Registering a SOAP Context

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

1 #include <it_bus_pdk/soap_context_container.h>

#include "GreeterImpl.h"

IT_USING_NAMESPACE_STD

using namespace soap_interceptor;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

2 ContextContainer* container =
 (bus->get_context_container("SoapContextContainer"));
 182

Context Example

3 SoapContextContainer* soap_container =

 dynamic_cast<SoapContextContainer*> (container);

4 const QName principal_ctx_type(
 "",
 "SOAPHeaderInfo",
 "http://schemas.iona.com/types/context"
);

5 const QName principal_message_name(
 "soap_header",
 "header_content",
 "http://schemas.iona.com/custom_header"
);
 const String principal_part_name("header_info");

6 soap_container->register_context(
 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

 GreeterImpl servant(bus);

 IT_Bus::QName service_name("", "SOAPService",
"http://www.iona.com/custom_soap_interceptor");

 bus->register_servant(
 servant,
 "../../etc/hello_world.wsdl",
 service_name
);

 IT_Bus::run();
 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.error() << endl;
 return -1;
 }
 return 0;
}

Example 71:Server Main Function Registering a SOAP Context
183

CHAPTER 7 | Artix Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/soap_context_container.h header file contains the
declarations of the following classes:

♦ IT_Bus::SoapContextContainer and,

♦ IT_Bus::SoapContextCurrent.

2. The IT_Bus::get_context_container() function is called with the
string argument, SoapContextContainer, to get an initial reference to
an IT_Bus::SoapContextContainer object. You can, in principle, use
get_context_container() to obtain references to context containers
for a variety of different bindings.

3. The context container must be cast from its base type,
IT_Bus::ContextContainer, to the derived type,
IT_Bus::SoapContextContainer, in order to access the SOAP specific
methods on this object.

4. The QName with namespace URI,
http://schemas.iona.com/types/context, and local part,
SOAPHeaderInfo, identifies the context type from Example 68 on
page 174.

5. The QName with namespace URI,
http://schemas.iona.com/custom_header, and local part,
header_content, identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

6. This call to register_context() tells the Artix Bus that the
SOAPHeaderInfo type will be used to receive context data in SOAP
headers. After you have registered the context, the Bus is prepared to
unmarshal the context data (if any) from a SOAP header.
 184

Context Example
Service Implementation

Overview This subsection discusses the implementation of the Greeter port type,
which maps to the GreeterImpl servant class in C++.

In the custom SOAP header demonstration, the GreeterImpl::sayHi()
operation is modified to peek at the context data accompanying the
invocation. To access the context data, you need to get access to a context
current object, which encapsulates all of the context data received from the
client.

Implementation of the sayHi
operation

Example 72 shows the implementation of the sayHi() operation from the
GreeterImpl servant class. The sayHi() operation implementation uses the
context API to access the context data received from the client.

Example 72: sayHi Operation Accessing a SOAP Context

// C++
...
void
GreeterImpl::sayHi(
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "sayHi invoked" << endl;
 theResponse = "Hello from Artix";

 Bus_var bus = Bus::create_reference();

1 ContextContainer* container =
 (bus->get_context_container("SoapContextContainer"));

2 SoapContextCurrent& soap_current =
dynamic_cast<SoapContextCurrent&> (container->get_current());

3 const QName principal_ctx_type(
 "",
 "SOAPHeaderInfo",
 "http://schemas.iona.com/types/context"
);

3 const QName principal_message_name(
 "soap_header",
185

CHAPTER 7 | Artix Contexts
The preceding code example can be explained as follows:

1. The IT_Bus::get_context_container() function is called with the
string argument, SoapContextContainer, to get an initial reference to
an IT_Bus::SoapContextContainer object.

2. Call IT_Bus::ContextContainer::get_current() to obtain a reference
to the IT_Bus::SoapContextCurrent object and cast it to the derived
type. The current object provides access to the context data received
from the client (if any).

3. The QName with namespace URI,
http://schemas.iona.com/types/context, and local part,
SOAPHeaderInfo, identifies the context type from Example 68 on
page 174.

4. The QName with namespace URI,
http://schemas.iona.com/custom_header, and local part,
header_content, identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

 "header_content",
 "http://schemas.iona.com/custom_header"
);
 const String principal_part_name("header_info");

4 AnyType& info = soap_current.get_context(
 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

5 SOAPHeaderInfo& header_info =
 dynamic_cast<SOAPHeaderInfo&> (info);

6 // Extract the application specific SOAP header information
 String& originator = header_info.getoriginator();
 String& message = header_info.getmessage();

 cout << "SOAP Header originator = "
 << originator.c_str() << endl;
 cout << "SOAP Header message = " << message.c_str() << endl;
}

Example 72: sayHi Operation Accessing a SOAP Context
 186

Context Example
5. The IT_Bus::AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, info, to its
derived type, SOAPHeaderInfo.

6. You can now access the context data by calling the accessors for the
originator and message elements, getoriginator() and
getmessage().
187

CHAPTER 7 | Artix Contexts
 188

CHAPTER 8

Message
Attributes
This chapter describes how to program message attributes,
which enable you to send extra data in a WSDL message during
an operation call.

In this chapter This chapter discusses the following topics:

Introduction to Message Attributes page 190

Schemas page 193

Name-Value API page 195

Transport-Specific API page 199

Using Message Attributes in a Client page 202

Using Message Attributes in a Server page 205
189

CHAPTER 8 | Message Attributes
Introduction to Message Attributes

Overview Message attributes provide a way of transmitting data in a WSDL message
header as part of an operation invocation. For example, message attributes
are useful in the context of secure communication, where they can be used
to transmit authentication data between clients and servers.

Message attribute categories Message attributes are properties that are set on an instance of a WSDL
port. They are defined in a WSDL schema and are usually transport-specific.
They can be divided into the following categories:

• Attributes that can be sent from the client to the server (input message
attributes).

• Attributes that can be sent from the server to the client (output
message attributes).

Additionally, the following kinds of message attribute can only be set locally
and are not transmitted between applications:

• Attributes that configure the WSDL port on the client side (not
transmitted).

• Attributes that configure the WSDL port on the server side (not
transmitted).
 190

Introduction to Message Attributes
Input and output messages Figure 24 shows how message attributes are sent in the input message
header, from client to server, and in the output message header, from server
to client.

Client interception points A client can access message attributes at the following interception points:

• Pre-invoke—write input message attributes prior to an operation call.

• Post-invoke—read output message attributes after an operation call.

Server interception points A server can access message attributes within the body of an operation
implementation to do either of the following:

• Read the input message attributes received from the client.

• Write output message attributes to send to the client.

Oneway operations A WSDL oneway operation defines only an input message. Hence, in a
oneway operation it is only possible to define input message attributes.

Figure 24: Passing Message Attributes in Input and Output Messages

Artix Client
Transport

Artix
Binding

Artix Client

request response

Artix Server
Transport

Artix
Binding

Artix Server

request response

request

message
parts

message
attributes

response

message
parts

message
attributes

post-invokepre-invoke write attributesread attributes
191

CHAPTER 8 | Message Attributes
Setting message attributes in
configuration

It is possible to specify message attributes in configuration, by adding WSDL
extension elements to the <port> element of the WSDL contract.

For example, the HelloWorld MQ Soap example (located in
ArtixInstallDir/artix/Version/demos/transports/soap_over_mq) defines
the <port> element in its WSDL contract as follows:

The attributes in the preceding example define the name and properties of
an MQ series message queue both on the client side and the server side.

Setting message attributes by
programming

Artix also allows you to set message attributes by programming. This gives
you finer control over message attributes, enabling you to set them
per-invocation instead of per-connection.

There are two styles of API for accessing and modifying message attributes
by programming, as discussed in the following sections:

• “Name-Value API” on page 195.

• “Transport-Specific API” on page 199.

<definitions ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 AccessMode="send"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 />

 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 />
 </port>
 </service>
</definitions>
 192

Schemas
Schemas

Overview The various kinds of message attributes are defined in a collection of XML
schema definitions (one schema file for each transport type), located in the
following directory:

ArtixInstallDir/artix/Version/schemas

Schema documentation For documentation on the message attribute settings, see the relevant
sections of Designing Artix Solutions concerning HTTP Transport Attributes,
MQSeries Transport Attributes and Tibco Transport Attributes.

Schemas for message attributes The message attributes supported by Artix are defined by transport-specific
XSLT schema files, located in the ArtixInstallDir/artix/Version/schemas
directory. The transport schemas with message attributes are listed in
Table 4.

HTTP schema example Example 73 shows an extract from the HTTP schema, http-conf.xsd,
showing some message attributes that can be set on the client side (that is,
input message attributes).

The UserName and Password input message attributes can be used to send
authentication data to a server. By default, these message attributes are
sent in a BASIC HTTP authentication header.

Table 4: Transport Schemas with Message Attributes

Schema Type File

HTTP ArtixInstallDir/artix/Version/schemas/http-conf.xsd

MQ Series ArtixInstallDir/artix/Version/schemas/mq.xsd

Tibco ArtixInstallDir/artix/Version/schemas/tibrv.xsd
193

CHAPTER 8 | Message Attributes
Example 73:Sample Extract from the http-conf.xsd Schema

<xs:schema ... >
 <xs:complexType name="clientType">
 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement">

 <xs:attribute name="UserName" type="xs:string"
 use="optional"/>

 <xs:attribute name="Password" type="xs:string"
 use="optional"/>
 ...
 </xs:extension>
 ...
</xs:schema>
 194

Name-Value API
Name-Value API

Overview The name-value API is a transport-neutral API for setting and getting
message attributes, where the attributes are stored in a table of name-value
pairs. Attributes are identified by passing a string argument to one of the
set_Type() or get_Type() functions (for a complete list of attribute
identifiers, see the relevant schema in “Schemas for message attributes” on
page 193).

This subsection discusses the following aspects of the name-value API:

• Inheritance hierarchy.

• MessageAttributes class.

• NamedAttributes class.

Inheritance hierarchy Figure 25 shows the inheritance hierarchy for the classes involved in the
name-value API for message attributes.

MessageAttributes class The IT_Bus::MessageAttributes class inherits functions for getting and
setting name-value pairs from IT_Bus::NamedAttributes, but it does not
define any new member functions of its own. The MessageAttribute class is
used as the base class for transport-specific message attribute classes and
instances of a MessageAttribute type encapsulate the settings for a specific
transport.

NamedAttributes class The IT_Bus::NamedAttributes class acts as a container for a collection of
name-value pairs. The name in a name-value pair is a string identifier and
the value is a data value whose type can be any of the basic WSDL data
types.

Figure 25: Inheritance Hierarchy for IT_Bus::MessageAttributes Class

IT_Bus::MessageAttributes

IT_Bus::NamedAttributes
195

CHAPTER 8 | Message Attributes
The IT_Bus::NamedAttribute API, shown in Example 74, provides a
type-safe interface to the collection of name-value pairs using type-specific
get and set operations, get_Type() and set_Type().

Example 74:The IT_Bus::NamedAttribute API

// C++
IT_Bus::Boolean get_boolean(const IT_Bus::String& name) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_boolean(
 const IT_Bus::String& name,
 IT_Bus::Boolean data
);

IT_Bus::Byte get_byte(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_byte(
 const IT_Bus::String& name,
 IT_Bus::Byte data
);

IT_Bus::Short get_short(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_short(
 const IT_Bus::String& name,
 IT_Bus::Short data
);

IT_Bus::Int get_int(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_int(
 const IT_Bus::String& name,
 IT_Bus::Int data
);

IT_Bus::Long get_long(
 const IT_Bus::String& name
 196

Name-Value API
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_long(
 const IT_Bus::String& name,
 IT_Bus::Long data
);

IT_Bus::UByte get_ubyte(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ubyte(
 const IT_Bus::String& name,
 IT_Bus::UByte data
);

IT_Bus::UShort get_ushort(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ushort(
 const IT_Bus::String& name,
 IT_Bus::UShort data
);

IT_Bus::UInt get_uint(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_uint(
 const IT_Bus::String& name,
 IT_Bus::UInt data
);

IT_Bus::ULong get_ulong(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ulong(
 const IT_Bus::String& name,

Example 74:The IT_Bus::NamedAttribute API
197

CHAPTER 8 | Message Attributes
 IT_Bus::ULong data
);

IT_Bus::Float get_float(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_float(
 const IT_Bus::String& name,
 IT_Bus::Float data
);

IT_Bus::Double get_double(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_double(
 const IT_Bus::String& name,
 IT_Bus::Double data
);

IT_Bus::String get_string(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_string(
 const IT_Bus::String& name,
 const IT_Bus::String& data
);
...
const IT_Bus::NamedAttributes::StringList& get_names();

void clear_name_values();

Example 74:The IT_Bus::NamedAttribute API
 198

Transport-Specific API
Transport-Specific API

Overview In addition to the neutral API for setting message attributes (as defined by
IT_Bus::NamedAttributes), Artix also provides a transport-specific API for
certain transports. This subsection describes the following aspects of
transport-specific APIs:

• Inheritance hierarchy.

• Transports with a message attribute API.

• Tibco transport example.

Inheritance hierarchy Figure 26 shows the inheritance hierarchy for the classes involved in the
transport-specific API for message attributes.

WARNING: If you decide to use a transport-specific API, you should note
that your application will be tied to a specific transport; that is, you lose
transport pluggability. You should consider carefully the impact that this
might have on the design of your system before opting to use a
transport-specific API.

Figure 26: Inheritance Hierarchy for the Transport-Specific API

IT_Bus::MessageAttributes

IT_Bus::NamedAttributes

HTTPClientAttributes

HTTPServerAttributes IT_Bus::TibrvMessageAttributes

MQAttributes
199

CHAPTER 8 | Message Attributes
Transports with a message
attribute API

The following transports provide a message attributes API:

• HTTP—there are two parts to this API, as follows:

♦ Client side—defined by the HTTPClientAttributes class in the
<it_bus_config/http_wsdl_client.h> header

♦ Server side—defined by the HTTPServerAttributes class in the
<it_bus_config/http_wsdl_server.h> header.

• MQ Series—defined by the MQAttributes class in the
<it_bus_config/mq_wsdl_port.h> header.

• Tibco—defined by the IT_Bus::TibrvMessageAttributes class in the
<it_bus_config/tibrv_message_attributes.h> header.

Tibco transport example Example 75, which is taken from the
<it_bus_config/tibrv_message_attributes.h> header file, shows the
transport-specific API for getting and setting message attributes on the Tibco
transport.

Example 75:Getting and Setting Tibco Message Attributes

// C++
namespace IT_Bus
{
 class IT_BUS_API TibrvMessageAttributes
 : public virtual MessageAttributes
 {
 public:
 ...
 virtual const String& get_send_subject();
 virtual void set_send_subject(const String&

send_subject);

 virtual const String& get_reply_subject();
 virtual void set_reply_subject(
 const String& reply_subject
);

 virtual const String& get_sender();
 virtual void set_sender(const String& sender);

 virtual const ULong& get_sequence();

 virtual const Double& get_time_limit();
 200

Transport-Specific API
 virtual void set_time_limit(const Double& time_limit);

 virtual const UByte& get_jms_delivery_mode();

 virtual const UByte& get_jms_priority();

 virtual const ULong& get_jms_timestamp();

 virtual const ULong& get_jms_expiration();

 virtual const String& get_jms_type();

 virtual const String& get_jms_message_id();

 virtual const String& get_jms_correlation_id();

 virtual const Boolean& get_jms_redelivered();
 ...
 };
};

Example 75:Getting and Setting Tibco Message Attributes
201

CHAPTER 8 | Message Attributes
Using Message Attributes in a Client

Overview This section describes how to write a client that sends message attributes
across the wire to a server as part of an operation invocation.

How to use message attributes in
a client

To use message attributes on the client side, perform the following steps:

C++ example To use message attributes in a sample client, you can modify the
HelloWorld HTTP Soap client as shown in Example 76. Edit the client.cxx
file, which is located in the
ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/cxx/c
lient directory. In Example 76, the client sets two input message
attributes, UserName and Password, prior to the WSDL operation call and
reads a single output message attribute, ContentType, after the call.

Step Action

1 Obtain an IT_Bus::Port object by calling get_port() on the
client proxy object.

2 Call the use_input_message_attributes() and
use_output_message_attributes() functions on the
IT_Bus::Port object to initialize the message attribute
functionality.

3 Pre-invoke step—set the input message attributes on the
IT_Bus::Port object.

4 Invoke a WSDL operation on the client proxy.

5 Post-invoke step—read the output message attributes from the
IT_Bus::Port object.

Example 76:Using Message Attributes in a Client

// C++
...
 202

Using Message Attributes in a Client
try
{
 IT_Bus::init(argc, argv);

 HelloWorldClient hw;

 String string_in;
 String string_out;

1 // Initialize message attributes.
 IT_Bus::Port& hw_port = hw.get_port();
 hw_port.use_input_message_attributes();
 hw_port.use_output_message_attributes();

2 // Pre-invoke: Set input message attributes.
 IT_Bus::MessageAttributes& hw_input =
 hw_port.get_input_message_attributes();
 hw_input.set_string("UserName","nobody");
 hw_input.set_string("Password","hushhush");

3 hw.sayHi(string_out);
 cout << "sayHi method returned: " << string_out << endl;

4 // Post-invoke: Read output message attributes.
 IT_Bus::MessageAttributes& hw_output =
 hw_port.get_output_message_attributes();
 try {
 String cont_type = hw_output.get_string("ContentType");
 cout << "Message attribute received: ContentType = " <<

cont_type << endl;
 }

5 catch (IT_Bus::NoSuchAttributeException) { }
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 76:Using Message Attributes in a Client
203

CHAPTER 8 | Message Attributes
The preceding client code example can be explained as follows:

1. The HelloWorld client proxy, hw, defines the get_port() method to
give you access to the IT_Bus::Port object that controls the
connection on the client side.

You switch on message attributes on the client side by calling
use_input_message_attributes() and
use_output_message_attributes() on the port object. By default, the
message attribute feature is not enabled because it adds a certain
performance penalty.

2. Pre-invoke interception point—the input message attribute object,
hw_input, enables you to set attributes that are passed over the
connection to the server.

3. The sayHi() operation performs the remote procedure call on the
server.

4. Post-invoke interception point—the output message attribute object,
hw_output, enables you to retrieve the attributes sent by the server.

5. The IT_Bus::NoSuchAttributeException exception is thrown if you try
to read an output attribute that was not sent by the server.
 204

Using Message Attributes in a Server
Using Message Attributes in a Server

Overview On the server side, message attributes can only be accessed within an
execution context. That is, inside the body of a function that implements a
WSDL operation.

This section describes how to write a server that receives input message
attributes from a client and then sends output message attributes back to
the client.

How to use message attributes in
a server

To use message attributes on the server side, perform the following steps:

1. In the constructor for the servant that implements your Artix service,
call the port’s use_input_message_attributes() and
use_output_message_attributes() to initialize the message attribute
functionality.

2. Within an execution context, obtain an IT_Bus::Current object by
calling get_bus()->get_current() on the server stub base object.

3. Using the current object’s get_operation().get_port() operation,
obtain an IT_Bus::Port object.

4. Within the server execution context, you can use the IT_Bus::Port
object to do either of the following:

♦ Read input message attributes.

♦ Set output message attributes.
205

CHAPTER 8 | Message Attributes
C++ example To use message attributes in a server, you can modify the HelloWorld HTTP
SOAP server as shown in Example 77. Edit the HelloWorldImpl.cxx file,
which is located in the
ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/cxx/s
erver directory. In Example 77, the client sets two input message
attributes, UserName and Password, prior to the WSDL operation call and
reads a single output message attribute, ContentType, after the call.

Example 77:Using Message Attributes in a Server

// C++
#include "HelloWorldImpl.h"
#include <it_cal/cal.h>
IT_USING_NAMESPACE_STD
using namespace IT_Bus;

1 HelloWorldImpl::HelloWorldImpl(
 IT_Bus::Bus_ptr bus,
 IT_Bus::Port* port
)
 : HelloWorldServer(bus,port)
{
 port->use_input_message_attributes();
 port->use_output_message_attributes();
}

void HelloWorldImpl::sayHi(IT_Bus::String & Response)
 IT_THROW_DECL((IT_Bus::Exception))
{

2 // Get a reference to the port.
 Current& current = get_bus()->get_current();

3 Port& port = current.get_operation().get_port();

4 // Read input message attributes.
 IT_Bus::MessageAttributes& hw_input =

port().get_input_message_attributes();
 206

Using Message Attributes in a Server
The server code in Example 77 can be explained as follows:

1. In the HelloWorldImpl constructor, call
use_input_message_attributes() and
use_output_message_attributes() on the port object to initialize the
message attribute functionality.

2. The servant’s Current object is obtained through the Bus object
representing the server connection. The get_bus() operation is defined
on the IT_Bus::ServerStubBase class, which is a base class of
HelloWorldImpl. It returns a reference to the Bus object that represents
the server connection.

5 try
 {
 IT_Bus::String user_name = hw_input.get_string("UserName");
 IT_Bus::String password = hw_input.get_string("Password");

 cout << "Message attributes received:" << endl;
 cout << " username = " << user_name
 << ", password = " << password << endl;
 }

6 catch (IT_Bus::NoSuchAttributeException) { }

 cout << "HelloWorldImpl::sayHi called" << endl;

 Response = IT_Bus::String("Greetings from the Artix HelloWorld
Server");

7 // Set output message attributes.
 IT_Bus::MessageAttributes& hw_output =

port.get_output_message_attributes();
 hw_output.set_string("ContentType","text/xml");
}

Example 77:Using Message Attributes in a Server
207

CHAPTER 8 | Message Attributes
3. The get_port() operation is defined on the IT_Bus::Operation class,
which is accessed through the current object’s get_operation()
operation.

4. To read the input message attribute object on the server side, call
get_input_message_attributes() on the server port object.

5. In this example, the server peeks at the value of the UserName and
Password attributes. Normally, however, you would not bother to read
the UserName and Password at this point because they would
automatically be processed by the server’s transport layer.

6. The IT_Bus::NoSuchAttributeException exception is thrown here if
you try to read an input attribute that was not sent by the client.

7. You can send output message attributes back to the client by setting
attributes on the output message attributes object, hw_output.

Note: You cannot call get_port() on the server stub if you are using
the MULTI_THREADED threading model when the servant
implementation is registered against multiple ports. The get_port()
operation is currently supported for the following scenarios only:

• MULTI_INSTANCE threading model with multiple ports.

• MULTI_THREADED threading model with only a single port.
 208

CHAPTER 9

Artix Data Types
This chapter presents the XML schema data types supported
by Artix and describes how these data types map to C++.

In this chapter This chapter discusses the following topics:

Simple Types page 210

Complex Types page 228

anyType Type page 268

Nillable Types page 273

SOAP Arrays page 295

IT_Vector Template Class page 307
209

CHAPTER 9 | Artix Data Types
Simple Types

Overview This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the
restriction that they cannot contain elements and they cannot carry any
attributes.

In this section This section contains the following subsections:

Atomic Types page 211

String Type page 212

QName Type page 217

Date and Time Types page 219

Decimal Type page 220

Binary Types page 222

Deriving Simple Types by Restriction page 224

Unsupported Simple Types page 227
 210

Simple Types
Atomic Types

Overview For unambiguous, portable type resolution, a number of data types are
defined in the Artix foundation classes, specified in it_bus/types.h. The
Artix data types map closely to WSDL type names, and should be used by
client applications.

Table of atomic types The atomic types are:

Table 5: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type

xsd:boolean IT_Bus::Boolean

xsd:byte IT_Bus::Byte

xsd:unsignedByte IT_Bus::UByte

xsd:short IT_Bus::Short

xsd:unsignedShort IT_Bus::UShort

xsd:int IT_Bus::Int

xsd:unsignedInt IT_Bus::UInt

xsd:long IT_Bus::Long

xsd:unsignedLong IT_Bus::ULong

xsd:float IT_Bus::Float

xsd:double IT_Bus::Double

xsd:string IT_Bus::String

xsd:QName IT_Bus::QName (SOAP only)

xsd:dateTime IT_Bus::DateTime

xsd:decimal IT_Bus::Decimal

xsd:base64Binary IT_Bus::BinaryBuffer

xsd:hexBinary IT_Bus::BinaryBuffer
211

CHAPTER 9 | Artix Data Types
String Type

Overview The xsd:string type maps to IT_Bus::String, which is typedef’ed in
it_bus/ustring.h to IT_Bus::IT_UString class. For a full definition of
IT_Bus::String, see it_bus/ustring.h.

IT_Bus::String class The IT_Bus::String class is modelled on the standard ANSI string class.
Hence, the IT_Bus::String class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, !=, >, <,
>=, <= operators for comparisons.

String iterator class The corresponding string iterator class is IT_Bus::String::iterator.

C++ example The following C++ example shows how to perform some basic string
manipulation with IT_Bus::String:

Internationalization The IT_Bus::String class supports the use of international characters.
When using international characters, you should configure your Artix
application to use a particular code set by editing the Artix domain
configuration file, artix.cfg. The configuration details depend on the type
of Artix binding, as follows:

• SOAP binding—set the plugins:soap:encoding configuration variable.

• CORBA binding—set the plugins:codeset:char:ncs,
plugins:codeset:char:ccs, plugins:codeset:wchar:ncs, and
plugins:codeset:wchar:ccs configuration variables.

For more details about configuring internationalization, see the "Using Artix
with International Codesets" chapter of the Deploying and Managing Artix
Solutions document.

// C++
IT_Bus::String s = "A C++ ANSI string."
s += " And here is some string concatenation."

// Now convert to a C style string.
// (Note: s retains ownership of the memory)
const char *p = s.c_str();
 212

Simple Types
Encoding arguments Some of the IT_Bus::String functions take an optional string argument,
encoding, that lets you specify a character set encoding for the string.

The encoding argument must be a standard IANA character set name. For
example, Table 6 shows some of commonly used IANA character set
names:

Artix supports all of the character sets defined in International Components
for Unicoded (ICU) 2.6. For a full listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source
project http://oss.software.ibm.com).

Table 6: IANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

ISO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte
Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme.

ISO-2022-CN Chinese adaptation of generic ISO 2022 encoding
scheme.

BIG5 Big Five is a character set developed by a consortium
of five companies in Taiwan in 1984.
213

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

CHAPTER 9 | Artix Data Types
Constructors The IT_Bus::String class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as
follows:

• Narrow character constructors.

• 16-bit character constructor.

• wchar_t character constructor.

Narrow character constructors Example 78 shows three different constructors that can be used to initialize
an IT_UString with a narrow character string.

The constructor signatures are similar to the standard ANSI string
constructors, except for the additional encoding argument. A null encoding
argument, encoding=0, implies the constructor uses the local character set.

Example 78:Narrow Character Constructors

IT_UString(
 const char* str,
 size_t n = npos,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
IT_UString(
 size_t n,
 char c,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
IT_UString(
 const IT_String& s,
 size_t pos = 0,
 size_t n = npos,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
 214

Simple Types
16-bit character constructor Example 79 shows the constructor that can be used to initialize an
IT_UString with an array of 16-bit characters (represented by unsigned
short*).

wchar_t character constructor Example 80 shows the constructor that can be used to initialize an
IT_UString with an array of wchar_t characters.

String conversion functions The member functions shown in Example 81 are used to convert an
IT_Bus::String to an ordinary C-style string, a UTF-16 format string and a
wchar_t format string:

Example 79:16-Bit Character Constructor

IT_UString(
 const unsigned short* sb,
 const IT_String& encoding,
 size_t n = npos,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Example 80:wchar_t Character Constructor

IT_UString(
 const wchar_t* wb,
 size_t n = npos,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Example 81:String Conversion Functions

// C++
const char* c_str(
 const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utf16_str() const;

const wchar_t* wchar_t_str() const;
215

CHAPTER 9 | Artix Data Types
If you want to copy the return value from a string conversion function, you
also need to know the dimension of the relevant array. For this, you can use
the IT_Bus::String::length() function:

The IT_Bus::String::length() function returns the number of underlying
characters in a string, irrespective of how many bytes it takes to represent
each character. Hence, the size of the array required to hold a copy of a
converted string equals length()+1 (an extra array element is required for
the NUL character).

String conversion examples Example 82 shows you how to convert and copy a string, s, into a C-style
string, a UTF-16 format string and a wchar_t format string.

Reference For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the "Using Artix with
International Codesets" chapter of the Deploying and Managing Artix
Solutions document.

// C++
size_t length() const;

Example 82:String Conversion Examples

// C++
// Copy 's' into a plain 'char *' string:
char *s_copy = new char[s.length()+1];
strcpy(s_copy, s.c_str());

// Copy 's' into a UTF-16 string:
unsigned short* utf16_copy = new unsigned short[s.length()+1];
const unsigned short* utf16_p = s.utf16_str();
for (i=0; i<s.length()+1; i++) {
 utf16_copy[i] = utf16_p[i];
}

// Copy 's' into a wchar_t string:
wchar_t* wchar_t_copy = new wchar_t[s.length()+1];
const wchar_t* wchar_t_p = s.wchar_t_str();
for (i=0; i<s.length()+1; i++) {
 wchar_t_copy[i] = wchar_t_p[i];
}

 216

Simple Types
QName Type

Overview xsd:QName maps to IT_Bus::QName. A qualified name, or QName, is the
unique name of a tag appearing in an XML document, consisting of a
namespace URI and a local part.

QName constructor The usual way to construct an IT_Bus::QName object is by calling the
following constructor:

// C++
QName::QName(
 const String & namespace_prefix,
 const String & local_part,
 const String & namespace_uri
)

Because the namespace prefix is relatively unimportant, you can leave it
blank. For example, to create a QName for the <soap:address> element:

QName member functions The IT_Bus::QName class has the following public member functions:

const IT_Bus::String &
get_namespace_prefix() const;

const IT_Bus::String &
get_local_part() const;

const IT_Bus::String &
get_namespace_uri() const;

const IT_Bus::String get_raw_name() const;
const IT_Bus::String to_string() const;

Note: In Artix 1.2.1, the mapping from xsd:QName to IT_Bus::QName is
supported only for the SOAP binding.

// C++
IT_Bus::QName soap_address = new IT_Bus::QName(
 "",
 "address",
 "http://schemas.xmlsoap.org/wsdl/soap"
);
217

CHAPTER 9 | Artix Data Types
bool has_unresolved_prefix() const;
size_t get_hash_code() const;

QName equality The == operator can be used to test for equality of IT_Bus::QName objects.
QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the
QNames are equal if their namespace URIs match and the local part of
their element names match.

2. If one of the QNames lacks a namespace URI (empty string), the
QNames are equal if their namespace prefixes match and the local part
of their element names match.
 218

Simple Types
Date and Time Types

Overview xsd:dateTime maps to IT_Bus::DateTime, which is declared in
<it_bus/date_time.h>. DateTime has the following fields:

The default constructor takes no parameters and initializes all of the fields to
zero. An alternative constructor is provided, which accepts all of the
individual date/time fields, as follows:

Table 7: Member Fields of IT_Bus::DateTime

Field Datatype Accessor Methods

4 digit year short short getYear()
void setYear(short wYear)

2 digit month short short getMonth()
void setMonth(short wMonth)

2 digit day short short getDay()
void setDay(short wDay)

hours in military
time

short short getHour()
void setHour(short wHour)

minutes short short getMinute()
void setMinute(short wMinute)

seconds short short getSecond()
void setSecond(short wSecond)

milliseconds short short getMilliseconds()
void setMilliseconds(short wMilliseconds)

hour offset from
GMT

short void setUTCTimeZoneOffset(
 short hour_offset,
 short minute_offset)
void getUTCTimeZoneOffset(
 short & hour_offset,
 short & minute_offset)

minute offset from
GMT

short

IT_DateTime(short wYear, short wMonth, short wDay,
 short wHour = 0, short wMinute = 0,
 short wSecond = 0, short wMilliseconds = 0)
219

CHAPTER 9 | Artix Data Types
Decimal Type

Overview xsd:decimal maps to IT_Bus::Decimal, which is implemented by the IONA
foundation class IT_FixedPoint, defined in <it_dsa/fixed_point.h>.
IT_FixedPoint provides full fixed point decimal calculation logic using the
standard C++ operators.

IT_Bus::Decimal operators The IT_Bus::Decimal type supports a full complement of arithmetical
operators. See Table 8 for a list of supported operators.

IT_Bus::Decimal member
functions

The following member functions are supported by IT_Bus::Decimal:

// C++
IT_Bus::Decimal round(unsigned short scale) const;

IT_Bus::Decimal truncate(unsigned short scale) const;

unsigned short number_of_digits() const;

unsigned short scale() const;

IT_Bool is_negative() const;

int compare(const IT_FixedPoint& val) const;

IT_Bus::Decimal::DigitIterator left_most_digit() const;
IT_Bus::Decimal::DigitIterator past_right_most_digit() const;

Note: Whereas xsd:decimal has unlimited precision, the IT_FixedPoint
type can have at most 31 digit precision.

Table 8: Operators Supported by IT_Bus::Decimal

Description Operators

Arithmetical operators +, -, *, /, ++, --

Assignment operators =, +=, -=, *=, /=

Comparison operators ==, !=, >, <, >=, <=
 220

Simple Types
IT_Bus::Decimal::DigitIterator The IT_Bus::Decimal::DigitIterator type is an ANSI-style iterator class
that iterates over all the digits in a fixed point decimal instance.

C++ example The following C++ example shows how to perform some elementary
arithmetic using the IT_Bus::Decimal type.

// C++
IT_Bus::Decimal d1 = "123.456";
IT_Bus::Decimal d2 = "87654.321";

IT_Bus::Decimal d3 = d1+d2;
d3 *= d1;
if (d3 > 100000) {
 cout << "d3 = " << d3;
}

221

CHAPTER 9 | Artix Data Types
Binary Types

Overview There are two WSDL binary types, which map to C++ as shown in Table 9:

Encoding The only difference between HexBinary and Base64Binary is the way they
are encoded for transmission. The Base64Binary encoding is more compact
because it uses a larger set of symbols in the encoding. The encodings can
be compared as follows:

• HexBinary—the hex encoding uses a set of 16 symbols [0-9a-fA-F],
ignoring case, and each character can encode 4 bits. Hence, two
characters represent 1 byte (8 bits).

• Base64Binary—the base 64 encoding uses a set of 64 symbols and
each character can encode 6 bits. Hence, four characters represent 3
bytes (24 bits).

IT_Bus::Base64Binary and
IT_Bus::HexBinary classes

Both the IT_Bus::Base64Binary and the IT_Bus::HexBinary classes expose
a similar set of member functions, as follows:

Table 9: Schema to Bus Mapping for the Binary Types

Schema Type Bus Type

xsd:base64Binary IT_Bus::Base64Binary

xsd:hexBinary IT_Bus::HexBinary

// C++
size_t get_length() const;

const IT_Bus::Byte get_data(const size_t pos) const;

void set_data(
 IT_Bus::Byte data[],
 size_t data_length,
 bool take_ownership = false
);
 222

Simple Types
C++ example Consider a port type that defines an echoHexBinary operation. The
echoHexBinary operation takes an IT_Bus::HexBinary type as an in
parameter and then echoes this value in the response. Example 83 shows
how a server might implement the echoHexBinary operation.

Example 83:C++ Implementation of an echoHexBinary Operation

// C++
using namespace IT_Bus;
...
void BaseImpl::echoHexBinary(
 const IT_Bus::HexBinaryInParam & inputHexBinary,
 IT_Bus::HexBinaryOutParam& Response
)
 IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "BaseImpl::echoHexBinary called" << endl;
 size_t length = inputHexBinary.get_length();
 Byte * the_data = new Byte[length];

 for (size_t idx = 0; idx < length; idx++)
 {
 the_data[idx] = inputHexBinary.get_data(idx);
 }

 Response.set_data(the_data, length, true);
}

223

CHAPTER 9 | Artix Data Types
Deriving Simple Types by Restriction

Overview Artix currently has limited support for the derivation of simple types by
restriction. You can define a restricted simple type using any of the standard
facets, but in most cases the restrictions are not checked at runtime.

Unchecked facets The following facets can be used, but are not checked at runtime:

• length

• minLength

• maxLength

• pattern

• enumeration

• whiteSpace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

• totalDigits

• fractionDigits

Checked facets The following facets are supported and checked at runtime:

• enumeration

C++ mapping In general, a restricted simple type, RestrictedType, obtained by restriction
from a base type, BaseType, maps to a C++ class, RestrictedType, with
the following public member functions:

// C++
const IT_Bus::QName & get_type() const;

void set_value(const BaseType & value);
BaseType get_value() const;
 224

Simple Types
Restriction with an enumeration
facet

Artix supports the restriction of simple types using the enumeration facet.
The base simple type can be any simple type except xsd:boolean.

When an enumeration type is mapped to C++, the C++ implementation of
the type ensures that instances of this type can only be set to one of the
enumerated values. If set_value() is called with an illegal value, it throws
an IT_Bus::Exception exception.

WSDL example of enumeration
facet

Example 84 shows an example of a ColorEnum type, which is defined by
restriction from the xsd:string type using the enumeration facet. When
defined in this way, the ColorEnum restricted type is only allowed to take on
one of the string values RED, GREEN, or BLUE.

Example 84:WSDL Example of Derivation with the Enumeration Facet

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <simpleType name="ColorEnum">
 <restriction base="xsd:string">
 <enumeration value="RED"/>
 <enumeration value="GREEN"/>
 <enumeration value="BLUE"/>
 </restriction>
 </simpleType>
 ...
</definitions>
225

CHAPTER 9 | Artix Data Types
C++ mapping of enumeration
facet

The WSDL-to-C++ compiler maps the ColorEnum restricted type to the
ColorEnum C++ class, as shown in Example 85. The only values that can
legally be set using the set_value() member function are the strings RED,
GREEN, or BLUE.

Example 85:C++ Mapping of ColorEnum Restricted Type

// C++
class ColorEnum : public IT_Bus::AnySimpleType
{
 ...
 public:
 ColorEnum();
 ColorEnum(const IT_Bus::String & value);
 ...

 ColorEnum& operator= (const ColorEnum& assign);
 IT_Bus::Boolean operator== (const ColorEnum& copy);

 virtual const IT_Bus::QName & get_type() const;
 void set_value(const IT_Bus::String & value);
 IT_Bus::String get_value() const;
};
 226

Simple Types
Unsupported Simple Types

List of unsupported simple types The following WSDL simple types are currently not supported by the
WSDL-to-C++ compiler:

Atomic Simple Types
xsd:normalizedString
xsd:token
xsd:integer
xsd:positiveInteger
xsd:negativeInteger
xsd:nonNegativeInteger
xsd:nonPositiveInteger
xsd:time
xsd:duration
xsd:date
xsd:gMonth
xsd:gYear
xsd:gYearMonth
xsd:gDay
xsd:gMonthDay
xsd:anyURI
xsd:language
xsd:Name
xsd:NCName
xsd:QName (restricted support)
xsd:ENTITY
xsd:NOTATION
xsd:IDREF

Other Simple Types
xsd:list
xsd:union
227

CHAPTER 9 | Artix Data Types
Complex Types

Overview This section describes the WSDL-to-C++ mapping for complex types.
Complex types are defined within an XML schema. In contrast to simple
types, complex types can contain elements and carry attributes.

In this section This section contains the following subsections:

Sequence Complex Types page 229

Choice Complex Types page 232

All Complex Types page 236

Attributes page 239

Nesting Complex Types page 243

Deriving a Complex Type from a Simple Type page 247

Deriving a Complex Type from a Complex Type page 250

Occurrence Constraints page 259

Arrays page 263
 228

Complex Types
Sequence Complex Types

Overview XML schema sequence complex types are mapped to a generated C++
class, which inherits from IT_Bus::SequenceComplexType. The mapped
C++ class is defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the sequence complex type.

Occurrence constraints Occurrence constraints, which are specified using the minOccurs and
maxOccurs attributes, are supported for sequence complex types. See
“Occurrence Constraints” on page 259.

WSDL example Example 86 shows an example of a sequence, SequenceType, with three
elements.

Example 86:Definition of a Sequence Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
</schema>
229

CHAPTER 9 | Artix Data Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 86) to
the SequenceType C++ class. An outline of this class is shown in
Example 87.

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 87:Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 SequenceType(const SequenceType& copy);
 virtual ~SequenceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String &

val);

 private:
 ...
};
 230

Complex Types
C++ example Consider a port type that defines an echoSequence operation. The
echoSequence operation takes a SequenceType type as an in parameter and
then echoes this value in the response. Example 88 shows how a client
could use a proxy instance, bc, to invoke the echoSequence operation.

Example 88:Client Invoking an echoSequence Operation

// C++
SequenceType seqIn, seqResult;
seqIn.setvarFloat(3.14159);
seqIn.setvarInt(54321);
seqIn.setvarString("You can use a string constant here.");

try {
 bc.echoSequence(seqIn, seqResult);

 if((seqResult.getvarInt() != seqIn.getvarInt()) ||
 (seqResult.getvarFloat() != seqIn.getvarFloat()) ||
 (seqResult.getvarString().compare(seqIn.getvarString()) !=

0))
 {
 cout << endl << "echoSequence FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

231

CHAPTER 9 | Artix Data Types
Choice Complex Types

Overview XML schema choice complex types are mapped to a generated C++ class,
which inherits from IT_Bus::ChoiceComplexType. The mapped C++ class
is defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the choice complex type. The choice complex type is
effectively equivalent to a C++ union, so only one of the elements is
accessible at a time. The C++ implementation defines a discriminator,
which tells you which of the elements is currently selected.

Occurrence constraints Occurrence constraints are currently not supported for choice complex
types.

WSDL example Example 89 shows an example of a choice complex type, ChoiceType, with
three elements.

Example 89:Definition of a Choice Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </choice>
 </complexType>

 ...
</schema>
 232

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 89) to
the SequenceType C++ class. An outline of this class is shown in
Example 90.

Example 90:Mapping of ChoiceType to C++

// C++
class ChoiceType : public IT_Bus::ChoiceComplexType
{
 public:
 ChoiceType();
 ChoiceType(const ChoiceType& copy);
 virtual ~ChoiceType();

 ...
 virtual const IT_Bus::QName & get_type() const ;

 ChoiceType& operator= (const ChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 const IT_Bus::String& getvarString() const;
 void setvarString(const IT_Bus::String& val);

 ChoiceTypeDiscriminator get_discriminator() const
 {
 return m_discriminator;
 }

 IT_Bus::UInt get_discriminator_as_uint() const
 {
 return m_discriminator;
 }
233

CHAPTER 9 | Artix Data Types
Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

The member functions have the following effects:

• setElementName()—select the ElementName element, setting the
discriminator to the ElementName label and initializing the value of
ElementName.

• getElementName()—get the value of the ElementName element. You
should always check the discriminator before calling the
getElementName() accessor. If ElementName is not currently
selected, the value returned by getElementName() is undefined.

• get_discriminator()—returns the value of the discriminator.

C++ example Consider a port type that defines an echoChoice operation. The echoChoice
operation takes a ChoiceType type as an in parameter and then echoes this
value in the response. Example 91 shows how a client could use a proxy
instance, bc, to invoke the echoChoice operation.

 enum ChoiceTypeDiscriminator
 {
 varFloat,
 varInt,
 varString,
 ChoiceType_MAXLONG=-1L
 } m_discriminator;

 private:
 ...
};

Example 90:Mapping of ChoiceType to C++

Example 91:Client Invoking an echoChoice Operation

// C++
ChoiceType cIn, cResult;
// Initialize and select the ChoiceType::varString label.
cIn.setvarString("You can use a string constant here.");

try {
 234

Complex Types
 bc.echoChoice(cIn, cResult);

 bool fail = IT_TRUE;
 if (cIn.get_discriminator()==cResult.get_discriminator()) {
 switch (cIn.get_discriminator()) {
 case ChoiceType::varFloat:
 fail =(cIn.getvarFloat()!=cResult.getvarFloat());
 break;
 case ChoiceType::varInt:
 fail =(cIn.getvarInt()!=cResult.getvarInt());
 break;
 case ChoiceType::varString:
 fail =
 (cIn.getvarString()!=cResult.getvarString());
 break;
 }
 }

 if (fail) {
 cout << endl << "echoChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 91:Client Invoking an echoChoice Operation
235

CHAPTER 9 | Artix Data Types
All Complex Types

Overview XML schema all complex types are mapped to a generated C++ class,
which inherits from IT_Bus::AllComplexType. The mapped C++ class is
defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the all complex type. With an all complex type, the order in
which the elements are transmitted is immaterial.

Occurrence constraints Occurrence constraints are supported for the elements of XML schema all
complex types.

WSDL example Example 92 shows an example of an all complex type, AllType, with three
elements.

Note: An all complex type can only be declared as the outermost group of
a complex type. Hence, you cannot nest an all model group, <all>,
directly inside other model groups, <all>, <sequence>, or <choice>. You
may, however, define an all complex type and then declare an element of
that type within the scope of another model group.

Example 92:Definition of an All Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="AllType">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
</schema>
 236

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 92) to
the AllType C++ class. An outline of this class is shown in Example 93.

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 93:Mapping of AllType to C++

// C++
class AllType : public IT_Bus::AllComplexType
{
 public:
 AllType();
 AllType(const AllType& copy);
 virtual ~AllType();

 virtual const IT_Bus::QName & get_type() const;

 AllType& operator= (const AllType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 private:
 ...
};
237

CHAPTER 9 | Artix Data Types
C++ example Consider a port type that defines an echoAll operation. The echoAll
operation takes an AllType type as an in parameter and then echoes this
value in the response. Example 94 shows how a client could use a proxy
instance, bc, to invoke the echoAll operation.

Example 94:Client Invoking an echoAll Operation

// C++
AllType allIn, allResult;
allIn.setvarFloat(3.14159);
allIn.setvarInt(54321);
allIn.setvarString("You can use a string constant here.");

try {
 bc.echoAll(allIn, allResult);

 if((allResult.getvarInt() != allIn.getvarInt()) ||
 (allResult.getvarFloat() != allIn.getvarFloat()) ||
 (allResult.getvarString().compare(allIn.getvarString()) !=

0))
 {
 cout << endl << "echoAll FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

 238

Complex Types
Attributes

Overview Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. For example, you can include attributes in the
definitions of an all complex type, sequence complex type, and choice
complex type. The declaration of an attribute in a complex type has the
following syntax:

<attribute name="AttrName" type="AttrType"
use="[optional|required|prohibited]"/>

Attribute use When declaring an attribute, the use can have one of the following values:

• optional—(default) the attribute can either be set or unset.

• required—the attribute must be set.

• prohibited—the attribute must be unset (cannot be used).

On-the-wire optimization Artix optimizes the transmission of attributes by distinguishing between set
and unset attributes. Only set attributes are transmitted (on bindings that
support this optimization).

C++ mapping overview There are two different styles of C++ mapping for attributes, depending on
the use value in the attribute declaration:

• Optional attributes—if an attribute is declared with use="optional"
(or if the use setting is omitted altogether), the generated
getAttribute() function returns a pointer, instead of a reference, to the
attribute value. This enables you to test whether the the attribute is set
or not by testing the pointer for nilness (whether it equals 0).

• Required attributes—if an attribute is declared with use="required",
the generated getAttribute() function returns a reference to the
attribute value.

Note: The CORBA binding does not support this optimization.
239

CHAPTER 9 | Artix Data Types
Optional attribute example Example 95 shows how to define a sequence type with a single optional
attribute, prop, of xsd:string type (attributes are optional by default).

C++ mapping for an optional
attribute

Example 96 shows an outline of the C++ SequenceType class generated
from Example 95, which defines accessor and modifier functions for the
optional prop attribute.

The preceding C++ mapping can be explained as follows:

1. If the attribute is set, returns a pointer to its value; if not, returns 0.

2. If val != 0, sets the attribute to *val (makes a copy); if val == 0,
unsets the attribute.

3. Sets the attribute to val (makes a copy). This is a convenience function
that enables you to set the attribute without using a pointer.

Example 95:Definition of a Sequence Type with an Optional Attribute

<complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="prop" type="xsd:string"/>
</complexType>

Example 96:Mapping an Optional Attribute to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 ...

1 const IT_Bus::String * getprop() const;
 IT_Bus::String * getprop();

2 void setprop(const IT_Bus::String * val);
3 void setprop(const IT_Bus::String & val);

};
 240

Complex Types
Required attribute example Example 97 shows how to define a sequence type with a single required
attribute, prop, of xsd:string type.

C++ mapping for a required
attribute

Example 98 shows an outline of the C++ SequenceType class generated
from Example 97 on page 241, which defines accessor and modifier
functions for the required prop attribute.

In this case, the getprop() accessor function returns a reference to a string
(that is, IT_Bus::String&), rather than a pointer to a string.

Example 97:Definition of a Sequence Type with a Required Attribute

<complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="prop" type="xsd:string" use="required"/>
</complexType>

Example 98:Mapping a Required Attribute to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 ...
 const IT_Bus::String & getprop() const;
 IT_Bus::String & getprop();

 void setprop(const IT_Bus::String & val);
};
241

CHAPTER 9 | Artix Data Types
Limitations The following attribute types are not supported:

• xsd:IDREFS

• xsd:ENTITY

• xsd:ENTITIES

• xsd:NOTATION

• xsd:NMTOKEN

• xsd:NMTOKENS
 242

Complex Types
Nesting Complex Types

Overview It is possible to nest complex types within each other. When mapped to
C++, the nested complex types map to a nested hierarchy of classes,
where each instance of a nested type is stored in a member variable of its
containing class.

Avoiding anonymous types In general, it is a good idea to name types that are nested inside other types,
instead of using anonymous types. This results in simpler code when the
types are mapped to C++.

For an example of the recommended style of declaration, with a named
nested type, see Example 99.

WSDL example Example 99 shows an example of a nested complex type, which features a
choice complex type, NestedChoiceType, nested inside a sequence complex
type, SeqOfChoiceType.

Example 99:Definition of Nested Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="NestedChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 </choice>
 </complexType>
 <complexType name="SeqOfChoiceType">
 <sequence>
 <element name="varString" type="xsd:string"/>
 <element name="varChoice" type="xsd1:NestedChoiceType"/>
 </sequence>
 </complexType>
 ...
</schema>
243

CHAPTER 9 | Artix Data Types
C++ mapping of
NestedChoiceType

The XML schema choice complex type, NestedChoiceType, is a simple
choice complex type, which is mapped to C++ in the standard way.
Example 100 shows an outline of the generated C++ NestedChoiceType
class.

C++ mapping of
SeqOfChoiceType

The XML schema sequence complex type, SeqOfChoiceType, has the
NestedChoiceType nested inside it. Example 101 shows an outline of the
generated C++ SeqOfChoiceType class, which shows how the nested
complex type is mapped within a sequence complex type.

Example 100:Mapping of NestedChoiceType to C++

// C++
class NestedChoiceType : public IT_Bus::ChoiceComplexType
{
 ...
 public:
 NestedChoiceType();
 NestedChoiceType(const NestedChoiceType& copy);
 virtual ~NestedChoiceType();

 virtual const IT_Bus::QName & get_type() const ;

 NestedChoiceType& operator= (const NestedChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 IT_Bus::UInt get_discriminator() const;

 private:
 ...
};

Example 101:Mapping of SeqOfChoiceType to C++

// C++
class SeqOfChoiceType : public IT_Bus::SequenceComplexType
{
 ...
 244

Complex Types
The nested type, NestedChoiceType, can be accessed and modified using
the getvarChoice() and setvarChoice() functions respectively.

C++ example Consider a port type that defines an echoSeqOfChoice operation. The
echoSeqOfChoice operation takes a SeqOfChoiceType type as an in
parameter and then echoes this value in the response. Example 94 shows
how a client could use a proxy instance, bc, to invoke the echoSeqOfChoice
operation.

 public:
 SeqOfChoiceType();
 SeqOfChoiceType(const SeqOfChoiceType& copy);
 virtual ~SeqOfChoiceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SeqOfChoiceType& operator= (const SeqOfChoiceType& assign);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 const NestedChoiceType & getvarChoice() const;
 NestedChoiceType & getvarChoice();
 void setvarChoice(const NestedChoiceType & val);

 private:
 ...
};

Example 101:Mapping of SeqOfChoiceType to C++

Example 102:Client Invoking an echoSeqOfChoice Operation

// C++
NestedChoiceType nested;
nested.setvarFloat(3.14159);

SeqOfChoiceType seqIn, seqResult;
seqIn.setvarChoice(nested);
seqIn.setvarString("You can use a string constant here.");
try {
 bc.echoSeqOfChoice(seqIn, seqResult);
245

CHAPTER 9 | Artix Data Types
 if(
 (seqResult.getvarString().compare(seqIn.getvarString()) != 0)

||
 (seqResult.getvarChoice().get_discriminator()
 !=seqIn.getvarChoice().get_discriminator()))
 {
 cout << endl << "echoSeqOfChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 102:Client Invoking an echoSeqOfChoice Operation
 246

Complex Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type, for which the
following kinds of derivation are supported:

• Derivation by restriction.

• Derivation by extension.

A simple type has, by definition, neither sub-elements nor attributes. Hence,
one of the main reasons for deriving a complex type from a simple type is to
add attributes to the simple type (derivation by extension).

Derivation by restriction Example 103 shows an example of a complex type, orderNumber, derived
by restriction from the xsd:decimal simple type. The new type is restricted
to have values less than 1,000,000.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <restriction> tag defines the derivation by
restriction from xsd:decimal.

Example 103:Deriving a Complex Type from a Simple Type by Restriction

<xsd:complexType name="orderNumber">
 <xsd:simpleContent>
 <xsd:restriction base="xsd:decimal">
 <xsd:maxExclusive value="1000000"/>
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>
247

CHAPTER 9 | Artix Data Types
Derivation by extension Example 104 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> tag defines the derivation by extension
from xsd:decimal.

C++ mapping Example 105 shows an outline of the C++ internationalPrice class
generated from Example 104 on page 248.

Example 104:Deriving a Complex Type from a Simple Type by Extension

<xsd:complexType name="internationalPrice">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 105:Mapping the internationalPrice Type to C++

// C++
class internationalPrice : public

IT_Bus::SimpleContentComplexType
{
 ...
 public:
 internationalPrice();
 internationalPrice(const internationalPrice& copy);
 virtual ~internationalPrice();

 ...
 virtual const IT_Bus::QName & get_type() const;

 internationalPrice& operator= (const internationalPrice&
assign);

 const IT_Bus::String & getcurrency() const;
 IT_Bus::String & getcurrency();
 void setcurrency(const IT_Bus::String & val);
 248

Complex Types
The value of the currency attribute, which is added by extension, can be
accessed and modified using the getcurrency() and setcurrency()
member functions. The simple type value (that is, the value enclosed
between the <internationalPrice> and </internationalPrice> tags) can
be accessed and modified by the get_simpleTypeValue() and
set_simpleTypeValue() member functions.

 const IT_Bus::Decimal & get_simpleTypeValue() const;
 IT_Bus::Decimal & get_simpleTypeValue();
 void set_simpleTypeValue(const IT_Bus::Decimal & val);
 ...
};

Example 105:Mapping the internationalPrice Type to C++
249

CHAPTER 9 | Artix Data Types
Deriving a Complex Type from a Complex Type

Overview Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

• Derivation by restriction—currently not supported by Artix.

• Derivation by extension.

This subsection describes the C++ mapping for complex types derived from
complex types and, in particular, describes the coding pattern for calling a
function either with base type arguments or with derived type arguments.

Allowed inheritance relationships Figure 27 shows the inheritance relationships allowed between complex
types. As well as inheriting between the same kind of complex type
(sequence from sequence, choice from choice, and all from all), it is
possible to cross-inherit. For example, a sequence can derive from a choice,
a choice from an all, an all from a choice, and so on.

Figure 27: Allowed Inheritance Relationships for Complex Types

Sequence Choice All

Sequence Choice All
 250

Complex Types
Derivation by extension Example 106 shows an example of deriving a sequence from a sequence by
extension. In this example, DerivedStruct_BaseStruct is derived from
SimpleStruct by extension. The standard tag used to declare inheritance by
extension is <extension base="BaseComplexType"/>.

The preceding type definition can be explained as follows:

1. This <complexType> tag introduces the definition of the derived
sequence type, DerivedStruct_BaseStruct.

2. The <complexContent> tag indicates that what follows is a declaration
of contained tags. The mixed="false" setting indicates that the type
can contain only tags, not text.

3. The <extension> tag indicates that this type derives by extension from
the SimpleStruct type.

4. The <sequence> tag defines extra type members that are specific to the
derived type, DerivedStruct_BaseStruct.

5. You can also declare attributes specific to the derived type.

Example 106:Example of Deriving a Sequence by Extension

<complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 <attribute name="varAttrString" type="string"/>
</complexType>
...

1 <complexType name="DerivedStruct_BaseStruct">
2 <complexContent mixed="false">
3 <extension base="tns:SimpleStruct">
4 <sequence>

 <element name="varStringExt" type="string"/>
 <element name="varFloatExt" type="float"/>
 </sequence>

5 <attribute name="attrString1" type="string"/>
 </extension>
 </complexContent>

6 <attribute name="attrString2" type="string"/>
</complexType>
251

CHAPTER 9 | Artix Data Types
6. Attributes can also be declared directly within the scope of
<complexType>.

C++ mapping The sequence types defined in Example 106 on page 251, SimpleStruct
and DerivedStruct_BaseStruct, map to C++ as shown in Example 107.

Example 107:C++ Mapping of a Derived Sequence Type

// C++
class SimpleStruct : public IT_Bus::SequenceComplexType
{
 public:
 static const IT_Bus::QName type_name;

 SimpleStruct();
 ...
 IT_Bus::AnyType &
 operator=(const IT_Bus::AnyType & rhs);

 SimpleStruct &
 operator=(const SimpleStruct & rhs);

 const SimpleStruct * get_derived() const;
 virtual IT_Bus::AnyType::Kind get_kind() const;
 virtual const IT_Bus::QName & get_type() const;
 ...
 IT_Bus::Float getvarFloat();
 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float val);

 IT_Bus::Int getvarInt();
 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int val);

 IT_Bus::String & getvarString();
 const IT_Bus::String & getvarString() const;
 void setvarString(const IT_Bus::String & val);

 IT_Bus::String & getvarAttrString();
 const IT_Bus::String & getvarAttrString() const;
 void setvarAttrString(const IT_Bus::String & val);

 private:
 ...
};
 252

Complex Types
The C++ DerivedStruct_BaseStruct class derives directly from the C++
SimpleStruct class. Hence, all of the accessors and modifiers declared in
the base class, SimpleStruct, are also available to the derived class,
DerivedStruct_BaseStruct.

typedef IT_AutoPtr<SimpleStruct> SimpleStructPtr;

...
class IT_TEST_WSDL_API DerivedStruct_BaseStruct : public

SimpleStruct , public virtual
IT_Bus::ComplexContentComplexType

{
 public:
 static const IT_Bus::QName type_name;

 DerivedStruct_BaseStruct();
 DerivedStruct_BaseStruct(const DerivedStruct_BaseStruct &

copy);
 virtual ~DerivedStruct_BaseStruct();
 ...
 IT_Bus::String & getvarStringExt();
 const IT_Bus::String & getvarStringExt() const;
 void setvarStringExt(const IT_Bus::String & val);

 IT_Bus::Float getvarFloatExt();
 const IT_Bus::Float getvarFloatExt() const;
 void setvarFloatExt(const IT_Bus::Float val);

 IT_Bus::String & getattrString1();
 const IT_Bus::String & getattrString1() const;
 void setattrString1(const IT_Bus::String & val);

 IT_Bus::String & getattrString2();
 const IT_Bus::String & getattrString2() const;
 void setattrString2(const IT_Bus::String & val);

 private:
 ...
};

Example 107:C++ Mapping of a Derived Sequence Type
253

CHAPTER 9 | Artix Data Types
Using a base type as a holder The SimpleStruct type declared in Example 107 on page 252 is really a
dual-purpose type. That is, a SimpleStruct instance can be used in one of
the following different ways:

• As a SimpleStruct data type (base type)—member data is accessed
by invoking getElementName() and setElementName() functions
directly on the SimpleStruct instance.

• As a holder type (derived type holder)—in this usage pattern, the
SimpleStruct instance is used to hold a reference to a more derived
type (for example, DerivedStruct_BaseStruct).

Holder type functions If you are using SimpleStruct as a holder type, the following member
functions are relevant:

• SimpleStruct(const SimpleStruct & copy)—the SimpleStruct copy
constructor is used to initialize the reference held by the SimpleStruct
holder object. The type passed to the copy constructor can be any type
derived from SimpleStruct.

• SimpleStruct & operator=(const SimpleStruct & rhs)—
alternatively, if you already have a SimpleStruct object, you can
change the reference held by making an assignment to the
SimpleStruct holder.

• const SimpleStruct * get_derived() const—if you want to access
the derived type held by a SimpleStruct holder object, call the
get_derived() member function and then dynamically cast the return
value to the appropriate type.

• const IT_Bus::QName & get_type() const—call get_type() to get
the QName of the derived type held by a SimpleStruct holder object.

Polymorphism When a WSDL operation is defined to take arguments of a base class type
(for example, SimpleStruct), it is also possible to send and receive
arguments of a type derived from that base class (for example,
DerivedStruct_BaseStruct).

For reasons of backward compatibility, however, the C++ code required for
calling an operation with derived type arguments is different from the C++
code required for calling an operation with base type arguments.
 254

Complex Types
Sample WSDL operation For example, consider the definition of the following WSDL operation,
test_SimpleStruct, that takes an in argument of SimpleStruct type and
returns an out argument of SimpleStruct type.

The preceding test_SimpleStruct WSDL operation maps to the following
C++ function (in the TypeTestClient client proxy class).

To call the preceding test_SimpleStruct() function in C++, use one of the
following programming patterns, depending on the type of arguments
passed:

• Base or derived type arguments.

• Base type arguments only (for legacy code).

Example 108:The test_SimpleStruct Operation with Base Type Arguments

...
<message name="test_SimpleStruct">
 <part name="x" element="tns:SimpleStruct_x"/>
</message>
<message name="test_SimpleStruct_response">
 <part name="return" element="tns:SimpleStruct_return"/>
</message>
...
<operation name="test_SimpleStruct">
 <input name="test_SimpleStruct"
 message="tns:test_SimpleStruct"/>
 <output name="test_SimpleStruct_response"
 message="tns:test_SimpleStruct_response"/>
</operation>

// C++
virtual void
test_SimpleStruct(
 const SimpleStruct &x,
 SimpleStruct &_return,
) IT_THROW_DECL((IT_Bus::Exception));
255

CHAPTER 9 | Artix Data Types
Base or derived type arguments Example 109 shows you how to call the test_SimpleStruct() function
with derived type arguments (of DerivedStruct_BaseStruct type).
Generally, this coding pattern can be used to pass either base type or
derived type arguments.

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the test_SimpleStruct() function is declared
to be of derived type, DerivedStruct_BaseStruct.

2. Both the base members and the derived members of the in parameter,
x, are initialized here.

3. The derived type, x, is wrapped by a base type instance, x_holder. In
this case, the SimpleStruct object, x_holder, is used purely as a
holder type; x_holder does not directly represent a SimpleStruct type
argument.

Example 109:Calling test_SimpleStruct() with Derived Type Arguments

// C++
1 DerivedStruct_BaseStruct x;

// Base members
2 x.setvarFloat((IT_Bus::Float) 3.14);

x.setvarInt((IT_Bus::Int) 42);
x.setvarString((IT_Bus::String) "BaseStruct-x");
x.setvarAttrString((IT_Bus::String) "BaseStructAttr-x");
// Derived members
x.setvarFloatExt((IT_Bus::Float) -3.14f);
x.setvarStringExt((IT_Bus::String) "DerivedStruct-x");
x.setattrString1((IT_Bus::String) "DerivedAttr-x");

3 SimpleStruct x_holder(x);
4 SimpleStruct ret_holder;

5 proxy->test_SimpleStruct(x_holder, ret_holder);

6 const DerivedStruct_BaseStruct* ret_derived
 = dynamic_cast<const DerivedStruct_BaseStruct*>(
 ret_holder.get_derived()
);

// Use ret_derived type value...
...
 256

Complex Types
4. The return type, ret_holder, is declared to be of SimpleStruct type.
Here also, ret_holder is treated as a holder type.

5. Call the remote test_SimpleStruct() function, passing in the two
holder instances, x_holder and ret_holder.

6. To obtain a pointer to the derived type return value, call
SimpleStruct::get_derived(). This function returns a pointer to the
derived type contained in the ret_holder object. You can then cast the
returned pointer to the appropriate type using the dynamic_cast<>
operator.

If necessary, you can call the SimpleStruct::get_type() function to
discover the QName of the returned type before attempting to cast the
return value.

Base type arguments only (for
legacy code)

Example 110 shows you how to call the test_SimpleStruct() function
with base type arguments (of SimpleStruct type). This coding pattern is
supported for reasons of backward compatibility.

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the test_SimpleStruct() function is declared
to be of base type, SimpleStruct.

2. The members of the SimpleStruct in parameter, x, are initialized.

Example 110:Calling test_SimpleStruct() with Base Type Arguments

// C++
1 SimpleStruct x;

// Base members
2 x.setvarFloat((IT_Bus::Float) 3.14);

x.setvarInt((IT_Bus::Int) 42);
x.setvarString((IT_Bus::String) "BaseStruct-x");
x.setvarAttrString((IT_Bus::String) "BaseStructAttr-x");

3 SimpleStruct ret;

4 proxy->test_SimpleStruct(x, ret);

// Use ret value...
cout << ret.getvarFloat();
...
257

CHAPTER 9 | Artix Data Types
3. The return value, ret, of the test_SimpleStruct() function is declared
to be of base type, SimpleStruct.

4. This line calls the remote test_SimpleStruct() function with in
parameter, x, and return parameter, ret.

Note: The return value must be allocated before calling the
test_SimpleStruct() function.

Note: In this example, it is assumed that the return value is of base
type, SimpleStruct. In general, however, the return type might be of
derived type (see “Base or derived type arguments” on page 256).
 258

Complex Types
Occurrence Constraints

Overview You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema has the
following form:

Limitations In the current version of Artix, occurrence constraints can be used only
within the following complex types:

• all complex types,

• sequence complex types.

Occurrence constraints are not supported within the scope of the following:

• choice complex types.

Element lists Lists of elements appearing within a sequence complex type are represented
in C++ by the IT_Bus::ElementListT template. You should not use this
type directly in your code. Use the IT_Vector (see “IT_Vector Template
Class” on page 307) in place of IT_Bus::ElementListT. The
IT_Bus::ElementListT types automatically convert to and from IT_Vector
types.

In addition to the standard member functions and operators defined by
IT_Vector, the element list types support the following member functions:

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound"/>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“Arrays” on page 263.

// C++
size_t get_min_occurs() const;

size_t get_max_occurs() const;

void set_size(size_t new_size);
259

CHAPTER 9 | Artix Data Types
WSDL example Example 111 shows the definition of a sequence type, SequenceType, which
contains a list of integer elements followed by a list of string elements.

C++ mapping Example 112 shows an outline of the C++ SequenceType class generated
from Example 111 on page 260, which defines accessor and modifier
functions for the varInt and varString elements.

size_t get_size() const;

const QName & get_item_name() const;

Example 111:Sequence Type with Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="SequenceType">
 <sequence>
 <element name="varInt" type="xsd:int"
 minOccurs="1" maxOccurs="100"/>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 112:Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 ...
 virtual const IT_Bus::QName &
 get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::ElementListT<IT_Bus::Int> & getvarInt() const;
 260

Complex Types
IT_ElementListT is for internal use by the Artix generated code and should
not be used directly in user developed code. Because the
IT_Bus::ElementListT template supports automatic conversion to
IT_Vector, you should treat the return values and arguments of the
preceding integer and string accessor functions as if they were
IT_Vector<IT_Bus::Int> and IT_Vector<IT_Bus::String> respectively.

C++ example The following code fragment shows how to allocate and initialize an
instance of SequenceType type containing two varInt elements and two
varString elements:

 IT_Bus::ElementListT<IT_Bus::Int> & getvarInt();

 void setvarInt(const IT_Bus::ElementListT<IT_Bus::Int> & val);

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String> &
val);

 private:
 ...
};

Example 112:Mapping of SequenceType to C++

// C++
SequenceType seq;

seq.getvarInt().set_size(2);
seq.getvarInt()[0] = 10;
seq.getvarInt()[1] = 20;
seq.getvarString().set_size(2);
seq.getvarString()[0] = "Zero";
seq.getvarString()[1] = "One";
261

CHAPTER 9 | Artix Data Types
Note how the set_size() function and [] operator are invoked directly on
the member vectors, which are accessed by getvarInt() and
getvarString() respectively. This is more efficient than creating a vector
and passing it to setvarInt() or setvarString(), because it avoids
creating unnecessary temporary vectors.

Alternatively, you could assign the member vectors, seq.getvarInt() and
seq.getvarString(), to references of IT_Vector type and manipulate the
references, v1 and v2, instead. This is shown in the following code example:

In this example, the vectors are initialized using the push_back() stack
operation (adds an element to the end of the vector).

References For more details about vector types see:

• The “IT_Vector Template Class” on page 307.

• The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

// C++
SequenceType seq;

// Make a shallow copy of the vectors
IT_Vector<IT_Bus::Int>& v1 = seq.getvarInt();
IT_Vector<IT_Bus::String>& v2 = seq.getvarString();

v1.push_back(10);
v1.push_back(20);
v2.push_back("Zero");
v2.push_back("One");

Note: The IT_Vector class template does not provide the set_size()
function. Hence, you cannot invoke set_size() on v1 or v2.
 262

Complex Types
Arrays

Overview This subsection describes how to define and use basic Artix array types. In
addition to these basic array types, Artix also supports SOAP arrays, which
are discussed in “SOAP Arrays” on page 295.

Array definition syntax An array is a sequence complex type that satisfies the following special
conditions:

• The sequence complex type schema defines a single element only.

• The element definition has a maxOccurs attribute with a value greater
than 1.

Hence, an Artix array definition has the following general syntax:

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

Mapping to IT_Bus::ArrayT When a sequence complex type declaration satisfies the special conditions
to be an array, it is mapped to C++ differently from a regular sequence
complex type. Instead of mapping to IT_Bus::SequenceComplexType, the
array maps to the IT_Bus::ArrayT<ElementType> template type.
Effectively, the C++ array template class can be treated like a vector.

For example, the mapped C++ array class supports the size() member
function and individual elements can be accessed using the [] operator.

Note: All elements implicitly have minOccurs=1 and maxOccurs=1, unless
specified otherwise.

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>
263

CHAPTER 9 | Artix Data Types
WSDL array example Example 113 shows how to define a one-dimensional string array,
ArrayOfString, whose size can lie anywhere in the range 0 to unbounded.

C++ mapping Example 114 shows how the ArrayOfString string array (from
Example 113 on page 264) maps to C++.

Example 113:Definition of an Array of Strings

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 114:Mapping of ArrayOfString to C++

// C++
class ArrayOfString : public IT_Bus::ArrayT<IT_Bus::String>
{
 public:
 ArrayOfString();
 ArrayOfString(size_t dimension0);
 ArrayOfString(const ArrayOfString& copy);
 virtual ~ArrayOfString();

 virtual const IT_Bus::QName & get_type() const;

 ArrayOfString& operator= (const IT_Vector<IT_Bus::String>&
assign);

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();
 264

Complex Types
Notice that the C++ array class provides accessor functions,
getvarString() and setvarString(), just like any other sequence complex
type with occurrence constraints (see “Occurrence Constraints” on
page 259). The accessor functions are superfluous, however, because the
array’s elements are more easily accessed by invoking vector operations
directly on the ArrayOfString class.

C++ example Example 115 shows an example of how to allocate and initialize an
ArrayOfString instance, by treating it like a vector (for a complete list of
vector operations, see “Summary of IT_Vector Operations” on page 311).

Multi-dimensional arrays You can define multi-dimensional arrays by nesting array definitions (see
“Nesting Complex Types” on page 243 for a discussion of nested types).
Example 116 shows an example of how to define a two-dimensional string
array, ArrayOfArrayOfString.

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String>
& val);

};

typedef IT_AutoPtr<ArrayOfString> ArrayOfStringPtr;

Example 114:Mapping of ArrayOfString to C++

Example 115:C++ Example for a One-Dimensional Array

// C++
// Array of String
ArrayOfString a(4);

a[0] = "One";
a[1] = "Two";
a[2] = "Three";
a[3] = "Four";

Example 116:Definition of a Multi-Dimensional String Array

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
265

CHAPTER 9 | Artix Data Types
Both the nested array type, ArrayOfArrayOfString, and the sub-array type,
ArrayOfString, must conform to the standard array definition syntax.
Multi-dimensional arrays can be nested to an arbitrary degree, but each
sub-array must be a named type (that is, anonymous nested array types are
not supported).

C++ example for
multidimensional array

Example 117 shows an example of how to allocate and initialize a
multi-dimensional array, of ArrayOfArrayOfString type.

 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfArrayOfString">
 <sequence>
 <element name="nestArray"
 type="xsd1:ArrayOfString"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 116:Definition of a Multi-Dimensional String Array

Example 117:C++ Example for a Multi-Dimensional Array

// C++
// Array of array of String
ArrayOfArrayOfString a2(2);

for (int i = 0 ; i < a2.size(); i++) {
 a2[i].set_size(2);
}

a2[0][0] = "ZeroZero";
a2[0][1] = "ZeroOne";
a2[1][0] = "OneZero";
a2[1][1] = "OneOne";
 266

Complex Types
The set_size() function enables you to set the dimension of each sub-array
individually. If you choose different sizes for the sub-arrays, you can create
a2 as a ragged two-dimensional array.

Automatic conversion to
IT_Vector

In general, a multi-dimensional array can automatically convert to a vector
of IT_Vector<SubArray> type, where SubArray is the array element type.

Example 118 shows how an instance, a2, of ArrayOfArrayOfString type
converts to an instance of IT_Vector<ArrayOfString> type by assignment.

References For more details about vector types see:

• The “IT_Vector Template Class” on page 307.

• The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

Example 118:Converting a Multi-Dimensional Array to IT_Vector Type

// Array of array of String
ArrayOfArrayOfString a2(2);

for (int i = 0 ; i < a2.size(); i++) {
 a2[i].set_size(2);
}
...
// Obtain reference to the underlying IT_Vector type
IT_Vector<ArrayOfString>& v_a2 = a2;

cout << v_a2[0][0] << " " << v_a2[0][1] << " "
 << v_a2[1][0] << " " << v_a2[1][1] << endl;
cout << "v_a2.size() = " << v_a2.size() << endl;
267

CHAPTER 9 | Artix Data Types
anyType Type

Overview In an XML schema, the xsd:anyType is the base type from which other
simple and complex types are derived. Hence, an element declared to be of
xsd:anyType type can contain any XML type.

Prerequisite for using anyType A prerequisite for using the xsd:anyType is that your application must be
built with the WSDLFileName_wsdlTypesFactory.cxx source file. This file
is generated automatically by the WSDL-to-C++ compiler utility.

anyType syntax To declare an xsd:anyType element, use the following syntax:

<element name="ElementName" [type="xsd:anyType"]>

The attribute setting, type="xsd:anyType", is optional. If the type attribute
is missing, the XML schema assumes that the element is of xsd:anyType by
default.

C++ mapping The WSDL-to-C++ compiler maps the xsd:anyType type to the
IT_Bus::AnyHolder class in C++.

The IT_Bus::AnyHolder class provides member functions to insert and
extract data values, as follows:

• Inserting and extracting atomic types.

• Inserting and extracting user-defined types.

Note: The xsd:anyType is currently supported only by the CORBA, SOAP
and XML bindings. Certain bindings—for example, Fixed, Tagged, TibMsg,
and FML—do not support the use of xsd:anyType because they lack a
corresponding construct.

Note: It is currently not possible to nest an IT_Bus::AnyHolder instance
directly inside another IT_Bus::AnyHolder instance.
 268

anyType Type
Inserting and extracting atomic
types

To insert and extract atomic types to and from an IT_Bus::AnyHolder, use
the member functions of the following form:

For a complete list of the functions for the basic atomic types, see
“AnyHolder API” on page 271.

For example, you can insert and extract an xsd:short integer to and from an
IT_Bus::AnyHolder as follows:

Inserting and extracting
user-defined types

To insert and extract user-defined types from an IT_Bus::AnyHolder, use
the following functions:

Note that all user-defined types inherit from IT_Bus::AnyType. There are no
type-specific insertion or extraction functions generated for user-defined
types.

Memory management for these functions is handled as follows:

• The set_any_type() function copies the inserted data.

• The get_any_type() functions do not copy the return value, rather
they return either a writable (non-const) or read-only (const) reference
to the data inside the IT_Bus::AnyHolder.

void set_AtomicTypeFunc(const AtomicTypeName&);
AtomicTypeName& get_AtomicTypeFunc();
const AtomicTypeName& get_AtomicTypeFunc();

// C++
// Insert an xsd:short value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_short(1234);
...
// Extract an xsd:short value from an xsd:anyType.
IT_Bus::Short sh = aH.get_short();

void set_any_type(const IT_Bus::AnyType &);
IT_Bus::AnyType& get_any_type();
const IT_Bus::AnyType& get_any_type();
269

CHAPTER 9 | Artix Data Types
For example, given a user-defined sequence type, SequenceType (see the
declaration in Example 86 on page 229), you can insert a SequenceType
instance into an IT_Bus::AnyHolder as follows:

To extract the SequenceType instance from the IT_Bus::AnyHolder, you
need to perform a C++ dynamic cast:

Accessing the type information You can find out what type of data is contained in an IT_Bus::AnyHolder
instance by calling the following member function:

const IT_Bus::QName & get_type() const;

Type information is set whenever an IT_Bus::AnyHolder instance is
initialized. For example, if you initialize an IT_Bus::AnyHolder by calling
set_boolean(), the type is set to be xsd:boolean. If you call
set_any_type() with an argument of SequenceType, the type would be set
to xsd1:SequenceType.

// C++
// Create an instance of SequenceType type.
SequenceType seq;
seq.setvarFloat(3.14);
seq.setvarInt(1234);
seq.setvarString("This is a sample SequenceType.");

// Insert the SequenceType value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_any_type(seq);

// C++
...
// Extract the SequenceType value from the IT_Bus::AnyHolder.
IT_Bus::AnyType& base_extract = aH.get_any_type();

// Cast the extracted value to the appropriate type:
SequenceType& seq_extract
 = dynamic_cast<SequenceType&>(base_extract);

Note: Because the XML representation of xsd:anyType is not
self-describing, some type information could be lost when an anyType is
sent across the wire. In the case of a CORBA binding, however, there is no
loss of type information, because CORBA anys are fully self-describing.
 270

anyType Type
AnyHolder API Example 119 shows the public API from the IT_Bus::AnyHolder class,
including all of the function for inserting and extracting data values.

Example 119:The IT_Bus::AnyHolder Class

// C++
namespace IT_Bus
{
 class IT_BUS_API AnyHolder : public AnyType
 {
 public:
 AnyHolder();
 virtual ~AnyHolder() ;
 ...
 virtual const QName & get_type() const ;
 ...
 //Set Methods
 void set_boolean(const IT_Bus::Boolean &);
 void set_byte(const IT_Bus::Byte &);
 void set_short(const IT_Bus::Short &);
 void set_int(const IT_Bus::Int &);
 void set_long(const IT_Bus::Long &);
 void set_string(const IT_Bus::String &);
 void set_float(const IT_Bus::Float &);
 void set_double(const IT_Bus::Double &);
 void set_ubyte(const IT_Bus::UByte &);
 void set_ushort(const IT_Bus::UShort &);
 void set_uint(const IT_Bus::UInt &);
 void set_ulong(const IT_Bus::ULong &);
 void set_decimal(const IT_Bus::Decimal &);

 void set_any_type(const AnyType&);

 //GET METHODS
 IT_Bus::Boolean & get_boolean();
 IT_Bus::Byte & get_byte();
 IT_Bus::Short & get_short();
 IT_Bus::Int & get_int();
 IT_Bus::Long & get_long();
 IT_Bus::String & get_string();
 IT_Bus::Float & get_float();
 IT_Bus::Double & get_double();
 IT_Bus::UByte & get_ubyte() ;
 IT_Bus::UShort & set_ushort();
 IT_Bus::UInt & get_uint();
 IT_Bus::ULong & set_ulong();
271

CHAPTER 9 | Artix Data Types
 IT_Bus::Decimal & get_decimal();

 AnyType& get_any_type();

 //CONST GET METHODS
 const IT_Bus::Boolean & get_boolean() const;
 const IT_Bus::Byte & get_byte() const;
 const IT_Bus::Short & get_short() const;
 const IT_Bus::Int & get_int() const;
 const IT_Bus::Long & get_long() const;
 const IT_Bus::String & get_string() const;
 const IT_Bus::Float & get_float() const;
 const IT_Bus::Double & get_double() const;
 const IT_Bus::UByte & get_ubyte() const;
 const IT_Bus::UShort & get_ushort() const;
 const IT_Bus::UInt & get_uint() const;
 const IT_Bus::ULong & get_ulong() const;
 const IT_Bus::Decimal & get_decimal() const;

 const AnyType& get_any_type() const;
 ...
 };
};

Example 119:The IT_Bus::AnyHolder Class
 272

Nillable Types
Nillable Types

Overview This section describes how to define and use nillable types; that is, XML
elements defined with xsd:nillable="true".

In this section This section contains the following subsections:

Introduction to Nillable Types page 274

Nillable Atomic Types page 276

Nillable User-Defined Types page 280

Nested Atomic Type Nillable Elements page 283

Nested User-Defined Nillable Elements page 287

Nillable Elements of an Array page 292
273

CHAPTER 9 | Artix Data Types
Introduction to Nillable Types

Overview An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

Nillable syntax To declare an element as nillable, use the following syntax:

<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

On-the-wire format On the wire, a nil value for an <ElementName> element is represented by
the following XML fragment:

<ElementName xsi:nil="true"></ElementName>

Where the xsi: prefix represents the XML schema instance namespace,
http://www.w3.org/2001/XMLSchema-instance.

C++ API for nillable types Example 120 shows the public member functions of the
IT_Bus::NillableValueBase class, which provides the C++ API for nillable
types.

Example 120:C++ API for Nillable Types

// C++
namespace IT_Bus
{
 template <class T>
 class NillableValueBase : public Nillable
 {
 public:
 virtual ~NillableValueBase();
 virtual AnyType& operator=(const AnyType& other);

 virtual Boolean is_nil() const;
 virtual void set_nil();
 ...
 virtual const T&
 274

Nillable Types
 get() const IT_THROW_DECL((NoDataException));

 virtual T&
 get() IT_THROW_DECL((NoDataException));

 // Set the data value, make is_nil() false.
 virtual void set(const T& data);

 // data != 0 ==> set the data value, make is_nil() false.
 // data == 0 ==> make is_nil() true.
 virtual void set(const T *data);

 // Reset to nil, makes is_nil() true.
 virtual void reset();

 protected:
 ...
};

Example 120:C++ API for Nillable Types
275

CHAPTER 9 | Artix Data Types
Nillable Atomic Types

Overview This subsection describes how to define and use XML schema nillable
atomic types. In C++, every atomic type, AtomicTypeName, has a nillable
counterpart, AtomicTypeNameNillable. For example, IT_Bus::Short has
IT_Bus::ShortNillable as its nillable counterpart.

You can modify or access the value of an atomic nillable type, T, using the
T.set() and T.get() member functions, respectively. For full details of the
API for nillable types see “C++ API for nillable types” on page 274.

Table of nillable atomic types Table 10 shows how the XML schema atomic types map to C++ when the
xsd:nillable flag is set to true.

Table 10: Nillable Atomic Types

Schema Type Nillable C++ Type

xsd:anyType Not supported as nillable

xsd:boolean IT_Bus::BooleanNillable

xsd:byte IT_Bus::ByteNillable

xsd:unsignedByte IT_Bus::UByteNillable

xsd:short IT_Bus::ShortNillable

xsd:unsignedShort IT_Bus::UShortNillable

xsd:int IT_Bus::IntNillable

xsd:unsignedInt IT_Bus::UIntNillable

xsd:long IT_Bus::LongNillable

xsd:unsignedLong IT_Bus::ULongNillable

xsd:float IT_Bus::FloatNillable

xsd:double IT_Bus::DoubleNillable

xsd:string IT_Bus::StringNillable

xsd:QName IT_Bus::QNameNillable
 276

Nillable Types
WSDL example Example 121 defines four elements, test_string_x, test_short_y,
test_int_return, and test_float_z, of nillable atomic type. This example
shows how to use the nillable atomic types as the parameters of an
operation, send_receive_nil_part.

xsd:dateTime IT_Bus::DateTimeNillable

xsd:decimal IT_Bus::DecimalNillable

xsd:base64Binary IT_Bus::BinaryBufferNillable

xsd:hexBinary IT_Bus::BinaryBufferNillable

Table 10: Nillable Atomic Types

Schema Type Nillable C++ Type

Example 121:WSDL Example Showing Some Nillable Atomic Types

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="test_string_x" nillable="true"
 type="xsd:string"/>
 <element name="test_short_y" nillable="true"
 type="xsd:short"/>
 <element name="test_int_return" nillable="true"
 type="xsd:int"/>
 <element name="test_float_z" nillable="true"
 type="xsd:float"/>
 </schema>
 </types>
 ...
 <message name="NilPartRequest">
 <part name="x" element="xsd1:test_string_x"/>
 <part name="y" element="xsd1:test_short_y"/>
277

CHAPTER 9 | Artix Data Types
C++ example Example 122 shows how to use nillable atomic types,
IT_Bus::StringNillable, IT_Bus::ShortNillable, IT_Bus::IntNillable,
and IT_Bus::FloatNillable, in a simple C++ example.

 </message>
 <message name="NilPartResponse">
 <part name="return" element="xsd1:test_int_return"/>
 <part name="y" element="xsd1:test_short_y"/>
 <part name="z" element="xsd1:test_float_z"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="send_receive_nil_part">
 <input name="doclit_nil_part_request"
 message="tns:NilPartRequest"/>
 <output name="doclit_nil_part_response"
 message="tns:NilPartResponse"/>
 </operation>
 </portType>
 ...

Example 121:WSDL Example Showing Some Nillable Atomic Types

Example 122:Using Nillable Atomic Types as Operation Parameters

// C++
IT_Bus::StringNillable x("String for sending");
IT_Bus::ShortNillable y(321);
IT_Bus::IntNillable var_return;
IT_Bus::FloatNillable z;

try {
 // bc is a client proxy for the BasePortType port type.
 bc.send_receive_nil_part(x, y, var_return, z);
}
catch (IT_Bus::FaultException &ex) {
 // ... deal with the exception (not shown)
}

if (! y.is_nil()) { cout << "y = " << y.get() << endl; }
if (! z.is_nil()) { cout << "z = " << z.get() << endl; }

if (! var_return.is_nil()) {
 cout << "var_return = " << var_return.get() << endl;
}

 278

Nillable Types
The value of a nillable atomic type, T, can be initialized using either a
constructor, T(), or the T.set() member function.

Before attempting to read the value of a nillable atomic type using T.get(),
you should check that the value is non-nil using the T.is_nil() member
function.
279

CHAPTER 9 | Artix Data Types
Nillable User-Defined Types

Overview This subsection describes how to define and use nillable user-defined types.
In C++, every user-defined type, UserTypeName, has a nillable
counterpart, UserTypeNameNillable.

You can modify or access the value of a user-defined nillable type, T, using
the T.set() and T.get() member functions, respectively. For full details of
the API for nillable types see “C++ API for nillable types” on page 274.

WSDL example Example 123 shows the definition of an XML schema all complex type,
named SOAPStruct. This is a complex type with ordinary (that is,
non-nillable) member elements.

Example 123:WSDL Example of an All Complex Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
 </schema>
 </types>
 ...
 280

Nillable Types
C++ mapping Example 124 shows how the SOAPStruct type maps to C++. In addition to
the regular mapping, which produces the C++ SOAPStruct and
SOAPStructPtr classes, the WSDL-to-C++ compiler also generates a
nillable type, SOAPStructNillable, and an associated smart pointer type,
SOAPStructNillablePtr.

The API for the SOAPStructNillable type is defined in “C++ API for
nillable types” on page 274.

C++ example The following C++ example shows how to initialize an instance of
SOAPStructNillable type, s_nillable. The nillable type is created in two
steps: first of all, a SOAPStruct instance, s, is initialized; then the
SOAPStruct instance is used to initialize a SOAPStructNillable instance.

Example 124:C++ Mapping of the SOAPStruct All Complex Type

// C++
namespace INTEROP
{
 class SOAPStruct : public IT_Bus::AllComplexType { ... }
 typedef IT_AutoPtr<SOAPStruct> SOAPStructPtr;

 typedef IT_Bus::NillableValue<SOAPStruct>
 SOAPStructNillable;
 typedef IT_Bus::NillablePtr<SOAPStruct>
 SOAPStructNillablePtr;
};

// C++
// Initialize a SOAPStruct instance.
INTEROP::SOAPStruct s;
s.setvarFloat(3.14);
s.setvarInt(1234);
s.setvarString("Hello world!");

// Initialize a SOAPStructNillable instance.
INTEROP::SOAPStructNillable s_nillable;
s_nillable.set(s);
281

CHAPTER 9 | Artix Data Types
The next C++ example shows how to access the contents of the
SOAPStructNillable type. Note that before attempting to access the value
of the SOAPStructNillable using get(), you should check that the value is
not nil using is_nil().

// C++
if (! s_nillable.is_nil()) {
 cout << "varFloat = " << s_nillable.get().getvarFloat()
 << endl;
 cout << "varInt = " << s_nillable.get().getvarInt()
 << endl;
 cout << "varString = " << s_nillable.get().getvarString()
 << endl;
}

 282

Nillable Types
Nested Atomic Type Nillable Elements

Overview This subsection describes how to define and use complex types (except
arrays) that have some nillable member elements. That is, the type as a
whole is not nillable, although some of its elements are.

The WSDL-to-C++ compiler treats a type with nillable elements as a
special case. If a member element, ElementName, is defined with
xsd:nillable equal to true, the element’s C++ modifiers and accessors
are then primarily pointer based.

For example, given that a member element ElementName is of AtomicType
type, the accessors and modifier would have the following signatures:

const AtomicType * getElementName() const;
AtomicType * getElementName();
void setElementName(const AtomicType * val);

And an additional convenience function that allows you to set an element
value using pass-by-reference:

void setElementName(const AtomicType & val);

WSDL example Example 125 defines a sequence complex type, Nil_SOAPStruct, which has
some nillable elements, varInt, varFloat, and varString.

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 292.

Example 125:WSDL Example of a Sequence Type with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
283

CHAPTER 9 | Artix Data Types
C++ mapping Example 126 shows how the Nil_SOAPStruct sequence complex type is
mapped to C++. Note how the accessors for the nillable member elements,
getElementName(), return a pointer instead of a value; and how the
modifiers for the nillable member elements, setElementName(), take either
a pointer argument or a reference argument. For example, the getvarInt()
function returns a pointer to an IT_Bus::Int rather an IT_Bus::Int value.

 <complexType name="Nil_SOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 <element name="varFloat" nillable="true"
 type="xsd:float"/>
 <element name="varString" nillable="true"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...

Example 125:WSDL Example of a Sequence Type with Nillable Elements

Example 126:C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
namespace INTEROP {
 class Nil_SOAPStruct : public IT_Bus::SequenceComplexType
 {
 public:
 Nil_SOAPStruct();
 Nil_SOAPStruct(const Nil_SOAPStruct& copy);
 virtual ~Nil_SOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::Float * getvarFloat() const;
 IT_Bus::Float * getvarFloat();
 void setvarFloat(const IT_Bus::Float * val);
 void setvarFloat(const IT_Bus::Float & val);
 284

Nillable Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPStruct instance. Notice, for example, how the setvarInt(const
IT_Bus::Int&) convenience function allows you to pass the integer
argument as a reference, i, instead of a pointer.

 const IT_Bus::String * getvarString() const;
 IT_Bus::String * getvarString();
 void setvarString(const IT_Bus::String * val);
 void setvarString(const IT_Bus::String & val);

 virtual const IT_Bus::QName & get_type() const;
 ...
 };

 typedef IT_AutoPtr<Nil_SOAPStruct> Nil_SOAPStructPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillablePtr;

 ...
};

Example 126:C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
Nil_SOAPStruct nil_s;

IT_Bus::Float f = 3.14;
IT_Bus::Int i = 1234;
IT_Bus::String s = "A non-nil string.";

nil_s.setvarInt(i);
nil_s.setvarFloat(f);
nil_s.setvarString(s);
285

CHAPTER 9 | Artix Data Types
The next C++ example shows how to read the nillable elements of the
Nil_SOAPStruct instance. Note how the elements are checked for nilness by
comparing the result of calling getElementName() with 0.

// C++
if (nil_s.getvarInt() != 0) {
 cout << "varInt = " << *nil_s.getvarInt() << endl;
}

if (nil_s.getvarFloat() != 0) {
 cout << "varFloat = " << *nil_s.getvarFloat() << endl;
}

if (nil_s.getvarString() != 0) {
 cout << "varString = " << *nil_s.getvarString() << endl;
}

 286

Nillable Types
Nested User-Defined Nillable Elements

Overview This subsection describes how to define and use complex types that have
nillable member elements of user-defined type.

The WSDL-to-C++ compiler treats user-defined nillable elements as a
special case. As with nillable elements of atomic type, if a member element
of user-defined type, ElementName, is defined with xsd:nillable equal to
true, the element’s C++ modifiers and accessors are then primarily pointer
based.

For example, given that a member element ElementName is of UserType
type, the accessors and modifier would have the following signatures:

const UserType * getElementName() const;
UserType * getElementName();
void setElementName(const UserType * val);
void setElementName(const UserType & val);

WSDL example Example 127 defines a sequence complex type, Nil_NestedSOAPStruct,
which includes a nillable element of SOAPStruct type, varSOAP.

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 292.

Example 127:WSDL Example of a Nillable All Type inside a Sequence
Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
287

CHAPTER 9 | Artix Data Types
C++ mapping Example 128 shows how the Nil_NestedSOAPStruct sequence complex
type is mapped to C++. Note how the getvarSOAP() functions return a
pointer to a SOAPStruct rather a SOAPStruct value.

 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
 <complexType name="Nil_NestedSOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 <element name="varSOAP" nillable="true"
 type="xsd1:SOAPStruct"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 127:WSDL Example of a Nillable All Type inside a Sequence
Type

Example 128:C++ Mapping of the Nil_NestedSOAPStruct Type

// C++
class Nil_NestedSOAPStruct : public IT_Bus::SequenceComplexType
{
 public:
 Nil_NestedSOAPStruct();
 Nil_NestedSOAPStruct(const Nil_NestedSOAPStruct& copy);
 virtual ~Nil_NestedSOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);
 void setvarInt(const IT_Bus::Int & val);

 const SOAPStruct * getvarSOAP() const;
 SOAPStruct * getvarSOAP();
 void setvarSOAP(const SOAPStruct * val);
 void setvarSOAP(const SOAPStruct & val);
 288

Nillable Types
NillablePtr types To help you manage the memory associated with nillable elements of
user-defined type, UserType, the WSDL-to-C++ utility generates a nillable
smart pointer type, UserTypeNillablePtr. The NillablePtr template types
are similar to the std::auto_ptr<> template types from the Standard
Template Library—see “Smart Pointers” on page 46.

For example, the following extract from the generated
WSDLFileName_wsdlTypes.h header file defines a SOAPStructNillablePtr
type, which is used to represent SOAPStruct nillable pointers:

Example 129 shows the API for the NillablePtr template class. A
NillablePtr instance can be initialized using either a NillablePtr()
constructor, a set() member function, or an operator=() assignment
operator. The is_nil() member function tests the pointer for nilness.

 virtual const IT_Bus::QName & get_type() const;
 ...
};

Example 128:C++ Mapping of the Nil_NestedSOAPStruct Type

// C++
typedef IT_Bus::NillablePtr<SOAPStruct, &SOAPStructQName>

SOAPStructNillablePtr;

Example 129:The NillablePtr Template Class

// C++
namespace IT_Bus
{
 /**
 * Template implementation of Nillable as an auto_ptr.
 * T is the C++ type of data, TYPE is the data type qname.
 */
 template <class T, const QName* TYPE>
 class NillablePtr : public Nillable, public IT_AutoPtr<T>
 {
 public:
 NillablePtr();
 NillablePtr(const NillablePtr& other);
 NillablePtr(T* data);
 virtual ~NillablePtr();
 ...
289

CHAPTER 9 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_NestedSOAPStruct instance. Notice how the argument to setvarSOAP()
is passed as a pointer, &nillable_struct.

 void set(const T* data);

 virtual Boolean is_nil() const;

 virtual const QName& get_type() const;
 ...
 };
 ...
};

Example 129:The NillablePtr Template Class

// C++
// Construct a smart nillable pointer.
// The SOAPStruct memory is owned by the smart nillable pointer.
SOAPStruct nillable_struct;
nillable_struct.setvarFloat(3.14);
nillable_struct.setvarInt(4321);
nillable_struct.setvarString("Nillable struct element.");

// Construct a nested struct.
Nil_NestedSOAPStruct outer_struct;
IT_Bus::Int k = 4321
outer_struct.setvarInt(&k);

// MEMORY MANAGEMENT: The argument to setvarSOAP is deep copied.
outer_struct.setvarSOAP(&nillable_struct);
 290

Nillable Types
The next C++ example shows how to read the nillable elements of the
Nil_NestedSOAPStruct instance. Note how the varSOAP element is checked
for nilness by calling is_nil().

// C++
IT_Bus::Int * int_p = outer_struct.getvarInt();

// MEMORY MANAGEMENT: outer_struct owns the return value.
SOAPStruct * nillable_struct_p = outer_struct.getvarSOAP();

if (int_p != 0) {
 cout << "varInt = " << *int_p << endl;
}

if (!nillable_struct_p.is_nil()) {
 cout << "varSOAP = " << *nillable_struct_p << endl;
}

291

CHAPTER 9 | Artix Data Types
Nillable Elements of an Array

Overview This subsection describes how to define and use array complex types with
nillable array elements. To define an array with nillable elements, add a
nillable="true" setting to the array element declaration.

An array with nillable elements has the following general syntax:

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType" nillable="true"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

WSDL example Example 130 shows defines an array complex type, Nil_SOAPArray (the
name indicates that the type is used in a SOAP example, not that it is
defined using SOAP array syntax) which has nillable array elements, item.

Example 130:WSDL Example of an Array with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 292

Nillable Types
C++ mapping Example 131 shows how the Nil_SOAPArray array complex type is mapped
to C++. Note that the array elements are of IT_Bus::ShortNillable type.

 <complexType name="Nil_SOAPArray">
 <sequence>
 <element name="item" nillable="true"
 type="xsd:short" minOccurs="10"
 maxOccurs="10"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 130:WSDL Example of an Array with Nillable Elements

Example 131:C++ Mapping of the Nil_SOAPArray Array Type

// C++
namespace INTEROP {
 class Nil_SOAPArray
 : public IT_Bus::ArrayT<IT_Bus::ShortNillable,

&Nil_SOAPArray_item_qname, 10, 10>
 {
 public:
 Nil_SOAPArray();
 Nil_SOAPArray(const Nil_SOAPArray& copy);
 Nil_SOAPArray(size_t dimensions[]);
 Nil_SOAPArray(size_t dimension0);
 virtual ~Nil_SOAPArray();

 ...
 const IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem() const;

 IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem();

 void
 setitem(const IT_Vector<IT_Bus::ShortNillable> & val);

 virtual const IT_Bus::QName &
 get_type() const;
 };
293

CHAPTER 9 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPArray instance. Because each array element is of
IT_Bus::ShortNillable type, the array elements must be initialized using
the set() member function. Any elements not explicitly initialized are nil by
default.

The next C++ example shows how to access the nillable array elements.
You should check each of the array elements for nilness using the is_nil()
member function before attempting to read an array element value.

 typedef IT_AutoPtr<Nil_SOAPArray> Nil_SOAPArrayPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillablePtr;

};

Example 131:C++ Mapping of the Nil_SOAPArray Array Type

// C++
Nil_SOAPArray nil_s(10);
nil_s[0].set(10);
nil_s[1].set(20);
nil_s[2].set(30);
nil_s[3].set(40);
nil_s[4].set(50);
// The remaining five element values are left as nil.

// C++
for (size_t i=0; i<10; i++) {
 if (! nil_s[i].is_nil()) {
 cout << "Nil_SOAPArray[" << i << "] = "
 << nil_s[i].get() << endl;
 }
}

 294

SOAP Arrays
SOAP Arrays

Overview In addition to the basic array types described in “Arrays” on page 263, Artix
also provides support for SOAP arrays. SOAP arrays have a relatively rich
feature set, including support for sparse arrays and partially transmitted
arrays. Consequently, Artix implements a distinct C++ mapping specifically
for SOAP arrays, which is different from the C++ mapping described in the
“Arrays” section.

In this section This section contains the following subsections:

Introduction to SOAP Arrays page 296

Multi-Dimensional Arrays page 300

Sparse Arrays page 303

Partially Transmitted Arrays page 306
295

CHAPTER 9 | Artix Data Types
Introduction to SOAP Arrays

Overview This section describes the syntax for defining SOAP arrays in WSDL and
discusses how to program a simple one-dimensional array of strings. The
following topics are discussed:

• Syntax.

• C++ mapping.

• Definition of a one-dimensional SOAP array.

• Sample encoding.

• C++ example.

Syntax In general, SOAP array types are defined by deriving from the
SOAP-ENC:Array base type (deriving by restriction). The type definition must
conform to the following syntax:

Where <SOAPArrayType> is the name of the newly-defined array type,
<ElementType> specifies the type of the array elements (for example,
xsd:int, xsd:string, or a user type), and <ArrayBounds> specifies the
dimensions of the array (for example, [], [,], [,,], [,][], [,,][],
[,][][], and so on). The SOAP-ENC namespace prefix maps to the
http://schemas.xmlsoap.org/soap/encoding/ namespace URI and the
wsdl namespace prefix maps to the http://schemas.xmlsoap.org/wsdl/
namespace URI.

<complexType name="<SOAPArrayType>">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="<ElementType><ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Note: In the current version of Artix, the preceding syntax is the only case
where derivation from a complex type is supported. Definition of a SOAP
array is treated as a special case.
 296

SOAP Arrays
C++ mapping A given SOAPArrayType array maps to a C++ class of the same name,
which inherits from the IT_Bus::SoapEncArrayT<> template class. The
SOAPArrayType C++ class overloads the [] operator to provide access to
the array elements. The size of the array is returned by the get_extents()
member function.

Definition of a one-dimensional
SOAP array

Example 132 shows how to define a one-dimensional array of strings,
ArrayOfSOAPString, as a SOAP array. The wsdl:arrayType attribute
specifies the type of the array elements, xsd:string, and the number of
dimensions, [] implying one dimension.

Example 132:Definition of the ArrayOfSOAPString SOAP Array

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ArrayOfSOAPString">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>
297

CHAPTER 9 | Artix Data Types
Sample encoding Example 133 shows the encoding of a sample ArrayOfSOAPString instance,
which is how the array instance might look when transmitted as part of a
WSDL operation.

The preceding WSDL fragment can be explained as follows:

1. The element type and the array size are specified by the
SOAP-ENC:arrayType attribute. Because ArrayOfSOAPString has been
derived by restriction, SOAP-ENC:arrayType can only have values of the
form xsd:string[ArraySize].

2. The XML elements that delimit the individual array values, for example
<item>, can have an arbitrary name. These element names are not
significant.

C++ example Example 134 shows a C++ example of how to allocate and initialize an
ArrayOfSOAPString instance with four elements.

Example 133:Sample Encoding of ArrayOfSOAPString

1 <ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[2]">
2 <item>Hello</item>

 <item>world!</item>
</ArrayOfSOAPString>

Example 134:C++ Example of Initializing an ArrayOfSOAPString Instance

// C++
// Allocate SOAP array of String
const size_t extents[] = {4};

1 ArrayOfSOAPString a_str(extents);

2 a_str[0] = "Hello";
a_str[1] = "to";
a_str[2] = "the";
a_str[3] = "world!";
 298

SOAP Arrays
The preceding C++ example can be explained as follows:

1. To specify the array’s size, you pass a list of extents (of size_t[] type)
to the ArrayOfSOAPString constructor. This style of constructor has the
advantage that it is easily extended to the case of multi-dimensional
arrays—see “Multi-Dimensional Arrays” on page 300.

2. The overloaded [] operator provides read/write access to individual
array elements.

Note: Be sure to initialize every element in the array, unless you want to
create a sparse array (see “Sparse Arrays” on page 303). There are no
default element values. Uninitialized elements are flagged as empty.
299

CHAPTER 9 | Artix Data Types
Multi-Dimensional Arrays

Overview The syntax for SOAP arrays allows you to define the dimensions of a
multi-dimensional array using two slightly different syntaxes:

• A comma-separated list between square brackets, for example [,] and
[,,].

• Multiple square brackets, for example [][] and [][][].

Artix makes no distinction between the two styles of array definition. In both
cases, the array is flattened for transmission and the C++ mapping is the
same.

Definition of multi-dimensional
SOAP array

Example 135 shows how to define a two-dimensional array of integers,
Array2OfInt, as a SOAP array. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:int, and the number of dimensions, [,]
implying an array of two dimensions.

Example 135:Definition of the Array2OfInt SOAP Array

<definitions ... >
 <types>
 <schema ... >
 <complexType name="Array2OfInt">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:int[,]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>
 300

SOAP Arrays
Sample encoding of
multi-dimensional SOAP array

Example 136 shows the encoding of a sample Array2OfInt instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

The dimensions of this array instance are specified as [2,3], giving a total
of six elements. Notice that the encoded array is effectively flat, because no
distinction is made between rows and columns of the two-dimensional
array.

Given an array instance with dimensions, [I_MAX,J_MAX], a particular
position in the array, [i,j], corresponds with the i*J_MAX+j element of the
flattened array. In other words, the right most index of [i,j,...,k] is the
fastest changing as you iterate over the elements of a flattened array.

C++ example of a
multi-dimensional SOAP array

Example 137 shows a C++ example of how to allocate and initialize an
Array2OfInt instance with dimensions, [2,3].

Example 136:Sample Encoding of an Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[2,3]">
 <i>1</i>
 <i>2</i>
 <i>3</i>
 <i>4</i>
 <i>5</i>
 <i>6</i>
</Array2OfInt>

Example 137:Initializing an Array2OfInt SOAP Array

// C++
1 const size_t extents2[] = {2, 3};

Array2OfInt a2_soap(extents2);

size_t position[2];
2 size_t i_max = a2_soap.get_extents()[0];

size_t j_max = a2_soap.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 position[0] = i;
 for (size_t j=0; j<j_max; j++) {
 position[1] = j;

3 a2_soap[position] = (IT_Bus::Int) (i+1)*(j+1);
 }
301

CHAPTER 9 | Artix Data Types
The preceding C++ example can be explained as follows:

1. The dimensions of this array instance are specified to be [2,3] by
initializing an array of extents, of size_t[] type, and passing this array
to the Array2OfInt constructor.

2. The dimensions of the a2_soap array can be retrieved by calling the
get_extents() function, which returns an extents array that converts
to size_t[] type.

3. The operator [] is overloaded on Array2OfInt to accept an argument
of size_t[] type, which contains a list of indices specifying a
particular array element.

}

Example 137:Initializing an Array2OfInt SOAP Array
 302

SOAP Arrays
Sparse Arrays

Overview Sparse arrays are fully supported in Artix. Every SOAP array instance stores
an array of status flags, one flag for each array element. The status of each
array element is initially empty, flipping to non-empty the first time an array
element is accessed or initialized.

Sample encoding Example 138 shows the encoding of a sparse Array2OfInt instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

The array instance is defined to have the dimensions [10,10]. Out of a
maximum 100 elements, only four, that is [3,0], [2,1], [1,2], and [0,3],
are transmitted. When transmitting an array as a sparse array, the
SOAP-ENC:position attribute enables you to specify the indices of each
transmitted array element.

Note: Sparse arrays are not optimized for minimization of storage space.
Hence, a sparse array with dimensions [1000,1000] would always allocate
storage for one million elements, irrespective of how many elements in the
array are actually non-empty.

WARNING: Sparse arrays have been deprecated in the SOAP 1.2
specification. Hence, it is better to avoid using sparse arrays if possible.

Example 138:Sample Encoding of a Sparse Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[10,10]">
 <item SOAP-ENC:position="[3,0]">30</item>
 <item SOAP-ENC:position="[2,1]">21</item>
 <item SOAP-ENC:position="[1,2]">12</item>
 <item SOAP-ENC:position="[0,3]">3</item>
</Array2OfInt>
303

CHAPTER 9 | Artix Data Types
Initializing a sparse array Example 139 shows an example of how to initialize a sparse array of
Array2OfInt type.

This example does not differ much from the case of initializing an ordinary
non-sparse array (compare, for example, Example 137 on page 301). The
only significant difference is that the majority of array elements are not
initialized, hence they are flagged as empty by default.

Example 139:Initializing a Sparse Array2OfInt SOAP Array

// C++
const size_t extents2[] = {10, 10};
Array2OfInt a2_soap(extents2);

size_t position[2];

position[0] = 3;
position[1] = 0;
a2_soap[position] = 30;

position[0] = 2;
position[1] = 1;
a2_soap[position] = 21;

position[0] = 1;
position[1] = 2;
a2_soap[position] = 12;

position[0] = 0;
position[1] = 3;
a2_soap[position] = 3;

Note: The state of an array element flips from empty to non-empty the
first time it is accessed using the [] operator. Hence, attempting to read
the value of an uninitialized array element can have the unintended side
effect of flipping the array element status.
 304

SOAP Arrays
Reading a sparse array Example 140 shows an example of how to read a sparse array of
Array2OfInt type.

The preceding C++ example can be explained as follows:

1. The get_extents() function returns the full dimensions of the array (as
a size_t[] array), irrespective of the actual number of non-empty
elements in the sparse array.

2. Before attempting to read the value of an element in the sparse array,
you should call the is_empty() function to check whether the
particular array element exists or not.

If you were to access all the elements of the array, irrespective of their
status, the empty array elements would all flip to the non-empty state.
Hence, you would lose the information about which elements were
transmitted in the sparse array.

Example 140:Reading a Sparse Array2OfInt SOAP Array

// C++
...
size_t p2[2];

1 size_t i_max = a2_out.get_extents()[0];
size_t j_max = a2_out.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 p2[0] = i;
 for (size_t j=0; j<j_max; j++) {
 p2[1] = j;

2 if (!a2_out.is_empty(p2)) {
 cout << "a[" << i << "][" << j << "] = "
 << a2_out[p2] << endl;
 }
 }
}

305

CHAPTER 9 | Artix Data Types
Partially Transmitted Arrays

Overview A partially transmitted array is essentially a special case of a sparse array,
where the transmitted array elements form one or more contiguous blocks
within the array. The start index and end index of each block can have any
value.

The difference between a partially transmitted array and a sparse array is
significant only at the level of encoding. From the Artix programmer’s
perspective, there is no significant distinction between partially transmitted
arrays and sparse arrays.

Sample encoding Example 141 shows the encoding of a partially transmitted
ArrayOfSOAPString instance.

In this example, only the third, fourth, seventh, and eighth elements of a
ten-element string array are actually transmitted. The SOAP-ENC:offset
attribute is used to specify the index of the first transmitted array element.
The default value of SOAP-ENC:offset is [0]. The SOAP-ENC:position
attribute specifies the start of a new block within the array. If an <item>
element does not have a position attribute, it is assumed to represent the
next element in the array.

Example 141:Sample Encoding of a Partially Transmitted
ArrayOfSOAPString Array

<ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[10]"
 SOAP-ENC:offset="[2]">
 <item>The third element</item>
 <item>The fourth element</item>
 <item SOAP-ENC:position="[6]">The seventh element</item>
 <item>The eighth element</item>
</ArrayOfSOAPString>
 306

IT_Vector Template Class
IT_Vector Template Class

Overview The IT_Vector template class is an implementation of std::vector. Hence,
the functionality provided by IT_Vector should be familiar from the C++
Standard Template Library.

In this section This section contains the following subsections:

Introduction to IT_Vector page 308

Summary of IT_Vector Operations page 311
307

CHAPTER 9 | Artix Data Types
Introduction to IT_Vector

Overview This section provides a brief introduction to programming with the
IT_Vector template type, which is modelled on the std::vector template
type from the C++ Standard Template Library (STL).

Differences between IT_Vector
and std::vector

Although IT_Vector is modelled closely on the STL vector type,
std::vector, there are some differences. In particular, IT_Vector does not
provide the following types:

IT_Vector<T>::allocator_type

Where T is the vector’s element type. Hence, the IT_Vector type does not
support an allocator_type optional final argument in its constructors.

The IT_Vector type does not support the following operations:

!=, <

The member functions listed in Table 11 are not defined in IT_Vector.

Although clear() is not defined, you can easily get the same effect for a
vector, v, by calling erase() as follows:

v.erase(v.begin(), v.end());

This has the effect of erasing all the elements in v, leaving an array of size 0.

Table 11: Member Functions Not Defined in IT_Vector

Function Type of Operation

at() Element access (with range check)

clear() List operation

assign() Assignment

resize()
Size and capacity

max_size()
 308

IT_Vector Template Class
Basic usage of IT_Vector The size() member function and the indexing operator [] is all that you
need to perform basic manipulation of vectors. Example 142 shows how to
use these basic vector operations to initialize an integer vector with the first
one hundred integer squares.

Iterators Instead of indexing vector elements using the operator [], you can use a
vector iterator. A vector iterator, of IT_Vector<T>::iterator type, gives you
pointer-style access to a vector’s elements. The following operations are
supported by IT_Vector<T>::iterator:

++, --, *, =, ==, !=

An iterator instance remembers its current position within the element list.
The iterator can advance to the next element using ++, step back to the
previous element using --, and access the current element using *.

The IT_Vector template also provides a reverse iterator, of
IT_Vector<T>::reverse_iterator type. The reverse iterator differs from the
regular iterator in that it starts at the end of the element list and traverses
the list backwards. That is the meanings of ++ and -- are reversed.

Example 142:Using Basic IT_Vector Operations to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

for (size_t k=0; k < v.size(); k++) {
 v[k] = (IT_Bus::Int) k*k;
}

309

CHAPTER 9 | Artix Data Types
Example using iterators Example 142 on page 309 can be written in a more idiomatic style using
vector iterators, as shown in Example 143.

Example 143:Using Iterators to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

IT_Vector<IT_Bus::Int>::iterator p = v.begin();
IT_Bus k_int = 0;

while (p != v.end())
{
 *p = k_int*k_int;
 ++p;
 ++k_int;
}

 310

IT_Vector Template Class
Summary of IT_Vector Operations

Overview This section provides a brief summary of the types and operations supported
by the IT_Vector template type. Note that the set of supported types and
operations differs slightly from std::vector. They are described in the
following categories:

• Member types.

• Iterators.

• Element access.

• Stack operations.

• List operations.

• Other operations.

Member types Table 12 lists the member types defined in IT_Vector<T>.

Table 12: Member Types Defined in IT_Vector<T>

Member Type Description

value_type Type of element.

size_type Type of subscripts.

difference_type Type of difference between iterators.

iterator Behaves like value_type*.

const_iterator Behaves like const value_type*.

reverse_iterator Iterates in reverse, like value_type*.

const_reverse_iterator Iterates in reverse, like const value_type*.

reference Behaves like value_type&.

const_reference Behaves like const value_type&.
311

CHAPTER 9 | Artix Data Types
Iterators Table 13 lists the IT_Vector member functions returning iterators.

Element access Table 14 lists the IT_Vector element access operations.

Stack operations Table 15 lists the IT_Vector stack operations.

Table 13: Iterator Member Functions of IT_Vector<T>

Iterator Member Function Description

begin() Points to first element.

end() Points to last element.

rbegin() Points to first element of reverse sequence.

rend() Points to last element of reverse sequence.

Table 14: Element Access Operations for IT_Vector<T>

Element Access Operation Description

[] Subscripting, unchecked access.

front() First element.

back() Last element.

Table 15: Stack Operations for IT_Vector<T>

Stack Operation Description

push_back() Add to end.

pop_back() Remove last element.
 312

IT_Vector Template Class
List operations Table 16 lists the IT_Vector list operations.

Other operations Table 17 lists the other operations supported by IT_Vector.

Table 16: List Operations for IT_Vector<T>

List Operations Description

insert(p,x) Add x before p.

insert(p,n,x) Add n copies of x before p.

insert(first,last) Add elements from [first:last[before p.

erase(p) Remove element at p.

erase(first,last) Erase [first:last[.

Table 17: Other Operations for IT_Vector<T>

Operation Description

size() Number of elements.

empty() Is the container empty?

capacity() Space allocated.

reserve() Reserve space for future expansion.

swap() Swap all the elements between two vectors.

== Test vectors for equality (member-wise).
313

CHAPTER 9 | Artix Data Types
 314

CHAPTER 10

Artix IDL to C++
Mapping
This chapter describes how Artix maps IDL to C++; that is,
the mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 316

IDL Basic Type Mapping page 318

IDL Complex Type Mapping page 320

IDL Module and Interface Mapping page 329
315

CHAPTER 10 | Artix IDL to C++ Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping
IDL to C++ in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, SampleIDL.idl, to a WSDL contract,
SampleIDL.wsdl, using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to C++ using the WSDL-to-C++
compiler. For example, you could generate C++ stub code from the
SampleIDL.wsdl file using the following command:

wsdltocpp SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix
User’s Guide.

Alternative C++ mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to C++ directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to C++, as follows:

• Artix IDL-to-C++ mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-C++. It is an IONA-proprietary mapping.

• CORBA IDL-to-C++ mapping—as specified in the OMG C++
Language Mapping document (http://www.omg.org). This mapping is
used, for example, by the IONA’s Orbix.
 316

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 28.

The advantage of using the Artix IDL-to-C++ mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-C++ mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++ mapping:

• wchar.

• wstring.

• long double.

• Value types.

• Boxed values.

• Local interfaces.

• Abstract interfaces.

• forward-declared interfaces.

Figure 28: Artix and CORBA Alternatives for IDL to C++ Mapping

IDL File

WSDL
Contract

Artix
C++

Stubs

CORBA
C++

Stubs

Artix

CORBA

IDL-to-WSDL

IDL-to-C++

WSDL-to-C++
317

CHAPTER 10 | Artix IDL to C++ Mapping
IDL Basic Type Mapping

Overview Table 18 shows how IDL basic types are mapped to WSDL and then to
C++.

Table 18: Artix Mapping of IDL Basic Types to C++

IDL Type WSDL Schema Type C++ Type

any xsd:anyType IT_Bus::AnyHolder

boolean xsd:boolean IT_Bus::Boolean

char xsd:byte IT_Bus::Byte

string xsd:string IT_Bus::String

wchar xsd:string IT_Bus::String

wstring xsd:string IT_Bus::String

short xsd:short IT_Bus::Short

long xsd:int IT_Bus::Int

long long xsd:long IT_Bus::Long

unsigned short xsd:unsignedShort IT_Bus::UShort

unsigned long xsd:unsignedInt IT_Bus::UInt

unsigned long long xsd:unsignedLong IT_Bus::ULong

float xsd:float IT_Bus::Float

double xsd:double IT_Bus::Double

long double Not supported Not supported

octet xsd:unsignedByte IT_Bus::UByte

fixed xsd:decimal IT_Bus::Decimal

Object references:Reference IT_Bus::Reference
 318

IDL Basic Type Mapping
Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, or wstring).
319

CHAPTER 10 | Artix IDL to C++ Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to C++:

• enum type.

• struct type.

• union type.

• sequence types.

• array types.

• exception types.

• typedef of a simple type.

• typedef of a complex type.

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
 320

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Shape type to a C++
class, SampleTypes_Shape, as follows:

The value of the enumeration type can be accessed and modified using the
get_value() and set_value() member functions.

Programming with the Enumeration Type

For details of how to use the enumeration type in C++, see “Deriving
Simple Types by Restriction” on page 224.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

class SampleTypes_Shape : public IT_Bus::AnySimpleType
{
 public:
 SampleTypes_Shape();
 SampleTypes_Shape(const IT_Bus::String & value);
 ...
 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;
};

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>
321

CHAPTER 10 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Poly type to a C++
class, SampleTypes_Poly, as follows:

The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator_as_uint() functions.

Programming with the Union Type

For details of how to use the union type in C++, see “Choice Complex
Types” on page 232.

// C++
class SampleTypes_Poly : public IT_Bus::ChoiceComplexType
{
 public:
 ...
 const IT_Bus::Short gettheShort() const;
 void settheShort(const IT_Bus::Short& val);

 const IT_Bus::String& gettheString() const;
 void settheString(const IT_Bus::String& val);

 enum PolyDiscriminator
 {
 theShort,
 theString,
 Poly_MAXLONG=-1L
 } m_discriminator;

 PolyDiscriminator get_discriminator() const { ... }
 IT_Bus::UInt get_discriminator_as_uint() const { ... }
 ...
};
 322

IDL Complex Type Mapping
struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-C++ compiler maps the SampleTypes.SampleStruct type to
a C++ class, SampleTypes_SampleStruct, as follows:

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SampleStruct : public
IT_Bus::SequenceComplexType

{
 public:
 SampleTypes_SampleStruct();
 SampleTypes_SampleStruct(const SampleTypes_SampleStruct&

copy);
 ...
 const IT_Bus::String & gettheString() const;
 IT_Bus::String & gettheString();
 void settheString(const IT_Bus::String & val);

 const IT_Bus::Int & gettheLong() const;
 IT_Bus::Int & gettheLong();
 void settheLong(const IT_Bus::Int & val);
};
323

CHAPTER 10 | Artix IDL to C++ Mapping
The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence Complex
Types” on page 229.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.SeqOfStruct type to a
C++ class, SampleTypes_SeqOfStruct, as follows:

The SampleTypes_SeqOfStruct class is an Artix C++ array type (based on
the IT_Vector template). Hence, the array class has an API similar to the
std::vector type from the C++ Standard Template Library.

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SeqOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_SeqOfStruct_item_qname, 0, -1>

{
 public:
 ...
};
 324

IDL Complex Type Mapping
Programming with Sequence Types

For details of how to use sequence types in C++, see “Arrays” on page 263
and “IT_Vector Template Class” on page 307.

array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypes_ArrOfStruct, as follows:

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT_Bus::ArrayT base class uses the bounds
specified in the IDL.

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_ArrOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_ArrOfStruct_item_qname, 10, 10>

{
 ...
};
325

CHAPTER 10 | Artix IDL to C++ Mapping
The SampleTypes_ArrOfStruct class is an Artix C++ array type (based on
the IT_Vector template). The array class has an API similar to the
std::vector type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

Programming with Array Types

For details of how to use array types in C++, see “Arrays” on page 263 and
“IT_Vector Template Class” on page 307.

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>
 326

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.GenericExc and
_exception.SampleTypes.GenericExc types to C++ classes,
SampleTypes_GenericExc and _exception_SampleTypes_GenericExc, as
follows:

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see “Propagating Exceptions” on page 33.

typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float.

// C++
class SampleTypes_GenericExc : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_GenericExc();
 ...
 const IT_Bus::String & getreason() const;
 IT_Bus::String & getreason();
 void setreason(const IT_Bus::String & val);
};
...
class _exception_SampleTypes_GenericExcException : public

IT_Bus::UserFaultException
{
 public:
 _exception_SampleTypes_GenericExcException();
 ...
 const SampleTypes_GenericExc & getexception() const;
 SampleTypes_GenericExc & getexception();
 void setexception(const SampleTypes_GenericExc & val);
 ...
};

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};
327

CHAPTER 10 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler then maps the xsd:float type directly to the
IT_Bus::Float C++ type. Hence, no C++ typedef is generated for the
float type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-C++ compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypes::SampleStruct C++ type. Hence,
no C++ typedef is generated for this struct type. Instead of a typedef, the
C++ mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific C++ class being generated to represent the
sequence or array type.
 328

IDL Module and Interface Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL
constructs:

• Module mapping.

• Interface mapping.

• Object reference mapping.

• Operation mapping.

• Attribute mapping.

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C++ compiler (see
“Generating Stub and Skeleton Code” on page 2). For example, if you pass a
namespace, TEST, to the WSDL-to-C++ -n switch, the
ModuleName::Identifier IDL identifier would map to
TEST::ModuleName_Identifier.

Interface mapping An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type
maps to the ModuleName_InterfaceName_TypeName C++ class.
329

CHAPTER 10 | Artix IDL to C++ Mapping
Object reference mapping When an IDL interface is used as an operation parameter or return type, it is
mapped to the IT_Bus::Reference C++ type.

For example, consider an operation, get_foo(), that returns a reference to a
Foo interface as follows:

The get_foo() IDL operation then maps to the following C++ function:

Note that this mapping is very different from the OMG IDL-to-C++
mapping. In the Artix mapping, the get_foo() operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the IT_Bus::Reference object into the
FooClient constructor.

See “Artix References” on page 75 for more details.

// IDL
interface Foo {};

interface Bar {
 Foo get_foo();
};

// C++
void get_foo(
 IT_Bus::Reference & var_return
) IT_THROW_DECL((IT_Bus::Exception));
 330

IDL Module and Interface Mapping
Operation mapping Example 144 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 144 on page 331, map to
C++ as shown in Example 145,

Example 144:Example IDL Operations

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 SampleStruct test_op(
 in SampleStruct in_struct,
 inout SampleStruct inout_struct,
 out SampleStruct out_struct
) raises (GenericExc);

 oneway void test_oneway(in string in_str);
 };
};

Example 145:Mapping IDL Operations to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void test_op(
 const TEST::SampleTypes_SampleStruct & in_struct,
 TEST::SampleTypes_SampleStruct & inout_struct,
 TEST::SampleTypes_SampleStruct & var_return,
 TEST::SampleTypes_SampleStruct & out_struct
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void test_oneway(
 const IT_Bus::String & in_str
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
331

CHAPTER 10 | Artix IDL to C++ Mapping
The preceding C++ operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var_return.

The order of parameters in the C++ function signature, test_op(), is
determined as follows:

♦ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

♦ Next, the return value appears as the parameter, var_return
(with the same semantics as an out parameter).

♦ Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 146 shows two IDL attributes defined within the
SampleTypes::Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, struct_attr.

Example 146:Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute SampleStruct struct_attr;
 };
};
 332

IDL Module and Interface Mapping
The attributes from the preceding IDL, Example 146 on page 332, map to
C++ as shown in Example 147,

The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++, _get_AttributeName().

Example 147:Mapping IDL Attributes to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void _get_str_attr(
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

 virtual void _set_str_attr(
 const IT_Bus::String & _arg
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void _get_struct_attr(
 TEST::SampleTypes_SampleStruct & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
333

CHAPTER 10 | Artix IDL to C++ Mapping
 334

Index

Symbols
<extension> tag 248
<fault> tag 34
<port> element 192
<restriction> tag 247
<simpleContent> tag 247

A
abstract interface type 317
add_service() function 53
all complex type

nillable example 280
AllComplexType class 236
all groups 236
anonymous types

avoiding 243
AnyHolder class 268

get_any_type() function 269
get_type() function 270
inserting and extracting atomic types 269
inserting and extracting user types 269
set_any_type() function 269

AnyType class 170, 180, 269
anyType type 268

nillable 276
anyURI 227
arrays

multi-dimensional native 265
native 263
SOAP 295

arrayType attribute 297
array types

nillable elements 292
artix.cfg file 71
Artix Designer

and routing 104
Artix foundation classes 22
Artix locator

overview 117
Artix namespaces 5
Artix services

locator 121
ART library 22
assign() 308
at() 308
atomic types 211

nillable example 277
nillable types 276

attributes
in extended types 251
mapping 239
optional 239
optional, C++ mapping 240
optional, example 240
prohibited 239
required 239
required, C++ mapping 241
required, example 241

auto_ptr template 46

B
Base64Binary type 222
base64Binary type

nillable 277
BASIC authentication 193
begin() 155, 157
begin_session() 143
below_capacity() function 132
binary types 222

get_data() 222
set_data() 222

binding name
specifying to code generator 3

boolean type
nillable 276

bounded sequences 325
boxed value type 317
building Artix applications 268
Bus

add_service() function 53
Bus library 22
byte type

nillable 276
335

INDEX
C
C++ mapping

parameter order 28
parameters 27

callbacks
and routing 103
and threading 102
client implementation 109
ClientImpl servant class 111
client main function 109
demonstration 101
example scenario 102
overview 100
sample WSDL contract 107
server implementation 113
ServerImpl servant class 114
server main function 113

calling context 170
checked facets 224
choice complex type 243
ChoiceComplexType class 232
choice complex types 232
clear() 308
client

developing 12
proxy object 12
stub code, files 2

client proxies
and multi-threading 64
and threading 63
get_port() 202

client stub code 2
clone() function 69
cloning

and transient servants 57
service for transient reference 93
services 79

cloning services 56
Code generation 2
code generation

from the command line 3
impl flag 8

code generator
command-line 3
files generated 2

commit() 155, 157
compare() 220
compiler requirements 22
compiling a context schema 175
 336
complexContent tag 251
complex datatypes

generated files 2
complex type

deallocating 45
deriving from simple 247

complex types 228
assignment operators 43
copying 43
deriving 250
nesting 243
recursive copying 44

complexType tag 251
configuration

message attributes 192
-ORBname switch 127

ConnectException type 32
container name 166
ContentType message attribute 206
context containers

registering 165
ContextCurrent class 170
context current object 169
context data

received 170
registering 180

contexts
and threading 169
client main function 177
data types, defining 163
example 171
get_context() function 180
get_context_container() function 165, 184
get_current() function 170
overview 160
protocols 161
register_context() function 165, 184
registering a context type 165
registering a CORBA context 167
sample schema 174
scenario description 173
schema, target namespace 175
server main function 182
service implementation 185
stub files, generating 164
type factories for 165

CORBA
abstract interface 317
any 318

INDEX
basic types 318
boolean 318
boxed value 317
char 318
enum type 320
exception type 326
fixed 318
forward-declared interfaces 317
local interface type 317
Object 318
sequence type 324
string 318
struct type 323
typedef 327
union type 321, 325
value type 317
wchar 318
wstring 318

CORBAContextContainer class
registration functions 167

CorbaContextContainer container name 166
CORBA headers

and contexts 162
CosTransactions::Coordinator class 155

D
date 227
dateTime type

nillable 277
decimal type

nillable 277
declaration specifiers 24
-declspec option 24
derivation

by extension 247
by restriction 247
complex type from complex type 250
get_derived() function 254
get_simpleTypeValue() 249
set_simpleTypeValue() 249

DeserializationException type 32
developing a server 8
dispatch() function 68
DLL

building stub libraries 24
DLL library

building Artix stubs in a 4
double type

nillable 276
duration 227

E
ElementListT class 259

conversion to IT_Vector 261
embedded mode

compiling 22
linking 22

encoding of SOAP array 301
EndpointNotExist fault 123
endpoint reference 76
endpoints 119

below_capacity() function 132
pausing and resuming 132
reached_capacity() function 132
registering with the locator 127

end_session() 149
ENTITIES type 242
ENTITY 227
ENTITY type 242
enumeration facet 224
enum type 320
Error() function 31
exception

propagating 33
raising a fault exception 34

exception handling
CORBA mapping 326

Exception type 31
exception type 326
extension

attributes defined in 251
deriving complex types 251
get_derived() function 254
holder types 254

extension tag 251

F
facets 224

checked 224
FaultException type 33
fixed decimal

compare() 220
DigitIterator 221
is_negative() 220
left_most_digit() 220
number_of_digits() 220
past_right_most_digit() 220
337

INDEX
round() 220
scale() 220
truncate() 220

float type
nillable 276

forward-declared interfaces 317
fractionDigits facet 224

G
gDay 227
generating code

complete sample application 17
get_all_endpoints() 144
get_any_type() function 269
get_bus() 207
get_context() function 180
get_context_container() function 165, 180, 184,

186
get_current() function 170, 180, 186
get_data() 222
get_derived() function 254
get_discriminator() 322
get_discriminator_as_uint() 322
getendpoints() 145
get_extents() 297, 302, 305
get_input_message_attributes() 147, 208
get_item_name() 260
get_max_occurs() 259
get_min_occurs() 259
get_port() 146, 202
get_reference() function 96, 98
getsession_id() 143
get_simpleTypeValue() 249
get_size() 260
get_type() function 270
GIOP

and Artix contexts 162
GlobalBusORBPlugIn class 20
gMonth 227
gMonthDay 227
gYear 227
gYearMonth 227

H
HelloWorld port type 6
HexBinary type 222
hexBinary type

nillable 277
 338
high water mark 71
high_water_mark configuration variable 72
holder types, and extension 254
HTTP

BASIC authentication 193
example port 13

HTTPClientAttributes class 200
http-conf.xsd file 193
http plug-in 127
HTTPServerAttributes class 200

I
IDL

bounded sequences 325
enum type 320
exception type 326
object references 330
oneway operations 332
sequence type 324
struct type 323
typedef 327
union type 321, 325

IDL attributes
mapping to C++ 332

IDL basic types 318
IDL interfaces

mapping to C++ 329
IDL modules

mapping to C++ 329
IDL operations

mapping to C++ 331
parameter order 332
return value 332

IDL readonly attribute 333
IDL-to-C++ mapping

Artix and CORBA 316
IDL types

unsupported 317
idl utility 316
IDREF 227
IDREFS type 242
inheritance relationships

between complex types 250
init()

-ORBname parameter 131
init() function 9, 12
Initializing the Bus 9
initial_threads configuration variable 72
inout parameter ordering 29

INDEX
inout parameters 332
in parameters 332
input message 26
input message attributes 190
input parameters 26
instance namespace 274
integer 227
interception points 191
int type

nillable 276
InvalidRouteException type 32
IOException type 32
IONA foundation classes 22
IP ports

in cloned service 57
is_empty() 305
is_negative() 220
is_nil() function 279, 282, 289
IT_AutoPtr template 46
IT_Bus::AllComplexType 236
IT_Bus::AnyType class 170, 180
IT_Bus::Base64Binary 222
IT_Bus::BinaryBuffer 211
IT_Bus::Boolean 211
IT_Bus::Bus::register_servant() function 55
IT_Bus::Bus::register_transient_servant()

function 58
IT_Bus::Bus::remove_service() function 55
IT_Bus::Byte 211
IT_Bus::ChoiceComplexType 232
IT_Bus::ConnectException 32
IT_Bus::ContextContainer::get_current()

function 180, 186
IT_Bus::ContextCurrent class 170
IT_Bus::CORBAContextContainer class 162
IT_Bus::DateTime 211, 219
IT_Bus::Decimal 211, 220
IT_Bus::Decimal::DigitIterator 221
IT_Bus::DeserializationException 32
IT_Bus::Double 211
IT_Bus::ElementListT 259

conversion to IT_Vector 261
IT_Bus::Exception 31
IT_Bus::Exception::Error() 31
IT_Bus::Exception::Message() 31
IT_Bus::Exception type 31
IT_Bus::FaultException 33
IT_Bus::Float 211
IT_Bus::get_context_container() function 165, 180,
184, 186
IT_Bus::GlobalBusORBPlugIn class 20
IT_Bus::HexBinary 211, 222
IT_Bus::init() 9, 12
IT_Bus::Int 211
IT_Bus::IOException 32
IT_Bus::Long 211
IT_Bus::MessageAttributes class 195
IT_Bus::NamedAttributes class 195
IT_Bus::NoSuchAttributeException exception 204,

208
IT_Bus::QName 211
IT_Bus::Reference class 77, 99
IT_Bus::run() 10, 12
IT_Bus::SequenceComplexType 229
IT_Bus::SerializationException 32
IT_Bus::Service::get_reference() function 96, 98
IT_Bus::Service::register_servant() 53
IT_Bus::Service::register_servant() function

and transient servants 58
IT_Bus::ServiceException 32
IT_Bus::Short 211
IT_Bus::shutdown() 14
IT_Bus::SoapContextContainer class 161, 179, 184
IT_Bus::SoapContextCurrent class 179, 180
IT_Bus::SoapEncArrayT 297
IT_Bus::String 211, 212
IT_Bus::String::iterator 212
IT_Bus::TibrvMessageAttributes class 200
IT_Bus::TransportException 32
IT_Bus::UByte 211
IT_Bus::UInt 211
IT_Bus::ULong 211
IT_Bus::UShort 211
IT_BUS_E_FAULT error code 31
IT_Bus namespace 5
IT_Bus_Services::renewSessionFaultException 148
IT_Bus_Services::SessionID 143
iterators

in IT_Vector 309
IT_FixedPoint class 220
IT_HTTP_E_ACCESS_DENIED error code 31
IT_HTTP_E_BAD_CONFIG error code 31
IT_HTTP_E_COMM_ERROR error code 31
IT_HTTP_E_NOT_FOUND error code 31
IT_HTTP_E_SHUTTING_DOWN error code 31
IT_Routing::InvalidRouteException 32
IT_UString class 212
IT_Vectof class
339

INDEX
resize() 308
IT_Vector class 259, 261

and set_size() 262
assign() 308
at() 308
clear() 308
converting to 267
differences from std::vector 308
iterators 309
operations 311
overview 307
resize() 308

IT_WSDL namespace 5

L
language 227
leaks

avoiding 46
left_most_digit() 220
length() 216
length facet 224
libraries

Artix foundation classes 22
ART library 22
Bus 22
IONA foundation classes 22

license
display current 4

linker requirements 22
list 227
load balancing

with the locator 118
local interface type 317
locator

binding and protocol 121
demonstration code 119
embedded deployment 119
EndpointNotExist fault 123
load balancing 118, 120
LocatorService port type, C++ mapping 124
lookupEndpointResponse type 123
lookupEndpointResponse type, C++

mapping 126
lookupEndpoint type 123
lookupEndpoint type, C++ mapping 125
reading a reference from 128
registering endpoints 127
standalone deployment 119
WSDL contract 121
 340
locator, Artix 117
locator_endpoint plug-in 127, 132
LocatorService port type 124
logical contract 78

and servants 51
long type

nillable 276
lookupEndpointResponse type 123
lookupEndpointResponse type, C++ mapping 126
lookupEndpoint type 123
lookupEndpoint type, C++ mapping 125
low water mark 71
low_water_mark configuration variable 72

M
makefile

generating with wsdltocpp 3
mapping

IDL attributes 332
IDL interfaces 329
IDL modules 329
IDL operations 331
IDL to C++ 316

maxExclusive facet 224
maxInclusive facet 224
maxLength facet 224
maxOccurs 259, 263
max_size() 308
memory management 37

client side 39
copying and assignment 43
deallocating 45
rules 38
server side 40
smart pointers 46

Message() function 31
message attributes

categories 190
client example 202
ContentType 206
HTTPClientAttributes class 200
HTTPServerAttributes class 200
in configuration 192
input message 190
interception points 191
IT_Bus::TibrvMessageAttributes class 200
MQAttributes class 200
MQ series 192
name-value API 195

INDEX
NoSuchAttributeException exception 204
oneway operation 191
output 190
schemas 193
server example 205
transport-specific API 199

MessageAttributes class 195
message headers

and contexts 161
messages

input 26
output 26

minExclusive facet 224
minInclusive facet 224
minLength facet 224
minOccurs 259
mq.xsd file 193
MQAttributes class 200
MQ series

message attributes 192
multi-dimensional native arrays 265
MULTI_INSTANCE threading model 208
MULTI_THREADED threading model 208
multi-threaded threading model 65
multi-threading

client side 63
server side 65

N
Name 227
NamedAttributes class 195
namespace

for generated C++ code 3
namespaces

IT_Bus 5
IT_WSDL 5
using in C++ 5

name-value API 195
native arrays 263
NCName 227
negativeInteger 227
nesting complex types 243
nillable atomic member elements 283
NillablePtr template class 289
nillable types 283

atomic type, example 277
atomic types 276
IT_Bus::NillableValue 274
nillable array elements 292
NillablePtr template class 289
nillable user-defined member elements 287
overview 273
syntax 274
user-defined types 280
xsi:nil attribute 274

NillableValue class 274
nmake

generating makefile for 3
NMTOKENS type 242
NMTOKEN type 242
nonNegativeInteger 227
nonPositiveInteger 227
normalizedString 227
NoSuchAttributeException exception 204, 208
NOTATION 227
NOTATION type 242
number_of_digits() 220

O
object references

mapping to C++ 330
occurrence constraints

get_item_name() 260
get_max_occurs() 259
get_min_occurs() 259
get_size() 260
in all groups 236
in choice groups 232
in sequence groups 229
overview of 259
set_size() 259

offset attribute 306
oneway operations

in IDL 332
operations

declaring 26
optional attributes 239
-ORBname, parameter to IT_Bus::init() 131
-ORBname command-line parameter 127
-ORBname command-line switch 71
orb_plugins list 80
order of parameters 28
OTS

transaction support 152
out parameters 332
output message 26
output message attributes 190
output parameters 26
341

INDEX
P
parameters

in IDL-to-C++ mapping 332
parsing

WSDL model 81
partially transmitted arrays 306
Password attribute 193
past_right_most_digit() 220
pattern facet 224
PerInvocation threading model 67

threading
PerInvocation threading model

69
per-port threading model 66, 68
PerThread threading model 67, 69
physical contract 78

and servants 51
plug-in

servant registration 19
servant registration code 4

plug-ins
http 127
locator_endpoint 127
locator_endpoint plug-in 132
soap 127

plugins:sm_simple_policy:max_session_timeout 14
3

plugins:sm_simple_policy:min_session_timeout 143
port

specifying on the client side 12
specifying to code generator 3

port object
use_input_message_attributes() 202, 205
use_output_message_attributes() 205

ports
activating, for transient servants 59
activating all together 54
activating individually 53
activating with register_servant() 53
and endpoints 119

port type
specifying to code generator 3

positiveInteger 227
prohibited attributes 239
propagating exceptions 33
protocols

and contexts 161
proxies
 342
constructor for references 131
proxification 103

definition 105
proxy

initializing from reference 99
proxy object

and multi-threading 64
constructors 12

proxy objects
constructor with reference argument 14

Q
QName 227
QName type

nillable 276

R
reached_capacity() function 132
received context data 170
recursive copying 44
recursive deallocating 45
ref:Reference type 123
reference

C++ representation 77
contents 77
to an endpoint 76
XML schema for 77

Reference class 77
references

and WSDL publish plug-in 82
callbacks, overview 100
cloning from a service 93
constructor for client proxies 131
CORBA mapping 330
creating 95
get_reference() function 98
importing the XML schema 92
IT_Bus::Reference class 99
looking up in the locator 119
programming with 85
proxy constructor 14, 99
reading from the locator 128
ref:Reference type 123
register_transient_servant() function 98
schema 123
static 78
static, sample definition 93
transient 79

INDEX
transient, creating 97
XML schema 77, 86
XML type 86

references:Reference type 92
register_context() function 165, 166, 180, 184
register_servant() function 53, 55, 96

and transient servants 58
register_transient_servant() function 58, 59, 61, 98
remove_service() function 55
renew_session() 148
required attributes 239
resize() 308
resources

server side 152
rollback() 155, 157
rollback_only() 155
round() 220
router contract 104
routing

and callbacks 103
Artix Designer 104
proxification 105

run() function 10, 12
Running the Bus 10

S
sample client implementation

generating with wsdltocpp 4
sample context schema 174
sample server implementation

generating with wsdltocpp 4
scale() 220
schema

for references 123
schemas 193

context, example 174
for references 77

sequence complex type 243
SequenceComplexType class 229
sequence complex types 229

and arrays 263
sequence type 324
Serialization type 32
Serialized threading model 69
serialized threading model 66
servant

and threading models 67
registration in plug-in 4
static, example 54
servants
add_service() function 53
clone() function 69
dispatch() function 68
registering 50
register_servant() function 53
static, registering 51
transient, activating ports 59
transient, registering 56
wrapper, registering 69
wrapper classes 68

server
developing 8
implementation class 8
main() function 9
skeleton code, files 2

server skeleton code 2
service

specifying on the client side 12
Service::register_servant() 53
service contexts

and CORBA 162
ServiceException type 32
service name

specifying to code generator 3
services

cloning 56, 79
cloning, IP ports 57

SessionManagerClient 142
set_any_type() function 269
set_data() 222
setendpoint_group() 143
setprefered_renew_timeout() 143
setsession_id() 144
set_simpleTypeValue() 249
set_size() 259, 262
set_timeout() 155
short type

nillable 276
shutdown() function 14
Shutting the Bus down 11
simple types

deriving by restriction 224
skeleton code

files 2
generating with wsdltocpp 3

smart pointer
assignment semantics 47

smart pointers 46
343

INDEX
SOAP arrays 295
encoding 301
get_extents() 297, 302
multi-dimensional 300
one-dimensional 297
partially transmitted 306
sparse 303
syntax 296

SOAP bindings 121
SoapContextContainer::register_context()

function 166
SoapContextContainer class 179, 184
SoapContextContainer container name 166
SoapContextCurrent class 179, 180
SOAP-ENC:Array type 296
SOAP-ENC:offset attribute 306
SoapEncArrayT class 297
SOAP headers

and contexts 161
soap plug-in 127
sparse arrays 303

get_extents() 305
initializing 304
is_empty() 305

static reference 78
static references

and published WSDL model 83
sample definition 93

static servant
definition 51

static servants 51
register_servant() function 96

std::vector class 307
strings

iterator 212
IT_UString class 212
length() 216

string type
nillable 276

Stroustrup, Bjarne 216
struct type 323
stub code

files 2
stub libraries

building on Windows 24
stubs

DLL library, packaging as 4
 344
T
target namespace

for a context schema 175
threading

and callbacks 102
and contexts 169
client proxy in two threads 63
MULTI_INSTANCE model 208
MULTI_THREADED model 208
multi-threaded model 65
overview 62
PerInvocation threading model 67
per-port threading model 66, 68
PerThread threading model 67, 69
Serialized threading model 69
serialized threading model 66
work queue 67

threading model
default 65
default, for servants 60
default for servant 54

thread pool
configuration settings 71
initial threads 71

thread_pool:high_water_mark configuration
variable 72

thread_pool:initial_threads configuration variable 72
thread_pool:low_water_mark configuration

variable 72
Tibco transport 200
tibrv.xsd file 193
time 227
token 227
totalDigits facet 224
transaction factory 152
transaction factory name 154
transactions

begin() 155, 157
client example 156
commit() 155, 157
compatibility with CORBA OTS 153
CosTransactions::Coordinator class 155
in Artix 152
IT_Bus::Bus class 154
OTS-based 152
rollback() 155, 157
rollback_only() 155
set_timeout() 155
transaction factory 152

INDEX
within_transaction() 155
transient references 79, 97

and published WSDL model 83
transient servants 56

registering 58
TransportException type 32
transports

schemas 193
Tibco 200

truncate() 220
Tuxedo

example port 13
typedef 327
type factories

and contexts 165

U
union 227
union type 321, 325
unsignedByte type

nillable 276
unsignedInt type

nillable 276
unsignedLong type

nillable 276
unsignedShort type

nillable 276
unsupported IDL types 317
use_input_message_attributes 146
use_input_message_attributes() 202, 204, 205
use_output_message_attributes() 204, 205
user defined exceptions

propagation 33
user-defined types

nillable 280
UserName attribute 193

V
value type 317
_var types 47

W
wchar type 317
whiteSpace facet 224
within_transaction() 155
work queue 67
wrapper servants 68, 69
WSDL
anyType syntax 268
atomic types 211
attributes 239
binary types 222
complex types 228
deriving by restriction 224

wsdl:arrayType attribute 297
WSDL contract

location of 13
WSDL facets 224
WSDL faults 326
WSDL model 81

and multiple Bus instances 84
WSDL publish plug-in 80

WSDL model 81
wsdl_publish plug-in 80
wsdltocpp

command-line options 3
command-line switches 3
files generated 2
XML schemas, generating from 164

wsdltocpp compiler 175
generating an application 17

wsdltocpp utility 268, 316
-declspec option 24

wstring type 317

X
xsd

anyURI 227
date 227
duration 227
ENTITY 227
gDay 227
gMonth 227
gMonthDay 227
gYear 227
gYearMonth 227
IDREF 227
language 227
list 227
Name 227
NCName 227
negativeInteger 227
nonNegativeInteger 227
nonPositiveInteger 227
normalizedString 227
NOTATION 227
positiveInteger 227
345

INDEX
QName 227
time 227
token 227
union 227

xsd:anyType
and context types 163

xsd:boolean 225
xsd:dateTime type 219
xsd:decimal type 220
xsd:ENTITIES 242
xsd:ENTITY 242
xsd:IDREFS 242
xsd:NMTOKEN 242
xsd:NMTOKENS 242
xsd:NOTATION 242
xsdl

integer 227
xsi:nil attribute 274
xsi namespace 274
 346

INDEX
347

INDEX
 348

	Developing Artix Application in C++
	List of Tables
	Preface
	1 Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	C++ Namespaces
	Defining a WSDL Interface
	Developing a Server
	Developing a Client
	Generating a Sample Application from WSDL
	Compiling and Linking an Artix Application
	Building Artix Stub Libraries on Windows

	2 Artix Programming Considerations
	Operations and Parameters
	Exceptions
	Non-Propagating Exceptions
	Propagating Exceptions

	Memory Management
	Managing Parameters
	Assignment and Copying
	Deallocating
	Smart Pointers

	Registering Servants
	Registering a Static Servant
	Registering a Transient Servant

	Multi-Threading
	Client Threading Issues
	Servant Threading Models
	Setting the Servant Threading Model
	Thread Pool Configuration

	3 Artix References
	Introduction to References
	The WSDL Publish Plug-In
	Programming with References
	Bank WSDL Contract
	Creating References
	Resolving References

	Callbacks
	Overview of Artix Callbacks
	Routing and Callbacks
	Callback WSDL Contract
	Client Implementation
	Server Implementation

	4 The Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator
	Pausing and Resuming Endpoints

	5 Using Sessions in Artix
	Introduction to Session Management in Artix
	Registering a Server with the Session Manager
	Working with Sessions

	6 Transactions in Artix
	Introduction to Transactions
	Transaction API
	Client Example

	7 Artix Contexts
	Introduction to Contexts
	Protocols that Support Contexts
	Defining Context Data Types
	Registering Context Types
	Writing and Reading Context Data

	Context Example
	Custom SOAP Header Demonstration
	Sample Context Schema
	Client Main Function
	Server Main Function
	Service Implementation

	8 Message Attributes
	Introduction to Message Attributes
	Schemas
	Name-Value API
	Transport-Specific API
	Using Message Attributes in a Client
	Using Message Attributes in a Server

	9 Artix Data Types
	Simple Types
	Atomic Types
	String Type
	QName Type
	Date and Time Types
	Decimal Type
	Binary Types
	Deriving Simple Types by Restriction
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Occurrence Constraints
	Arrays

	anyType Type
	Nillable Types
	Introduction to Nillable Types
	Nillable Atomic Types
	Nillable User-Defined Types
	Nested Atomic Type Nillable Elements
	Nested User-Defined Nillable Elements
	Nillable Elements of an Array

	SOAP Arrays
	Introduction to SOAP Arrays
	Multi-Dimensional Arrays
	Sparse Arrays
	Partially Transmitted Arrays

	IT_Vector Template Class
	Introduction to IT_Vector
	Summary of IT_Vector Operations

	10 Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Index

