IONA

>3 Artix™

Developing Artix Applications

in C++
Version 2.0, March 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003-2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 13-Jul-2004

M3191

Contents

List of Tables

Preface

What is Covered in this Book

Who Should Read this Book
Organization of this guide

Related Documentation

Online Help

Suggested Path for Further Reading
Additional Resources for Information
Typographical Conventions

Keying Conventions

Chapter 1 Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

C++ Namespaces

Defining a WSDL Interface

Developing a Server

Developing a Client

Generating a Sample Application from WSDL
Compiling and Linking an Artix Application
Building Artix Stub Libraries on Windows

Chapter 2 Artix Programming Considerations

Operations and Parameters
Exceptions
Non-Propagating Exceptions
Propagating Exceptions
Memory Management
Managing Parameters
Assignment and Copying
Deallocating
Smart Pointers

CONTENTS

Registering Servants
Registering a Static Servant
Registering a Transient Servant
Multi-Threading
Client Threading Issues
Servant Threading Models
Setting the Servant Threading Model
Thread Pool Configuration

Chapter 3 Artix References
Introduction to References
The WSDL Publish Plug-In
Programming with References

Bank WSDL Contract
Creating References
Resolving References
Callbacks
Overview of Artix Callbacks
Routing and Callbacks
Callback WSDL Contract
Client Implementation
Server Implementation

Chapter 4 The Artix Locator
Overview of the Locator
Locator WSDL
Registering Endpoints with the Locator
Reading a Reference from the Locator
Pausing and Resuming Endpoints

Chapter 5 Using Sessions in Artix
Introduction to Session Management in Artix
Registering a Server with the Session Manager
Working with Sessions

Chapter 6 Transactions in Artix
Introduction to Transactions
Transaction API

50
51
56
62
63
65
68
71

75
76
80
85
86
95
99

100
101
103
107
109
113

117
118
121
127
128
132

135
136
139
142

151
152
154

Client Example

Chapter 7 Artix Contexts

Introduction to Contexts
Protocols that Support Contexts
Defining Context Data Types
Registering Context Types
Writing and Reading Context Data

Context Example
Custom SOAP Header Demonstration
Sample Context Schema
Client Main Function
Server Main Function
Service Implementation

Chapter 8 Message Attributes
Introduction to Message Attributes
Schemas
Name-Value API
Transport-Specific API
Using Message Attributes in a Client
Using Message Attributes in a Server

Chapter 9 Artix Data Types
Simple Types
Atomic Types
String Type
QName Type
Date and Time Types
Decimal Type
Binary Types
Deriving Simple Types by Restriction
Unsupported Simple Types
Complex Types
Sequence Complex Types
Choice Complex Types
All Complex Types
Attributes

CONTENTS

156

159
160
161
163
165
169
171
172
174
177
182
185

189
190
193
195
199
202
205

209
210
211
212
217
219
220
222
224
227
228
229
232
236
239

CONTENTS

Nesting Complex Types

Deriving a Complex Type from a Simple Type
Deriving a Complex Type from a Complex Type
Occurrence Constraints

Arrays

anyType Type
Nillable Types

Introduction to Nillable Types

Nillable Atomic Types

Nillable User-Defined Types

Nested Atomic Type Nillable Elements
Nested User-Defined Nillable Elements
Nillable Elements of an Array

SOAP Arrays

Introduction to SOAP Arrays
Multi-Dimensional Arrays
Sparse Arrays

Partially Transmitted Arrays

IT_Vector Template Class

Introduction to IT_Vector
Summary of IT_Vector Operations

Chapter 10 Artix IDL to C++ Mapping
Introduction to IDL Mapping
IDL Basic Type Mapping
IDL Complex Type Mapping
IDL Module and Interface Mapping

Index

Vi

243
247
250
259
263
268
273
274
276
280
283
287
292
295
296
300
303
306
307
308
311

315
316
318
320
329

335

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:

Artix Import Libraries for Linking with an Application

Artix Exception Error Codes

String Arguments to the get_context_container() Function

Transport Schemas with Message Attributes

Simple Schema Type to Simple Bus Type Mapping

IANA Character Set Names

Member Fields of IT_Bus::DateTime
Operators Supported by IT_Bus::Decimal
Schema to Bus Mapping for the Binary Types
Nillable Atomic Types

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_Vector<T>
Iterator Member Functions of IT_Vector<T>
Element Access Operations for IT_Vector<T>
Stack Operations for IT_Vector<T>

List Operations for IT_Vector<T>

Other Operations for IT_Vector<T>

Artix Mapping of IDL Basic Types to C++

22

31
166
193
211
213
219
220
222
276
308
311
312
312
312
313
313
318

vii

LIST OF TABLES

viii

Preface

What is Covered in this Book

This book covers the information needed to develop applications using the
Artix C++ API.

Who Should Read this Book

This guide is intended for Artix C++ programmers. In addition to a
knowledge of C++, this guide assumes that the reader is familiar with

WSDL and XML schemas.

Organization of this guide
This guide is divided as follows:

Part | <PART-TITLE>
<PART-DESCRIPTION>

Related Documentation
The Artix library includes the following books:

Getting Started with Artix

Deploying and Managing Artix Solutions
Designing Artix Solutions from the Command Line
Designing Artix Solutions using Artix Designer
Developing Artix Applications in C++

Developing Artix Applications in Java

Artix Security Guide

Artix Tutorial Guide

PREFACE

The latest updates to the Artix documentation can be found at http: //
i ona. coni docs.

Online Help

Artix includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.

® Adescription of each screen.

® A comprehensive index and glossary.
® Afull search feature.

® Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Suggested Path for Further Reading

If you are new to Artix, we suggest you read the documentation in the
following order:

1. Getting Started with Artix Encompass

The Getting Started book describes the basic concepts behind Artix. It

also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

2. Artix Tutorial

The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. Deploying and Managing Artix Solutions

The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

4. Designing Artix Solutions with Artix Designer

The Artix Designer book describes how to use the Artix GUI to describe

your services in an Artix contract.
5. Developing Artix Applications in C++/Java

The development guide discusses the technical aspects of
programming applications using the Artix API.

6. Designing Artix Solutions from the Command Line

http://iona.com/docs
http://iona.com/docs

PREFACE

This book provides detailed information about the WSDL extensions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

Additional Resources for Information

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

htt p: // waw. i ona. cond suppor t / kb/

The IONA update center contains the latest releases and patches for IONA
products:

ht t p: // ww. i ona. cond suppor t / updat e/

Xi

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
mailto:support@iona.com

PREFACE

Typographical Conventions
This book uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying Conventions
This book uses the following keying conventions:

No prompt

%

Xii

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

[

{}

PREFACE

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Xiii

PREFACE

Xiv

In this chapter

CHAPTER 1

Developing Artix
Enabled Clients

and Servers

Artix generates stub and skeleton code that provides a
developer with a simple model to develop transport

independent applications.

This chapter discusses the following topics:

Generating Stub and Skeleton Code page 2
C++ Namespaces page 5
Defining a WSDL Interface page 6
Developing a Server page 8
Developing a Client page 12
Generating a Sample Application from WSDL page 17
Compiling and Linking an Artix Application page 22
Building Artix Stub Libraries on Windows page 24

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

Overview

Generated files

The Artix development tools include a utility to generate server skeleton and

client stub code from an Artix contract. The generated code is similar to

code generated by a CORBA IDL compiler. There are two major differences

between CORBA generated code and Artix generated code:

® Artix generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

® Artix maps WSDL types to C++ using a proprietary WSDL-to-C++
mapping. The resulting types are very different from those generated by
an IDL-to-C++ compiler.

The Artix code generator produces a number of stub files from the Artix
contract. They are named according to the port type name, PortTypeName,
specified in the logical portion of the Artix contract. If the contract specifies
more than one port type, code will be generated for each one.

The following stub files are generated:

PortTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the
contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side
stubs for implementing a client to use the service defined by the contract.

PortTypeName_wsdITypes.h and PortTypeName_wsdITypes.cxx define the
complex datatypes defined in the contract (if any).

PortTypeName_wsdITypesFactory.h and
PortTypeName_wsdITypesFactory.cxx define factory classes for the
complex datatypes defined in the contract (if any).

Generating Stub and Skeleton Code

Generating code from the You can generate code at the command line using the command:

command line

wsdl tocpp [options] { WBDL- URL | SCHEMA- URL }
[-e web_service name] [-t port] [-b bindi ng_nare]
[-i port_type] [-d output-dir] [-n nanmespace]
[-ninport namespace] [-inmpl [-Mm{NVAKE | INX}] | -jp
plugin_class] [-f] [-server] [-client] [-sanple] [-plugin]
[-v] [-license] [-declspec declspec] [-all] [-?] [-flags]
[-upper| -1 ower|-mninal|-nmapper class]

You must specify the location of a valid WSDL contract file, WsDL_URL, for
the code generator to work. You can also supply the following optional

parameters:

-i port_type

Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract.

-e web_servi ce_nane Specifies the name of the service for which the tool

-t port

-b bi ndi ng_nane

-d output_dir

- N nanespace

-inpl

-m{NVAKE | UNIX}

will generate code. The default is to use the first
service listed in the contract.

Specifies the name of the port for which code is
generated. The default is to used the first port listed
in the contract.

Specifies the name of the binding to use when
generating code. The default is the first binding listed
in the contract.

Specifies the directory to which the generated code is
written. The default is the current working directory.

Specifies the C++ namespace to use for the
generated code.

Generates the skeleton code for implementing the
server defined by the contract.

Used in combination with -i npl to generate a
makefile for the specified platform (NVAKE for
Windows or UNI X for UNIX). For example, the
options, -i npl - m NVAKE, would generate a Windows
makefile.

CHAPTER 1 | Developing Artix Enabled Clients and Servers

-f

-server

-client

-sanpl e

-plugin

-V

-license

- decl spec decl spec

-al

-2

-fl ags

-ni nport nanespace

Deprecated—No longer used (was needed to support
routing in earlier versions.

Generates code for a sample implementation of a
server.

Generates code for a sample implementation of a
client.

Generates code for a sample implementation of a
client and a server (equivalent to -server -client).

Generates servant registration code as a Bus plug-in.
See “Customizing servant registration” on page 19 for
details.

Displays the version of the tool.
Displays the currently available licenses.

Creates NT declaration specifiers for dl | export and
di linport. This option makes it easier to package
Artix stubs in a DLL library. See “Building Artix Stub
Libraries on Windows” on page 24 for details.

Generate stub code for all of the port types and the
types that they use. This option is useful when
multiple port types are defined in a WSDL contract.

Displays help on using the command line tool.
Displays detailed information about the options.

Specifies the namespace under which code from
imported schema is generated. If nanespace is left
blank, the code for the imported schema will be
generated in the global namespace.

C++ Namespaces

C++ Namespaces

Artix namespaces

Solution specific namespaces

Two built-in C++ namespaces widely used by the Artix runtime
infrastructure are: 1 T_Bus, and | T_WsDL. The first namespace is used for the
callable APIs and declarations, and the second is used for the functions that
parse the WSDL at runtime; these are needed only by highly dynamic
applications.

You can optionally instruct the C++ client proxy generator to put the proxy
classes and complex data types into a custom C++ namespace. This is
useful if you plan on using many Web services from a single client
application. Consider the following sample application, where the G oupB
service was put into a namespace called G oupB. Also note the use of the

I T_Bus namespace for the data types.

#i ncl ude "G oupBdient.h"
#i ncl ude " QG oupBd i ent Types. h"

int main(int argc, char* argv[])
{
QoupB:: GoupBdient bc; // declare the client proxy class

G oupB: : SOAPSt ruct ssSend;

ssSend. setvar Fl oat (I T_Bus: : Fl oat (5. 67)) ;

ssSend. set var | nt (1234) ;

ssSend. setvar String(l T_Bus:: String("Enbedded struct string"));

I T Bus::Int intValue = 0;
I T Bus::Float floatValue = |T_Bus::Fl oat(0.0);

I T _StringPtr pstring(bc.echoStruct AsS npl eTypes(ssSend,
i ntVal ue, fl oatVal ue));

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Defining a WSDL Interface

Overview

Restrictions

WSDL example

This section defines the Hel | oWr | d port type, which is used as the basis for
the server and client examples appearing in this chapter. The code for the
Hel | oWor | d demonstration is located in the following directory:

ArtixInstallDirl arti x/ Version/ denos/ basi ¢/ hel | o_wor| d_soap_http

The following restrictions currently apply when defining a WSDL interface
for Artix applications:

® Some simple atomic types are not supported—see “Unsupported

Simple Types” on page 227.

Example 1 shows the WSDL for a Hel | owr | d port type, which defines two
operations, greet M and sayH .

Example 1: WSDL Definition of the HelloWorld Port Type

Il C++
<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: / / xnl bus. coni Hel | oWér | d"
xm ns="http: //schemas. xni soap. or g/ wsdl /"
xm ns: soap="ht t p: // schenas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://xm bus. coni Hel | oVér | d"
xm ns: xsd="ht t p: // waw. W3. or g/ 2001/ XM_Schema" >
<nessage nane="greet ">
<part name="stringParan®" type="xsd:string"/>
</ message>
<nmessage nane="greet MeResponse" >
<part name="return" type="xsd:string"/>
</ message>
<nessage name="sayH "/>
<nessage name="sayH Response">
<part name="return" type="xsd:string"/>
</ message>
<port Type nane="Hel | oWr| dPort Type" >
<oper ati on nane="greet M" >
<i nput message="tns: greet M&" name="gr eet M&"/ >
<out put message="t ns: gr eet MeResponse"

Defining a WSDL Interface

Example 1: WSDL Definition of the HelloWorld Port Type

nane="gr eet MeResponse" / >
</ oper at i on>
<oper ati on name="sayH ">
<i nput nessage="tns:sayH " name="sayH "/>
<out put message="t ns: sayH Response"
nane="sayH Response"/ >
</ oper at i on>
</ port Type>
<binding ... >

</ bi ndi ng>
<servi ce nane="Hel | oWbr | dServi ce" >
</ servi ce>

</ definitions>

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Developing a Server

Overview

Generating the server
implementation class

Generated code

Completing the server
implementation

The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing a server
that uses the Artix Bus. This skeleton code hides the transport details from
the application developer, allowing them to focus on business logic.

The Artix code generator utility, wsdl t ocpp, will generate an implementation
class for your server when passed the -i npl command flag.

The implementation class code consists of two files:

PortTypeNamelmpl.h contains the signatures and data types needed for the
server implementation.

PortTypeNamelmpl.cxx contains empty shells for the methods that
implement the operations defined in the contract, as well as an empty
contstructor and destructor for the impl class. This file also contains a
factory class for the server implementation.

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in

Por t TypeNanel npl . cxx. The generated impl class, Hel | oVr | di npl . cxx, for
the contract defined in this chapter would resemble Example 2. The
majority of the code in Example 2 is auto-generated by the WSDL-to-C++
compiler. Only the code portions highlighted in bol d (in the bodies of the
greet Me() and sayH () functions) must be inserted by the programmer.

Example 2: /mplementation of the HelloWorld Port Type in the Server
Il C++
#i ncl ude "Hel | oWor | dl npl . h"

#include <it_cal/cal . h>

I T_USI NG NAVESPACE_STD
usi ng namespace | T_Bus;

Writing the server main()

Developing a Server

Example 2: /mplementation of the HelloWorld Port Type in the Server

Hel | oWor | dl npl : : Hel | oWor | dl npl (I T_Bus: : Bus_ptr bus,
I T Bus::Port* port)
Hel | oWor | dSer ver (bus, port)

{

}

Hel | oWor | dI npl : : ~Hel | oWor | dI npl ()
{
}

voi d

Hel | oWor | dI npl : : gr eet Me(
const | T Bus::String & stringParan,
I T Bus::String & Response

) | T_THRONDECL((I T_Bus: : Exception))

{
cout << "HelloWrldlinpl::greetM called with nessage:
<< stringParan® << endl;
Response = | T_Bus:: String("Hello Artix User: ")+stringParan®;
}
voi d

Hel | oWor | dl npl : : sayH (
I T Bus::String & Response
) | T_THRONDECL((I T_Bus: : Excepti on))

{
cout << "HelloWrldlinpl::sayH called" << endl;
Response = I T _Bus::String("QGeetings fromthe Artix
Hel | oVorl d Server");
}

The server mai n() handles the initialization of the Artix Bus, the running of
the Artix Bus, and the shutdown of the Artix Bus.

Initializing the Bus

The Bus is initialized using | T_Bus: : i ni t () . The method has the following
signature:

static Bus& init(int argc,
char* argv[],
const char* scope = "");

CHAPTER 1 | Developing Artix Enabled Clients and Servers

10

The third parameter is optional and is used to identify the configuration
scope used by the Bus for this application.

Example 3 shows an example of initializing the Artix bus in a server. It is

important to retain an instance of the initialized Bus as it is needed to
register your server implementation factories,

Example 3: /nitializing the Artix Bus in a Server main()

/] C++
I T::Bus_var bus = | T_Bus::init(argc, argv);

Registering the Servant Objects

To make the Hel | oVer 1 di npl servant object accessible to remote clients,
you must register it with the Bus instance. Registration also has the side
effect of activating the associated WSDL service, servi ce_nane.

Example 4: Registering a Servant Object for HelloWorld

[l C++
/1 denos/ uncat egori zed/ t ransi ent _servant s/ server/ server. cxx

try {
Hel | oWor | dI npl servant (bus) ;

Q\ane service_name("", "Hell oWrl dService",
"http://xm bus. coml Hel | oVor | d");

bus- >r egi st er _servant (
servant,
"./hello_world. wsdl",
servi ce_nane,
"Hel | oWor | dPort "

)i
} cailclh (1 T_Bus::Exception&e) { ... }

Running the Bus

After the Bus is initialized it is ready to listen for requests and pass them to
the server for processing. To start the Bus, you use I T_Bus: : run(). Once
the Bus is started, it retains control of the process until it is shut down. The
server's mai n() will be blocked until run() returns.

Completed server main()

Developing a Server

Shutting the Bus down

Because I T_Bus: : run() never returns control to the server’s mai n(), you

must kill the server process (for example, using Ctrl-C) to shut down the
server.

Example 5 on page 11 shows how the mai n() for the server defined by the
HelloWorld contract might look.

Example 5: ConverterServer main()

[l C++

#i ncl ude <it_bus/bus. h>

#i ncl ude <it_bus/ Excepti on. h>
#include <it_bus/fault_exception. h>

I T_USI NG NAMESPACE_STD
usi ng nanespace | T_Bus;

int main(int argc, char* argv[])

{
try {
I T Bus::Bus_var bus = I T Bus::init(argc, argv);
Hel | oWor | dl npl servant (bus) ;
Q\ane service_nane("", "Hell oWrl dService",
"http://xm bus. com Hel | oWor | d");
bus- >r egi st er _ser vant (
servant,
"./hell o _world. wsdl",
servi ce_nane,
"Hel | oWor | dPort "
E
I T _Bus::run();
}
catch (I T_Bus:: Exception& e)
{
cout << "Error occurred: " << e.Error() << endl;
return -1;
}
return O;

11

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Developing a Client

Overview

Initializing the Bus

Instantiating the client object

12

The stub code for a client implementation for the service defined by the
contract is contained in the files Port TypeNared i ent . h and

Port TypeNaned i ent . cxx. You should never make any modifications to the
generated code in these files. You also need to reference the files

Por t TypeNane. h and Por t TypeNameTypes. h in your client code.

To access the operations defined in the port type, the client initializes the
Artix bus, instantiates an object of the generated client proxy class,

Por t TypeNaned i ent , and makes method calls on the object. When the
client is finished, it then shuts down the bus.

Client applications initialize the bus in the same manner as server
applications, by calling I T_Bus: :ini t (). Client applications, however, do
not need to make a call to I T_Bus: : run().

The generated Hel | ovr | d client proxy object has constructors as shown in
Example 6 on page 12.

Example 6: Generated Client Constructors

Hel | oWorl dQ i ent ();
Hel | oWorl ddient (const | T Bus::String & wsdl);

Hel | oWrl ddient (const | T Bus::String & wsdl,
const | T_Bus:: QName & service_nane,
const | T _Bus::String & port_nane);

Hel | oWrl dd i ent (const | T Bus:: Reference & reference);

Constructor with no arguments

The first constructor for the client proxy class takes no parameters. When
using this constructor, the client requires that the contract defining its
behavior be located in the same directory as the executable. The client uses
the port and service specified at code generation time using the -t and -b
flags.

Developing a Client

Constructor with WSDL URL argument

The second constructor takes one argument that allows you to specify the
URL of the contract defining the client’s behavior. The client uses the port
and service specified at code generation time using the -t and - b flags. This
is useful for situations where the contracts are stored in a central location.

Constructor with three arguments

The third constructor provides you the most flexibility in determining how
the client connects to its server. It takes three arguments:

wsdl Specifies the URL of the contract defining the client’s
behavior.

servi ce_nane Specifies the name of the service, defined in the contract
with a <ser vi ce> tag, to use when connecting to the
Server.

port_narme Specifies the name of the port, defined in the contract
with a <por t > tag, to use when connecting to the server.
The port name given must be defined in the specified
<servi ce> tag.

The client code is binding and transport neutral. Hence, the only restriction
in specifying the port to use is that it have the same port Type as the
generated proxy. The port details are read in from the WSDL contract file at
runtime. For example, if the contract for the conversion service is modified
to include a service definition like the one shown in Example 7 on page 13,
you could instantiate the client proxy to use either HTTP or Tuxedo.

Example 7: Multiple Ports Defined for HelloWorld

<servi ce name="Hel | oWr | dServi ce2">
<port nane="Hel | oWr | dHTTPPort "
bi ndi ng="t ns: Hel | oWr | dBi ndi ng" >
<soap: address | ocation="http:\\I ocal host: 8081"/ >
</ port >
<port name="Hel | oWr | dTuxedoPort "
bi ndi ng="t ns: Hel | oWr | dBi ndi ng" >
<t uxedo: addr ess servi ceNane="TuxQueue"/ >
</ port >
</ servi ce>

13

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Invoking the operations

Shutting the bus down

Full client code

14

To specify that the proxy client is to connect to the server using the Tuxedo
server TuxQueue, you would instantiate the client using the following
constructor:

Hel | oWr1 dAient proxy("HelloWrld wsdl", "HelloWrldService2",
"Hel | oWr | dTuxedoPort");

Constructor with a reference argument

The fourth constructor takes one argument representing an Artix reference,
I T_Bus: : Ref erence. The Artix reference contains complete service and port
details, including addressing information, enabling the client proxy to open a
connection to a remote service. For a detailed discussion of Artix references,
see “Artix References” on page 75.

To invoke the operations offered by the service, the client calls the methods
of the client proxy object. The generated client proxy class contains one
method for each operation defined in the contract. The generated methods
all return void. Any response messages are passed by reference as a
parameter to the method. For example, the gr eet Me operation defined in
Example 1 generates a method with the following signature:

voi d greet Mg(
const | T Bus::String & stringParano,
IT Bus::String & var_return

) | T_THRONDEQ.((I T_Bus: : Exception));

Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to I T_Bus: : run() and can simply call

I T_Bus: : shut down() before the main thread exits. It is advisable to pass
TRUE to | T_Bus: shut down() to ensure that the bus is fully shut down before
exiting.

A client developed to access the service defined by the Hel | oWr | dSer vi ce
contract will look similar to Example 8.

Example 8: HelloWorld Client
/] C++

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>

Developing a Client

Example 8: HelloWorld Client

#include <it_cal/iostream h>
#i ncl ude "Hel | oWrl dd i ent. h"

| T_USI NG NAMESPACE_STD
usi ng namespace | T_Bus;

usi ng namespace HWA

int main(int argc, char* argv[])
{

cout << "HelloWrld dient" << endl;

try

{
IT Bus::init(argc, argv);
Hel | oVWrl ddient hw

String string_in;
String string_out;

hw. sayH (string_out);
cout << "sayH nethod returned: " << string_out << endl;

if (argc > 1) {
string_in = argv[1];
} else {
string_in = "Early Adopter";
}
hw. greet Me(string_in, string_out);
cout << "greetMe method returned: " << string_out << endl;

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.Message()
<< endl;
return -1;
}
return O;

15

CHAPTER 1 | Developing Artix Enabled Clients and Servers

16

The code does the following:

1.

The PortNamed i ent . h header includes the definitions for the client
proxy class.

The I T_Bus: :init() static function initializes the bus.

This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory.
Invoke the sayH () operation on the client proxy.

Catch any exceptions thrown by the bus. It is essential to enclose
remote operation invocations within a try/catch block which catches
the exception types derived from | T_Bus: : Except i on.

Generating a Sample Application from WSDL

Generating a Sample Application from WSDL

Overview You can use the WSDL-to-C++ compiler to generate a working Web service
application, consisting of a sample client application and a sample server
application. You can then finish the application by editing the default client
and server code. This approach enables you to develop a Web service
application rapidly.

Sample WSDL file The examples in this section are based on the hel | o_wor | d. wsdl file,
located in the following directory:

ArtixInstallDirl arti x/ Version/ denmos/ basi ¢/ hel | o_wor| d_soap_http/etc

Generating the sample application To generate a complete sample application from the hello_world.wsdl file,
including a client and a server, enter the following command:

Windows
> wsdl tocpp -sanple -inpl -m NVAKE -pl ugi n hell o_worl d. wsdl

UNIX
% wsdl tocpp -sanple -inpl -mUN X -plugin hello_world. wsdl

Generated files The preceding wsdl t ocpp command generates the following files:

Stub Files

PortType. h
PortTyped ient.h
PortTypeServer. h
PortTyped i ent . cxx
PortTypeServer . cxx

Client Implementation Files
PortTyped i ent Sanpl e. cxx

Server Implementation Files

PortTypeSer ver Sanpl e. cxx
PortTypel npl . cxx
PortTypeSer vant BusPl ugl n. cxx

17

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Building the sample application

Customizing the servant
implementation

18

Makefile
Makefil e

With the help of the generated makefile, Makefi | e, you can build the client
and server applications as follows:

Windows
> nneke -all

UNIX

% nmake -all

To complete the server implementation, you should edit the PortTypel npl . h
file to fill in the missing operations in the PortTypel npl servant class.

For example, Example 9 shows the generated servant class, G-eeter I npl ,
that implements the G eet er port type. To complete the sample
implementation, you should insert code after the // User code goes in
her e comments (highlighted in bold font in Example 9).

Example 9: Generated Implementation of the Greeter Port Type
/] C++

#include "Geeterlnpl.h"
#include <it_cal/cal.h>

Qeeterlnpl::Geeterlnpl (I T_Bus::Bus_ptr bus) :

Q@ eet er Ser ver (bus)
{
}
Qeeterlnpl::~Geeterlnpl ()
{
}

I T_Bus: : Servant *
QGeeterlnpl::clone() const

{
}

return new Geeterlnpl (get_bus());

Customizing servant registration

Generating a Sample Application from WSDL

Example 9: Generated Implementation of the Greeter Port Type

voi d
QGeeterlnpl::sayH (
I T _Bus::String & heResponse
) | T_THROWNDECL((I T_Bus: : Excepti on))
{

}

/1l User code goes in here

voi d
Qeeterlnpl::greet Me(
const | T Bus::String &re,
I T _Bus::String & heResponse
) | T_THROWNDECL((I T_Bus: : Excepti on))
{

}

/1l User code goes in here

To activate a particular Web service, you must register a servant instance
with the Artix Bus. In a generated application, the servant registration code
appears in the PortTypeSer vant BusPl ugl n. cxx file, which embeds the
servant registration code in an Artix plug-in.

For example, if you generate a sample application from hel | o_wor | d. wsdl
(passing the - pl ugi n flag to wsdl t ocpp) , you obtain the file,

@ eet er Servant BusPl ugl n. cxx, which defines the

@ eet er Servant BusPl ugl n plug-in class. Example 10 is an extract from the
@ eet er Ser vant BusPl ugl n. cxx file that shows the servant registration code.

Example 10: Extract from the GreeterServantBusPlugln Class
Il C++
Q eet er Servant BusPl ugl n: : @ eet er Ser vant BusPl ugl n(
Bus_ptr bus
) | T_THROW DECL((Excepti on))
BusP! ugl n(bus) ,
m servant (bus),
m servi ce_gname("", "SOAPService",

"http://ww. iona.conm hell o_world_soap_http")

/] conplete

19

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Automatic plug-in activation

20

Example 10: Extract from the GreeterServantBusPluglin Class

Q@ eet er Servant BusPl ugl n: : ~G eet er Ser vant BusPl ugl n()
{

}

/1 conplete

voi d
Q@ eet er Servant BusPl ugl n: : bus_i ni t (
) | T_THROWN DECQL((Exception))

{
get _bus() ->regi st er_servant (
m ser vant ,
"hell o_world. wsdl ",
m Sservi ce_gname
IE

If you want to change the details of servant registration, you can edit the
regi ster_servant () calls in the G eet er Servant BusP! ugl n. cxx file. For a
detailed discussion of servant registration, see “Registering Servants” on
page 50.

In order to have any effect, an Artix plug-in must register itself with the Artix
Bus and the Bus must be configured to activate the plug-in. In the case of
the generated plug-in class, however, registration and activation of the
plug-in occur automatically.

For example, the G eet er Ser vant BusPl ugl n. cxx file includes the following
call to construct a @ obal BusCRBP! ugl n object:

Il C++

d obal BusCRBP! ugl n bus_pl ugi n(
" SOAPSer vi ce@t t p: / / www. i ona. cond hel | o_wor | d_soap_http",
pl ugi n_f actory

)

The @ obal BusCRBPI ugl n is an object that automatically registers and
activates the plug-in (whose name is given by the string
SQAPSer vi ce@t t p: / / waw. i ona. cord hel 1 o_wor | d_soap_ht t p). In contrast

Generating a Sample Application from WSDL

to regular plug-in objects (of BusCRBPI ugl n type), it is not necessary to
activate the plug-in by adding the plug-in name to the or b_pl ugi ns list;
activation of @ obal BusCRBPI ugl n objects is automatic.

21

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Compiling and Linking an Artix Application

Compiler Requirements

Linker Requirements

An application built using Artix requires a number of IONA-supplied C+ +
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the
compiler processes the generated files, it is able to find the necessary
included infrastructure header files.

The following include path directives should be given to the compiler:

-1"$(1 T_PRODUCT_Di R \artix\$(I T_PRODUCT_VER)\i ncl ude"

A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

-L"$(I T_PRODUCT_DIR\artix\$(1 T_PRODUCT_VER\Iib" it_bus.libit_afc.libit_art.libit_ifc.lib

Table 1 shows the libraries that are required for linking an Artix application

and their function.

Table 1:

Artix Import Libraries for Linking with an Application

Windows Libraries

UNIX Libraries

Description

it_bus.lib I'ibit_bus. so The Bus library provides the functionality required to
l'ibit_bus. sl access the Artix bus. Required for all applications that use
libit_bus.a Artix functionality.

it_afc.lib libit_afc.so The Artix foundation classes provide Artix specific data
libit_afc. sl type extensions such as | T_Bus: : Fl oat , etc. Required for
libit_afc.a all applications that use Artix functionality.

it ifc.lib libit_ifc.so The IONA foundation classes provide IONA specific data
libit_ifc.sl types and exceptions.
libit_ifc.a

it_art.lib libit_art.so The ART library provides advanced programming
libit_art.sl functionality that requires access to the Artix
libit_art.a infrastructure and the underlying ORB.

22

Runtime Requirements

Compiling and Linking an Artix Application

The following directories need to be in the path, either by copying them into
a location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

"$(1 T_PRODUCT DI R\ artix\ $(| T_PRODUCT_VER)\ bi n"
and
"$(1 T_PRCDUCT_DI R)\ bi n"

On some UNIX platforms you also have to update the SH.I B_PATHor
LD LI BRARY_PATH variables to include the Artix shared library directory.

23

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Building Artix Stub Libraries on Windows

Overview

Generating stubs with declaration
specifiers

Compiling stubs with declaration
specifiers

24

The Artix WSDL-to-C+ + compiler features an option, - decl spec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The - decl spec option defines a macro that
automatically inserts export declarations into the stub header files.

To generate Artix stubs with declaration specifiers, use the - decl spec option
to the WSDL-to-C++ compiler, as follows:

wsdl t ocpp -decl spec MY_DECL_SPEC BaseSer vi ce. wsdl

In this example, the - decl spec option would add the following preprocessor
macro definition to the top of the generated header files:

f 1defi ned(MY_DECL_SPEC)

f defined(MY_DECL_SPEC EXPCRT)

#define MY_DECL_SPEC | T_DECLSPEC EXPCRT

#el se

#define MY_DECL_SPEC | T_DECLSPEC | MPORT

#endi f

#endi f

Where the | T_DECLSPEC EXPCRT macro is defined as _decl spec(dl | export)
and the | T_DECLSPEC | MPCRT macro is _decl spec(dl |inport).

Each class in the header file is declared as follows:
class MY_DECL_SPEC d assNane { ... };

If you are about to package your stubs in a DLL library, compile your C++
stub files, StubFile. cxx, with a command like the following:

cl -DW_DECQLSPEC EXPCRT ... StubFile. cxx
By setting the Mv_DECLSPEC_EXPCRT macro on the command line,

_decl spec(dl | export) declarations are inserted in front of the public class

declarations in the stub. This ensures that applications will be able to
import the public definitions from the stub DLL.

In this chapter

CHAPTER 2

Artix Programming
Considerations

Several areas must be considered when programming complex
Artix applications.

This chapter discusses the following topics:

Operations and Parameters page 26
Exceptions page 30
Memory Management page 37
Registering Servants page 50
Multi-Threading page 62

25

CHAPTER 2 | Artix Programming Considerations

Operations and Parameters

Overview

Parameter direction in WSDL

How to declare WSDL operations

WSDL declaration of testParams

26

This section describes how to declare a WSDL operation and how the
operation and its parameters are mapped to C++ by the Artix
WSDL-to-C+ + compiler.

WSDL operation parameters can be sent either as input parameters (that is,

in the client-to-server direction or as output parameters (that is, in the

server-to-client direction). Hence, the following kinds of parameter can be

defined:

® in parameter—declared as an input parameter, but not as an output
parameter.

® out parameter—declared as an output parameter, but not as an input
parameter.

® jnout parameter—declared both as an input and as an output
parameter.

You can declare a WSDL operation as follows:

1. Declare a multi-part input message, including all of the in and inout
parameters for the new operation (for example, the t est Par ans
message in Example 11 on page 26).

2. Declare a multi-part output message, including all of the out and inout
parameters for the operation (for example, the t est Par amsResponse
message in Example 11 on page 26).

3. Within the scope of <port Type>, declare a single operation which
includes a single input message and a single output message.

Example 11 shows an example of a simple operation, t est Par ans, which
takes two input parameters, i nint and i nout I nt, and two output
parameters, i nout I nt and out Fl oat .

Example 11: WSDL Declaration of the testParams Operation

<?xm version="1.0" encodi ng="UTF-8"?>

C++ mapping of testParams

Mapped parameters

Operations and Parameters

Example 11: WSDL Declaration of the testParams Operation
<definitions ...>

<message name="t est Parans">
<part name="inlnt" type="xsd:int"/>
<part name="inoutlnt" type="xsd:int"/>
</ message>
<nessage nane="t est Par ansResponse" >
<part name="inoutlnt" type="xsd:int"/>
<part name="outFl oat" type="xsd:float"/>
</ message>

<por t Type nane="BasePort Type" >
<oper ati on name="t est Par ans" >
<i nput nessage="tns:t est Parans" nane="t est Parans"/ >
<out put nessage="t ns: t est Par ansResponse"

nane="t est Par ansResponse"/ >
</ oper at i on>

</ definitions>

Example 12 shows how the preceding WSDL t est Par ans operation (from
Example 11 on page 26) maps to C++.

Example 12: C++ Mapping of the testParams Operation

/] C++
voi d test Parans(
const | T _Bus::Int inlnt,
IT Bus::Int & inoutlnt,
I T_Bus:: Fl oat & outFl oat
) | T_THRONDECL((I T_Bus: : Exception));

When the t est Par ans WSDL operation maps to C++, the resulting
test Parans() C++ function signature starts with the in and inout

parameters, followed by the out parameters. The parameters are mapped as
follows:

® in parameters—are passed by value and declared const .

inout parameters—are passed by reference.
out parameters—are passed by reference.

27

CHAPTER 2 | Artix Programming Considerations

WSDL declaration of Example 13 shows an example of an operation, t est Rever sePar ans, whose
testReverseParams parameters are listed in the opposite order to that of the preceding
t est Par ans operation.

Example 13: WSDL Declaration of the testReverseParams Operation

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ...>

<message name="t est Rever sePar ans" >
<part name="inoutlnt" type="xsd:int"/>
<part nane="inlnt" type="xsd:int"/>

</ message>

<message nane="t est Rever sePar ansResponse" >
<part nane="out Fl oat" type="xsd:float"/>
<part name="inoutlnt" type="xsd:int"/>

</ message>

<port Type nane="BasePort Type" >
<oper ati on nane="t est Rever sePar ans" >
<out put nessage="t ns: t est Rever sePar ansResponse"
nane="t est Rever sePar ansResponse" />
<i nput nmessage="t ns: t est Rever sePar ans"
name="t est Rever sePar ans"/ >
</ oper at i on>

</ definitions>

C++ mapping of Example 14 shows how the preceding WSDL t est Rever sePar ans operation
testReverseParams (from Example 13 on page 28) maps to C++.

Example 14: C++ Mapping of the testReverseParams Operation

/] C++
voi d t est Rever sePar ans(
IT Bus::Int & i nout | nt

const I T Bus::Int inlnt,
IT Bus::Float & outFl oat,
) | T_THRONDEQ.((I T_Bus: : Exception));

28

Order of in, inout and out
parameters

Operations and Parameters

In C++, the order of the in and inout parameters in the function signature is
the same as the order of the parts in the input message. The order of the out
parameters in the function signature is the same as the order of the parts in

the output message.

Note: The parameter order is not affected by the relative order of the
<i nput > and <out put > tags in the declaration of <operati on>. In the
mapped C++ signature, the in and inout parameters always appear
before the out parameters.

29

CHAPTER 2 | Artix Programming Considerations

Exceptions

Overview

In this section

30

Artix provides a variety of built-in exceptions, which can alert users to
problems with network connectivity, parameter marshalling, and so on. In
addition, Artix allows users to define their own exceptions, which can be
propagated across the network by declaring fault exceptions in WSDL.

This section contains the following subsections:

Non-Propagating Exceptions page 31

Propagating Exceptions page 33

Exceptions

Non-Propagating Exceptions

Overview

The Artix libraries and generated code generate exceptions from classes
based on | T_Bus: : Excepti on, defined in <it_bus/ Excepti on. h>.

I T_Bus: : Excepti on provides all Artix generated exceptions with two
methods for providing information back to the user:

IT_Bus::Exception::Message()
Message() returns an informative description of the error which generated
the exception. It has the following signature:

const char* Message() const;

IT_Bus::Exception::Error()

Error () returns an error code, if one is assigned to the exception, that
identifies the exception. It has the following signature:

IT_Uong Error() const;
Currently only the following exceptions have been given error codes:

Table 2: Artix Exception Error Codes

Error Code Description

| T_HTTP_E COW ERRCR A communication error occurred.

| T_HTTP_E ACQCESS DEN ED | Username or password validation error by

the server.
| T_HTTP_E BAD OONFI G The configuration file is not valid.
| T_HTTP_E NOT_FOUND The URL or file was not found.

| T_HTTP_E SHUTTI NG DOM | The system is entering a quiescent state.

IT BUS E FAULT A SOAP fault was returned by the server.

31

CHAPTER 2 | Artix Programming Considerations

Exception types

32

Artix defines the following exception types:

IT_Bus::ServiceException is thrown when there is a problem creating a
Service. It is defined in <it _bus/ servi ce_excepti on. h>.

IT_Bus::I0Exception is thrown if there is an error writing a wsdl model to a
stream. It is defined in <it_bus/i o_excepti on. h>.

IT_Bus::TransportException is thrown if there is a communication failure. It
is defined in <i t _bus/transport_exception. h>.

IT_Bus::ConnectException is thrown if there is a communication error. This
exception type is a specialization of a Transport Except i on. It is defined in
<i t _bus/ connect _excepti on. h>.

IT_Bus::DeserializationException is thrown if there is a problem
unmarshaling data. Deserialization exceptions are propagated back to client
stub code. It is defined in <i t_bus/ deseri al i zati on_except i on. h>.

IT_Bus::SerializationException is thrown if there is a problem marshaling
data. On the server-side if this is thrown as part of a dispatching an
invocation the runtime will catch this and propagate a Fault to the
client-side. On the client side these will get back to the application code. It
is defined in <it _bus/ seri al i zati on_excepti on. h>.

IT_Routing::InvalidRouteException is thrown is a route is improperly
defined. It is defined in <it_bus/inval i d_route_exception. h>.

Exceptions

Propagating Exceptions

Overview

Declaring a fault in WSDL

Artix servers propagate certain exceptions, such as serialization and
deserialization exceptions, back to their clients so the client can handle the
error gracefully. This is done using the | T_Bus: : Faul t Except i on class,
defined in <it_bus/faul t_exception. h>, Faul t Excepti on extends

Excepti on to provide connection awareness and serialization.

Artix propagates user-defined exceptions back to client processes. To specify
that an exception is to be propagated, you must declare the exception as a
fault in WSDL. The WSDL-to-C++ compiler then generates the stub code
that you need to raise and catch the exception.

Example 15 shows an example of a WSDL fault which can be raised on the
echol nt eger operation. The format of the fault message is specified by the
t ns: Sanpl eFaul t message.

Example 15: Declaration of the SampleFault Fault

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ...>
<t ypes>
<schema t ar get Nanespace="htt p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="Sanpl eFaul t Dat a" >
<al | >
<el enent name="I| ower Bound" type="xsd:int"/>
<el enent name="upper Bound" type="xsd:int"/>
</all>
</ conpl exType>
</ schena>
</types>
<message hane="Sanpl eFaul t">
<part nanme="excepti onData"
t ype="xsd1: Sanpl eFaul t Dat a"/ >
</ message>

<por t Type nane="BasePort Type" >

<oper ati on name="echol nt eger">
<i nput message="tns: echol nt eger" nane="echol nt eger"/>

33

CHAPTER 2 | Artix Programming Considerations

Example 15: Declaration of the SampleFault Fault

<out put message="t ns: echol nt eger Response"
name="echol nt eger Response"/ >
3 <fault message="t ns: Sanpl eFaul t "
nane="Sanpl eFaul t"/ >
</ oper at i on>
</ por t Type>

</ definitions>

The preceding WSDL extract can be explained as follows:

1. If the fault is to hold more than one piece of data, you must declare a
complex type for the fault data (in this case, Sanpl eFaul t Dat a holds a
lower bound and an upper bound).

2. Declare a message for the fault, containing just a single part. The
WSDL specification allows only single-part messages in a fault—
multi-part messages are not allowed.

3. The <faul t>tag must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Note: There is no limit to the number of <f aul t > tags that can be
included in an <oper at i on> element.

Raising a fault exception in a Example 16 shows how to raise the Sanpl eFaul t fault in the server code.
server The implementation of echol nt eger now checks the input integer to see if it
exceeds the given bounds.
The WSDL maps to C++ as follows:
® The WSDL Sanpl eFaul t Dat a type maps to a C++ Sanpl eFaul t Dat a
class.
® The WSDL Sanpl eFaul t message maps to a C++
Sanpl eFaul t Except i on class. This follows the general pattern that
ExceptionMessage maps to ExceptionMessageExcept i on.

Example 16: Raising the SampleFault Fault in the Server
/] C++

voi d Basel npl : : echol nt eger (const | T_Bus:: | nt
inputlnteger, | T Bus::Int& Response)

34

Catching a fault exception in a
client

Example 16: Raising the SampleFault Fault in the Server
I T_THRONDECL((I T_Bus: : Excepti on))

if (inputlnteger<0 || 100<i nputl nteger)
{

/Il Ceate and initialize the Sanpl eFaul t Data

Sanpl eFaul t Dat a ex_dat a;
ex_dat a. set | ower Bound(0) ;
ex_dat a. set upper Bound(100) ;

/I Oreate and initialize the fault.
Sanpl eFaul t Excepti on ex;
ex. set except i onDat a(ex_dat a) ;

// Throw the fault exception back to the client.

t hrow ex;
}
cout << "Basel npl ::echol nteger called" << endl;
Response = i nput | nt eger ;

Exceptions

Example 17 shows how to catch the Sanpl eFaul t fault on the client side.
The client uses the proxy instance, bc, to call the echol nt eger operation

remotely.
Example 17: Catching the SampleFault Fault in the Client
Il C++
try {
Int int_out = 0;
bc. echol nt eger (int_in,int_out);

if (int_in!=int_out)
{
cout << endl << "echol nteger PASSED' << endl;
}
}
cat ch (Sanpl eFaul t Excepti on &ex)
{

cout << "Bounds exceeded:" << endl;
cout << "l ower bound ="

<< ex. get excepti onbDat a() . get| ower Bound() << endl;

cout << "upper bound ="

<< ex. get excepti onDat a() . get upper Bound() << endl;

35

CHAPTER 2 | Artix Programming Considerations

Example 17: Catching the SampleFault Fault in the Client

}
catch (1T _Bus:: Faul t Exception &ex)
{
/* Handl e other fault exceptions ... */
}
catch (...)
{
/* Handl e all other exceptions ... */
}

36

Memory Management

Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:
Managing Parameters page 38
Assignment and Copying page 43
Deallocating page 45
Smart Pointers page 46

37

CHAPTER 2 | Artix Programming Considerations

Managing Parameters

Overview This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes
parameters by reference.

Note: If you use pointer types to reference operation parameters, see
“Smart Pointers” on page 46 for advice on memory management.

Memory management rules There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a
copy of the parameter. In general, parameters are deallocated as soon
as an operation returns.

WSDL example Example 18 shows an example of a WSDL operation, t est SeqPar ans, with
three parameters, i nSeq, i nout Seq, and out Seq, of sequence type,
xsdl: SequenceType.

Example 18: WSDL Example with in, inout and out Parameters

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >
<t ypes>
<schema t ar get Nanespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waww, w3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="SequenceType" >
<sequence>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</ sequence>
</ conpl exType>

</ schema>

38

Client example

Memory Management

Example 18: WSDL Example with in, inout and out Parameters
</types>

<message nane="t est SeqPar ans" >
<part name="inSeq" type="xsdl: SequenceType"/>
<part name="i nout Seq" type="xsdl: SequenceType"/>
</ message>
<message nane="t est SeqPar ansResponse" >
<part name="i nout Seq" type="xsdl: SequenceType"/>

<part name="out Seq" type="xsdl: SequenceType"/>
</ message>

<por t Type nane="BasePort Type" >
<oper ati on name="t est SeqPar ans" >
<i nput nessage="tns:t est SeqPar ans"
name="t est SeqPar ans"/ >
<out put nmessage="t ns: t est SeqPar ansResponse"
name="t est SeqPar ansResponse"/ >
</ oper at i on>

</ port Type>

</ definitions>

Example 19 shows how to allocate, initialize, and deallocate parameters
when calling the t est SeqPar ans operation.

Example 19: Client Calling the testSeqParams Operation

Il C++
try
{
IT Bus::init(argc, argv);

Based i ent bc;

/l Alocate all parameters
SequenceType i nSeq, inoutSeq, out Seq;

// Initialize in and inout paraneters

i nSeq. setvarFl oat ((1 T_Bus:: Fl oat) 1.234);

i nSeq. setvar | nt (54321) ;

i nSeq. setvarString("One, two, three");

i nout Seq. set var Fl oat ((1 T_Bus:: Fl oat) 4.321);

39

CHAPTER 2 | Artix Programming Considerations

Server example

40

Example 19: Client Calling the testSeqParams Operation

i nout Seq. set var | nt (12345) ;
i nout Seq. setvar String("Four, five, six");

[/l Call the 'testSeqParans' operation
bc. t est SeqPar ans(i nSeq, i nout Seq, out Seq);

/1l End of scope:
// Inplicit deallocation of inSeq, inoutSeq, and out Seq.

}
cat ch(| T_Bus: : Excepti on& €)
{
cout << endl << "Caught Unexpected Exception:
<< endl << e. Message()
<< endl ;
return -1;
}

The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, bc, which is used to
invoke the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and
out. In this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize
the out parameters.

4. ltis the responsibility of the client to deallocate all kinds of parameter.

In this example, the parameters are all deallocated at the end of the
current scope, because they have been allocated on the stack.

Example 20 shows how the parameters are used on the server side, in the
C++ implementation of the t est SeqPar ans operation.

Example 20: Server Calling the testSeqParams Operation

Il C++

voi d

Basel npl : : t est SeqPar ans(
const SequenceType & i nSeq,
SequenceType & i hout Seq,
SequenceType & out Seq

) | T_THRONDECQL((I T_Bus: : Excepti on))

Memory Management

Example 20: Server Calling the testSeqParams Operation

{

}

cout << "Basel npl ::test SegParans call ed" << endl;

/1 Print inSeq

cout << "inSeq.varFloat =" << inSeq.getvarF oat() << endl;
cout << "inSeq.varlnt =" << inSeqg.getvarlnt() << endl;
cout << "inSeg.varString =" << inSeqg.getvarString() << endl;
/1 (Qptionally) Copy in/inout paraneters

/1l

/1 Print and change i nout Seq
cout << "inoutSeq.varF oat ="

<< i nout Seq. get var Fl oat () << endl ;
cout << "inout Seq. var | nt ="

<< inout Seq. getvarlnt() << endl;
cout << "inoutSeq.varString ="

<< i nout Seq. getvar String() << endl;
i nout Seq. set var Fl oat (2. 0) ;
i nout Seq. setvarlnt(2);
i nout Seq. set var Stri ng(" Two");

/1 Initialize outSeq

out Seq. set var Fl oat (3. 0) ;

out Seq. setvarlnt(3);

out Seq. setvarString("Three");

The preceding server example can be explained as follows:

1.

The server programmer has read-only access to the in parameters (they
are declared const in the operation signature).

If you want to access data from in or inout parameters after the
operation returns, you must copy them (deep copy). It would be an
error to use the & operator to obtain a pointer to the parameter data,
because the Artix server stub deallocates the parameters as soon as
the operation returns.

See “Assignment and Copying” on page 43 for details of how to copy
Artix data types.

You have read/write access to the inout parameters.

41

CHAPTER 2 | Artix Programming Considerations

4. You should initialize each of the out parameters (otherwise they will be
returned with default initial values).

42

Memory Management

Assignment and Copying

Overview The WSDL-to-C+ + compiler generates copy constructors and assignment
operators for all complex types.

Copy constructor The WSDL-to-C++ compiler generates a copy constructor for complex
types. For example, the SequenceType type declared in Example 18 on
page 38 has the following copy constructor:

/1 C++
SequenceType(const SequenceType& copy);

This enables you to initialize SequenceType data as follows:

Il C++

SequenceType ori gi nal ;

original . setvarFl oat (1. 23);
original.setvarlnt(321);
original.setvarString("One, two, three.");

SequenceType copy_1(original);
SequenceType copy_2 = original;

Assignment operator The WSDL-to-C+ + compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to
assign a SequenceType instance as follows:

Il C++

SequenceType ori gi nal ;

original . setvarFl oat (1.23);
original.setvarlnt(321);
original.setvarString("One, two, three.");

SequenceType assign_t o;

assign_to = original;

43

CHAPTER 2 | Artix Programming Considerations

Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary
degree. When such a nested complex type is mapped to C++ by Artix, the
copy constructor and assignment operators are designed to copy the nested
members recursively (deep copy).

44

Memory Management

Deallocating

Using delete

Recursive deallocation

In C++, if you allocate a complex type on the heap (that is, using pointers
and new), you can generally delete the data instance using the del ete
operator. It is usually better, however, to use smart pointers in this
context—see “Smart Pointers” on page 46.

The Artix C+ + types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other
complex types nested inside it, the entire memory for the complex type
including its nested members would be deallocated when you delete T. This
works for complex types nested to an arbitrary degree.

45

CHAPTER 2 | Artix Programming Considerations

Smart Pointers

Overview

What is a smart pointer?

Artix smart pointers

46

To help you avoid memory leaks when using pointers, the WSDL-to-C+ +
compiler generates a smart pointer class, ComplexTypePtr, for every
generated complex type, ComplexType. The following aspects of smart
pointers are discussed here:

® What is a smart pointer?

® Artix smart pointers.

® Assignment semantics.

® Client example using simple pointers.
® Client example using smart pointers.

A smart pointer class is a C+ + class that overloads the * (dereferencing)
and - > (member access) operators, in order to imitate the syntax of an
ordinary C++ pointer.

Artix smart pointers are defined using a template class, | T_Aut oPt r <T>,
which has the same API as the standard auto pointer template,

aut o_pt r<T>, from the C+ + standard template library. If the standard
library is supported on the platform, I T_Aut oPt r is simply a typedef of
std::auto_ptr.

For example, the SequenceTypePtr smart pointer class is defined by the
following generated typedef:

/] C++
typedef | T_Aut oPtr<SequenceType> SequenceTypePtr;

The key feature that makes this pointer type smart is that the destructor
always deletes the memory the pointer is pointing at. This feature ensures
that you cannot leak memory when it is referenced by a smart pointer.

Assignment semantics

Client example using simple
pointers

Memory Management

The aut o_pt r smart pointer types have destructive copy semantics. For
example, consider the following assignment between smart pointers of
SequenceTypePt r type:

[l C++

SequenceTypePtr assign_from = new SequenceType();
I/ Initialize assign_from(not shown) ...

SequenceTypePtr assign_to = new SequenceType();
// Initialize assign_to (not shown) ...

/1 Assi gnnent Statenent
assign_to = assign_from

After the assignment, the following facts hold:

® assign_to now owns the data previously owned by assi gn_f rom

assi gn_f romis reset to a nil pointer (equals 0).
The data previously owned by assi gn_t o has been deleted.

Note: If you are familiar with the CORBA IDL-to-C+ + mapping, you
should note that these assignment semantics are different from the
CORBA _var types' assignment semantics.

Example 21 shows how to call the t est SeqPar ans operation using

parameters that are allocated on the heap and referenced by simple
pointers

Example 21: Client Calling testSeqParams Using Simple Pointers

[l Ct+
try
{
I T Bus::init(argc, argv);

Based i ent bc;

/] Allocate all paraneters
SequenceType *i nSeqP
SequenceType *i nout SeqP
SequenceType *out SeqP

new SequenceType();
new SequenceType();
new SequenceType();

47

CHAPTER 2 | Artix Programming Considerations

Example 21: Client Calling testSeqParams Using Simple Pointers

// Initialize in and i nout paraneters

i nSeqP- >set var Fl oat ((| T_Bus: : Fl oat) 1.234);

i nSeqP- >set var | nt (54321) ;

i nSegP->setvar String("Cne, two, three");

i nout SeqP- >set var Fl oat ((| T_Bus: : Fl oat) 4.321);
i nout SeqP- >set var | nt (12345) ;

i nout SeqP->set var Stri ng("Four, five, six");

[/l Call the 'testSeqParans' operation
bc. t est SegPar ans(*i nSegP, *i nout SeqP, *out SeqP);

2 /! End of scope:
del et e i nSegP;
del et e i nout SegP;
del et e out SeqP,

}
cat ch(| T_Bus: : Excepti on& €)
{
cout << endl << "Caught Unexpected Excepti on:
<< endl << e.Message()
<< endl ;
return -1;
}

The preceding client example can be explained as follows:
1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly
delete the parameters or the memory will be leaked.

Client example using smart Example 22 shows how to call the t est SeqPar ans operation using
pointers parameters that are allocated on the heap and referenced by smart pointers

Example 22: Client Calling testSeqParams Using Smart Pointers
/Il C++
try
{
IT Bus::init(argc, argv);
Based i ent bc;

I/l Alocate all parameters

48

Memory Management

Example 22: Client Calling testSeqParams Using Smart Pointers

SequenceTypePtr i nSegP new SequenceType() ;
SequenceTypePtr i nout SeqP = new SequenceType() ;
SequenceTypePtr outSeqP = new SequenceType();

// Initialize in and inout paraneters

i nSeqP- >set var Fl oat ((| T_Bus: : Fl oat) 1.234);

i nSegP- >set var | nt (54321) ;

i nSeqP- >setvar String("One, two, three");

i nout SeqP- >set var Fl oat ((| T_Bus: : Fl oat) 4.321);
i nout SeqP- >set var | nt (12345) ;

i nout SeqP- >set var Stri ng("Four, five, six");

/] Call the 'testSeqParans' operation
bc. t est SeqPar ans(*i nSegP, *i nout SeqP, *out SegP);

/1 End of scope:
// Paraneter data autonatically deal | ocated by snart pointers

}
cat ch(| T_Bus: : Excepti on& €)
{
cout << endl << "Caught Unexpected Exception:
<< endl << e. Message()
<< endl ;
return -1;
}

The preceding client example can be explained as follows:

1. The parameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

2. In this case, there is no need to deallocate the parameter data
explicitly. The smart pointers, i nSegP, i nout SeqP, and out SeqP,
automatically delete the memory they are pointing at when they go out
of scope.

49

CHAPTER 2 | Artix Programming Considerations

Registering Servants

Overview

In this section

50

In order to make a servant accessible to remote clients, you must register

the servant with a Bus instance. The effect of registration is twofold:

® Aservice is activated and begins listening for incoming requests.

® Aservant object is linked to the newly-activated service. Requests
received by the service are then dispatched to the linked servant
object.

This section describes how to register servant objects with the I T_Bus: : Bus;
in particular, describing how to register both static and transient servants.

This section contains the following subsections:

Registering a Static Servant page 51

Registering a Transient Servant page 56

Registering Servants

Registering a Static Servant

Overview Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type)l, but has no association with any
physical contract (that is, WSDL service). The link between a servant
instance and a physical contract must be established explicitly by
registering the servant.

Figure 1 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the
WSDL model that represents a particular WSDL service.

WSDL Contract

<port Type>
</ po;'ill'ype>
C — logical contract
<bi ndi ng>

</ bi ndi ng>

static servant

<servi ce>
<port>
“—> . — physical contract
</ port>

</ service>

| T_Bus: : Servant | T_WBDL: : WBDL Ser vi ce

Figure 1: Relationship between a Static Servant and a WSDL Contract

Static servant The defining characteristic of a static servant is that, when registered, it is
associated with a service appearing explicitly in the original WSDL contract.
This implies that a static servant is restricted to using a service from the
fixed collection of services appearing in the WSDL contract.

1. Strictly speaking, this is not always the case. Advanced Artix applications could
associate a single servant class with multiple port types by overriding the servant
dispatch() function.

51

CHAPTER 2 | Artix Programming Considerations

IT_Bus::Bus registration The I T_Bus: : Bus class defines the functions in Example 23 to manage the
functions registration of static servants:

Example 23: The IT_Bus::Bus Static Servant Registration AP/

Il C++
I T Bus::Service &
regi ster_servant (
I T_Bus:: Servant & servant,
I T_WBDL: : WeDLSer vi ce & wsdl _servi ce,
const | T Bus::String & port_nane = ""
) | T_THRONDEQ.((!| T_Bus: : Excepti on)) 0;

I T_Bus::Service &
regi ster_servant (
I T_Bus:: Servant & servant,
const | T Bus::String & wsdl _| ocati on,
const | T_Bus:: Q\ane & service_nane,
const I T Bus::String & port_name = ""
) | T_THROWDEQ.((Exception)) = 0;

I T _Bus:: Service &
add_ser vi ce(
I T_WADL: : WBDLServi ce & wsdl _service
) | T_THRONDEQ ((I T_Bus: : Exception)) = 0;

I T_Bus::Service &

add_ser vi ce(
const | T Bus::String & wsdl _| ocati on,
const | T_Bus:: Q\ane & service_name

) | T_THRONDEQ ((Exception)) = 0;

I T_Bus:: Service *
get _servi ce(
const | T_Bus:: Q\ane & service_name

);

voi d
renove_servi ce(
const Q\Nane & servi ce_nane

);

52

Registering Servants

IT_Bus::Serviceregister_servant()

In addition to the I T_Bus: : Bus registration functions, the | T_Bus: : Servi ce
function

class also supports a regi st er_servant () function. The
I T_Bus:: Service::register_servant () function enables you to activate
ports individually. This contrasts with the

I T_Bus:: Bus::register_servant () function, which activates all of the
ports simultaneously.

Example 24:The IT_Bus::Service register_servant() Function

[l Ct+
voi d
regi ster_servant (
I T_Bus:: Servant & servant,
const | T Bus::String & port_to_register
)i

Activating single or multiple ports There are two different styles of programming servant registration,

depending on whether you want to activate ports individually or all together,
as follows:

® Activate ports individually—registration is a two-step process. First

you add a service to the Bus, then you activate individual ports. For
example:

/] C++

I T_Bus:: Q\anme service_nanme("", "BankService",
"http://ww i ona. com bus/ denmos/ bank™) ;

I T_Bus:: Servi ce& bank_service =

bus- >add_servi ce("bank. wsdl ", servi ce_name);
bank_servi ce. regi st er_servant (corba_servant, "CGORBAPort");
bank_servi ce. regi st er_servant (soap_servant, "SQAPPort");

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the
QORBAPort port are dispatched to the cor ba_servant servant instance.

Whereas, invocations arriving at the SOAPPort port are dispatched to
the soap_servant servant instance.

53

CHAPTER 2 | Artix Programming Considerations

Default threading model

Static servant example

54

® Activate all ports together—registration is a single step process. You
add the service to the Bus and activate all of its ports by calling
| T_Bus: : Bus: : regi ster_servant (). For example:

[l C++
I T_Bus:: Q\arme service_nanme("", "BankService",
"http://ww i ona. com bus/ demos/ bank") ;

bus- >r egi st er _ser vant (
bank_servant,
"bank. wsdl ",
servi ce_name

)

In this case, all the service’s ports dispatch their invocations to the
same servant object, bank_servant .

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 65 for more information.

Example 25 shows an example (taken from
denos/ uncat egor i zed/ t ransi ent _ser vant s) which shows how to register a
servant as a static servant.

Example 25: Registering a Static Servant

Il C++
/| denos/uncat egori zed/ t ransi ent _servant s/ server/ server. cxx

try {
I T Bus::Bus_var bus = IT Bus::init(argc, (char **)argv);

Bankl npl ny_bank(bus) ;

Q\ane service_name("", "BankService",
"http://ww i ona. com bus/ denmos/ bank") ;

Registering Servants

Example 25: Registering a Static Servant

3 bus- >r egi ster_servant (
ny_bank,
"../wsdl / bank. wsdl ",
servi ce_name
)
4 I T_Bus::run();
5 bus- >r enove_ser vi ce(servi ce_nane) ;
}
catch (1T _Bus::Exception&e) { ... }

The preceding code example can be explained as follows:

1.

This line creates a servant instance, ny_bank. At this point, we know
that the servant implements the Bank port type (logical contract), but
there is no association with any WSDL service (physical contract) yet.
This I T_Bus: : Q\ane instance refers to the BankSer vi ce service from
the WSDL contract. This is the WSDL service that will be associated
with the servant.

The regi ster_servant () function registers a static servant instance,
taking the following arguments:

. Servant instance.

+ WSDL file location.

+ Service QName.

The return value is an | T_Bus: : Servi ce object, which references the
BankSer vi ce WSDL service.

Immediately after registration, the service starts to process incoming
invocations in a background thread.

The I T_Bus: : run() function blocks the main thread of execution,
allowing the registered services to continue processing incoming
invocations in background threads.

The renove_servi ce() function is called here to tidy up resources
before the server shuts down. It deactivates the service and joins the
background threads.

55

CHAPTER 2 | Artix Programming Considerations

Registering a Transient Servant

Overview In contrast to a static servant, a transient servant is not limited to using
services that appear explicitly in the WSDL contract. A transient servant
creates a new service every time it is registered by cloning from an existing
service in the WSDL contract. This type of behavior is useful in cases where
you require an unlimited number of services of a particular kind.

For example, consider the WSDL contract for the

denos/ uncat egori zed/ t ransi ent _servant demonstration, which has a
Bank port type and an Account port type. If each customer’s bank account
maps to a service, it is clear that you require an unlimited number of
services to represent customer accounts.

Figure 2 illustrates the effect of registering a transient servant: registration
establishes an association between a servant instance and a cloned WSDL
service.

WSDL Contract

<port Type>
</ port Type>
. logical contract
<bi ndi ng>
</ bi ndi ng>
<service>
<port>
</ port>
</ service>

M

clone service

transient servant ~

<service>
<port>
«—> . physical contract
</ port>
/1 </ service>

N

| T_Bus: : Servant | T_WBDL: : WeDL Ser vi ce

Figure 2: Relationship between a Transient Servant and a WSDL Contract

56

Transient servant

Reuse of IP ports

IT_Bus::Bus transient registration
functions

Registering Servants

When a transient servant is registered, the following steps are implicitly
performed by the I T_Bus: : Bus instance (see Figure 2):
1. A new WSDL service is cloned from an existing service in the WSDL
contract. The cloned service has the following characteristics:
. The cloned service is based on an existing <ser vi ce> element
that appears in the WSDL contract.
+ The clone’s service QName is replaced by a dynamically
generated, unique service QName.
+ The clone’s addressing information is replaced such that each
address is unique per-clone and per-port.

2. The transient servant becomes associated with the newly cloned
service.

To avoid over-use of IP ports, cloned services are designed to use the same
IP ports as the original service.

The | T_Bus: : Bus class defines the functions in Example 26 to manage the
registration of transient servants.

Example 26: The IT_Bus::Bus Transient Servant Registration AP/

Il C++
I T _Bus:: Service &
regi ster_transi ent_servant (
I T_Bus::Servant & servant,
| T_WBDL: : WeDLSer vi ce & wsdl _servi ce,
const | T Bus::String & port_nane = ""
) | T_THRONDECL((I T_Bus:: Exception)) = 0;

I T_Bus:: Service &
regi ster_transient_servant (
I T_Bus:: Servant & servant,
const | T Bus::String & wsdl _| ocati on,
const | T _Bus:: Q\ane & service_nane,
const | T Bus::String & port_name = ""
) | T_THROWN DECL((Exception)) = 0;

57

CHAPTER 2 | Artix Programming Considerations

IT_Bus::Serviceregister_servant()
function

58

Example 26: The IT_Bus::Bus Transient Servant Registration APl

I T_Bus::Service &
add_transi ent _servi ce(
| T_WBDL: : WeDLSer vi ce & wsdl _servi ce
) | T_THRONDECQ.((I T_Bus:: Exception)) = 0;

I T Bus::Service &

add_transi ent _servi ce(
const | T _Bus::String & wsdl _|l ocati on,
const | T_Bus:: Q\ane & service_nane

) | T_THROWDEQL((Exception)) = 0;

I T_Bus: : Service *
get _servi ce(
const | T_Bus:: Q\ane & service_nane

)

voi d
remove_ser vi ce(
const | T_Bus:: Q\ane & service_name

)

In addition to the I T_Bus: : Bus registration functions, the | T_Bus: : Servi ce
class also supports a regi st er_servant () function. The

I T_Bus: : Service: : regi st er_servant () function enables you to activate
ports individually. This contrasts with the

I T _Bus::Bus::register_transient_servant() function, which activates all
of the ports simultaneously.

Example 27: The IT_Bus::Service register_servant() Function

Il C++
voi d
regi ster_servant (
I T_Bus:: Servant & servant,
const | T _Bus::String & port_to_register
)i

Registering Servants

There are two different styles of programming transient servant registration,

Activating single or multiple ports
depending on whether you want to activate ports individually or all together,

as follows:

® Activate ports individually—registration is a two-step process. First
you add a transient service to the Bus (thereby cloning the service),
and then you activate individual ports. For example:

[l Ct+
I T_Bus:: Q\ane service_nane("", "Account Service",

"http://ww i ona. com bus/ demos/ bank™) ;

I T_Bus:: Service& acc_service =
bus->add_t ransi ent _servi ce("bank. wsdl ", servi ce_nane);

acc_service.regi ster_servant (corba_servant, "CCRBAPort");

acc_servi ce. regi ster_servant (soap_servant, "SQAPPort");

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the
QORBAPort port are dispatched to the cor ba_servant servant instance.
Whereas, invocations arriving at the SOAPPort port are dispatched to
the soap_servant servant instance.

® Activate all ports together—registration is a single step process. You
add the transient service to the Bus and activate all of its ports by
calling I T_Bus: : Bus: : regi ster_transi ent _servant (). For example:

[l G+
I T_Bus:: Q\ame service_name("", "Account Service",
"http://ww i ona. com bus/ denos/ bank") ;

bus->regi st er_transi ent _servant (
account _servant,
"bank. wsdl ",
servi ce_name

)5
In this case, all the service's ports dispatch their invocations to the

same servant object, account _servant .

59

CHAPTER 2 | Artix Programming Considerations

Default threading model

Transient servant example

60

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 65 for more information.

Example 28 shows a sample implementation of the Bank port type's
create_account operation (taken from

denos/ uncat egor i zed/ t ransi ent _ser vant s) which shows how to register a
servant as a transient servant.

Example 28: Registering a Transient Servant
/] C++

const | T _Bus::Q\ane Account | npl:: SERVI CE_ NAMVE("",

" Account Servi ce", "http://wmv iona. coni bus/ denos/ bank");
voi d
Bankl npl : : cr eat e_account (

const | T Bus::String &ccount _nane,

I T_Bus: : Ref erence &account _ref erence
) | T_THRONDEQ((!| T_Bus: : Excepti on))
{

Account Map: :iterator account_iter = maccount_nap. find(

account _nane
IE
if (account_iter == maccount_map. end())
{
cout << "Creating new account:
<< account_name.c_str() << endl;

Account | npl * new account = new Account | npl (
get _bus(), account_nane, 0
DE
Servi ce& service = get_bus()->regi ster_transi ent_servant (
*new_account ,
"../wsdl / bank. wsdl ",
Account | npl : : SERVI CE_NAME
)

/1 Now put the details for the account into the map so

Registering Servants

Example 28: Registering a Transient Servant

}

I/ we can retrieve it later.

/1

Account Det ai | s details;

detail s. mservice = &service;
detai |l s. maccount = new account;

account _iter = maccount_map. i nsert (
Account Map: : val ue_t ype(account _nane, detail s)
). first;
}

account _reference =
(*account _iter).second. mservice->get_reference()

The preceding C++ code can be described as follows:

1.

The Account | npl : : SERVI CE_NAME constant holds the qualified name of
the Account Servi ce service from the bank WSDL contract. This is the
WSDL service that will be associated with the servant.

This line creates an Account | npl servant instance, which implements
the Account port type.

The regi ster_transi ent _servant () function registers a transient
servant instance, taking the following arguments:

. Servant instance.
. WSDL file location.
. Service QName.

The return value is an I T_Bus: : Servi ce object, which references a
WSDL service cloned from Account Ser vi ce.

61

CHAPTER 2 | Artix Programming Considerations

Multi-Threading

Overview This section provides an overview of threading in Artix and describes the
issues affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:
Client Threading Issues page 63
Servant Threading Models page 65
Setting the Servant Threading Model page 68
Thread Pool Configuration page 71

62

Multi-Threading

Client Threading Issues

Client threading

Single client proxy in two threads

The client proxy classes and the runtime library are thread-safe, in that
multi-threaded applications may safely use the library from multiple threads
simultaneously. However, a single client proxy instance should not be
shared among multiple threads without serializing access to the instance.

Example 29 below is a correctly written example featuring a single client
proxy instance called from two different threads (assume T1f unc and T2f unc
are called from two different threads):

Example 29: Single Client Proxy in Two Threads

#i ncl ude <it_ts/ mtex. h>
#include <it_ts/|ocker.h>

#i ncl ude "Based ient.h"
#i ncl ude "Based i ent Types. h"

Based i ent g_bc;
I T_Mitex nutexBC

T1f unc()

{
I T_Locker <I T_Mit ex> | ock(mut exBC) ;
g_bc. echoVoi d() ;

}

T2f unc()

{
I T_Locker <l T_Mit ex> | ock(mut exBC) ;
g_bc. echoVoi d() ;

}

63

CHAPTER 2 | Artix Programming Considerations

Two client proxies in two threads

64

Example 30 below is another correctly written sample featuring two client
proxy instances called from two different threads (assume T1if unc and
T2f unc are called from two different threads):

Example 30: Two Client Proxies in Two Threads

#include "Basedient.h"
#i ncl ude "Based i ent Types. h"
/I nested inside Basedient.h, may be omtted

T1f unc()

{
Based i ent bc;
bc. echoVoi d() ;

}
T2f unc()
{
Based i ent bc;
bc. echoVoi d() ;
}

Multi-Threading

Servant Threading Models

Overview

Default threading model

Multi-threaded

0—

Artix supports a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see “Setting the Servant Threading Model” on page 68). This
subsection provides an overview of each of the servant threading models in
Artix, as follows:

® Multi-threaded.

® Serialized.

® Per-port.

® PerThread.

® Perlnvocation.

The default threading model is multi-threaded.

The multi-threaded threading model implies that a single instance is
created and shared on multiple threads. The servant object must expect to
be called from multiple threads simultaneously.

Figure 3 shows an outline of the multi-threaded threading model. In this
case, the threads all share the same servant instance.

Work Queue 1 Thread pool for port 1

o—— Portl |—|R1L|R2|R3| .. |RN |7
\Servant
Service
Work Queue 2 Thread pool for port 2
o—— Port2 |[— | Rl | R2| R3 | .. [RN |—, /

Figure 3: Outline of the Multi-Threaded Threading Model

65

CHAPTER 2 | Artix Programming Considerations

Serialized The Seri al i zed threading model implies that access to the servant is

serialized (implemented using mutex locks). The servant object can be
called from no more than one thread at a time.

Figure 4 shows an outline of the Seri al i zed threading model. In this case,
the threads all share the same servant instance, but access is serialized.

o Work Queue 1 Thread pool for port 1

o—— Portl |—|RL|R2|R3| .. | RN |7

2|1
o0 Service
Work Queue 2 Thread pool for port 2

o—— Port2 |—» | RL|R2|R3| .. [RN

Figure 4: Outline of the Serialized Threading Model

Per-port The per-port threading model implies that a servant instance is created per

port. Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.

Figure 5 shows an outline of the Per Port threading model. In this case, the
threads in a thread pool share the same servant instance.

— Work Queue 1 Thread pool for port 1 Servant
. U\ —,
O0—— Portl |— | RL|R2|R3| .. |RN W\//'
0 Service
Work Queue 2 Thread pool for port 2
O—— Port2 |— | R1| R2 | R3 | .. | RN [~ W\/\»
m/ g

Figure 5: Outline of the Per-Port Threading Model

66

PerThread

o0

Perlnvocation

Multi-Threading

The Per Thr ead threading model implies that a servant instance is created
per thread. This allows the servant objects to use thread-local storage,
resources with thread affinity (like MQ), and reduces synchronization
overhead.

Figure 6 shows an outline of the Per Thr ead threading model. An Artix
service can have multiple ports, and each of the ports is served by a work
queue that stores the incoming requests. A pool of threads is reserved for
each port, and each thread in the pool is associated with a distinct servant
instance.

Servant
Thread pool for port 1 Q
Work Queue 1 m/
o—— Portl |— | RL|R2|R3| .. |RN |7 aVaVaVaV
Service
Work Queue 2 Thread pool for port 2 O
o— Port2 |—»|RL|R2|R3| .. |RN|— VANV

Figure 6: Outline of the PerThread Threading Model

The Perl nvocat i on threading model implies that a servant instance is
created for every invocation. In this case, the servant implementation does
not need to be thread-safe, because a servant can be called from no more
than one thread at a time.

The relationship between threads and servants is similar to the case of the
Per Thr ead threading model (see Figure 6 on page 67). There is a difference
in servant lifecycle management, however. Each thread is associated with a
servant for the duration of an operation invocation. At the end of the
invocation, the servant instance is destroyed.

67

CHAPTER 2 | Artix Programming Considerations

Setting the Servant Threading Model

Overview

How to set a per-port threading
model

Wrapper servants

68

Some of the servant threading models are implemented using wrapper
servant classes, which work by overriding the default behavior of a servant’s
di spat ch() function. Exceptions to this pattern are the default
multi-threaded model and the per-port threading model. This section
describes how to program the various servant threading models.

The per-port threading model can be enabled by employing the two-step
style of servant registration (see page 53 and see page 59). For example,
you could register distinct servants, cor ba_servant and soap_servant,
against distinct ports, CORBAPort and SOAPPort , using the following code
example:

/] C++
I T_Bus: : Q\ane service_nane("", "BankService",
"http://ww i ona. com bus/ demos/ bank") ;

I T_Bus: : Servi ce& bank_service =

bus->add_ser vi ce("bank. wsdl ", service_name);
bank_servi ce. regi ster_servant (cor ba_servant, "CORBAPort");
bank_servi ce. regi st er _servant (soap_servant, "SOAPPort");

The only wrapper servant function that you need is a constructor.
Example 31 shows the constructors for each of the wrapper servant classes.

Example 31: Constructors for the Wrapper Servant Classes

Il C++
I T _Bus:: SerializedServant (I T_Bus:: Servant & servant);

| T_Bus: : Per ThreadSer vant (1 T_Bus: : Servant & servant);

| T_Bus: : Perl nvocat i onServant (1 T_Bus: : Servant & servant) ;

How to set a threading model
using wrapper servants

Step 1—Implement the servant
clone() function (if required)

Step 2—Register the wrapper
servant

Multi-Threading

To register a servant with a Seri al i zed, Per Thr ead or Per | nvocat i on
threading model, perform the following steps:

® Step 1—Implement the servant clone() function (if required).

® Step 2—Register the wrapper servant.

If you intend to use a Per Thread or Per I nvocat i on threading model, you
must implement the cl one() function in your servant class. The cl one()
function will be called automatically whenever the threading model
demands a new servant instance. Example 32 shows the default
implementation of the cl one() function for the servant class, PortTypel npl .

Example 32: Default Implementation of the clone() Function
/] C++

I T_Bus: : Servant *

PortTypel npl : : cl one() const

{

}

return new PortTypel npl (get _bus());

To register a wrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the

regi ster_servant () function (or the regi ster_transi ent_servant ()
function in the case of transient servants).

For example, Example 33 shows how the main function of the bank server

example can be modified to register the Bankl npl servant with a Per Thr ead
threading model.

Example 33: Registering a Servant with a PerThread Threading Model
/] C++
try {

I T Bus::Bus_var bus = I T Bus::init(argc, (char **)argv);

Bankl npl ny_bank(bus) ;
| T_Bus: : Per Thr eadSer vant per _t hr ead_bank(ny_bank) ;

Q\ane service_name("", "BankService",
"http://ww:. i ona. com bus/ denos/ bank") ;

69

CHAPTER 2 | Artix Programming Considerations

Example 33: Registering a Servant with a PerThread Threading Model

2 bus- >r egi st er _servant (
per _t hr ead_bank,
"../wsdl / bank. wsdl ",
servi ce_nane

IE
I T _Bus::run();

bus- >der egi st er _ser vant (servi ce_nane) ;

}
catch (1T _Bus:: Exception&e) { ... }
The preceding C++ code can be described as follows:

1. In this step, the Bankl npl servant is wrapped by a new
| T_Bus: : Per Thr eadSer vant instance.

2. When it comes to registering, you must register the wrapper servant,
per _t hr ead_bank, instead of the original servant, ny_bank.

70

Multi-Threading

Thread Pool Configuration

Thread pool settings

Thread pool configuration levels

The thread pool for each port is controlled by the following parameters

(which can be set in the configuration):

® |nitial threads—the number of threads initially created for each port.

® [ow water mark—the size of the dynamically allocated pool of threads
will not fall below this level.

® High water mark—the size of the dynamically allocated pool of threads
will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
ArtixlnstallDirl arti x/ Version/ et c/ domai ns/ arti x. cf g configuration file. In
the following examples, it is assumed that the Artix application specifies its
configuration scope to be sanpl e_confi g.

Note: You can specify the configuration scope at the command line by
passing the switch - CRBnane ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to I T_Bus: :init().

Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

® Global level.
® Service name level.
® Qualified service name level.

71

CHAPTER 2 | Artix Programming Considerations

Global level

Service name level

72

The variables shown in Example 34 can be used to configure thread pools at
the global level; that is, these settings would apply to all services by default.

Example 34: Thread Pool Settings at the Global Level
Artix configuration file
sanpl e_config {

Thread pool settings at global |evel
thread pool :initial threads = "3";

thread_pool :low water_mark = "5";
thread_pool : hi gh_water _mark = "10";
IH
The default settings are as follows:
thread _pool:initial _threads = "2";
thread_pool : 1 ow water_mark = "5";

thread_pool : hi gh_water_mark = "25";

To configure thread pools at the service name level (that is, overriding the
global settings for a specific service only), set the following configuration
variables:

thread_pool :initial _threads: ServiceName

t hread_pool : | ow wat er _mark: ServiceName

t hread_pool : hi gh_wat er _mar k: ServiceName

Where ServiceName is the name of the particular service to configure, as it
appears in the WSDL <servi ce name="ServiceName" > tag.

For example, the settings in Example 35 show how to configure the thread
pool for a service named Sessi onManager .

Example 35: Thread Pool Settings at the Service Name Level
Artix configuration file
sanpl e_config {
;.fil ;I'hread pool settings at Service nane | evel
thread_pool :initial _threads: Sessi onvVanager

thread_pool : | ow wat er _nar k: Sessi onManager
t hread_pool : hi gh_wat er _mar k: Sessi onManager = "10";

Qualified service name level

Multi-Threading

Occasionally, if the service names from two different namespaces clash, it
might be necessary to identify a service by its fully-qualified service name.
To configure thread pools at the qualified service name level, set the
following configuration variables:

thread_pool :initial _threads: NamespaceURI: ServiceName

t hread_pool : | ow wat er _nar k: NamespaceURI: ServiceName

t hread_pool : hi gh_wat er _mar k: NamespaceURI: ServiceName

Where NamespaceUR! is the namespace URI in which ServiceName is
defined.

For example, the settings in Example 36 show how to configure the thread

pool for a service named Sessi onManager in the //ny. tnsl/ namespace
URI.

Example 36: Thread Pool Settings at the Qualified Service Name Level
Artix configuration file
sanpl e_config {

Thread pool settings at Service nane | evel
thread pool :initial _threads: http://ny.tnsl/: Sessi onManager =

i

thread _pool : | ow wat er_mark: http://ny.tnsl/: Sessi onManager =
Iy

t hread_pool : hi gh_wat er _mark: htt p://ny.tnsl/: Sessi onManager =
"10";

73

CHAPTER 2 | Artix Programming Considerations

74

In this chapter

CHAPTER 3

Artix References

An Artix reference is a handle to a particular service in a
particular Bus instance. Because references can be passed
around as parameters, they provide a convenient and flexible
way of identifying and locating specific services.

This chapter discusses the following topics:

Introduction to References page 76
The WSDL Publish Plug-In page 80
Programming with References page 85
Callbacks page 100

75

CHAPTER 3 | Artix References

Introduction to References

Overview An Artix reference is an object that encapsulates endpoint and contract
information for a particular WSDL service. References have the following
features:
®* Areference is a built-in type in Artix.

® A reference represents a <wsdl : servi ce>.

® References can be sent across the wire as parameters of or return

values from operations.

® References are fully self-describing. They contain endpoint and
contract information in an optimised manner and they can be used
either by static or by dynamic clients.

® References are the building blocks for the Artix Services Locator and
the Session Manager, because they allow you to describe Web services
that reference other Web services.

® References in Artix are protocol and transport neutral. An Artix
reference can be used to represent any WSDL service.

Note: The Artix 2.0 reference definition differs from the Artix 1.x
reference definition. In Artix 1.x a reference is associated with a WSDL
port, whereas in Artix 2.0 a reference is associated with a WSDL service
(which could contain multiple ports). Artix references are in line with the
way WSDL 2.0 will handle service references.

76

Contents of an Artix reference

XML representation of a reference

C+ + representation of a
reference

Introduction to References

An Artix reference encapsulates the following data:

Service QName—the qualified name of the service with which this

reference is associated.

WSDL location URL—the server's copy of the WSDL contract. The

WSDL location URL in a reference serves two distinct purposes:

. Service identification—the service is uniquely identified by the
combination of a WSDL location URL and a service QName.

+ WSDL backup—allows the reference to be fully self-describing.

Note: If you have loaded the wsdl _publ i sh plug-in on the server
side, the WSDL location URL will point at a dynamically updated
copy of the server's WSDL contract. See page 80.

List of ports—an unbounded sequence of port elements, each of which
contains the following data:

+ Port name—identifying the WSDL port.

+ Binding QName—the qualified name of the binding with which
the port is associated.

¢+ Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold binding-specific data and qualities of service. For
example, if the port uses a SOAP binding, the properties would
include a <soap: addr ess> element specifying a host and IP port.

The XML representation of a reference is defined by the following schema:
ArtixInstallDirl arti x/ Version/ schemas/ r ef er ences. xsd
The schema is also available online at:

http://schemas.iona.com/references/references.xsd

The XML representation is used when marshaling or unmarshaling a

reference as a WSDL parameter.

In C++, an Artix reference is represented by an instance of the
| T_Bus: : Ref er ence class.

77

http://schemas.iona.com/references/references.xsd

CHAPTER 3 | Artix References

Logical and physical contracts

Static references

It is helpful to differentiate between the logical and the physical parts of a

WSDL contract, as follows:

® [ogical contract—the part of a contract that determines syntax and
semantics. In WSDL, a logical contract is effectively a combination of a
port type and a binding.

® Physical contract—the part of a contract that contains a service's
connection details. In WSDL, a physical contract can be identified with
a service and its port details.

A static reference is a reference for which both the logical contract and the
physical contract appear in the WSDL contract. Hence, static references can
only be created for services that are explicitly defined in WSDL.

Figure 7 illustrates the relationship between a static reference and the
WSDL contract.

Static Reference WSDL Contract

Service QName

WSDL location | <PortType>
</ port Type>

— logical contract

Embedded properties

<bi ndi ng>

A </ bi nd| ng>

78

<servi ce>
<port>

C — physical contract
</ port>
</ service>

Figure 7: A Static Reference

Partial details of the physical contract (from the <servi ce> element) are
cached in the static reference as embedded properties. Only properties that
would be relevant to a client are cached in the reference, however.

The version of the physical contract cached in the reference includes
dynamically updated data. For example, a port’s addressing data would be
substituted with the current host name and dynamically allocated IP port.

Transient references

Introduction to References

A transient reference is a reference for which only the logical contract
appears in the WSDL contract. Hence, a transient reference is more flexible,
because it can refer to endpoints (represented by a physical contract)

created at runtime.

Figure 8 illustrates the relationship between a transient reference and the

WSDL contract.

Transient Reference

WSDL location

WSDL Contract

Service QName

Embedded properties

A

A 4

<port Type>
</ port Type>
<bi ndi ng>
</ bi ndi ng>
<service>
<port>
</ port>
</ service>

logical contract

1

clone service

~_~

<service>
<port>
</ port>

</ service>

physical contract

Figure 8: A Transient Reference

As shown in Figure 8, the physical contract for a transient reference is
created at runtime by cloning the details from an existing <ser vi ce>
element. A cloned service is created whenever you register a transient
servant with the Bus and it has the following characteristics:

® The cloned service is based on an existing <ser vi ce> element that
appears in the WSDL contract.

® The clone’s service QName is replaced by a dynamically generated,
unique service QName.

® The clone’s addressing information is replaced such that each address
is unique per-clone and per-port.

79

CHAPTER 3 | Artix References

The WSDL Publish Plug-In

Overview

Loading the WSDL publish plug-in

80

It is strongly recommended that you activate the WSDL publish plug-in for
any applications that generate and export Artix references. This is because
references are generated with a WSDL location attribute, whose value is
virtually unusable unless the WSDL publish plug-in is enabled.

By default, a reference’s WSDL location attribute would reference a local file

on the server system. This suffers from the following drawbacks:

® |tis typically impossible for clients to access the server's copy of the
WSDL contract file.

® Endpoint information (the physical contract) might be incomplete,
because the server updates transport properties at runtime.

In both of these cases, the client needs to have a way of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest to achieve this is to configure the server to load the WSDL publish
plug-in. The WSDL publish plug-in automatically opens a HTTP port, from
which clients can download a copy of the server's in-memory WSDL model.

To load the WSDL publish plug-in, edit the arti x. cf g configuration file and
add wsdl _publ i sh to the or b_pl ugi ns list in your application’s configuration
scope. For example, if your application’s configuration scope is

denos. server, you might use the following or b_pl ugi ns list:

Artix Configuration File

denos{
server
{
orb plugins = ["xmfile_| og_streant, "wsdl _publish"];
b
ik

Generating references without the
WSDL publish plug-in

WSDL model

The WSDL Publish Plug-In

Figure 9 gives an overview of how an Artix reference is generated when the
WSDL publish plug-in is not loaded.

Artix Server
| T_Bus: : Bus
Reference
v
WSDL WSDL
——— K Readand parse | ———=
WSDL Model WSDL File

Figure 9: Generating References without the WSDL Publish Plug-In

In this case, references generated by the | T_Bus: : Bus object would, by

default, have their WSDL location set to point at the local WSDL file.

This way of setting the WSDL location suffers from the following

disadvantages:

® Clients are not able to access the server's WSDL file, unless they
happen to share the same file system.

® Even if the server's WSDL file is accessible to a client through a
Network File System (NFS) or similar, the WSDL contract in the file
does not reflect dynamic updates made by the server (in particular,
dynamically allocated IP ports would not be updated in the WSDL file).

When an Artix server starts up, it reads the WSDL files needed by the
registered services—for example, in Figure 9, a single WSDL file is read and
parsed. After parsing, the WSDL definitions exist in memory in the form of a
WSDL model. The WSDL model is an XML parse tree containing all the
WSDL definitions imported into a particular I T_Bus: : Bus instance at
runtime. Different | T_Bus: : Bus instances have distinct WSDL models.

81

CHAPTER 3 | Artix References

Generating references with the

WSDL publish plug-in

82

API for the WSDL Model

To access the nodes of the WSDL model, you can use the classes defined in
the I T_WsDL namespace—for example, see the header files in the
i ncl ude/it_wsdl directory.

Dynamic Updates

The WSDL model is dynamically updated by the Artix server to reflect
changes in the physical contract at runtime. For example, if the server
dynamically allocates an IP port for a particular port on a WSDL service, the
port's addressing information is updated in the WSDL model.

When the WSDL publish plug-in is loaded, the Artix server opens a HTTP
port which it uses to publish the in-memory WSDL model. Figure 10 gives
an overview of how an Artix reference is generated when the WSDL publish
plug-in is loaded.

Artix Client Artix Server
| T_Bus: : Bus
Reference Reference
l P— :
WSDL publish port H WSDL | WSDL

»O———mF—F------- -i ———— K Read and parse | ———
-_-— _——

i :
L WSDL Model | WSDL File

wsdl_publish plug-in

Figure 10: Generating References with the WSDL Publish Plug-In

In this case, references generated by the | T_Bus: : Bus object have their
WSDL location set to the following URL:

http://host_name: WSDL_publish_portt WSDL _ID

Where host_name is the server host, WSDL publish_port is an IP port used
specifically for the purpose of serving up WSDL contracts, and WSDL _ID is
a proprietary ID that identifies a particular WSDL contract.

Usefulness of the published
WSDL model

The WSDL Publish Plug-In

If a client accesses the WSDL location URL, the server will convert the
WSDL model to XML on the fly and return the resulting WSDL contract in a
HTTP message.

In most cases, clients do not need to download the published WSDL model

at all. Published WSDL is primarily useful for dynamic clients that try to

invoke an operation on the fly. Such dynamic clients would typically not be

compiled with Artix stub code. Hence, the only way the clients could obtain

the logical contract would be by downloading the published WSDL model.

The published WSDL model can be used as follows, depending on the type

of reference:

® Static reference—-clients can use both the logical contract and the
physical contract from the published WSDL model. The physical model
for static references is always up-to-date, because of the dynamic
updates.

® Transient reference—clients can use the logical contract, but not the
physical contract, from the published WSDL model. Details of the
physical contract (actually a cloned service) are available only from the
reference’s embedded properties.

83

CHAPTER 3 | Artix References

Multiple Bus instances

84

Occasionally, you might need to create an Artix server with more than one
| T_Bus: : Bus instance. In this case, you should be aware that separate
WSDL models are created for each Bus instance and separate HTTP ports
are also opened to publish the WSDL models—see Figure 11.

Artix Server

| T_Bus: : Bus
| 1
[wsoL |
WSDL publish port 1 !
o—— 1 1 _i E—1
N ==!
' - 1
: 1
L WSDL Model_i

| T_Bus: : Bus

WSDL publish port
@

wsdl_publish plug-in

Figure 11: WSDL Publish Plug-In and Multiple Bus Instances

Programming with References

Programming with References

Overview

In this section

This section explains how to program with Artix references, using a simple
bank application as a source of examples. The bank server supports a
creat e_account () operation and a get _account () operation, which return
references to Account objects.

To program with references, you need to know how to generate references
on the server side and how to resolve references on the client side.

This section contains the following subsections:

Bank WSDL Contract page 86
Creating References page 95
Resolving References page 99

85

CHAPTER 3 | Artix References

Bank WSDL Contract

Overview

The XML Reference type

The references XML schema

The Bank example

This subsection describes the Bank WSDL contract, which demonstrates a
typical scenario where Artix transient references would be used.

Artix defines a proprietary XML schema that defines the reference type for
use within WSDL contracts. The reference type is RefPrefix: Ref er ence,
where RefPrefix is associated with the following namespace URI:

http://schenas. i ona. coniref erences

The definition of the references schema can be found in the following file:
ArtixInstallDirl ar ti x/ Version/ schemas/ r ef er ences. xsd

The schema is also available online at:
http://schemas.iona.com/references/references.xsd

Figure 12 shows an overview of the Bank example, illustrating how the
Bank service uses references to give a client access to a specific account.

Client Server
Bank proxy @ get _account () Bank servant
O_
Feforence

Account proxy

Account servant
@ get _bal ance()

O—
________ Account DB

86

Figure 12: Using Bank to Obtain a Reference to an Account

http://schemas.iona.com/references/references.xsd

The Bank WSDL contract

1

Programming with References

The preceding Bank example can be explained as follows:

1. The client calls get _account () on the BankSer vi ce service to obtain a
reference to a particular account, AccName.

2. The BankServi ce creates a reference to the AccName account and
returns this reference in the response to get _account ().

3. The client uses the returned reference to initialize an Account d i ent

proxy.

4. The client invokes operations on the Account service through the

Accountd i

ent proxy.

Example 37 shows the WSDL contract for the Bank example that is
described in this section. There are two port types in this contract, Bank and
Account . For each of the two port types there is a SOAP binding,

BankBi ndi ng and Account Bi ndi ng.

Example 37:Ba

nk WSDL Contract

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<definitions xm ns="http://schenas. xm soap. or g/ wsdl /"

xm ns:
xm ns:
xm ns:
xm ns:
xm ns:
xm ns:

soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
tns="http://ww: i ona. cond bus/ denmos/ bank"
xsd="htt p: / / www wW3. or g/ 2001/ XM_Schena"
xsd1="htt p: // soapi nt er op. or g/ xsd"

stub="htt p: // schenas. i ona. coni t ranspor t s/ st ub"
http="http://schenas.iona. conitransports/http"

xm ns: http-conf="http://schenas. iona.conmitransports/http/configu

ration"
xm ns

:fixed="http://schenas.iona. coni bi ndi ngs/fi xed"

xmns:iiop="http://schenas.iona.conmtransports/iiop_tunnel"

xm ns

xm ns: nsl=

xm ns:
xm ns:
xm ns:
xm ns:
xm ns:

:corba="http://schenas. i ona. coni bi ndi ngs/ cor ba"
"http://ww i ona. comi cor ba/ t ypenmap/ BasePort Type. i dl

references="http://schenas. i ona. coni r ef er ences"
nmg="htt p: // schemas. i ona. coni t r anspor t s/ ny"
routi ng="http://schenas.iona.conirouting"
nsg="ht t p: // schemas. i ona. coni port/ nessagi ng"
bank="ht t p: // www. i ona. cond bus/ denos/ bank"

t ar get Namespace="ht t p: / / ww. i ona. coni bus/ denos/ bank"
name="BaseServi ce" >

<t ypes>

87

CHAPTER 3 | Artix References

Example 37: Bank WSDL Contract

2 <xsd: i nport
schemalLocation="../../../../../schenas/references. xsd"
namespace="htt p: // schenas. i ona. coni r ef er ences"/ >

<schema el enent For nDef aul t ="qual i fi ed"
t ar get Namespace="ht t p: / / ww. i ona. coni bus/ denos/ bank"
xm ns="ht t p: // waw. wW3. or g/ 2001/ XM_Schena" >
<conpl exType nane="Account Names" >
<sequence>
<el enent maxCccur s="unbounded" m nCccur s="0"
nanme="name" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ schema>
</ types>

<message nane="l|ist_accounts" />
<nessage name="l i st _account sResponse" >

<part name="return" type="bank: Account Nanes"/>
</ message>

<message nane="create_account">
<part nane="account_nane" type="xsd:string"/>

</ message>
<message nane="cr eat e_account Response" >

3 <part nane="return" type="references: Reference"/>
</ message>

<nmessage nane="get_account ">
<part name="account _name" type="xsd:string"/>

</ message>
<nmessage nane="get_account Response" >

4 <part name="return" type="references: Reference"/>
</ message>

<nessage name="del et e_account ">

<part name="account _name" type="xsd:string"/>
</ message>
<nessage name="del et e_account Response" />

<message hane="get bal ance"/>
<nessage name="get _bal anceResponse" >

<part name="bal ance" type="xsd:float"/>
</ message>

<nessage name="deposit">

88

Programming with References

Example 37: Bank WSDL Contract

<part name="addition" type="xsd:float"/>
</ message>

<message hane="deposi t Response"/>

<por t Type nane="Bank">
<operation name="Ili st_accounts">
<i nput nane="list_account s"
message="tns: create_account"/>
<out put name="l|i st _account sResponse"
nmessage="t ns: | i st _account sResponse"/ >
</ oper at i on>

<oper ati on name="cr eat e_account ">
<i nput name="creat e _account"
nessage="t ns: creat e_account"/ >
<out put name="cr eat e_account Response”
message="t ns: cr eat e_account Response"/ >
</ oper at i on>

<oper ati on name="get account">
<i nput nanme="get _account" message="tns:get_account"/>
<out put name="get _account Response"
message="t ns: get _account Response"/ >
</ oper at i on>

<oper ati on name="del et e_account ">
<i nput nane="del et e_account "
nmessage="t ns: del et e_account"/ >
<out put nane="del et e_account Response"
nmessage="t ns: del et e_account Response"/ >
</ oper at i on>
</ port Type>

<por t Type nane="Account">
<oper ati on name="get bal ance">
<i nput nanme="get _bal ance" message="tns: get _bal ance"/>
<out put nanme="get bal anceResponse"
message="t ns: get _bal anceResponse" />
</ oper at i on>
<oper ati on name="deposit">
<i nput name="deposit" message="tns: deposit"/>
<out put nane="deposi t Response"
nmessage="t ns: deposi t Response"/ >

89

CHAPTER 3 | Artix References

Example 37: Bank WSDL Contract

</ oper at i on>
</ por t Type>

<bi ndi ng name="BankBi ndi ng" type="tns: Bank" >
<soap: bi ndi ng styl e="rpc"
transport ="htt p://schemas. xnl soap. or g/ soap/ htt p"/ >
<operation nane="|ist_accounts">
<soap: oper ati on
soapAct i on="ht t p: // waw. i ona. com bus/ denos/ bank"
styl e="rpc"/>
<i nput >
<soap: body use="literal"
encodi ngStyl e="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="ht t p: // ww. i ona. coni bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal"
encodi ngStyl e="ht t p: // schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // www. i ona. conl bus/ denos/ bank" / >
</ out put >
</ oper at i on>
<oper ati on nane="creat e_account" >
<soap: oper ati on
soapAction="htt p://wm\ i ona. coni bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal"
encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // www. i ona. conl bus/ denos/ bank" / >
</i nput >
<out put >
<soap: body use="literal"
encodi ngStyl e="ht t p: / / schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // ww. i ona. coni bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
<oper ati on nane="get_account">
<soap: oper at i on
soapAction="htt p://wm\ i ona. coni bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal"
encodi ngStyl e="ht t p: / / schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // ww. i ona. coni bus/ denos/ bank"/ >
</i nput >
<out put >

90

Programming with References

Example 37: Bank WSDL Contract

<soap: body use="literal"
encodi ngStyl e="ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw i ona. conl bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
<oper ati on name="del et e_account ">
<soap: oper ati on
soapActi on="http://wm i ona. cond bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal"
encodi ngStyl e="ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw i ona. cond bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal "
encodi ngStyl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw i ona. cond bus/ denos/ bank"/ >
</ out put >
</ oper ati on>
</ bi ndi ng>

<bi ndi ng name="Account Bi ndi ng" type="tns: Account ">
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xn soap. or g/ soap/ htt p"/ >
<oper ati on name="get bal ance">
<soap: oper at i on
soapActi on="http://wm i ona. cond bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal "
encodi ngStyl e="ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // wmv i ona. conl bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal"
encodi ngStyl e="ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw i ona. cond bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
<oper ati on name="deposit">
<soap: oper ati on
soapActi on="http://wm i ona. cond bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal"
encodi ngStyl e="ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw i ona. conl bus/ denos/ bank"/ >

91

CHAPTER 3 | Artix References

Example 37: Bank WSDL Contract

</i nput >
<out put >
<soap: body use="literal"
encodi ngStyl e="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // ww. i ona. coni bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
7 <servi ce name="BankServi ce">
<port nane="BankPort" bi ndi ng="t ns: BankBi ndi ng" >
<soap: addr ess
| ocation="http://I| ocal host : 0/ BankSer vi ce/ BankPort/" />
</ port >
</ servi ce>
<servi ce name="BankServi ceRout er" >
<port nane="BankPort" bi ndi ng="t ns: BankBi ndi ng" >
<soap: addr ess

| ocation="http://I| ocal host: O/ BankSer vi ce/ BankPort/"/ >
</ port >

</ servi ce>

8 <servi ce name="Account Servi ce">
<port name="Account Port" bi ndi ng="t ns: Account Bi ndi ng" >
<soap: address | ocation="http://| ocal host: 0" />

</ port >

</ servi ce>

</ definitions>

The preceding WSDL contract can be described as follows:

1. The <defi ni ti ons> tag associates the ref erences prefix with the
http://schenas. i ona. cond r ef erences namespace URI. This means
that the reference type is identified as r ef er ences: Ref er ence.

2. The xsd:inport imports the <r ef er ences: Ref er ence> type definition
from the references schema, r ef er ences. xsd. You must edit this line if
the references schema is stored at a different location relative to the
bank WSDL file.

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the
xsd: i nport element.

92

Programming with References

The creat e_account Response message (which is the out parameter of
the creat e_account operation) is defined to be of

ref er ences: Ref er ence type.

The get _account Response message (which is the out parameter of the
get _account operation) is defined to be of ref er ences: Ref er ence
type.

The creat e_account operation defined on the Bank port type is defined
to return a ref er ences: Ref er ence type.

The get _account operation defined on the Bank port type is defined to
return a r ef er ences: Ref er ence type.

The information contained in this <servi ce name="BankSer vi ce" >
element is approximately the same as the information that is held in a
BankSer vi ce static reference, apart from the addressing information in
the <soap: addr ess> element.

The BankSer vi ce static reference generated at runtime would replace
the http://1 ocal host : 0/ BankSer vi ce/ BankPort/ SOAP address with
http: // host_name: IP_port/ BankSer vi ce/ BankPort/ where
host_name and IP_port are substituted with the port address that the
server is actually listening on (dynamic port allocation).

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.

The information contained in this <ser vi ce name="Account Servi ce">

element serves as a prototype for generating Account Ser vi ce transient

references.

An Account Ser vi ce transient reference is cloned from the

Account Servi ce service at runtime by altering the following data:

+ The service QName is replaced by a transient service QName,
which consists of Account Ser vi ce concatenated with a unique ID
code.

93

CHAPTER 3 | Artix References

94

The http://1 ocal host: 0 SOAP address is replaced by

http:// host_name: IP_port/ TransientURLSuffix, where
host_name and IP_port are set to the port address that the server
is listening on and TransientURLSuffix is a suffix that is unique
for each transient reference.

Programming with References

Creating References

Overview This subsection describes how to create Artix references, which can be
generated on the server side in order to advertise a service's addressing
details to clients.

The following topics are discussed in this section:
® Factory pattern.

® Creating a static reference.

® (Creating a transient reference.

Factory pattern References are usually created in the context of a factory pattern. This
pattern involves at least two kinds of object:

® One type of object, to which the references refer.

®* Another type of object, the factory, which generates references to the
first type.

For example, the Bank is a factory that generates references to Accounts.

Creating a static reference Example 38 shows how to create a static BankSer vi ce reference. The
distinguishing feature of a static reference is that it is generated from a static
servant object.

Example 38: Creating a Static Reference
[l Ct+
try {
I T Bus::Bus_var bus = IT Bus::init(argc, (char **)argv);
| T_Bus: : Q\ane servi ce_nane(
"', "BankService", "http://ww.iona.com bus/denmos/ bank"
JE

1 Bankl npl ny_bank(bus);

95

CHAPTER 3 | Artix References

Example 38: Creating a Static Reference

2 I T _Bus:: Service & service = bus->regi ster_servant (
ny_bank,
"../wsdl / bank. wsdl ",
servi ce_nane,
" BankPort "

IE
3 | T_Bus: : Ref erence& bank_ref erence = servi ce->get_reference();

}

The preceding C++ code can be described as follows:

1. This line creates a Bankl npl servant instance, which implements the
Bank port type.

2. Theregister_servant () function registers a static servant instance,
taking the following arguments:

+ Servant instance.

+ WSDL file location.

+ Service QName.

+ Port name (optional).

Note: If the port name argument is omitted, all of the service's ports
will be activated.

The return value is an | T_Bus: : Servi ce object, which references the
original BankSer vi ce WSDL service.

3. Theget _reference() function returns an Artix reference for the service
object, servi ce.

96

Creating a transient reference

Programming with References

Example 39 gives the implementation of the Bankl npl : : creat e_account (),
function which shows how to create a transient Account Ser vi ce reference.
The distinguishing feature of a transient reference is that it is generated from
a transient servant object.

Example 39: Creating a Transient Reference

[l Ct+
voi d
Bankl npl : : creat e_account (
const | T_Bus:: String &uccount _nane,
| T_Bus: : Reference &account _reference
) | T_THROWNDECL((I T_Bus: : Exception))
{
Account Map: :iterator account_iter = maccount_nap. fi nd(
account _nane
)
if (account_iter == maccount _map. end())
{
cout << "Creating new account: "
<< account _nare.c_str() << endl;

Account I npl * new account = new Account | npl (
get _bus(), account_nane, 0
)
Servi ce& service = get_bus()->regi ster_transi ent_servant (
*new_account ,
"../wsdl /bank. wsdl ",
Account | npl : : SERVI CE_NAME
E

/1 Now put the details for the account into the nap so
// we can retrieve it later.

/1

AccountDetai |l s details;

detail s. mservice = &service;

detai | s. maccount = new account ;

account _iter = maccount _map.insert(
Account Map: : val ue_t ype(account _nane, details)
). first;
}

account _ref erence
= (*account _iter).second. mservi ce->get _reference()

97

CHAPTER 3 | Artix References

Example 39: Creating a Transient Reference

}

The preceding C++ code can be described as follows:

1. This line creates an Account I npl servant instance, which implements
the Account port type.

2. Theregister_transient_servant () function registers a transient
servant instance, taking the following arguments:

. Servant instance.
. WSDL file location.
. Service QName.

+ Port name (optional).

Note: If the port name argument is omitted, all of the service's ports
will be activated.

The return value is an | T_Bus: : Servi ce object, which references a
WSDL service cloned from Account Ser vi ce.

3. The get_reference() function returns an Artix reference for the
account service object.

98

Programming with References

Resolving References

Overview

Initializing a client proxy with a
reference

Client example

To a client, an | T_Bus: : Ref er ence object is just an opaque token that can
be used to open a connection to a particular Artix service. The basic usage
pattern on the client side, therefore, is for the client to obtain a reference
from somewhere and then uses the reference to initialize a proxy object.

Client proxies include a special constructor to initialize the proxy from an
I T_Bus: : Ref er ence object. For example, the Account A i ent proxy class
includes the following constructor:

/] C++
Account d i ent (const | T_Bus:: Ref erenceg);

The data to initialize the Account A i ent object is obtained partly from the
I T_Bus: : Ref er ence object (service and port details) and partly from the
WSDL contract (port type and binding details).

Example 40 shows some sample code from a client that obtains a reference
to an Account and then uses this reference to initialize an Account A i ent
proxy object.

Example 40: Client Using an Account Reference

[l Ct+

i?;';\.nkO i ent bankclient;

// 1. Retrieve an account reference fromthe renote Bank obj ect.
| T_Bus: : Ref erence account _r ef er ence;

bankcl i ent. get_account ("A N Cher", account_reference);

/1 2. Resolve the account reference.
Account d i ent account (account _r ef erence) ;

I T_Bus: : Fl oat bal ance;
account . get _bal ance(bal ance) ;

99

CHAPTER 3 | Artix References

Callbacks

Overview

In this section

100

An Artix callback is an implementation pattern, where a client implements a
WSDL service (thus exhibiting hybrid client/server behavior). Because the
server initially does not know about the client's service, the client must
transmit a callback reference to the server (that is, register the callback).
The server is then able to call back on the client's service at any later time.

This section contains the following subsections:

Overview of Artix Callbacks page 101
Routing and Callbacks page 103
Callback WSDL Contract page 107
Client Implementation page 109
Server Implementation page 113

Callbacks

Overview of Artix Callbacks

Overview

The callback example described in this section is based on Artix callback
demonstration, which is located in the following directory:

ArtixInstallDirl arti x/ Version/ denos/ advanced/ cal | back

Callbacks rely, essentially, on Artix references. Using references, the client
can encapsulate the details of its callback service and pass on these details
to the server in a reference parameter. Figure 13 illustrates how this process
works.

Artix Client Artix Server

@
@ regi ster_cal | back(Ref)

ﬁ . »{ Serverimpl

ServerSayHi ("...")

Clientimpl |«

WSDL File WSDL File

Figure 13: Overview of the Callback Demonstration

101

CHAPTER 3 | Artix References

Callback steps Example 13 on page 101 shows the callback proceeding according to the
following steps:

1. After the basic initialization steps, including registration of the
Aientlnpl servantand i ent Servi ce service, the client generates a
reference for the callback service.

The client callback service is activated and capable of receiving
incoming invocations as soon as it is registered.

2. Theclient calls regi ster _cal | back() on the remote server, passing
the reference generated in the previous step.

3. When the server receives the callback reference, it immediately calls
back on the i ent I npl servant by invoking Ser ver SayH ().

Note: In a more realistic application, it is likely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.

Threading By default, both the client and the server allocate a pool of threads to
process incoming requests (see “Multi-Threading” on page 62). One of the
positive side effects of this policy is that the callback scenario shown in
Figure 13 on page 101 is not subject to deadlock.

Note: In the current example, it is also significant that the client service is
activated as soon as it is registered. Otherwise the code shown in
Example 42 on page 109 would lead to deadlock.

102

Callbacks

Routing and Callbacks

Overview

CORBA Client

]

Callbacks are fully compatible with Artix routers. Reference that passes
through a router are automatically proxified, if necessary. Proxification
means that the router automatically creates a new route for the references
that pass through it.

Note: Proxification is not necessary, if the transport protocols along the
route are the same.

For example, consider the callback routing scenario shown in Figure 14. In
this scenario, a SOAP/HTTP Artix server replaces a legacy CORBA server. As
part of a migration strategy, legacy CORBA clients can continue to
communicate with the new server by interposing an Artix router to translate
between the [IOP and SOAP/HTTP protocols.

RtrCorbaPort
Artix Router

SvrSoapPort
Artix Server

|
1
: I :
regi st er _cal | back(Ref) V 1 regi st er _cal | back(Ref) V
1
> O— ! ——F1——» O—
| /
= [CORBA Ref|—>| SOAP Ref |
Server SayHi () Proxification Ser ver SayH ()N SOAP Ref
—O0 +—1— i —O =
A | A
: E :
1
1
CltCorbaPort RtrSdapPort

Callback IDL

Router Contract Target Contract

Figure 14: Overview of a Callback Routing Scenario

103

CHAPTER 3 | Artix References

Contracts

Callback IDL

Target contract

Router contract

104

The applications in Figure 14 are associated with three distinct, but related,
contracts as follows:

® (Callback IDL.
® Target contract.
® Router contract.

The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). This IDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented
by the CORBA client).

In this scenario, the target contract is generated from the callback IDL using
the IDL-to-WSDL compiler. Hence, this WSDL contract contains both the
target interface and the callback interface as WSDL port types.

The target contract also contains a single WSDL service description, which
includes the Svr SoapPort port.

The router contract holds details about the CORBA side of the application as

well as the SOAP/HTTP side, including the following information:

® Target WSDL port type.

® Callback WSDL port type.

® CORBA WSDL binding for the target.

® SOAP/HTTP WSDL binding for the target.

® CORBA WSDL service, containing the R r Cor baPort port.

® SOAP/HTTP WSDL service, containing the Svr SoapPort port.

® Prototype SOAP/HTTP WSDL service, needed for generating the
transient endpoint with Rt r SoapPort port.

® Route information.

You can generate a router contract using the Artix Designer GUI tool. To

specify the location of the generated router contract, you can set the

pl ugi ns: routing: wsdl _url configuration variable in the router scope of the
arti x. cfg configuration file.

Routes

Proxification

Callbacks

As shown in Figure 14 on page 103, the following routes are created in this

scenario:

® Client-Router-Target route—this route is documented explicitly in the
router contract. The source port, R r Cor baPort, and the destination
port, Svr SoapPort, are described in the router contract.

For example, when the client calls the regi st er _cal | back()
operation, the request travels initially to the R r CorbaPort on the
router (over [IOP) and then on to the Svr SoapPort on the target server
(over SOAP/HTTP).

® Target-Router-Client route (callback route)—the reverse route (for
callbacks) is not documented explicitly in the router contract. This
route is constructed at runtime to facilitate routing callback
invocations.
For example, when the Artix server calls the Server SayH () callback
operation, the request travels to the R r SoapPort on the router (over
SOAP/HTTP) and then on to the A t CorbaPort on the client (over
[IOP).

Proxification refers to the process whereby a reference of a certain type (for
example, a CORBA reference) that passes through the router is
automatically converted to a reference of another type (for example, an Artix
SOAP reference).

The proxification process is of key importance to Artix callbacks. If the router
in Figure 14 on page 103 did not proxify regi ster _cal | back()'s reference
argument, it would be impossible for the server to call back on the client.
The server can communicate only with SOAP/HTTP endpoints, not with I110OP
endpoints.

105

CHAPTER 3 | Artix References

106

In Figure 14 on page 103, the router proxifies the callback reference as

follows:

1. When the register_cal | back() operation is invoked, the router
recognizes that the reference argument must be converted into a
SOAP/HTTP-format reference.

2. The router dynamically creates a new service and port, Rt r SoapPort,
to receive callback requests in SOAP/HTTP format. The new service is
a transient service cloned from a service in the router WSDL contract.
The router looks for a service that satisfies the following criteria:

. Supports the same port type as the original reference.

+ Supports the same type of binding (for example, SOAP or CORBA)
as the target server.

3. The router creates a new SOAP/HTTP reference, encapsulating details
of the R r SoapPort endpoint.

4. The router forwards the regi st er _cal | back() operation on to the
target server in SOAP format, with the proxified SOAP/HTTP reference
as its argument.

5. The router dynamically constructs a callback route, with source port,
Rt r SoapPor t , and destination port, A t Cor baPort .

Callbacks

Callback WSDL Contract

Overview This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client
and for the server applications.

WSDL contract Example 41 shows the WSDL contract used for the callback demonstration.
Example 41: Example Callback WSDL Contract

<?xm versi on="1.0" encodi ng="UTF-8" 2>

<defi ni ti ons name="cal | back_deno"
t ar get Nanespace="ht t p: // waw. i ona. coni cal | back"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl /"

xm ns: http-conf="http://schenmas. i ona. con transport s/ http/conf
iguration"
xm ns: ref erences="http://schenas. i ona. coni r ef er ences"
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://ww: i ona. coni cal | back"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: / / waww. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<xsd: i nport
nanespace="htt p: // schenas. i ona. coni r ef er ences"
schenalLocation="../../../../schenas/references. xsd"/ >
<schema t ar get Nanespace="htt p: // wawv. i ona. coni cal | back"
xm ns="ht t p: / / www, W3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /" >
<el ement nane="regi st er _cal | back. c"
type="ref erences: Ref erence"/ >
</ schena>
</types>
<message hame="Server SayH ">
<part name="paranl type="xsd:string"/>
</ message>
<message nane="regi ster_cal | back">
<part el enent="tns: regi ster_cal | back.c" nane="c"/>
</ message>
<port Type nane="d i ent Port Type">
<oper ati on name="Server SayH ">
<i nput message="tns: Server SayH " name="Server SayH "/ >

107

CHAPTER 3 | Artix References

Port types and operations

108

Example 41: Example Callback WSDL Contract

</ oper at i on>
</ por t Type>
<port Type nane="Server Port Type">

<oper ati on nane="regi st er_cal | back">

<i nput nmessage="t ns: regi st er_cal | back"
name="r egi st er _cal | back"/ >

</ oper at i on>

</ por t Type>

<servi ce name="d i ent Servi ce">

</ servi ce>
<servi ce name="Server Servi ce">

</ servi ce>

</ definitions>

The WSDL contract in Example 41 on page 107 defines the following port
types and operations:

Server Port Type port type—implemented on the server side. This

server port type supports a single WSDL operation:

. regi ster _cal | back operation—takes a single Artix reference
argument, which is used to pass a reference to the client callback
object.

dient Port Type port type—implemented on the client side. This

callback port type supports a single WSDL operation:

¢+ ServerSayH operation—takes a single string argument. The
server calls back on this operation after it has received a reference
to the client’s service.

Callbacks

Client Implementation

Overview

Client main function

In a callback scenario, the client plays a hybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main
parts, as follows:

® (Client main function.
® Clientlmpl servant class.

Example 42 shows the code for the callback client main function, which
instantiates and registers a di ent I npl servant before calling on the remote
server to register the callback.

Example 42: Callback Client Main Function
Il C++

#i ncl ude <it_bus/ bus. h>

#i ncl ude <it_bus/exception. h>

#i nclude <it_cal /i ostream h>

#include "Serverdient.h"
#include "dientlnpl.h"

| T_USI NG NAMESPACE STD

usi ng nanespace DenopsCal | back;
usi ng nanespace | T_Bus;

int

mai n(int argc, char* argv[])

{
cout << "Callback Qient" << endl;
try
{

cout << "Initializing Bus." << endl;
Bus_var bus = IT Bus::init(argc, argv);

dientlnpl servant(bus);
cout << "Activating Service on Bus" << endl;

109

CHAPTER 3 | Artix References

Example 42: Callback Client Main Function

2 Q\ane servi ce_gnane(
", "dientService", "http://wmwiona.conical | back"
DE
3 Service & service =
bus- >r egi st er _ser vant (
servant,
"..l..letc/call back.wsdl ",
servi ce_gnane
)
4 I T Bus:: Reference & client_ref = service.get_reference();
Serverdient sc("../../etc/callback.wsdl ");
5 sc.regi ster_cal | back(client_ref);

cout << "Call back Service Ready." << endl;
6 bus->run();

bus- >shut down(tr ue) ;
cout << "Done." << endl;

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.nessage()
<< endl ;
return -1;
}
return 0;

}

The preceding code example can be explained as follows:

1. Thedientlnpl servant class implements the A i ent Port Type port
type. The Qi ent I npl instance created on this line is the client
callback object.

2. The servi ce_gnane specifies the WSDL service to be activated on the
client side. This QName refers to the <servi ce
nanme="d i ent Servi ce"> element in Example 41 on page 107.

3. Register the callback servant with the Bus, thereby activating the
d i ent Servi ce service. From this point on, the d i ent Ser vi ce service
is active and able to process incoming callback requests in a
background thread.

110

Clientlmpl servant class

Callbacks

4. A reference to the callback service is generated by calling
I T_Bus:: Service::get_reference().

5. This line invokes the regi st er_cal | back() operation on the remote
server, passing in the reference to the client callback object. From this
point on, the server could invoke an operation on the callback.

6. Just as in a normal server, the callback client calls the blocking

I T_Bus::run() function to allow the application to process incoming
requests.

Example 43 shows the implementation of the A i ent I npl servant class,
which is responsible for receiving the Qi ent I npl : : Server SayH () callback
from the server. The implementation of this servant class is trivial. It follows
the usual pattern for a servant class implementation and the Ser ver SayH ()
function simply prints out its string argument.

Example 43: Clientimpl Servant Class Implementation

[l C++
#include "dientlnpl.h"
#include <it_cal/cal.h>

I T_USI NG_NAMESPACE_STD
usi ng nanespace DenopsCal | back;

dientlnpl::dientlnpl(
| T_Bus::Bus_ptr bus
) : DenopsCal |l back: : A i ent Ser ver (bus)

{

/] conplete
}
Aientlnpl::~Aientlnpl()
{

/1 Conpl ete
}
voi d

Aientlnpl:: ServerSayH (
const | T_Bus::String & param

) | T_THRONDECL((I T_Bus: : Exception))

{
cout <<"Qientlnpl::ServerSayH () call ed"<<endl;
cout << param <<endl ;

111

CHAPTER 3 | Artix References

Example 43: Clientimpl/ Servant Class Implementation

cout <<"dientlnpl::ServerSayH () ended"<<endl;

112

Callbacks

Server Implementation

Overview

Server main function

[y

The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and
registers a servant object. A separate file contains the implementation of the
servant class, Server I npl . The server implementation thus consists of two
main parts, as follows:

¢ Server main function.

® ServerPortType implementation.

Example 44 shows the code for the server main function, which instantiates
and registers a Server I npl servant. The server then waits for the client to
register a callback using the regi st er _cal | back operation.

Example 44: Server Main Function

Il C++

#i ncl ude <it_bus/ bus. h>

#i ncl ude <it_bus/service. h>

#i ncl ude <it_bus/exception. h>

#include <it_bus/fault_exception. h>
#include <it_bus/file_output_streamh>

#i ncl ude "Serverlnpl . h"
I T_USI NG_NAMVESPACE_STD

usi ng nanespace | T_Bus;
usi ng namespace DenosCal | back;

int
mai n(int argc, char* argv[])
{
try
{
cout << "Initializing Bus." << endl;
I T Bus::Bus_var bus = | T Bus::init(argc, argv);

Server |l npl servant (bus);

I T_Bus: : Q\anme servi ce_gnane(
"", "ServerService", "http://wmiona.conical | back"

113

CHAPTER 3 | Artix References

ServerPortType implementation

114

Example 44: Server Main Function

JE

bus- >regi st er _servant (
servant,
"..l..letc/call back.wsdl ",
servi ce_gnarme

DE

cout << "Service Ready." << endl;
I T_Bus::run();

bus- >shut down(tr ue) ;
cout << "Done." << endl;

}
catch (1T _Bus:: Exception& e)

cout << "Error occurred: " << e.error() << endl;
return -1;

}

return O;

}

The preceding code example can be explained as follows:

1. The Serverlnpl servant class implements the Server Port Type port
type, which supports the regi st er _cal | back operation.

2. The service_gnane refers to the <servi ce nane="Server Servi ce">
element in Example 41 on page 107.

3. Register the Serverl npl servant with the Bus, thereby activating the
Ser ver Servi ce service.

4. Call the blocking I T_Bus: : run() function to allow the server
application to process incoming requests.

Example 45 shows the implementation of the Server I npl servant class.
There is just one WSDL operation, regi st er _cal | back() , to implement in
this class.

Example 45: Serverimpl Servant Class Implementation
/] C++

#i nclude "Serverl npl . h"
#include <it_cal/cal.h>

Example 45: Serverimpl Servant Class Implementation

| T_USI NG NAMESPACE_STD
usi ng namespace DenosCal | back;

Server | npl::Serverlnpl (I T_Bus::Bus_ptr bus) :
DenosCal | back: : Server Ser ver (bus)
{

}

/1 Conpl ete

Server | npl : : ~Server | npl ()

/] Conpl ete
}

voi d
Server | npl ::register_cal |l back(
const | T_Bus:: Reference & c
) | T_THROWNDECL((I T_Bus: : Excepti on))
{

Callbacks

cout << "Serverlnpl::register_callback(): called"<< endl;

cout << "Calling Back to client" << endl;

try
{

AQientdient cc(c);

cc. Server SayH (" Server says hi to client");

}
catch(1 T_Bus: : Excepti on& e)
{
cout << "Caught UWnexpected Exception: " << e.message() <<
endl ;
}
catch (...)
{
cout << "Unknown exception" << endl;
}

cout << "Finished callback to client" << endl;

cout << "Serverlnpl::register_callback(): returning"<< endl;

115

CHAPTER 3 | Artix References

The preceding code example can be explained as follows:

1. Theregister_call back() function takes a reference argument, which
should be a reference to a callback object.

2. This line creates a client proxy, cc, for the A i ent Port Type port type
and initializes it with the callback reference, c. The reference, c,
encapsulates details of the d i ent Servi ce service.

3. This line invokes the Server SayH () callback on the client.

This example, where the callback is invoked within the body of
regi ster_cal | back(), is a little bit artificial. In a more typical use
case, the server would cache an instance of the callback client proxy

and then call back later, in response to some event that is of interest to
the client.

116

In this chapter

CHAPTER 4

The Artix Locator

The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

Note: The Artix locator is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports the Artix locator.

This chapter discusses the following topics:

Overview of the Locator page 118
Locator WSDL page 121
Registering Endpoints with the Locator page 127
Reading a Reference from the Locator page 128
Pausing and Resuming Endpoints page 132

117

CHAPTER 4 | The Artix Locator

Overview of the Locator

Overview The Artix locator is a service which can optionally be deployed for the

following purposes:

® Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

® [oad balancing—if multiple service instances (identified by a WSDL
location and service QName) are registered against a single service
QName, the locator load balances over the different service instances
using a round-robin algorithm.

Figure 15 gives a general overview of the locator architecture.

Artix Locator
Service QName WSDL location/Service
XA
';\ < Y/A
X/B
Ports
. . Al O— .
Artix Client Service A| a2 Artix Server X
A3 O—
Service B| Bt
B2 O—
locator_endpoint
plug-in
. A4 O— .
Service A| Artix Server Y

locator_endpoint
plug-in

Figure 15: Artix Locator Overview

118

Locator demonstration

Locator service

Endpoint definition

Registering endpoints

Looking up references

Overview of the Locator

The locator demonstration, which forms the basis of the examples in this
section, is located in the following directory:

ArtixInstallDirl arti x/ Version/ denos/ uncat egor i zed/ | ocat or

There are two basic options for deploying the locator service, as follows:

® Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 15). This approach is described in
detail in the “Using the Artix Locator Service” chapter from the Artix
User’s Guide. Sample source code for such a standalone locator
service is provided in the denos/ uncat egori zed/ | ocat or
demonstration.

® Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

An Artix endpoint is a particular WSDL service (identified by a service
QName) in a particular | T_Bus: : Bus instance (identified by a WSDL location
URL). Hence, it is possible to have endpoints with the same service type
and service QName, as long as they are registered with different Bus
instances. A WSDL location URL and a service QName together identify an
endpoint.

A server registers its endpoints with the locator in order to make them
accessible to Artix clients. When a server registers an endpoint in the
locator, it creates an entry in the locator that associates a service QName
with an Artix reference for that endpoint.

An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.

119

CHAPTER 4 | The Artix Locator

Load balancing with the locator

120

If multiple endpoints are registered against a single service QName in the
locator, the locator will employ a round-robin algorithm to pick one of the
endpoints. Hence, the locator effectively load balances a service over all of
its associated endpoints.

For example, Figure 15 on page 118 shows the Servi ce AQName with two
endpoints registered against it:

® WSDL location X/Service A

® WSDL location Y/Service A

When the Artix client looks up a reference for Servi ce A, it obtains a
reference to whichever endpoint is next in the sequence.

Locator WSDL

Locator WSDL

Overview The locator WSDL contract, | ocat or . wsdl , defines the public interface of
the locator through which the service can be accessed either locally or
remotely. This section shows extracts from the locator WSDL that are
relevant to normal user applications. The following aspects of the locator
WSDL are described here:

® Binding and protocol.
® WSDL contract.
® C++ mapping.

Binding and protocol The locator service is normally accessed through the SOAP binding and over
the HTTP protocol.

Note: Currently, the locator service is limited by the fact that most Artix
bindings do not support endpoint references. In future releases of Artix,
when the support for references is extended to other bindings, it should be
possible to use the locator with other bindings and transports.

WSDL contract Example 46 shows an extract from the locator WSDL contract that focuses
on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, | ookup_endpoi nt , that an Artix client
typically needs to call.

Example 46: Extract from the Locator WSDL Contract

<definitions xmns="http://schemas. xni soap. or g/ wsdl /"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xm ns: xs="htt p: // wav w3. or g/ 2001/ XM_-Schena"
xm ns: ref="http://schenas. i ona. conir ef erences"
xm ns: | s="http://ws.iona.conil ocator"
t ar get Namespace="htt p: // ws. i ona. coni | ocat or " >

<types>
<xs: schena tar get Namespace="http://ws.i ona. conl | ocat or">
1 <xS: i nport

schemalLocation="../../../schenas/ref erences. xsd"
nanespace="htt p: // schenas. i ona. coni r ef er ences"/ >

121

CHAPTER 4 | The Artix Locator

Example 46: Extract from the Locator WSDL Contract

2 <xs: el ement nanme="| ookupEndpoi nt ">
<xs: conpl exType>
<xs: sequence>
<xs: el ement nane="servi ce_gnane"
type="xs: Q\Nane"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
3 <xs: el enent name="| ookupEndpoi nt Response" >
<xs: conpl exType>
<xs: sequence>
<xs: el enent name="ser vi ce_endpoi nt"
type="ref: Ref erence"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType
nane="Endpoi nt Not Exi st Faul t Except i on" >
<Xs: sequence>
<xs: el enent name="error" type="xs:string"/>
</ Xs: sequence>
</ xs: conpl exType>
4 <xs: el ement nane="Endpoi nt Not Exi st Faul t"
type="1s: Endpoi nt Not Exi st Faul t Excepti on"/>
</ xs: schema>
</ types>

<nessage name="| ookupEndpoi nt | nput ">
<part name="paraneters" el enent="1s:| ookupEndpoi nt"/>
</ message>
<nessage name="| ookupEndpoi nt Qut put " >
<part nane="paraneters"
el enent ="| s: | ookupEndpoi nt Response"/ >
</ message>
<nessage name="endpoi nt Not Exi st Faul t ">
<part nane="paraneters"
el emrent =" | s: Endpoi nt Not Exi st Faul t"/ >

</ message>
5 <port Type nane="Locat or Servi ce">
6 <oper ati on nane="| ookup_endpoi nt " >

<i nput message="1s: | ookupEndpoi nt | nput "/ >
<out put message="1s: | ookupEndpoi nt Qut put "/ >

122

Locator WSDL

Example 46: Extract from the Locator WSDL Contract

7

<fault name="faul t"
nmessage="I s: endpoi nt Not Exi st Faul t "/ >
</ oper at i on>
</ port Type>
<bi ndi ng name="Locat or Servi ceBi ndi ng"
type="1s: Locat or Servi ce">

</ bi ndi ng>
<servi ce name="Locat or Servi ce">
<port name="Locat or Servi cePort"
bi ndi ng="1I s: Locat or Ser vi ceBi ndi ng" >
<soap: addr ess

| ocati on="http://| ocal host: 0/ servi ces/| ocat or/ Locat or Servi ce"/>

</ port>
</ servi ce>

</ definitions>

The preceding locator WSDL extract can be explained as follows:

1.

This line imports the schema definition of the ref : Ref er ence type. You
might have to edit the value of the schenalLocat i on attribute, if the
ref erences. xsd schema file is stored in a different location relative to
the I ocat or . wadl file.

The | ookupEndpoi nt type is the input parameter type for the
| ookup_endpoi nt operation. It contains just the QName (qualified
name) of a particular WSDL service.

The | ookupEndpoi nt Response type is the output parameter type for the
| ookup_endpoi nt operation. It contains an Artix reference for the
specified service. If more than one endpoint is registered against a
particular service name, the locator picks one of the endpoints using a
round-robin algorithm.

The Endpoi nt Not Exi st fault would be thrown if the | ookup_endpoi nt
operation fails to find an endpoint registered against the requested
service type.

The Locat or Servi ce port type defines the public interface of the Artix
locator service.

The | ookup_endpoi nt operation, which is called by Artix clients to
retrieve endpoint references, is the only operation from the

Locat or Servi ce port type that user applications would typically need.

123

CHAPTER 4 | The Artix Locator

7. The SOAP | ocati on attribute specifies the host and IP port for the
locator service. If you want the locator to run on a different host and
listen on a different IP port, you should edit this setting.

C++ mapping Example 47 shows an extract from the C++ mapping of the
Locat or Servi ce port type. This extract shows only the | ookup_endpoi nt
WSDL operation—the other WSDL operations in this class are normally not
needed by user applications.

Example 47:C++ Mapping of the LocatorService Port Type

[l C++

#i ncl ude "Locat or Servi ce. h"

#i ncl ude <it_bus/service. h>
#i ncl ude <it_bus/ bus. h>

#i nclude <it_bus/reference. h>
#i ncl ude <it_bus/types. h>

#i ncl ude <it_bus/operation. h>

namespace | T_Bus_Servi ces

{

class LocatorServicedient : public LocatorService, public
I T_Bus:: dient ProxyBase

{

private:

publ i c:
Locat or Servi ced i ent (
I T Bus::Bus_ptr bus =0
JE

Locat or Servi ced i ent (
const | T Bus::String & wsdl,
I T Bus::Bus_ptr bus =0

DE

Locat or Servi ced i ent (
const | T _Bus::String & wsdl,
const | T Bus:: Q\ane & service_nane,
const |T_Bus::String & port_nane,
I T Bus::Bus_ptr bus =0
JE

Locat or Servi ced i ent (

124

Locator WSDL

Example 47: C++ Mapping of the LocatorService Port Type

I T_Bus:: Reference & reference,
I T _Bus::Bus_ptr bus =0
E

~Locator Servicedient();

virtual void
| ookup_endpoi nt (
const | T_Bus_Servi ces: : | ookupEndpoi nt &
| ookupEndpoi nt _i n,
| T_Bus_Servi ces: : | ookupEndpoi nt Response &
| ookupEndpoi nt Response_out
) | T_THROWNDECL((I T_Bus:: Exception));

The lookupEndpoint type The input parameter for the | ookup_endpoi nt operation is of
| ookupEndpoi nt type, which maps to C+ + as follows:

Il C++
namespace | T_Bus_Servi ces
{
cl ass | ookupEndpoi nt : public |IT_Bus:: SequenceConpl exType
{
publ i c:
| ookupEndpoi nt () ;
| ookupEndpoi nt (const | ookupEndpoi nt & copy) ;
virtual -~ ookupEndpoint();
const | T_Bus:: QName & getservice_gname() const;
I T_Bus:: Q\anme & get servi ce_gnane() ;
voi d setservice_gnane(const | T Bus:: Q\Name & val);
IE

125

CHAPTER 4 | The Artix Locator

The lookupEndpointResponse The output parameter for the | ookup_endpoi nt operation is of
type | ookupEndpoi nt Response type, which maps to C++ as follows:
/Il C++
nanespace | T_Bus_Servi ces
{

cl ass | ookupEndpoi nt Response
publ i c | T_Bus:: SequenceConpl exType
{
publ i c:
| ookupEndpoi nt Response() ;
| ookupEndpoi nt Response(const | ookupEndpoi nt Response&

copy);
virtual ~l ookupEndpoi nt Response();

const | T Bus::Reference & getservice_endpoi nt() const;

| T_Bus:: Reference & get servi ce_endpoi nt () ;
voi d set service_endpoi nt (const | T _Bus::Reference & val);

126

Registering Endpoints with the Locator

Registering Endpoints with the Locator

Overview

Configuring a server to register
endpoints

References

To register a server's endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint (that is,
service/port combination) that is created on the server side.

There is currently no programming API for registering endpoints explicitly.

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and | ocat or _endpoi nt plug-ins, as shown in the
following deno. | ocat or . server configuration scope from arti x. cf g:

Artix Configuration File (artix.cfQg)

deno {

| ocator {
server
{
pl ugi ns: | ocat or: wsdl _url ="../wsdl /| ocator.wsdl ";
orb_plugins = ["xmfile | og_streant, "iiop_profile",
"giop", "iiop", "soap", "http", "tunnel", "ots", "fixed",
"ws_orb", "locator_endpoint"];
Ik
h
ha

When running the server, remember to select the appropriate configuration
scope by passing it as the - CRBnane command-line parameter. For example,
the preceding configuration would be picked up by a MyArti xSer ver
executable, if the server is launched with the following command:

M/Arti xServer -CORBnane deno. | ocat or. server

For more details about configuring a server to register endpoints, see the
following references:

® “Using the Artix Locator Service” chapter from the Artix User’s Guide.
® The Artix | ocat or demonstration in
artix/ Version/ denos/ uncat egori zed/ | ocat or.

127

CHAPTER 4 | The Artix Locator

Reading a Reference from the Locator

Overview After the target server (in this example, the Si npl eSer vi ce server) has
started up and registered its endpoints with the locator, an Artix client can
then bootstrap a connection to the target server by reading one of its
endpoint references from the locator. Figure 16 shows an outline of how a
client bootstraps a connection in this way.

Artix Locator
SOAPHTTPService WSDL location / SOAPHTTPService
@I ookup_endpoi nt ()
. . Artix
Locator pro; . -
Artix Client - @ proxy SimpleService
Q/” _ _ Server
_,.—® SimpleService proxy SOAPHTTPService
o= o
Invok ti -
@ nvoke operation locator_endpoint
plug-in
Figure 16: Steps to Read a Reference from the Locator
Programming steps The main programming steps needed to read a reference from the locator,

as shown in Figure 16, are as follows:

1. Construct a locator service proxy.

2. Use the locator proxy to invoke the | ookup_r ef er ence operation.

3. Use the reference returned from | ookup_r ef er ence to construct a
Si npl eSer vi ce proxy.

4. Invoke an operation using the Si npl eSer vi ce proxy.

128

Example

Reading a Reference from the Locator

Example 48 shows an example of the code for an Artix client that retrieves a
reference to a Si npl eSer vi ce service from the Artix locator.

Example 48: Example of Reading a Reference from the Locator Service

/] C++

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>
#i nclude <it_cal /i ostream h>

#i nclude "Sinpl eServi cedient. h"
#i ncl ude "LocatorServicedient.h"

| T_USI NG_NAMESPACE_STD
usi ng namespace | T_Bus;
usi ng namespace | T_Bus_Servi ces;
usi ng nanespace S npl eServi ceNsS;

int

mai n(int argc, char* argv[])

{

cout << " SinpleService Aient" << endl;

try

{

int ny_argc = 2;
const char * ny argv [] = {
" - CRBnane",
"deno. | ocator.client"

IE
IT Bus::init(nmy_argc, (char **)ny_argv);

Q\ane servi ce_nane(
"" "LocatorService", "http://ws.iona.conllocator"
JE
Q\ane sh_servi ce_nane(
"t " SOAPHTTPSer vi ce", "http://wwn i ona. comd bus/t est s"
JE

String port_name("Locat or Servi cePort");
// 1. Construct a |ocator service proxy
| T_Bus_Servi ces: : Locat or Servi ced i ent *

m | ocator_client = new Locator Servi ced i ent (
"../wsdl/locator.wsdl ", service_nane, port_nane

129

CHAPTER 4 | The Artix Locator

130

Example 48: Example of Reading a Reference from the Locator Service

)

/] Setup input and output paraneters to |ocator
| ookupEndpoi nt sh_i nput;

sh_i nput . set ser vi ce_gnane(sh_servi ce_nane) ;

| ookupEndpoi nt Response sh_out put ;

/1 2. Invoke on | ocator

m | ocat or _cl i ent - >l ookup_endpoi nt (
sh_i nput,
sh_out put

)

// 3. Construct a new proxy to your target service with
// the result fromthe | ocator
Sinpl eServiced ient sh_sinple client(

sh_out put . get servi ce_endpoi nt ()

)

/1 4. Use your new proxy

String sh_ny_greeting("SQAPHTTP ENDPA NT GREETI NG') ;
String result;

sh_sinpl e _client.say hello(sh_ny_greeting, result);

cout << "say_hello method returned: " << result << endl;
}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Caught Unexpected Excepti on:
<< endl << e. Message()
<< endl ;
return -1;
}
return O;

Reading a Reference from the Locator

The preceding C++ example can be explained as follows:

1.

You should ensure that the client picks up the correct configuration by
passing the appropriate value of the - CRBnane parameter. In this
example, the - CRBname parameter is hard-coded, but you might prefer
to take this parameter from the command line instead.

This line constructs a qualified name, servi ce_nane, that identifies the
<servi ce name="Locat or Servi ce"> tag from the locator WSDL. See
the listing of the locator WSDL in Example 46 on page 121.

This line constructs a qualified name, sh_ser vi ce_nane, that identifies
the SOAPHTTPSer vi ce service from the Si npl eSer vi ce WSDL.

This port name refers to the <port name="Locat or Servi cePort" ...>
tag in the locator WSDL (see Example 46 on page 121).

The locator service proxy is created by calling the three-argument
constructor for the Locat or Servi ced i ent class. The three arguments
passed (locator WSDL, service name, and port name) specify the
locator endpoint exactly.

The | ookup_endpoi nt () operation is invoked on the locator to find an
endpoint of SOAPHTTPSer vi ce type (specified in the sh_i nput
parameter).

Note: If there is more than one WSDL port registered for the
SOAPHTTPSer vi ce server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.

The call to sh_out put . get servi ce_endpoi nt () extracts the returned
S npl eSer vi ce reference which is then passed to a simple client proxy
constructor. The constructor is a special form that takes an

| T_Bus: : Ref erence type as its argument:

/] Ct+

Sinpl ed i ent (
I T_Bus:: Reference & reference,
I T_Bus::Bus_ptr bus = 0

)5

You can now use the simple client proxy to make invocations on the
remote Artix server.

131

CHAPTER 4 | The Artix Locator

Pausing and Resuming Endpoints

Overview As part of a load management strategy, it is useful if you can pause the
traffic of requests incoming to a server. For this purpose, the
I T_Bus: : Servi ce class provides a pair of functions to pause and resume a
service's endpoints. The | ocat or _endpoi nt plug-in supports this
functionality by de-registering the service’s endpoints from the locator. This
does not prevent existing clients from sending requests to the server, but it
does help to limit the load by making the server temporarily unavailable to

new clients.
IT_Bus::Service pause and The I T_Bus: : Servi ce class provides the following member functions for
resume functions pausing and resuming an Artix service:

IT_Bus::Service::reached_capacity()

Call the reached_capaci ty() function to pause a service's endpoints. The
| ocat or _endpoi nt plug-in listens for this event and, when the function is
called, the | ocat or _endpoi nt plug-in deregisters the service's endpoints
(ports) from the locator.

IT_Bus::Service::below_capacity()
Call the bel ow capaci ty() function to resume a service’s endpoints. The
| ocat or _endpoi nt plug-in listens for this event and, when the function is

called, the I ocat or _endpoi nt plug-in re-registers the service’s endpoints
with the locator.

132

Pausing and Resuming Endpoints

C++ server example Example 49 shows how to pause and resume the endpoints for a

BookSer vi ce service.

Example 49: Code to Pause and Resume a Service’s Endpoints

[l Ct+
// Get handle to Service fromBus if available
| T_Bus: : Q\ane servi ce_nane(“”, “BookService”, “http://books”);

I T_Bus: : Servi ce* = bus->get_servi ce(servi ce_nane);

/1l Trigger the de-register if registered
servi ce->reached_capacity();

/1l Trigger the re-register if not register
servi ce->bel ow _capacity();

133

CHAPTER 4 | The Artix Locator

134

In this chapter

CHAPTER 5

Using Sessions In
Artix

The Artix Session Manager helps you manage service
resources.

Note: The session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the session manager.

This chapter discusses the following topics:

Introduction to Session Management in Artix page 136
Registering a Server with the Session Manager page 139
Working with Sessions page 142

135

CHAPTER 5 | Using Sessions in Artix

Introduction to Session Management in Artix

Overview

136

The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (sessi on_nanager _ser vi ce) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (sessi on_endpoi nt _nmanager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,

sm si npl e_pol i cy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each

group.

How do the plug-ins interact?

Introduction to Session Management in Artix

Figure 17 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy

plug-in.

Figure 17: The Session Manager Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 17, but the process will have only
one endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on

137

CHAPTER 5 | Using Sessions in Artix

What are sessions?

What are groups?

138

endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide service references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session’s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service's group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you edit the value for

pl ugi ns: sessi on_endpoi nt _manager : def aul t _gr oup in the process’
configuration scope. For more information on Artix configuration see
Deploying and Managing Artix Solutions.

Registering a Server with the Session Manager

Registering a Server with the Session Manager

Overview

Configuring the server

Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

® soap

® http

® sessi on_endpoi nt _manager

sessi on_endpoi nt _manager allows the server to register with a running
session manager.

The server’s configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

139

CHAPTER 5 | Using Sessions in Artix

Example 50 shows the configuration scope of a server that hosts services
managed by the session manager.

Example 50: Server Configuration Scope

gaj ag_ser ver

{
orb_plugins = ["xmfile_|log streant, "soap", "http", "fixed", "session_endpoi nt_manager"];
pl ugi ns: sessi on_endpoi nt _manager : wsdl _ur| =" sessi on- nanager - servi ce. wsdl ";
pl ugi ns: sessi on_endpoi nt _nanager : endpoi nt _manager _ur | =" sessi on- nanager - endpoi nt . wsdl ";

pl ugi ns: sessi on_endpoi nt _nanager : deaf ul t _gr oup="qaj ag_gr oup";

b

A server loaded into the gaj ag_ser ver configuration scope will be managed
by the session manager at the location specified in

sessi on- manager - ser vi ce. wsdl , its endpoint manager will come up at the
address specified in sessi on- manager - endpoi nt . wsdl , and by default all
services instantiated by the server will belong to the session manager group
gaj ag_gr oup.

For more information on Artix configuration see Deploying and Managing
Artix Solutions.

You also need to configure the port on which the endpoint manager will run.
To do this you modify sessi on- manager . wsdl , provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open

sessi on- manager . wsdl and edit the <soap: addr ess> entry for the

Sessi onEndpoi nt Manager Ser vi ce to specify the proper address.

Example 51 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 51: Endpoint Manager Address

<servi ce name="Sessi onEndpoi nt Manager Ser vi ce" >
<port name="Sessi onEndpoi nt Manager Port" bi ndi ng="sm Sessi onEndpoi nt Manager Bi ndi ng" >
<soap: addr ess
| ocati on="http://| ocal host: 8080/ servi ces/ sessi onVanagenent / sessi onEndpoi nt Manager "/ >
</ port>
</ servi ce>

140

Registering a Server with the Session Manager

In the server's configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting

pl ugi ns: sessi on_endpoi nt _manager : endpoi nt _nanager _ur | to point to the
copy of sessi on- manager . wsdl containing the address for this instance of
the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
pl ugi ns: sessi on_endpoi nt _nanager: wsdl _url .

141

CHAPTER 5 | Using Sessions in Artix

Working with Sessions

Overview

Instantiating a session manager
proxy

142

Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

Obtain the list of endpoints available in the group.

Create a service proxy from one of the endpoints in the group.
Build a session header to pass to the service.

Invoke requests on the endpoint using the proxy.

Renew the session as needed.

© N oo A~

End the session using the session manager proxy when finished with
the services.

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of Sessi onManager Qi ent using the
session manager's contract name, sessi on- manager . wsdl .

Example 52 shows how to instantiate a session manager proxy.
Example 52: /nstantiating a Session Manager Proxy

Il C++

Sessi onManager d i ent sessi on_manager _proxy = new

Sessi onManager A i ent (" sessi on_nanager . wsdl *) ;

For more information on instantiating Artix proxies, see the Artix C++
Programmer’s Guide.

Start a session

Working with Sessions

After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager’s
begi n_sessi on() method. begi n_sessi on() has the following signature:

voi d begi n_sessi on(I T_Bus_Servi ces: : Begi nSessi on i nput,
I T_Bus_Servi ces: : Begi nSessi onResponse out put) ;

i nput contains the name of the desired group and the desired duration of
the session. The group name is set using the set endpoi nt _group() method.
The group name can be any valid string and corresponds to the default
group name set in the service’s configuration scope as described in
“Configuring the server” on page 139.

The session duration is set using the set pref ered_renew ti nmeout ()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the session manager’s ni n_sessi on_t i neout
configuration setting, it will be set to the configured minimum value. If the
specified duration is higher than the value specified by the session
manager’'s max_sessi on_t i meout configuration setting, it will be set the
configured max value.

out put contains the information needed to use the session.

Once a session is returned in out put , you will need to extract the session ID
to work with the session. This is done using get sessi on_i d() .

get sessi on_i d() returns the session ID as an

I T_Bus_Servi ces: : Sessi onl D.

143

CHAPTER 5 | Using Sessions in Artix

Get a list of endpoints in the group

144

Example 53 shows the client code to begin a session for gaj ag_gr oup.
Example 53: Beginning a Session

/] C++
| T_Bus_Servi ces: : Begi nSessi on begi h_sessi on_r equest ;
| T_Bus_Servi ces: : Begi nSessi onResponse begi n_sessi on_r esponse;

/] set the group to request

begi n_sessi on_r equest . set endpoi nt _group(" gaj aq_gr oup") ;
// set session renewal interval to 10 nins

begi n_sessi on_request . set preferred_renew ti nmeout (600) ;

sessi on_ngr. begi n_sessi on(begi n_sessi on_r equest ,
begi n_sessi on_r esponse) ;

I T_Bus_Servi ces: : Sessionld session;
session =

begi n_sessi on_r esponse. get sessi on_i nfo() . getsession_id();

The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session’s group. The session manager proxy’s
get _al | _endpoi nt s() method returns a list of all endpoints registered to the
specified group. get _al | _endpoi nts() has the following signature:

voi d get_all _endpoi nts(1 T_Bus_Servi ces:: Get Al | Endpoi nts request,
| T_Bus_Servi ces: : Get Al | Endpoi nt sResponse response)

request contains the session ID for which you are requesting services. Set
the session ID using the set sessi on_i d() method on request with the
session ID returned from the session manager.

response contains the list of services returned from get _al | _endpoi nts().
If the group has no services, response will be empty.

Create a proxy for the requested
service

Working with Sessions

Example 54 shows how to get the list of services for a group.
Example 54: Retrieving the List of Services in a Group

/] G+

| T_Bus_Services: : Get Al | Endpoi nts request;

| T_Bus_Servi ces: : Get Al | Endpoi nt sSResponse response;

/1 group session initialized above.
get _al | _endpoi nts_request . set sessi on_i d(sessi on) ;

sessi on_ngr.get_al | _endpoi nt s(request, response);

The client can use any of the services returned by get _al | _endpoi nt s() to
instantiate a service proxy. To instantiate the proxy, you first need to narrow
down the list returned services to the desired one. Get Al | Enpoi nt sResponse
contains an array of references to active services that can be retrieved using
Get Al | Endpoi nt sResponse’s get endpoi nt s() method. You can use simple
indexing to get one of the references. For example, to use the first service in
the list you would use the following:

response. get endpoi nts() [0]

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

145

CHAPTER 5 | Using Sessions in Artix

Create a session header

146

want to have your clients check each service to see if it implements the
correct interface by checking the reference’s service name as shown in
Example 55.

Example 55: Checking the Service Reference for its Interface

/[C++
I T_Bus: : Ref erence endpoi nt = response. get endpoi nts()[0];
if (endpoint.get_service nane() ==
Q\ane("", "Qaj agService", "http://qajags.com))
{

/] instantiate a QqajagService using endpoi nt

}

el se

{

/1 do sonething el se

}

Example 56 shows the client code for creating a proxy gaj aq server from a
group service.

Example 56: /nstantiate a Proxy Server

/] C++
Qaj aqd i ent gaj aq_pr oxy(response. get endpoi nts()[0]);

Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy’s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy’s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get _port (), that provides
access to the port information used by the client to connect the service. One
of an Artix proxy’s port properties is use_i nput _nessage_at tri but es.

Working with Sessions

Setting this property to t r ue tells the bus to ensure the input message
attributes are propagated through to the server. Example 57 shows how to
set the client proxy port’s use_i nput _nessage_attri but es property to tr ue.

Example 57: Use Input Message Attributes

/] G+
/Il Get the proxy’s port
I T_Bus::Port proxy_port = gaj aq_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Getting a handle to the input message attributes

A pointer to the proxy port’s input message attributes is returned by the
port's get _i nput _nessage_attri but es() method. Example 58 shows how
to get a handle to the input message attributes.

Example 58: Getting the Input Message Attributes

MessageAttributes& i nput_attributes =
proxy_port().get_input_nessage _attributes();

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header's against. The session name is returned by
invoking get name() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking get endpoi nt _group() on
the session ID of the active session.

147

CHAPTER 5 | Using Sessions in Artix

Make requests on service proxy

Renewing a session

148

The input message attributes are set using the message attribute handle’s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 59 shows how to set the session
information in to the input message attributes.

Example 59: Setting the Input Message Attributes

/] C++
input_attributes.set string("Sessi onNane", session. getnanme());
input_attributes.set_string("Sessi onG oup”,

sessi on. get endpoi nt _group());

Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client's session is not
valid, an exception is raised.

If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’s

renew _sessi on() method. renew sessi on() has the following signature:

voi d renew sessi on(l T_Bus_Ser vi ces: : RenewSessi on par ans,
| T_Bus_Ser vi ces: : RenewSessi onResponse renewed) ;

par ans contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using par ans’
set sessi on_i d() method. The renewal duration is set using par ans’
setrenew timeout () method.

If the renewal is successful, r enewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
I T_Bus_Servi ces: : r enewSessi onFaul t Except i on is raised.

End the session

Working with Sessions

Example 60 shows how to end a session.
Example 60: Ending a Session

/] G+
| T_Bus_Servi ces: : RenewSessi on par ans;
| T_Bus_Ser vi ces: : RenewSessi onResponse renewed;
par ans. set sessi on_i d(sessi on);
par ares. set renewal _ti neout (600) ;
try
{
sessi on_ngr. renew_sessi on(par ans, renewed);
}
catch (1 T_Bus_Servi ces: : renewSessi onFaul t Except i on)
{

// handl e the exception
}

When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end_sessi on() method. end_sessi on() has the following signature:

voi d end_sessi on(l T_Bus_Servi ces: : EndSessi on par ans) ;

par ans contains the session ID of the session being ended. The session ID is
set using par ans’ set sessi on_i d() method.

Example 61 shows how to end a session.
Example 61: Ending a Session

/] C++

| T_Bus_Servi ces: : EndSessi on par ans;

par ans. set sessi on_i d(sessi on);
sessi on_ngr. end_sessi on(par ans) ;

149

CHAPTER 5 | Using Sessions in Artix

150

CHAPTER 6

Transactions In
Artix

This chapter discusses the Artix support for distributed
transaction processing.

In this chapter This chapter discusses the following topics:
Introduction to Transactions page 152
Transaction API page 154
Client Example page 156

151

CHAPTER 6 | Transactions in Artix

Introduction to Transactions

Overview

Client-side transaction support

152

Artix supports a pluggable model of transaction support, which is currently
restricted to the CORBA Object Transaction Service (OTS) only and, by
default, supports client-side transaction demarcation only. Other transaction
services (such as MQ series transactions) will be supported in a future
release. The following transaction features are supported by Artix:

® Client-side transaction support.

® Compatibility with Orbix ASP.

® Pluggable transaction factory.

By default, Artix has only client-side support for CORBA OTS-based
transactions. Transaction demarcation functions (begi n(), cormt () and
rol I back()) can be used on the client side to control transactions that are
hosted on a remote CORBA OTS server, as shown in Figure 18.

Orbix ASP Domain

Artix
Client

begi n()
i nvoke C;ORBA i
erver
conmi t ()

Transaction
Factory

1

1

1

1

1

1

1

1

1

1

1

: : i
. 1

P e ! Resource

1

1

1

1

1

1

1

1

1

1

1

L

Figure 18: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

In Figure 18, the resource and the transaction factory are located on the
server side (in an Orbix ASP domain). Artix currently does not have the
capability to manage resources on the client side.

Compatibility with Orbix ASP

Pluggable transaction factory

Introduction to Transactions

The Artix transaction facility is fully compatible with CORBA OTS in Orbix
ASP. Hence, if you already have a transactional server implemented with
Orbix ASP, you can easily integrate this with an Artix client.

The underlying transaction factory used by Artix can be replaced within a
pluggable framework. In future, Artix will support multiple factories (for
example, OTS, MQ series, and so on). Currently, only the following
transaction factory is supported:

® ots

153

CHAPTER 6 | Transactions in Artix

Transaction API

Overview The Artix transaction API is provided by the following classes and modules:
® | T Bus::Bus

Note: You can also gain access to interfaces from the CosTransact i ons
module, which is part of CORBA OTS, if you have IONA's Orbix ASP
product. This is not included with Artix.

IT_Bus::Bus member functions The I T_Bus: : Bus class has the following member functions, which are used
to manage transactions:

/] C++
voi d begi n(const char* factory_nane);

voi d commi t (bool report_heuristics, const char* factory_ nane);
voi d rol | back(const char* factory_nane);

voi d rol |l back_onl y(const char* factory_nane);

char* get_transaction_nane(const char* factory nane);

I T_Bus: : Bool ean wi t hi n_transaction(const char* factory_nane);

voi d set_tineout (I T _Bus::Unt seconds, const char*
factory_nane);

I T Bus::Unt get_tineout(const char* factory nane);

CosTransact i ons: : Coor di nat or *
get _coordi nat or (const char* factory_nane);

Factory name parameter The factory name parameter, which is passed to each of the preceding API
functions, identifies the kind of transaction factory that is used. Currently,
only the CORBA OTS transaction factory is supported, which is specified by
the string, ot s.

154

Client transaction functions

Server transaction functions

Timeouts

CosTransactions::Coordinator
class

Transaction API

The begi n(), comit (), and rol | back() functions are used to demarcate
transactions on the client side. The commi t () function ends the transaction
normally, making any changes permanent. The rol | back() function aborts
the transaction, rolling back any changes.

The wi thi n_transaction() function, which can be called in an execution
context on the server side, returns TRUE if the current operation is executing
within a transaction scope.

The rol | back_onl y() function can be called on the server side to mark the
current transaction for rollback. After this function is called, the current
transaction can only be rolled back, not committed.

A client can use the set _timeout () function to impose a timeout on the
transactions it initiates. If the timeout is exceeded, the transaction is
automatically rolled back.

The CosTransacti ons: : Coor di nat or class enables you to exercise
fine-grained control over a transaction. The CosTransact i ons: : Coor di nat or
class is defined by the CORBA Object Transaction Service (OTS).

155

CHAPTER 6 | Transactions in Artix

Client Example

Overview

WSDL sample

156

This section describes a transactional Artix client that connects to a remote
CORBA OTS server. The client uses the Artix transactional API to delimit
transactions, where the transactional resource and the transaction factory
are both located in the CORBA OTS server. This simple Artix client cannot
manage a transactional resource on its own.

Example 62 defines a WSDL port type, Account Port Type, with two
operations wi t hdr aw and deposi t, which are used for withdrawing money
from or depositing money into personal accounts on the server.

Example 62: Definition of an AccountPortType Port

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >
<nessage name="w t hdraw'>
<part nane="accNane" type="xsd:string"/>
<part nane="anount" type="xsd:int"/>
</ message>
<message hane="wi t hdrawResponse"/ >
<message hane="deposit">
<part name="accNane" type="xsd:string"/>
<part nane="anount" type="xsd:int"/>
</ message>
<nessage name="deposi t Response"/>
<port Type nane="Account Port Type">
<oper ati on nane="wi t hdraw'>
<i nput message="t ns: wit hdraw' name="wi t hdraw'/ >
<out put message="t ns: w t hdr anResponse"
nanme="wi t hdr awResponse" / >
</ oper at i on>
<oper ati on nane="deposit">
<i nput nessage="t ns: deposi t" name="deposit"/>
<out put message="t ns: deposi t Response"
nane="deposi t Response"/ >
</ oper at i on>
</ por t Type>

</ definitions>

Client example

Client Example

Example 63 shows a client that executes a transfer of funds as a
transaction. After starting the transaction, the client withdraws $1000
dollars from Bill’s account and deposits the money into Ben’s account.

Example 63: Starting and Ending a Transaction on the Client Side
Il C++

I T_Bus::Bus_var bvar = | T _Bus::Bus::create reference();
Accountd i ent acc;

try {

/]l start a txn

bvar - >begi n("ot s");

acc.withdraw("Bill", 1000);

acc. deposi t ("Ben", 1000) ;

bvar->commit (1 T_TRUE, "ot s");

cout << "Transaction conpl eted successfully." << endl;
}
cat ch(l T_Bus: : Exception& e) {

bvar - >rol | back("ots");

cout << endl << "Caught Wnexpected Exception: "

<< endl << e.Mssage() << endl;
return -1;

}

The preceding transactional client code can be explained as follows:

1. The Accountdient object, acc, is a client proxy representing the
Account Port Type port type.

2. The I T Bus::Bus:: begin() function initiates the transaction. The ot s
string, which is passed as the argument to begi n(), specifies that the
current transaction uses the CORBA OTS transaction factory.

3. ThelT_Bus::Bus::comit() function attempts to commit the changes
in the server (withdrawal and deposit of money).

4. If an exception is thrown, the transaction must be aborted by calling
the I T_Bus: : Bus: : rol | back() operation.

157

CHAPTER 6 | Transactions in Artix

158

In this chapter

CHAPTER 7

Artix Contexts

Artix contexts enable you to send additional data with an
operation request, without having to declare the data as a
parameter. The mechanism for transmitting contexts is
binding-specific—for example, the context data might be
transmitted in a SOAP header or in a CORBA service context.

This chapter discusses the following topics:

Introduction to Contexts page 160

Context Example page 171

159

CHAPTER 7 | Artix Contexts

Introduction to Contexts

Overview This section provides a conceptual overview of Artix contexts, including a
brief look at the programming interface required for using contexts with
different binding types.

In this section This section contains the following subsections:
Protocols that Support Contexts page 161
Defining Context Data Types page 163
Registering Context Types page 165
Writing and Reading Context Data page 169

160

Introduction to Contexts

Protocols that Support Contexts

Overview

SOAP

Artix contexts provide a general purpose mechanism for embedding data in
message headers and they are designed to work independently of any
particular protocol or binding. Currently, you can embed context data in the
following types of protocol header:

® SOAP.

* CORBA.

You can send context data in a SOAP header, as shown in Figure 19, by

registering a context data type with the | T_Bus: : SoapCont ext Cont ai ner
object.

Context Data

SOAP Context

SOAP Message SOAP Header

Figure 19: Inserting Context Data into a SOAP Header

The context data is sent in an Artix-specific SOAP header, whose format is
defined by the http://schemas. i ona. coni cust om header schema.

161

CHAPTER 7 | Artix Contexts

CORBA You can send context data in a CORBA header, as shown in Figure 19, by
registering a context data type with the I T_Bus: : QCORBACont ext Cont ai ner
object.

Context Data

GIOP Service Context

GIOP Message GIOP Header

Figure 20: Inserting Context Data into a GIOP Service Context

In CORBA, the message formats are defined by the General Inter-ORB
Protocol (GIOP) specification. In particular, the GIOP request and reply
message formats allow you to include arbitrary header data in G/IOP Service
Context.

162

Introduction to Contexts

Defining Context Data Types

Overview

What is a context data type?

Defining a context schema

Although you can use simple data types for context data, in most cases you
would want to define a user-defined type, the context data type, to
represent your context data.

A context data type is any schema type derived from xsd: anyType. In other
words, a context data type can be any simple or complex schema type.

It is usually more appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
WSDL contract. This approach is more logical, because contexts are
normally used to implement features independently of any particular WSDL
contract.

For example, to define a complex context data type, ContextDataType, in
the namespace, ContextDataUR/, you could define a context schema
following the outline shown in Example 64.

Example 64: Outline of a Context Schema

<?xm versi on="1.0" encodi ng="UTF- 8" 2>
<xs: schenma
xm ns: xs="htt p: // waw. W3. or g/ 2001/ XM_Schena"
t ar get Nanespace="_ContextDataURI"
el enent For nDef aul t ="qual i fi ed"
at t ri but eFor nDef aul t ="unqual i fi ed">
<xs: conpl exType name="ContextDataType" >

</ xs: conpl exType>
</ xs: schema>

163

CHAPTER 7 | Artix Contexts

Generating stubs for a context To generate C++ stubs from a context schema file, ContextSchema. xsd,
schema enter the following command at the command line:

wsdl t ocpp ContextSchema. xsd

The WSDL-to-C+ + compiler will generate the following C+ + stub files:

ContextSchema_wsdl Types. h
ContextSchema_wsdl TypesFact ory. h
ContextSchema wsdl Types. cxx
ContextSchema_wsdl TypesFact ory. cxx

164

Introduction to Contexts

Registering Context Types

Overview

Getting a context container
instance

Figure 21 shows an overview of what happens when you register a context
data type with a context container.

ContextContainer
regi ster_context () regi ster_context()
Type Factory A Type Factory B

Figure 21: Registering Context Types with a Context Container

You register a context type by calling a regi ster _cont ext () function on a
context container instance. Typically, some variants of the

regi ster_cont ext () function are provided, but all of the variants include a
context data type QName as one of the arguments.

The main effect of registering a context type is that the context container
adds a type factory reference to its internal table. This type factory reference
enables the context container to create context data instances whenever
they are needed.

Note: This pre-supposes that the application is linked with the context
schema stub code, which creates static instances of the relevant type
factories.

To get a reference to a context container instance, you call the
I T_Bus: : get _cont ext _cont ai ner () function, shown in Example 65.

Example 65: The IT_Bus::get_context_container() Function

[l C++
namespace | T_Bus {
class | T_BUS APl Bus : public BusPl ugl nManager

{
publ i c:

165

CHAPTER 7 | Artix Contexts

Example 65: The IT_Bus::get_context_container() Function

virtual Context Cont ai ner*
get _cont ext _cont ai ner (const String& contai ner_nane) = O;

}s
Ik

The return type of the get _cont ext _cont ai ner () function depends on the
string argument, cont ai ner _name. Table 3 shows the values allowed for the
cont ai ner _nane argument and the corresponding return types.

Table 3: String Arguments to the get_context_container() Function

container_name String Return Type
SoapCont ext Cont ai ner I T_Bus: : SoapCont ext Cont ai ner
Cor baCont ext Cont ai ner | T_Bus: : CCRBACont ext Cont ai ner
Registering a SOAP context Example 66 shows the signature of the regi st er_cont ext () function in the

SoapCont ext Cont ai ner class, which is used to register a context data type
with the SOAP context container.

Example 66: The register_context() Function for SOAP Contexts

[l C++
nanespace | T_Bus {
class | T_SQAP_API SoapCont ext Cont ai ner
public virtual ContextContainer

{
publ i c:
virtual void
regi ster_cont ext (
const Q\ane& context _type,
const (Nane& nessage_nane,
const String& part_name
) =0
I8

Ik

The SoapCont ext Cont ai ner: : regi st er _cont ext () function takes the
following arguments:

166

Introduction to Contexts

® context_t ype—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd: anyType).

® nessage_nanme—the qualified name of the Artix-specific SOAP header
type that is used to encapsulates context data in a SOAP header.
Currently, the only message name you can select is the qualified name
with local part, header _cont ent, and namespace URI,
http://schenas. i ona. conl cust om header .

® part_nanme—the part of the Artix-specific SOAP header that contains
the context data. This argument must have the value, header _i nf o.

Registering a CORBA context Example 67 shows the registration functions in the CORBACont ext Cont ai ner
class, which are used to register a context data type with the CORBA
context container.

Example 67: The register_context() Function for CORBA Contexts

Il C++
nanespace | T_Bus {
class | T_W5s ORB APl OCRBACont ext Cont ai ner
public virtual |T_Bus:: Context Container
{
publ i c:
virtual void
regi ster_cont ext (
const | T_Bus:: Q\Nane& cont ext _nane,
const | T _Bus:: Q\ane& cont ext _t ype
) =0;

virtual void
regi ster_context _as_string(

const | T_Bus:: Q\Nane& cont ext _nanme
) =0;

virtual void
regi ster_cont ext (
const CCORBACont ext I denti fier& context id,
const | T_Bus:: Q\Nane& context _type
) =0

virtual const |CP:: Serviceld
get _context i d(

const | T _Bus:: Q\ane& cont ext _nane
) =0

167

CHAPTER 7 | Artix Contexts

Example 67: The register_context() Function for CORBA Contexts

IE

168

Introduction to Contexts

Writing and Reading Context Data

Overview Figure 22 shows an overview of how context data instances are created in a
multi-threaded application.

ContextContainer

creates\ creates

Thread X

1

1
ContextCurrent -4: Context Al

1

1

1 1
1 1
ContextCurrent -¢: Context A2 Context B2 E
1 1
1 1

Message Header Message

Figure 22: Overview of Context Data in a Multi-Threaded Application

Each application thread, for example X in Figure 22, is associated with its
own context data instances, Al and B1. Whenever an operation is invoked
from a particular thread, the thread-specific context data is automatically

inserted into the request message header.

Context current objects A context current is an object that holds references to thread-specific
context data. In particular, a context current holds reference to the context
data instances used for sending and receiving context data.

169

CHAPTER 7 | Artix Contexts

Writing thread-specific context
data to a request

Reading context data from an
incoming request

170

Context data is initialized on a per-thread basis. Once you have initialized
the context data for a particular thread, the context data is included in all
request messages sent from this thread (but not in reply messages).

To write thread-specific context data, program the following steps:

1.

Call the context container's get _current () function to obtain a
reference to the context current object for this thread.

You must also dynamically cast the returned | T_Bus: : Cont ext Qur rent
object to the appropriate derived type (for example,

SoapCont ext Qurrent or CCRBACont ext Qurrent).

Call the current object’s get _cont ext () function to obtain a concrete
instance of a context data type. The returned context data instance is
specific to the current thread.

You must dynamically cast the returned | T_Bus: : AnyType object to the
context data type.

Initialize the context data instance. This context data will be included
in all subsequent operation requests invoked from the current thread.

On the server side, you can access received context data within the scope of
a called operation. Received context data is available only in a calling
context; that is, in the context of servant code that services an incoming
operation request. Without a calling context, the received context data is
undefined.

To read context data from an incoming request, program the following steps:

1.

3.

Call the context container’s get _current () function to obtain a
reference to the context current object for this thread.

You must also dynamically cast the returned | T_Bus: : Cont ext Qurrent
object to the appropriate derived type (for example,

SoapCont ext Qur rent or CCRBACont ext Qurrent).

Call the current object’s get _cont ext () function to obtain a reference
to the received context data instance. The returned context data
instance is specific to the current thread.

You must dynamically cast the returned | T_Bus: : AnyType object to the
context data type.

Read the received context data using the type’s member functions.

Context Example

Context Example

Overview This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate arbitrary context data in
a SOAP header.

In this section This section contains the following subsections:
Custom SOAP Header Demonstration page 172
Sample Context Schema page 174
Client Main Function page 177
Server Main Function page 182
Service Implementation page 185

171

CHAPTER 7 | Artix Contexts

Custom SOAP Header Demonstration

Overview

172

The examples in this section are based on the custom SOAP header

demonstration, which is located in the following Artix directory:

ArtixInstallDirl arti x/ Version/ denos/ advanced/ cust om soap_header

Figure 23 shows an overview of the custom SOAP header demonstration,
showing how the client piggybacks context data along with an invocation
request that is invoked on the sayH operation.

@ sayH ("...")

Artix Server

@ Register context

Artix Client
@ Register context
@ Initialize context data
B 4
| |
1 1
: S ———
Helloworld WSDL H WSDL !
Contract | '
™~ | !
: |
! I
H I
WSDL File ! XSDFile |
1
i :
i wsoL |d
: — :
! 1
! 1
! 1
! 1
| 1
! XSDFile |
1

[[Context |

SOAPHeaderInfo

— Schema ~

Artix SOAP
Header Schema

» Serverimpl

WSDL

Helloworld

Contract
e

XSD File WSDL File

WSDL

XSD File

Figure 23: Overview of the Custom SOAP Header Demonstration

Transmission of context data

HelloWorld WSDL contract

SOAPHeaderInfo schema

Artix SOAP header schema

Context Example

As illustrated in Figure 23, SOAP context data is transmitted as follows:
1. The client registers the context type, SOAPHeader I nf o, with the Bus.
2. The client initializes the context data instance.

3. The client invokes the sayH () operation on the server.

4

As the server starts up, it registers the SOAPHeader | nf o context type
with the Bus.

5. When the sayH () operation request arrives on the server side, the
sayH () operation implementation extracts the context data from the
request.

The HelloWorld WSDL contract defines the contract implemented by the
server in this demonstration. In particular, the HelloWorld contract defines
the G eeter port type containing the sayH WSDL operation.

The SOAPHeader | nf o schema (in the

denos/ advanced/ cust om soap_header / et ¢/ cont ext Types. xsd file) defines
the custom data type used as the context data type. This schema is specific
to the custom SOAP header demonstration.

The Artix SOAP header schema is used implicitly to define the overall
header format for custom headers containing context data. This schema is
generic to all Artix applications that send context data in a SOAP header.

173

CHAPTER 7 | Artix Contexts

Sample Context Schema

Overview This subsection describes how to define an XML schema for a context type.
In this example, the SOAPHeader | nf o type is declared in an XML schema.
The SsOAPHeader | nf o type is then used by the custom SOAP header
demonstration to send custom data in a SOAP header.

SOAPHeaderInfo XML declaration Example 68 shows the schema for the SOAPHeader I nf o type, which is
defined specifically for the custom SOAP header demonstration to carry
some sample data in a SOAP header. Note that Example 68 is a pure
schema declaration, not a WSDL declaration.

Example 68: XML Schema for the SOAPHeaderInfo Context Type

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs: schema
xm ns: xs="ht t p: // waw. W3. or g/ 2001/ XM_Schera"
t ar get Nanespace="ht t p: / / schenas. i ona. coni t ypes/ cont ext "
el enent For nDef aul t ="qual i fi ed"
attribut eFor nDef aul t ="unqual i fied">
<xs: conpl exType nane="SQAPHeader | nf 0" >
<xs: annot at i on>
<xs: docunent at i on>
Content to be added to a SQAP header
</ xs: docunent at i on>
</ xs: annot at i on>
<xs: sequence>
<xs: el enent name="originator" type="xs:string"/>
<xs: el enent name="message" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: schena>

The SsOAPHeader | nf o complex type defines two member elements, as
follows:

® originat or—holds an arbitrary client identifier.
® nessage—holds an arbitrary example message.

174

Target namespace

Compiling the SOAPHeaderInfo
schema

SOAPHeaderInfo C+ + mapping

Context Example

You can use any target namespace for a context schema (as long as it does
not clash with an existing namespace). This demonstration uses the
following target namespace:

http://schenas. i ona. conitypes/ cont ext

To compile the SQAPHeader | nf o schema, invoke the wsdl t ocpp compiler
utility at the command line, as follows:

wsdl t ocpp cont ext Types. xsd

Where cont ext Types. xsd is a file containing the XML schema from
Example 68. This command generates the following C+ + stub files:
cont ext Types_xsdTypes. h

cont ext Types_xsdTypesFact ory. h

cont ext Types_xsdTypes. cxx
cont ext Types_xsdTypesFact ory. cxx

Example 69 shows how the schema from Example 68 on page 174 maps
to C++, to give the soap_i nt er cept or : : SOAPHeader | nfo C+ + class.

Example 69: C++ Mapping of the SOAPHeaderInfo Context Type
Il C++

nanespace soap_i nt er cept or

{

cl ass SQAPHeaderInfo : public |T_Bus:: SequenceConpl exType
{
publ i c:
static const | T _Bus::Q\ane type_nane;

SQAPHeader | nf o() ;
SQAPHeader | nf o(const SOAPHeader I nfo & copy);
virtual ~SQAPHeader I nfo();

IT Bus::String & getoriginator();
const | T _Bus::String & getoriginator() const;
voi d setoriginator(const IT Bus::String & val);

IT Bus::String & get message() ;

const | T Bus::String & getnessage() const;
voi d set message(const | T Bus::String & val);

175

CHAPTER 7 | Artix Contexts

Example 69: C++ Mapping of the SOAPHeaderInfo Context Type

IE

176

Context Example

Client Main Function

Overview

Client main function

This subsection discusses the client for the custom SOAP header
demonstration. This client is designed to send a custom header, of
SOAPHeader | nf o type, every time it invokes an operation on the G eet er port
type.

To enable the sending of context data, the client performs two fundamental

tasks, as follows:

1. Register a context type with the SOAP container—registering the
context type is a prerequisite for sending context data in a request. By
registering the context type with the Bus, you give the Bus instance the
capability to marshal and unmarshal context data of that type.

2. Initialize the context data in the SOAP current object—before
invoking any operations, the client obtains an instance of the context
data from a SOAP current object. After initializing the context data, any
operations invoked from the current thread will include the context
data.

Example 70 shows sample code from the client main function, which shows
how to register a context type and initialize context data for the current
thread.

Example 70: Client Main Function Setting a SOAP Context

Il C++
/Il GeeterdientSanple.cxx File

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/exception. h>
#i nclude <it_cal /i ostream h>

/1 Include header files related to the soap context
#i ncl ude <it_bus_pdk/ soap_cont ext _cont ai ner. h>
#i ncl ude <it_bus/cont ext _exception. h>

I/ Include header files representing the soap header content

#i ncl ude "cont ext Types_xsdTypes. h"
#i ncl ude "cont ext Types_xsdTypesFact ory. h"

177

CHAPTER 7 | Artix Contexts

Example 70: Client Main Function Setting a SOAP Context

#include "QGeeterdient.h"
I T_USI NG NAMESPACE_STD

usi ng namespace soap_i nt erceptor;
usi ng namespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = IT Bus::init(argc, argv);
Geeterdient client;
3 Cont ext Cont ai ner* contai ner =
(bus- >get _cont ext _cont ai ner (" SoapCont ext Cont ai ner"));
/1 Create Q\Nane obj ects needed to define a context
4 const Q\Nane princi pal _ct x_t ype(
" SQAPHeader | nf 0",
"http://schenas.iona. conitypes/context"
JE
5 const Q\ane princi pal _message_nane(
"soap_header",
"header _content",
"http://schenas.iona. coni cust om header"
DE
const String principal _part_name("header _info");
6 SoapCont ext Cont ai ner* soap_cont ai ner =
dynanmi c_cast <SoapCont ext Cont ai ner*> (contai ner);
7 soap_cont ai ner - >r egi st er _cont ext (
princi pal _ctx_type,
princi pal _message_nane,
princi pal _part_nane
JE
8 SoapCont ext Qurrent & soap_current =
dynami c_cast <SoapCont ext Qurrent & (contai ner->get _current());
9 AnyType& i nfo = soap_current. get _cont ext (

178

10

11

Context Example

Example 70: Client Main Function Setting a SOAP Context

}

princi pal _ctx_type,
princi pal _nessage_nane,
princi pal _part_nane

)

SQAPHeader | nf o0& header _info =
dynani c_cast <SOQAPHeader | nf o0& (i nf 0);

const String originator ("l ONA Technol ogi es") ;
const String nessage("Artix is Powerful!");

// Add the header content
header _i nfo. setorigi nator(originator);
header _i nf 0. set nessage(nessage) ;

/1 1nvoke the Vb servi ce busi ness met hods
String theResponse;

client.sayH (theResponse);
cout << "sayH response: " << theResponse << endl;

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.nessage()
<< endl;
return -1;
}
return O;

The preceding code example can be explained as follows:

1.

The it _bus_pdk/ soap_cont ext _cont ai ner. h header file contains the
declarations of the following classes:

. | T_Bus: : SoapCont ext Cont ai ner and,
. | T_Bus: : SoapCont ext Qurrent .

The cont ext Types_xsdTypes. h local header file contains the
declaration of the SOAPHeader | nf o class, which has been generated
from the context schema (see Example 68 on page 174).

179

CHAPTER 7 | Artix Contexts

180

10.

The I T_Bus:: get _cont ext _cont ai ner () function is called with the
string argument, SoapCont ext Cont ai ner, to get an initial reference to
an | T_Bus: : SoapCont ext Cont ai ner object. You can, in principle, use
get_cont ext_cont ai ner () to obtain references to context containers
for a variety of different bindings.

The QName with namespace URI,

http://schenas. i ona. coni t ypes/ cont ext , and local part,
SOAPHeader | nf o, identifies the context type from Example 68 on
page 174.

The QName with namespace URI,

http://schenas. i ona. conf cust om header , and local part,

header _cont ent , identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

The context container must be cast from its base type,

| T_Bus: : Cont ext Cont ai ner , to the derived type,

| T_Bus: : SoapCont ext Cont ai ner, in order to access the SOAP specific
methods on this object.

This call to regi ster_context () tells the Artix Bus that the
SOAPHeader | nf o type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

Call I T_Bus: : Cont ext Cont ai ner: : get _current () to obtain a reference
to the | T_Bus: : SoapCont ext Qur rent object and cast it to the derived
type. The current object is needed in order to initialize the context data
that will accompany all operation requests originating from the current
thread.

This SoapCont ext Qurrent : : get _cont ext () call returns a
thread-specific instance of a SOAPHeader | nf o object. Because multiple
context types could be registered against a SOAP header, it is
necessary to specify the exact type details in the arguments to

get _context ().

The |1 T_Bus: : AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, SOAPHeader | nf o.

11.

Context Example

By setting the ori gi nat or and nessage elements of this

SOAPHeader | nf o object, you are effectively fixing the context data for

all operations invoked from this thread.

When you invoke the sayH () operation, the context data is included

in the SOAP header. From this point on, any WSDL operation invoked
from the current thread will include the SOAPHeader | nf o context data
in its SOAP header.

181

CHAPTER 7 | Artix Contexts

Server Main Function

Overview

Server main function

182

This subsection discusses the main function for the server in the custom
SOAP header demonstration. In addition to the usual boilerplate code for an
Artix server (that is, registering a servant and calling I T_Bus: : run()), this
server also registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling
capability is then exploited in the implementation of the sayH () operation
(see Example 72 on page 185).

Example 71 shows sample code from the server main function, which
registers the sOAPHeader | nf o context type and then creates and registers a
Qeeterlnpl servant object.

Example 71: Server Main Function Registering a SOAP Context

/] C++

#i ncl ude <it_bus/bus. h>

#i ncl ude <it_bus/exception. h>
#include <it_bus/fault_exception. h>
#include <it_cal /i ostream h>

#i nclude <it_bus_pdk/ soap_cont ext _cont ai ner. h>
#include "Qeeterlnpl.h"
I T_USI NG_NAVESPACE _STD

usi ng namespace soap_i nt erceptor;
usi ng nanmespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = IT Bus::init(argc, argv);

Cont ext Cont ai ner* cont ai ner =
(bus- >get _cont ext _cont ai ner (" SoapCont ext Cont ai ner"));

Context Example

Example 71: Server Main Function Registering a SOAP Context

SoapCont ext Cont ai ner* soap_cont ai ner =
dynam c_cast <SoapCont ext Cont ai ner *> (cont ai ner) ;

const Q\Nane principal _ctx_type(
" SCAPHeader | nf 0",
"http://schenss.iona. conitypes/context"
E
const QName pri nci pal _nessage name(
"soap_header",
"header _content",
"http://schenas. iona. conl cust om header"
E

const String principal _part_nanme("header _i nfo");

soap_cont ai ner - >r egi st er _cont ext (
princi pal _ctx_type,
princi pal _message_nane,
princi pal _part_nane

);
QG eeterlnpl servant (bus);

I T_Bus:: Q\ane service_nane("", "SQAPService",
"http://ww:. iona.conm cust om soap_i nterceptor");

bus- >r egi st er _ser vant (
servant,
“../..letc/hello_world. wsdl",
servi ce_name

IE

I T _Bus::run();
}
catch(1 T_Bus: : Excepti on& e)
{

"

cout << "Error occurred:
return -1;

<< e.error() << endl;

}

return O;

183

CHAPTER 7 | Artix Contexts

184

The preceding code example can be explained as follows:

1.

The i t_bus_pdk/ soap_cont ext _cont ai ner . h header file contains the
declarations of the following classes:

. | T_Bus: : SoapCont ext Cont ai ner and,
. I T_Bus: : SoapCont ext Qurrent .

The I T_Bus: : get _cont ext _cont ai ner () function is called with the
string argument, SoapCont ext Cont ai ner, to get an initial reference to
an | T_Bus: : SoapCont ext Cont ai ner object. You can, in principle, use
get _cont ext _cont ai ner () to obtain references to context containers
for a variety of different bindings.

The context container must be cast from its base type,

| T_Bus: : Cont ext Cont ai ner , to the derived type,

| T_Bus: : SoapCont ext Cont ai ner, in order to access the SOAP specific
methods on this object.

The QName with namespace URI,

http://schenas. i ona. coni t ypes/ cont ext , and local part,
SOAPHeader | nf o, identifies the context type from Example 68 on
page 174.

The QName with namespace URI,

http://schenas. i ona. conf cust om header, and local part,

header _cont ent , identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

This call to regi ster_context () tells the Artix Bus that the
SOAPHeader | nf o type will be used to receive context data in SOAP
headers. After you have registered the context, the Bus is prepared to
unmarshal the context data (if any) from a SOAP header.

Context Example

Service Implementation

Overview

Implementation of the sayHi
operation

This subsection discusses the implementation of the Greet er port type,
which maps to the G-eeter I npl servant class in C++.

In the custom SOAP header demonstration, the G eeter | npl : : sayH ()
operation is modified to peek at the context data accompanying the
invocation. To access the context data, you need to get access to a context
current object, which encapsulates all of the context data received from the
client.

Example 72 shows the implementation of the sayH () operation from the
G eeterlnpl servant class. The sayH () operation implementation uses the
context API to access the context data received from the client.

Example 72:sayHi Operation Accessing a SOAP Context
/] C++
voi d
Qeeterlnpl::sayH (
I T _Bus::String & heResponse
) | T_THRONDECL((I T_Bus: : Exception))
{

cout << "sayH invoked" << endl;
theResponse = "Hello fromArtix";

Bus_var bus = Bus::create_reference();

Cont ext Cont ai ner* contai ner =
(bus->get _cont ext _cont ai ner (" SoapCont ext Cont ai ner"));

SoapCont ext Qurrent & soap_current =
dynani c_cast <SoapCont ext Current & (contai ner->get_current());

const Q\ame princi pal _ctx_t ype(

" SQAPHeader | nf 0",
"http://schenas. i ona. conl types/ cont ext"
DE
const Q\ane princi pal _message_nane(
"soap_header",

185

CHAPTER 7 | Artix Contexts

Example 72:sayHi Operation Accessing a SOAP Context

"header _content",
"http://schenas. i ona. coni cust om header "
)i

const String principal _part_nane("header i nfo");

4 AnyType& info = soap_current. get_cont ext (
princi pal _ctx_type,
princi pal _message_nane,
principal _part_nane

)5
5 SQAPHeader | nf o& header _i nfo =
dynam c_cast <SOAPHeader | nf 0& (i nfo);
6 // Extract the application specific SOAP header information

String& originator = header_info.getoriginator();
String& message = header _i nf 0. get message() ;

cout << "SOAP Header originator ="
<< originator.c_str() << endl;
cout << "SOAP Header nessage = " << message.c_str() << endl;

}

The preceding code example can be explained as follows:

1. The T Bus::get_context_container() function is called with the
string argument, SoapCont ext Cont ai ner, to get an initial reference to
an | T_Bus: : SoapCont ext Cont ai ner object.

2. Call I T_Bus:: Cont ext Cont ai ner: : get _current () to obtain a reference
to the I T_Bus: : SoapCont ext Qurrent object and cast it to the derived
type. The current object provides access to the context data received
from the client (if any).

3. The QName with namespace URI,
http: // schenas. i ona. cond t ypes/ cont ext , and local part,
SOAPHeader | nf o, identifies the context type from Example 68 on
page 174.

4. The QName with namespace URI,
htt p: // schenas. i ona. coni cust om header , and local part,
header _cont ent , identifies the generic type of SOAP header that Artix
uses to encapsulate context data.

186

Context Example

The I T_Bus: : AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, SQAPHeader | nf o.

You can now access the context data by calling the accessors for the
origi nat or and nessage elements, getori gi nator () and
get message() .

187

CHAPTER 7 | Artix Contexts

188

In this chapter

CHAPTER 8

Message
Attributes

This chapter describes how to program message attributes,
which enable you to send extra data ina WSDL message during
an operation call.

This chapter discusses the following topics:

Introduction to Message Attributes page 190
Schemas page 193
Name-Value API page 195
Transport-Specific API page 199
Using Message Attributes in a Client page 202
Using Message Attributes in a Server page 205

189

CHAPTER 8 | Message Attributes

Introduction to Message Attributes

Overview

Message attribute categories

190

Message attributes provide a way of transmitting data in a WSDL message
header as part of an operation invocation. For example, message attributes
are useful in the context of secure communication, where they can be used
to transmit authentication data between clients and servers.

Message attributes are properties that are set on an instance of a WSDL

port. They are defined in a WSDL schema and are usually transport-specific.

They can be divided into the following categories:

® Attributes that can be sent from the client to the server (input message
attributes).

® Attributes that can be sent from the server to the client (output
message attributes).

Additionally, the following kinds of message attribute can only be set locally

and are not transmitted between applications:

® Attributes that configure the WSDL port on the client side (not
transmitted).

® Attributes that configure the WSDL port on the server side (not
transmitted).

Introduction to Message Attributes

Input and output messages Figure 24 shows how message attributes are sent in the input message
header, from client to server, and in the output message header, from server
to client.

re-invoke . . ost-invoke i . write attributes
P Artix Client P read attributes Artix Server
. . I
A A
request s Eeiiataitatd - response request s Eeiiataitatd - response

1 1 1 1
" v ! i v !
1 1 1 1
i Artix E i Artix E
! Binding ! ! Binding !
] 1 I 1
i A ' request i A '

1 1
1 ! ‘message~/}, message 1 !
i v E parts attributes i v E
1 L Ly . i
| Artix Client | ! | | Artix Server | |
] 1 I 1
! Transport i ! Transport !
1 1 ' 1
E i message/}/message E i
L B attributes: parts L 5

response

Figure 24: Passing Message Attributes in Input and Output Messages

Client interception points A client can access message attributes at the following interception points:
® Pre-invoke—write input message attributes prior to an operation call.
® Post-invoke—read output message attributes after an operation call.

Server interception points A server can access message attributes within the body of an operation
implementation to do either of the following:

® Read the input message attributes received from the client.
® Write output message attributes to send to the client.

Oneway operations A WSDL oneway operation defines only an input message. Hence, in a
oneway operation it is only possible to define input message attributes.

191

CHAPTER 8 | Message Attributes

Setting message attributes in It is possible to specify message attributes in configuration, by adding WSDL
configuration extension elements to the <port > element of the WSDL contract.

For example, the HelloWorld MQ Soap example (located in
ArtixInstallDirl arti x/ Version/ denos/ t r ansport s/ soap_over _ng) defines
the <port > element in its WSDL contract as follows:

<definitions ... >

<servi ce name="Hel | oWr | dServi ce" >
<port bi ndi ng="t ns: Hel | oWr | dPor t Bi ndi ng"
name="Hel | oWor | dPort " >

<my: client QueueManager="MW_DEF QW
QueueNarre=" HW REQUEST"
AccessMde="send"
Repl yQueueManager =" W_DEF QU
Repl yQueueNamre=" HW REPLY"

/>

<nmy: server QueueManager =" MW_DEF QW
QueueName="HVN REQUEST"
Repl yQueueManager =" W_DEF QU
Repl yQueueName=" HW REPLY"
AccesshMbde="r ecei ve"
/>
</ port >
</ servi ce>
</ definitions>

The attributes in the preceding example define the name and properties of
an MQ series message queue both on the client side and the server side.

Setting message attributes by Artix also allows you to set message attributes by programming. This gives
programming you finer control over message attributes, enabling you to set them
per-invocation instead of per-connection.

There are two styles of API for accessing and modifying message attributes
by programming, as discussed in the following sections:

® “Name-Value API"” on page 195.
® “Transport-Specific API” on page 199.

192

Schemas

Schemas

Overview

Schema documentation

Schemas for message attributes

The various kinds of message attributes are defined in a collection of XML
schema definitions (one schema file for each transport type), located in the
following directory:

ArtixInstallDirl arti x/ Version/ schermas

For documentation on the message attribute settings, see the relevant
sections of Designing Artix Solutions concerning HTTP Transport Attributes,
MQSeries Transport Attributes and Tibco Transport Attributes.

The message attributes supported by Artix are defined by transport-specific
XSLT schema files, located in the Artix/installDirl arti x/ Version/ schemas
directory. The transport schemas with message attributes are listed in
Table 4.

Table 4: Transport Schemas with Message Attributes

Schema Type

File

HTTP ArtixInstallDirl arti x/ Version/ schemas/ ht t p- conf . xsd
MQ Series ArtixInstallDirl arti x/ Version/ schemas/ ng. xsd
Tibco ArtixInstallDirl ar ti x/ Version/ schenas/ ti brv. xsd

HTTP schema example

Example 73 shows an extract from the HTTP schema, htt p- conf . xsd,
showing some message attributes that can be set on the client side (that is,
input message attributes).

The User Nane and Passwor d input message attributes can be used to send
authentication data to a server. By default, these message attributes are
sent in a BASIC HTTP authentication header.

193

CHAPTER 8 | Message Attributes

Example 73: Sample Extract from the http-conf.xsd Schema
<xs:schema ... >
<xs: conpl exType nane="cl i ent Type" >
<xs: conpl exCont ent >
<xs: ext ensi on base="wsdl : t Ext ensi bi | i t yEl enent ">

<xs:attribute name="User Nane" type="xs:string"
use="optional "/>

<xs:attribute name="Password" type="xs:string"
use="optional "/>

</ xs: ext ensi on>

</ xs: schema>

194

Name-Value API

Name-Value API

Overview

Inheritance hierarchy

MessageAttributes class

NamedAttributes class

The name-value API is a transport-neutral API for setting and getting
message attributes, where the attributes are stored in a table of name-value
pairs. Attributes are identified by passing a string argument to one of the
set_Type() or get _Type() functions (for a complete list of attribute
identifiers, see the relevant schema in “Schemas for message attributes” on
page 193).

This subsection discusses the following aspects of the name-value API:

® Inheritance hierarchy.

® MessageAttributes class.

® NamedAttributes class.

Figure 25 shows the inheritance hierarchy for the classes involved in the
name-value API for message attributes.

[1T Bus::NamedAttributes |

[1T_Bus:: MessageAttributes |

Figure 25: Inheritance Hierarchy for IT_Bus::MessageAttributes Class

The | T_Bus: : MessageAt t ri but es class inherits functions for getting and
setting name-value pairs from | T_Bus: : NanedAt t ri but es, but it does not
define any new member functions of its own. The MessageAt tri but e class is
used as the base class for transport-specific message attribute classes and
instances of a MessageAt t ri but e type encapsulate the settings for a specific
transport.

The I T_Bus: : NanedAt t ri but es class acts as a container for a collection of
name-value pairs. The name in a name-value pair is a string identifier and
the value is a data value whose type can be any of the basic WSDL data
types.

195

CHAPTER 8 | Message Attributes

196

The I T_Bus: : NanedAt tri but e API, shown in Example 74, provides a
type-safe interface to the collection of name-value pairs using type-specific
get and set operations, get _Type() and set _Type().

Example 74: The IT_Bus::NamedAttribute AP/

/] C++

| T_Bus: : Bool ean get bool ean(const | T Bus:: String& nane) const
I T_THROW DECL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set_bool ean(
const | T _Bus:: String& nane,
| T_Bus: : Bool ean data

IE

I T _Bus::Byte get_byte(
const | T _Bus::String& name
) const
| T_THRON DECL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set byt e(
const |T_Bus:: String& narre,
I T Bus::Byte data

)i

I T_Bus:: Short get_short (
const | T _Bus::String& name
) const

I T_THROW DECL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set_short (
const | T _Bus:: String& nane,
I T Bus:: Short data

)

I T Bus::Int get_int(
const |T_Bus:: String& nanme
) const

I T_THROW DECL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set _int(
const | T _Bus:: String& nane,
IT Bus::Int data

IE

I T_Bus::Long get_| ong(
const | T _Bus::String& name

Name-Value API

Example 74: The IT_Bus::NamedAttribute AP/

) const
| T_THRON DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set | ong(
const |T_Bus:: String& nane,
I T_Bus::Long data

)i

I T_Bus: : UByte get_ubyt e(
const | T _Bus:: String& name
) const
| T_THRON DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set _ubyt e(
const |T_Bus:: String& nane,
| T_Bus:: UByte data

)

I T_Bus: : UShort get ushort (
const | T_Bus:: String& nane
) const
I T_THROW DECQL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set _ushort (
const | T _Bus:: String& nane,
I T_Bus::UShort data

)

I T Bus::Unt get_uint(
const | T_Bus:: String& nane
) const
| T_THRON DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set _uint (
const | T_Bus:: String& nane,
I T Bus::Unt data

)i

I T_Bus: : ULong get _ul ong(
const | T _Bus:: String& name
) const
| T_THRON DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set _ul ong(
const |T_Bus:: String& nane,

197

CHAPTER 8 | Message Attributes

Example 74: The IT_Bus::NamedAttribute AP/

I T_Bus::ULong data
)

I T_Bus::Fl oat get float(
const |T_Bus:: String& nanme
) const
I T_THROW DECL((W ongTypeExcepti on, NoSuchAttri but eException));

voi d set_fl oat (
const | T _Bus:: String& nane,
I T Bus:: Float data

)

| T_Bus: : Doubl e get _doubl e(
const |T_Bus:: String& nanme
) const
| T_THROWN DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set_doubl e(
const |T_Bus:: String& narre,
| T_Bus: : Doubl e data

)i

I T Bus::String get_string(
const | T _Bus::String& name
) const
| T_THROWN DECL((W ongTypeExcept i on, NoSuchAttri but eException));

voi d set_string(
const |T_Bus:: String& narre,

const | T Bus::String& data
)

const | T Bus::NanmedAttributes:: StringList& get_nanes();

voi d cl ear _nane_val ues();

198

Transport-Specific API

Transport-Specific API

Overview

Inheritance hierarchy

In addition to the neutral API for setting message attributes (as defined by
| T_Bus: : NanedAt t ri but es), Artix also provides a transport-specific API for
certain transports. This subsection describes the following aspects of
transport-specific APIs:

® |nheritance hierarchy.

Transports with a message attribute API.
Tibco transport example.

WARNING: If you decide to use a transport-specific API, you should note
that your application will be tied to a specific transport; that is, you lose
transport pluggability. You should consider carefully the impact that this

might have on the design of your system before opting to use a
transport-specific API.

Figure 26 shows the inheritance hierarchy for the classes involved in the
transport-specific API for message attributes.

[1T Bus::NamedAttributes |

i

[1T _Bus:: MessageAttributes |

HTTPO i ent Attri but es / \ MAttri butes |

[HTTPSer ver At tri but es | [17_Bus::TibrvMessageAttributes |

Figure 26: Inheritance Hierarchy for the Transport-Specific APl

199

CHAPTER 8 | Message Attributes

Transports with a message The following transports provide a message attributes API:

attribute API ® HTTP—there are two parts to this API, as follows:

+ Client side—defined by the HTTPA i ent At tri but es class in the
<it_bus_config/http_wsdl _client.h>header
+ Server side—defined by the HTTPServer At t ri but es class in the
<it_bus_config/http_wsdl _server. h>header.
® MQ Series—defined by the Mt t ri but es class in the
<it_bus_config/ ng_wsdl _port.h> header.
® Tibco—defined by the | T_Bus: : Ti br vMessageAt tri but es class in the
<it_bus_config/tibrv_message_attributes. h>header.

Tibco transport example Example 75, which is taken from the
<it_bus_config/tibrv_nessage_attributes. h> header file, shows the
transport-specific API for getting and setting message attributes on the Tibco
transport.

Example 75: Getting and Setting Tibco Message Attributes

/Il C++
nanespace | T_Bus

{
class | T_BUS APl Ti brvMessageAttri but es
public virtual MessageAttributes

{
publ i c:

virtual const String& get_send_subject();

virtual void set_send_subject (const String&
send_subj ect) ;

virtual const String& get_reply subject();

virtual void set_reply subject(

const String& reply_subject
JE

virtual const String& get_sender();
virtual void set_sender(const String& sender);

virtual const U.ong& get_sequence();

virtual const Doubl e& get tine limt();

200

Transport-Specific API

Example 75: Getting and Setting Tibco Message Attributes

Vi

vi

vi

Vi

vi

vi

Vi

vi

vi

rtual

rtual

rtual

rtual

rtual

rtual

rtual

rtual

rtual

void set time limt(const Double& time linmt);

const

const

const

const

const

const

const

const

WByt e& get _j ns_del i very_node() ;
WByte& get _jns_priority();

ULong& get _jnms_tinestanp();
ULong& get_j ms_expi ration();
String& get _jns_type();

String& get _jms_nessage i d();
String& get_jns_correl ation_id();

Bool ean& get _j ns_redel i vered();

201

CHAPTER 8 | Message Attributes

Using Message Attributes in a Client

Overview This section describes how to write a client that sends message attributes
across the wire to a server as part of an operation invocation.

How to use message attributes in To use message attributes on the client side, perform the following steps:

a client
Step Action
1 | Obtain an I T _Bus:: Port object by calling get _port () on the
client proxy object.
2 | Call the use_i nput _message_attribut es() and
use_out put _nessage_attri butes() functions on the
I T_Bus: : Port object to initialize the message attribute
functionality.
3 | Pre-invoke step—set the input message attributes on the
| T_Bus: : Port object.
4 | Invoke a WSDL operation on the client proxy.
5 | Post-invoke step—read the output message attributes from the
| T_Bus: : Port object.
C++ example To use message attributes in a sample client, you can modify the

HelloWorld HTTP Soap client as shown in Example 76. Edit the cl i ent . cxx
file, which is located in the

ArtixInstallDirl arti x/ Version/ denos/ basi ¢/ hel | o_wor | d_soap_htt p/ cxx/ ¢
I'i ent directory. In Example 76, the client sets two input message
attributes, User Name and Passwor d, prior to the WSDL operation call and
reads a single output message attribute, Cont ent Type, after the call.

Example 76: Using Message Attributes in a Client

/I Ct+

202

Using Message Attributes in a Client

Example 76: Using Message Attributes in a Client

try

{

}

I T Bus::init(argc, argv);
Hel | oWorl dd i ent hw,

String string_in;
String string_out;

/] Initialize nmessage attri butes.

I T _Bus::Port& hw port = hw get_port();
hw port.use_i nput _nessage attributes();
hw_port . use_out put_message_attributes();

/1 Pre-invoke: Set input message attributes.
| T_Bus:: MessageAttri butes& hw i nput =

hw port. get_i nput _nessage attributes();
hw i nput. set _string("User Name", " nobody") ;
hw_ i nput . set _stri ng("Password", "hushhush");

hw sayH (string_out);
cout << "sayH nethod returned: " << string_out << endl;

/'l Post-invoke: Read output message attributes.
| T_Bus:: MessageAttri but es& hw out put =
hw port. get _out put _nmessage_attributes();

try {
String cont_type = hw out put.get_string("Content Type");
cout << "Message attribute received: Content Type = " <<
cont _type << endl ;
}

catch (1 T_Bus:: NoSuchAttribut eException) { }

catch(l T_Bus: : Excepti on& e)

{

cout << endl << "Caught Unexpected Exception:
<< endl << e. Message()
<< endl ;

return -1;

203

CHAPTER 8 | Message Attributes

The preceding client code example can be explained as follows:

1. The HelloWorld client proxy, hw, defines the get _port () method to
give you access to the | T_Bus: : Port object that controls the
connection on the client side.

You switch on message attributes on the client side by calling

use_i nput _nessage_attributes() and

use_out put _nessage_attri but es() on the port object. By default, the
message attribute feature is not enabled because it adds a certain
performance penalty.

2. Pre-invoke interception point—the input message attribute object,
hw_i nput , enables you to set attributes that are passed over the
connection to the server.

3. The sayH () operation performs the remote procedure call on the
server.

4. Post-invoke interception point—the output message attribute object,
hw_out put , enables you to retrieve the attributes sent by the server.

5. ThelT_Bus:: NoSuchAttri but eExcepti on exception is thrown if you try
to read an output attribute that was not sent by the server.

204

Using Message Attributes in a Server

Using Message Attributes in a Server

Overview On the server side, message attributes can only be accessed within an
execution context. That is, inside the body of a function that implements a
WSDL operation.

This section describes how to write a server that receives input message
attributes from a client and then sends output message attributes back to
the client.

How to use message attributes in To use message attributes on the server side, perform the following steps:

a server 1. In the constructor for the servant that implements your Artix service,
call the port’s use_i nput _nessage_attri butes() and
use_out put _nessage_attributes() to initialize the message attribute
functionality.

2. Within an execution context, obtain an | T_Bus: : Qurrent object by
calling get _bus() - >get _current () on the server stub base object.

3. Using the current object’s get _operati on(). get _port () operation,
obtain an I T_Bus: : Port object.

4. Within the server execution context, you can use the | T_Bus: : Port
object to do either of the following:

. Read input message attributes.
. Set output message attributes.

205

CHAPTER 8 | Message Attributes

C++ example

206

To use message attributes in a server, you can modify the HelloWorld HTTP
SOAP server as shown in Example 77. Edit the Hel | ovér | dI npl . cxx file,
which is located in the

ArtixInstallDirl arti x/ Version/ denos/ basi ¢/ hel | o_wor | d_soap_htt p/ cxx/ s
erver directory. In Example 77, the client sets two input message
attributes, User Narre and Passwor d, prior to the WSDL operation call and
reads a single output message attribute, Cont ent Type, after the call.

Example 77: Using Message Attributes in a Server

Il C++

#i ncl ude "Hel | oWr | dl npl . h"
#include <it_cal/cal.h>

| T_USI NG NAMESPACE_STD

usi ng nanmespace | T_Bus;

Hel | oVor | dl npl : : Hel | oWor | dI npl (
I T_Bus::Bus_ptr bus,
I T_Bus::Port* port

Hel | oWor | dSer ver (bus, port)

port->use i nput_nessage attributes();
port->use_out put _nessage_attributes();

}

voi d Hel |l ovWrldlnpl::sayH (I T _Bus::String & Response)
I T_THROWVDECL((I T_Bus: : Excepti on))
{

I/l CGet a reference to the port.
Qurrent& current = get _bus()->get_current();
Port & port = current.get_operation().get_port();

// Read input nessage attri butes.
| T_Bus:: MessageAttributes& hw i nput =
port().get _input_message_attributes();

Using Message Attributes in a Server

Example 77: Using Message Attributes in a Server

}

try
{

hw i nput . get _string("User Nane");
hw_ i nput . get _string("Password");

I T _Bus::String user_nane
I T _Bus::String password

cout << "Message attributes received:" << endl;
cout << " usernane = " << user_nane
<< ", password = " << password << endl;

}
catch (1T _Bus::NoSuchAttribut eException) { }

cout << "HelloWrldlnpl::sayH called" << endl;

Response = | T_Bus:: String("Qeetings fromthe Artix Hell oWrld

Server");

// Set output nessage attributes.

| T_Bus:: MessageAt tri but es& hw out put =
port.get output_nessage attributes();
hw_out put . set _stri ng(" Cont ent Type", "text/xm");

The server code in Example 77 can be explained as follows:

1.

In the Hel | ovar | dI npl constructor, call

use_i nput _nessage_attribut es() and

use_out put_nessage_attributes() on the port object to initialize the
message attribute functionality.

The servant’'s Qurrent object is obtained through the Bus object
representing the server connection. The get _bus() operation is defined
on the | T_Bus: : Server St ubBase class, which is a base class of

Hel | ovr | di npl . It returns a reference to the Bus object that represents
the server connection.

207

CHAPTER 8 | Message Attributes

3. The get_port () operation is defined on the | T_Bus: : Qper at i on class,
which is accessed through the current object’s get _operati on()
operation.

Note: You cannot call get _port () on the server stub if you are using
the MULTI _THREADED threading model when the servant
implementation is registered against multiple ports. The get _port ()
operation is currently supported for the following scenarios only:

® MULTI _I NSTANCE threading model with multiple ports.

® MALTI_THREADED threading model with only a single port.

4. To read the input message attribute object on the server side, call
get_i nput _nessage_attributes() on the server port object.

5. In this example, the server peeks at the value of the User Nane and
Passwor d attributes. Normally, however, you would not bother to read
the User Name and Passwor d at this point because they would
automatically be processed by the server's transport layer.

6. The I T _Bus:: NoSuchAt tri but eExcepti on exception is thrown here if
you try to read an input attribute that was not sent by the client.

7. You can send output message attributes back to the client by setting
attributes on the output message attributes object, hw out put .

208

In this chapter

CHAPTER 9

Artix Data Types

This chapter presents the XML schema data types supported
by Artix and describes how these data types map to C++.

This chapter discusses the following topics:

Simple Types page 210
Complex Types page 228
anyType Type page 268
Nillable Types page 273
SOAP Arrays page 295
IT_Vector Template Class page 307

209

CHAPTER 9 | Artix Data Types

Simple Types

Overview This section describes the WSDL-to-C+ + mapping for simple types. Simple
types are defined within an XML schema and they are subject to the
restriction that they cannot contain elements and they cannot carry any

attributes.
In this section This section contains the following subsections:
Atomic Types page 211
String Type page 212
QName Type page 217
Date and Time Types page 219
Decimal Type page 220
Binary Types page 222
Deriving Simple Types by Restriction page 224
Unsupported Simple Types page 227

210

Simple Types

Atomic Types

Overview

Table of atomic types

For unambiguous, portable type resolution, a number of data types are
defined in the Artix foundation classes, specified init_bus/types. h. The
Artix data types map closely to WSDL type names, and should be used by
client applications.

The atomic types are:

Table 5: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type
xsd: bool ean | T_Bus: : Bool ean
xsd: byt e I T_Bus::Byte
xsd: unsi gnedByt e I T_Bus:: UByte
xsd: short | T_Bus: : Short
xsd: unsi gnedshor t I T_Bus: : UShor t
xsd: i nt I T _Bus::Int
xsd: unsi gnedl nt I T_Bus::Unt
xsd: | ong I T_Bus: : Long
xsd: unsi gnedLong I T_Bus: : ULong
xsd: f| oat | T_Bus: : Fl oat
xsd: doubl e | T_Bus: : Doubl e
xsd: string I T _Bus::String
xsd: Q\ane | T_Bus: : Q\ane (SOAP only)
xsd: dat eTi me | T_Bus: : DateTi ne
xsd: deci nal | T_Bus: : Deci mal
xsd: base64Bi nary | T_Bus: : Bi naryBuf f er
xsd: hexBi nary | T_Bus: : Bi naryBuf f er

211

CHAPTER 9 | Artix Data Types

String Type

Overview

IT_Bus::String class

String iterator class

C++ example

Internationalization

212

The xsd: string type maps to | T_Bus: : Stri ng, which is typedef'ed in
it _bus/ustring.hto|T Bus::IT UStringclass. For a full definition of
I T_Bus::String, seeit_bus/ustring.h.

The I T_Bus: : String class is modelled on the standard ANSI string class.
Hence, the I T_Bus: : Stri ng class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, ! =, >, <,
>=, <= operators for comparisons.

The corresponding string iterator class is I T_Bus:: String::iterator.

The following C++ example shows how to perform some basic string
manipulation with I T_Bus: : String:

/] C++
IT Bus::String s = "A G+ ANSI string."
s += " And here is sone string concatenation."

/1 Now convert to a C style string.

/1 (Note: s retains ownership of the nenory)
const char *p = s.c_str();

The I T_Bus: : Stri ng class supports the use of international characters.
When using international characters, you should configure your Artix
application to use a particular code set by editing the Artix domain
configuration file, arti x. cf g. The configuration details depend on the type
of Artix binding, as follows:

® SOAP binding—set the pl ugi ns: soap: encodi ng configuration variable.

CORBA binding—set the pl ugi ns: codeset : char : ncs,
pl ugi ns: codeset : char: ccs, pl ugi ns: codeset : wchar : ncs, and
pl ugi ns: codeset : wchar : ccs configuration variables.

For more details about configuring internationalization, see the "Using Artix
with International Codesets" chapter of the Deploying and Managing Artix
Solutions document.

Encoding arguments

Simple Types

Some of the I T_Bus: : String functions take an optional string argument,
encodi ng, that lets you specify a character set encoding for the string.

The encodi ng argument must be a standard IANA character set name. For
example, Table 6 shows some of commonly used IANA character set
names:

Table 6: /ANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

ISO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte
Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

1SO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme.

1SO-2022-CN Chinese adaptation of generic ISO 2022 encoding
scheme.

BIG5S Big Five is a character set developed by a consortium
of five companies in Taiwan in 1984.

Artix supports all of the character sets defined in International Components
for Unicoded (ICU) 2.6. For a full listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source
project http://oss.software.ibm.com).

213

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

CHAPTER 9 | Artix Data Types

Constructors

Narrow character constructors

214

The I T_Bus: : Stri ng class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as
follows:

® Narrow character constructors.
® 16-bit character constructor.
® wechar_t character constructor.

Example 78 shows three different constructors that can be used to initialize
an | T_Ustring with a narrow character string.

Example 78: Narrow Character Constructors

I T_UString(
const char* str,
si ze_t n = npos,
const char* encoding = 0,

| T_ExceptionHandl er & eh = | T_EXCEPTI ON_HANDLER
)

I T_UString(
size t n,
char ch
const char* encoding = 0,

| T_ExceptionHandl er & eh = | T_EXCEPTI ON_HANDLER
)

I T_UString(
const I T_String& S,
si ze_t pos = 0,
si ze_t n = npos,
const char* encoding = 0,
| T_ExceptionHandl er& eh = | T_EXCEPTI ON_HANDLER

)

The constructor signatures are similar to the standard ANSI string
constructors, except for the additional encodi ng argument. A null encodi ng
argument, encodi ng=0, implies the constructor uses the local character set.

16-bit character constructor

wchar_t character constructor

String conversion functions

Simple Types

Example 79 shows the constructor that can be used to initialize an

I T_UString with an array of 16-bit characters (represented by unsi gned
short*).

Example 79: 16-Bit Character Constructor

I T_UString(
const unsi gned short* sb,
const | T_String& encodi ng,
size_t n = npos,

| T_ExceptionHandl er& eh = | T_EXCEPTI ON_ HANDLER

Example 80 shows the constructor that can be used to initialize an
I T_UString with an array of wchar _t characters.

Example 80: wchar_t Character Constructor

I T_UString(
const wchar_t* wb,
size_t n = npos,

| T_ExceptionHandl er& eh = | T_EXCEPTI ON_HANDLER

The member functions shown in Example 81 are used to convert an

I T_Bus:: String to an ordinary C-style string, a UTF-16 format string and a
wchar _t format string:

Example 81: String Conversion Functions
[l Ct+
const char* c_str(
const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utfl16 str() const;

const wchar_t* wchar _t_str() const;

215

CHAPTER 9 | Artix Data Types

String conversion examples

Reference

216

If you want to copy the return value from a string conversion function, you
also need to know the dimension of the relevant array. For this, you can use
the I T Bus::String::length() function:

/] C++
size_t length() const;

The I T_Bus: : String:: I ength() function returns the number of underlying
characters in a string, irrespective of how many bytes it takes to represent
each character. Hence, the size of the array required to hold a copy of a
converted string equals | engt h() +1 (an extra array element is required for
the NUL character).

Example 82 shows you how to convert and copy a string, s, into a C-style
string, a UTF-16 format string and a wchar _t format string.

Example 82: String Conversion Examples

Il C++

// Copy 's' into a plain 'char *' string:
char *s_copy = new char[s. | ength()+1];
strcpy(s_copy, s.c_str());

// Copy 's' into a UTF-16 string:
unsi gned short* utf16_copy = new unsi gned short[s.|ength()+1];
const unsigned short* utfl6 p = s.utf16_str();
for (i=0; i<s.length()+1; i++) {
utf16_copy[i] = utfl16 _p[i];
}

// Copy 's' into a wchar_t string:
wchar _t* wchar _t_copy = new wchar _t[s.length()+1];
const wchar_t* wchar_t p = s.wchar_t_str();
for (i=0; i<s.length()+1; i++) {
wchar _t_copy[i] = wchar_t_p[i];

}

For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the "Using Artix with
International Codesets" chapter of the Deploying and Managing Artix
Solutions document.

Simple Types

QName Type

Overview

QName constructor

QName member functions

xsd: Q\Name maps to | T_Bus: : Q\ane. A qualified name, or QName, is the
unique name of a tag appearing in an XML document, consisting of a
namespace UR/ and a local part.

Note: In Artix 1.2.1, the mapping from xsd: Q\arre to | T_Bus: : Q\Nane is
supported only for the SOAP binding.

The usual way to construct an I T_Bus: : Q\Nane object is by calling the
following constructor:

Il G

\anre: : Q\ang(
const String & nanespace_prefi x,
const String & | ocal _part,

const String & namespace_uri
)
Because the namespace prefix is relatively unimportant, you can leave it
blank. For example, to create a QName for the <soap: addr ess> element:

/] C++
I T_Bus: : Q\Nane soap_address = new | T_Bus: : Q\ane(

"address",
"http://schenmas. xm soap. or g/ wsdl / soap"

)

The |1 T_Bus: : Q\ane class has the following public member functions:

const | T _Bus::String &
get _namespace_prefix() const;

const | T _Bus::String &
get | ocal _part() const;

const | T Bus::String &
get _namespace_uri () const;

const | T_Bus::String get_raw name() const;
const | T Bus::String to_string() const;

217

CHAPTER 9 | Artix Data Types

QName equality

218

bool has_unresol ved_prefix() const;
size_t get_hash_code() const;

The == operator can be used to test for equality of | T_Bus: : Q\ane objects.

QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the
QNames are equal if their namespace URIs match and the local part of
their element names match.

2. If one of the QNames lacks a namespace URI (empty string), the

QNames are equal if their namespace prefixes match and the local part
of their element names match.

Simple Types

Date and Time Types

Overview

xsd: dat eTi me maps to | T_Bus: : Dat eTi ne, which is declared in

<i t _bus/ dat e_time. h>. Dat eTi e has the following fields:

Table 7: Member Fields of IT_Bus::DateTime
Field Datatype Accessor Methods
4 digit year short short get Year ()
voi d set Year (short wyear)
2 digit month short short get Mont h()
voi d set Mont h(short whont h)
2 digit day short short get Day()
voi d set Day(short wDay)
hours in military short short get Hour ()
time voi d set Hour (short wHour)
minutes short short get M nute()
voi d set M nute(short wM nute)
seconds short short get Second()
voi d set Second(short wSecond)
milliseconds short short getMI1iseconds()
voi d setMIliseconds(short wMIIiseconds)
hour offset from short voi d set UTCTi neZoneC f set (
GMT short hour_of f set,
short mnute_offset)
minute offset from short voi d get UTCTi meZoneCf f set (
GMT short & hour_of fset,
short & mnute_offset)

The default constructor takes no parameters and initializes all of the fields to
zero. An alternative constructor is provided, which accepts all of the
individual date/time fields, as follows:

| T_Dat eTi ne(short wyear,

short whbnt h, short wDay,

short wHour = 0, short wMnute = O,
short wSecond = 0, short wMIIiseconds = 0)

219

CHAPTER 9 | Artix Data Types

Decimal Type

Overview

IT_Bus::Decimal operators

IT_Bus::Decimal member
functions

220

xsd: deci mal maps to | T_Bus: : Deci mal , which is implemented by the IONA
foundation class | T_Fi xedPoi nt , defined in <i t _dsa/ fi xed_poi nt . h>.

I T_Fi xedPoi nt provides full fixed point decimal calculation logic using the
standard C++ operators.

Note: Whereas xsd: deci mal has unlimited precision, the | T_Fi xedPoi nt
type can have at most 31 digit precision.

The I T_Bus: : Deci mal type supports a full complement of arithmetical
operators. See Table 8 for a list of supported operators.

Table 8: Operators Supported by IT_Bus::Decimal

Description Operators
Arithmetical operators I B
Assignment operators =, 4=, -3, %=, [=
Comparison operators ==, 1=, >, <, >, <=

The following member functions are supported by | T_Bus: : Deci nal :

Il Ct+
I T_Bus: : Deci mal round(unsi gned short scal e) const;

| T_Bus: : Deci mal truncate(unsi gned short scal e) const;
unsi gned short nunber _of digits() const;

unsi gned short scal e() const;

I T_Bool is_negative() const;

int conpare(const |T_F xedPoint& val) const;

I T Bus::Decimal ::Digitlterator |left_nost_digit() const;
IT Bus::Decimal ::Digitlterator past_right_nost_digit() const;

IT_Bus::Decimal::Digitlterator

C++ example

Simple Types

The I T_Bus::Decimal ::Digitlterator type is an ANSI-style iterator class
that iterates over all the digits in a fixed point decimal instance.

The following C+ + example shows how to perform some elementary
arithmetic using the 1 T_Bus: : Deci mal type.

Il C++
| T_Bus:: Decimal dl = "123.456";
| T_Bus:: Decimal d2 = "87654. 321";
| T_Bus:: Deci mal d3 = d1+d2;
d3 *= di;
if (d3 > 100000) {
cout << "d3 =" << d3;
}

221

CHAPTER 9 | Artix Data Types

Binary Types

Overview

Encoding

IT_Bus::Base64Binary and
IT_Bus::HexBinary classes

222

There are two WSDL binary types, which map to C++ as shown in Table 9:

Table 9: Schema to Bus Mapping for the Binary Types

Schema Type Bus Type
xsd: base64Bi nary | T_Bus: : Base64Bi nary
xsd: hexBi nary | T_Bus: : HexBi nary

The only difference between HexBi nary and Base64Bi nary is the way they

are encoded for transmission. The Base64Bi nary encoding is more compact

because it uses a larger set of symbols in the encoding. The encodings can

be compared as follows:

® HexBi nary—the hex encoding uses a set of 16 symbols [0-9a-f A-F],
ignoring case, and each character can encode 4 bits. Hence, two
characters represent 1 byte (8 bits).

® Base64Bi nar y—the base 64 encoding uses a set of 64 symbols and
each character can encode 6 bits. Hence, four characters represent 3
bytes (24 bits).

Both the I T_Bus: : Base64Bi nary and the | T_Bus: : HexBi nary classes expose
a similar set of member functions, as follows:

[l C++
size_t get_length() const;

const | T Bus::Byte get_data(const size t pos) const;

voi d set_dat a(
I T Bus::Byte data[],
size t data |ength,
bool take_ownership = fal se

);

C++ example

Simple Types

Consider a port type that defines an echoHexBi nary operation. The
echoHexBi nary operation takes an | T_Bus: : HexBi nary type as an in
parameter and then echoes this value in the response. Example 83 shows
how a server might implement the echoHexBi nary operation.

Example 83: C++ Implementation of an echoHexBinary Operation

[l Ct+
usi ng namespace | T_Bus;

voi d Basel npl : : echoHexBi nar y(
const | T_Bus:: HexBi naryl nParam & i nput HexBi nary,
| T_Bus: : HexBi nar yQut Par an& Response

| T_THRONDECL((| T_Bus: : Excepti on))

{
cout << "Basel npl :: echoHexBi nary cal l ed" << endl;
size_t length = input HexBi nary. get _| engt h();
Byte * the data = new Byte[l ength];
for (size_t idx = 0; idx < length; idx++)
{
the _data[i dx] = i nput HexBi nary. get _dat a(i dx);
}
Response. set _data(the_data, |ength, true);
}

223

CHAPTER 9 | Artix Data Types

Deriving Simple Types by Restriction

Overview Artix currently has limited support for the derivation of simple types by
restriction. You can define a restricted simple type using any of the standard
facets, but in most cases the restrictions are not checked at runtime.

Unchecked facets The following facets can be used, but are not checked at runtime:
® length
® ninLength
® maxLength
® pattern
® enuneration
® whiteSpace
® nmaxInclusive
® naxExcl usive
® nininclusive
® ninExclusive
® totalDgits

® fractionDigits

Checked facets The following facets are supported and checked at runtime:

® enuneration

C++ mapping In general, a restricted simple type, RestrictedType, obtained by restriction
from a base type, BaseType, maps to a C++ class, RestrictedType, with
the following public member functions:

Il G
const | T_Bus::Q\ane & get_type() const;

voi d set _val ue(const BaseType & val ue);
BaseType get_val ue() const;

224

Restriction with an enumeration
facet

WSDL example of enumeration
facet

Simple Types

Artix supports the restriction of simple types using the enumeration facet.
The base simple type can be any simple type except xsd: bool ean.

When an enumeration type is mapped to C+ +, the C++ implementation of
the type ensures that instances of this type can only be set to one of the
enumerated values. If set _val ue() is called with an illegal value, it throws
an | T_Bus: : Except i on exception.

Example 84 shows an example of a Col or Enumtype, which is defined by
restriction from the xsd: st ri ng type using the enumeration facet. When
defined in this way, the Col or Enumrestricted type is only allowed to take on
one of the string values RED, GREEN, or BLUE.

Example 84: WSDL Example of Derivation with the Enumeration Facet

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<definitions ... >
<t ypes>
<schema ... >
<si npl eType name=" Col or Enuni >
<restriction base="xsd:string">
<enuner ati on val ue="RED'/ >
<enuner ati on val ue="GREEN'/ >
<enuner ati on val ue="BLUE"/ >
</restriction>
</ si npl eType>

</ defini ti ons>

225

CHAPTER 9 | Artix Data Types

C++ mapping of enumeration

The WSDL-to-C+ + compiler maps the Col or Enumrestricted type to the
facet

Col or EnumC+ + class, as shown in Example 85. The only values that can

legally be set using the set _val ue() member function are the strings RED,
GREEN, or BLUE.

Example 85: C++ Mapping of ColorEnum Restricted Type

Il C++

class Col orEnum : public | T _Bus::AnySi npl eType
{

publ i c:
Col or Enun() ;
Col or Enunm(const | T_Bus::String & val ue);

Col or Enum& oper at or = (const Col or Enun& assi gn);
| T_Bus: : Bool ean operat or== (const Col or Enun& copy) ;

virtual const |IT Bus::Q\ame & get type() const;

voi d set _val ue(const | T Bus::String & val ue);
IT Bus::String get_val ue() const;

226

Simple Types

Unsupported Simple Types

List of unsupported simple types

The following WSDL simple types are currently not supported by the

WSDL-to-C++ compiler:

Atomic Simple Types

xsd: normal i zedStri ng

xsd: t oken

xsd: i nt eger

xsd: posi ti vel nt eger
xsd: negat i vel nt eger

xsd: nonNegat i vel nt eger
xsd: nonPosi ti vel nt eger

xsd: time

xsd: dur ati on
xsd: dat e

xsd: ghont h
xsd: gYear

xsd: gYear Mont h
xsd: gbay

xsd: ghvont hDay
xsd: anyUR
xsd: | anguage
xsd: Nane

xsd: NO\ane

xsd: Q\ane (restricted support)

xsd: ENTI TY
xsd: NOTATI ON
xsd: | DREF

Other Simple Types

xsd: | i st
xsd: uni on

227

CHAPTER 9 | Artix Data Types

Complex Types

Overview

In this section

228

This section describes the WSDL-to-C++ mapping for complex types.
Complex types are defined within an XML schema. In contrast to simple
types, complex types can contain elements and carry attributes.

This section contains the following subsections:

Sequence Complex Types page 229
Choice Complex Types page 232
All Complex Types page 236
Attributes page 239
Nesting Complex Types page 243
Deriving a Complex Type from a Simple Type page 247
Deriving a Complex Type from a Complex Type page 250
Occurrence Constraints page 259
Arrays page 263

Complex Types

Sequence Complex Types

Overview

Occurrence constraints

WSDL example

XML schema sequence complex types are mapped to a generated C++
class, which inherits from | T_Bus: : SequenceConpl exType. The mapped
C++ class is defined in the generated PortTypeNameTypes. h and
PortTypeNameTypes. cxx files.

The WSDL-to-C+ + mapping defines accessor and modifier functions for
each element in the sequence complex type.

Occurrence constraints, which are specified using the m nQccurs and
maxCQceur s attributes, are supported for sequence complex types. See
“Occurrence Constraints” on page 259.

Example 86 shows an example of a sequence, SequenceType, with three
elements.

Example 86: Definition of a Sequence Complex Type in WSDL

<schema t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. wW3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl / " >
<conpl exType nane="SequenceType">
<sequence>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</ sequence>
</ conpl exType>

</ schenma>

229

CHAPTER 9 | Artix Data Types

C++ mapping The WSDL-to-C+ + compiler maps the preceding WSDL (Example 86) to
the SequenceType C++ class. An outline of this class is shown in
Example 87.

Example 87: Mapping of SequenceType to C++

Il C++

class SequenceType : public | T_Bus: : SequenceConpl exType
{
publ i c:
SequenceType() ;
SequenceType(const SequenceType& copy);
virtual ~SequenceType();

virtual const |IT Bus::Q\ame & get type() const;
SequenceType& operat or = (const SequenceType& assi gn);

const | T Bus::Fl oat & getvarFloat() const;

I T Bus::Float & getvarFl oat ();

voi d setvar Fl oat (const | T Bus::Float & val);
const IT Bus::Int & getvarlnt() const;

IT Bus::Int & getvarlnt();

voi d setvarint(const IT Bus::Int & val);

const | T Bus::String & getvarString() const;

IT Bus::String & getvarString();
voi d setvarString(const | T Bus::String &
val);
private:

IE

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, get ElementName() and
set ElementName() .

230

C++ example

Complex Types

Consider a port type that defines an echoSequence operation. The
echoSequence operation takes a SequenceType type as an in parameter and
then echoes this value in the response. Example 88 shows how a client
could use a proxy instance, bc, to invoke the echoSequence operation.

Example 88: Client Invoking an echoSequence Operation

/] C++

SequenceType seqln, segResult;
segl n. set var Fl oat (3. 14159) ;
seqgl n. setvar| nt (54321) ;

segl n.setvarString("You can use a string constant here.");

try {
bc. echoSequence(seql n, seqResult);

if((seqResult.getvarlint() != seqln.getvarint()) ||
(seqgResul t. getvarFloat () != seqgln.getvarFloat()) ||
(segResul t. getvar String().conpare(seqln.getvarString()) !'=

0))
{
cout << endl << "echoSequence FAI LED' << endl;
return;
}
} catch (I T_Bus:: Faul t Exception &ex)
{
cout << "Caught Unexpected Faul t Exception" << endl;
cout << ex.get_description().c_str() << endl;
}

231

CHAPTER 9 | Artix Data Types

Choice Complex Types

Overview XML schema choice complex types are mapped to a generated C++ class,
which inherits from 1 T_Bus: : Choi ceConpl exType. The mapped C++ class
is defined in the generated PortTypeNameTypes. h and
PortTypeNameTypes. cxx files.

The WSDL-to-C+ + mapping defines accessor and modifier functions for
each element in the choice complex type. The choice complex type is
effectively equivalent to a C++ union, so only one of the elements is
accessible at a time. The C++ implementation defines a discriminator,
which tells you which of the elements is currently selected.

Occurrence constraints Occurrence constraints are currently not supported for choice complex
types.
WSDL example Example 89 shows an example of a choice complex type, Choi ceType, with

three elements.
Example 89: Definition of a Choice Complex Type in WSDL

<schena t ar get Namespace="ht t p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw wW3. or g/ 2001/ XM_Schera"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="Choi ceType" >
<choi ce>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent nanme="varlnt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</ choi ce>
</ conpl exType>

</ schena>

232

C++ mapping

Complex Types

The WSDL-to-C++ compiler maps the preceding WSDL (Example 89) to
the SequenceType C++ class. An outline of this class is shown in
Example 90.

Example 90: Mapping of ChoiceType to C++

/] C++

class Choi ceType : public | T_Bus:: Choi ceConpl exType
{
publ i c:
Choi ceType();
Choi ceType(const Choi ceType& copy) ;
virtual ~ChoiceType();

virtual const |T _Bus::Q\ane & get_type() const ;

Choi ceType& operat or= (const Choi ceType& assign);

const | T_Bus::Float getvarFloat() const;
voi d setvarFl oat (const | T _Bus::Fl oat& val);

const | T Bus::Int getvarlnt() const;
void setvarlnt(const |T Bus::Int& val);

const | T _Bus::String& getvarString() const;
voi d setvarString(const |IT Bus::String& val);

Choi ceTypeD scrim nator get_discrimnator() const

{

return mdiscrinmnator;

}
I T Bus::Unt get_discrimnator_as_uint() const
{
return mdiscrimnator;
}

233

CHAPTER 9 | Artix Data Types

Example 90: Mapping of ChoiceType to C++

enum Choi ceTypeD scri m nat or

{

var Fl oat ,

varlnt,

varString,

Choi ceType MAXLONG=- 1L
} mdiscrinnator;

private:
ik

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, get ElementName() and
set ElementName() .

The member functions have the following effects:

® set ElementName()—select the ElementName element, setting the

discriminator to the ElementName label and initializing the value of
ElementName.

get ElementName() —get the value of the ElementName element. You
should always check the discriminator before calling the

get ElementName() accessor. If ElementName is not currently
selected, the value returned by get ElementName() is undefined.

get _di scri m nat or () —returns the value of the discriminator.

C++ example Consider a port type that defines an echoChoi ce operation. The echoChoi ce
operation takes a thoi ceType type as an in parameter and then echoes this
value in the response. Example 91 shows how a client could use a proxy
instance, bc, to invoke the echoChoi ce operation.

Example 91: Client Invoking an echoChoice Operation

/] C++

Choi ceType cln, cResult;

// Initialize and sel ect the Choi ceType::varString | abel.

cln.setvarString("You can use a string constant here.");

try {

234

Complex Types

Example 91: Client Invoking an echoChoice Operation

bc. echoChoi ce(cln, cResult);

bool fail = IT_TRUE
if (cln.get_discrimnator()==cResult.get_discrimnator()) {
switch (cln.get_discrimnator()) {
case Choi ceType: : varFl oat :
fail =(cln.getvarF oat()!=cResult.getvarFl oat());
br eak;
case Choi ceType: :varlnt:
fail =(cln.getvarint()!=cResult.getvarint());

br eak;
case Choi ceType: :var String:
fail =
(cln.getvarString()!=cResult.getvarString());
br eak;
}
}
if (fail) {
cout << endl << "echoChoi ce FA LED' << endl;
return;
}
} catch (I T_Bus:: Faul t Exception &ex)
{
cout << "Caught Unexpected Faul t Exception" << endl;
cout << ex.get_description().c_str() << endl;
}

235

CHAPTER 9 | Artix Data Types

All Complex Types

Overview

Occurrence constraints

WSDL example

236

XML schema all complex types are mapped to a generated C+ + class,
which inherits from 1 T_Bus: : Al | Conpl exType. The mapped C+ + class is
defined in the generated PortTypeNameTypes. h and
PortTypeNameTypes. cxx files.

The WSDL-to-C+ + mapping defines accessor and modifier functions for
each element in the all complex type. With an all complex type, the order in
which the elements are transmitted is immaterial.

Note: An all complex type can only be declared as the outermost group of
a complex type. Hence, you cannot nest an all model group, <al | >,
directly inside other model groups, <al | >, <sequence>, or <choi ce>. You
may, however, define an all complex type and then declare an element of
that type within the scope of another model group.

Occurrence constraints are supported for the elements of XML schema all
complex types.

Example 92 shows an example of an all complex type, Al | Type, with three
elements.

Example 92: Definition of an All Complex Type in WSDL

<schena t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: // schenas. xni soap. or g/ wsdl /">
<conpl exType nane="Al | Type">
<all >
<el ement nane="varFl oat" type="xsd:float"/>
<el enent nanme="varlnt" type="xsd:int"/>
<el enent name="var String" type="xsd:string"/>
</all>
</ conpl exType>

</ schena>

C++ mapping

Complex Types

The WSDL-to-C++ compiler maps the preceding WSDL (Example 92) to
the Al I Type C+ + class. An outline of this class is shown in Example 93.

Example 93: Mapping of AllType to C++

/] C++
class All Type : public | T_Bus:: Al | Conpl exType
{
publ i c:
Al Type() ;
Al | Type(const Al | Type& copy);
virtual ~Al Type();

virtual const | T Bus::Q\ame & get _type() const;

Al | Type& operator= (const Al Type& assign);

const | T _Bus::Float & getvarFloat() const;

| T _Bus::Float & getvarFl oat();

voi d setvarFl oat (const | T Bus::Fl oat & val);

const | T Bus::Int & getvarlnt() const;

IT Bus::Int & getvarlnt();

void setvarlnt(const |T Bus::Int & val);

const | T Bus::String & getvarString() const;

I T Bus::String & getvarString();

voi d setvarString(const I T Bus::String & val);
private:

I

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, get ElementName() and
set ElementName() .

237

CHAPTER 9 | Artix Data Types

C++ example

238

Consider a port type that defines an echoAl | operation. The echoAl |
operation takes an Al | Type type as an in parameter and then echoes this

value in the response. Example 94 shows how a client could use a proxy
instance, bc, to invoke the echoAl | operation.

Example 94: Client Invoking an echoAll Operation

Il C++

Al Type allln, allResult;
al | I n. set var F oat (3. 14159) ;
all I n. setvarl nt (54321);

allln.setvarString("You can use a string constant here.");

try {
bc.echoAl I (allln, allResult);

if((allResult.getvarint() !=allln.getvarlint()) ||
(allResult.getvarFloat() != allln.getvarFloat()) ||
(all Result.getvarString().conpare(allln.getvarString()) !'=

0))

{
cout << endl << "echoAll FAILED' << endl;
return;

}

} catch (I T_Bus:: Faul t Exception &ex)

cout << "Caught Unexpected Faul t Exception" << endl;
cout << ex.get_description().c_str() << endl;

Complex Types

Attributes

Overview

Attribute use

On-the-wire optimization

C++ mapping overview

Artix supports the use of <at t ri but e> declarations within the scope of a
<conpl exType> definition. For example, you can include attributes in the
definitions of an all complex type, sequence complex type, and choice
complex type. The declaration of an attribute in a complex type has the
following syntax:

<attribute name="AttrName" type="AttrType"
use="[opti onal | requi red| prohibited]"/>

When declaring an attribute, the use can have one of the following values:
® optional —(default) the attribute can either be set or unset.

® requi red—the attribute must be set.

® prohi bi t ed—the attribute must be unset (cannot be used).

Artix optimizes the transmission of attributes by distinguishing between set
and unset attributes. Only set attributes are transmitted (on bindings that
support this optimization).

Note: The CORBA binding does not support this optimization.

There are two different styles of C++ mapping for attributes, depending on

the use value in the attribute declaration:

® Optional attributes—if an attribute is declared with use="opt i onal "
(or if the use setting is omitted altogether), the generated
get Attribute() function returns a pointer, instead of a reference, to the
attribute value. This enables you to test whether the the attribute is set
or not by testing the pointer for nilness (whether it equals 0).

® Required attributes—if an attribute is declared with use="requi red",
the generated get Attribute() function returns a reference to the
attribute value.

239

CHAPTER 9 | Artix Data Types

Optional attribute example

C++ mapping for an optional
attribute

240

Example 95 shows how to define a sequence type with a single optional
attribute, prop, of xsd: st ri ng type (attributes are optional by default).

Example 95: Definition of a Sequence Type with an Optional Attribute

<conpl exType nane="SequenceType">
<sequence>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlInt" type="xsd:int"/>
<el enent name="var String" type="xsd:string"/>
</ sequence>
<attribute name="prop" type="xsd:string"/>
</ conpl exType>

Example 96 shows an outline of the C++ SequenceType class generated
from Example 95, which defines accessor and modifier functions for the
optional prop attribute.

Example 96: Mapping an Optional Attribute to C++

/] C++

cl ass SequenceType : public | T _Bus:: SequenceConpl exType
{
publ i c:
SequenceType() ;

const | T _Bus::String * getprop() const;
IT Bus::String * getprop();

voi d setprop(const | T Bus::String * val);
voi d setprop(const | T Bus::String & val);
ik
The preceding C++ mapping can be explained as follows:
1. If the attribute is set, returns a pointer to its value; if not, returns o.
2. Ifval != 0, sets the attribute to *val (makes a copy); if val == 0,
unsets the attribute.
3. Sets the attribute to val (makes a copy). This is a convenience function
that enables you to set the attribute without using a pointer.

Required attribute example

C++ mapping for a required
attribute

Complex Types

Example 97 shows how to define a sequence type with a single required
attribute, prop, of xsd: stri ng type.

Example 97: Definition of a Sequence Type with a Required Attribute

<conpl exType nane="SequenceType" >
<sequence>
<el ement nane="varFl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el ement name="var String" type="xsd:string"/>
</ sequence>

<attribute name="prop" type="xsd:string" use="required"/>
</ conpl exType>

Example 98 shows an outline of the C++ SequenceType class generated

from Example 97 on page 241, which defines accessor and modifier
functions for the required prop attribute.

Example 98: Mapping a Required Attribute to C++

Il C++
cl ass SequenceType :

{
publi c:
SequenceType() ;

public I T _Bus:: SequenceConpl exType

const | T _Bus::String & getprop() const;
I T Bus::String & getprop();

voi d setprop(const I T Bus::String & val);
H

In this case, the get prop() accessor function returns a reference to a string
(that is, I T_Bus: : String&), rather than a pointer to a string.

241

CHAPTER 9 | Artix Data Types

Limitations The following attribute types are not supported:
® xsd: | DREFS
® xsd:ENTITY
b xsd: ENTI Tl ES
® xsd: NOTATI ON
® xsd: NVTOKEN
® xsd: NVTOKENS

242

Complex Types

Nesting Complex Types

Overview

Avoiding anonymous types

WSDL example

It is possible to nest complex types within each other. When mapped to
C++, the nested complex types map to a nested hierarchy of classes,
where each instance of a nested type is stored in a member variable of its
containing class.

In general, it is a good idea to name types that are nested inside other types,
instead of using anonymous types. This results in simpler code when the
types are mapped to C+ +.

For an example of the recommended style of declaration, with a named
nested type, see Example 99.

Example 99 shows an example of a nested complex type, which features a
choice complex type, Nest edChoi ceType, nested inside a sequence complex
type, SeqCr Choi ceType.

Example 99: Definition of Nested Complex Type

<schema t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. wW3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl / " >
<conpl exType nane="Nest edChoi ceType" >
<choi ce>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
</ choi ce>
</ conpl exType>
<conpl exType nane="SeqC Choi ceType" >
<sequence>
<el enent name="var String" type="xsd:string"/>
<el enent nane="var Choi ce" type="xsd1l: Nest edChoi ceType"/>
</ sequence>
</ conpl exType>

</ schema>

243

CHAPTER 9 | Artix Data Types

C++ mapping of
NestedChoiceType

C++ mapping of
SeqOfChoiceType

244

The XML schema choice complex type, Nest edChoi ceType, is a simple
choice complex type, which is mapped to C++ in the standard way.

Example 100 shows an outline of the generated C++ Nest edChoi ceType
class.

Example 100:Mapping of NestedChoiceType to C++

Il C++

class Nest edChoi ceType : public |IT_Bus:: Choi ceConpl exType
{

publ i c:
Nest edChoi ceType() ;
Nest edChoi ceType(const Nest edChoi ceType& copy) ;
virtual ~NestedChoi ceType();
virtual const |T_Bus::Q\ame & get _type() const ;

Nest edChoi ceType& oper at or = (const Nest edChoi ceType& assi gn);

const |T_Bus::Fl oat getvarFl oat() const;
voi d setvarFloat (const |IT Bus::F oat& val);

const |IT_Bus::Int getvarlnt() const;
void setvarlnt(const | T Bus::Int& val);

IT Bus::Unt get_discrimnator() const;
private:

I

The XML schema sequence complex type, SeqCt Choi ceType, has the
Nest edChoi ceType nested inside it. Example 101 shows an outline of the
generated C++ Seqd Choi ceType class, which shows how the nested
complex type is mapped within a sequence complex type.

Example 101:Mapping of SeqOfChoiceType to C++
/Il C++

class SeqCt Choi ceType : public | T_Bus: : SequenceConpl exType
{

C++ example

Complex Types

Example 101:Mapping of SeqOfChoiceType to C+ +

publ i c:
SeqCf Choi ceType() ;
SeqCf Choi ceType(const SeqCt Choi ceType& copy) ;
virtual ~SeqC Choi ceType();

virtual const |T Bus::Q\ame & get_type() const;
SeqCf Choi ceType& oper at or = (const Seqd Choi ceType& assi gn) ;
const | T Bus::String & getvarString() const;
I T Bus::String & getvarString();
voi d setvarString(const | T Bus::String & val);
const Nest edChoi ceType & getvar Choi ce() const;
Nest edChoi ceType & get var Choi ce();
voi d set var Choi ce(const Nest edChoi ceType & val);
private:

Ik

The nested type, Nest edChoi ceType, can be accessed and modified using
the get var Choi ce() and set var Choi ce() functions respectively.

Consider a port type that defines an echoSeqCf Choi ce operation. The
echoSeq Choi ce operation takes a SeqCf Choi ceType type as an in
parameter and then echoes this value in the response. Example 94 shows

how a client could use a proxy instance, bc, to invoke the echoSeqC Choi ce
operation.

Example 102:Client Invoking an echoSeqOfChoice Operation

[l Ct+
Nest edChoi ceType nest ed;
nest ed. set var Fl oat (3. 14159) ;

Seqd Choi ceType seqln, segResul t;
segl n. set var Choi ce(nest ed) ;
segl n.setvarString("You can use a string constant here.");
try {
bc. echoSeqd Choi ce(seql n, segResult);

245

CHAPTER 9 | Artix Data Types

Example 102:Client Invoking an echoSeqOfChoice Operation

i f(
(segResul t. getvar String().conpare(seqgln.getvarString()) != 0)
'l
(seqResul t . get var Choi ce() . get di scri m nator ()
I =seql n. get var Choi ce() . get _di scrimnator()))

{
cout << endl << "echoSeqCr Choi ce FAILED' << endl;
return;
}
} catch (IT_Bus:: Faul t Exception &ex)
{
cout << "Caught Unexpected Faul t Excepti on" << endl;
cout << ex.get_description().c_str() << endl;
}

246

Complex Types

Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type, for which the
following kinds of derivation are supported:

® Derivation by restriction.
® Derivation by extension.
A simple type has, by definition, neither sub-elements nor attributes. Hence,

one of the main reasons for deriving a complex type from a simple type is to
add attributes to the simple type (derivation by extension).

Derivation by restriction Example 103 shows an example of a complex type, or der Nunber , derived
by restriction from the xsd: deci mal simple type. The new type is restricted
to have values less than 1,000,000.

Example 103:Deriving a Complex Type from a Simple Type by Restriction

<xsd: conpl exType name="or der Nunber" >
<xsd: si npl eCont ent >
<xsd: restriction base="xsd: deci nal ">
<xsd: maxExcl usi ve val ue="1000000"/>
</xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

The <si npl eCont ent > tag indicates that the new type does not contain any
sub-elements and the <restri cti on> tag defines the derivation by
restriction from xsd: deci mal .

247

CHAPTER 9 | Artix Data Types

Derivation by extension

C++ mapping

248

Example 104 shows an example of a complex type, i nter nati onal Pri ce,
derived by extension from the xsd: deci mal simple type. The new type is
extended to include a currency attribute.

Example 104:Deriving a Complex Type from a Simple Type by Extension

<xsd: conpl exType name="i nt ernati onal Price">
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: deci nal ">
<xsd: attribute name="currency" type="xsd:string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

The <si npl eCont ent > tag indicates that the new type does not contain any
sub-elements and the <ext ensi on> tag defines the derivation by extension
from xsd: deci nal .

Example 105 shows an outline of the C++ i nt er nati onal Pri ce class
generated from Example 104 on page 248.

Example 105:Mapping the internationalPrice Type to C++

[l C++
class international Price : public
I T_Bus: : Si npl eCont ent Conpl exType

{

publ i c:
international Price();
international Price(const international Price& copy);
virtual ~international Price();

virtual const | T Bus::Q\ame & get type() const;

international Pri ce& operator= (const international Price&
assign);

const | T _Bus::String & getcurrency() const;
IT Bus::String & getcurrency();
voi d setcurrency(const |T Bus::String & val);

Complex Types

Example 105:Mapping the internationalPrice Type to C++

const | T _Bus:: Decinal & get_sinpl eTypeVal ue() const;
| T_Bus: : Deci mal & get _si npl eTypeVal ue();
voi d set_si npl eTypeVal ue(const | T_Bus: :Deci mal & val);

Ik

The value of the currency attribute, which is added by extension, can be
accessed and modified using the get currency() and set currency()
member functions. The simple type value (that is, the value enclosed
between the <i nt ernati onal Pri ce>and </internati onal Pri ce> tags) can
be accessed and modified by the get _si npl eTypeVal ue() and

set _si npl eTypeVal ue() member functions.

249

CHAPTER 9 | Artix Data Types

Deriving a Complex Type from a Complex Type

Overview

Allowed inheritance relationships

250

Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

® Derivation by restriction—currently not supported by Artix.

® Derivation by extension.

This subsection describes the C++ mapping for complex types derived from

complex types and, in particular, describes the coding pattern for calling a
function either with base type arguments or with derived type arguments.

Figure 27 shows the inheritance relationships allowed between complex
types. As well as inheriting between the same kind of complex type
(sequence from sequence, choice from choice, and all from all), it is
possible to cross-inherit. For example, a sequence can derive from a choice,
a choice from an all, an all from a choice, and so on.

Sequence Choice All

Sequence Choice All

Figure 27: Allowed Inheritance Relationships for Complex Types

Derivation by extension

B WN =

Complex Types

Example 106 shows an example of deriving a sequence from a sequence by
extension. In this example, Deri vedSt ruct _BaseSt ruct is derived from

Si npl eSt ruct by extension. The standard tag used to declare inheritance by
extension is <ext ensi on base="BaseComplexType"/ >.

Example 106:Example of Deriving a Sequence by Extension

<conpl exType nane="S npl eStruct ">
<sequence>
<el ement nane="varFl oat" type="float"/>
<el ement name="varlnt" type="int"/>
<el ement name="var String" type="string"/>
</ sequence>
<attribute name="varAttrString" type="string"/>
</ conpl exType>

<conpl exType nane="DerivedStruct_BaseStruct">
<conpl exCont ent m xed="fal se">
<ext ensi on base="tns: S npl eStruct">
<sequence>
<el ement name="var StringExt" type="string"/>
<el ement name="var Fl oat Ext" type="fl oat"/>
</ sequence>
<attribute name="attrStringl" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
<attribute name="attrString2" type="string"/>
</ conpl exType>

The preceding type definition can be explained as follows:

1. This <conpl exType> tag introduces the definition of the derived
sequence type, DerivedStruct _BaseStruct .

2. The <conpl exCont ent > tag indicates that what follows is a declaration
of contained tags. The m xed="f al se" setting indicates that the type
can contain only tags, not text.

3. The <ext ensi on> tag indicates that this type derives by extension from
the Si npl eStruct type.

4. The <sequence> tag defines extra type members that are specific to the
derived type, Deri vedStruct _BaseStruct.

5. You can also declare attributes specific to the derived type.

251

CHAPTER 9 | Artix Data Types

6. Attributes can also be declared directly within the scope of
<conpl exType>.

C++ mapping The sequence types defined in Example 106 on page 251, S npl eSt r uct
and Deri vedStruct _BaseStruct, map to C++ as shown in Example 107.

Example 107:C++ Mapping of a Derived Sequence Type

/] C++
class SinpleStruct : public |T_Bus::SequenceConpl exType

{
publ i c:
static const | T _Bus::Q\ame type_nane;

Sinpl eStruct();

| T_Bus:: AnyType &
operator=(const |T_Bus::AnyType & rhs);

Sinpl eStruct &
operator=(const SinpleStruct & rhs);

const SinpleStruct * get_derived() const;
virtual 1T Bus::AnyType:: Kind get_kind() const;
virtual const |T Bus::Q\ame & get _type() const;

I T_Bus: : Fl oat get var Fl oat () ;
const | T Bus::Float getvarFl oat() const;
voi d setvarFloat (const |T_Bus::Fl oat val);

I T Bus::Int getvarlnt();

const |IT_Bus::Int getvarlnt() const;

void setvarlnt(const | T Bus::Int val);

IT Bus::String & getvarString();

const | T Bus::String & getvarString() const;

voi d setvarString(const | T Bus::String & val);

IT Bus::String & getvarAttrString();

const | T Bus::String & getvarAttrString() const;
voi d setvarAttrString(const | T Bus::String & val);

private:

I

252

Complex Types

Example 107:C++ Mapping of a Derived Sequence Type
typedef | T _AutoPtr<S npleStruct> S npleStructPtr;

class | T_TEST WsDL_API DerivedStruct_BaseStruct : public
Sinpl eStruct , public virtual
| T_Bus: : Conpl exCont ent Conpl exType

{
publ i c:

static const | T _Bus:: Q\ame type_nane;

Deri vedStruct _BaseStruct () ;

DerivedStruct _BaseStruct (const DerivedStruct BaseStruct &
copy) ;

virtual ~DerivedStruct_BaseStruct();

I T Bus::String & getvar StringExt();

const | T Bus::String & getvarStringExt() const;
voi d setvarStringExt (const | T Bus::String & val);
| T_Bus: : Fl oat get var F oat Ext () ;

const | T_Bus:: Fl oat get var Fl oat Ext () const;
voi d setvarFl oat Ext (const | T_Bus::Float val);

I T Bus::String & getattrStringl();

const | T Bus::String & getattrStringl() const;
void setattrStringl(const | T Bus::String & val);
I T Bus::String & getattrString2();

const | T Bus::String & getattrString2() const;
void setattrString2(const | T Bus::String & val);

private:
ik

The C++ DerivedStruct_BaseStruct class derives directly from the C++
Si npl eSt ruct class. Hence, all of the accessors and modifiers declared in
the base class, Si npl eStruct, are also available to the derived class,

Deri vedStruct _BaseStruct.

253

CHAPTER 9 | Artix Data Types

Using a base type as a holder

Holder type functions

Polymorphism

254

The Si npl eStruct type declared in Example 107 on page 252 is really a

dual-purpose type. That is, a Si npl eStruct instance can be used in one of

the following different ways:

® Asa SinpleStruct data type (base type)—member data is accessed
by invoking get ElementName() and set ElementName() functions
directly on the Si npl eStruct instance.

® As a holder type (derived type holder)—in this usage pattern, the
S npl eStruct instance is used to hold a reference to a more derived
type (for example, Deri vedStruct _BaseStruct).

If you are using Si npl eStruct as a holder type, the following member

functions are relevant:

d S npl eStruct (const Sinpl eStruct & copy) —the Si npl eStruct copy
constructor is used to initialize the reference held by the Si npl eSt r uct
holder object. The type passed to the copy constructor can be any type
derived from Si npl eStruct .

® SinpleStruct & operator=(const SinpleStruct & rhs)—
alternatively, if you already have a Si npl eStruct object, you can
change the reference held by making an assignment to the
S npl eSt ruct holder.

® const SinpleStruct * get_derived() const—if you want to access
the derived type held by a Si npl eSt ruct holder object, call the
get _derived() member function and then dynamically cast the return
value to the appropriate type.

® const |IT Bus::Q\ane & get_type() const—call get _type() to get
the QName of the derived type held by a Si npl eStruct holder object.

When a WSDL operation is defined to take arguments of a base class type
(for example, Si npl eStruct), it is also possible to send and receive
arguments of a type derived from that base class (for example,

Deri vedSt ruct _BaseStruct).

For reasons of backward compatibility, however, the C+ + code required for
calling an operation with derived type arguments is different from the C++
code required for calling an operation with base type arguments.

Sample WSDL operation

Complex Types

For example, consider the definition of the following WSDL operation,
test _Sinpl eStruct, that takes an in argument of Si npl eStruct type and
returns an out argument of Si npl eSt ruct type.

Example 108:The test_SimpleStruct Operation with Base Type Arguments

<nessage name="t est _Si npl eStruct">

<part nane="x" el enent="tns: S npleStruct_x"/>
</ message>

<nessage name="t est _Si npl eStruct _response" >

<part nane="return" elenment="tns:SinpleStruct_return"/>
</ message>

<operation name="test S npl eStruct">
<i nput nane="test_Si npl eStruct"
message="tns:test_SinpleStruct"/>
<out put name="test_Si npl eStruct _response"

message="tns:test_Si npl eStruct _response"/ >
</ oper at i on>

The preceding t est _Si npl eSt ruct WSDL operation maps to the following
C++ function (in the TypeTest Qi ent client proxy class).

[l Ct+
virtual void
test _Sinpl eStruct (
const SinpleStruct &x,
Sinpl eStruct & return,
) | T_THRONDECL((I T_Bus:: Exception));

To call the preceding t est _Si npl eStruct () function in C++, use one of the

following programming patterns, depending on the type of arguments
passed:

® Base or derived type arguments.

® Base type arguments only (for legacy code).

255

CHAPTER 9 | Artix Data Types

Base or derived type arguments

256

Example 109 shows you how to call the t est _Si npl eStruct () function
with derived type arguments (of Deri vedSt ruct _BaseStruct type).
Generally, this coding pattern can be used to pass either base type or
derived type arguments.

Example 109:Calling test_SimpleStruct() with Derived Type Arguments

Il C++
DerivedStruct _BaseStruct X;

/| Base nenbers

x.setvarFloat ((1 T_Bus::Float) 3.14);
x.setvarlnt((IT_Bus::Int) 42);

x.setvarString((1T Bus::String) "BaseStruct-x");

x.setvarAttrString((lT_Bus::String) "BaseStructAttr-x");
/1 Derived nenbers

X. setvarFl oat Ext ((1 T_Bus:: Fl oat) -3.14f);
x.setvarStringExt ((I T_Bus::String) "DerivedStruct-x");
x.setattrStringl((I T Bus::String) "DerivedAttr-x");

Si npl eStruct x_hol der (x) ;
Sinpl eStruct ret_hol der;

proxy->test _Sinpl eStruct (x_hol der, ret_hol der);

const DerivedStruct_BaseStruct* ret _derived
= dynam c_cast <const Deri vedStruct BaseStruct *>(
ret _hol der. get _deri ved()
)i

/1 Use ret_derived type val ue. ..

The preceding C+ + code can be explained as follows:

1. Thein parameter, x, of the t est _Si npl eStruct () function is declared
to be of derived type, DerivedSt ruct _BaseStruct .

2. Both the base members and the derived members of the in parameter,
x, are initialized here.

3. The derived type, x, is wrapped by a base type instance, x_hol der. In

this case, the Si npl eStruct object, x_hol der, is used purely as a

holder type; x_hol der does not directly represent a Si npl eStruct type
argument.

Base type arguments only (for
legacy code)

Complex Types

4. The return type, ret _hol der, is declared to be of Si npl eStruct type.
Here also, ret _hol der is treated as a holder type.

5. Call the remote test _Si npl eStruct () function, passing in the two
holder instances, x_hol der and ret _hol der .

6. To obtain a pointer to the derived type return value, call
S npl eStruct : : get _derived(). This function returns a pointer to the
derived type contained in the ret _hol der object. You can then cast the
returned pointer to the appropriate type using the dynami c_cast <>
operator.
If necessary, you can call the Si npl eStruct : : get _type() function to

discover the QName of the returned type before attempting to cast the
return value.

Example 110 shows you how to call the test _Si npl eStruct () function
with base type arguments (of Si npl eStruct type). This coding pattern is
supported for reasons of backward compatibility.

Example 110:Calling test_SimpleStruct() with Base Type Arguments

/] C++
Si npl eStruct x;

// Base nenbers

x. setvarFl oat ((1 T_Bus::Float) 3.14);
x.setvarlnt((IT_Bus::Int) 42);
x.setvarString((lT_Bus::String) "BaseStruct-x");
x.setvarAttrString((lT_Bus::String) "BaseStructAttr-x");

Sinpl eStruct ret;
proxy->test SinpleStruct(x, ret);

I/ Use ret value...
cout << ret.getvarFloat();

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the t est _Si npl eStruct () function is declared
to be of base type, Si npl eStruct.

2. The members of the Si npl eStruct in parameter, x, are initialized.

257

CHAPTER 9 | Artix Data Types

3. Thereturnvalue, ret, of thetest _Sinpl eStruct () function is declared
to be of base type, Si npl eStruct.

Note: The return value must be allocated before calling the
test _Sinpl eStruct () function.

4. This line calls the remote test _Si npl eStruct () function with in
parameter, x, and return parameter, ret .

Note: In this example, it is assumed that the return value is of base
type, Si npl eStruct . In general, however, the return type might be of
derived type (see “Base or derived type arguments” on page 256).

258

Complex Types

Occurrence Constraints

Overview You define occurrence constraints on a schema element by setting the
m nCccur s and maxCeceur s attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema has the
following form:

<el enent name="E eniNane" type="H eniType" m nCccur s="Lower Bound"
maxCccur s=" Upper Bound" / >

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“Arrays” on page 263.

Limitations In the current version of Artix, occurrence constraints can be used only
within the following complex types:
® all complex types,

® sequence complex types.

Occurrence constraints are not supported within the scope of the following:
® choi ce complex types.

Element lists Lists of elements appearing within a sequence complex type are represented
in C++ by the I T_Bus: : EH erent Li st T template. You should not use this
type directly in your code. Use the | T_Vector (see “IT_Vector Template
Class” on page 307) in place of | T_Bus: : Bl enent Li st T. The

| T_Bus: : H enent Li st T types automatically convert to and from | T_Vect or
types.

In addition to the standard member functions and operators defined by
I T_Vect or, the element list types support the following member functions:

/] C++
size_t get_mn_occurs() const;

size_t get_max_occurs() const;

void set_size(size t new size);

259

CHAPTER 9 | Artix Data Types

size_t get_size() const;

const Q\ane & get _itemname() const;

WSDL example Example 111 shows the definition of a sequence type, SequenceType, which

contains a list of integer elements followed by a list of string elements.
Example 111:Sequence Type with Occurrence Constraints

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >
<t ypes>
<schema ... >
<conpl exType nane="SequenceType" >
<sequence>
<el enent name="varlInt" type="xsd:int"
m nCccur s="1" naxCccur s="100"/ >
<el enent name="var String" type="xsd:string"

m nQccur s="0" maxQccur s="unbounded"/ >
</ sequence>

</ conpl exType>

</ definitions>

C++ mapping Example 112 shows an outline of the C++ SequenceType class generated

from Example 111 on page 260, which defines accessor and modifier
functions for the var I nt and var Stri ng elements.

Example 112:Mapping of SequenceType to C++

[l C++

class SequenceType : public | T_Bus: : SequenceConpl exType
{

publ i c:

virtual const |T Bus::Q\ane &
get _type() const;

SequenceType& operator= (const SequenceType& assi gn);

const | T_Bus::HenentListT<IT Bus::Int> & getvarlnt() const;

260

C++ example

Complex Types

Example 112:Mapping of SequenceType to C++
I T Bus::EenmentListT<IT Bus::Int> & getvarint();
voi d setvarlnt(const | T Bus::HenentListT<IT Bus::Int> & val);

const |T_Bus:: H enentListT<IT Bus::String> & getvarString()
const ;

I T Bus::HenentListT<IT_Bus::String> & getvarString();

voi d setvarString(const | T Bus::H ementListT<IT Bus::String> &
val);

private:
ik

| T_El enent Li st T is for internal use by the Artix generated code and should
not be used directly in user developed code. Because the

| T_Bus: : H enent Li st T template supports automatic conversion to

I T_Vect or, you should treat the return values and arguments of the
preceding integer and string accessor functions as if they were

IT Vector<I T Bus::Int>and | T Vector<|T_Bus:: String> respectively.

The following code fragment shows how to allocate and initialize an
instance of SequenceType type containing two var I nt elements and two
var Stri ng elements:

[l C++
SequenceType seq;

seq. getvarlnt().set_size(2);
seqg.getvarlnt()[0] = 10;
seqg.getvarint()[1] = 20;

seq. getvar String().set_size(2);
seq. getvar String()[0] "Zero";
seq. getvar String()[1] "ne";

261

CHAPTER 9 | Artix Data Types

References

262

Note how the set _si ze() function and [] operator are invoked directly on
the member vectors, which are accessed by get varlnt () and

getvar String() respectively. This is more efficient than creating a vector
and passing it to setvarInt () or setvarString(), because it avoids
creating unnecessary temporary vectors.

Alternatively, you could assign the member vectors, seq. getvarint () and
seq. get var String(), to references of | T_Vect or type and manipulate the
references, v1 and v2, instead. This is shown in the following code example:

/] C++
SequenceType seq;

/1 Make a shal |l ow copy of the vectors
I T Vector<IT Bus::Int>& vl = seq.getvarint();
IT Vector<IT Bus::String>& v2 = seq.getvarString();

v1. push_back(10);

v1. push_back(20);

v2. push_back(" Zero");
v2. push_back("One");

In this example, the vectors are initialized using the push_back() stack
operation (adds an element to the end of the vector).

Note: The I T Vect or class template does not provide the set _si ze()
function. Hence, you cannot invoke set _si ze() on vi1 or v2.

For more details about vector types see:
® The “IT_Vector Template Class” on page 307.

® The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

Complex Types

Arrays

Overview

Array definition syntax

Mapping to IT_Bus::ArrayT

This subsection describes how to define and use basic Artix array types. In
addition to these basic array types, Artix also supports SOAP arrays, which
are discussed in “SOAP Arrays” on page 295.

An array is a sequence complex type that satisfies the following special
conditions:

® The sequence complex type schema defines a single element only.

® The element definition has a maxQccur s attribute with a value greater
than 1.

Note: All elements implicitly have m nQccur s=1 and maxQccur s=1, unless
specified otherwise.

Hence, an Artix array definition has the following general syntax:

<conpl exType name="ArrayName" >
<sequence>
<el enent nane="ElemName" type="ElemType"
m nQccur s=" LowerBound" maxCQccur s=" UpperBound" | >
</ sequence>
</ conpl exType>

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

When a sequence complex type declaration satisfies the special conditions
to be an array, it is mapped to C++ differently from a regular sequence
complex type. Instead of mapping to I T_Bus: : SequenceConpl exType, the
array maps to the | T_Bus: : ArrayT<ElementType> template type.
Effectively, the C++ array template class can be treated like a vector.

For example, the mapped C++ array class supports the si ze() member
function and individual elements can be accessed using the [] operator.

263

CHAPTER 9 | Artix Data Types

WSDL array example Example 113 shows how to define a one-dimensional string array,
ArrayCf String, whose size can lie anywhere in the range 0 to unbounded.

Example 113:Definition of an Array of Strings

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions ... >
<t ypes>
<schema ... >
<conpl exType nane="Array™t String">
<sequence>
<el enent name="var String" type="xsd:string"
m nCccur s="0" maxQccur s="unbounded" />
</ sequence>
</ conpl exType>

</ definitions>

C++ mapping Example 114 shows how the ArrayCr Stri ng string array (from
Example 113 on page 264) maps to C++.

Example 114:Mapping of ArrayOfString to C++

[l C++
class Arrayd String : public I T Bus::ArrayT<IT Bus:: String>
{
publ i c:

Arrayd String();

Arrayd String(size_t di nension0);

Arrayd String(const Arrayd String& copy);

virtual ~Arrayd String();

virtual const |T _Bus::Q\ame & get_type() const;

Arrayd String& operator= (const | T Vector<|IT Bus::String>&
assign) ;

const | T Bus::HenentListT<IT Bus::String> & getvarString()
const;

I T Bus:: HenmentListT<IT Bus::String> & getvarString();

264

C++ example

Multi-dimensional arrays

Complex Types

Example 114:Mapping of ArrayOfString to C++

voi d setvarString(const | T _Bus::H enentLi st T<I T_Bus:: Stri ng>
& val);

H
typedef |IT _AutoPtr<ArrayCdf String> ArrayCt StringPtr;

Notice that the C++ array class provides accessor functions,

getvar String() and setvar String(), just like any other sequence complex
type with occurrence constraints (see “Occurrence Constraints” on

page 259). The accessor functions are superfluous, however, because the
array’s elements are more easily accessed by invoking vector operations
directly on the ArrayCf Stri ng class.

Example 115 shows an example of how to allocate and initialize an
ArrayC String instance, by treating it like a vector (for a complete list of
vector operations, see “Summary of IT_Vector Operations” on page 311).

Example 115:C++ Example for a One-Dimensional Array
Il C++

/1 Array of String
Arrayd String a(4);

a[0] = "ne";
a[1] = "Two";
a[2] = "Three";
a[3] = "Four";

You can define multi-dimensional arrays by nesting array definitions (see
“Nesting Complex Types” on page 243 for a discussion of nested types).
Example 116 shows an example of how to define a two-dimensional string
array, Arrayf Array Stri ng.

Example 116:Definition of a Multi-Dimensional String Array
<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >

<t ypes>
<schema ... >

265

CHAPTER 9 | Artix Data Types

C++ example for
multidimensional array

266

Example 116:Definition of a Multi-Dimensional String Array

<conpl exType nanme="ArrayCf String">
<sequence>
<el enent name="var String" type="xsd:string"

m nCccur s=" 0" naxCccur s="unbounded" />
</ sequence>

</ conpl exType>

<conpl exType nanme="ArrayCf ArrayCf Stri ng" >
<sequence>

<el enent name="nest Array"
type="xsdl: ArrayCcr Stri ng"
m nCccur s="0" maxQccur s="unbounded" />
</ sequence>

</ conpl exType>
</ definitions>

Both the nested array type, ArrayQ ArrayCt Stri ng, and the sub-array type,
ArrayCr String, must conform to the standard array definition syntax.
Multi-dimensional arrays can be nested to an arbitrary degree, but each

sub-array must be a named type (that is, anonymous nested array types are
not supported).

Example 117 shows an example of how to allocate and initialize a
multi-dimensional array, of ArrayCf ArrayC String type.

Example 117:C++ Example for a Multi-Dimensional Array

/] C++
// Array of array of String
Arraydf Arrayad String a2(2);

for (int i =0; i <a2size(); i+t {
a2[i].set_size(2);

}

a2[0][0] = "ZeroZero";

a2[0][1] = "Zeroe";

a2[1][0] = "OneZero";

a2[1][1] = "Cnetne";

Complex Types

The set _si ze() function enables you to set the dimension of each sub-array
individually. If you choose different sizes for the sub-arrays, you can create
a2 as a ragged two-dimensional array.

Automatic conversion to In general, a multi-dimensional array can automatically convert to a vector
IT_Vector of I T_Vect or <SubArray> type, where SubArray is the array element type.

Example 118 shows how an instance, a2, of ArrayQf Arrayd Stri ng type
converts to an instance of I T_Vect or <ArrayCk St ri ng> type by assignment.

Example 118:Converting a Multi-Dimensional Array to IT_Vector Type

/1 Array of array of String
ArrayC Arraycr String a2(2);

for (int i =0; i <a2size(); i+t {

az[i].set_size(2);
}

// otain reference to the underlying I T Vector type
I T Vector<ArrayO String>& v_a2 = a2;

cout << v_a2[0][0] << " " << v_a2[0][1] << " "
<< v_a2[1][0] << " " << v_a[1][1] << endl;
cout << "v_a2.size() =" << v_a2.size() << endl;
References For more details about vector types see:

® The “IT_Vector Template Class” on page 307.
® The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

267

CHAPTER 9 | Artix Data Types

anyType Type

Overview

Prerequisite for using anyType

anyType syntax

C++ mapping

268

In an XML schema, the xsd: anyType is the base type from which other
simple and complex types are derived. Hence, an element declared to be of
xsd: anyType type can contain any XML type.

Note: The xsd: anyType is currently supported only by the CORBA, SOAP
and XML bindings. Certain bindings—for example, Fixed, Tagged, TibMsg,
and FML—do not support the use of xsd: anyType because they lack a
corresponding construct.

A prerequisite for using the xsd: anyType is that your application must be
built with the WSDLFileName_wsdl TypesFact ory. cxx source file. This file
is generated automatically by the WSDL-to-C++ compiler utility.

To declare an xsd: anyType element, use the following syntax:
<el enent name="ElementName" [t ype="xsd: anyType"]>

The attribute setting, t ype="xsd: anyType", is optional. If the type attribute
is missing, the XML schema assumes that the element is of xsd: anyType by
default.

The WSDL-to-C+ + compiler maps the xsd: anyType type to the
I T_Bus: : AnyHol der class in C++.

The I T_Bus: : AnyHol der class provides member functions to insert and
extract data values, as follows:

® Inserting and extracting atomic types.
® Inserting and extracting user-defined types.

Note: It is currently not possible to nest an | T_Bus: : AnyHol der instance
directly inside another | T_Bus: : AnyHol der instance.

Inserting and extracting atomic
types

Inserting and extracting
user-defined types

anyType Type

To insert and extract atomic types to and from an | T_Bus: : AnyHol der, use
the member functions of the following form:

voi d set _AtomicTypeFunc(const AtomicTypeName§) ;
AtomicTypeName& get _AtomicTypeFunc();
const AtomicTypeName& get AtomicTypeFunc();

For a complete list of the functions for the basic atomic types, see
“AnyHolder API” on page 271.

For example, you can insert and extract an xsd: short integer to and from an
| T_Bus: : AnyHol der as follows:

[l C++

/1 Insert an xsd:short value into an xsd: anyType.
| T_Bus: : AnyHol der aH
aH set _short (1234);

// Extract an xsd:short val ue froman xsd: anyType.
I T _Bus:: Short sh = aH get_short();

To insert and extract user-defined types from an | T_Bus: : AnyHol der, use
the following functions:

voi d set _any_type(const | T Bus::AnyType &);
| T_Bus: : AnyType& get _any_type();
const | T Bus::AnyType& get_any type();

Note that all user-defined types inherit from | T_Bus: : AnyType. There are no

type-specific insertion or extraction functions generated for user-defined
types.

Memory management for these functions is handled as follows:

® The set_any type() function copies the inserted data.

The get _any_type() functions do not copy the return value, rather

they return either a writable (non-const) or read-only (const) reference
to the data inside the | T_Bus: : AnyHol der.

269

CHAPTER 9 | Artix Data Types

Accessing the type information

270

For example, given a user-defined sequence type, SequenceType (see the

declaration in Example 86 on page 229), you can insert a SequenceType
instance into an | T_Bus: : AnyHol der as follows:

[l C++

// Create an instance of SequenceType type.
SequenceType seq;

seq. set var Fl oat (3. 14) ;

seq. setvar | nt (1234) ;

seq.setvarString("This is a sanpl e SequenceType.");

I/ Insert the SequenceType val ue into an xsd: anyType.
I T_Bus: : AnyHol der aH
aH set _any type(seq);

To extract the SequenceType instance from the | T_Bus: : AnyHol der, you
need to perform a C++ dynamic cast:

[l C++

// Extract the SequenceType val ue fromthe | T_Bus:: AnyHol der.
I T_Bus: : AnyType& base_extract = aH get _any_type();

// Cast the extracted value to the appropriate type:
SequenceType& seq_extract

= dynanm c_cast <SequenceType&>(base_extract);

You can find out what type of data is contained in an | T_Bus: : AnyHol der
instance by calling the following member function:

const | T_Bus:: Q\ame & get_type() const;

Type information is set whenever an | T_Bus: : AnyHol der instance is
initialized. For example, if you initialize an | T_Bus: : AnyHol der by calling
set _bool ean(), the type is set to be xsd: bool ean. If you call

set _any_type() with an argument of SequenceType, the type would be set
to xsd1: SequenceType.

Note: Because the XML representation of xsd: anyType is not
self-describing, some type information could be lost when an anyType is
sent across the wire. In the case of a CORBA binding, however, there is no
loss of type information, because CORBA anys are fully self-describing.

anyType Type

AnyHolder API Example 119 shows the public API from the | T_Bus: : AnyHol der class,
including all of the function for inserting and extracting data values.

Example 119:The IT_Bus::AnyHolder Class

/] C++
nanespace | T_Bus
{
class | T_BUS APl AnyHol der : public AnyType
{
publ i c:
AnyHol der () ;
virtual ~AnyHolder() ;

virtual const (Name & get_type() const

[/ Set Met hods

voi d set _bool ean(const | T_Bus:: Bool ean &);
voi d set_byte(const |T_Bus::Byte &);

voi d set_short(const | T Bus::Short &);
void set_int(const IT Bus::Int &;

voi d set | ong(const |T_Bus::Long &);

voi d set_string(const | T Bus::String & ;
voi d set_float(const | T Bus::Float &);

voi d set _doubl e(const | T_Bus:: Double &);
voi d set_ubyte(const | T Bus::UByte &);

voi d set_ushort(const | T Bus::UShort &);
void set_uint(const IT Bus::Unt &;

voi d set_ul ong(const | T Bus::U.ong &);

voi d set_deci mal (const |T_Bus:: Decimal &);

voi d set_any_type(const AnyType&);

/| GET METHCDS

| T_Bus: : Bool ean & get_bool ean() ;
I T Bus::Byte & get_byte();

I T _Bus:: Short & get_short();
IT Bus::Int & get_int();

I T Bus::Long & get _|ong();

IT Bus::String & get_string();
IT Bus::Hoat & get _float();

| T_Bus:: Doubl e & get _doubl e();
I T Bus::UByte & get_ubyte() ;
I T_Bus::UShort & set_ushort();
IT Bus::Unt & get_uint();

I T _Bus::Uong & set_ul ong();

271

CHAPTER 9 | Artix Data Types

272

Example 119:The IT_Bus::AnyHolder Class

| T_Bus:: Decimal & get_decinmal ();

AnyType& get _any_type();

/] GONST CET METHCDS

const
const
const
const
const
const
const
const
const
const
const
const
const

const

| T_Bus: :
I T_Bus::
| T_Bus: :
| T_Bus: :
I T_Bus::
| T_Bus: :
| T_Bus: :
I T_Bus::
| T_Bus:
| T_Bus: :
I T_Bus::
| T_Bus: :
| T_Bus: :

Bool ean & get _bool ean() const;
Byte & get _byte() const;

Short & get_short() const;

Int & get_int() const;

Long & get | ong() const;
String & get_string() const;
Fl oat & get_float() const;
Doubl e & get _doubl e() const;

:UByte & get_ubyte() const;

Ushort & get_ushort () const;
Unt & get_uint() const;

ULong & get _ul ong() const;
Deci mal & get_deci mal () const;

AnyType& get _any_type() const;

Nillable Types

Nillable Types

Overview This section describes how to define and use nillable types; that is, XML
elements defined with xsd: ni | | abl e="true".

In this section This section contains the following subsections:
Introduction to Nillable Types page 274
Nillable Atomic Types page 276
Nillable User-Defined Types page 280
Nested Atomic Type Nillable Elements page 283
Nested User-Defined Nillable Elements page 287
Nillable Elements of an Array page 292

273

CHAPTER 9 | Artix Data Types

Introduction to Nillable Types

Overview

Nillable syntax

On-the-wire format

C++ API for nillable types

274

An element in an XML schema may be declared as nillable by setting the
ni | 1 abl e attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

To declare an element as nillable, use the following syntax:
<el enent nane="ElementName" type="ElementType" nill abl e="true"/>

The ni | 1 abl e="t rue" setting indicates that this as a nillable element. If the
ni | 1 abl e attribute is missing, the default is value is f al se.

On the wire, a nil value for an <ElementName> element is represented by
the following XML fragment:

<ElementName xsi :nil ="true"></ ElementName>

Where the xsi : prefix represents the XML schema instance namespace,
htt p: // waw w3. or g/ 2001/ XM_Schena- i nst ance.

Example 120 shows the public member functions of the
I T_Bus: : N | | abl eVal ueBase class, which provides the C++ API for nillable
types.

Example 120:C++ API for Nillable Types

/] C++
nanmespace | T_Bus
{
tenpl ate <cl ass T>
class N || abl eVal ueBase : public NIl able

{
publ i c:
virtual ~N || abl eVal ueBase();
virtual AnyType& operator=(const AnyType& ot her);

virtual Boolean is nil() const;
virtual void set_nil();

virtual const T&

Nillable Types

Example 120:C++ AP/ for Nillable Types

get () const | T_THRONDEQ ((NoDat aException));

virtual T&
get () | T_THROWDEC((NoDat aException));

I/l Set the data value, make is_nil() false.
virtual void set(const T& data);

// data != 0 ==> set the data value, nake is_nil () false.
// data == 0 ==> make is_nil () true.
virtual void set(const T *data);

I/l Reset to nil, makes is_nil() true.
virtual void reset();

pr ot ect ed:

275

CHAPTER 9 | Artix Data Types

Nillable Atomic Types

Overview

Table of nillable atomic types

276

This subsection describes how to define and use XML schema nillable
atomic types. In C++, every atomic type, AtomicTypeName, has a nillable
counterpart, AtomicTypeNameN | | abl e. For example, | T_Bus: : Short has
I T_Bus::ShortN Il abl e as its nillable counterpart.

You can modify or access the value of an atomic nillable type, T, using the
T.set () and T. get () member functions, respectively. For full details of the
API for nillable types see “C++ API for nillable types” on page 274.

Table 10 shows how the XML schema atomic types map to C++ when the
xsd: ni | 1 abl e flag is set to true.

Table 10: Nillable Atomic Types

Schema Type Nillable C+ + Type
xsd: any Type Not supported as nillable
xsd: bool ean | T_Bus:: Bool eanN | | abl e
xsd: byt e I T _Bus::ByteN I lable
xsd: unsi gnedByt e I T_Bus::UByteN || abl e
xsd: short I T_Bus::ShortN Il abl e
xsd: unsi gnedShort I T_Bus::UshortN || abl e
xsd:int IT Bus::IntN Il able
xsd: unsi gnedl nt IT Bus::UntN Ilable
xsd: | ong I T_Bus::LongN Il able
xsd: unsi gnedLong I T_Bus::ULongN | | abl e
xsd: f1 oat I T Bus::FHoatN Il able
xsd: doubl e | T_Bus:: Doubl eNi | | abl e
xsd: string I T Bus::StringN |l able
xsd: Q\ane | T_Bus:: Q\areN | | abl e

WSDL example

Nillable Types

Table 10: Nillable Atomic Types

Schema Type Nillable C+ + Type
xsd: dat eTi me I T_Bus::DateTinmeN | | abl e
xsd: deci nal | T_Bus::Decimal N I1able
xsd: base64Bi nary I T_Bus::BinaryBufferN || abl e
xsd: hexBi nary I T_Bus::BinaryBufferN || abl e

Example 121 defines four elements, test _string_x, test_short _y,
test_int_return, and test_float_z, of nillable atomic type. This example
shows how to use the nillable atomic types as the parameters of an
operation, send_recei ve_ni | _part.

Example 121:WSDL Example Showing Some Nillable Atomic Types

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="BaseServi ce"
t ar get Nanespace="ht t p: / / soapi nt er op. org/ "

xm ns: tns="htt p://soapi nt erop. org/"
xm ns: xsd="htt p: // ww. W3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: / / soapi nt er op. or g/ xsd" >
<t ypes>
<schema t ar get Nanespace="htt p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /">

<el enent name="test_string_x" nillable="true"
type="xsd: string"/>

<el ement nane="test_short_y" nill abl e="true"
t ype="xsd: short"/>

<el ement nane="test_int_return" nillable="true"
type="xsd:int"/>

<el ement nanme="test_float_z" nill abl e="true"
type="xsd: fl oat"/>

</ schena>
</types>

<message nanme="N | Part Request ">

<part name="x" el ement ="xsdl:test_string_x"/>
<part name="y" el ement="xsdl:test_short_y"/>

277

CHAPTER 9 | Artix Data Types

C++ example

278

Example 121:WSDL Example Showing Some Nillable Atomic Types

</ message>
<nessage nanme="N | Part Response" >
<part name="return" el enent="xsdl:test_int_return"/>

o

<part name="z" el enent ="xsdl:test float_z"/>
</ message>

<port Type nane="BasePort Type" >
<oper ati on nane="send_recei ve_nil_part">
<i nput name="doclit _nil_part_request"
nmessage="t ns: N | Part Request "/ >
<out put name="doclit_nil_part_response"

message="t ns: N | Part Response"/ >
</ oper at i on>

</ por t Type>

Exam

ple 122 shows how to use nillable atomic types,

I T Bus::StringNillable, IT Bus::ShortNllable, IT Bus::IntNIlable,

and |

T Bus::FloatN Il abl e, in a simple C++ example.

Example 122:Using Nillable Atomic Types as Operation Parameters

/] C++

IT Bus::StringN Ilable x("String for sending");
I T Bus::ShortNllable y(321);

IT Bus::IntN |lable var_return;

IT Bus::FloatN | | abl e z;

try {
I/l bc is aclient proxy for the BasePort Type port type.
bc. send_receive_nil _part(x, y, var_return, z);

}
catch (1T _Bus:: Faul t Exception &x) {

[l ... deal with the exception (not shown)
}
if (! y.is_nil()) { cout << "y =" << y.get() << endl; }
if (! z.is_nil()) { cout << "z =" << z.get() << endl; }
if (! var_return.is_nil()) {

cout << "var _return =" << var_return.get() << endl;
}

Nillable Types

The value of a nillable atomic type, T, can be initialized using either a
constructor, T(), or the T. set () member function.

Before attempting to read the value of a nillable atomic type using T. get (),
you should check that the value is non-nil using the T.is_nil () member
function.

279

CHAPTER 9 | Artix Data Types

Nillable User-Defined Types

Overview

WSDL example

280

This subsection describes how to define and use nillable user-defined types.
In C+ +, every user-defined type, UserTypeName, has a nillable
counterpart, UserTypeNameN 11 abl e.

You can modify or access the value of a user-defined nillable type, T, using
the T.set () and T. get () member functions, respectively. For full details of
the API for nillable types see “C++ API for nillable types” on page 274.

Example 123 shows the definition of an XML schema al | complex type,
named SOAPStruct . This is a complex type with ordinary (that is,
non-nillable) member elements.

Example 123:WSDL Example of an All Complex Type

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons name="BaseSer vi ce"

t ar get Narespace="ht t p: / / soapi nter op. org/ "

xm ns: tns="htt p: // soapi nt erop. org/ "
xm ns: xsd="htt p: / / www. wW3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: // soapi nt er op. or g/ xsd" >
<t ypes>
<schena t ar get Nanmespace="ht t p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: // waww. w3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="SQOAPStruct ">
<al | >
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlInt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</all>
</ conpl exType>
</ schema>
</ types>

C++ mapping

C++ example

Nillable Types

Example 124 shows how the SOAPSt ruct type maps to C++. In addition to
the regular mapping, which produces the C++ SOAPSt ruct and
SOAPSt ruct Ptr classes, the WSDL-to-C++ compiler also generates a

nillable type, SOAPStruct Ni I | abl e, and an associated smart pointer type,
SOAPStruct N | | abl ePtr.

Example 124:C++ Mapping of the SOAPStruct All Complex Type

/] C++
nanespace | NTERCP
{
class SOAPStruct : public I T Bus:: Al Conpl exType { ... }

typedef | T_Aut oPtr<SOAPStruct > SOAPStruct Ptr;

typedef | T _Bus::N Il abl eVal ue<SQAPSt r uct >
SOAPStruct N I | abl e;

typedef 1T Bus::N Il ablePtr<SQAPSt ruct >
SOAPStruct N | | abl ePtr;

The API for the SOAPStruct Ni I | abl e type is defined in “C++ API for
nillable types” on page 274.

The following C+ + example shows how to initialize an instance of
SQOAPStruct NI 1 abl e type, s_ni | | abl e. The nillable type is created in two
steps: first of all, a SOAPSt ruct instance, s, is initialized; then the

SQOAPSt ruct instance is used to initialize a SOAPSt ruct N | | abl e instance.

Il C++

/1 Initialize a SOAPStruct i nstance.
| NTERCP: : SOAPStruct s;

s. setvar Fl oat (3. 14) ;

s. setvarlnt(1234);
s.setvarString("Hello world'");

/1 Initialize a SOAPStructN I | abl e i nst ance.

I NTERCP: : SOAPStruct N | 1 abl e s_ni |l abl e;
s_nillable.set(s);

281

CHAPTER 9 | Artix Data Types

282

The next C++ example shows how to access the contents of the

SOAPSt ruct N | | abl e type. Note that before attempting to access the value
of the SOAPStruct Ni I | abl e using get (), you should check that the value is
not nil usingis_nil ().

/] Ct+

if (! s_nillable.is_nil()) {

cout <<
<<
cout <<
<<
cout <<
<<

"varFloat = " << s_nillable.get().getvarFl oat ()
endl ;

"varlnt = " << s nillable.get().getvarlnt()
endl ;

"varString = " << s_nillable.get().getvarString()
endl ;

Nillable Types

Nested Atomic Type Nillable Elements

Overview

WSDL example

This subsection describes how to define and use complex types (except
arrays) that have some nillable member elements. That is, the type as a
whole is not nillable, although some of its elements are.

The WSDL-to-C++ compiler treats a type with nillable elements as a
special case. If a member element, ElementName, is defined with

xsd: ni | 1 abl e equal to true, the element’'s C++ modifiers and accessors
are then primarily pointer based.

For example, given that a member element ElementName is of AtomicType
type, the accessors and modifier would have the following signatures:

const AtomicType * get ElementName() const;
AtomicType * get ElementName();
voi d set ElementName(const AtomicType * val);

And an additional convenience function that allows you to set an element
value using pass-by-reference:

void set ElementName(const AtomicType & val);

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 292.

Example 125 defines a sequence complex type, N I _SOAPSt r uct , which has
some nillable elements, var i nt, var Fl oat , and var Stri ng.

Example 125:WSDL Example of a Sequence Type with Nillable Elements

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<defi ni tions nane="BaseServi ce"
t ar get Nanespace="htt p: // soapi nt er op. org/ "

xm ns: tns="htt p: // soapi nt erop. org/ "
xm ns: xsd="htt p: // ww. W3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: / / soapi nt er op. or g/ xsd" >
<types>
<schema t ar get Nanespace="htt p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw W3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >

283

CHAPTER 9 | Artix Data Types

Example 125:WSDL Example of a Sequence Type with Nillable Elements

<conpl exType nane="N | _SOAPStruct">
<sequence>
<el enent name="varInt" nill abl e="true"
type="xsd:int"/>
<el enent name="var Fl oat" nillabl e="true"
type="xsd: fl oat"/>
<el enent name="var String" nillable="true"
type="xsd: string"/>
</ sequence>
</ conpl exType>
</ schema>
</ types>

C++ mapping Example 126 shows how the Ni | _SQAPSt ruct sequence complex type is
mapped to C++. Note how the accessors for the nillable member elements,
get ElementName(), return a pointer instead of a value; and how the
modifiers for the nillable member elements, set ElementName() , take either
a pointer argument or a reference argument. For example, the get var I nt ()
function returns a pointer to an I T_Bus: : I nt rather an I T_Bus: : I nt value.

Example 126:C++ Mapping of the Nil_SOAPStruct Sequence Type

/] C++
namespace | NTERCP {
class NI _SOAPStruct : public |T_Bus:: SequenceConpl exType
{
publ i c:
N | _SOAPStruct () ;
N | _SOAPStruct (const N | _SQAPSt r uct & copy) ;
virtual ~N|_SQAPStruct();

const | T Bus::Int * getvarlnt() const;
IT Bus::Int * getvarlnt();

void setvarlnt(const | T Bus::Int * val);
void setvarlnt(const | T Bus::Int & val);

const | T_Bus::Float * getvarFl oat() const;

I T Bus::F oat * get var Fl oat () ;

voi d setvarFl oat (const | T _Bus::Float * val);
voi d setvarFl oat (const | T _Bus::Float & val);

284

C++ example

Nillable Types

Example 126:C++ Mapping of the Nil_SOAPStruct Sequence Type

const | T Bus::String * getvarString() const;
IT Bus::String * getvarString();

voi d setvarString(const I T Bus::String * val);
voi d setvarString(const | T Bus::String & val);

virtual const |T_Bus::Q\ame & get_type() const;
IE
typedef I T AutoPtr<N | _SOAPStruct> NI _SOAPStructPtr;

typedef | T Bus::N |l abl eVal ue<N | _SOAPSt r uct ,
&N | _SOAPSt ruct QNane> NI _SQAPStruct N | | abl e;

typedef | T Bus::N|lablePtr<N|_SQAPStruct,
&N | _SOAPSt ruct QNane> NI _SOAPStruct N | | abl ePtr;

The following C++ example shows how to create and initialize a

N | _SoaPst ruct instance. Notice, for example, how the set var I nt (const
I T_Bus: : Int& convenience function allows you to pass the integer
argument as a reference, i, instead of a pointer.

/] C++
N | _SOAPStruct nil _s;

I T Bus::Foat f = 3.14;
I T Bus::Int i = 1234,
IT Bus::String s = "Anon-nil string.";

nil_s.setvarlnt(i);

nil_s.setvarFl oat (f);
nil_s.setvarString(s);

285

CHAPTER 9 | Artix Data Types

The next C++ example shows how to read the nillable elements of the
N | _SOaPSt ruct instance. Note how the elements are checked for nilness by
comparing the result of calling get E/lementName() with 0.

/] C++
if (nil_s.getvarint() !'=0) {

cout << "varlnt =" << *nil_s.getvarlnt() << endl;
}

if (nil_s.getvarFloat() !'=0) {
cout << "varFl oat =" << *nil_s.getvarF oat() << endl;

}

if (nil_s.getvarString() !'=0) {
cout << "varString =" << *nil_s.getvarString() << endl;

}

286

Nillable Types

Nested User-Defined Nillable Elements

Overview

WSDL example

This subsection describes how to define and use complex types that have
nillable member elements of user-defined type.

The WSDL-to-C++ compiler treats user-defined nillable elements as a
special case. As with nillable elements of atomic type, if a member element
of user-defined type, ElementName, is defined with xsd: ni | | abl e equal to
true, the element’s C+ + modifiers and accessors are then primarily pointer
based.

For example, given that a member element ElementName is of UserType
type, the accessors and modifier would have the following signatures:

const UserType * get ElementName() const;

UserType * get ElementName() ;
voi d set ElementName(const UserType * val);
void set ElementName(const UserType & val);

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 292.

Example 127 defines a sequence complex type, N | _Nest edSOAPSt r uct
which includes a nillable element of SOAPSt ruct type, var SQAP.

Example 127:WSDL Example of a Nillable All Type inside a Sequence
Type

<?xm versi on="1.0" encodi ng="UTF- 8" 2>

<defi ni ti ons nane="BaseServi ce"
t ar get Nanespace="ht t p: / / soapi nt er op. org/ "
xm ns="ht t p: // schemas. xm soap. or g/ wsdl /"

xm ns: tns="htt p://soapi nt erop. org/"
xm ns: xsd="htt p: / / www. w3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: // soapi nt er op. or g/ xsd" >
<t ypes>
<schena t ar get Namespace="htt p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: / / www, W3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /">
<conpl exType nane="SOAPStruct ">
<al | >

287

CHAPTER 9 | Artix Data Types

Example 127:WSDL Example of a Nillable All Type inside a Sequence

Type
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlInt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</all>
</ conpl exType>
<conpl exType nane="N | _Nest edSOAPSt ruct " >
<sequence>
<el enent name="varInt" nill abl e="true"
type="xsd:int"/>
<el enent name="var SOAP' nil | abl e="true"
type="xsdl: SOAPStruct "/ >
</ sequence>
</ conpl exType>
</ schema>
</ types>
C++ mapping Example 128 shows how the Ni | _Nest edSQAPSt r uct sequence complex

type is mapped to C++. Note how the get var SOAP() functions return a
pointer to a SOAPSt ruct rather a SOAPSt ruct value.

Example 128:C++ Mapping of the Nil_NestedSOAPStruct Type

[l C++
class N | _NestedSOAPStruct : public | T_Bus:: SequenceConpl exType
{
publ i c:
N | _Nest edSQAPSt ruct () ;
N | _Nest edSOAPSt ruct (const N | _Nest edSOAPSt ruct & copy) ;
virtual ~N | _NestedSOAPSt ruct ();

const I T Bus::Int * getvarlnt() const;
IT Bus::Int * getvarlnt();

void setvarlnt(const I T Bus::Int * val);
voi d setvarint(const I T Bus::Int & val);

const SOAPStruct * getvar SQAP() const;
SOAPSt ruct * get var SQAP() ;

voi d setvar SQAP(const SQAPStruct * val);
voi d setvar SOAP(const SQAPStruct & val);

288

NillablePtr types

Nillable Types

Example 128:C++ Mapping of the Nil_NestedSOAPStruct Type

virtual const |T Bus::Q\ame & get_type() const;

To help you manage the memory associated with nillable elements of
user-defined type, UserType, the WSDL-to-C+ + utility generates a nillable
smart pointer type, UserTypeN | | abl ePtr. The Ni I | abl ePt r template types
are similar to the st d: : aut o_pt r <> template types from the Standard
Template Library—see “Smart Pointers” on page 46.

For example, the following extract from the generated
WSDLFileName wsdl Types. h header file defines a SOAPSt ruct Ni | | abl ePtr
type, which is used to represent SQAPSt ruct nillable pointers:

/] C++
typedef |T Bus::N|IablePtr<SOAPStruct, &SOAPStruct Q\Nane>
SOAPStruct N I | abl ePtr;

Example 129 shows the API for the Ni I 1 abl ePt r template class. A

N | | abl ePt r instance can be initialized using either a N I I abl ePtr ()
constructor, a set () member function, or an oper at or =() assignment
operator. The i s_ni | () member function tests the pointer for nilness.

Example 129:The NillablePtr Template Class

[l C++
namespace | T_Bus
{
/**
* Tenplate inplenentation of Nillable as an auto_ptr.
* Tis the G+ type of data, TYPE is the data type gnane.
*/
tenplate <class T, const Q\ame* TYPE>
class NllablePtr : public NIlable, public | T_AutoPtr<T>
{
publ i c:
N I'lablePtr();
N | I abl ePtr(const NIl ablePtré& other);
N || abl ePtr (T* data);
virtual ~NllablePtr();

289

CHAPTER 9 | Artix Data Types

Example 129:The NillablePtr Template Class
voi d set(const T* data);
virtual Bool ean is_nil() const;

virtual const Q\ame& get_type() const;

C++ example The following C++ example shows how to create and initialize a

N | _Nest edSOAPSt ruct instance. Notice how the argument to set var SOAP()
is passed as a pointer, &ni |l abl e_struct .

Il C++
// Construct a smart nillable pointer.

/1 The SOAPStruct nenory is owned by the snart nillable pointer.
SOAPStruct nillabl e _struct;

nillabl e struct.setvarFl oat (3. 14);
nillable struct.setvarlnt(4321);
nillable struct.setvarString("N|lable struct elenent.");

// Construct a nested struct.

N | _Nest edSOAPSt ruct outer_struct;
IT Bus::Int k = 4321

outer_struct. setvarlnt (&k);

// MEMORY MANAGEMENT: The argunent to setvar SOAP i s deep copi ed.
out er_struct. set var SOAP(&ni | | abl e_struct);

290

Nillable Types

The next C++ example shows how to read the nillable elements of the
N | _Nest edSQAPSt ruct instance. Note how the var SOAP element is checked
for nilness by callingis_nil ().

/] C++
IT Bus::Int * int_p = outer_struct.getvarlnt();

/1 MEMORY MANAGEMENT: outer_struct owns the return val ue.
SOAPStruct * nillable struct_p = outer_struct. getvar SOAP();

if (int_p!=0) {
cout << "varlnt =" << *int_p << endl;

}

if (!nillable_struct_p.is_nil()) {
cout << "varSQAP = " << *nillable_struct_p << endl;

}

291

CHAPTER 9 | Artix Data Types

Nillable Elements of an Array

Overview This subsection describes how to define and use array complex types with
nillable array elements. To define an array with nillable elements, add a
ni | labl e="true" setting to the array element declaration.
An array with nillable elements has the following general syntax:
<conpl exType name="ArrayName" >
<seqguence>
<el ement name="ElemName" type="ElemType" nill abl e="true"
m nQccur s="LowerBound" maxCccur s=" UpperBound" />
</ sequence>
</ conpl exType>
The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

WSDL example Example 130 shows defines an array complex type, N | _SQAPArray (the
name indicates that the type is used in a SOAP example, not that it is
defined using SOAP array syntax) which has nillable array elements, i t em

Example 130:WSDL Example of an Array with Nillable Elements

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defini ti ons nane="BaseSer vi ce"
t ar get Narespace="ht t p: / / soapi nt er op. org/ "
xm ns="htt p: // schenas. xni soap. or g/ wsdl / "
xm ns: SOAP- ENC="ht t p: / / schenas. xni soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="htt p: //soapi nt erop. org/"
xm ns: xsd="ht t p: / / wan. W3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: // soapi nt er op. or g/ xsd" >
<t ypes>
<schena t ar get Nanespace="ht t p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. wW3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /">

292

C++ mapping

Nillable Types

Example 130:WSDL Example of an Array with Nillable Elements

<conpl exType name="N | _SQAPArray" >
<sequence>
<el enent name="item' nill abl e="true"
type="xsd: short" m nQccurs="10"
maxCccur s="10"/ >
</ sequence>
</ conpl exType>
</ schena>
</types>

Example 131 shows how the N | _SOAPAr ray array complex type is mapped
to C++. Note that the array elements are of | T_Bus: : Short N | | abl e type.

Example 131:C++ Mapping of the Nil_SOAPArray Array Type

/] C++
namespace | NTERCP {
class N |_SOAPArray
public I T Bus::ArrayT<I T _Bus:: ShortN || abl e,
&N | _SOAPArray_i tem gnane, 10, 10>
{
publ i c:
N | _SOAPArray();
N | _SQAPArray(const N | _SQAPArray& copy);
N | _SOAPArray(size_t dimensions[]);
N | _SOAPArray(si ze_t di mensi on0);
virtual ~N|_SQAPArray();

const | T Bus::H enentListT<IT Bus::ShortN |Iable> &
getiten() const;

I T Bus::HenentListT<I T Bus::ShortN |lable> &
getiten();

voi d
setiten{const |T_Vector<IT Bus::ShortN|lable> & val);

virtual const |IT Bus::Q\anme &
get _type() const;

293

CHAPTER 9 | Artix Data Types

Example 131:C++ Mapping of the Nil_SOAPArray Array Type

typedef | T _AutoPtr<N | _SOAPArray> N | _SOAPArrayPtr;

typedef I T Bus::NIIableVal ue<N | _SOAPArray,
&N | _SOAPArrayQ\ame> N | _SQAPArrayN | | abl e;

typedef 1T Bus::NIlablePtr<N | _SQAPArray,
&N | _SOAPArrayQ\arme> N | _SOQAPArrayN | | abl ePtr;

C++ example The following C++ example shows how to create and initialize a
N | _SQAPAr ray instance. Because each array element is of
I T_Bus:: Short N | | abl e type, the array elements must be initialized using
the set () member function. Any elements not explicitly initialized are nil by
default.

/] C++

N | _SOAPArray nil_s(10);

nil_s[0].set(10);

nil_s[1].set(20);

nil_s[2].set(30);

nil_s[3].set(40);

nil_s[4].set(50);

// The remaining five el enent values are left as nil.

The next C++ example shows how to access the nillable array elements.
You should check each of the array elements for nilness using the i s_ni I ()
member function before attempting to read an array element value.

Il C++
for (size_t i=0; i<10; i++) {
if (! nil_s[i].is_nil()) {
cout << "N | _SOAPArray[" << i << "] ="
<< nil_s[i].get() << endl;

294

SOAP Arrays

SOAP Arrays

Overview In addition to the basic array types described in “Arrays” on page 263, Artix
also provides support for SOAP arrays. SOAP arrays have a relatively rich
feature set, including support for sparse arrays and partially transmitted
arrays. Consequently, Artix implements a distinct C++ mapping specifically
for SOAP arrays, which is different from the C++ mapping described in the
“Arrays” section.

In this section This section contains the following subsections:
Introduction to SOAP Arrays page 296
Multi-Dimensional Arrays page 300
Sparse Arrays page 303
Partially Transmitted Arrays page 306

295

CHAPTER 9 | Artix Data Types

Introduction to SOAP Arrays

Overview This section describes the syntax for defining SOAP arrays in WSDL and
discusses how to program a simple one-dimensional array of strings. The
following topics are discussed:

® Syntax.

® C++ mapping.

® Definition of a one-dimensional SOAP array.
® Sample encoding.

® C++ example.

Syntax In general, SOAP array types are defined by deriving from the
SOAP- ENC: Ar r ay base type (deriving by restriction). The type definition must
conform to the following syntax:

<conpl exType name="<SOAPArrayType>">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP-ENC arrayType"
wsdl : arr ayType=" <ElementType > <ArrayBounds>"/ >
</restriction>
</ conpl exCont ent >
</ conpl exType>

Where <SOAPArrayType> is the name of the newly-defined array type,
<ElementType> specifies the type of the array elements (for example,
xsd: i nt, xsd: string, or a user type), and <ArrayBounds> specifies the
dimensions of the array (for example, [1,[.1,[..1,[.1[1,[..1[1],
[,1[1[1, and so on). The SOAP- ENC namespace prefix maps to the

htt p: // schemas. xm soap. or g/ soap/ encodi ng/ namespace URI and the
wsdl namespace prefix maps to the htt p: // schenas. xm soap. or g/ wsdl /
namespace URI.

Note: In the current version of Artix, the preceding syntax is the only case
where derivation from a complex type is supported. Definition of a SOAP
array is treated as a special case.

296

C++ mapping

Definition of a one-dimensional
SOAP array

SOAP Arrays

A given SOAPArrayType array maps to a C++ class of the same name,
which inherits from the | T_Bus: : SoapEncAr r ayT<> template class. The
SOAPArrayType C++ class overloads the [] operator to provide access to
the array elements. The size of the array is returned by the get _extents()
member function.

Example 132 shows how to define a one-dimensional array of strings,
ArrayCr SOAPStri ng, as @ SOAP array. The wsdl : arrayType attribute
specifies the type of the array elements, xsd: stri ng, and the number of
dimensions, [] implying one dimension.

Example 132:Definition of the ArrayOfSOAPString SOAP Array

<defi ni ti ons nane="BaseServi ce"
t ar get Namespace="ht t p: / / soapi nt er op. org/ "
xm ns="ht t p: // schemas. xm soap. or g/ wsdl /"
xm ns: SOAP- ENC="ht t p: / / schenmas. xm soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: / / schermas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="htt p: // soapi nt erop. org/ "
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: / / soapi nt er op. or g/ xsd" >
<types>
<schema t ar get Nanespace="htt p: // soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType name="ArrayCf SOAPSt ri ng" >
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd: string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

</ definitions>

297

CHAPTER 9 | Artix Data Types

Sample encoding

C++ example

298

[

Example 133 shows the encoding of a sample ArrayCf SOAPSt ri ng instance,
which is how the array instance might look when transmitted as part of a
WSDL operation.

Example 133:Sample Encoding of ArrayOfSOAPString

<ArrayCf SOAPStri ng SQOAP- ENC: arrayType="xsd: string[2] ">
<itempHel | o</iteny
<itempworld! </iten»

</ ArrayCr SOAPSt ri ng>

The preceding WSDL fragment can be explained as follows:

1. The element type and the array size are specified by the
SQAP- ENC: ar ray Type attribute. Because ArrayCf SOAPSt ri ng has been
derived by restriction, SOAP- ENC: ar r ay Type can only have values of the
form xsd: stri ng[ArraySize] .

2. The XML elements that delimit the individual array values, for example
<i tenp, can have an arbitrary name. These element names are not
significant.

Example 134 shows a C++ example of how to allocate and initialize an
ArrayCr SOAPSE ri ng instance with four elements.

Example 134:C++ Example of Initializing an ArrayOfSOAPString Instance

[l C++

// Alocate SOAP array of String
const size t extents[] = {4};
ArrayCf SOAPString a_str(extents);

a str[0] = "Hello";
astr[1] ="to";
a str[2] = "the";
astr[3] ="world";

SOAP Arrays

The preceding C++ example can be explained as follows:

1. To specify the array’s size, you pass a list of extents (of si ze_t[] type)
to the Array SOAPSt ri ng constructor. This style of constructor has the
advantage that it is easily extended to the case of multi-dimensional
arrays—see “Multi-Dimensional Arrays” on page 300.

2. The overloaded [] operator provides read/write access to individual
array elements.

Note: Be sure to initialize every element in the array, unless you want to
create a sparse array (see “Sparse Arrays” on page 303). There are no
default element values. Uninitialized elements are flagged as empty.

299

CHAPTER 9 | Artix Data Types

Multi-Dimensional Arrays

Overview

Definition of multi-dimensional
SOAP array

300

The syntax for SOAP arrays allows you to define the dimensions of a

multi-dimensional array using two slightly different syntaxes:

® Acomma-separated list between square brackets, for example [,] and
[..1.

® Multiple square brackets, for example [1[] and [1[1[].

Artix makes no distinction between the two styles of array definition. In both

cases, the array is flattened for transmission and the C++ mapping is the
same.

Example 135 shows how to define a two-dimensional array of integers,
Array2C I nt, as a SOAP array. The wsdl : arr ayType attribute specifies the
type of the array elements, xsd: i nt, and the number of dimensions, [,]
implying an array of two dimensions.

Example 135:Definition of the Array20fint SOAP Array

<definitions ... >
<t ypes>
<schema ... >
<conpl exType nanme="Array2Cf | nt">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd:int[,]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

</ definitions>

Sample encoding of
multi-dimensional SOAP array

C++ example of a
multi-dimensional SOAP array

SOAP Arrays

Example 136 shows the encoding of a sample Array2C I nt instance, which

is how the array instance might look when transmitted as part of a WSDL
operation.

Example 136:Sample Encoding of an Array20fint SOAP Array

<Array2C I nt SQAP- ENC: arrayType="xsd:int[2, 3] ">
<i>1</i>
<i>2</i>
<i>3</i>
<i>4</i>
<j >b</i >
<i >6</i >
</ Array2Ct | nt >

The dimensions of this array instance are specified as [2, 3], giving a total
of six elements. Notice that the encoded array is effectively flat, because no
distinction is made between rows and columns of the two-dimensional
array.

Given an array instance with dimensions, [1 _MAX, J_MAX] , a particular
position in the array, [i,]j], corresponds with the i *J_MAX+j element of the
flattened array. In other words, the right most index of [i,j,...,k] is the
fastest changing as you iterate over the elements of a flattened array.

Example 137 shows a C++ example of how to allocate and initialize an
Array2C I nt instance with dimensions, [2, 3] .

Example 137:Initializing an Array20fInt SOAP Array

[l C++
const size t extents2[] = {2, 3};
Array2CfInt a2_soap(extents2);

size_t position[2];
size t i_max = a2 _soap.get_extents()[0];
size t j_max = a2 _soap.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
position[0] =i;
for (size_t j=0; j< _max; j++) {
position[1] = j;
a2_soap[position] = (I T_Bus::Int) (i+1)*(j+1);

301

CHAPTER 9 | Artix Data Types

Example 137:/nitializing an Array20fint SOAP Array

}

The preceding C++ example can be explained as follows:

1. The dimensions of this array instance are specified to be [2, 3] by
initializing an array of extents, of si ze_t[] type, and passing this array
to the Array2 I nt constructor.

2. The dimensions of the a2_soap array can be retrieved by calling the
get _extents() function, which returns an extents array that converts
to size t[] type.

3. The operator [] is overloaded on Array2Cf I nt to accept an argument
of size t[] type, which contains a list of indices specifying a
particular array element.

302

SOAP Arrays

Sparse Arrays

Overview

Sample encoding

Sparse arrays are fully supported in Artix. Every SOAP array instance stores
an array of status flags, one flag for each array element. The status of each
array element is initially empty, flipping to non-empty the first time an array
element is accessed or initialized.

Note: Sparse arrays are not optimized for minimization of storage space.
Hence, a sparse array with dimensions [1000, 1000] would always allocate
storage for one million elements, irrespective of how many elements in the
array are actually non-empty.

WARNING: Sparse arrays have been deprecated in the SOAP 1.2
specification. Hence, it is better to avoid using sparse arrays if possible.

Example 138 shows the encoding of a sparse Array2d I nt instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

Example 138:Sample Encoding of a Sparse Array20fint SOAP Array

<Array2C I nt SQAP- ENC: arrayType="xsd: i nt[10, 10] ">
<i t em SQAP- ENC. posi ti on="[3, 0] ">30</i t en»
<i t em SQAP- ENC: posi ti on="[2, 1] ">21</i t en>
<i t em SQAP- ENC. posi ti on="[1, 2] ">12</i t en>
<i tem SQAP- ENC. posi ti on="[0, 3] ">3</iten»
</ Array2Cf | nt >

The array instance is defined to have the dimensions [10, 10] . Out of a
maximum 100 elements, only four, thatis[3,0],[2,1],[1,2],and [0, 3],
are transmitted. When transmitting an array as a sparse array, the

SQOAP- ENC: posi ti on attribute enables you to specify the indices of each
transmitted array element.

303

CHAPTER 9 | Artix Data Types

Initializing a sparse array

304

Example 139 shows an example of how to initialize a sparse array of
Array2CI nt type.

Example 139:/nitializing a Sparse Array20fint SOAP Array

/] C++
const size t extents2[] = {10, 10};
Array2CiInt a2 _soap(extents2);

size_t position[2];
posi tion[0]

position[1] =
a2_soap[positi

e ow

n] = 30;

posi tion[0]
posi tion[1]
a2_soap[posi ti

2
1
(o]

n] 21;

position[0] = 1,
position[1] = 2;
a2_soap[position] = 12;

position[0] = O;
position[1] = 3;
a2_soap[position] = 3;

This example does not differ much from the case of initializing an ordinary
non-sparse array (compare, for example, Example 137 on page 301). The
only significant difference is that the majority of array elements are not
initialized, hence they are flagged as empty by default.

Note: The state of an array element flips from empty to non-empty the
first time it is accessed using the [] operator. Hence, attempting to read
the value of an uninitialized array element can have the unintended side
effect of flipping the array element status.

SOAP Arrays

Reading a sparse array Example 140 shows an example of how to read a sparse array of

Array2C I nt type.

Example 140:Reading a Sparse Array20fint SOAP Array

/] C++

size t p2[2];
1 sizet i_max = a2_out.get_extents()[0];
size t j_max = a2 out.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
p2[0] =1i;
for (size t j=0; j<j_max; j++) {
p2[1] =j;
2 if (!a2_out.is_enpty(p2)) {
cout << "a[" << i << "][" << j << "] ="
<< a2 out[p2] << endl;

}

The preceding C++ example can be explained as follows:

1. Theget_extents() function returns the full dimensions of the array (as
a size_t[] array), irrespective of the actual number of non-empty
elements in the sparse array.

2. Before attempting to read the value of an element in the sparse array,
you should call the i s_enpt y() function to check whether the
particular array element exists or not.

If you were to access all the elements of the array, irrespective of their
status, the empty array elements would all flip to the non-empty state.

Hence, you would lose the information about which elements were
transmitted in the sparse array.

305

CHAPTER 9 | Artix Data Types

Partially Transmitted Arrays

Overview

Sample encoding

306

A partially transmitted array is essentially a special case of a sparse array,
where the transmitted array elements form one or more contiguous blocks
within the array. The start index and end index of each block can have any
value.

The difference between a partially transmitted array and a sparse array is
significant only at the level of encoding. From the Artix programmer’s
perspective, there is no significant distinction between partially transmitted
arrays and sparse arrays.

Example 141 shows the encoding of a partially transmitted
ArrayCf SOAPSt ri ng instance.

Example 141:Sample Encoding of a Partially Transmitted
ArrayOfSOAPString Array

<ArrayCf SOAPSt ri ng SQAP- ENC. array Type="xsd: stri ng[10] "
SQAP- ENC: of f set ="[2] ">
<itenpThe third el ement</iteny
<itenpThe fourth el enent</iten»
<i t em SQAP- ENC. posi ti on="[6] ">The seventh el enent</iten»
<itempThe eighth el ement</iten>
</ Arrayd SOAPSt ri ng>

In this example, only the third, fourth, seventh, and eighth elements of a
ten-element string array are actually transmitted. The SOAP- ENC. of f set
attribute is used to specify the index of the first transmitted array element.
The default value of SOAP- ENC. of f set is [0] . The SOAP- ENC. posi ti on
attribute specifies the start of a new block within the array. If an <i ten»
element does not have a position attribute, it is assumed to represent the
next element in the array.

IT_Vector Template Class

IT_Vector Template Class

Overview The | T_Vect or template class is an implementation of st d: : vect or. Hence,
the functionality provided by I T_Vect or should be familiar from the C++
Standard Template Library.

In this section This section contains the following subsections:
Introduction to IT_Vector page 308
Summary of IT_Vector Operations page 311

307

CHAPTER 9 | Artix Data Types

Introduction to IT_Vector

Overview

Differences between IT_Vector
and std::vector

308

This section provides a brief introduction to programming with the
I T_Vect or template type, which is modelled on the std: : vect or template
type from the C++ Standard Template Library (STL).

Although I T_Vect or is modelled closely on the STL vector type,
std: : vect or, there are some differences. In particular, | T_Vect or does not
provide the following types:

I T Vector<T>::allocator_type

Where T is the vector's element type. Hence, the | T_Vect or type does not

support an al | ocat or _t ype optional final argument in its constructors.
The I T_Vect or type does not support the following operations:
I=, <

The member functions listed in Table 11 are not defined in I T_Vector.

Table 11: Member Functions Not Defined in IT Vector

Function Type of Operation
at() Element access (with range check)
clear() List operation
assi gn() Assignment
resi ze()

Size and capacity
max_si ze()

Although cl ear () is not defined, you can easily get the same effect for a
vector, v, by calling erase() as follows:

v.erase(v.begin(), v.end());
This has the effect of erasing all the elements in v, leaving an array of size 0.

Basic usage of IT_Vector

Iterators

IT_Vector Template Class

The si ze() member function and the indexing operator [] is all that you
need to perform basic manipulation of vectors. Example 142 shows how to
use these basic vector operations to initialize an integer vector with the first
one hundred integer squares.

Example 142:Using Basic IT Vector Operations to Initialize a Vector

/] C++

/1 Allocate a vector with 100 el enents
I T Vector<IT_Bus::Int> v(100);

for (size_t k=0; k < v.size(); k++) {
v[k] = (I T_Bus::Int) k*k;
}

Instead of indexing vector elements using the operator [], you can use a
vector iterator. A vector iterator, of | T_Vect or<T>: ;i terat or type, gives you
pointer-style access to a vector's elements. The following operations are
supported by I T Vector<7>::iterator:

++,--,* = == I=

An iterator instance remembers its current position within the element list.
The iterator can advance to the next element using ++, step back to the
previous element using - -, and access the current element using *.

The I T_Vect or template also provides a reverse iterator, of

I T_Vector<T>::reverse_iterator type. The reverse iterator differs from the
regular iterator in that it starts at the end of the element list and traverses
the list backwards. That is the meanings of ++ and - - are reversed.

309

CHAPTER 9 | Artix Data Types

Example using iterators

310

Example 142 on page 309 can be written in a more idiomatic style using
vector iterators, as shown in Example 143.

Example 143:Using lterators to Initialize a Vector

Il C++

/1 Allocate a vector with 100 el enents
I T _Vector<IT_Bus::Int> v(100);

IT Vector<IT_Bus::Int>:iterator p = v.begin();
IT Bus k_int = 0;

while (p !'=v.end())

{
*p = k_int*k_int;
++p;
++k_int;

}

IT_Vector Template Class

Summary of IT_Vector Operations

Overview This section provides a brief summary of the types and operations supported
by the I T_Vect or template type. Note that the set of supported types and
operations differs slightly from st d: : vect or. They are described in the
following categories:
® Member types.
® lterators.
® Element access.
® Stack operations.
® List operations.
® Other operations.

Member types Table 12 lists the member types defined in | T_Vect or <7>.

Table 12: Member Types Defined in IT Vector<T>
Member Type Description
val ue_t ype Type of element.
si ze_type Type of subscripts.

di fference_type

Type of difference between iterators.

iterator

Behaves like val ue_t ype*.

const _iterator

Behaves like const val ue_t ype*.

reverse_iterator

Iterates in reverse, like val ue_t ype*.

const _reverse_iterator

Iterates in reverse, like const val ue_t ype*.

ref erence

Behaves like val ue_t ypeé&.

const _reference

Behaves like const val ue_t ype&.

311

CHAPTER 9 | Artix Data Types

Iterators

Table 13 lists the | T_Vect or member functions returning iterators.

Table 13: /terator Member Functions of IT_Vector<T>

Iterator Member Function

Description

begi n() Points to first element.
end() Points to last element.
rbegi n() Points to first element of reverse sequence.
rend() Points to last element of reverse sequence.

Element access

Table 14 lists the | T_Vect or element access operations.

Table 14: Element Access Operations for IT_Vector<T>

Element Access Operation

Description

[]

Subscripting, unchecked access.

front()

First element.

back()

Last element.

Stack operations

Table 15 lists the | T_Vect or stack operations.

Table 15: Stack Operations for IT_Vector<T>

Stack Operation

Description

push_back()

Add to end.

pop_back()

Remove last element.

312

List operations

IT_Vector Template Class

Table 16 lists the I T_Vect or list operations.

Table 16: List Operations for IT_Vector<T>

List Operations

Description

i nsert(p, x)

Add x before p.

insert(p,n,x)

Add n copies of x before p.

insert(first,last)

Add elements from [first: | ast[before p.

erase(p)

Remove element at p.

erase(first,last)

Erase [first:last].

Other operations

Table 17 lists the other operations supported by I T_Vect or .

Table 17: Other Operations for IT _Vector<T>

Operation Description
si ze() Number of elements.
enpty() Is the container empty?
capaci ty() Space allocated.
reserve() Reserve space for future expansion.
swap() Swap all the elements between two vectors.

Test vectors for equality (member-wise).

313

CHAPTER 9 | Artix Data Types

314

In this chapter

CHAPTER 10

Artix IDL to C++
Mapping

This chapter describes how Artix maps IDL to C+ +; that is,
the mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

This chapter discusses the following topics:

Introduction to IDL Mapping page 316
IDL Basic Type Mapping page 318
IDL Complex Type Mapping page 320
IDL Module and Interface Mapping page 329

315

CHAPTER 10 | Artix IDL to C++ Mapping

Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping
IDL to C++ in Artix is performed as a two step process, as follows:
1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, Sanpl el DL. i dI , to a WSDL contract,
Sanpl el DL. wsdl , using the following command:
idl -wsdl SanplelDL.idl
2. Map the generated WSDL contract to C++ using the WSDL-to-C+ +
compiler. For example, you could generate C++ stub code from the
Sanpl el DL. wsdl file using the following command:
wsdl t ocpp Sanpl el DL. wsdl
For a detailed discussion of these command-line utilities, see the Artix
User’s Guide.

Alternative C+ + mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to C+ + directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to C++, as follows:
® Artix IDL-to-C++ mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-C+ +. It is an IONA-proprietary mapping.

® CORBA IDL-to-C++ mapping—as specified in the OMG C+ +
Language Mapping document (http://www.omg.org). This mapping is
used, for example, by the IONA’s Orbix.

316

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping

These alternative approaches are illustrated in Figure 28.

Artix
pomommommsooms-emoooosoo-ooooooooooooos
: i
IDL-to-WSDL | | wSDL |WSDL-to-C++ ’éTj: 5
T 1
E Contract Stubs i
1 1
IDL File
CORBA
o
1 1
IDL-to-C++ E CORBA | |
i C++ |
| Stubs | |
1 1
1 1
1 1

__

Figure 28: Artix and CORBA Alternatives for IDL to C++ Mapping

The advantage of using the Artix IDL-to-C++ mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-C++ mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++4 mapping:
® wchar.
® wstring.
® long double.
® Value types.
®* Boxed values.
® Local interfaces.
® Abstract interfaces.
® forward-declared interfaces.

317

CHAPTER 10 | Artix IDL to C++ Mapping

IDL Basic Type Mapping

Overview Table 18 shows how IDL basic types are mapped to WSDL and then to
C++.
Table 18: Artix Mapping of IDL Basic Types to C++
IDL Type WSDL Schema Type C++ Type

any xsd: anyType | T_Bus: : AnyHol der
bool ean xsd: bool ean I T_Bus: : Bool ean
char xsd: byt e I T_Bus::Byte
string xsd: string IT Bus::String
wchar xsd: string I T Bus::String
wstring xsd: string I T Bus::String
short xsd: short | T_Bus: : Short
| ong xsd: i nt I T _Bus::Int
I ong | ong xsd: | ong I T_Bus: : Long
unsi gned short xsd: unsi gnedShort I T_Bus:: Ushort
unsi gned | ong xsd: unsi gnedl| nt I T _Bus::Unt
unsi gned | ong | ong xsd: unsi gnedLong I T_Bus: : ULong
f1 oat xsd: f| oat | T_Bus: : Fl oat
doubl e xsd: doubl e | T_Bus: : Doubl e
| ong doubl e Not supported Not supported
oct et xsd: unsi gnedByt e I T_Bus:: UByte
fixed xsd: deci mal I T_Bus: : Deci mal
(hj ect ref erences: Ref erence I T_Bus: : Ref erence

318

Mapping for string

IDL Basic Type Mapping

The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstri ng IDL types all map to the same type, xsd: string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl : bi ndi ng> </ wsdl : bi ndi ng> tags). Hence, whenever an
xsd: string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (stri ng, wchar, or wstri ng).

319

CHAPTER 10 | Artix IDL to C++ Mapping

IDL Complex Type Mapping

Overview

enum type

320

This section describes how the following IDL data types are mapped to
WSDL and then to C++:

® enum type.

® struct type.

® union type.

® sequence types.

® array types.

® exception types.

® typedef of a simple type.
® typedef of a complex type.

Consider the following definition of an IDL enum type, Sanpl eTypes: : Shape:

/1 1DL
nmodul e Sanpl eTypes {
enum Shape { Square, Crcle, Triangle };

Ik

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Shape enum to a WSDL
restricted simple type, Sanpl eTypes. Shape, as follows:

<xsd: si npl eType nane="Sanpl eTypes. Shape">
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="Square"/>
<xsd: enuneration value="Grcle"/>
<xsd: enuneration val ue="Triangl e"/>
</xsd:restriction>
</ xsd: si npl eType>

IDL Complex Type Mapping

The WSDL-to-C+ + compiler maps the Sanpl eTypes. Shape type to a C++
class, Sanpl eTypes_Shape, as follows:

cl ass Sanpl eTypes_Shape : public | T _Bus:: AnySi npl eType

{
publ i c:
Sanpl eTypes_Shape() ;
Sanpl eTypes_Shape(const | T _Bus:: String & val ue);
voi d set_val ue(const | T Bus::String & val ue);
const | T Bus::String & get_val ue() const;
b

The value of the enumeration type can be accessed and modified using the
get _val ue() and set _val ue() member functions.
Programming with the Enumeration Type

For details of how to use the enumeration type in C++, see “Deriving
Simple Types by Restriction” on page 224.

union type Consider the following definition of an IDL union type, Sanpl eTypes: : Pol y:

/1 1D
nmodul e Sanpl eTypes {
union Poly sw tch(short) {
case 1: short theShort;
case 2: string theString;

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Pol y union to an XML
schema choice complex type, Sanpl eTypes. Pol y, as follows:

<xsd: conpl exType name="Sanpl eTypes. Pol y">
<xsd: choi ce>
<xsd: el enent nanme="t heShort" type="xsd: short"/>
<xsd: el ement nane="theString" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

321

CHAPTER 10 | Artix IDL to C++ Mapping

The WSDL-to-C+ + compiler maps the Sanpl eTypes. Pol y type to a C+ +
class, Sanpl eTypes_Pol y, as follows:

/] C++
class Sanpl eTypes_Poly : public | T _Bus:: Choi ceConpl exType

{
publ i c:

const |T_Bus:: Short gettheShort() const;
voi d settheShort(const |IT Bus:: Short& val);

const | T _Bus::String& gettheString() const;
voi d settheString(const | T Bus::String& val);

enum Pol yD scri m nat or

{
t heShort,

theString,
Pol y_VAXLONG=- 1L
} mdiscrinmnator;

Pol yDi scrim nator get_discrimnator() const { ... }
IT Bus::Unt get_discrimnator_as_uint() const { ... }

I

The value of the union can be modified and accessed using the

get UnionMember() and set UnionMember() pairs of functions. The union
discriminator can be accessed through the get _di scri mi nat or () and

get _discrimnator_as_uint() functions.

Programming with the Union Type

For details of how to use the union type in C++, see “Choice Complex
Types” on page 232.

322

IDL Complex Type Mapping

struct type Consider the following definition of an IDL struct type,
Sanpl eTypes: : Sanpl eStruct :

/1 1D
nmodul e Sanpl eTypes {
struct Sanpl eStruct {
string theStri ng;
| ong t heLong;

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eSt r uct struct to
an XML schema sequence complex type, Sanpl eTypes. Sanpl eSt r uct, as
follows:

<xsd: conpl exType nane="Sanpl eTypes. Sanpl eStruct" >
<xsd: sequence>
<xsd: el ement nane="theString" type="xsd:string"/>
<xsd: el ement nane="t heLong" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-C+ + compiler maps the Sanpl eTypes. Sanpl eStruct type to
a C++ class, Sanpl eTypes_Sanpl eStr uct , as follows:

cl ass Sanpl eTypes_Sanpl eStruct : public
I T_Bus: : SequenceConpl exType

{
publ i c:
Sanpl eTypes_Sanpl eStruct () ;
Sanpl eTypes_Sanpl eSt ruct (const Sanpl eTypes_Sanpl eSt r uct &
copy) ;
const | T Bus::String & gettheString() const;
I T Bus::String & gettheString();
voi d settheString(const I T Bus::String & val);
const | T _Bus::Int & getthelLong() const;
I T Bus::Int & getthelLong();
voi d setthelLong(const I T Bus::Int & val);
b

323

CHAPTER 10 | Artix IDL to C++ Mapping

The members of the struct can be accessed and modified using the
get StructMember() and set StructMember() pairs of functions.
Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence Complex
Types” on page 229.

sequence types Consider the following definition of an IDL sequence type,
Sanpl eTypes: : SeqCtr Struct :

/1 1D
nmodul e Sanpl eTypes {
typedef sequence< Sanpl eStruct > SeqOf Struct;

I

The IDL-to-WSDL compiler maps the Sanpl eTypes: : SeqCf Struct sequence
to a WSDL sequence type with occurrence constraints,
Sanpl eTypes. Seqk Struct , as follows:

<xsd: conpl exType name="Sanpl eTypes. SeqCf Struct ">
<xsd: sequence>
<xsd: el ement nane="itent
t ype="xsd1: Sanpl eTypes. Sanpl eSt ruct "

wAn

</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-C+ + compiler maps the Sanpl eTypes. SeqCf Struct type to a
C++ class, Sanpl eTypes_SeqO Struct, as follows:

class Sanpl eTypes_SeqO Struct : public
I T_Bus: : ArrayT<Sanpl eTypes_Sanpl eSt ruct,
&Sanpl eTypes_SeqCt Struct _i tem gnane, 0, -1>
{
publ i c:

Ik

The Sanpl eTypes_Seqd Struct class is an Artix C++ array type (based on
the I T_Vect or template). Hence, the array class has an API similar to the
std: :vector type from the C++ Standard Template Library.

324

IDL Complex Type Mapping

Programming with Sequence Types

For details of how to use sequence types in C++, see “Arrays” on page 263
and “IT_Vector Template Class” on page 307.

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the I T_Bus: : ArrayT base class uses the bounds
specified in the IDL.

array types Consider the following definition of an IDL union type,
Sanpl eTypes: : Arr O Struct :

/1 1DL
nmodul e Sanpl eTypes {
typedef SanpleStruct ArrCf Struct[10];

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Arr & Struct array to a
WSDL sequence type with occurrence constraints,
Sanpl eTypes. Arr O Struct, as follows:

<xsd: conpl exType nane="Sanpl eTypes. Arr &f Struct ">
<xsd: sequence>
<xsd: el enent narme="iten'
t ype="xsdl: Sanpl eTypes. Sanpl eStruct "
m nCccur s="10" naxCccur s="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-C+ + compiler maps the Sanpl eTypes. Arr O Struct type to a
C++ class, Sanpl eTypes_Arr & Struct, as follows:

class Sanpl eTypes_ ArrOf Struct : public

| T_Bus: : ArrayT<Sanpl eTypes_Sanpl eSt r uct ,
&Sanpl eTypes_Arr O Struct _i tem gnane, 10, 10>

325

CHAPTER 10 | Artix IDL to C++ Mapping

exception types

326

The Sanpl eTypes_Arr O Struct class is an Artix C++ array type (based on
the I T_Vect or template). The array class has an API similar to the

std: : vect or type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

Programming with Array Types

For details of how to use array types in C+ +, see “Arrays” on page 263 and
“IT_Vector Template Class” on page 307.

Consider the following definition of an IDL exception type,
Sanpl eTypes: : Generi cExcept i on:

/1l 1D
nmodul e Sanpl eTypes {
exception Generi cExc {
string reason

}s
Ik

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Gener i cExc exception
to a WSDL sequence type, Sanpl eTypes. Generi cExc, and to a WSDL fault
message, _except i on. Sanpl eTypes. Gener i cExc, as follows:

<xsd: conpl exType name="Sanpl eTypes. Generi cExc" >
<xsd: sequence>
<xsd: el enent name="reason" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el ement name="Sanpl eTypes. Generi cExc"
type="xsd1: Sanpl eTypes. Generi cExc"/>

<message nane="_excepti on. Sanpl eTypes. Generi cExc" >
<part name="excepti on"
el enent =" xsd1: Sanpl eTypes. Generi cExc"/ >
</ nessage>

typedef of a simple type

IDL Complex Type Mapping

The WSDL-to-C++ compiler maps the Sanpl eTypes. Generi cExc and
_except i on. Sanpl eTypes. Gener i cExc types to C++ classes,

Sanpl eTypes_Generi cExc and _except i on_Sanpl eTypes_Generi cExc, as
follows:

/] C++
cl ass Sanpl eTypes_Generi cExc : public
I T_Bus: : SequenceConpl exType

{
publ i c:
Sanpl eTypes_Generi cExc();
const | T Bus::String & getreason() const;
I T Bus::String & getreason();
voi d setreason(const |T Bus::String & val);
iE

cl ass _exception_Sanpl eTypes_Ceneri cExcException : public
I T_Bus: : User Faul t Excepti on

{
publ i c:
_excepti on_Sanpl eTypes_GCeneri cExcExcepti on() ;
const Sanpl eTypes_Ceneri cExc & get exception() const;
Sanpl eTypes_Generi cExc & getexception();
voi d setexception(const Sanpl eTypes_Ceneri cExc & val);
b

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see “Propagating Exceptions” on page 33.

Consider the following IDL typedef that defines an alias of a f1 oat ,
Sanpl eTypes: : Float Al i as:

/1 1D
nmodul e Sanpl eTypes {

typedef float FloatAlias;
IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Fl oat Al i as typedef
directory to the type, xsd: f1 oat .

327

CHAPTER 10 | Artix IDL to C++ Mapping

typedef of a complex type

328

The WSDL-to-C+ + compiler then maps the xsd: f1 oat type directly to the
I T_Bus:: Fl oat C++ type. Hence, no C++ typedef is generated for the
float type.

Consider the following IDL typedef that defines an alias of a struct,
Sanpl eTypes: : Sanpl eStruct Al i as:

/1 1DL
nmodul e Sanpl eTypes {
typedef SanpleStruct Sanpl eStruct Ali as;

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eStruct Al i as
typedef directly to the plain, unaliased Sanpl eTypes. Sanpl eStruct type.

The WSDL-to-C+ + compiler then maps the Sanpl eTypes. Sanpl eSt r uct
WSDL type directly to the Sanpl eTypes: : Sanpl eStruct C++ type. Hence,
no C++ typedef is generated for this struct type. Instead of a typedef, the
C++ mapping uses the original, unaliased type.

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific C++ class being generated to represent the
sequence or array type.

IDL Module and Interface Mapping

IDL Module and Interface Mapping

Overview

Module mapping

Interface mapping

This section describes the Artix C++ mapping for the following IDL
constructs:

® Module mapping.

® |nterface mapping.

® Object reference mapping.
® Operation mapping.

® Attribute mapping.

An IDL identifier appearing within the scope of an IDL module,
ModuleName: : Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, : :, maps to an
underscore, , in C++.

Although IDL modules do not map to namespaces under the Artix C+ +
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the - n switch to the WSDL-to-C+ + compiler (see
“Generating Stub and Skeleton Code” on page 2). For example, if you pass a
namespace, TEST, to the WSDL-to-C+ + - n switch, the

ModuleName: : Identifier IDL identifier would map to

TEST: : ModuleName_Identifier.

An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName: : InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName: : InterfaceName: : TypeName, the type
maps to the ModuleName_InterfaceName_TypeName C+ + class.

329

CHAPTER 10 | Artix IDL to C++ Mapping

Object reference mapping

330

When an IDL interface is used as an operation parameter or return type, it is
mapped to the | T_Bus: : Ref erence C++ type.

For example, consider an operation, get _f oo(), that returns a reference to a
Foo interface as follows:

/1 1D
interface Foo {};

interface Bar {
Foo get_foo();
ik

The get _foo() IDL operation then maps to the following C+ + function:

/] C++
voi d get _f oo(
I T Bus:: Reference & var_return
) | T_THROWDEQ.((! T_Bus:: Exception));

Note that this mapping is very different from the OMG IDL-to-C+ +
mapping. In the Artix mapping, the get _foo() operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the | T_Bus: : Ref er ence object into the
Food i ent constructor.

See “Artix References” on page 75 for more details.

IDL Module and Interface Mapping

Operation mapping Example 144 shows two IDL operations defined within the
Sanpl eTypes: : Foo interface. The first operation is a regular IDL operation,

test_op(), and the second operation is a oneway operation,
test _oneway().

Example 144:Example IDL Operations

/1 1DL
nmodul e Sanpl eTypes {

interface Foo {

Sanpl eStruct test_op(
in Sanpl eStruct in_struct,
i nout Sanpl eStruct inout_struct,

out Sanpl eStruct out _struct
) raises (CenericExc);

oneway voi d test_oneway(in string in_str);
IE
b

The operations from the preceding IDL, Example 144 on page 331, map to
C++ as shown in Example 145,

Example 145:Mapping IDL Operations to C++

[l C++
cl ass Sanpl eTypes_Foo
{
publ i c:
1 virtual void test_op(
const TEST: : Sanpl eTypes_Sanpl eStruct & in_struct,
TEST: : Sanpl eTypes_Sanpl eStruct & i nout _struct,
TEST: : Sanpl eTypes_Sanpl eStruct & var_return,
TEST: : Sanpl eTypes_Sanpl eStruct & out _struct
) | T_THRONVDECL((I T_Bus:: Exception)) = O;
2 virtual void test_oneway(
const | T Bus::String & in_str
) | T_THRONDECL((I T _Bus:: Exception)) = 0;
IE

331

CHAPTER 10 | Artix IDL to C++ Mapping

The preceding C+ + operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
voi d. If a return value is defined in IDL, it is mapped as an out
parameter, var _return.

The order of parameters in the C++ function signature, test _op(), is
determined as follows:

. First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

. Next, the return value appears as the parameter, var _return
(with the same semantics as an out parameter).

. Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,

because a oneway operation can have only i n parameters and a voi d
return type.

Attribute mapping Example 146 shows two IDL attributes defined within the
Sanpl eTypes: : Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, struct _attr.

Example 146:E£xample IDL Attributes

/1 1D
nmodul e Sanpl eTypes {

interface Foo {
attribute string str_attr;

readonly attribute Sanpl eStruct struct_attr;
h

332

IDL Module and Interface Mapping

The attributes from the preceding IDL, Example 146 on page 332, map to
C++ as shown in Example 147,

Example 147:Mapping IDL Attributes to C++

Il C++
cl ass Sanpl eTypes_Foo

{
publ i c:

virtual void _get str_attr(
IT Bus::String & var_return

) | T_THRONVDECL((| T_Bus:: Exception)) = O;
virtual void _set_str_attr(

const | T Bus::String & _arg
) | T_THRONVDECL((| T_Bus:: Exception)) = O;

virtual void _get struct _attr(
TEST: : Sanpl eTypes_Sanpl eStruct & var_return
) I T_THRONDECL((I T _Bus:: Exception)) = 0;
IE

The preceding C+ + attribute signatures can be explained as follows:

1. Anormal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, _get_AttributeName() ,
_set _AttributeName() .

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++, _get _AttributeName().

333

CHAPTER 10 | Artix IDL to C++ Mapping

334

Index

Symbols

<extension> tag 248
<fault> tag 34

<port> element 192
<restriction> tag 247
<simpleContent> tag 247

A

abstract interface type 317
add_service() function 53
all complex type
nillable example 280
AllComplexType class 236
all groups 236
anonymous types
avoiding 243
AnyHolder class 268
get any_type() function 269
get type() function 270
inserting and extracting atomic types 269
inserting and extracting user types 269
set_any_type() function 269
AnyType class 170, 180, 269
anyType type 268
nillable 276
anyURI 227
arrays
multi-dimensional native 265
native 263
SOAP 295
arrayType attribute 297
array types
nillable elements 292
artix.cfg file 71
Artix Designer
and routing 104
Artix foundation classes 22
Artix locator
overview 117
Artix namespaces 5
Artix services
locator 121
ART library 22

assign() 308
at() 308
atomic types 211
nillable example 277
nillable types 276
attributes
in extended types 251
mapping 239
optional 239
optional, C++ mapping 240
optional, example 240
prohibited 239
required 239
required, C++ mapping 241
required, example 241
auto_ptr template 46

B
Base64Binary type 222
base64Binary type

nillable 277
BASIC authentication 193
begin() 155, 157
begin_session() 143
below_capacity() function 132
binary types 222

get data() 222

set_data() 222
binding name

specifying to code generator 3
boolean type

nillable 276
bounded sequences 325
boxed value type 317
building Artix applications 268
Bus

add_service() function 53
Bus library 22
byte type

nillable 276

335

INDEX

C complexContent tag 251
C++ mapping complex datatypes

parameter order 28 generated files 2

parameters 27 complex type
callbacks deallocating 45

and routing 103 deriving from simple 247

and threading 102 complex types 228

client implementation 109 assignment operators 43

Clientimpl servant class 111 copying 43

client main function 109 deriving 250

demonstration 101 nesting 243

example scenario 102 recursive copying 44

overview 100 complexType tag 251

sample WSDL contract 107 configuration

server implementation 113 message attributes 192

Serverlmpl servant class 114 -ORBname switch 127

server main function 113 ConnectException type 32
calling context 170 container name 166
checked facets 224 ContentType message attribute 206
choice complex type 243 context containers
ChoiceComplexType class 232 registering 165
choice complex types 232 ContextCurrent class 170
clear() 308 context current object 169
client context data

developing 12 received 170

proxy object 12 registering 180

stub code, files 2 contexts
client proxies and threading 169

and multi-threading 64 client main function 177

and threading 63 data types, defining 163

get port() 202 example 171
client stub code 2 get_context() function 180
clone() function 69 get context_container() function 165, 184
cloning get_current() function 170

and transient servants 57 overview 160

service for transient reference 93 protocols 161

services 79 register_context() function 165, 184
cloning services 56 registering a context type 165
Code generation 2 registering a CORBA context 167
code generation sample schema 174

from the command line 3 scenario description 173

impl flag 8 schema, target namespace 175
code generator server main function 182

command-line 3 service implementation 185

files generated 2 stub files, generating 164
commit() 155, 157 type factories for 165
compare() 220 CORBA
compiler requirements 22 abstract interface 317
compiling a context schema 175 any 318

336

basic types 318

boolean 318

boxed value 317

char 318

enum type 320

exception type 326

fixed 318

forward-declared interfaces 317

local interface type 317

Object 318

sequence type 324

string 318

struct type 323

typedef 327

union type 321, 325

value type 317

wchar 318

wstring 318
CORBAContextContainer class

registration functions 167
CorbaContextContainer container name 166
CORBA headers

and contexts 162
CosTransactions::Coordinator class 155

D
date 227
dateTime type
nillable 277
decimal type
nillable 277
declaration specifiers 24
-declspec option 24
derivation
by extension 247
by restriction 247
complex type from complex type 250
get_derived() function 254
get_simpleTypeValue() 249
set_simpleTypeValue() 249
DeserializationException type 32
developing a server 8
dispatch() function 68
DLL
building stub libraries 24
DLL library
building Artix stubs ina 4
double type
nillable 276

duration 227

E
ElementListT class 259
conversion to IT_Vector 261
embedded mode
compiling 22
linking 22
encoding of SOAP array 301
EndpointNotExist fault 123
endpoint reference 76
endpoints 119

below_capacity() function 132

pausing and resuming 132

reached_capacity() function 132
registering with the locator 127

end_session() 149
ENTITIES type 242
ENTITY 227
ENTITY type 242
enumeration facet 224
enum type 320
Error() function 31
exception
propagating 33
raising a fault exception 34
exception handling
CORBA mapping 326
Exception type 31
exception type 326
extension
attributes defined in 251
deriving complex types 251
get_derived() function 254
holder types 254
extension tag 251

F
facets 224
checked 224
FaultException type 33
fixed decimal
compare() 220
Digitlterator 221
is_negative() 220
left_most_digit() 220
number_of digits() 220
past_right_most_digit() 220

INDEX

337

INDEX

round() 220

scale() 220

truncate() 220
float type

nillable 276
forward-declared interfaces 317
fractionDigits facet 224

G
gDay 227
generating code

complete sample application 17
get_all_endpoints() 144
get_any_type() function 269
get_bus() 207
get_context() function 180
get _context_container() function 165, 180, 184,

186

get_current() function 170, 180, 186
get data() 222
get_derived() function 254
get_discriminator() 322
get_discriminator_as_uint() 322
getendpoints() 145
get_extents() 297, 302, 305
get_input_message_attributes() 147, 208
get_item_name() 260
get_max_occurs() 259
get_min_occurs() 259
get_port() 146, 202
get reference() function 96, 98
getsession_id() 143
get_simpleTypeValue() 249
get_size() 260
get_type() function 270
GIOP

and Artix contexts 162
GlobalBusORBPIugln class 20
gMonth 227
gMonthDay 227
gYear 227
gYearMonth 227

H
HelloWorld port type 6
HexBinary type 222
hexBinary type

nillable 277

338

high water mark 71
high_water_mark configuration variable 72
holder types, and extension 254
HTTP
BASIC authentication 193
example port 13
HTTPClientAttributes class 200
http-conf.xsd file 193
http plug-in 127
HTTPServerAttributes class 200

|
IDL

bounded sequences 325

enum type 320

exception type 326

object references 330

oneway operations 332

sequence type 324

struct type 323

typedef 327

union type 321, 325
IDL attributes

mapping to C++ 332
IDL basic types 318
IDL interfaces

mapping to C++ 329
IDL modules

mapping to C++ 329
IDL operations

mapping to C++ 331

parameter order 332

return value 332
IDL readonly attribute 333
IDL-to-C+ + mapping

Artix and CORBA 316
IDL types

unsupported 317
idl utility 316
IDREF 227
IDREFS type 242
inheritance relationships

between complex types 250
init()

-ORBname parameter 131
init() function 9, 12
Initializing the Bus 9
initial_threads configuration variable 72
inout parameter ordering 29

inout parameters 332
in parameters 332
input message 26
input message attributes 190
input parameters 26
instance namespace 274
integer 227
interception points 191
int type

nillable 276
InvalidRouteException type 32
IOException type 32
IONA foundation classes 22
IP ports

in cloned service 57
is_empty() 305
is_negative() 220
is_nil() function 279, 282, 289
IT_AutoPtr template 46
IT _Bus::AllComplexType 236
IT _Bus::AnyType class 170, 180
IT_Bus::Base64Binary 222
IT _Bus::BinaryBuffer 211
IT _Bus::Boolean 211
IT Bus::Bus::register_servant() function 55
IT Bus::Bus::register_transient_servant()

function 58
IT Bus::Bus::remove_service() function 55
IT Bus::Byte 211
IT_Bus::ChoiceComplexType 232
IT_Bus::ConnectException 32
IT_Bus::ContextContainer::get_current()
function 180, 186

IT Bus::ContextCurrent class 170
IT Bus::CORBAContextContainer class 162
IT_Bus::DateTime 211, 219
IT Bus::Decimal 211, 220
IT _Bus::Decimal::Digitlterator 221
IT_Bus::DeserializationException 32
IT Bus::Double 211
IT _Bus::ElementListT 259

conversion to IT_Vector 261
IT Bus::Exception 31
IT_Bus::Exception::Error() 31
IT_Bus::Exception::Message() 31
IT_Bus::Exception type 31
IT_Bus::FaultException 33
IT Bus::Float 211
IT_Bus::get_context_container() function 165, 180,

INDEX

184, 186
IT_Bus::GlobalBusORBPIlugln class 20
IT_Bus::HexBinary 211, 222
IT Bus::init() 9, 12
IT Bus::Int 211
IT_Bus::I0Exception 32
IT Bus::Long 211
IT_Bus::MessageAttributes class 195
IT_Bus::NamedAttributes class 195
IT_Bus::NoSuchAttributeException exception 204,
208

IT_Bus::QName 211
IT_Bus::Reference class 77, 99
IT Bus::run() 10, 12
IT_Bus::SequenceComplexType 229
IT_Bus::SerializationException 32
IT_Bus::Service::get_reference() function 96, 98
IT_Bus::Service::register_servant() 53
IT_Bus::Service::register_servant() function

and transient servants 58
IT_Bus::ServiceException 32
IT_Bus::Short 211
IT_Bus::shutdown() 14
IT_Bus::SoapContextContainer class 161, 179, 184
IT_Bus::SoapContextCurrent class 179, 180
IT_Bus::SoapEncArrayT 297
IT_Bus::String 211, 212
IT_Bus::String::iterator 212
IT_Bus::TibrvMessageAttributes class 200
IT_Bus::TransportException 32
IT Bus::UByte 211
IT_Bus:UInt 211
IT_Bus::ULong 211
IT_Bus::UShort 211
IT_BUS E FAULT error code 31
IT_Bus namespace 5
IT _Bus_Services::renewSessionFaultException 148
IT _Bus_Services::SessionID 143
iterators

in IT_Vector 309
IT_FixedPoint class 220
IT_HTTP_E_ACCESS_DENIED error code 31
IT_ HTTP_E BAD_CONFIG error code 31
IT_ HTTP_E COMM_ERROR error code 31
IT_HTTP_E_NOT_FOUND error code 31
IT_HTTP_E_SHUTTING_DOWN error code 31
IT_Routing::InvalidRouteException 32
IT_UString class 212
IT Vectof class

339

INDEX

resize() 308 locator, Artix 117

IT Vector class 259, 261 locator_endpoint plug-in 127, 132
and set_size() 262 LocatorService port type 124
assign() 308 logical contract 78
at() 308 and servants 51
clear() 308 long type
converting to 267 nillable 276
differences from std::vector 308 lookupEndpointResponse type 123
iterators 309 lookupEndpointResponse type, C++ mapping 126
operations 311 lookupEndpoint type 123
overview 307 lookupEndpoint type, C++ mapping 125
resize() 308 low water mark 71

IT_WSDL namespace 5 low water_mark configuration variable 72

L M

language 227 makefile

leaks generating with wsdltocpp 3
avoiding 46 mapping

left_most_digit() 220 IDL attributes 332

length() 216 IDL interfaces 329

length facet 224 IDL modules 329

libraries IDL operations 331
Artix foundation classes 22 IDLto C++ 316
ART library 22 maxExclusive facet 224
Bus 22 maxlInclusive facet 224
IONA foundation classes 22 maxLength facet 224

license maxOccurs 259, 263
display current 4 max_size() 308

linker requirements 22 memory management 37

list 227 client side 39

load balancing copying and assignment 43
with the locator 118 deallocating 45

local interface type 317 rules 38

locator server side 40
binding and protocol 121 smart pointers 46
demonstration code 119 Message() function 31
embedded deployment 119 message attributes
EndpointNotExist fault 123 categories 190
load balancing 118, 120 client example 202
LocatorService port type, C++ mapping 124 ContentType 206
lookupEndpointResponse type 123 HTTPClientAttributes class 200
lookupEndpointResponse type, C++ HTTPServerAttributes class 200

mapping 126 in configuration 192

lookupEndpoint type 123 input message 190
lookupEndpoint type, C++ mapping 125 interception points 191
reading a reference from 128 IT _Bus::TibrvMessageAttributes class 200
registering endpoints 127 MQAttributes class 200
standalone deployment 119 MQ series 192
WSDL contract 121 name-value APl 195

340

INDEX

NoSuchAttributeException exception 204 NillablePtr template class 289
oneway operation 191 nillable user-defined member elements 287
output 190 overview 273
schemas 193 syntax 274
server example 205 user-defined types 280
transport-specific APl 199 xsi:nil attribute 274
MessageAttributes class 195 NillableValue class 274
message headers nmake
and contexts 161 generating makefile for 3
messages NMTOKENS type 242
input 26 NMTOKEN type 242
output 26 nonNegativelnteger 227
minExclusive facet 224 nonPositivelnteger 227
mininclusive facet 224 normalizedString 227
minLength facet 224 NoSuchAttributeException exception 204, 208
minOccurs 259 NOTATION 227
mq.xsd file 193 NOTATION type 242
MQAttributes class 200 number_of digits() 220
MQ series
message attributes 192 0

multi-dimensional native arrays 265
MULTI_INSTANCE threading model 208
MULTI_THREADED threading model 208
multi-threaded threading model 65
multi-threading

object references
mapping to C++ 330

occurrence constraints
get_item_name() 260
get_max_occurs() 259

client side 63 get_min_occurs() 259
server side 65 get_size) 260
in all groups 236
N in choice groups 232
Name 227 in sequence groups 229
NamedAttributes class 195 overview of 259
namespace set_size() 259
for generated C++ code 3 offset attribute 306
namespaces oneway operations
IT Bus 5 in IDL 332
IT WSDL 5 operations
usinginC++ 5 declaring 26
name-value APl 195 optional attributes 239
native arrays 263 -ORBname, parameter to IT_Bus::init() 131
NCName 227 -ORBname command-line parameter 127
negativelnteger 227 -ORBname command-line switch 71
nesting complex types 243 orb_plugins list 80
nillable atomic member elements 283 order of parameters 28
NillablePtr template class 289 OoTS
nillable types 283 transaction support 152
atomic type, example 277 out parameters 332
atomic types 276 output message 26
IT_Bus::NillableValue 274 output message attributes 190
nillable array elements 292 output parameters 26

341

INDEX

P constructor for references 131
parameters proxification 103
in IDL-to-C++ mapping 332 definition 105
parsing proxy
WSDL model 81 initializing from reference 99
partially transmitted arrays 306 proxy object ,
Password attribute 193 and multi-threading 64
past_right_most_digit() 220 constructors 12
pattern facet 224 proxy objects
Perlnvocation threading model 67 constructor with reference argument 14
threading
Perlnvocation threading model Q
69 QName 227
per-port threading model 66, 68 QName type
PerThread threading model 67, 69 nillable 276
physical contract 78
and servants 51 R
plug-in reached_capacity() function 132
servant registration 19 received context data 170
servant registration code 4 recursive copying 44
plug-ins recursive deallocating 45
http 127 ref:Reference type 123
locator_endpoint 127 reference
locator_endpoint plug-in 132 C++ representation 77
soap 127 contents 77
plugins:sm_simple_policy:max_session_timeout 14 to an endpoint 76
3 XML schema for 77
plugins:sm_simple_policy:min_session_timeout 143 Reference class 77
port references
specifying on the client side 12 and WSDL publish plug-in 82
specifying to code generator 3 callbacks, overview 100
port object cloning from a service 93
use_input_message_attributes() 202, 205 constructor for client proxies 131
use output_message attributes() 205 CORBA mapping 330
ports creating 95
activating, for transient servants 59 get_reference() function 98
activating all together 54 importing the XML schema 92
activating individually 53 IT Bus::Reference class 99
activating with register_servant() 53 looking up in the locator 119
and endpoints 119 programming with 85
port type proxy constructor 14, 99
specifying to code generator 3 reading from the locator 128
positivelnteger 227 ref:Reference type 123
prohibited attributes 239 register_transient_servant() function 98
propagating exceptions 33 schema 123
protocols static 78
and contexts 161 static, sample definition 93
proxies transient 79

342

transient, creating 97

XML schema 77, 86

XML type 86
references:Reference type 92

register_context() function 165, 166, 180, 184
register_servant() function 53, 55, 96

and transient servants 58

register_transient_servant() function 58, 59, 61, 98

remove_service() function 55
renew_session() 148
required attributes 239
resize() 308
resources
server side 152
rollback() 155, 157
rollback_only() 155
round() 220
router contract 104
routing
and callbacks 103
Artix Designer 104
proxification 105
run() function 10, 12
Running the Bus 10

S

sample client implementation
generating with wsdltocpp 4
sample context schema 174
sample server implementation
generating with wsdltocpp 4
scale() 220
schema
for references 123
schemas 193
context, example 174
for references 77
sequence complex type 243
SequenceComplexType class 229
sequence complex types 229
and arrays 263
sequence type 324
Serialization type 32
Serialized threading model 69
serialized threading model 66
servant
and threading models 67
registration in plug-in 4
static, example 54

servants
add_service() function 53
clone() function 69
dispatch() function 68
registering 50
register_servant() function 53
static, registering 51
transient, activating ports 59
transient, registering 56
wrapper, registering 69
wrapper classes 68
server
developing 8
implementation class 8
main() function 9
skeleton code, files 2
server skeleton code 2
service
specifying on the client side 12
Service::register_servant() 53
service contexts
and CORBA 162
ServiceException type 32
service hame
specifying to code generator 3
services
cloning 56, 79
cloning, IP ports 57
SessionManagerClient 142
set_any_type() function 269
set_data() 222
setendpoint_group() 143
setprefered_renew_timeout() 143
setsession_id() 144
set_simpleTypeValue() 249
set_size() 259, 262
set_timeout() 155
short type
nillable 276
shutdown() function 14
Shutting the Bus down 11
simple types
deriving by restriction 224
skeleton code
files 2
generating with wsdltocpp 3
smart pointer
assignment semantics 47
smart pointers 46

INDEX

343

INDEX

SOAP arrays 295
encoding 301
get_extents() 297, 302
multi-dimensional 300
one-dimensional 297
partially transmitted 306
sparse 303
syntax 296
SOAP bindings 121
SoapContextContainer::register_context()
function 166
SoapContextContainer class 179, 184
SoapContextContainer container name 166
SoapContextCurrent class 179, 180
SOAP-ENC:Array type 296
SOAP-ENC:offset attribute 306
SoapEncArrayT class 297
SOAP headers
and contexts 161
soap plug-in 127
sparse arrays 303
get_extents() 305
initializing 304
is_empty() 305
static reference 78
static references
and published WSDL model 83
sample definition 93
static servant
definition 51
static servants 51
register_servant() function 96
std::vector class 307
strings
iterator 212
IT_UString class 212
length() 216
string type
nillable 276
Stroustrup, Bjarne 216
struct type 323
stub code
files 2
stub libraries
building on Windows 24
stubs
DLL library, packaging as 4

344

T

target namespace
for a context schema 175
threading
and callbacks 102
and contexts 169
client proxy in two threads 63
MULTI_INSTANCE model 208
MULTI_THREADED model 208
multi-threaded model 65
overview 62
Perlnvocation threading model 67
per-port threading model 66, 68
PerThread threading model 67, 69
Serialized threading model 69
serialized threading model 66
work queue 67
threading model
default 65
default, for servants 60
default for servant 54
thread pool
configuration settings 71
initial threads 71
thread_pool:high_water_mark configuration
variable 72

thread_pool:initial_threads configuration variable 72

thread_pool:low_water_mark configuration
variable 72
Tibco transport 200
tibrv.xsd file 193
time 227
token 227
totalDigits facet 224
transaction factory 152
transaction factory name 154
transactions
begin() 155, 157
client example 156
commit() 155, 157
compatibility with CORBA OTS 153
CosTransactions::Coordinator class 155
in Artix 152
IT Bus::Bus class 154
OTS-based 152
rollback() 155, 157
rollback_only() 155
set_timeout() 155
transaction factory 152

INDEX

within_transaction() 155 anyType syntax 268
transient references 79, 97 atomic types 211
and published WSDL model 83 attributes 239
transient servants 56 binary types 222
registering 58 complex types 228
TransportException type 32 deriving by restriction 224
transports wsdl:arrayType attribute 297
schemas 193 WSDL contract
Tibco 200 location of 13
truncate() 220 WSDL facets 224
Tuxedo WSDL faults 326
example port 13 WSDL model 81
typedef 327 and multiple Bus instances 84
type factories WSDL publish plug-in 80
and contexts 165 WSDL model 81
wsdl_publish plug-in 80
U wsdltocpp
union 227 command-l!ne optjons 3
union type 321, 325 %(I)ensqg:r?gr:ltgz s;wtches 3
unﬁliﬁggcljeBg;éype XML schemasI generating from 164
unsignedInt type wsdltocpp compiler 175
nillable 276 generating an application 17
unsignedLong type wsdltocpp utlllty 268, 316
nillable 276 -dgclspec option 24
unsignedShort type wstring type 317
nillable 276
unsupported IDL types 317 X
use_input_message_attributes 146 xsd
use_input_message_attributes() 202, 204, 205 anyURI 227
use _output_message attributes() 204, 205 date 227
user defined exceptions duration 227
propagation 33 ENTITY 227
user-defined types gDay 227
nillable 280 gMonth 227
UserName attribute 193 gMonthDay 227
gYear 227
Vv gYearMonth 227
value type 317 IlaDnI-\)gEl;g§22727
_var types 47 list 227
Name 227
w NCName 227
wchar type 317 negativelnteger 227
whiteSpace facet 224 nonNegativelnteger 227
work queue 67 normalizedString 227
wrapper servants 68, 69 NOTATION 227
WSDL positivelnteger 227

345

INDEX

QName 227

time 227

token 227

union 227
xsd:anyType

and context types 163
xsd:boolean 225
xsd:dateTime type 219
xsd:decimal type 220
xsd:ENTITIES 242
xsd:ENTITY 242
xsd:IDREFS 242
xsd:NMTOKEN 242
xsd:NMTOKENS 242
xsd:NOTATION 242
xsdl

integer 227
xsi:nil attribute 274
xsi namespace 274

346

INDEX

347

INDEX

348

	Developing Artix Application in C++
	List of Tables
	Preface
	1 Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	C++ Namespaces
	Defining a WSDL Interface
	Developing a Server
	Developing a Client
	Generating a Sample Application from WSDL
	Compiling and Linking an Artix Application
	Building Artix Stub Libraries on Windows

	2 Artix Programming Considerations
	Operations and Parameters
	Exceptions
	Non-Propagating Exceptions
	Propagating Exceptions

	Memory Management
	Managing Parameters
	Assignment and Copying
	Deallocating
	Smart Pointers

	Registering Servants
	Registering a Static Servant
	Registering a Transient Servant

	Multi-Threading
	Client Threading Issues
	Servant Threading Models
	Setting the Servant Threading Model
	Thread Pool Configuration

	3 Artix References
	Introduction to References
	The WSDL Publish Plug-In
	Programming with References
	Bank WSDL Contract
	Creating References
	Resolving References

	Callbacks
	Overview of Artix Callbacks
	Routing and Callbacks
	Callback WSDL Contract
	Client Implementation
	Server Implementation

	4 The Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator
	Pausing and Resuming Endpoints

	5 Using Sessions in Artix
	Introduction to Session Management in Artix
	Registering a Server with the Session Manager
	Working with Sessions

	6 Transactions in Artix
	Introduction to Transactions
	Transaction API
	Client Example

	7 Artix Contexts
	Introduction to Contexts
	Protocols that Support Contexts
	Defining Context Data Types
	Registering Context Types
	Writing and Reading Context Data

	Context Example
	Custom SOAP Header Demonstration
	Sample Context Schema
	Client Main Function
	Server Main Function
	Service Implementation

	8 Message Attributes
	Introduction to Message Attributes
	Schemas
	Name-Value API
	Transport-Specific API
	Using Message Attributes in a Client
	Using Message Attributes in a Server

	9 Artix Data Types
	Simple Types
	Atomic Types
	String Type
	QName Type
	Date and Time Types
	Decimal Type
	Binary Types
	Deriving Simple Types by Restriction
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Occurrence Constraints
	Arrays

	anyType Type
	Nillable Types
	Introduction to Nillable Types
	Nillable Atomic Types
	Nillable User-Defined Types
	Nested Atomic Type Nillable Elements
	Nested User-Defined Nillable Elements
	Nillable Elements of an Array

	SOAP Arrays
	Introduction to SOAP Arrays
	Multi-Dimensional Arrays
	Sparse Arrays
	Partially Transmitted Arrays

	IT_Vector Template Class
	Introduction to IT_Vector
	Summary of IT_Vector Operations

	10 Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Index

