
Designing Artix Solutions from
the Command Line

Version 2.0, March 2004



IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E, 
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are 
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the 
United States and other countries. 
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in 
the United States and other countries. All other trademarks that appear herein are the 
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty 
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for 
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or 
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any 
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third 
party intellectual property right liability is assumed with respect to the use of the information contained herein. 
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved. 

All products or services mentioned in this manual are covered by the trademarks, service marks, or product 
names as designated by the companies who market those products.

Updated: 30-Apr-2004

M 3 1 8 9



Contents

List of Figures vii

List of Tables ix

Preface xi
What is Covered in this Book xi
Who Should Read this Book xi
How to Use this Book xii
Online Help xiii
Finding Your Way Around the Artix Librabry xiv
Additional Resources for Help xv
Typographical Conventions xv
Keying Conventions xvi

Chapter 1   Introduction to Using Artix 1
The Artix Bus 2
The Artix Design Process 5

Chapter 2   Understanding WSDL 7
Web Services Description Language Basics 8
Abstract Data Type Definitions 11
Abstract Message Definitions 14
Abstract Interface Definitions 17
Mapping to the Concrete Details 20

Chapter 3   Understanding Artix Contracts 21
Artix Contract Overview 22
The Logical Section 23
The Physical Section 25

Chapter 4   Routing 27
Artix Routing 28
iii



CONTENTS
Compatibility of Ports and Operations 29
Defining Routes in Artix Contracts 32

Using Port-Based Routing 33
Using Operation-Based Routing 36
Advanced Routing Features 39

Attribute Propagation through Routes 43
Error Handling 45

Chapter 5   Building Contracts from Java Classes 47

Chapter 6   Working with CORBA 57
CORBA Type Mapping 58

Primitive Type Mapping 59
Complex Type Mapping 61
Recursive Type Mapping 73
Mapping XMLSchema Features that are not Native to IDL 75
Artix References 85

Modifying a Contract to Use CORBA 92
Adding a CORBA Binding 93
Adding a CORBA Port 97

Generating IDL from an Artix Contract 100
Generating a Contract from IDL 101
Configuring Artix to Use the CORBA Plug-in 107

Chapter 7   Working with Tuxedo 109
Introduction 110
Using FML Buffers 111

Mapping FML Buffer Descriptions to Artix Contracts 112
Using the Tuxedo Transport 116

Chapter 8   Working with TIBCO Rendezvous 119
Introduction 120
Using TibrvMsg 121
Using the TIB/RV Transport 125

Understanding the TIB/RV Port Properties 126
Adding a TIB/RV Port to an Artix Contract 132
 iv



CONTENTS
Chapter 9   Working with WebSphere MQ 133
Introduction 134
Describing an Artix WebSphere MQ Port 136

Configuring an Artix WebSphere MQ Port 138
QueueManager 141
QueueName 142
ReplyQueueName 143
ReplyQueueManager 144
ModelQueueName 145
AliasQueueName 146
ConnectionName 148
ConnectionReusable 149
ConnectionFastPath 150
UsageStyle 151
CorrelationStyle 152
AccessMode 153
Timeout 155
MessageExpiry 156
MessagePriority 157
Delivery 158
Transactional 159
ReportOption 160
Format 162
MessageId 164
CorrelationId 165
ApplicationData 166
AccountingToken 167
Convert 168
ApplicationIdData 169
ApplicationOriginData 170
UserIdentification 171

Adding an WebSphere MQ Port to an Artix Contract 172

Chapter 10   Working with the Java Messaging System 175

Chapter 11   Working with HTTP 179
HTTP Overview 180
HTTP WSDL Extensions 187
v



CONTENTS
HTTP WSDL Extensions Overview 188
HTTP WSDL Extensions Details 190

HTTP Transport Attributes 208
Transport Attributes Overview 209
Server Transport Attributes 210
Client Transport Attributes 212

Chapter 12   Working with IIOP Tunnels 213
Introduction to IIOP Tunnels 214
Modifying a Contract to Use an IIOP Tunnel 215

Chapter 13   Sending Messages using SOAP 219
Overview of SOAP 220

Background to SOAP 221
SOAP Messages 224
SOAP Encoding of Data Types 230

SOAP WSDL Extensions 238
Generating a SOAP Binding from a Logical Interface 239
SOAP WSDL Extensions Overview 240
SOAP WSDL Extensions Details 241

Supported XML Types 249

Chapter 14   Sending Messages as Fixed Record Length Data 255
Creating a Fixed Binding from a COBOL Copybook 257
Fixed Record Length Message Data Mapping 259

Chapter 15   Sending Messages as Tagged Data 273
Tagged Data Mapping 274

Chapter 16   Other Data Bindings for Sending Messages 285
G2++ Data Binding 286
Pure XML Format 293

Glossary 295

Index 299
 vi



List of Figures

Figure 1: Artix Message Transporting 2

Figure 2: An Artix Contract 22

Figure 3: MQ Remote Queues 147

Figure 4: Overview of Role of SOAP Encoding and Decoding 231
vii



LIST OF FIGURES
 viii



List of Tables

Table 1: Part Data Type Attributes 15

Table 2: Operation Message Elements 17

Table 3: Attributes of the Input and Output Elements 18

Table 4: Artix Namespaces 23

Table 5: Java to WSDL Mappings 48

Table 6: Primitive Type Mapping for CORBA Plug-in 59

Table 7: Complex Type Mapping for CORBA Plug-in 61

Table 8: Complex Content Identifiers in CORBA Typemap 80

Table 9: Artix FML Feature Support 110

Table 10: Supported TIBCO Rendezvous Features 120

Table 11: TibrvMsg Binding Attributes 121

Table 12: TIBCO to XSD Type Mapping 122

Table 13: TIB/RV Transport Properties 126

Table 14: TIB/RV Supported Payload formats 128

Table 15: Supported WebSphere MQ Features 134

Table 16: WebSphere MQ Port Attributes 138

Table 17: UsageStyle Settings 151

Table 18: MQGET and MQPUT Actions 152

Table 19: Artix WebSphere MQ Access Modes 153

Table 20: Transactional Attribute Settings 159

Table 21: ReportOption Attribute Settings 160

Table 22: FormatType Attribute Settings 162

Table 23: HTTP Server Configuration Attributes 190

Table 24: HTTP Client Configuration Attributes 197

Table 25: HTTP Server Transport Attributes 210

Table 26: HTTP Client Transport Attributes 212
ix



LIST OF TABLES
Table 27: Attributes for soap:binding 241

Table 28: Attributes for soap:operation 243

Table 29: Attributes for soap:body 244

Table 30: soap:fault attributes 247

Table 31: Attribute for soap:address 248
 x



Preface
What is Covered in this Book
Designing Artix Solutions from the Command Line provides the reader with 
detailed information about how to design Artix solutions and describe those 
solutions in Artix contracts. It begins with an overview of the conceptes 
needed by a user of Artix and a description of WSDL. It hen moves into 
detialed descriptions of the Artix WSDL extentions used to describe each of 
the transports and payload formats supported by Artix. These detailed 
descriptions cover how complex data types are mapped to into a paylaod 
format and how to provide specific configuration information for particular 
transports.

In addition, this book covers all of the command line tools provided with 
Artix to assist you in building your Artix contracts. These include tools to 
convert IDL to WSDL, tools to add CORBA bindings to existing Artix 
contracts, and others.

Who Should Read this Book
The target audience for Designing Artix Solutions from the Command Line 
is the designer of Artix solutions who wants an understanding of the 
internals of Artix contracts. The reader should have a working knowledge of 
the middleware transports that are being used to implement the Artix 
soultion.

Note: This book does not provide descriptions or information about the 
supported transports. For information on how to set-up and use them see 
the documentation provided by the vendors.
xi



PREFACE
How to Use this Book
If you are new to Artix and WSDL, the first three chapters of this book 
provide overviews of Artix and WSDL. �Introduction to Using Artix� provides 
an overview of the concepts behind using Artix to solve integration projects. 
�Understanding WSDL� describes the basics of Web Services Description 
Language and how to map services. �Understanding Artix Contracts� 
describes how Artix extends WSDL to describe transport independent 
services and integration. A working knowledge of this information is helpfull 
in understanding the content of the following chapters which deal with 
specific middleware products, transports, and payload formats.

If you are interested in adding routing information to you Artix solution, 
Chapter 4 describes how to create message routes in an Artix contract.

To learn about how Artix interacts with the major middleware products it 
can integrate, you will want to read one or more of the following chapters:

� Chapter 6 describes how to integrate CORBA systems into an Artix 
solution.

� Chapter 7 describes how to integrate BEA Tuxedo in an Artix solution.

� Chapter 8 describes how to integrate TIBCO Rendezvous into an Artix 
solution.

� Chapter 9 describes how to integrate IBM WebSphere MQ systems 
into an Artix solution.

Note: BEA Tuxedo integration is unavailable in some editions of 
Artix. Please check the conditions of your Artix license to see whether 
your installation supports BEA Tuxedo integration.

Note: TIBCO Rendezvous integration is unavailable in some editions 
of Artix. Please check the conditions of your Artix license to see 
whether your installation supports TIBCO Rendezvous integration.

Note: IBM WebSphere MQ integration is unavailable in some 
editions of Artix. Please check the conditions of your Artix license to 
see whether your installation supports IBM WebSphere MQ 
integration.
 xii



PREFACE
� Chapter 10 describes how to use Artix with the Java Messaging 
System.

These chapters are focused on describing data and port configurations using 
Artix. They do not provide details about the middleware products beyond 
what is related to making Artix solutions interact with them.

If you are using artix with transports and paylaod formats that have open 
standards, you will want to read one or more of the following:

� Chapter 11 describes how to use HTTP with Artix.

� Chapter 12 describes how to use the IIOP tunnel transport.

� Chapter 13 describes how to use SOAP messages in Artix.

� Chapter 14 describes how to use fixed record length data in Artix.

� Chapter 15 describes how to use self-describing messages in Artix.

� Chapter 16 describes how to use the G2++ and XML payload formats 
supported by Artix.

Online Help
While using the Artix Designer you can access contextual online help, 
providing:

� A description of your current Artix Designer screen

� Detailed step-by-step instructions on how to perform tasks from this 
screen

� A comprehensive index and glossary

� A full search feature

There are two ways that you can access the Online Help:

� Click the Help button on the Artix Designer panel, or

� Select Contents from the Help menu

Note: Java Messaging System integration is unavailable in some 
editions of Artix. Please check the conditions of your Artix license to 
see whether your installation supports Java Messaging System 
integration.

Note: The IIOP tunnel transport is unavailable in some editions of 
Artix. Please check the conditions of your Artix license to see whether 
your installation supports the IIOP tunnel transport.
xiii



PREFACE
Finding Your Way Around the Artix Librabry
The Artix library contains several books that provide assistance for any of the 
tasks you are trying to perform. The remainder of the Artix library is listed 
here, with an short description of each book.

If you are new to Artix You may be interested in reading:

� Getting Started with Artix - the Getting Started books (Encompass, 
Relay, and Java) describe basic Artix concepts.  These books also 
provide a walk through Artix to solve a real world problem using code 
provided in the product kit.

� Artix Tutorial - this book guides you through programming Artix 
applications against all of the supported transports.

To design Artix solutions You should read one or more of the following:

� Designing Artix Solutions - this book provides detailed information 
about using the Artix Designer to create WSDL based Artix contracts, 
Artix stub and skeleton code, and Artix deployment descriptors.

� Designing Artix Solutions from the Command Line - this book provides 
detailed information about the WSDL extensions used in Artix 
contracts, and explains the mappings between data types and Artix 
bindings.

To develop applications using 
Artix stub and skeleton code

Depending on your development environment you should read one or more 
of the following:

� Developing Artix Applications in C++ - this book discusses the 
technical aspects of programming applications using the Artix C++ 
API

� Developing Artix Applications in Java - this book discusses the 
technical aspects of programming applications using the Artix Java API

To manage and configure your 
Artix solution

You should read Deploying and Managing Artix Solutions. It describes how 
to configure and deploy Artix-enabled systems. It also discusses how to 
manage them once they are deployed.
 xiv



PREFACE
If you want to know more about 
Artix security

You should read the Artix Security Guide.  It outlines how to enable and 
configure Artix�s security features. It also discusses how to integrate Artix 
solutions into a secure environment.

Have you got the latest version? The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there 
with the last updated date printed on the inside cover of the book you are 
using (at the bottom of the copyright notice).

Additional Resources for Help
The IONA knowledge base contains helpful articles, written by IONA 
experts, about Artix and other products. You can access the knowledge base 
at the following location:

The IONA update center contains the latest releases and patches for IONA 
products:

If you need help with this or any other IONA products, contact IONA at 
support@iona.com. Comments on IONA documentation can be sent to 

.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text 
represents portions of code and literal names of items 
such as classes, functions, variables, and data 
structures. For example, text might refer to the 
CORBA::Object class.

Constant width paragraphs represent code examples 
or information a system displays on the screen. For 
example:

#include <stdio.h>
xv

http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml


PREFACE
Keying Conventions
This book uses the following keying conventions:

Italic Italic words in normal text represent emphasis and 
new terms.

Italic words or characters in code and commands 
represent variable values you must supply, such as 
arguments to commands or path names for your 
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle 
brackets to represent variable values you must 
supply. This is an older convention that is replaced 
with italic words or characters.

No prompt When a command�s format is the same for multiple 
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell 
prompt for a command that does not require root 
privileges.

# A number sign represents the UNIX command shell 
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows 
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax 
descriptions indicate that material has been 
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax 
descriptions.

{} Braces enclose a list from which you must choose an 
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices 
enclosed in {} (braces) in format and syntax 
descriptions.
 xvi



CHAPTER 1

Introduction to 
Using Artix
Artix allows you to design and deploy integration solutions that 
are middleware-neutral.

In this chapter This chapter discusses the following topics:

The Artix Bus page 2

The Artix Design Process page 5
1



CHAPTER 1 | Introduction to Using Artix
The Artix Bus

Overview The Artix bus provides a middleware connectivity solution that minimizes 
invasiveness and lets an organization avoid being locked into any one 
middleware transport. For example, the Artix bus can be used to connect a 
BEA Tuxedo�-based server to a CORBA client. The Artix bus transparently 
handles the message mapping and transformation between them. The 
Tuxedo server is unaware that its client is using CORBA. In fact, with the 
bus handling the communication, the client could be changed to an IBM 
WebSphere MQ� client without modifying the server.

Bus message transporting The Artix bus shields applications from the details of the transports used by 
applications on the other end of the bus, by providing on-the-wire message 
transformation and mapping. Unlike the approach taken by Enterprise 
Application Integration (EAI) products, the Artix bus does not use an 
intermediate canonical format; it transforms the messages once. Figure 1 
shows a high level view of how a message passes through the bus.

The approach taken by the Artix bus provides a high level of throughput by 
avoiding the overhead of making two transformations for each message. The 
approach does, however, limit the flexibility of message mapping. The Artix 
bus can only map messages across varying transports; it cannot modify the 
content or structure of the message.

Figure 1: Artix Message Transporting

Artix Bus
 2



The Artix Bus
Supported message transports The Artix bus supports the following message transports:

� HTTP

� BEA Tuxedo

� IBM WebSphere MQ

� IIOP

� TIBCO Rendezvous�

� IIOP Tunnel

Supported payload formats The Artix bus can automatically transform between the following payload 
formats:

� G2++

� FML � Tuxedo format

� CORBA (GIOP) � CORBA format

� FRL � fixed record length

� VRL � variable record length

� SOAP

� TibrvMsg - TIBCO Rendezvous format

Bus contracts An Artix bus contract defines the interaction of a Service Access Point (SAP) 
or endpoint with an Artix bus. Contracts are written using a superset of the 
standard Web Service Definition Language (WSDL). Following the procedure 
described by W3C, IONA has extended WSDL to support the bus� advanced 
functionality, and use of transports and formats other than HTTP and SOAP.

A bus contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and 
operations that the SAP exposes. This part of the contract is independent of 
the underlying transports and wire formats. It fully specifies the data 
structures and possible operation/interaction with the interface. It is made 
up of the WSDL tags <message>, <operation>, and <portType>.

Physical

The physical portion of the contract defines the transports, wire formats, 
and routing information used to deliver messages to and from SAPs, over 
the bus. This portion of the contract also defines which messages use each 
3



CHAPTER 1 | Introduction to Using Artix
of the defined transports and bindings. The physical portion of the contract 
is made up of the standard WSDL tags <binding>, <port>, and 
<operation>. It is also the portion of the contract that may contain IONA 
WSDL extensions.

Deployment models Applications that use the Artix bus can be deployed in one of two ways:

Embedded mode is the most invasive use of the Artix bus and provides the 
highest performance. In embedded mode, an application is modified to 
invoke Artix functions directly and locally, as opposed to invoking a 
standalone Artix service. This approach is the most invasive to the 
application, but also provides the highest performance. Embedded mode 
requires linking the application with Artix-generated stubs and skeletons to 
connect client and server (respectively) to the Bus. 

Standalone mode runs as a separate process invoked as a service. In 
standalone mode, the Artix bus provides a zero-touch integration solution on 
the application side. When designing a system, you simply generate and 
deploy the Artix contracts that specify each endpoint of the bus. Because a 
standalone switch is not linked directly with the applications that use it (as 
in embedded mode), a contract for standalone mode deployment must 
specify routing information. This is the least efficient of the two modes.

Advanced Features The Artix bus also supports the following advanced functionality:

� Message routing based on the operation or the port, including routing 
based on characteristics of the port. 

� Transaction support over Tuxedo and WebSphere MQ.

� SSL and TLS support.

� Security support for Tuxedo and WebSphere MQ.

� Container based deployment with IONA�s Application Server Platform 
6.0 and Tuxedo 7.1 or higher.
 4



The Artix Design Process
The Artix Design Process

Overview Artix is a flexible and easy to use tool for integrating your existing 
applications across a number of different middleware platforms. Artix also 
makes it easy to expose your existing applications as Web services or as a 
service for any number of applications using other middleware transports. In 
addition, Artix provides a flexible programming model that allows you to 
create new applications that can communicate using any of protocols that 
Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a 
straightforward process which requires a minimum of coding. The Artix 
Designer provides a full suite of wizards to guide you through the modeling 
of your systems, the generation of Artix components, and the deployment of 
your system. Artix also ships with a number of command line tools that can 
be used to generate Artix components.

Regardless of the complexity of your Artix project or the tools you chose to 
develop your Artix project, there are four basic steps in developing a solution 
using Artix:

1. Create an Artix contract to model your existing services.

2. Modify your Artix contract to describe how you intend to integrate or 
expose your systems.

3. Generate the Artix components.

4. Develop any application level code needed to complete the solution.

Creating an Artix contract The first step in solving a problem using Artix is to create a contract which 
models the services you want to integrate. This involves creating logical 
descriptions of the data and the operations you want the services to share, 
and mapping them to the physical payload formats and transports the 
services use to expose themselves to the network. Artix uses the industry 
standard Web Services Description Language (WSDL) to model services.

For more information on Artix contracts and modeling services in WSDL, 
read �Understanding WSDL� on page 7.
5



CHAPTER 1 | Introduction to Using Artix
Describe the integration of the 
services

After describing how your services are currently deployed, you must decide 
how you want them to be integrated. If your services share a common 
interface, you may simply need to add routing rules to your contract. Artix 
provides a rich set of routing capabilities to map operations and interfaces to 
one another. For a detailed discussion of routing, see Chapter 4 on page 27.

If you are exposing an existing service using a new transport or payload 
format, you need to add the mapping of the service�s data and operations to 
the new payload format and transport.

Generate Artix components If you are using Artix in standalone mode, you will need to generate a 
configuration scope for your Artix switch and save the Artix contract defining 
the interaction of your services.

If you are using Artix in embedded mode, you will also need to generate the 
Artix stubs and skeletons that will form the backbone of your Artix 
application code.

For a detailed discussion of Artix configuration, see the Artix Administration 
Guide. For a detailed description of generating Artix stubs and skeletons, 
see the Artix C++ Programmer�s Guide.

Develop application code Unless your services share identical interfaces, you will need to develop 
some application code. Artix can only map between services that share a 
common interface. Typically, you can make the required changes to only 
one side of the services you are integrating and you can write the application 
code using a familiar programming paradigm. For example, if you are a 
CORBA developer integrating a CORBA system with a Tuxedo application, 
Artix will generate the IDL representing the interface used in the service 
integration. You can then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the 
application logic from scratch using the stubs and skeletons generated by 
Artix. For a detailed discussion of developing applications using Artix, see 
the Artix C++ Programmer�s Guide.
 6



CHAPTER 2

Understanding 
WSDL
Artix contracts are WSDL documents that describe logical 
services and the data they use.

In this chapter This chapter discusses the following topics:

Web Services Description Language Basics page 8

Abstract Data Type Definitions page 11

Abstract Message Definitions page 14

Abstract Interface Definitions page 17

Mapping to the Concrete Details page 20
7



CHAPTER 2 | Understanding WSDL
Web Services Description Language Basics

Overview Web Services Description Language (WSDL) is an XML document format 
used to describe services offered over the Web. WSDL is standardized by 
the World Wide Web Consortium (W3C) and is currently at revision 1.1. 
You can find the standard on the W3C website, www.w3.org.

Web service endpoints and Artix 
service access points

WSDL documents describe a service as a collection of endpoints. Each 
endpoint is defined by binding an abstract operation description to a 
concrete data format and specifying a network protocol and address for the 
resulting binding.

Artix service access points extend the concept of endpoint to include 
services that are available over any computer network, not just the web. A 
service access point can be bound to payload formats other than SOAP and 
can use transports other than HTTP.

Abstract operations The abstract definition of operations and messages is separated from the 
concrete data formatting definitions and network protocol details. As a 
result, the abstract definitions can be reused and recombined to define 
several endpoints. For example, a service can expose identical operations 
with slightly different concrete data formats and two different network 
addresses. Or, one WSDL document could be used to define several services 
that use the same abstract messages.

Port types A portType is a collection of abstract operations that define the actions 
provided by an endpoint. When a port type is mapped to a concrete data 
format, the result is a concrete representation of the abstract definition, in 
the form of an endpoint or service access point.

Concrete details The mapping of a particular port type to a concrete data format results in a 
reusable binding. A port is defined by associating a network address with a 
reusable binding, and a collection of ports define a service.
 8

http://www.w3.org/TR/wsdl


Web Services Description Language Basics
Because WSDL was intended to describe services offered over the Web, the 
concrete message format is typically SOAP and the network protocol is 
typically HTTP. However, WSDL documents can use any concrete message 
format and network protocol. In fact, Artix contracts bind operations to 
several data formats and describe the details for a number of network 
protocols.

Namespaces and imported 
descriptions

WSDL supports the use of XML namespaces defined in the <definition> 
element as a way of specifying predefined extensions and type systems in a 
WSDL document. WSDL also supports importing WSDL documents and 
fragments for building modular WSDL collections.

Elements of a WSDL document A WSDL document is made up of the following elements:

� <types> � the definition of complex data types based on in-line type 
descriptions and/or external definitions such as those in an XML 
Schema (XSD).

� <message> � the abstract definition of the data being communicated.

� <operation>� the abstract description of an action.

� <portType> � the set of operations representing an absract endpoint.

� <binding> � the concrete data format specification for a port type.

� <port> � the endpoint defined by a binding and a physical address.

� <service>  � a set of ports.

Example Example 1 shows a simple WSDL document. It defines a SOAP over HTTP 
service access point that returns the date.

Example 1: Simple WSDL

<?xml version="1.0"?>
<definitions name="DateService" 

targetNamespace="urn:dateservice" 
xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:tns="urn:dateservice" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsd1="http://iona.com/dates/schemas"> 
9



CHAPTER 2 | Understanding WSDL
  <types>
    <schema targetNamespace="http://iona.com/dates/schemas" 

xmlns="http://www.w3.org/2000/10/XMLSchema">
      <element name="dateType">
         <complexType>>
          <all>
            <element name="day" type="xsd:int"/>
            <element name="month" type="xsd:int"/>
            <element name="year" type="xsd:int" />
           </all>
         </complexType>
      <element>
    </schema>
  </types>
  <message name="DateResponse"> 
    <part name="date" element="xsd1:dateType" /> 
  </message>
  <portType name="DatePortType"> 
    <operation name="sendDate"> 
      <output message="tns:DateResponse" name="sendDate" /> 
    </operation> 
  </portType>
  <binding name="DatePortBinding" type="tns:DatePortType">
    <soap:binding style="rpc" 

transport="http://schemas.xmlsoap.org/soap/http" />
    <operation name="sendDate">
      <soap:operation soapAction="" style="rpc" />
      <output name="sendDate"> 
        <soap:body 

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
namespace="urn:dateservice" use="encoded" />

      </output>
    </operation> 
  </binding>
  <service name="DateService"> 
    <port binding="tns:DatePortBinding" name="DatePort">
      <soap:address location="http://www.iona.com/DatePort/" /> 
    </port>
  </service> 
</definitions>

Example 1: Simple WSDL
 10



Abstract Data Type Definitions
Abstract Data Type Definitions

Overview Applications typically use datatypes that are more complex than the 
primitive types, like int, defined by most programming languages. WSDL 
documents represent these complex datatypes using a combination of 
schema types defined in referenced external XML schema documents and 
complex types described in <types> elements.

Complex type definitions Complex data types are described in a <types> element. The W3C 
specification states the XSD is the preferred canonical type system for a 
WSDL document. Therefore, XSD is treated as the intrinsic type system. 
Because these data types are abstract descriptions of the data passed over 
the wire and not concrete descriptions, there are a few guidelines on using 
XSD schemas to represent them:

� Use elements, not attributes.

� Do not use protocol-specific types as base types.

� Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems 
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an 
int, and an enum. The string and the int both have equivalent XSD types 
and do not require special type mapping. The enumerated type 
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde}; 

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

11



CHAPTER 2 | Understanding WSDL
Example 3 shows one mapping of personalInfo into XSD. This mapping is 
a direct representation of the data types defined in Example 2. 
hairColorType is described using a named simpleType because it does not 
have any child elements. personalInfo is defined as an element so that it 
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as 
shown in Example 4. WIth this mapping, however, you cannot reuse the 
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
  <xsd:schema targetNamespace="http:\\iona.com\personal\schema" 

xmlns:xsd1="http:\\iona.com\personal\schema" 
xmlns="http://www.w3.org/2000/10/XMLSchema">

    <simpleType name="hairColorType">
      <restriction base="xsd:string">
        <enumeration value="red" />
        <enumeration value="brunette" />
        <enumeration value="blonde" />
      </ restriction>
    </ simpleType>
    <element name="personalInfo">
      <complexType>
        <element name="name" type="xsd:string" />
        <element name="age" type="xsd:int" />
        <element name="hairColor" type="xsd1:hairColorType" />
      </ complexType>
    </ element>
  </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo

<types>
  <xsd:schema targetNamespace="http:\\iona.com\personal\schema" 

xmlns:xsd1="http:\\iona.com\personal\schema" 
xmlns="http://www.w3.org/2000/10/XMLSchema">

    <element name="personalInfo">
      <complexType>
        <element name="name" type="xsd:string" />
        <element name="age" type="xsd:int" />
 12



Abstract Data Type Definitions
        <element name="hairColor">
          <simpleType>
            <restriction base="xsd:string">
              <enumeration value="red" />
              <enumeration value="brunette" />
              <enumeration value="blonde" />
            </ restriction>
          </ simpleType>
        </ element>
      </ complexType>
    </ element>
  </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo
13



CHAPTER 2 | Understanding WSDL
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network and 
because of this it describes data that is exchanged between two endpoints 
in terms of abstract messages described in <message> elements. Each 
abstract message consists of one or more parts, defined in <part> elements. 
These abstract messages represent the parameters passed by the operations 
defined by the WSDL document and are mapped to concrete data formats in 
the WSDL document�s <binding> elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an 
endpoint, WSDL documents allow abstract operations to have only one 
input message, the representation of the operation�s incoming parameter 
list, and one output message, the representation of the data returned by the 
operation. In the abstract message definition, you cannot directly describe a 
message that represents an operation's return value, therefore any return 
value must be included in the output message

Messages allow for concrete methods defined in programming languages 
like C++ to be mapped to abstract WSDL operations. Each message 
contains a number of <part> elements that represent one element in a 
parameter list. Therefore, all of the input parameters for a method call are 
defined in one message and all of the output parameters, including the 
operation�s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in 
Example 2 on page 11 and provided a method that returned an employee�s 
data based on an employee ID number. The method signature for looking up 
the data would look similar to Example 5.

Example 5: personalInfo lookup method

personalInfo lookup(long empId)
 14



Abstract Message Definitions
This method signature could be mapped to the WSDL fragment shown in 
Example 6.

Message naming Each message in a WSDL document must have a unique name within its 
namespace. It is also recommended that messages are named in a way that 
represents whether they are input messages, requests, or output messages, 
responses.

Message parts Message parts are the formal data elements of the abstract message. Each 
part is identified by a name and an attribute specifying its data type. The 
data type attributes are listed in Table 1

Messages are allowed to reuse part names. For instance, if a method has a 
parameter, foo, that is passed by reference or is an in/out, it can be a part in 
both the request message and the response message as shown in 
Example 7.

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
  <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse>
  <part name="return" element="xsd1:personalInfo" />
<message />

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a 
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an 
element called elem_name.

Example 7: Reused part

<message name="fooRequest">
  <part name="foo" type="xsd:int" />
<message>
15



CHAPTER 2 | Understanding WSDL
<message name="fooReply">
  <part name="foo" type="xsd:int" />
<message>

Example 7: Reused part
 16



Abstract Interface Definitions
Abstract Interface Definitions

Overview WSDL <portType> elements define, in an abstract way, the operations 
offered by a service. The operations defined in a port type list the input, 
output, and any fault messages used by the service to complete the 
transaction the operation describes.

Port types A portType can be thought of as an interface description and in many Web 
service implementations there is a direct mapping between port types and 
implementation objects. Port types are the abstract unit of a WSDL 
document that is mapped into a concrete binding to form the complete 
description of what is offered over a port.

Port types are described using the <portType> element in a WSDL 
document. Each port type in a WSDL document must have a unique name, 
specified using the name attribute, and is made up of a collection of 
operations, described in <operation> elements. A WSDL document can 
describe any number of port types.

Operations Operations, described in <operation> elements in a WSDL document are an 
abstract description of an interaction between two endpoints. For example, 
a request for a checking account balance and an order for a gross of widgets 
can both be defined as operations.

Each operation within a port type must have a unique name, specified using 
the name attribute. The name attribute is required to define an operation.

Elements of an operation Each operation is made up of a set of elements. The elements represent the 
messages communicated between the endpoints to execute the operation. 
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description

<input> Specifies a message that is received from another 
endpoint. This element can occur at most once for each 
operation.
17



CHAPTER 2 | Understanding WSDL
An operation is required to have at least one input or output element. The 
elements are defined by two attributes listed inTable 3.

It is not necessary to specify the name attribute for all input and output 
elements; WSDL provides a default naming scheme based on the enclosing 
operation�s name. If only one element is used in the operation, the element 
name defaults to the name of the operation. If both an input and an output 
element are used, the element name defaults to the name of the operation 
with Request or Response respectively appended to the name.

Return values Because the port type is an abstract definition of the data passed during in 
operation, WSDL does not provide for return values to be specified for an 
operation. If a method returns a value it will be mapped into the output 
message as the last <part> of that message. The concrete details of how the 
message parts are mapped into a physical representation are described in 
the binding section.

<output> Specifies a message that is sent to another endpoint. This 
element can occur at most once for each operation.

<fault> Specifies a message used to communicate an error 
condition between the endpoints. This element is not 
required and can occur an unlimited number of times.

Table 2: Operation Message Elements

Element Description

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when 
mapping the operation to a concrete data format. The name 
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data 
being sent or received. The value of the message attribute 
must correspond to the name attribute of one of the abstract 
messages defined in the WSDL document.
 18



Abstract Interface Definitions
Example For example, in implementing a server that stored personal information in 
the structure defined in Example 2 on page 11, you might use an interface 
similar to the one shown in Example 8.

This interface could be mapped to the port type in Example 9.

Example 8: personalInfo lookup interface

interface personalInfoLookup
{
  personalInfo lookup(in int empID)
  raises(idNotFound);
}

Example 9: personalInfo lookup port type

<message name="personalLookupRequest">
  <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
  <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
  <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
  <operation name="lookup">
    <input name="empID" message="personalLookupRequest" />
    <output name="return" message="personalLookupResponse" />
    <fault name="exception" message="idNotFoundException" />
  </ operation>
</ portType>
19



CHAPTER 2 | Understanding WSDL
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in 
defining the interaction of real applications that have specific network 
addresses, use specific network protocols, and expect data in a particular 
format. To fully define these real applications, the abstract definitions need 
to be mapped to concrete representations of the data passed between the 
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port 
syntax is not tightly specified by W3C. While there is a specification defining 
the mechanism for defining the syntaxes, the syntaxes for bindings other 
than SOAP and network transports other than HTTP are not bound to a 
W3C specification.

Bindings To define an endpoint that corresponds to a running service, port types are 
mapped to bindings which describe how the abstract messages defined for 
the port type map to the data format used on the wire. The bindings are 
described in <binding> elements. A binding can map to only one port type, 
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data 
types, and return values are specified. For example, the parts of a message 
can be reordered in a binding to reflect the order required by an RPC call. 
Depending on the binding type, you can also identify which of the message 
parts, if any, represent the return type of a method.

Services The final piece of information needed to describe how to connect a remote 
service is the network information needed to locate it. This information is 
defined inside a <port> element. Each port specifies the address and 
configuration information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or 
many ports. The convention is that the ports defined within a particular 
service are related in some way. For example all of the ports might be bound 
to the same port type, but use different network protocols, like HTTP and 
WebSphere MQ.
 20



CHAPTER 3

Understanding 
Artix Contracts
Artix contracts are WSDL documents that have IONA-specific 
WSDL extensions, and which define Artix applications.

In this chapter This chapter discusses the following topics:

Artix Contract Overview page 22

The Logical Section page 23

The Physical Section page 25
21



CHAPTER 3 | Understanding Artix Contracts
Artix Contract Overview

Overview Artix contracts are WSDL documents that describe Artix service access 
points and their integration. Each mapping of a port type to a binding and 
port defines an Artix service access point. An Artix contract also describes 
the routing between service access points.

An Artix contract has two sections as shown in Figure 2:

Logical describes the abstract operations, messages, and data types used 
by a service access point.

Physical describes the concrete message formats and transports used by a 
service access point. The routing information defining how messages are 
mapped between different service access points is also specified here.

Figure 2: An Artix Contract
 22



The Logical Section
The Logical Section

Overview The logical section of an Artix contract defines the abstract operations that 
the service access points offer. The logical view includes the <types>, 
<message>, and <portType> tags in a WSDL document. This portion of the 
contract also specifies the namespaces used in defining the contract.

Namespaces Artix contracts use several IONA-specific namespaces to define the Artix 
extensions for mapping to different data formats and network transports. 
These namespaces include:

Table 4: Artix Namespaces

Namespace Description

http://schemas.iona.com/transports/http Specifies the WSDL extensions for HTTP

http://schemas.iona.com/transports/http/configuration Specifies additional extensions to configure 
the HTTP transport.

http://schemas.iona.com/bindings/corba Specifies the WSDL extensions used to map 
data to CORBA. This namespace also 
specifies the transport specific configuration 
setting for a CORBA port.

http://schemas.iona.com/bindings/corba/typemap Specifies the type mapping information used 
to fully describe complex CORBA types 
defined in IDL.

http://schemas.iona.com/bindings/fixed Specifies the WSDL extentions used to 
describe fixed data bindings.

http?schemas.iona.com/bindings/tagged Specifies the WSDL extentions used to 
describe tagged data bindings.

http://schemas.iona.com/routing Specifies the WSDL extensions to define 
routing between Artix SAPs.

http://schemas.iona.com/transports/jms Specifies the WSDL extentions used to 
describe a JMS port.
23



CHAPTER 3 | Understanding Artix Contracts
Port types and code generation The Artix code generation tools, including the IDL generator, are driven by 
the port types defined in an Artix contract. For each port type defined in a 
contract, the code generators create an object named for the port type it 
represents. For example, the port type defined in Example 9 on page 19 
results in an object similar to the one shown in Example 10.

For more information on Artix code generation, see  Developing Artix 
Applications in C++ and Developing Artix Applications in Java.

http://schemas.iona.com/transports/mq Specifies the WSDL extensions to configure 
the WebSphere MQ transport.

Table 4: Artix Namespaces

Namespace Description

Example 10:personalInfo Object

class personalInfoLookup
{
  personalInfoLookup();
  ~personalInfoLookup();

  void lookup(int empID, personalLookupResponse &return);
}

 24



The Physical Section
The Physical Section

Overview The physical section of an Artix contract defines the actual bindings and 
transports used by the service access points. It includes the information 
specified in the <binding> and <service> tags of a WSDL document. It also 
includes the routing rules defining how the messages are routed between 
the endpoints defined in the contract.

Bindings WSDL is intended to describe service offered over the Web and therefore 
most bindings are specified using SOAP as the message format. WSDL can 
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA and 
FML. For specific information on using these bindings see the appropriate 
chapter in this guide.

Network protocols WSDL documents typically use HTTP as the network protocol. However, 
WSDL is not limited to representing connections over HTTP. Artix provides 
port descriptions for several network protocols including IIOP and 
WebSphere MQ. For more information on using these network protocols in 
Artix see the appropriate chapter in this guide.

CORBA type map When using the CORBA additional data is required to fully map the logical 
types to concrete CORBA data types. This is done using a CORBA type map 
extension to standard WSDL. For a detailed description of how Artix maps 
logical types to CORBA types read �CORBA Type Mapping� on page 58.

Routing To fully describe the integration of service access points across an 
enterprise, Artix contracts include routing rules for directing data between 
the service access points. Routing rules are described in �Routing� on 
page 27.
25



CHAPTER 3 | Understanding Artix Contracts
 26



CHAPTER 4

Routing
Artix provides messages routing based on operations, ports, or 
message attributes. 

In this chapter This chapter discusses the following topics:

Artix Routing page 28

Compatibility of Ports and Operations page 29

Defining Routes in Artix Contracts page 32

Attribute Propagation through Routes page 43

Error Handling page 45
27



CHAPTER 4 | Routing
Artix Routing

Overview Artix routing is implemented within Artix service access points and is 
controlled by rules specified in the SAP�s contract. Artix SAPs that include 
routing rules can be deployed either in standalone mode or embedded into 
an Artix service.

Artix supports the following types of routing:

� Port-based

� Operation-based

A router's contract must include definitions for the source services and 
destination services. The contract also defines the routes that connect 
source and destination ports, according to some specified criteria. This 
routing information is all that is required to implement port-based or 
operation-based routing. Content-based routing requires that application 
code be written to implement the routing logic.

Port-based Port-based routing acts on the port or transport-level identifier, specified by 
a <port> element in an Artix contract. This is the most efficient form of 
routing. Port-based routing can also make a routing decision based on port 
properties, such as the message header or message identifier. Thus Artix 
can route messages based on the origin of a message or service request, or 
based on the message header or identifier.

Operation-based Operation-based routing lets you route messages based on the logical 
operations described in an Artix contract. Messages can be routed between 
operations whose arguments are equivalent. Operation-based routing can be 
specified on the interface, <portType>, level or the finer grained operation 
level.
 28



Compatibility of Ports and Operations
Compatibility of Ports and Operations

Overview Artix can route messages between services that expect similar messages. 
The services can use different message transports and different payload 
formats, but the messages must be logically identical. For example, if you 
have a baseball scoring service that transmits data using SOAP over HTTP, 
Artix can route the score data to a reporting service that consumes data 
using CORBA. The only requirement for operation-based routing is that the 
two services have an operation that uses messages with the same logical 
description in the Artix contract defining their integration. For port-based 
routing, the destination service must have a matching operation defined for 
each of the operations defined for the source service.

Port-based routing Port-based routing is rough grained in that it the routing rules are defined on 
the <port> elements of an Artix contract and do not look at the individual 
operations defined in the logical interface, or <portType>, to which the port 
is bound. Therefore, port-based routing requires that the services between 
which messages are being routed must have compatible logical interface 
descriptions.

For two ports to have compatible logical interfaces the following conditions 
must be met:

� The destination�s logical interface must contain a matching operation 
for each operation in the source�s logical interface. Matching 
operations must have the same name.

� Each of the matching operations must have the same number of input, 
output, and fault messages.

� Each of the matching operations� messages must have the same 
sequence of part types.

For example, given the two logical interfaces defined in Example 11 you 
could construct a route from a port bound to baseballScorePortType to a 
port bound to baseballGamePortType. However, you could not create a 
29



CHAPTER 4 | Routing
route from a port bound to finalScorePortType to a port bound to 
baseballGamePortType because the message types used for the getScore 
operation do not match.

Example 11:Logical interface compatibility example

<message name="scoreRequest>
  <part name="gameNumber" type="xsd:int" />
</message>
<message name="baseballScore">
  <part name="homeTeam" type="xsd:int" />
  <part name="awayTeam" type="xsd:int" />
  <part name="final" type="xsd:boolean" />
</message>
<message name="finalScore">
  <part name="home" type="xsd:int" />
  <part name="away" type="xsd:int" />
  <part name="winningTeam" type="xsd:string" />
</message>
<message name="winner">
  <part name="winningTeam" type="xsd:string" />
</message>
<portType name="baseballGamePortType">
  <operation name="getScore">
    <input message="tns:scoreRequest" name="scoreRequest"/>
    <output message="tns:basballScore" name="baseballScore"/>
  </operation>
  <operation name="getWinner">
    <input message="tns:scoreRequest" name="winnerRequest"/>
    <output message="tns:winner" name="winner"/>
  </operation>
</portType>
<portType name="baseballScorePortType">
  <operation name="getScore">
    <input message="tns:scoreRequest" name="scoreRequest"/>
    <output message="tns:basballScore" name="baseballScore"/>
  </operation>
</portType>
<portType name="finalScorePortType">
  <operation name="getScore">
    <input message="tns:scoreRequest" name="scoreRequest"/>
    <output message="tns:finalScore" name="finalScore"/>
  </operation>
</portType>
 30



Compatibility of Ports and Operations
Operation-based routing Operation-based routing provides a finer grained level of control over how 
messages can be routed. Operation-based routing rules check for 
compatibility on the <operation> level of the logical interface description. 
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

� The operations must have the same number of input, output, and fault 
messages.

� The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 12 to the 
interfaces in Example 11 on page 30, you could specify a route from 
getFinalScore defined in fullScorePortType to getScore defined in 
finalScorePortType. You could also define a route from getScore defined 
in fullScorePortType to getScore defined in baseballScorePortType.

Example 12:Operation-based routing interface

<portType name="fullScorePortType">
  <operation name="getScore">
    <input message="tns:scoreRequest" name="scoreRequest"/>
    <output message="tns:basballScore" name="baseballScore"/>
  </operation>
  <operation name="getFinalScore">
    <input message="tns:scoreRequest" name="scoreRequest"/>
    <output message="tns:finalScore" name="finalScore"/>
  </operation>
</portType>
31



CHAPTER 4 | Routing
Defining Routes in Artix Contracts

Overview Artix port-based and operation-based routing are fully implemented in the 
contract defining the integration of your systems. Routes are defined using 
WSDL extensions that are defined in the namespace 
http://schemas.iona.com/routing. The most commonly used of these 
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages 
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be 
aware that any routing is taking place.

In this section This section discusses the following topics:

Using Port-Based Routing page 33

Using Operation-Based Routing page 36

Advanced Routing Features page 39
 32



Defining Routes in Artix Contracts
Using Port-Based Routing

Overview Port-based routing is the highest performance type of routing Artix performs. 
It is also the easiest to implement. All of the rules are specified in the Artix 
contract describing how your systems are integrated. The routes specify the 
source port for the messages and the destination port to which messages 
are routed.

Describing routes in an Artix 
contract

The Artix routing elements are defined in the 
http://schemas.iona.com/routing namespace. When describing routes in 
an Artix contract you must add the following to your contract�s definition 
element:

To describe a port-based route you use three elements:

<routing:route>

<routing:route> is the root element of each route you describe in your 
contract. It takes on required attribute, name, the specifies a unique identifier 
for the route. route also has an optional attribute, multiRoute, which is 
discussed in �Advanced Routing Features� on page 39.

<routing:source>

<routing:source> specifies the port from which the route will redirect 
messages. A route can have several source elements as long as they all 
meet the compatibility rules for port-based routing discussed in �Port-based 
routing� on page 29.

<routing:source> requires two attributes, service and port. service 
specifies the service element in which the source port is defined. port 
specifies the name of the port element from which messages are being 
received.

<definition ...
  xmlns:routing="http://schemas.iona.com/routing"
  ...>
33



CHAPTER 4 | Routing
<routing:destination>

<routing:destination> specifies the port to which the source messages 
are directed. The destination must be compatible with all of the source 
elements. For a discussion of the compatibility rules for port-based routing 
see �Port-based routing� on page 29.

In standard routing only one destination is allowed per route. Multiple 
destinations are allowed in conjunction with the route element�s muliRoute 
attribute that is discussed in �Advanced Routing Features� on page 39.

<routing:destination> requires two attributes, service and port. service 
specifies the service element in which the destination port is defined. port 
specifies the name of the port element to which messages are being sent.

Example For example, to define a route from baseballScorePortType to 
baseballGamePortType, defined in Example 11 on page 30, your Artix 
contract would contain the elements in Example 13.

Example 13:Port-based routing example

1 <service name="baseballScoreService">
  <port binding="tns:baseballScoreBinding"
        name="baseballScorePort">
    <soap:address location="http://localhost:8991"/>
  </port>
</service>
<service name="baseballGameService">
  <port binding="tns:baseballGameBinding"
        name="baseballGamePort">
    <corba:address location="file://baseball.ref"/>
  </port>
</service>

2 <routing:route name="baseballRoute">
  <routing:source service="tns:baseballScoreService"
                  port="tns:baseballScorePort" />
  <routing:destination service="tns:baseballGameService"
                       port="tns:baseballGamePort" />
</routing:route>
 34



Defining Routes in Artix Contracts
There are two sections to the contract fragment shown in Example 13:

1. The logical interfaces must be bound to physical ports in <service> 
elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and 
port attributes.
35



CHAPTER 4 | Routing
Using Operation-Based Routing

Overview Operation-based routing is a refinement of port-based routing. With 
operation-based routing you can specify specific operations within a logical 
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by 
adding routing rules to Artix contracts. 

Describing routes in an Artix 
contract

The contract elements for defining operation-based routes are defined in the 
same namespace as the elements for port-based routing and you will need 
to include in your contract�s namespace declarations to use operation based 
routing.

To specify an operation-based route you need to specify one additional 
element in your route description: <routing:operation>. 
<routing:operation> specifies an operation defined in the source port�s 
logical interface and an optional target operation in the destination port�s 
logical interface. You can specify any number of operation elements in a 
route. The operation elements must be specified after all of the source 
elements and before any destination elements.

operation takes one required attribute, name, that specifies the name of the 
operation in the source port�s logical interface that is to be used in the route.

operation also has an optional attribute, target, that specifies the name 
operation in the destination port�s logical interface to which the message is 
to be sent. If a target is specified, messages are routed between the two 
operations. If no target is specified, the source operation�s name is used as 
the name of the target operation. The source and target operations must 
meet the compatibility requirements discussed in �Operation-based routing� 
on page 31.

How operation-based rules are 
applied

Operation-based routing rules apply to all of the source elements listed in 
the route. Therefore, if an operation-based routing rule is specified, a 
message will be routed if all of the following are true:

� The message is received from one of the ports specified in a source 
element.
 36



Defining Routes in Artix Contracts
� The operation name associated with the received message is specified 
in one of the <operation> elements.

If there are multiple operation-based rules in the route, the message will be 
routed to the destination specified in the matching operation�s target 
attribute.

Example For example to route messages from getFinalScore defined in 
fullScorePortType, shown in Example 12 on page 31, to getScore defined 
in finalScorePortType, shown in Example 11 on page 30, your Artix 
contract would contain the elements in Example 14.

There are two sections to the contract fragment shown in Example 14:

1. The logical interfaces must be bound to physical ports in <service> 
elements of the Artix contract.

2. The route, scoreRoute, is defined using the <route:operation> 
element.

Example 14:Operation to Operation Routing

1 <service name="fullScoreService">
  <port binding="tns:fullScoreBinding"
        name="fullScorePort">
    <corba:address="file://score.ref" />
  </port>
</service>
<service name="finalScoreSerice">
  <port binding="tns:finalScoreBinding"
        name="finalScorePort">
    <tuxedo:address serviceName="finalScoreServer" />
  </port>
</service>

2 <routing:route name="scoreRoute">
  <routing:source service="tns:fullScoreService"
                  port="tns:fullScorePort"/>
  <routing:operation name="getFinalScore" target="getScore"/>
  <routing:destination service="tns:finalScoreService"
                       port="tns:finalScorePort"/>
</routing:route>
37



CHAPTER 4 | Routing
You could also create a route between getScore in baseballGamePortType 
to a port bound to baseballScorePortType; see Example 11 on 
page 30.The resulting contract would include the fragment shown in 
Example 15.

Note that the <routing:operation> element only uses the name attribute. 
In this case the logical interface bound to baseballScorePort, 
baseballScorePortType, must contain an operation getScore that has 
matching messages as discussed in �Port-based routing� on page 29.

Example 15:Operation to Port Routing Example

<service name="baseballGameService">
  <port binding="tns:baseballGameBinding"
        name="baseballGamePort">
    <soap:address location="http://localhost:8991"/>
  </port>
</service>
<service name="baseballScoreService">
  <port binding="tns:baseballScoreBinding"
        name="baseballScorePort">
    <iiop:address location="file:\\score.ref"/>
  </port>
</service>
<routing:route name="scoreRoute">
  <routing:source service="tns:baseballGameService"
                  port="tns:baseballGamePort"/>
  <routing:operation name="getScore"/>
  <routing:destination service="tns:baseballScoreService"
                       port="tns:baseballScorePort"/>
</routing:route>
 38



Defining Routes in Artix Contracts
Advanced Routing Features

Overview Artix routing also supports the following advanced routing capabilities:

� Broadcasting a message to a number of destinations.

� Specifying a failover service to route messages to provide a level of 
high-availability.

� Routing messages based on transport attributes in the received 
message�s header.

Message broadcasting Broadcasting a message with Artix is controlled by the routing rules in an 
Artix contract. Setting the  multiRoute attribute to the <routing:route> 
element to fanout in your route definition allows you to specify multiple 
destinations in your route definition to which the source messages are 
broadcast.

To do this using the routing editor of the Artix Designer

There are three restrictions to using the fanout method of message 
broadcasting:

� All of the sources and destinations must be oneways. In other words, 
they cannot have any output messages.

� The sources and destinations cannot have any fault messages.

� The input messages of the sources and destinations must meet the 
compatibility requirements as described in �Compatibility of Ports and 
Operations� on page 29.

Example 16 shows an Artix contract fragment describing a route for 
broadcasting a message to a number of ports.

Example 16:Fanout Broadcasting

<message name="statusAlert">
  <part name="alertType" type="xsd:int"/>
  <part name="alertText" type="xsd:string"/>
</message>
39



CHAPTER 4 | Routing
Failover routing Artix failover routing is also specified using the <routing:route>�s 
multiRoute attribute. To define a failover route you set multiRoute to equal 
failover. When you designate a route as failover, the routed message�s 
target is selected in the order that the destinations are listed in the route. If 
the first target in the list is unable to receive the message, it is routed to the 
second target. The route will traverse the destination list until either one of 
the target services can receive the message or the end of the list is reached.

<portType name="statusGenerator">
  <operation name="eventHappens">
    <input message="tns:statusAlert" name="statusAlert"/>
  </operation>
</portType>
<portType name="statusChecker">
  <operation name="eventChecker">
    <input message="tns:statusAlert" name="statusAlert"/>
  </operation>
</portType>
<service name="statusGeneratorService">
  <port binding="tns:statusGeneratorBinding"
        name="statusGeneratorPort">
    <soap:address location="http:\\localhost:8081"/>
  </port>
</service>
<service name="statusCheckerService">
  <port binding="tns:statusCheckerBinding"
        name="statusCheckerPort1">
    <corba:address location="file:\\status1.ref"/>
  </port>
  <port binding="tns:statusCheckerBinding"
        name="statusCheckerPort2">
    <tuxedo:address serviceName="statusService"/>
  </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
  <routing:source service="tns:statusGeneratorService"
                  port="tns:statusGeneratorPort"/>
  <routing:operation name="eventHappens" target="eventChecker"/>
  <routing:destination service="tns:statusCheckerService"
                       port="tns:statusCheckerPort1"/>
  <routing:destination service="tns:statusCheckerService"
                       port="tns:statusCheckerPort2"/>
</routing:route>

Example 16:Fanout Broadcasting
 40



Defining Routes in Artix Contracts
To create a failover route using the Artix Designer...

Given the route shown in Example 17, the message will first be routed to 
destinationPortA. If service on destinationPortA cannot receive the 
message, it is routed to destinationPortB.

Routing based on transport 
attributes

Artix allows you to specify routing rules based on the transport attributes set 
in a message�s header when using HTTP or WebSphere MQ. Rules based on 
message header transport attributes are defined in 
<routing:transportAttribute> elements in the route definition. Transport 
attribute rules are defined after all of the operation-based routing rules and 
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule 
are specified in sub-elements to the <routing:tranportAttribute>. A 
message passes the rule if it meets each criteria specified in the listed 
sub-element.

Each sub-element has a name attribute to specify the transport attribute, and 
most have a value attribute that can be tested. Attributes dealing with string 
comparisons have an optional ignorecase attribute that can have the values 
yes or no (no is the default). Each of the sub-elements can occur zero or 
more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the 

ignorecase attribute may be used. 

<routing:greater> applies only to numeric attributes and tests whether the 
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the 
attribute is less than the value.

Example 17:Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
  <routing:source service="tns:sourceService"
                  port="tns:sourcePort"/>
  <routing:destination service="tns:destinationServiceA"
                       port="tns:destinationPortA"/>
  <routing:destination service="tns:destinationServiceB"
                       port="tns:destinationPortB"/>
</routing:route>
41



CHAPTER 4 | Routing
<routing:startswith> applies to string attributes and tests whether the 
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the 
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests 
whether the attribute contains the value. For lists, it tests whether the value 
is a member of the list. contains accepts an optional ignorecase attribute 
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests 
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if 
the list is not empty. For strings, it passes the string is not empty.

For information on the transport attributes for HTTP see �Working with 
HTTP� on page 179. For information on the transport attributes for 
WebSphere MQ see �Working with WebSphere MQ� on page 133.

To add transport attributes rules to your route using the Artix Designer...

Example 18 shows a route using transport attribute rules based on HTTP 
header attributes. Only messages whose If-Modified-Since is equal to 
"Sat, 29 Oct 1994 19:43:31 GMT".

Example 18:Transport Attribute Rules

<rotuing:route name="httpTransportRoute">
  <routing:source service="tns:httpService"
                  port="tns:httpPort"/>
  <routing:trasnportAttributes>
    <rotuing:equals name="IfModifiedSince"
                    value="Sat, 29 Oct 1994 19:43:31 GMT"/>
  </routing:transportAttributes>
  <routing:destination service="tns:httpDest"
                       port="tns:httpDestPort"/>
</routing:route>
 42



Attribute Propagation through Routes
Attribute Propagation through Routes

Overview Often you will need to ensure that message attributes are propagated 
through the router when it transforms messages between different payload 
formats or translates it across different transports. Artix can either simply 
drop the message attributes between the formats or it can use attribute 
propagation rules specified in the Artix contract describing the system.

The rule describing attribute propagation between two endpoints are 
specified in the routing section of the Artix contract for the system. Each 
route must specify the attributes it wants to propagate and for which 
message it is propagated. If the attribute is not explicitly listed, the router 
will not propagate it.

Describing attribute propagation 
rules in an Artix contract

To describe attribute propagation rules in a contract you use two elements. 
One describes the attributes of the input message passed between the two 
endpoints. The other describes the attributes of the output message 
between the two endpoints.

<routing:propagateInputAttribute>

<routing:propagateInputAttribute> specifies an attribute from the input 
message to propagate through the route. It takes one required property, 
name, which specifies the name of the message attribute to be propagated 
through the route. For example, if you wanted to propagate the attribute 
UserName between two HTTP endpoints you would include the rule shown in 
Example 19 in your contract�s route.

Note: There are a few attributes that are included as part of the message 
body and these are propagated regardless of the specified propagation 
rules.

Example 19:Attribute Propagation Input Rule

<routing:route name="VOD" >
  <routing:propagateInputAttribute name="UserName" />
 ...
</routing:route>
43



CHAPTER 4 | Routing
propagateInputAttribute also takes a second optional property, target, 
that allows you to specify the name of the coressponding attribute name in 
the destination endpoint�s transport. If you do not specify a target, the router 
assumes that the attribute names for both transports are identical.

For example, if your route is between an HTTP port and a JMS port and you 
want to propagate the HTTP port�s UserName attribute to the JMS port�s 
JMSXUserID attribute you would include the rule shown in Example 20 in 
your contract�s route.

<routing:propagateOutputAttribute>

<routing:propagateOutputAttribute> specifies an attribute from the 
output message to propagate through the route. It takes the same properties 
as propagateInputAttributes.

For example, if you needed the service at the HTTP endpoint in Example 20 
needed to validate the UserName of the message returned from the JMS 
endpoint, you would need to specify that the output message�s JMSXUserID 
was propagated to the HTTP endpoint�s UserName attribute by including 
the rule shown in Example 21 in your contract�s route.

Example 20:Attribute Propagation Input Rule with Target

<routing:route name="VOD" >
  <routing:propagateInputAttribute name="UserName" 

target="JMSXUserID" />
 ...
</routing:route>

Example 21:Attribute Propagation Output Rule with Target

<routing:route name="VOD" >
  <routing:propagateOutputAttribute name="JMSXUserID" 

target="UserName" />
 ...
</routing:route>
 44



Error Handling
Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL, 
such as routing between incompatible logical interfaces and some kinds of 
route ambiguity, are logged and an exception is raised. This exception aborts 
the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned 
to the client; for example �no route� or �ambiguous routes�.
45



CHAPTER 4 | Routing
 46



CHAPTER 5

Building Contracts 
from Java Classes
Artix provides tools for quickly building contracts from Java 
objects.

Overview Many applications have been developed using Java to take advantage of 
Java�s platform independence among other things. Java�s platform 
independence is a perfect compliment to Artix�s transport independence. To 
facilitate the integration of Java applications with Artix, Artix provides tools 
for generating the logical portion of an Artix contract from existing Java 
classes. These tools use the mapping rules described in Sun�s JAX-RPC 1.1 
specification.

javatowsdl tool Artix supplies a command line tool, javatowsdl, that generates the logical 
portion of an Artix contract for existing Java class files. To generate the 
logical portion of an Artix contract using the javatowsdl tool use the 
following command:

javatowsdl  [-t namespace][-x namespace][-i porttype]
            [-o file][-useTypes][-v][-?] ClassName
47



CHAPTER 5 | Building Contracts from Java Classes
The command has the following options:

The generated WSDL will not contain any physical details concerning the 
payload formats or network transports that will be used when exposing the 
service. You will need to add this information manually.

Supported types Table 5 shows the Java types Artix can map to an Artix contract.

-t namespace Specifies the target namespace of the generated WSDL 
document. By default, the java package name will be 
used as the target namespace. If no package name is 
specified, the generated target namespace will be 
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XMLSchema 
information generated to represent the data types inside 
the WSDL document.By default, the generated target 
namespace of the XMLSchema will be 
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated <portType> in the 
WSDL document. By default the name of the class from 
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

-useTypes Specifies that the generated WSDL will use types in the 
WSDL message parts. By default, messages are 
generated using wrapped doc/literal style. A wrapper 
element with a sequence will be created to hold method 
parameters.

-v Prints out the version of the tool.

-? Prints out a help message explaining the command line 
flags.

Note: When generating contracts, javatowsdl will add newly generated 
WSDL to an existing contract if a contract of the same name exists. It will 
not generate a new file or warn you that a previous contract exists.

Table 5: Java to WSDL Mappings

Java Artix Contract

boolean xsd:boolean
 48



In the case of helper classes for a Java primitive, such as 
java.lang.Integer, the instance is mapped to an element with the nillable 
attribute set to true and the type set to the corresponding Java primitive 
type. Example 22 shows the mapping for a java.lang.Float.

Exceptions Aritx will map user defined exceptions to the logical Artix contract according 
to the rules laid out in the JAX-RPC specification. The exception will be 
mapped to a <fault> within the operation representing the corresponding 

byte xsd:byte

short xsd:short

int xsd:int

long xsd:long

float xsd:float

double xsd:double

byte[] xsd:base64binary

java.lang.String xsd:string

java.math.BigInteger xsd:integer

java.math.BigDecimal xsd:decimal

java.util.Calendar xsd:dateTime

java.util.Date xsd:dateTime

java.xml.namespace.QName xsd:QName

java.net.URI xsd:anyURI

Table 5: Java to WSDL Mappings

Java Artix Contract

Example 22:Mapping of java.lang.Float to XMLSchema

<element name="floatie" nillable="true" type="xsd:float" />
49



CHAPTER 5 | Building Contracts from Java Classes
Java method. The generated <fault> will reference a generated <message> 
describing the Java exception class. The name attribute of the <message> 
will be taken from the name of the Java exception class.

Because SOAP only supports <fault> messages with a single <part>, the 
generated <message> is mapped to have only one <part>. When the Java 
exception only has one field, it is used as the <part> and its name and type 
attributes are mapped from the exception�s field. When the Java exception 
contains more than one field, Artix generates a <complexType> to describe 
the exception�s data. The generated <complexType> will have one element 
for each field of the exception. The name and type attributes of the generated 
element will be taken from the corresponding field in the exception.

Example For example, if you had a Java interface similar to that shown in 
Example 23, you could generate an Artix contract on it by compiling the 
interface into a .class file and running the command javatowsdl Base.

Note: Standard Java exceptions are not mapped into the generated Artix 
contract.

Example 23:Base Java Class

//Java
public interface Base
{
  public byte[] echoBase64(byte[] inputBase64);

  public boolean echoBoolean(boolean inputBoolean);

  public float echoFloat(float inputFloat);

  public float[] echoFloatArray(float[] inputFloatArray);

  public int echoInteger(int inputInteger);

  public int[] echoIntegerArray(int[] inputIntegerArray);
}

 50



The resulting Artix contract will be similar to Example 24.

Example 24:Base Artix Contract

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="Base" targetNamespace="http://www.iona.com/Base" 
    xmlns:ns1="http://www.iona.com/Base" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:xsd1="http://www.iona.com/Base/xsd">
    <wsdl:types>
        <schema targetNamespace="http://www.iona.com/Base/xsd" 
            xmlns="http://www.w3.org/2001/XMLSchema">
            <element name="echoBoolean">
                <complexType>
                    <sequence>
                        <element name="booleanParam0" type="xsd:boolean"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoBooleanResponse">
                <complexType>
                    <sequence>
                        <element name="return" type="xsd:boolean"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoBase64">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="_bParam0" 
                            type="xsd:byte"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoBase64Response">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="return" 
                            type="xsd:byte"/>
                    </sequence>
                </complexType>
            </element>
51



CHAPTER 5 | Building Contracts from Java Classes
            <element name="echoHexBinary">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="_bParam0" 
                            type="xsd:byte"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoHexBinaryResponse">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="return" 
                            type="xsd:byte"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoFloat">
                <complexType>
                    <sequence>
                        <element name="floatParam0" type="xsd:float"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoFloatResponse">
                <complexType>
                    <sequence>
                        <element name="return" type="xsd:float"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoFloatArray">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="_fParam0" 
                            type="xsd:float"/>
                    </sequence>
                </complexType>
            </element>

Example 24:Base Artix Contract
 52



            <element name="echoFloatArrayResponse">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="return" 
                            type="xsd:float"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoInteger">
                <complexType>
                    <sequence>
                        <element name="intParam0" type="xsd:int"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoIntegerResponse">
                <complexType>
                    <sequence>
                        <element name="return" type="xsd:int"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoIntegerArray">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="_iParam0" 
                            type="xsd:int"/>
                    </sequence>
                </complexType>
            </element>
            <element name="echoIntegerArrayResponse">
                <complexType>
                    <sequence>
                        <element maxOccurs="unbounded" minOccurs="0" name="return" 
                            type="xsd:int"/>
                    </sequence>
                </complexType>
            </element>
    </wsdl:types>
    <wsdl:message name="echoBoolean">
        <wsdl:part element="xsd1:echoBoolean" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoBooleanResponse">
        <wsdl:part element="xsd1:echoBooleanResponse" name="parameters"/>
    </wsdl:message>

Example 24:Base Artix Contract
53



CHAPTER 5 | Building Contracts from Java Classes
    <wsdl:message name="echoBase64">
        <wsdl:part element="xsd1:echoBase64" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoBase64Response">
        <wsdl:part element="xsd1:echoBase64Response" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoHexBinary">
        <wsdl:part element="xsd1:echoHexBinary" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoHexBinaryResponse">
        <wsdl:part element="xsd1:echoHexBinaryResponse" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoFloat">
        <wsdl:part element="xsd1:echoFloat" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoFloatResponse">
        <wsdl:part element="xsd1:echoFloatResponse" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoFloatArray">
        <wsdl:part element="xsd1:echoFloatArray" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoFloatArrayResponse">
        <wsdl:part element="xsd1:echoFloatArrayResponse" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoInteger">
        <wsdl:part element="xsd1:echoInteger" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoIntegerResponse">
        <wsdl:part element="xsd1:echoIntegerResponse" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoIntegerArray">
        <wsdl:part element="xsd1:echoIntegerArray" name="parameters"/>
    </wsdl:message>
    <wsdl:message name="echoIntegerArrayResponse">
        <wsdl:part element="xsd1:echoIntegerArrayResponse" name="parameters"/>
    </wsdl:message>
    <wsdl:portType name="Base">
        <wsdl:operation name="echoBoolean">
            <wsdl:input message="ns1:echoBoolean" name="echoBoolean"/>
            <wsdl:output message="ns1:echoBooleanResponse" name="echoBoolean"/>
        </wsdl:operation>
        <wsdl:operation name="echoBase64">
            <wsdl:input message="ns1:echoBase64" name="echoBase64"/>
            <wsdl:output message="ns1:echoBase64Response" name="echoBase64"/>
        </wsdl:operation>

Example 24:Base Artix Contract
 54



        <wsdl:operation name="echoHexBinary">
            <wsdl:input message="ns1:echoHexBinary" name="echoHexBinary"/>
            <wsdl:output message="ns1:echoHexBinaryResponse" name="echoHexBinary"/>
        </wsdl:operation>
        <wsdl:operation name="echoFloat">
            <wsdl:input message="ns1:echoFloat" name="echoFloat"/>
            <wsdl:output message="ns1:echoFloatResponse" name="echoFloat"/>
        </wsdl:operation>
        <wsdl:operation name="echoFloatArray">
            <wsdl:input message="ns1:echoFloatArray" name="echoFloatArray"/>
            <wsdl:output message="ns1:echoFloatArrayResponse" name="echoFloatArray"/>
        </wsdl:operation>
        <wsdl:operation name="echoInteger">
            <wsdl:input message="ns1:echoInteger" name="echoInteger"/>
            <wsdl:output message="ns1:echoIntegerResponse" name="echoInteger"/>
        </wsdl:operation>
        <wsdl:operation name="echoIntegerArray">
            <wsdl:input message="ns1:echoIntegerArray" name="echoIntegerArray"/>
            <wsdl:output message="ns1:echoIntegerArrayResponse" name="echoIntegerArray"/>
        </wsdl:operation>
    </wsdl:portType>
</wsdl:definitions>

Example 24:Base Artix Contract
55



CHAPTER 5 | Building Contracts from Java Classes
 56



CHAPTER 6

Working with 
CORBA
The CORBA Plug-in allows CORBA applications to be used with 
an Artix integration solution. It also provides CORBA 
functionality to Artix applications.

In this chapter This chapter discusses the following topics:

CORBA Type Mapping page 58

Modifying a Contract to Use CORBA page 92

Generating IDL from an Artix Contract page 100

Generating a Contract from IDL page 101
57



CHAPTER 6 | Working with CORBA
CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA 
application to understand, Artix contracts need to unambiguously describe 
how data is mapped to CORBA data types. For primitive types, the mapping 
is straightforward. However, complex types such as structures, arrays, and 
exceptions require more detailed descriptions.

Unsupported types The following CORBA types are not supported:

� value types

� boxed values

� local interfaces

� abstract interfaces

� forward-declared interfaces

In this section This section discusses the following topics:

Primitive Type Mapping page 59

Complex Type Mapping page 61

Recursive Type Mapping page 73

Mapping XMLSchema Features that are not Native to IDL page 75

Artix References page 85
 58



CORBA Type Mapping
Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema 
types. Table 6 lists the mappings for the supported IDL primitive types.

Unsupported types Artix does not support the CORBA long double type.

Table 6: Primitive Type Mapping for CORBA Plug-in

IDL Type  XML Schema Type CORBA Binding Type Artix C++ Type

Any xsd:anyType corba:any IT_Bus::AnyHolder

boolean xsd:boolean corba:boolean IT_Bus::Boolean

char xsd:byte corba:char IT_Bus::Char

wchar xsd:string corba:wchar

double xsd:double corba:double IT_Bus::Double

float xsd:float corba:float IT_Bus::Float

octet xsd:unsignedByte corba:octet IT_Bus::Octet

long xsd:int corba:long IT_Bus::Long

long long xsd:long corba:longlong IT_Bus::LongLong

short xsd:short corba:short IT_Bus::Short

string xsd:string corba:string IT_Bus::String

wstring xsd:string corba:wstring

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong 

unsigned long long xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong
59



CHAPTER 6 | Working with CORBA
Example The mapping of primitive types is handled in the CORBA binding section of 
the Artix contract. For example, consider an input message that has a part, 
score, that is described as an xsd:int as shown in Example 25.

 It is described in the CORBA binding as shown in Example 26.

The IDL is shown in Example 27.

Example 25:WSDL Operation Definition

<message name="runsScored">
  <part name="score" />
</message>
<portType ...>
  <operation name="getRuns">
    <input message="tns:runsScored" name="runsScored" />
  </operation>
</portType>

Example 26:Example CORBA Binding

<binding ...>
  <operation name="getRuns">
    <corba:operation name="getRuns">
       <corba:param name="score" mode="in" idltype="corba:long"/>
    </corba:operation>
    <input/>
    <output/>
  </operation>
</binding>

Example 27:getRuns IDL

// IDL
void getRuns(in score);
 60



CORBA Type Mapping
Complex Type Mapping

Overview Because complex types (such as structures, arrays, and exceptions) require 
a more involved mapping to resolve type ambiguity, the full mapping for a 
complex type is described in a <corba:typeMapping> element at the bottom 
of an Artix contract. This element contains a type map describing the 
metadata required to fully describe a complex type as a CORBA data type. 
This metadata may include the members of a structure, the bounds of an 
array, or the legal values of an enumeration.

The <corba:typeMapping> element requires a targetNamespace attribute 
that specifies the namespace for the elements defined by the type map. The 
default URI is http://schemas.iona.com/bindings/corba/typemap. By 
default, the types defined in the type map are referred to using the corbatm: 
prefix.

Mapping chart Table 7 shows the mappings from complex IDL types to XMLSchema, Artix 
CORBA type, and Artix C++ types.

Table 7: Complex Type Mapping for CORBA Plug-in

IDL Type  XML Schema Type CORBA Binding Type Artix C++ Type

struct See Example 28 corba:struct IT_Bus::SequenceComplexType

enum See Example 29 corba:enum IT_Bus::AnySimpleType

fixed xsd:decimal corba:fixed IT_Bus::Decimal

union See Example 34 corba:union IT_Bus::ChoiceComplexType

typedef See Example 37

array See Example 39 corba:array IT_Bus::ArrayT<>

sequence See Example 45 corba:sequence IT_Bus::ArrayT<>

exception See Example 48 corba:exception IT_Bus::UserFaultException
61



CHAPTER 6 | Working with CORBA
Structures Structures are mapped to <corba:struct> elements. A <corba:struct> 
element requires three attributes:

The elements of the structure are described by a series of <corba:member> 
elements. The elements must be declared in the same order used in the IDL 
representation of the CORBA type. A <corba:member> requires two 
attributes:

For example, the structure defined in Example 2 on page 11, personalInfo, 
can be represented in the CORBA type map as shown in Example 28: 

The idltype corbatm:hairColorType refers to a complex type that is defined 
earlier in the CORBA type map.

Enumerations Enumerations are mapped to <corba:enum> elements. A <corba:enum> 
element requires three attributes:

name A unique identifier used to reference the CORBA type in 
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a 
primitive type or another complex type that is defined in 
the type map.

Example 28:CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
  <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
    <corba:member name="name" idltype="corba:string" />
    <corba:member name="age" idltype="corba:long" />
    <corba:member name="hairColor" idltype="corbatm:hairColorType" />
  </corba:struct>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in 
the binding.

type The logical type the structure is mapping.
 62



CORBA Type Mapping
The values for the enumeration are described by a series of 
<corba:enumerator> elements. The values must be listed in the same order 
used in the IDL that defines the CORBA enumeration. A 
<corba:enumerator> element takes one attribute, value.

For example, the enumeration defined in Example 2 on page 11, 
hairColorType, can be represented in the CORBA type map as shown in 
Example 29: 

Fixed Fixed point data types are a special case in the Artix contract mapping. A 
CORBA fixed type is represented in the logical portion of the contract as the 
XML Schema primitive type xsd:decimal. However, because a CORBA fixed 
type requires additional information to be fully mapped to a physical CORBA 
data type, it must also be described in the CORBA type map section of an 
Artix contract.

CORBA fixed data types are described using a <corba:fixed> element. A 
<corba:fixed> element requires five attributes:

repositoryID The fully specified repository ID for the CORBA type.

Example 29:CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
  <corba:enum name="hairColorType" type="xsd1:hairColorType" 

repositoryID="IDL:hairColorType:1.0">
    <corba:enumerator value="red" />
    <corba:enumerator value="brunette" />
    <corba:enumerator value="blonde" />
  </corba:enum>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in 
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA 
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed. 
This corresponds to the first number in the fixed type 
definition.
63



CHAPTER 6 | Working with CORBA
For example, the fixed type defined in Example 30, myFixed, would be 

described by a type entry in the logical type description of the contract, as 
shown in Example 31.

In the CORBA type map portion of the contract, it would be described by an 
entry similar to Example 32. Notice that the description in the CORBA type 
map includes the information needed to fully represent the characteristics of 
this particular fixed data type.

Unions Unions are particularly difficult to describe using the WSDL framework of an 
Artix contract. In the logical data type descriptions, the difficulty is how to 
describe the union without losing the relationship between the members of 
the union and the discriminator used to select the members. The easiest 
method is to describe a union using an <xsd:choice> and list the members 
in the specified order. The OMG�s proposed method is to describe the union 
as an <xsd:sequence> containing one element for the discriminator and an 
<xsd:choice> to describe the members of the union. However, neither of 
these methods can accurately describe all the possible permutations of a 
CORBA union.

scale The number of digits allowed after the decimal point. 
This corresponds to the second number in the fixed type 
definition.

Example 30:myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 31:Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 32:CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
  <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4" 

scale="2" />
</corba:typeMapping>
 64



CORBA Type Mapping
Artix�s IDL compiler generates a contract that describes the logical union 
using both methods. The description using <xsd:sequence> is named by 
prepending _omg_ to the types name. The description using <xsd:chioce> is 
used as the representation of the union throughout the contract.

For example consider the union, myUnion, shown in Example 33:  

This union is described in the logical portion of the contact with entries 
similar to those shown in Example 34:

Example 33:myUnion IDL

//IDL
union myUnion switch (short)
{
  case 0:
    string case0;
  case 1:
  case 2:
    float case12;
  default:
    long caseDef;
};

Example 34:myUnion Logical Description

<xsd:complexType name="myUnion">
  <xsd:choice>
    <xsd:element name="case0" type="xsd:string"/>
    <xsd:element name="case12" type="xsd:float"/>
    <xsd:element name="caseDef" type="xsd:int"/>
  </xsd:choice>
</xsd:complexType>
<xsd:complexType name="_omg_myUnion4">
  <xsd:sequence>
    <xsd:element minOccurs="1" maxOccurs="1" name="discriminator" type="xsd:short"/>
    <xsd:choice minOccurs="0" maxOccurs="1">
      <xsd:element name="case0" type="xsd:string"/>
      <xsd:element name="case12" type="xsd:float"/>
      <xsd:element name="caseDef" type="xsd:int"/>
    </xsd:choice>
  </xsd:sequence>
</xsd:complexType>
65



CHAPTER 6 | Working with CORBA
In the CORBA type map portion of the contract, the relationship between 
the union�s discriminator and its members must be resolved. This is 
accomplished using a <corba:union> element. A <corba:union> element 
has four mandatory attributes.

The members of the union are described using a series of nested 
<corba:unionbranch> elements. A <corba:unionbranch> element has two 
required attributes and one optional attribute.

Each <corba:unionbranch> except for one describing the union�s default 
member will have at least one nested <corba:case> element. The 
<corba:case> element�s only attribute, label, specifies the value used to 
select the union member described by the <corba:unionbranch>.

For example myUnion, Example 33 on page 65, would be described with a 
CORBA type map entry similar to that shown in Example 35.

name A unique identifier used to reference the CORBA type in 
the binding.

type The logical type the structure is mapping.

descriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be 
either a primitive type or another complex type that is 
defined in the type map.

default The optional attribute specifying if this member is the 
default case for the union. To specify that the value is the 
default set this attribute to true.

Example 35:myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
  <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short" 

repositoryID="IDL:myUnion:1.0">
    <corba:unionbranch name="case0" idltype="corba:string">
      <corba:case label="0" />
    </corba:unionbranch>
 66



CORBA Type Mapping
Type Renaming Renaming a type using a typedef statement is handled using a 
<corba:alias> element in the CORBA type map. The Artix IDL compiler 
also adds a logical description for the renamed type in the <types> section 
of the contract, using an <xsd:simpleType>.

For example, the definition of myLong in Example 36, can be described as 

shown in Example 37:

    <corba:unionbranch name="case12" idltype="corba:float">
      <corba:case label="1" />
      <corba:case label="2" />
    </corba:unionbranch>
    <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
  </corba:union>
</corba:typeMapping>

Example 35:myUnion CORBA type map

Example 36:myLong IDL

//IDL
typedef long myLong;

Example 37:myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
  <types>
  ...
    <xsd:simpleType name="myLong">
      <xsd:restriction base="xsd:int"/>
    </xsd:simpleType>
  ...
  </types>
...
  <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
    <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0" 

basetype="corba:long"/>
  </corba:typeMapping>
</definitions>
67



CHAPTER 6 | Working with CORBA
Arrays Arrays are described in the logical portion of an Artix contract, using an 
<xsd:sequence> with its minOccurs and maxOccurs attributes set to the 
value of the array�s size. For example, consider an array, myArray, as 
defined in Example 38.

Its logical description will be similar to that shown in Example 39:

In the CORBA type map, arrays are described using a <corba:array> 
element. A <corba:array> has five required attributes.

For example, the array myArray will have a CORBA type map description 
similar to the one shown in Example 40: 

Example 38:myArray IDL

//IDL
typedef long myArray[10];

Example 39:myArray logical description

<xsd:complexType name="myArray">
  <xsd:sequence>
    <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10" />
  </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in 
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array�s element. This type can be 
either a primitive type or another complex type that is 
defined within the type map.

bound The size of the array.

Example 40:myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
  <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray" 

elemtype="corba:long" bound="10"/>
</corba:typeMapping>
 68



CORBA Type Mapping
Multidimensional Arrays Multidimensional arrays are handled by creating multiple arrays and 
combining them to form the multidimensional array. For example, an array 
defined as follows: 

generates the following logical description: 

The corresponding entry in the CORBA type map is:

Sequences Because CORBA sequences are an extension of arrays, sequences are 
described in Artix contracts similarly. Like arrays, sequences are described 
in the logical type section of the contract using <xsd:sequence> elements. 
Unlike arrays, the minOccurs and maxOccurs attributes do not have the 
same value. minOccurs is set to 0 and maxOccurs is set to the upper limit of 
the sequence. If the sequence is unbounded, maxOccurs is set to unbounded.

Example 41:Multidimensional Array

\\ IDL
typedef long array2d[10][10];

Example 42:Logical Description of a Multidimensional Array

<xsd:complexType name="_1_array2d">
  <xsd:sequence>
    <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10"/>
  </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="array2d">
  <xsd:sequence>
    <xsd:element name="item" type="xsd1:_1_array2d" minOccurs="10" maxOccurs="10"/>
  </xsd:sequence>
</xsd:complexType>

Example 43:CORBA Type Map for a Multidimensional Array

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
  <corba:anonarray name="_2_array2d" type="xsd1:_2_array2d" elemtype="corba:long" bound="10"/>
  <corba:array name="array2d" repositoryID="IDL:array2d:1.0" type="xsd1:array2d" 

elemtype="corbatm:_2_array2d" bound="10"/>
</corba:typeMapping>
69



CHAPTER 6 | Working with CORBA
For example, the two sequences defined in Example 44, longSeq and 
charSeq: 

are described in the logical section of the contract with entries similar to 
those shown in Example 45:

In the CORBA type map, sequences are described using a 
<corba:sequence> element. A <corba:sequence> has five required 
attributes.

Example 44: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 45:Logical Description of Sequences

<xsd:complexType name="longSeq">
  <xsd:sequence>
    <xsd:element name="item" type="xsd:int" minOccurs="0" maxOccurs="unbounded"/>
  </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="charSeq">
  <xsd:sequence>
    <xsd:element name="item" type="xsd:byte" minOccurs="0" maxOccurs="10"/>
  </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in 
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence�s elements. This type can 
be either a primitive type or another complex type that is 
defined within the type map.

bound The size of the sequence.
 70



CORBA Type Mapping
For example, the sequences described in Example 45 has a CORBA type 
map description similar to that shown in Example 46:

Exceptions Because exceptions typically return more than one piece of information, they 
require both an abstract type description and a CORBA type map entry. In 
the abstract type description, exceptions are described much like structures. 
In the CORBA type map, exceptions are described using <corba:exception> 
elements. A <corba:exception> element has three required attributes:

The pieces of data returned with the exception are described by a series of  
<corba:member> elements. The elements must be declared in the same 
order as in the IDL representation of the exception. A <corba:member> has 
two required attributes:

For example, the exception defined in Example 47, idNotFound, 

Example 46:CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
    <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq" 

elemtype="corba:long" bound="0"/>
    <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq" 

elemtype="corba:char" bound="10"/>
  </corba:typeMapping>

name A unique identifier used to reference the CORBA type in 
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a 
primitive type or another complex type that is defined 
within the type map.

Example 47: idNotFound Exception

\\IDL
exception idNotFound
{
  short id;
};
71



CHAPTER 6 | Working with CORBA
would be described in the logical type section of the contract, with an entry 
similar to that shown in Example 48:

In the CORBA type map portion of the contract, idNotFound is described by 
an entry similar to that shown in Example 49:

Example 48: idNotFound logical structure

<xsd:complexType name="idNotFound">
  <xsd:sequence>
    <xsd:element name="id" type="xsd:short"/>
  </xsd:sequence>
</xsd:complexType>

Example 49:CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
  <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
    <corba:member name="id" idltype="corba:short" />
  </corba:exception>
</corba:typeMapping>
 72



CORBA Type Mapping
Recursive Type Mapping

Overview Both CORBA IDL and XMLSchema allow you define recursive data types. 
Because both type definition schemes support recursion, Artix directly maps 
recursive types between IDL and XMLSchema. The CORBA typemap 
generated by Artix to support the CORBA binding is straightforward and 
directly reflects the recursive nature of the data types.

Defining recursive types in 
XMLSchema

Recursive data types are defined in XMLSchema as complex types using the 
<complexType> element. XMLSchema supports two means of defining a 
recursive type. The first is to have an element of a complex type be of a type 
that includes an element of the type being defined. Example 50 shows a 
recursive complex type XMLSchema type, allAboutMe, defined using a 
named type.

XMLSchema also supports the definition of recursive types using anonymous 
types. However, Artix does not support this style of defining recursive types.

CORBA typemap As shown in Example 51, Artix maps recursive types into the CORBA 
typemap section of the Artix contract as it would non-recursive types, except 
that it maps the recursive element, which is a sequence in this case, to an 

Example 50:Recursive XMLSchema Type

<complexType name="allAboutMe">
  <sequence>
    <element name="shoeSize" type="xsd:int" />
    <element name="mated" type="xsd:boolean" />
    <element name="conversation" type="tns:moreMe" />
  </sequence>
</complexType>
<complexType name="moreMe">
  <sequence>
    <element name="item" type="tns:allAboutMe"
             maxOccurs="unbounded" />
  </sequence>
</complexType>
73



CHAPTER 6 | Working with CORBA
anonymous type using the <corba:anonsequence> element. The 
<corba:anonsequence> specifies that when IDL is generated from this 
binding the associated sequence will not generate a new type for itself.

Generated IDL While the XML in the CORBA typemap does not explicitly retain the 
recursive nature of recursive XMLSchema types, the IDL generated from the 
typemap restores the recursion in the IDL type. The IDL generated from the 
typemap in Example 51 on page 74 defines allAboutMe using recursion. 
Example 52 shows the generated IDL.

Example 51:Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
                    elemtype="ns1:allAboutMe" type="xsd1:me" />
<corba:struct name="allAboutMe"
              repositoryID="IDL:allAboutMe:1.0"
              type="tns:allAboutMe">
  <corba:member name="shoeSize" idltype="corba:long"/>
  <corba:member name="mated" idltype="corba:boolean"/>
  <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>

Example 52: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
  long shoeSize;
  boolean mated;
  sequence<allAboutMe> conversation;
};
 74



CORBA Type Mapping
Mapping XMLSchema Features that are not Native to IDL

Overview There are a number of data types that you can describe in your Artix 
contract using XMLSchema that are not native to IDL. Artix can map these 
data types into legal IDL so that your CORBA systems can interoperate with 
applications that use these data type descriptions in their contracts.

These features include:

� Binary type mappings

� Attribute mapping

� Nested choice mapping

� Inheritance mapping

� Nillable mapping

Binary type mappings There are three binary types defined in XMLSchema that have direct 
correlation to IDL data-types. These types are:

� xsd:base64Binary

� xsd:hexBinary

� soapenc:base64

These types are all mapped to octet sequences in CORBA. For example, the 
schema type, joeBinary, described in Example 53 results in the CORBA 
typemap description shown in Example 54.

The resulting IDL for joeBinary is shown in Example 55.

Example 53: joeBinary schema description

<xsd:element name="joeBinary type="xsd:hexBinary" />

Example 54: joeBinary CORBA typemap

<corba:sequence name="joeBinary" bound="0"
 elemtype="corba:octet" repositoryID="IDL:joeBinary:1.0"
 type="xsd:hexBinary" />
75



CHAPTER 6 | Working with CORBA
The mappings for xsd:base64Binary and soapenc:base64 would be similar 
except that the type attribute in the CORBA typemap would specify the 
appropriate type.

Attribute mapping Required XMLSchema attributes are treated as normal elements in a 
CORBA structure.

 For example, the complex type, madAttr, described in Example 56 contains 
two attributes, material and size.

madAttr would generate the CORBA typemap shown in Example 57. Notice 
that size and  material are simply incorporated into the madAttr structure 
in the CORBA typemap.

Example 55: joeBinary IDL

\\IDL
typedef sequence<octet> joeBinary;

Note: Attributes are not supported for complex types defined with 
<choice>.

Example 56:madAttr XMLSchema

<complexType name="madAttr">
  <sequence>
    <element name="style" type="xsd:string" />
    <element name="gender" type="xsd:byte" />
  </sequence>
  <attribute name="size" type="xsd:int" />
  <attribute name="material" />
    <simpleType>
      <restriction base="xsg:string">
        <maxLength value="3" />
      </restriction>
    </simpleType>
  </attribute>
<complexType>

Example 57:madAttr CORBA typemap

<corba:annonstring bound="3" name="materialType" type="tns:material" />
 76



CORBA Type Mapping
Similarly, in the IDL generated using a contract containing madAttr, the 
attributes are made elements of the structure and are placed in the order in 
which they are listed in the contract. The resulting IDL structure is shown in 
Example 58.

Nested choice mapping When mapping complex types containing nested xsd:choice elements into 
CORBA, Artix will break the nested xsd:choice elements into separate 
unions in CORBA. The resulting union will have the name of the original 
complex type with ChoiceType appended to it. So, if the original complex 
type was named joe, the union representing the nested choice would be 
named joeChoiceType.

The nested choice in the original complex type will be replaced by an 
element of the new union created to represent the nested choice. This 
element will have the name of the new union with _f appended. So if the 
original structure was named carla, the replacement element will be named 
carlaChoiceType_f.

The original type description will not be changed, the break out will only 
appear in the CORBA typemap and in the resulting IDL.

<corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="typens:madAttr">
  <corba:member name="style" idltype="corba:string"/>
  <corba:member name="gender" idltype="corba:char"/>
  <corba:member name="size" idltype="corba:long"/>
  <corba:member name="material" idltype="ns1:materialType"/>
</corba:struct>

Example 57:madAttr CORBA typemap

Example 58:madAttr IDL

\\IDL
struct madAttr
{
  string style;
  char gender;
  long size;
  string<3> material;
}

77



CHAPTER 6 | Working with CORBA
For example, the complex type details, shown in Example 59, contains a 
nested choice.

The resulting CORBA typemap, shown in Example 60, contains a new 
union, detailsChoiceType, to describe the nested choice. Note that the 
type attribute for both details and detailsChoiceType have the name of 
the original complex type defined in the schema. The nested choice is 
represented in the original structure as a member of type 
detailsChoiceType.

Example 59:details XMLSchema

<complexType name="Details">
  <sequence>
    <element name="name" type="xsd:string"/>
    <element name="address" type="xsd:string"/>
    <choice>
      <element name="employer" type="xsd:string"/>
      <element name="unemploymentNumber" type="xsd:int"/>
    </choice>
  </sequence>
</complexType>

Example 60:details CORBA typemap

<corba:struct name="details" repositoryID="IDL:details:1.0" type="xsd1:details">
  <corba:member idltype="corba:string" name="name"/>
  <corba:member idltype="corba:string" name="address"/>
  <corba:member idltype="ns1:detailsChoiceType" name="detailsChoiceType_f"/>
</corba:struct>
<corba:union discriminator="corba:long" name="detailsChoiceType"
             repositoryID="IDL:detailsChoiceType:1.0" type="xsd1:details">
  <corba:unionbranch idltype="corba:string" name="employer">
    <corba:case label="0"/>
  </corba:unionbranch>
  <corba:unionbranch idltype="corba:long" name="unemploymentNumber">
    <corba:case label="1"/>
  </corba:unionbranch>
</corba:union>
 78



CORBA Type Mapping
The resulting IDL is shown in Example 61.

Inheritance mapping XMLSchema describes inheritance using the <complexContent> tag and the 
<extension> tag. For example the complex type seaKayak, described in 
Example 62, extends the complex type kayak by including two new fields.

Example 61:details IDL

\\IDL
union detailsChoiceType switch(long)
{
  case 0:
    string employer;
  case 1:
    long unemploymentNumber;
};
struct details
{
  string name;
  string address;
  detailsChoiceType DetailsChoiceType_f;
};

Example 62: seaKayak XMLSchema

<complexType name="kayak">
  <sequence>
    <element name="length" type="xsd:int" />
    <element name="width" type="xsd:int" />
    <element name="material" type="xsd:string" />
  </sequence>
</complexType>
<complexType name="seaKayak">
  <complexContent>
    <extension base="kayak">
      <sequence>
        <element name="chines" type="xsd:string" />
        <element name="cockpitStyle" type="xsd:string" />
      </sequence>
    </extension>
  </complexContent>
</complexType>
79



CHAPTER 6 | Working with CORBA
When complex types using <complexContent> are mapped into CORBA 
types, Artix creates generates an intermediate type to represent the complex 
data defined within the <compexContent> element. The intermediate type is 
named by appending an indentifier describing the complex content to the 
new type�s name. Table 8 shows the complex content identifiers used 
appended to the intermediate type name.

The CORBA type generated to represent the XMLSchema type generated to 
represent the type derived by extension will have an element of the type that 
it extends, named baseType_f and an element of the intermediate type, 
named intermediateType_f. Any attributes that are defined in the extended 
type are then mapped into the new CORBA type following the rules for 
mapping XMLSchema attributes into CORBA types.

Example 63 shows how Artix maps the complex types defined in 
Example 62 on page 79 into a CORBA type map.

Table 8: Complex Content Identifiers in CORBA Typemap

XMLSchema Type Typemap Identifier

<sequence> SequenceStruct

<all> AllStruct

<choice> ChoiceType

Example 63: seaKayak CORBA type map

<corba:struct name="kayak" repositoryID="IDL:kayak:1.0" type="tns:kayak">
  <corba:element name="length" idltype="corba:long" />
  <corba:element name="width" idltype="corba:long" />
  <corba:element name="material" idltype="corba:string" />
</corba:struct>
<corba:struct name="seaKayak" repositoryID="IDL:seaKayak:1.0" type="tns:seaKayak">
  <corba:element name="kayak_f" idltype="ns1:kayak" />
  <corba:element name="seaKayakSequenceStruct_f" idltype="ns1:seaKayakSequenceStruct" />
</corba:struct>
<corba:struct name="seaKayakSequenceStruct" repositoryID="IDL:seaKayakSequenceStruct:1.0"
              type="tns:seaKayakSequenceStruct">
  <corba:element name="chines" idltype="corba:string" />
  <corba:element name="cockpitStyle" idltype="corba:string" />
</corba:struct>
 80



CORBA Type Mapping
The IDL generated by Artix for the types defined in Example 62 on page 79 
is shown in Example 64.

Nillable mapping XMLSchema supports an optional attribute, nillable, that specifies that an 
element can be nil. Setting an element to nil is different than omitting an 
element whose minOccurs attribute is set to 0; the element must be 
included as part of the data sent in the message.

Elements that have nillable="true" set in their logical description are 
mapped to a CORBA union with a single case, TRUE, that holds the value of 
the element if it is not set to nil.

Example 64: seaKayak IDL

\\ IDL
struct kayak
{
  long length;
  long width;
  string material;
};
struct seaKayakSequenceStruct
{
  string chines;
  string cockpitStyle;
};
struct seaKayak
{
  kayak kayak_f;
  seaKayakSequenceStruct seqKayakSequenceStruct_f;
};
81



CHAPTER 6 | Working with CORBA
For example, imagine a service that maintains a database of information on 
people who download software from a web site. The only required piece of 
information the visitor needs to supply is their zip code. Optionally, visitors 
can supply their name and e-mail address. The data is stored in a data 
structure, webData, shown in Example 65.

When webData is mapped to a CORBA binding, it will generate a union,  
string_nil, to provide for the mapping of the two nillable elements, name 
and emailAddress. Example 66 shows the CORBA typemap for webData.

The type assigned to the union, string_nil, does not matter as long as the 
type assigned maps back to an xsd:string. This is true for all nillable 
element types.

Example 65:webData XMLSchema

<complexType name="webData">
  <sequence>
    <element name="zipCode" type="xsd:int" />
    <element name="name" type="xsd:string" nillable="true />
    <element name="emailAddress" type="xsd:string"
             nillable="true" />
  </sequence>
</complexType>

Example 66:webData CORBA Typemap

<corba:typemapping ...>
  <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
    <corba:member idltype="corba:long" name="zipCode"/>
    <corba:member idltype="ns1:string_nil" name="name"/>
    <corba:member idltype="ns1:string_nil" name="emailAddress"/>
  </corba:struct>
  <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
               type="xsd1:emailAddress">
    <corba:unionbranch idltype="corba:string" name="value">
      <corba:case label="TRUE"/>
    </corba:unionbranch>
  </corba:union>
</corba:typeMapping>
 82



CORBA Type Mapping
Example 67 shows the IDL for webData.

Optional attributes Attributes defined as optional in XMLSchem are mapped similar to nillable 
elements. Attributes that do not have use="required" set in their logical 
description are mapped to a CORBA union with a single case, TRUE, that 
holds the value of the element if it is set.

For example, you could define the complex type in Example 65 using 
attributes instead of a sequence. The data description for webData defined 
with attributes is shown in Example 68.

Example 67:webData IDL

\\IDL
union string_nil switch(boolean) {
    case TRUE:
        string value;
};
struct webData {
    long zipCode;
    string_nil name;
    string_nil emailAddress;
};

Note: By default attributes are optional if use is not set to required.

Example 68:webData XMLSchema Using Attributes

<complexType name="webData">
  <attribute name="zipCode" type="xsd:int" use="required"/>
  <attribute name="name" type="xsd:string"/>
  <attribute name="emailAddress" type="xsd:string"/>
</complexType>
83



CHAPTER 6 | Working with CORBA
When webData is mapped to a CORBA binding, it will generate a union,  
string_nil, to provide for the mapping of the two nillable elements, name 
and emailAddress. Example 69 shows the CORBA typemap for webData.

The type assigned to the union, string_nil, does not matter as long as the 
type assigned maps back to an xsd:string. This is true for all optional 
attributes.

Example 70 shows the IDL for webData.

Example 69:webData CORBA Typemap

<corba:typemapping ...>
  <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
               type="xsd1:emailAddress">
    <corba:unionbranch idltype="corba:string" name="value">
      <corba:case label="TRUE"/>
    </corba:unionbranch>
  </corba:union>
  <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
    <corba:member idltype="corba:long" name="zipCode"/>
    <corba:member idltype="ns1:string_nil" name="name"/>
    <corba:member idltype="ns1:string_nil" name="emailAddress"/>
  </corba:struct>
</corba:typeMapping>

Example 70:webData IDL

\\IDL
union string_nil switch(boolean) {
    case TRUE:
        string value;
};
struct webData {
    long zipCode;
    string_nil name;
    string_nil emailAddress;
};
 84



CORBA Type Mapping
Artix References

Overview Artix references provide a means of passing a reference to a service between 
two operations. Because Artix services are Web services, their references are 
very different than references used in CORBA. Artix does, however, provide 
a mechanism for passing Artix references to CORBA applications over the 
Artix CORBA transport. This functionality allows CORBA applications to 
make calls on Artix services that return references to other Artix services.

For a detailed discussion of Artix references read Developing Artix 
Applications in C++.

Specifying references to map to 
CORBA

Artix references are mapped into a CORBA in one of two ways. The simplest 
way is to just specify your reference types as you would for an Artix service 
using SOAP. In this case, the Artix references are mapped into generic 
CORBA Objects.

The second method allows you to generate type specific CORBA references, 
but requires some preplaning in the creation of your XMLSxhema type 
definitions. When creating a reference type, you can specify the name of the 
CORBA binding that describes the interface in the physical section of the 
contract using an <xsd:annotation> element. Example 71 shows the syntax 
for specifying the binding in the type definition.

When you specify a reference using the annotation, the CORBA binding 
generator and the IDL generator will inspect the specified binding and create 
a type specific reference in the IDL generated for the contract that allows 
you to make use of the reference.

Example 71:Reference Binding Specification

<xsd:element name="typeName" type="references:Reference">
  <xsd:annotation>
    <xsd:appinfo>corba:binding=CORBABindingName</xsd:appinfo>
  </xsd:annotation>
</xsd:element>

Note: Before you can generate a type specific reference you need to 
generate the CORBA binding of the referenced interface.
85



CHAPTER 6 | Working with CORBA
CORBA typemap representation Artix references are mapped to <corba:object> elements in the CORBA 
typemap section of an Artix contract. <corba:object> elements have four 
attributes:

Example Example 72 shows an Artix contract fragment that uses Artix references.

binding Specifies the binding to which the object refers. If the 
annotation element is left off of the reference declaration 
in the schema, this attribute will be blank.

name Specifies the name of the CORBA type. If the annotation 
element is left off the reference declaration in the 
schema, this attribute will be Object. If the annotation is 
used and the binding can be found, this attribute will be 
set to the name of the interface that the binding 
represents.

repositoryID Specifies the repository ID of the generated IDL type. If 
the annotation element is left off the reference declaration 
in the schema, this attribute will be set to 
IDL:omg.org/CORBA/Object/1.0. If the annotation is 
used and the binding can be found, this attribute will be 
set to a properly formed repository ID based on the 
interface name.

type Specifies the schema type from which the CORBA type is 
generated. This attribute is always set to 
references:Reference.

Example 72:Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 86



CORBA Type Mapping
  <types>
    <schema
     targetNamespace="http://schemas.myBank.com/bankTypes"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
      <xsd:import schemaLocation="./references.xsd"
                  namespace="http://schemas.iona.com/references"/>
...
      <xsd:element name="account" type="references:Reference">
        <xsd:annotation>
          <xsd:appinfo>
          corba:binding=AccountCORBABinding
          </xsd:appinfo>
        </xsd:annotation>
      </xsd:element>
  </schema>
</types>
...
  <message name="find_accountResponse">
    <part name="return" element="xsd1:account"/>
  </message>
  <message name="create_accountResponse">
    <part name="return" element="xsd1:account"/>
  </message>

Example 72:Reference Sample
87



CHAPTER 6 | Working with CORBA
  <types>
    <schema
     targetNamespace="http://schemas.myBank.com/bankTypes"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
      <xsd:import schemaLocation="./references.xsd"
                  namespace="http://schemas.iona.com/references"/>
...
      <xsd:element name="account" type="references:Reference">
        <xsd:annotation>
          <xsd:appinfo>
          corba:binding=AccountCORBABinding
          </xsd:appinfo>
        </xsd:annotation>
      </xsd:element>
  </schema>
</types>
...
  <message name="find_accountResponse">
    <part name="return" element="xsd1:account"/>
  </message>
  <message name="create_accountResponse">
    <part name="return" element="xsd1:account"/>
  </message>

Example 72:Reference Sample
 88



CORBA Type Mapping
The element named account is a reference to the interface defined by the 
Account port type and the find_account operation of Bank returns an 
element of type account. The annotation element in the definition of 

  <portType name="Account">
    <operation name="account_id">
      <input message="tns:account_id" name="account_id"/>
      <output message="tns:account_idResponse"
              name="account_idResponse"/>
    </operation>
    <operation name="balance">
      <input message="tns:balance" name="balance"/>
      <output message="tns:balanceResponse"
              name="balanceResponse"/>
    </operation>
    <operation name="withdraw">
      <input message="tns:withdraw" name="withdraw"/>
      <output message="tns:withdrawResponse"
              name="withdrawResponse"/>
      <fault message="tns:InsufficientFundsException" 

name="InsufficientFunds"/>
    </operation>
    <operation name="deposit">
      <input message="tns:deposit" name="deposit"/>
      <output message="tns:depositResponse"
              name="depositResponse"/>
    </operation>
  </portType>
  <portType name="Bank">
    <operation name="find_account">
      <input message="tns:find_account" name="find_account"/>
      <output message="tns:find_accountResponse"
              name="find_accountResponse"/>
      <fault message="tns:AccountNotFound"
             name="AccountNotFound"/>
    </operation>
    <operation name="create_account">
      <input message="tns:create_account" name="create_account"/>
      <output message="tns:create_accountResponse"
              name="create_accountResponse"/>
      <fault message="tns:AccountAlreadyExistsException"
             name="AccountAlreadyExists"/>
    </operation>
  </portType>
</definitions>

Example 72:Reference Sample
89



CHAPTER 6 | Working with CORBA
account specifies the binding, AccountCORBABinding, of the interface to 
which the reference refers. Because you typically create the data types 
before you create the bindings, you must be sure that the generated binding 
name matches the name you specified. This can be controlled using the -b 
flag to wsdltocorba.

The first step to generating the Bank interface to use a type specific reference 
to an Account is to generate the CORBA binding for the Account interface. 
You would do this by using the command wsdltocorba -corba -i Account 
-b AccountCORBABinding wsdlName.wsdl and replace wsdlName with the 
name of your contract. Once you have generated the CORBA binding for the 
Account interface, you can generate the CORBA binding and IDL for the 
Bank interface.

Example 73 shows the generated CORBA typemap resulting from generating 
both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file. 
The first CORBA object is generated from the first pass of wsdltocorba to 
generate the CORBA binding for Account. Because wsdltocorba could not 
find the binding specified in the annotation, it generated a generic Object 
reference. The second CORBA object, Account, is generated by the second 
pass when the binding for Bank was generated. On that pass, wsldtocorba 
could inspect the binding for the Account interface and generate a type 
specific object reference.

Example 74 shows the IDL generated for the Bank interface.

Example 73:CORBA Typemap with References

<corba:typeMapping 
  targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
  <corba:object binding="" name="Object" 
                repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
  <corba:object binding="AccountCORBABinding" name="Account" 
                repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>
 90



CORBA Type Mapping
Example 74: IDL Generated From Artix References

//IDL
...
interface Account
{
  string account_id();

  float balance();

  void withdraw(in float amount)
    raises(::InsufficientFundsException);

  void deposit(in float amount);
};
interface Bank
{
  ::Account find_account(in string account_id)
    raises(::AccountNotFoundException);

  ::Account create_account(in string account_id,
                           in float initial_balance)
    raises(::AccountAlreadyExistsException);
};
91



CHAPTER 6 | Working with CORBA
Modifying a Contract to Use CORBA

Overview Service Access Points (SAPs) that use CORBA require that special binding, 
port, and type mapping information be added to the physical portion of the 
Artix contract. The binding definition resolves any ambiguity about 
parameter order, return values, and type. The port definition specifies the 
addressing information need by clients or servers to locate the CORBA 
object. The port can also specify POA policies the exposed CORBA object 
uses. The type mapping information maps complex schema types, defined 
in the logical portion of the contract, into CORBA data types.

WSDL Namespace The WSDL extensions used to describe CORBA data mappings and CORBA 
transport details are defined in the WSDL namespace 
http://schemas.iona.com/bindings/corba. To use the CORBA extensions 
you will need to include the following in the <definitions> tag of your 
contract:

In this section This section discusses the following topics:

xmlns:corba="http://schemas.iona.com/bindings/corba"

Adding a CORBA Binding page 93

Adding a CORBA Port page 97
 92



Modifying a Contract to Use CORBA
Adding a CORBA Binding

Overview CORBA applications use a specific payload format when making and 
responding to requests. The CORBA binding, described using an IONA 
extension to WSDL, maps the parts of a logical message to the proper 
payload format for CORBA applications. The CORBA binding specifies the 
repository ID of the IDL interface, resolves parameter order and mode 
ambiguity, and maps the data types to CORBA data types.

Mapping to the binding The extensions used to map a logical operation to a CORBA binding are 
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element 
has one required attribute: repositoryID. repositoryID specifies the full 
type ID of the interface. The type ID is embedded in the object�s IOR and 
therefore must conform to the IDs that are generated from an IDL compiler. 
These are of the form:

The corba:binding element also has an optional attribute, bases, that 
specifies that the interface being bound inherits from another interface. The 
value for bases is the type ID of the interface from which the bound 
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation is an IONA-specific element of <operation> and describes 
the parts of the operation�s messages. <corba:operation> takes a single 
attribute, name, which duplicates the name given in <operation>.

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
               bases="IDL:clash:1.0"/>
93



CHAPTER 6 | Working with CORBA
corba:param is a member of <corba:operation>. Each <part> of the input 
and output messages specified in the logical operation, except for the part 
representing the return value of the operation, must have a corresponding 
<corba:param>. The parameter order defined in the binding must match the 
order specified in the IDL definition of the operation. <corba:param> has the 
following required attributes:

corba:return s a member of <corba:operation> and specifies the return 
type, if any, of the operation. It only has two attributes:

corba:raises is a member of <corba:operation> and describes any 
exceptions the operation can raise. The exceptions are defined as fault 
messages in the logical definition of the operation. Each fault message must 
have a corresponding <corba:raises> element. <corba:raises> has one 
required attribute, exception, which specifies the type of data returned in 
the exception.

mode Specifies the direction of the parameter. The values 
directly correspond to the IDL directions: in, inout, out. 
Parameters set to in must be included in the input 
message of the logical operation. Parameters set to out 
must be included in the output message of the logical 
operation. Parameters set to inout must appear in both 
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names 
are prefaced with corba: for primitive IDL types, and 
corbatm: for complex data types, which are mapped out 
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the 
logical portion of the contract.

name Specifies the name of the parameter as given in the 
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names 
are prefaced with corba: for primitive IDL types and 
corbatm: for complex data types which are mapped out 
in the corba:typeMapping portion of the contract.
 94



Modifying a Contract to Use CORBA
In addition to operations specified in <corba:operation> tags, within the 
<operation> block, each <operation> in the binding must also specify 
empty <input> and <output> elements as required by the WSDL 
specification. The CORBA binding specification, however, does not use 
them.

For each fault message defined in the logical description of the operation, a 
corresponding <fault> element must be provided in the <operation>, as 
required by the WSDL specification. The name attribute of the <fault> 
element specifies the name of the schema type representing the data passed 
in the fault message.

Using the command line The wsdltocorba tool adds CORBA binding information to an existing Artix 
contract. To generate a CORBA binding using wsdltocorba use the following 
command:

The command has the following options:

The generated WSDL file will also contain a CORBA port with no address 
specified. To complete the port specification you can do so manually or use 
the Artix Designer.

wsdltocorba -corba -i portType [-d dir][-b binding][-o file]
            [-n namespace] wsdl_file

-corba Instructs the tool to generate a CORBA binding for the 
specified port type.

-i portType Specifies the name of the port type being mapped to a 
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is 
written.

-b binding Specifies the name for the generated CORBA binding. 
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults 
to wsdl_file-corba.wsdl.

-n namespace Specifies the namespace to use for the generated CORBA 
typemap
95



CHAPTER 6 | Working with CORBA
Example For example, the logical operation personalInfoLookup, shown in 
Example 9 on page 19, has a CORBA binding similar to the one shown in 
Example 75.

Example 75:personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
  <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
  <operation name="lookup">
    <corba:operation name="lookup">
      <corba:param name="empId" mode="in" idltype="corba:long"/>
      <corba:return name="return" idltype="corbatm:personalInfo"/>
      <corba:raises exception="corbatm:idNotFound"/>
    </corba:operation>
    <input/>
    <output/>
    <fault name="personalInfoLookup.idNotFound"/>
  </operation>
</binding>
 96



Modifying a Contract to Use CORBA
Adding a CORBA Port

Overview CORBA ports are described using the IONA-specific WSDL elements 
<corba:address> and <corba:policy> within the WSDL <port> element, to 
specify how a CORBA object is exposed.

Address specification The IOR of the CORBA object is specified using the <corba:address> 
element. You have four options for specifying IORs in Artix contracts:

� Specify the objects IOR directly, by entering the object�s IOR directly 
into the contract using the stringified IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by 
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see the Artix 
Administration Guide.

� Specify the IOR using corbaloc, by specifying the port at which the 
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to 
start up on the specified host and port.

Specifying POA policies Using the optional <corba:policy> element, you can describe a number of 
POA polices the Artix service will use when creating the POA for connecting 
to a CORBA application. These policies include:

� POA Name

� Persistence

IOR:22342....

file:///file_name

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
97



CHAPTER 6 | Working with CORBA
� ID Assignment

Setting these policies lets you exploit some of the enterprise features of 
IONA�s Application Server Platform 6.0, such as load balancing and fault 
tolerance, when deploying an Artix integration project. For information on 
using these advanced CORBA features, see the Application Server Platform 
documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the 
name of the POA Artix creates to connect with a CORBA object, you use the 
following:

Persistence

By default Artix POA�s have a persistence policy of false. To set the POA�s 
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that 
their ID is assigned by the ORB. To specify that the POA connecting a 
specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

<corba:policy serviceid="POAid" />
 98



Modifying a Contract to Use CORBA
Example For example, a CORBA port for the personalInfoLookup binding would look 
similar to Example 76:

Artix expects the IOR for the CORBA object to be located in a file called 
objref.ior, and creates a persistent POA with an object id of personalInfo 
to connect the CORBA application.

Example 76:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
  <port name="personalInfoLookupPort"
        binding="tns:personalInfoLookupBinding">
    <corba:address location="file:///objref.ior" />
    <corba:policy persistent="true" />
    <corba:policy serviceid="personalInfoLookup" />
  </ port>
</ service>
99



CHAPTER 6 | Working with CORBA
Generating IDL from an Artix Contract

Overview Artix clients that use a CORBA transport require that the IDL defining the 
interface exist and be accessible. Artix provides tools to generate the 
required IDL from an existing WSDL contract. The generated IDL captures 
the information in the logical portion of the contract and uses that to 
generate the IDL interface. Each <portType> in the contract generates an 
IDL module.

From the command line The wsdltocorba tool compiles Artix contracts and generates IDL for the 
specified CORBA binding and port type. To generate IDL using wsdltocorba 
use the following command:

The command has the following options:

By combining the -idl and -corba flags with wsdltocorba, you can 
generate a CORBA binding for a logical operation and then generate the IDL 
for the generated CORBA binding. When doing so, you must also use the -i 
portType flag to specify the port type from which to generate the binding 
and the -b binding flag to specify the name of the binding to from which to 
generate the IDL.

wsdltocorba -idl -b binding [-corba][-i portType][-d dir]
            [-o file] wsdl_file

-idl Instructs the tool to generate an IDL file from the 
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-corba Instructs the tool to generate a CORBA binding for the 
specified port type.

-i portType Specifies the name of the port type being mapped to a 
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is 
written.

-o file Specifies the name of the generated WSDL file. Defaults 
to wsdl_file.idl.
 100



Generating a Contract from IDL
Generating a Contract from IDL

Overview If you are starting from a CORBA server or client, Artix can build the logical 
portion of the WSDL contract from IDL. Contracts generated from IDL have 
CORBA-specific entries and namespaces added.

The IDL compiler also generates the binding information required to format 
the operations specified in the IDL. However, since port information is 
specific to the deployment environment, the port information is left blank.

CORBA WSDL namespaces Contracts generated from IDL include two additional name spaces:

Unsupported type handling Be aware that the IDL compiler ignores any definitions that use unsupported 
CORBA types. The IDL compiler also ignores any definition that uses a 
previously ignored definition. For example, assume you have the following 
IDL definitions in file.idl:

The IDL compiler does not generate any corresponding contract information 
for the structure S because it contains a member that uses an object 
reference. Similarly, the IDL complier does not generate any contract 
information for the operation get_op() because it references structure S.

xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap"

interface A
{
  struct S
  { 
    A member;
  };

  S get_op();
};
101



CHAPTER 6 | Working with CORBA
Using the command line IONA�s IDL compiler supports several command line flags that specify how 
to create a WSDL file from an IDL file. The IDL compiler is run using the 
following command:

The command has the following options:

idl -wsdl:[-aaddress][-ffile][-Odir][-turi][-stype][-rfile][-Lfile][-Pfile][-wnamespace]
          [-xnamespace][-tnamespace][-Tfile][-nfile][-b] idlfile

-wsdl Specifies that WSDL is to be generated. This flag is 
required.

-aaddress Specifies an absolute address through which the object 
reference may be accessed. The address may be a 
relative or absolute path to a file, or a corbaname URL

-ffile Specifies a file containing a string representation of an 
object reference. The contents of this file is incorporated 
into the WSDL file. The file must exist when you run the 
IDL compiler.

-Odir Specifies the directory into which the WSDL file is 
written.

-turi Specifies the URI for the corbatm namespace. This 
overrides the default.

-stype Specifies the XMLSchema type used to map the IDL 
sequence<octet> type. Valid values are base64Binary 
and hexBinary. The default is base64Binary.

-rfile Specify the pathname of the schema file imported to 
define the Reference type. If the -r option is not given, 
the idl compiler gets the schema file pathname from 
etc/idl.cfg.

-Lfile Specifies that the logical portion of the generated WSDL 
specification into is written to file. file is then imported 
into the default generated file.

-Pfile Specifies that the physical portion of the generated WSDL 
specification into is written to file. file is then imported 
into the default generated file.

-wnamespace Specifies the namespace to use for the WSDL 
targetNamespace. The default is  
http://schemas.iona.com/idl/idl_name.
 102



Generating a Contract from IDL
To combine multiple flags in the same command, use a colon delimited list. 
The colon is only interpreted as a delimiter if it is followed by a dash. 
Consequently, the colons in a corbaname URL are interpreted as part of the 
URL syntax and not as delimiters.

Example Imagine you needed to generate an Artix contract for a CORBA server that 
exposes the interface shown in Example 77.

-xnamespace Specifies the namespace to use for the Schema 
targetNamespace. The default is 
http://schemas.iona.com/idltypes/idl_name.

-tnamespace Specifies the namespace to use for the CORBA 
TypeMapping targetNamespace. The default is 
http://schemas.iona.com/typemap/corba/idl_name.

-Tfile Specifies that the schema types are to be generated into 
a separate file. The schema file is included in the 
generated contract using an import statement. This 
option cannot be used with the -n option.

-nfile Specifies that a schema file, file, is to be included in the 
generated contract by an import statement. This option 
cannot be used with the -T option.

-b Specifies that bounded strings are to be treated as 
unbounded. This eliminates the generation of the special 
types for the bounded string.

Note: The command line flag entries are case sensitive even on 
Windows. Capitalization in your generated WSDL file must match the 
capitalization used in the prewritten code.

Example 77:personalInfoService Interface

interface personalInfoService
{
  enum hairColorType {red, brunette, blonde};
103



CHAPTER 6 | Working with CORBA
To generate the contract, you run it through the IDL compiler using either 
the GUI or the command line. The resulting contract is similar to that shown 
in Example 78.

  struct personalInfo
  {
    string name;
    long age;
    hairColorType hairColor;
  };

  exception idNotFound
  {
    short id;
  };

  personalInfo lookup(in long empId)
  raises (idNotFound);
};

Example 77:personalInfoService Interface

Example 78:personalInfoService Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfo.idl"
 targetNamespace="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap">
  <types>
    <schema targetNamespace="http://schemas.iona.com/idltypes/personalInfo.idl"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
      <xsd:simpleType name="personalInfoService.hairColorType">
        <xsd:restriction base="xsd:string">
          <xsd:enumeration value="red"/>
          <xsd:enumeration value="brunette"/>
          <xsd:enumeration value="blonde"/>
        </xsd:restriction>
      </xsd:simpleType>
 104



Generating a Contract from IDL
      <xsd:complexType name="personalInfoService.personalInfo">
        <xsd:sequence>
          <xsd:element name="name" type="xsd:string"/>
          <xsd:element name="age" type="xsd:int"/>
          <xsd:element name="hairColor" type="xsd1:personalInfoService.hairColorType"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:complexType name="personalInfoService.idNotFound">
        <xsd:sequence>
          <xsd:element name="id" type="xsd:short"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:element name="personalInfoService.lookup.empId" type="xsd:int"/>
      <xsd:element name="personalInfoService.lookup.return" 

type="xsd1:personalInfoService.personalInfo"/>
      <xsd:element name="personalInfoService.idNotFound" 

type="xsd1:personalInfoService.idNotFound"/>
    </schema>
  </types>
  <message name="personalInfoService.lookup">
    <part name="empId" element="xsd1:personalInfoService.lookup.empId"/>
  </message>
  <message name="personalInfoService.lookupResponse">
    <part name="return" element="xsd1:personalInfoService.lookup.return"/>
  </message>
  <message name="_exception.personalInfoService.idNotFound">
    <part name="exception" element="xsd1:personalInfoService.idNotFound"/>
  </message>
  <portType name="personalInfoService">
    <operation name="lookup">
      <input message="tns:personalInfoService.lookup" name="lookup"/>
      <output message="tns:personalInfoService.lookupResponse" name="lookupResponse"/>
      <fault message="tns:_exception.personalInfoService.idNotFound" 

name="personalInfoService.idNotFound"/>
    </operation>
  </portType>
  <binding name="personalInfoServiceBinding" type="tns:personalInfoService">
    <corba:binding repositoryID="IDL:personalInfoService:1.0"/>
    <operation name="lookup">
      <corba:operation name="lookup">
        <corba:param name="empId" mode="in" idltype="corba:long"/>
        <corba:return name="return" idltype="corbatm:personalInfoService.personalInfo"/>
        <corba:raises exception="corbatm:personalInfoService.idNotFound"/>
      </corba:operation>

Example 78:personalInfoService Contract
105



CHAPTER 6 | Working with CORBA
      <input/>
      <output/>
      <fault name="personalInfoService.idNotFound"/>
    </operation>
  </binding>
  <service name="personalInfoServiceService">
    <port name="personalInfoServicePort" binding="tns:personalInfoServiceBinding">
      <corba:address location="..."/>
    </port>
  </service>
  <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
    <corba:enum name="personalInfoService.hairColorType" 

type="xsd1:personalInfoService.hairColorType" 
repositoryID="IDL:personalInfoService/hairColorType:1.0">

      <corba:enumerator value="red"/>
      <corba:enumerator value="brunette"/>
      <corba:enumerator value="blonde"/>
    </corba:enum>
    <corba:struct name="personalInfoService.personalInfo" 

type="xsd1:personalInfoService.personalInfo" 
repositoryID="IDL:personalInfoService/personalInfo:1.0">

      <corba:member name="name" idltype="corba:string"/>
      <corba:member name="age" idltype="corba:long"/>
      <corba:member name="hairColor" idltype="corbatm:personalInfoService.hairColorType"/>
    </corba:struct>
    <corba:exception name="personalInfoService.idNotFound" 

type="xsd1:personalInfoService.idNotFound" 
repositoryID="IDL:personalInfoService/idNotFound:1.0">

      <corba:member name="id" idltype="corba:short"/>
    </corba:exception>
  </corba:typeMapping>
</definitions>

Example 78:personalInfoService Contract
 106



Configuring Artix to Use the CORBA Plug-in
Configuring Artix to Use the CORBA Plug-in

Overview The CORBA interopability features of Artix are provided through a plug-in. If 
you are using Artix with the CORBA transport, you need to ensure that the 
CORBA plug-in is loaded by the Artix runtime and that the plug-in is 
properly configured.

Loading the plug-in To configure the Artix runtime to load the CORBA plug-in add ws_orb to the 
orb_plugins list for your Artix instance. For example, if your Artix instance 
is getting its configuration from the configuration scope, the orb_plugins list 
would look like Example 79.

Plug-in configuration The CORBA plug-in is configured using the same configuration variables as 
IONA�s Application Server Platform�s CORBA implementation. For more 
information on configuring the CORBA plug-in, see the Application Server 
Platform Configuration Reference.

Example 79:orb_plugin list for CORBA

{
  ...
  corba_interop
  {
    orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", 

"iiop", "mq", "ws_orb", "fixed"];
    ...
  }
}

107



CHAPTER 6 | Working with CORBA
 108



CHAPTER 7

Working with 
Tuxedo
Artix easily integrates BEA Tuxedo applications with CORBA 
and Web service applications.

In this chapter This chapter discusses the following topics:

Introduction page 110

Using FML Buffers page 111

Using the Tuxedo Transport page 116
109



CHAPTER 7 | Working with Tuxedo
Introduction

Overview Artix provides integration with BEA Tuxedo applications by supporting use of 
the Tuxedo ATMI transport. Artix also supports Field Manipulation Language 
(FML) buffers, in Tuxedo Version 7.1 or higher.

FML support Artix supports the following FML features:

Note: BEA Tuxedo integration is unavailable in some editions of Artix. 
Please check the conditions of your Artix license to see whether your 
installation supports BEA Tuxedo integration.

Table 9: Artix FML Feature Support

Feature Supported Not 
Supported

16-bit FML Buffers x

32-bit FML Buffers x

VIEWS x

Buffer Pointers x

Embedded 32-bit FML Buffers x

Embedded 32-bit Views x

Character Arrays x

Multi-Byte Character Arrays x

Packed Decimals x

Multiple Occurrence Fields x
 110



Using FML Buffers
Using FML Buffers

Overview Field Manipulation Language (FML) buffers allow Tuxedo applications to 
manipulate data stored outside of their application space with ease. FML 
buffers are described using field table files that may be compiled into C 
header files.

Artix enables non-Tuxedo applications to interact with Tuxedo applications 
that use FML buffers by translating the data stored in the buffers into data 
that the non-Tuxedo application can understand. Artix allows the 
non-Tuxedo application to manipulate the data in the buffer in the same 
manner as a Tuxedo application.

In this section This section discusses the following topics:

Mapping FML Buffer Descriptions to Artix Contracts page 112
111



CHAPTER 7 | Working with Tuxedo
Mapping FML Buffer Descriptions to Artix Contracts

Overview FML buffers used by Tuxedo applications are described in one of two ways:

� A field table file that is loaded at run time.

� A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the 
contents of a buffer. It clearly describes each field�s name, id number, data 
type, and a comment. Using the FML library calls, Tuxedo applications map 
the field table description to usable fldids at run time.

The C header file description of an FML buffer simply maps field names to 
their fldid. The fldid is an integer value that represents both the type of 
data stored in a field and a unique identifying number for that field. To 
create an FML header file from a field table file, you use the Tuxedo 
mkfldhdr and mkfldhdr32 utility programs.

Mapping to logical type 
descriptions

Because FML does not provide a means for determining if a field has 
multiple entries without scanning the buffer, FML buffers must be described 
as a sequence of sequences. Each field of a buffer is described as an 
unbounded sequence of the type specified in the field description table. The 
field elements are ordered in increasing order by their fldid.

For example, the personalInfo structure, defined in Example 2 on page 11, 
could be described by the field table file shown in Example 80.

Example 80:personalInfo Field Table File

# personalInfo Field Table
# name      number     type        flags     comment
name        100        string      -         Person’s name
age         102        short       -         Person’s age
hairColor   103        string      -         Person’s hair color
 112



Using FML Buffers
The C++ header file generated by the Tuxedo mkfldhdr tool to represent 
the personlInfo FML buffer is shown in Example 81. Even if you are not 
planning to access the FML buffer using the compile time method, you will 
need to generate the header file when using Artix because this will give you 
the fldid values for the fields in the buffer.

The order of the elements in the sequence used to logically describe the 
FML buffer are ordered in increasing order by fldid value. For the 
personalInfo FML buffer age must be listed first in the Artix contract 
despite the fact that it is the second element listed in the field table. The 
corresponding logical description of the FML buffer data in an Artix contract 
is shown in Example 82.

Mapping to the physical FML 
binding

Artix defines an FML namespace to describe the physical binding of a 
message to an FML buffer. To include the FML namespace to your Artix 
contract include the following in the <definition> element at the beginning 
of the contract.

Example 81:personalInfo C++ header

/*      fname        fldid            */
/*      -----        -----            */
#define name         ((FLDID)41060)   /* number: 100 type: string */
#define age          ((FLDID)102)     /* number: 102 type: short */
#define hairColor    ((FLDID)41063)   /* number: 103 type: string */

Example 82:Logical description of personalInfo FML buffer

<types>
  <schema targetNamespace="http://soapinterop.org/xsd"
          xmlns="http://www.w3.org/2001/XMLSchema"
          xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
    <complexType name="personalInfoFML16">
      <sequence>
        <element name="age" type="xsd:short" minOccurs="0" maxOccurs="unbounded"/>
        <element name="name" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
        <element name="hairColor" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
      </sequence>
    </complexType>
  </schema>
</types>

xmlns:fml="http://www.iona.com/bus/fml"
113



CHAPTER 7 | Working with Tuxedo
The FML namespace defines a number of elements to extend the Artix 
contract�s <binding> element. These include:

<fml:binding>

The <fml:binding> element identifies that this binding definition is for an 
FML buffer. It also specifies the encoding style and transport used with this 
message.

The encoding style is specified using the mandatory style attribute. The 
valid encoding styles are doc and rpc.

The transport is specified using the mandatory transport attribute. This 
attribute can take the URI for any of the valid Artix transport definitions.

<fml:idNameMapping>

The <fml:idNameMapping> element contains the map describing how the 
element names defined in the logical portion of the contract to the fldid 
values for the corresponding fields in the FML buffer. This map consists of a 
series of <fml:element> elements whose fieldName attribute is the name of 
the logical type describing the element and whose fieldId attribute is the 
fldid value for the field in the FML buffer. The field elements must be listed 
in increasing order of their fldid values.

The <fml:idNameMapping> element also specifies if the application is to use 
FML16 buffers or FML32 buffers. This is done using the mandatory type 
attribute. type can be either fml16 for specifying FML16 buffers or fml32 for 
specifying FML32 buffers.

<fml:operation>

The <fml:operation> element is a child of the standard <operation> 
element. It informs Artix that the operation�s messages are to be packed into 
an FML buffer. <fml:operation> takes a single attribute, name, whose value 
must be identical to the name attribute of the <operation> element.

Example For example, the binding for the personalInfo FML buffer, defined in 
Example 80 on page 112, will be similar to the binding shown in 
Example 83.
 114



Using FML Buffers
Example 83:personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="http://info.org/" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:tns="http://soapinterop.org/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:xsd1="http://soapinterop.org/xsd" 
    xmlns:fml="http://www.iona.com/bus/fml">
...
  <message name="requestInfo">
    <part name="request" type="xsd1:personalInfoFML16"/>
  </message>
  <message name="infoReply">
    <part name="reply" type="xsd1:personalInfoFML16"/>
  </message>

  <portType name="personalInfoPort">
    <operation name="infoRequest">
      <input message="tns:requestInfo" name="requestInfo" />
      <output message="tns:infoReply" name="infoReply" />
    </operation>
  </portType>

  <binding name="personalInfoBinding" type="tns:personalInfoPort">
    <fml:binding style="rpc" transport="http://schemas.iona.com/transports/tuxedo"/>
    <fml:idNameMapping type="fml16">
      <fml:element fieldName="age" fieldId="102" />
      <fml:element fieldName="name" fieldId="41060" />
      <fml:element fieldName="hairColor" fieldId="41063" />
    </fml:idNameMapping>

    <operation name="infoRequest">
      <fml:operation name="infoRequest"/>
      <input name="requestInfo" />
      <output name="infoReply" />
    </operation>
  </binding>
...
</definitions>
115



CHAPTER 7 | Working with Tuxedo
Using the Tuxedo Transport

Overview Artix allows services to connect using Tuxedo�s transport mechanism. This 
provides them with all of the qualities of service associated with Tuxedo.

Tuxedo namespaces To use the Tuxedo transport, you need to describe the port using Tuxedo in 
the physical part of an Artix contract. The extensions used to describe a 
Tuxedo port are defined in the namespaces:

These namespace will need to be included in your Artix contract�s 
<definition> element.

Defining the Tuxedo services As with other transports, the Tuxedo transport description is contained 
within a <port> element. Artix uses  <tuxedo:server> to describe the 
attributes of a Tuxedo port. <tuxedo:server> has a child element, 
<tuxedo:service>, that gives the bulletin board name of a Tuxedo port. The 
bulletin board name for the service is specified in the element�s  name 
attribute. You can define more than one Tuxedo service to act as an 
endpoint.

Mapping operations to a Tuxedo 
service

After defining the Tuxedo services that are endpoints, you must map the 
operations bound to the port being defined to one of the defined Tuxedo 
services. This is done using a <pa:attributeMap> element. The attribute 
map element takes one required attribute, attribute, that is always set to 
serviceName. The attribute map is defined by <pa:attributeRule> 
elements. Each attribute rule has two attributes:

You must create an attribute rule for all of the operations defined for the 
port.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
xmlns:pa="http://schemas.iona.com/port/attributes"

value Specifies the name of the Tuxedo service on which to 
invoke.

operation Specifies the operation name from the binding associated 
with the port being defined.
 116



Using the Tuxedo Transport
Example An Artix contract exposing the personalInfoService, defined in 
Example 83 on page 115, would contain a <service> element similar to 
Example 84 on page 117.

Example 84:Tuxedo port description

<service name="personalInfoService">
  <port binding="tns:personalInfoBinding" name="tuxInfoPort">
    <tuxedo:server>
      <tuxedo:service name="personalInfoService" />
    </tuxedo:server>
    <pa:attributeMap attribute="serviceName">
      <pa:attributeRule value="personalInfoService"
                        operation="infoRequest"/>
    </pa:attributeMap>
  </port>
</service>
117



CHAPTER 7 | Working with Tuxedo
 118



CHAPTER 8

Working with 
TIBCO 
Rendezvous
Artix supports the integration of applications using TIBCO 
Rendezvous and TIBCO JMS messaging systems. Artix also 
supports the use of the TibrvMsg payload format.

In this chapter This chapter discusses the following topics:

Introduction page 120

Using TibrvMsg page 121

Using the TIB/RV Transport page 125
119



CHAPTER 8 | Working with TIBCO Rendezvous
Introduction

Overview The TIBCO Rendezvous plug-in lets you use Artix to integrate systems based 
on TIBCO Rendezvous (TIB/RV) software. TIB/RV uses its own proprietary 
message schema and transport protocol, and the plug-in bridges these to 
and from Artix data types, based on a given WSDL contract and the 
mapping rule. Artix also allows you to send raw XML and opaque data 
across the TIB/RV messaging transport.

Requirements To use the plug-in, you need to have a TIBCO Rendezvous 7.1 installed on 
your system. No special configuration is required for running the plug-in. At 
this time, the plug-in is only supported on Solaris 8 and Windows 2000.

Supported Features Table 10 shows the matrix of TIBCO Rendezvous features Artix supports.

Note: TIBCO Rendezvous integration is unavailable in some editions of 
Artix. Please check the conditions of your Artix license to see whether your 
installation supports TIBCO Rendezvous integration.

Table 10: Supported TIBCO Rendezvous Features

Feature Supported Not 
Supported

Server Side Advisory Callbacks x

Certified Message Delivery x

Fault Tolerance (TibrvFtMember/Monitor) x

Virtual Connections (TibrvVcTransport) x

Secure Daemon (rvsd/TibrvSDContext) x

TIBRVMSG_IPADDR32 x

TIBRVMSG_IPPORT16 x
 120



Using TibrvMsg
Using TibrvMsg

Overview Artix supports the use of the TibrvMsg format when using the TIBCO 
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the 
interface you are exposing and the TibrvMsg format. The binding description 
is placed inside the standard <binding> tag and uses the tags listed in 
Table 11.

Table 11: TibrvMsg Binding Attributes

Attribute Description

tibrv:binding Specifies that the interface is exposed using TibrvMsgs.

tibrv:binding@stringEncoding Specifies the charset used to encode  TIBRVMSG_STRING data. Use 
IANA preferred MIME charset names 
(http://www.iana.org/assignments/character-sets). This parameter 
must be the same for both client and server.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.

tibrv:input Specifies that the input message is mapped to a TibrvMsg.

tibrv:input@sortFields Specifies whether the server will sort the input message parts when 
they are unmarshalled.

tibrv:input@messageNameFieldPath Specifies the field path that includes the input message name.

tibrv:input@messageNameFieldValue Specifies the field value that corresponds to the input message 
name.

tibrv:output Specifies that the output message is mapped to a TibrvMsg.

tibrv:output@sortFields Specifies whether the client will sort the output message parts 
when they are unmarshalled.

tibrv:output@messageNameFieldPath Specifies the field path that includes the output message name.
121

http://www.iana.org/assignments/character-sets


CHAPTER 8 | Working with TIBCO Rendezvous
TIBRVMSG type mapping Table 12 shows how TibrvMsg data types are mapped to XSD types in Artix 
contracts and C++ data types in Artix application code.

tibrv:output@messageNameFieldValue Specifies the field value that corresponds to the output message 
name.

Table 11: TibrvMsg Binding Attributes

Attribute Description

Table 12: TIBCO to XSD Type Mapping

TIBRVMSG XSD Artix C++

TIBRVMSG_STRING1 xsd:string IT_BUS::String

TIBRVMSG_BOOL xsd:boolean IT_BUS::Boolean

TIBRVMSG_I8 xsd:byte IT_BUS::Byte

TIBRVMSG_I16 xsd:short IT_BUS::Short

TIBRVMSG_I32 xsd:int IT_BUS::Int

TIBRVMSG_I64 xsd:long IT_BUS::Long

TIBRVMSG_U8 xsd:unsignedByte IT_BUS::UByte

TIBRVMSG_U16 xsd:unsignedShort IT_BUS::UShort

TIBRVMSG_U32 xsd:unsignedInt IT_BUS::UInt

TIBRVMSG_U64 xsd:unsignedLong IT_BUS::ULong

TIBRVMSG_F32 xsd:float IT_BUS::Float

TIBRVMSG_F64 xsd:double IT_BUS::Double

TIBRVMSG_STRING xsd:decimal IT_BUS::Decimal

TIBRVMSG_DATETIME2 xsd:dateTime IT_BUS::DateTime 

TIBRVMSG_OPAQUE xsd:base64Binary IT_BUS::Base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary IT_BUS::HexBinary

TIBRVMSG_MSG3 xsd:complexType/sequence IT_BUS::SequenceComplexType
 122



Using TibrvMsg
1. TIB/RV does not provide any mechanism to indicate the encoding of 
strings in a TibrvMsg. The TIBCO plug-in port definition includes a 
property, stringEncoding, for specifying the string encoding. However, 
neither TIB/RV nor Artix look at this attribute; they merely pass the 
data along. It is up to the application developer to handle the encoding 
details if desired.

2. TIBRVMSG_DATATIME has microsecond precision. However, 
xsd:dateTime has only millisecond precision. Therefore, when using 
Artix sub-millisecond percision will be lost.

3. Sequences are mapped to nested messages where each element is a 
separate field. These fields are placed in the same order as they appear 
in the original sequence with field IDs beginning at 1. The fields are 
accessed by their field ID.

4. Alls are mapped to nested messages where each elements is mapped 
to a separate field. The fields representing the elements of the all are 
given the same field name as element name and field IDs beginning 
from 1. They can be accessed by field name beginning from field ID 1. 
That means that the order of fields can be changed.

5. Choices are mapped to nested messages where each elements is a 
separate field. Each field is enclosed with the same field name/type as 
element name/type of active member, and accessed by field name with 
field ID 1.

6. Arrays having integer or float elements are mapped to appropriate 
TIB/RV array types; otherwise they are mapped to nested messages.

TIBRVMSG_MSG4 xsd:complexType/all IT_BUS::AllComplexType

TIBRVMSG_MSG5 xsd:complexType/choice IT_BUS::ChoiceComplexType

TIBRVMSG_*ARRAY/MSG6 xsd:complexType/sequence 
with element 
MaxOccurs > 1

IT_BUS::Array

TIBRVMSG_*ARRAY/MSG6 SOAP-ENC:Array7 IT_BUS::Array

TIBRVMSG_MSG3 SOAP-ENV:Fault8 IT_BUS::FaultException

Table 12: TIBCO to XSD Type Mapping

TIBRVMSG XSD Artix C++
123



CHAPTER 8 | Working with TIBCO Rendezvous
7. SOAP RPC-encoded multi-dimensional arrays will be treated as 
one-dimensional: e.g. a 3x5 array will be serialized as a 
one-dimensional array having 15 elements. To keep dimensional 
information, use nested sequences with maxOccurs > 1 instead.

8. When a server response message has a fault, it includes a field of type 
TIBRVMSG_MSG with the field name fault and field ID 1. This 
submessage has two fields of TIBRVMSG_STRING. One is named 
faultcode and has field ID 1, and the other is named faultstring 
and has field ID 2.
 124



Using the TIB/RV Transport
Using the TIB/RV Transport

Overview Artix contract descriptions of TIB/RV ports use a number of Artix specific 
WSDL extensions. These extensions allow you to specify a number of 
TIB/RV properties for the port.

In this section This section discusses the following topics:

Understanding the TIB/RV Port Properties page 126

Adding a TIB/RV Port to an Artix Contract page 132
125



CHAPTER 8 | Working with TIBCO Rendezvous
Understanding the TIB/RV Port Properties

Port attributes Table 13 lists the Artix contract elements used to describe a TIB/RV port.

Table 13: TIB/RV Transport Properties

Attribute Explanation

tibrv:port Indicates that the port uses the TIB/RV transport.

tibrv:port@serverSubject A required element that specifies the subject to which 
the server listens. This parameter must be the same 
between client and server.

tibrv:port@clientSubject Specifies the subject that the client listens to. The 
default is to use the transport inbox name. This 
parameter only affects clients.

tibrv:port@bindingType Specifies the message binding type.

tibrv:port@callbackLevel Specifies the server-side callback level when TIB/RV 
system advisory messages are received.

tibrv:port@responseDispatchTimeout Specifies the client-side response receive dispatch 
timeout.

tibrv:port@transportService Specifies the UDP service name or port for 
TibrvNetTransport.

tibrv:port@transportNetwork Specifies the binding network addresses for 
TibrvNetTransport.

tibrv:port@transportDaemon Specifies the TCP daemon port for the 
TibrvNetTransport.

tibrv:port@transportBatchMode Specifies if the TIB/RV transport uses batch mode to 
send messages.

tibrv:port@cmSupport Specifies if Certified Message Delivery support is 
enabled.

tibrv:port@cmTransportServerName Specifies the server�s TibrvCmTransport 
correspondent name.
 126



Using the TIB/RV Transport
tibrv:port@cmTransportClientName Specifies the client TibrvCmTransport correspondent 
name.

tibrv:port@cmTransportRequestOld Specifies if the endpoint can request old messages on 
start-up.

tibrv:port@cmTransportLedgerName Specifies the TibrvCmTransport ledger file.

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a synchronous ledger.

tibrv:port@cmTransportRelayAgent Specifies the endpoint�s TibrvCmTransport relay 
agent.

tibrv:port@cmTransportDefaultTimeLimit Specifies the default time limit for a Certified 
Message to be delivered.

tibrv:port@cmListenerCancelAgreements Specifies if Certified Message agreements are 
canceled when the endpoint disconnects.

tibrv:port@cmQueueTransportServerName Specifies the server�s TibrvCmQueueTransport 
correspondent name.

tibrv:port@cmQueueTransportClientName Specifies the client�s TibrvCmQueueTransport 
correspondent name.

tibrv:port@cmQueueTransportWorkerWeight Specifies the endpoint�s TibrvCmQueueTransport 
worker weight.

tibrv:port@cmQueueTransportWorkerTasks Specifies the endpoint�s TibrvCmQueueTransport 
worker tasks parameter.

tibrv:port@cmQueueTransportSchedulerWeight Specifies the TibrvCmQueueTransport scheduler 
weight parameter.

tibrv:port@cmQueueTransportSchedulerHeartbeat Specifies the endpoint�s TibrvCmQueueTransport 
scheduler heartbeat parameter.

tibrv:port@cmQueueTransportSchedulerActivation Specifies the TibrvCmQueueTransport scheduler 
activation parameter.

tibrv:port@cmQueueTransportCompleteTime Specifies the TibrvCmQueueTransport complete time 
parameter.

Table 13: TIB/RV Transport Properties

Attribute Explanation
127



CHAPTER 8 | Working with TIBCO Rendezvous
tibrv:port@bindingType tibrv:port@bindingType specifies the message binding type. TIB/RV Artix 
ports support three types of payload formats as described in Table 14.

tibrv:port@callbackLevel tibrv:port@callbackLevel specifies the server-side callback level when 
TIB/RV system advisory messages are received. It has three settings:

� INFO

� WARN

� ERROR (default)

This parameter only affects servers.

tibrv:port@responseDispatchTim
eout

tibrv:port@responseDispatchTimeout specifies the client-side response 
receive dispatch timeout. The default is TIBRV_WAIT_FOREVER. Note that if 
only the TibrvNetTransport is used and there is no server return response for 
a request, then not setting a timeout value causes the client to block forever. 
This is because client has no way to know whether any server is processing 
on the sending subject or not. In this case, we recommend that  
responseDispatchTimeout is set.

tibrv:port@transportService tibrv:port@transportService specifies the UDP service name or port for 
TibrvNetTransport. If empty or omitted, the default is rendezvous. If no 

Table 14: TIB/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

msg TibrvMsg The top-level messages will have fields of type TIBRVMSG_STRING. 
The value of each field is the name of a WSDL part name from 
the corresponding WSDL message. If the WSDL part is a 
primitive type then the value of this type is put against the name 
of the WSDL part. If the WSDL part is a complex type then a 
nested TibrvMsg is created and added against the WSDL part 
name.

xml SOAP, tagged data The message data is encapsulated in a field of TIBRVMSG_XML with 
a null name and an ID of 0.

opaque fixed record length data, 
variable record length data

The message data is encapsulated in a field of TIBRVMSG_OPAQUE 
with a null name and an ID of 0.
 128



Using the TIB/RV Transport
corresponding entry exists in /etc/services, 7500 for the TRDP daemon, or 
7550 for the PGM daemon will be used. This parameter must be the same for 
both client and server.

tibrv:port@transportNetwork tibrv:port@transportNetwork specifies the binding network addresses for 
TibrvNetTransport. The default is to use the interface IP address of the host 
for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must 
be interoperable between the client and the server.

tibrv:port@transportDaemon tibrv:port@transportDaemon specifies the TCP daemon port for 
TibrvNetTransport. The default is to use 7500 for the TRDP daemon, or 7550 
for the PGM daemon.

tibrv:port@transportBatchMode tibrv:port@transportBatchMode specifies if the TIB/RV transport uses 
batch mode to send messages. The default is false which specifies that the 
endpoint will send messages as soon as they are ready. When set to true, 
the endpoint will send its messages in timed batches.

tibrv:port@cmSupport tibrv:port@cmSupport specifies if Certified Message Delivery support is 
enabled. The default is false which disables CM support. Set this 
parameter to true to enable CM support.

tibrv:port@cmTransportServerNa
me

tibrv:port@cmTransportServerName specifies the server�s 
TibrvCmTransport correspondent name. The default is to use a transient 
correspondent name. This parameter must be the same for both client and 
server if the client also uses Certified Message Delivery.

tibrv:port@cmTransportClientNa
me

tibrv:port@cmTransportClientName  specifes the client�s 
TibrvCMTransport correspondent name. The default is to use a transient 
correspondent name.

Note: When CM support is disabled all other CM properties are ignored.
129



CHAPTER 8 | Working with TIBCO Rendezvous
tibrv:port@cmTransportRequest
Old

tibrv:port@cmTransportRequestOld specifies if the endpoint can request 
old messages on start-up. requestOld parameter. The default is false which 
disables the endpoint�s ability to request old messages when it starts up. 
Setting this property to true enables the ability to request old messages.

tibrv:port@cmTransportLedgerN
ame

tibrv:port@cmTransportLedgerName specifes the file name of the 
endpoint�s TibrvCMTrasnport ledger. The default is to use an in-process 
ledger that is stored in memory. 

tibrv:port@cmTransportSyncLed
ger

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a 
synchronous ledger. true specifies that the endpoint uses a synchronous 
ledger. The default is false.

tibrv:port@cmTransportRelayAge
nt

tibrv:port@cmTransportRelayAgent  Specifies the endpoint�s 
TibrvCmTransport relay agent. If this property is not set, the endpoint does 
not use a relay agent.

tibrv:port@cmTransportDefaultTi
meLimit

tibrv:port@cmTransportDefaultTimeLimit specifies TibrvCmTransport 
message default time limit. The default is that no message time limit will be 
set.

tibrv:port@cmListenerCancelAgr
eements

tibrv:port@cmListenerCancelAgreements specifies if the TibrvCmListener 
cancels Certified Message agreements when the endpoint disconnects. 
parameter. If set to true, CM agreements are cancelled when the endpoint 
disconnects. The default is false.

tibrv:port@cmQueueTransportSe
rverName

tibrv:port@cmQueueTransportServerName specifies the server�s 
TibrvCmQueueTransport correspondent name. If this property is set, the 
server listener joins to the distributed queue of the specified name. This 
parameter must be the same among the server queue members.
 130



Using the TIB/RV Transport
tibrv:port@cmQueueTransportCli
entName

tibrv:port@cmQueueTransportClientName specifies the client�s 
TibrvCmQueueTransport correspondent name. If this property is set, the 
client listener joins to the distributed queue of the specifies name. This 
parameter must be the same among all client queue members.

tibrv:port@cmQueueTransportW
orkerWeight

tibrv:port@cmQueueTransportWorkerWeight specifies the endpoint�s 
TibrvCmQueueTransport worker weight. The default is 
TIBRVCM_DEFAULT_WORKER_WEIGHT.

tibrv:port@cmQueueTransportW
orkerTasks

tibrv:port@cmQueueTransportWorkerTasks specifies the endpoint�s 
TibrvCmQueueTransport worker tasks parameter. The default is 
TIBRVCM_DEFAULT_WORKER_TASKS.

tibrv:port@cmQueueTransportSc
hedulerWeight

tibrv:port@cmQueueTransportSchedulerWeight specifies the 
TibrvCmQueueTransport scheduler weight parameter. The default is 
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

tibrv:port@cmQueueTransportSc
hedulerHeartbeat

tibrv:port@cmQueueTransportSchedulerHeartbeat specifies the 
TibrvCmQueueTransport scheduler heartbeat parameter. The default is  
TIBRVCM_DEFAULT_SCHEDULER_HB.

tibrv:port@cmQueueTransportSc
hedulerActivation

tibrv:port@cmQueueTransportSchedulerActivation Specifies the 
TibrvCmQueueTransport scheduler activation parameter. The default is 
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

tibrv:port@cmQueueTransportCo
mpleteTime

tibrv:port@cmQueueTransportCompleteTime specifies the 
TibrvCmQueueTransport complete time parameter. The default is 0.

Note: If distributed queue is enabled on the client side, the transport 
does not handle any request-response semantics. This is for load-balanced 
polling-type clients, e.g. one client in the distributed queue periodically 
invokes an operation that only has outputs and no input, and one listener 
in the group processes the response. 
131



CHAPTER 8 | Working with TIBCO Rendezvous
Adding a TIB/RV Port to an Artix Contract

Namespace To use the TIB/RV transport, you need to describe the port using TIB/RV in 
the physical part of an Artix contract. The extensions used to describe a 
TIB/RV port are defined in the namespace:

This namespace will need to be included in your Artix contract�s 
<definition> element.

Describing the port As with other transports, the TIB/RV transport description is contained 
within a <port> element. Artix uses  <tibrv:port> to describe the attributes 
of a TIB/RV port. The only required attribute for a <tibrv:port> is 
serverSubject which specifies the subject to which the server listens.

Example Example 85 shows an Artix description for a TIB/RV port.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv" 

Example 85:TIB/RV Port Description

    <service name="BaseService">
        <port binding="tns:BasePortBinding" name="BasePort">
            <tibrv:port
                serverSubject="Artix.BaseService.BasePort"
            />
        </port>
    </service>
 132



CHAPTER 9

Working with 
WebSphere MQ
Artix provides the ability to integrate with IBM WebSphere MQ 
applications or provide WebSphere MQ qualities of service to 
non-WebSphere MQ applications.

In this chapter This chapter discusses the following topics:

Introduction page 134

Describing an Artix WebSphere MQ Port page 136

Adding an WebSphere MQ Port to an Artix Contract page 172
133



CHAPTER 9 | Working with WebSphere MQ
Introduction

Overview Artix provides connectivity to IBM�s WebSphere MQ messaging system. This 
connectivity opens several opportunities for using Artix. The most obvious 
use is to integrate non-WebSphere MQ applications with WebSphere MQ 
applications. Another powerful use of Artix�s WebSphere MQ connectivity is 
writing Artix code that leverages WebSphere MQ qualities of service to 
provide enterprise class solutions.

Integration with synchronous 
messaging models

Because Artix abstracts the details of the messaging infrastructure from the 
application level code, Artix allows for a seamless integration between 
WebSphere MQ, which uses an asynchronous messaging model, and 
applications that use a synchronous messaging model. Asynchronous 
WebSphere MQ applications will still send messages without blocking and 
poll the reply queue for a response if one is expected. Synchronous 
applications, such as CORBA applications, will continue to block between 
making a request and receiving a response. Neither end needs to be aware 
of how the other end handles messages.

Supported Features Table 15 shows the matrix of WebSphere MQ features Artix supports.

Note: IBM WebSphere MQ integration is unavailable in some editions of 
Artix. Please check the conditions of your Artix license to see whether your 
installation supports IBM WebSphere MQ integration.

Table 15: Supported WebSphere MQ Features

Feature Supported Not 
Supported

Dynamic Queue Creation x

SSL x

Queue Manager Clustering x

LDAP x
 134



Introduction
Channel Process Pooling x

Wildcards for Security Settings x

Table 15: Supported WebSphere MQ Features

Feature Supported Not 
Supported
135



CHAPTER 9 | Working with WebSphere MQ
Describing an Artix WebSphere MQ Port

Overview To enable Artix to interoperate with WebSphere MQ, you must describe the 
WebSphere MQ port in the Artix contract defining the behavior of your Artix 
instance. Artix uses a number of proprietary WSDL extensions to specify all 
of the attributes that can be set on an WebSphere MQ port. The 
XMLSchema describing the extensions used for the WebSphere MQ port 
definition is included in the Artix installation under the schemas directory.

In this section This section discusses the following topics:

Configuring an Artix WebSphere MQ Port page 138

QueueManager page 141

QueueName page 142

ReplyQueueName page 143

ReplyQueueManager page 144

ModelQueueName page 145

AliasQueueName page 146

ConnectionName page 148

ConnectionReusable page 149

ConnectionFastPath page 150

UsageStyle page 151

CorrelationStyle page 152

AccessMode page 153

Timeout page 155

MessageExpiry page 156

MessagePriority page 157
 136



Describing an Artix WebSphere MQ Port
Delivery page 158

Transactional page 159

ReportOption page 160

Format page 162

MessageId page 164

CorrelationId page 165

ApplicationData page 166

AccountingToken page 167

Convert page 168

ApplicationIdData page 169

ApplicationOriginData page 170

UserIdentification page 171
137



CHAPTER 9 | Working with WebSphere MQ
Configuring an Artix WebSphere MQ Port

Overview The Artix WebSphere MQ port description distinguishes between ports used 
for server applications and ports used by client applications because the 
port attributes have different implications for serer application and client 
applications. Many of the attributes that can be set in an MQ message 
descriptor are definable using attributes to the MQ port definition.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are 
defined in the WSDL namespace http://schemas.iona.com/bindings/mq. 
To use the WebSphere MQ extensions you will need to include the following 
in the <definitions> tag of your contract:

WebSphere MQ port elements When describing an WebSphere MQ port in your Artix contract you use two 
child elements to the port:

<mq:client> defines a port for a WebSphere MQ client application.

<mq:server> defines a port a WebSphere MQ server application.

You must use at least one of these elements in your Artix WebSphere MQ 
port description.

WebSphere MQ port attributes Table 16 lists the attributes that are use to define the properties of a 
WebSphere MQ port. They are described in detail in the section that follow 
the table.

xmlns:mq="http://schemas.iona.com/bindings/mq"

Table 16: WebSphere MQ Port Attributes

Attributes Description

QueueManager Specifies the name of the queue manager.

QueueName Specifies the name of the message queue.
 138



Describing an Artix WebSphere MQ Port
ReplyQueueName Specifies the name of the queue where response messages are received. This 
setting is ignored by WebSphere MQ servers when the client specifies the 
ReplyToQ in the request message�s message descriptor.

ReplyQueueManager Specifies the name of the reply queue manager. This setting is ignored by 
WebSphere MQ servers when the client specifies the ReplyToQMgr in the 
request message�s message descriptor.

ModelQueueName Specifies the name of the queue to be used as a model for creating dynamic 
queues.

AliasQueueName Specifies the remote queue to which a server will put replies if its queue 
manager is not on the same host as the client�s local queue manager.

ConnectionName Specifies the name of the connection by which the adapter connects to the 
queue.

ConnectionReusable Specifies if the connection can be used by more than one application.

ConnectionFastPath Specifies if the queue manager will be loaded in process.

UsageStyle Specifies if messages can be queued without expecting a response.

CorrelationStyle Specifies what identifier is used to correlate request and response messages.

AccessMode Specifies the level of access applications have to the queue.

Timeout Specifies the amount of time within which the send and receive processing 
must begin before an error is generated.

MessageExpiry Specifies the value of the MQ message descriptor�s Expiry field.

MessagePriority Specifies the value of the MQ message descriptor�s Priority field.

Delivery Specifies the value of the MQ message descriptor�s Persistence field.

Transactional Specifies if transaction operations must be performed on the messages.

ReportOption Specifies the value of the MQ message descriptor�s Report field.

Format Specifies the value of the MQ message descriptor�s Format field.

MessageId Specifies the value for the MQ message decscriptor�s MsgId field..

Table 16: WebSphere MQ Port Attributes

Attributes Description
139



CHAPTER 9 | Working with WebSphere MQ
CorrelationId Specifies the value for the MQ message decscriptor�s CorrelId field.

ApplicationData Specifies optional information to be associated with the message.

AccountingToken Specifies the value for the MQ message decscriptor�s AccountingToken field.

Convert Specifies in the messages in the queue need to be converted to the system�s 
native encoding.

ApplicationIdData Specifies the value for the MQ message decscriptor�s ApplIdentityData 
field.

ApplicationOriginData Specifies the value for the MQ message decscriptor�s ApplOriginData field.

UserIdentification Specifies the value for the MQ message decscriptor�s UserIdentifier field.

Table 16: WebSphere MQ Port Attributes

Attributes Description
 140



Describing an Artix WebSphere MQ Port
QueueManager

Overview QueueManager specifies the name of the WebSphere MQ queue manager 
used for request messages. Client applications will use this queue manager 
to place requests and server applications will use this queue manager to 
listen for request messages. You must provide this information when 
configuring a Websphere MQ port.

Example Example 86 shows a simple WebSphere MQ server port configuration for 
servers that listen for requests using a queue manager called leo.

Example 86:MQ Port Definition

<mq:server QueueManager="leo" QueueName="requestQ" />
141



CHAPTER 9 | Working with WebSphere MQ
QueueName

Overview QueueName is a required attribute for a WebSphere MQ port. It specifies the 
request message queue. Client applications place request messages into this 
queue. Server applications take requests from this queue. The queue must 
be configured under the specified queue manager before it can be used.

Example Example 87 shows a definition of a simple WebSphere MQ client that 
places oneway requests onto a queue called ether.

Example 87:WebSphere MQ QueueName example

<mq:client QueueManager="Qmgr" QueueName="ether" />
 142



Describing an Artix WebSphere MQ Port
ReplyQueueName

Overview ReplyQueueName is mapped to the MQ message descriptor�s ReplyToQ field. 
It specifies the name of the reply message queue used by the port. When 
configuring an MQ client port this attribute is required if the clients expect 
replys to their requests. When configuring an MQ server port you can leave 
this attribute unset if you are sure that all clients are populating the 
ReplyToQ field in the message descriptor of their requests.

Server handling of 
ReplyQueueName

When a WebSphere MQ server receives a request, it first looks at the 
request�s message descriptor�s ReplyToQ field. If the request�s message 
descriptor has ReplyToQ set, the server uses the reply queue specified in the 
message descriptor and ignores the ReplyQueueName setting. If the ReplyToQ 
field in the message descriptor is not set, the server will use the 
ReplyQueueName to determine where to send reply messages.

Example Example 88 shows a WebSphere MQ server port that defaults to placing 
reply messages onto the queue outbox.

Example 88:MQ Server with ReplyQueueName Set

<mq:server QueueName="ether" QueueManager="leo"
           ReplyQueueName="outbox" ReplyQueueManager="pager" />
143



CHAPTER 9 | Working with WebSphere MQ
ReplyQueueManager

Overview ReplyQueueManager is mapped to the MQ message descriptor�s ReplyToQMgr 
field. It specifies the name of the WebSphere MQ queue manager that 
controls the reply message queue. When configuring an MQ client port this 
attribute is required if the clients expect replys to their requests. When 
configuring an MQ server port you can leave this attribute unset if you are 
sure that all clients are populating the ReplyToQMgr field in the message 
descriptor of their requests.

Server handling of 
ReplyQueueManager

When a WebSphere MQ server receives a request, it first looks at the 
request�s message descriptor�s ReplyToQMgr field. If the request�s message 
descriptor has ReplyToQMgr set, the server uses the reply queue specified in 
the message descriptor and ignores the ReplyQueueManager setting. If the 
ReplyToQMgr field in the message descriptor is not set, the server will use 
the ReplyQueueManager to determine where to send reply messages.

Example Example 89 shows a WebSphere MQ client port that is configured to receive 
replies from the server defined in Example 88 on page 143.

Example 89:MQ Client with ReplyQueueName Set

<mq:client QueueName="ether" QueueManager="leo"
           ReplyQueueName="outbox" ReplyQueueManager="pager" />
 144



Describing an Artix WebSphere MQ Port
ModelQueueName

Overview ModelQueueName is only needed if you are using dynamically created queues. 
It specifies the name of the queue from which the dynamically created 
queues are created.
145



CHAPTER 9 | Working with WebSphere MQ
AliasQueueName

Overview When interoperating between WebSphere MQ applications whose queue 
managers are on different hosts, Artix requires that you specify the name of 
the remote queue to which the server will post reply messages. This ensures 
that the server will put the replies on the proper queue. Otherwise, the 
server will recieve a request message with the ReplyToQ field set to a queue 
that is managed by a queue manager on a remote host and will be unable to 
send the reply.

You specify this server�s local reply queue name in the WebSphere MQ 
client�s AliasQueueName attribute when you define it in an Artix contract.

Effect of AliasQueueName When you specify a value for AliasQueueName in a WebSphere MQ client 
port definition, you are altering how Artix populates the request message�s 
ReplyToQ field and ReplyToQMgr field. Typically, Artix populates the reply 
queue information in the request message�s message descriptor with the 
values specified in ReplyQueueManager and ReplyQueueName. Setting 
AliasQueueName cuases Artix to leave ReplytoQMgr empty, and to set 
ReplyToQ to the value of AliasQueueName. When the ReplyToQMgr field of 
the message descriptor is left empty, the sending queue manager inspects 
the queue named in the ReplyToQ field to determine who its queue manager 
is and uses that value for ReplyToQMgr. The server puts the message on the 
remote queue that is configured as a proxy for the client�s local reply queue.

Example If you had a system defined similar to that shown in Figure 3, you would 
need to use the AliasQueueName attribute setting when configuring your 
WebSphere MQ client. In this set up the client is running on a host with a 
local queue manager QMgrA. QMgrA has two queues configured. RqA is a 
remote queue that is a proxy for RqB and RplyA is a local queue. The server 
is running on a different machine whose local queue manager is QMgrB. 
 146



Describing an Artix WebSphere MQ Port
QMgrB also has two queues. RqB is a local queue and RplyB is a remote 
queue that is a proxy for RplyA. The client places its request on RqA and 
expects replies to arrive on RplyA.

The Artix WebSphere MQ port definitions for the client and server for this 
deployment are shown in Example 90. AliasQueueName is set to RplyB 
because that is the remote queue proxying for the reply queue on in server�s 
local queue manager. ReplyQueueManager and ReplyQueueName are set to 
the client�s local queue manager so that it knows where to listen for 
responses. In this example, the server�s ReplyQueueManager and 
ReplyQueueName do not need to be set because you are asured that the 
client is populating the request�s message descriptor with the needed 
information for the server to determine where replies are sent,

Figure 3: MQ Remote Queues

Client Server

QMgrA QMgrB

RqA RqB

RplyA RplyB

Example 90:Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
           ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
           AliasQueueName="RplyB"
           Format="string" Convert="true" />
<mq:server QueueManager="QMgrB" QueueName="RqB"
           Format="String" Convert="true" />
147



CHAPTER 9 | Working with WebSphere MQ
ConnectionName

Overview ConnectionName specifies the name of the connection Artix uses to connect 
to its queue.

Note: If you set CorrelationStyle to messageID copy and specify a 
value for ConnectionName your system will not work as expected.
 148



Describing an Artix WebSphere MQ Port
ConnectionReusable

Overview ConnectionReusable specifies if the connection named in the 
ConnectionName field can be used by more than one application. Valid 
entries are true and false. Defaults to false.
149



CHAPTER 9 | Working with WebSphere MQ
ConnectionFastPath

Overview ConnectionFastPath specifies if you want to load the request queue 
manager in process. Valid entries are true and false. Defaults to false.

Example Example 91 shows a WebSphere MQ client port that loads its request queue 
manager in process.

Example 91:WebSphere Client Port using ConnectionFastPath

<mq:client QueueName="gate" QueueManager="dhd"
           ReplyQueueName="inbound" ReplyQueueManager="flipside"
           ConnectionFastPath="true" />
 150



Describing an Artix WebSphere MQ Port
UsageStyle

Overview UsageStyle specifies if a message can be queued without expecting a 
response. Valid entries are peer, requester, and responder. The default 
value is peer.

Attribute settings The behavior of each setting is described in Table 17.

Example In Example 92, the WebSphere MQ client wants a response from the server 
and needs to be able to associate the response with the request that 
generated it. Setting the UsageStyle to responder ensures that the server�s 
response will properly populate the response message descriptor�s CorrelID 
field according to the defined correlation style. In this case, the correlation 
style is set to correlationId.

Table 17: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without 
expecting any response.

requester Specifies that the message sender expects a 
response message.

responder Specifies that the response message must contain 
enough information to facilitate correlation of the 
response with the original message.

Example 92:MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
           ReplyQueueManager="postmaster" ReplyQueueName="fred"
           UsageStyle="responder"
           CorrelationStyle="correlationId" />
151



CHAPTER 9 | Working with WebSphere MQ
CorrelationStyle

Overview CorrelationStyle determines how WebSphere MQ matches both the 
message identifier and the correlation identifier to select a particular 
message to be retrieved from the queue (this is accomplished by setting the 
corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the 
MatchOptions field in MQGMO to indicate that those fields should be used as 
selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are messageId, 
correlationId, and messageId copy.

Attribute settings Table 18 shows the actions of MQGET and MQPUT when receiving a message 
using a WSDL specified message ID and a WSDL specified correlation ID.

Example Example 93 shows a WebSphere MQ client application that wants to 
correlate messages using the messageID copy setting.

Note: When a value is specified for ConnectionName, you cannot use 
messageID copy as the correlation style.

Table 18: MQGET and MQPUT Actions

Artix Port Setting Action for MQGET Action for MQPUT

messageId Set the CorrelId of the message 
descriptor to MessageID.

Copy MessageID onto the message 
descriptor�s CorrelId.

correlationId Set CorrelId of the message descriptor to 
CorrelationID.

Copy CorrelationID onto message 
descriptor�s CorrelId.

messageId copy Set MsgId of the message descriptor to 
messageID.

Copy MessageID onto message 
descriptor�s MsgId.

Example 93:MQ Client using messageID copy

<mq:client QueueManager="grub" QueueName="gnome"
           ReplyQueueManager="lilo" ReplyQueueName="kde"
           CorrelationStyle="messageId copy" />
 152



Describing an Artix WebSphere MQ Port
AccessMode

Overview AccessMode controls the action of MQOPEN in the Artix WebSphere MQ 
transport. Its values can be peek, send, recive, receive exclusive, and 
receive shared. Each setting mapping corresponds to a WebSphere MQ 
setting for the MQOPEN. The default is recieve.

Attribute settings Table 19 describes the correlation between the Artix attribute settings and 
the MQOPEN settings.

Table 19: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue 
to browse messages. This setting is not valid for 
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue 
to put messages into it. The queue is opened for 
use with subsequent MQPUT calls.

receive (default) Equivalent to MQOO_INPUT_AS_Q_DEF. receive 
opens a queue to get messages using a 
queue-defined default. The default value depends 
on the DefInputOpenOption queue attribute 
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

recieve exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive 
exclusive opens a queue to get messages with 
exclusive access. The queue is opened for use 
with subsequent MQGET calls. The call fails with 
reason code MQRC_OBJECT_IN_USE if the queue is 
currently open (by this or another application) for 
input of any type.
153



CHAPTER 9 | Working with WebSphere MQ
Example Example 94 shows the settings for a WebSphere MQ server port that is set 
up so that only one application at a time can access the queue.

receive shared Equivalent to MQOO_INPUT_SHARED. receive 
shared opens queue to get messages with shared 
access. The queue is opened for use with 
subsequent MQGET calls. The call can succeed if 
the queue is currently open by this or another 
application with MQOO_INPUT_SHARED.

Table 19: Artix WebSphere MQ Access Modes

Attribute Setting Description

Example 94:WebSphere MQ Server setting AccessMode

<mq:server QueueManager="welk" QueueName="anacani"
           ReplyQueueManager="severinsen" ReplyQueueName="johnny"
           AccessMode="recieve exclusive" />
 154



Describing an Artix WebSphere MQ Port
Timeout

Overview Timeout specifies the amount of time, in milliseconds, between a request 
and the cooresponding reply before an error message is generated. If the 
reply to a particular request has not arrived after the specified period, it is 
treated as an error.

Example Example 95 shows the settings for a MQ client port where replies are 
required in at most 3 minutes.

Example 95:WebSphere MQ Client Port with a 3 Minute Timeout

<mq:client QueueManager="jpl" QueueName="appollo"
           ReplyQueueManager="jpl" ReplyQueueName="mercury"
           Timeout="180000" />
155



CHAPTER 9 | Working with WebSphere MQ
MessageExpiry

Overview MessageExpiry is mapped to the MQ message descriptor�s Expiry field. It 
specifies message lifetime, expressed in tenths of a second. It is set by the 
Artix endpoint that puts the message onto the queue. The message becomes 
eligible to be discarded if it has not been removed from the destination 
queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the 
destination queue, and also on any intermediate transmission queues if the 
put is to a remote queue. It may also be decremented by message channel 
agents to reflect transmission times, if these are significant.

MessageExpiry can also be set to INFINITE which indicates that the 
messages have unlimited lifetime and will never be eligible for deletion. If 
MessageExpiry is not specified, it defaults to INFINITE lifetime.

Example Example 96 shows the settings for a WebSphere MQ client port where the 
messages sent from applications using this port have a lifetime of 30 
minutes.

Example 96:Client Port with a 3 Minute Message Lifetime

<mq:client QueueManager="domino" QueueName="dot"
           ReplyQueueManager="domino" ReplyQueueName="cash"
           MessageExpiry="18000" />
 156



Describing an Artix WebSphere MQ Port
MessagePriority

Overview MessagePriority is mapped to the MQ message descriptor�s Priority 
fileld. It specifies the message�s priority. Its value must be greater than or 
equal to zero; zero is the lowest priority. If not specified, this field defaults to 
priority normal, which is 5.  The special values for MessagePriority 
include highest (9), high (7), medium (5), low (3) and lowest (0).
157



CHAPTER 9 | Working with WebSphere MQ
Delivery

Overview Delivery can be persistent or not persistent. persistent means that 
the message survives both system failures and restarts of the queue 
manager. Internally, this sets the MQMD�s Persistence field to 
MQPER_PERSISTENT or MQPER_NOT_PERSISTENT. The default value is not 
persistent. To support transactional messaging, you must make the 
messages persistent.

Example Example 97 shows the settings for a WebSphere MQ port that sends 
persistent oneway messages.

Example 97:Persistent WebSphere MQ Port

<mq:client QueueManager="mointor" QueueName="msgQ"
           Delivery="persistent" />
 158



Describing an Artix WebSphere MQ Port
Transactional

Overview Transactional controls how messages participate in transactions and what 
role Webshpere MQ plays in the transactions.

Attribute settings The values of this attribute are explained in Table 20.

Example Example 98 shows the settings for a WebSphere MQ client port whose 
requests will be part of transactions managed by WebSphere MQ. Note that 
the Delivery attribute must be set to persistent when using transactions.

Table 20: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No 
roleback actions will be taken if errors occur.

internal The messages are part of a transaction with 
WebSphere MQ serving as the transaction manager.

xa The messages are part of a transaction with 
WebSphere MQ serving as the resource manager.

Example 98:MQ Client setup to use Transactions

<mq:client QueueManager="herman" QueueName="eddie"
           ReplyQueueManager="gomez" ReplyQueueName="lurch"
           UsageStyle="responder" Delivery="persistent"
           CorrelationStyle="correlationId"
           Transactional="internal" />
159



CHAPTER 9 | Working with WebSphere MQ
ReportOption

Overview ReportOption is mapped the MQ message descriptor�s Report field. It 
enables the application sending the original message to specify which report 
messages are required, whether the application message data is to be 
included in them, and how the message and correlation identifiers in the 
report or reply message are to be set. Artix only allows you to specify one 
ReportOption per Artix port. Setting more than one will result in 
unpredictable behavior.

Attribute settings The values of this attribute are explained in Table 21.

Table 21: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no 
reports are required. You should never specifically 
set ReportOption to none; it will create validation 
errors in the contract.

coa Corresponds to MQRO_COA. coa specifies that 
confirm-on-arrival reports are required. This type of 
report is generated by the queue manager that owns 
the destination queue, when the message is placed 
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that 
confirm-on-delivery reports are required. This type 
of report is generated by the queue manager when 
an application retrieves the message from the 
destination queue in a way that causes the message 
to be deleted from the queue.
 160



Describing an Artix WebSphere MQ Port
Example Example 99 shows the settings for a WebSphere MQ client that wants to be 
notified if any of its message expire before they are delivered.

exception Corresponds to MQRO_EXCEPTION. exception 
specifies that exception reports are required. This 
type of report can be generated by a message 
channel agent when a message is sent to another 
queue manager and the message cannot be 
delivered to the specified destination queue. For 
example, the destination queue or an intermediate 
transmission queue might be full, or the message 
might be too big for the queue. 

expiration Corresponds to MQRO_EXPIRATION. expiration 
specifies that expiration reports are required. This 
type of report is generated by the queue manager if 
the message is discarded prior to delivery to an 
application because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard 
indicates that the message should be discarded if it 
cannot be delivered to the destination queue. An 
exception report message is generated if one was 
requested by the sender

Table 21: ReportOption Attribute Settings

Attribute Setting Description

Example 99:MQ Client Setup to Receive Expiration Reports

<mq:client QueueManager="herman" QueueName="eddie"
           ReplyQueueManager="gomez" ReplyQueueName="lurch"
           ReportOption="expiration" />
161



CHAPTER 9 | Working with WebSphere MQ
Format

Overview Format is mapped to the MQ message descriptor�s Format field. It specifies 
an optional format name to indicate to the receiver the nature of the data in 
the message. The name may contain any character in the queue manager's 
character set, but it is recommended that the name be restricted to the 
following:

� Uppercase A through Z 

� Numeric digits 0 through 9

Special values FormatType can take the special values none, string, event, programmable 
command, and unicode. These settings are described in Table 22.

Table 22: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name 
is specified.

string Corresponds to MQFMT_STRING. string 
specifies that the message consists entirely of 
character data. The message data may be 
either single-byte characters or double-byte 
characters.

unicode Corresponds to MQFMT_STRING. unicode 
specifies that the message consists entirely of 
Unicode characters. (Unicode is not 
supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies 
that the message reports the occurrence of an 
WebSphere MQ event. Event messages have 
the same structure as programmable 
commands.
 162



Describing an Artix WebSphere MQ Port
When you are interoperating with WebSphere MQ applications host on a 
mainframe and the data needs to be converted into the systems native data 
format, you should set Format to string. Not doing so will result in the 
mainframe receiving corrupted data.

Example Example 100 shows a WebSphere MQ client port used for making requests 
against a server on a mainframe system. Note that the Convert attribute is 
set to true signifying that WebSphere will convert the data into the 
mainframes native data mapping.

programmable command Corresponds to MQFMT_PCF. programmable 
command specifies that the messages are 
user-defined messages that conform to the 
structure of a programmable command format 
(PCF) message.

For more information, consult the IBM 
Programmable Command Formats and 
Administration Interfaces documentation at 
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 22: FormatType Attribute Settings

Attribute Setting Description

Example 100:WebSphere MQ Client Talking to the Mainframe

<mq:client QueueManager="hunter" QueueName="bigGuy"
           ReplyQueueManager="slate" ReplyQueueName="rusty"
           Format="string" Convert="true"/>
163

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12


CHAPTER 9 | Working with WebSphere MQ
MessageId

Overview MessageId is is mapped to the MQ message descriptor�s MsgId field. It is an 
alphanumeric string of up to 20 bytes in length. Depending on the setting of 
CorrelationStyle, this string may be used to correlate request and 
response messages with each other. A value must be specified in this 
attribute if CorrelationStyle is set to none.

Example Example 101 shows the settings for a WebSphere MQ client that wants to 
use message Ids to correlate response and request messages.

Example 101:WebSphere MQ Client using MessageID

<mq:client QueueManager="QM" QueueName="reqQueue"
           ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
           CorrelationStyle="messageId" MessageID="foo"/>
 164



Describing an Artix WebSphere MQ Port
CorrelationId

Overview CorrelationId is mapped to the MQ message descriptor�s CorrelId field. It 
is an alphanumeric string of up to 20 bytes in length. Depending on the 
setting of CorrelationStyle, this string will be used to correlate request 
and response messages with each other. A value must be specified in this 
attribute if CorrelationStyle is set to none.

Example Example 102 shows the settings for a WebSphere MQ client that wants to 
use correlation Ids to correlate response and request messages.

Example 102:WebSphere MQ Client using CorrelationID

<mq:client QueueManager="QM" QueueName="reqQueue"
           ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
           CorrelationStyle="correlationId" CorrelationID="foo"/>
165



CHAPTER 9 | Working with WebSphere MQ
ApplicationData

Overview ApplicationData specifies any application specific information that needs 
to be set in the message header.
 166



Describing an Artix WebSphere MQ Port
AccountingToken

Overview AccountingToken is mapped to the MQ message descriptor�s 
AccountingToken field. It specifies application specific information used for 
accounting purposes.

Example Example 103 shows the settings for a WebSphere MQ client used for 
making requests against a server on a mainframe system that keeps tracks 
of what department is using its resources.

Example 103:WebSphere MQ Client Sending Accounting Token

<mq:client QueueManager="hunter" QueueName="bigGuy"
           ReplyQueueManager="slate" ReplyQueueName="rusty"
           Format="string" Convert="true"
           AccountingToken="darkHorse" />
167



CHAPTER 9 | Working with WebSphere MQ
Convert

Overview Convert specifies if messages are to be converted to the receiving systems 
native data format. Valid values are true and false. Default is false.

Example Example 104 shows a WebSphere MQ client port used for making requests 
against a server on a Unix system.

Note: The WebSphere MQ transport will always attempt to convert string 
data and always ignore non-string data. This setting is ignored.

Example 104:WebSphere MQ Client using Convert

<mq:client QueueManager="atm5" QueueName="ReqQ"
           ReplyQueueManager="hpux1" ReplyQueueName="RepQ"
           Format="string" Convert="true"/>
 168



Describing an Artix WebSphere MQ Port
ApplicationIdData

Overview ApplicationIdData is mapped to the MQ message descriptor�s 
ApplIdentityData field. It is application specific string data that can be 
used to provide additional information about the message or the applciation 
from which it originated. This attribute is only valid when defining 
Websphere MQ clients using an <mq:client> element.
169



CHAPTER 9 | Working with WebSphere MQ
ApplicationOriginData

Overview ApplicationOriginData is mapped to the MQ message descriptor�s 
ApplOriginData field. It is application specific string data that can be used 
to provide additional information about the origin of the message.

Example Example 105 shows the settings for a WebSphere MQ client that wants to 
identify itself to the server.

Example 105:WebSphere MQ Client Sending Origin Data

<mq:client QueueManager="QM" QueueName="reqQueue"
           ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
           ApplicationOriginData="SSLclient" />
 170



Describing an Artix WebSphere MQ Port
UserIdentification

Overview UserIdentification is mapped to the MQ message descriptor�s 
UserIdentifier field. It is a string that represents the User ID of the 
application from which the message originated. This attribute is only valid 
when defining Websphere MQ clients using an <mq:client> element.

Example Example 106 shows the settings for a WebSphere MQ client that needs to 
specify the User that is making the request.

Example 106:WebSphere MQ Client Sending UserID

<mq:client QueueManager="QM" QueueName="reqQueue"
           ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
           UserIdentification="tux" />
171



CHAPTER 9 | Working with WebSphere MQ
Adding an WebSphere MQ Port to an Artix 
Contract

Overview The description for an Artix WebSphere MQ port is entered in a <port> 
element of the Artix contract containing the interface to be exposed over 
WebSphere MQ. Artix defines two elements to describe WebSphere MQ 
ports and their attributes:

<mq:client> defines a port for a WebSphere MQ client application.

<mq:server> defines a port a WebSphere MQ server application.

You can use one or both of the WebSphere MQ elements to describe the 
Artix WebSphere MQ port. Each can have different configurations depending 
on the attributes you choose to set.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are 
defined in the WSDL namespace http://schemas.iona.com/bindings/mq. 
To use the WebSphere MQ extensions you will need to include the following 
in the <definitions> tag of your contract:

xmlns:mq="http://schemas.iona.com/bindings/mq"
 172



Adding an WebSphere MQ Port to an Artix Contract
Example An Artix contract exposing an interface, monsterBash, bound to a SOAP 
payload format, Raydon, on an WebSphere MQ queue, UltraMan would 
contain a service element similar to Example 107.

Example 107:Sample WebSphere MQ Port

<service name="Mothra">
  <port name="X" binding="tns:Raydon">
    <mq:server QueueManager="UMA"
               QueueName="UltraMan" 
               ReplyQueueManager="WINR"
               ReplyQueueName="Elek"
               AccessMode="receive"
               CorrelationStyle="messageId copy"/>
  </port>
</service>
173



CHAPTER 9 | Working with WebSphere MQ
 174



CHAPTER 10

Working with the 
Java Messaging 
System
Artix allows C++ applications to take advantage of the Java 
Messaging System.

Overview The Java Messaging System(JMS) provides a standardized means for Java 
applications to send messages. Artix provides a transport plug-in that 
enables systems to place and receive messages from JMS message queues 
and topics. One large advantage of this is that Artix allows C++ 
applications to interact directly with Java applications over JMS.

Artix�s JMS transport plug-in uses JNDI to locate and obtain references to 
the JMS provider that brokers for the JMS destination with which it wants to 
connect. The destinations are specified in the Artix contract describing the 
application and can be changed without any change in the application code. 
Once Artix has established a connection to a JMS provider, Artix supports 
the passing of messages packaged as either a JMS ObjectMessage or a JMS 
TextMessage.

Note: JMS integration is unavailable in some editions of Artix. Please 
check the conditions of your Artix license to see whether your installation 
supports JMS integration.
175



CHAPTER 10 | Working with the Java Messaging System
Message formatting The Artix JMS transport supports the following Artix payload format 
bindings:

� SOAP

� Fixed

� Tagged

� XML

The JMS transport takes the payload formatting and packages it into either a 
JMS ObjectMessage or a TextMessage. When a message is packaged as an 
ObjectMessage the message information, any format specific information, is 
serialized into a byte[] and placed into the JMS message body. When a 
message is packaged as a TextMessage, the message information, including 
any format specific information, is converted into a string and placed into 
the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS 
application is responsible for understanding how to interpret the message 
and the formatting information. For example, if the Artix contract specifies 
that the binding used for a JMS port is SOAP, and the messages are 
packaged as TextMessage, the receiving JMS application will get a text 
message containing all of the SOAP envelope information. For a message 
encoded using the fixed binding, the message will contain no formatting 
information, simply a string of characters, numbers, and spaces.

Port configuration Artix JMS ports are configured entirely in the Artix contract describing your 
service. The JMS port configuration is done by using a <jms:address> 
element in your service�s <port> description. <jms:address> takes six 
required attributes to configure the JMS connection:

destinationStyle Specifies if the JMS destination is a JMS 
queue or a JMS topic.

jndiProviderURL Specifies the URL of the JNDI service where 
the connection information for the JMS 
destination is stored.
 176



Example Example 108 shows an example of an Artix JMS port specification.

JNDI InitalContextFactory 
settings

The usual method of specifying the JNDI is to enter the class name provided 
by your JNDI provider. In Example 108, the JMS port is using the JNDI 
provided with SonicMQ and the class specified, 
com.sonicsw.jndi.mfcontext.MFContextFactory, is the class used by 
Sonic�s JNDI server to create a JNDI context.

initialContextFactory Specifies the name of the 
InitialContextFactory class or a list of 
package prefixes used to construct URL 
context factory classnames. For more details 
on specifying a JNDI InitialContextFactory, 
see �JNDI InitalContextFactory settings� on 
page 177.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS 
connection factory to use when connecting to 
the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the JMS 
destination to which Artix connects.

messageType Specifies how the message data will be 
packaged as a JMS message. text specifies 
that the data will be packaged as a 
TextMessage. binary specifies that the data 
will be packaged as an ObjectMessage.

Example 108:Artix JMS Port

<service name="HelloWorldService">
  <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
    <jms:address destinationStyle="queue"
                 jndiProviderURL="tcp://localhost:2506"
                 initialContextFactory="com.sonicsw.jndi.mfcontext.MFContextFactory"
                 jndiConnectionFactoryName="QCF"
                 jndiDestinationName="testQueue"
                 messageType="text" />
  </port>
</service>
177



CHAPTER 10 | Working with the Java Messaging System
Alternatively, you can specify a colon separated list of package prefixes to 
use when loading URL context factories. The JNDI service takes each 
package prefix and appends the URL schema name to form a sub-package. 
It then prepends the URL schema name to URLContextFactory to form a 
class name within the sub-package. Once the new class name is formed, 
the JNDI service then tries to instantiate the class using the newly formed 
name. For example, if your Artix contract described the JMS port shown in 
Example 109, the JNDI service would instantiate a context factory with the 
class name com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to 
perform lookups.

The URLContextFactory then uses the URL specified in the 
jndiConnectionFactoryName and the jndiDestinationFactoryName 
attributes to obtain references to the desired JMS ConnectionFactory and 
the desired JMS Destination. The JNDI service is completely bypassed 
using this method and allows you to connect to JMS implementations that 
do not use JNDI or to connect to JMS Destination that are not registered 
with the JNDI service.

So instead of looking up the JMS ConnectionFactory using the JNDI name 
bound to it, Artix will get a reference directly to ConnectionFactory using 
the name given to it when it was created. Using the contract in 
Example 109, Artix would use the URL sonic:jms/queue/helloWorldQueue 
to get a reference to the desired queue. Artix would be handed a reference to 
a queue named helloWorldQueue if the JMS broker has such a queue.

Example 109:JMS Port with Alternate InitialContextFactory Specification

<service name="HelloWorldService">
  <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
    <jms:address destinationStyle="queue"
                 jndiProviderURL="tcp://localhost:2506"
                 initialContextFactory="com.iona.jbus.jms.naming"
                 jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
                 jndiDestinationName="sonic:jms/queue/helloWorldQueue"
                 messageType="text" />
  </port>
</service>

Note: Due to a known bug in the SonicMQ JNDI service, it is 
recommended that you use this method of specifying the 
InitialContextFactory when using SonicMQ.
 178



CHAPTER 11

Working with 
HTTP
The HTTP plug-in lets you configure an Artix integration 
solution to use the HTTP transport. This chapter first provides 
a brief introductory overview of HTTP. It then provides a 
description of the WSDL extensions involved. Finally it 
provides an overview of the WSDL extension schema that 
supports the use of HTTP with Artix.

In this chapter This chapter discusses the following topics:

HTTP Overview page 180

HTTP WSDL Extensions page 187

HTTP Transport Attributes page 208
179



CHAPTER 11 | Working with HTTP
HTTP Overview

Overview This section provides an introductory overview of the hypertext transport 
protocol (HTTP). The following topics are discussed:

� �What is HTTP?� on page 180.

� �Resources and URLs� on page 180.

� �HTTP transaction processing� on page 181.

� �Format of HTTP client requests� on page 181.

� �Format of HTTP server responses� on page 183.

� �HTTP properties� on page 184.

What is HTTP? HTTP is the standard TCP/IP-based protocol used for client-server 
communications on the World Wide Web. The main function of HTTP is to 
establish a connection between a web browser (client) and a web server for 
the purposes of exchanging files and possibly other information on the Web.

HTTP is termed an application protocol. It defines how messages between 
web browsers and web servers should be formatted and transmitted. It also 
defines how web browsers and web servers should behave in response to 
various commands.

Resources and URLs The files and other information that can be transmitted are collectively 
known as resources. A resource is basically a block of information. Files are 
the most common example of resources and they can be in various 
multimedia formats, such as text, graphics, sound, and video. Other 
examples of resources are server-side script output or dynamically generated 
query results.

Note: A complete introduction to HTTP is outside the scope of this guide. 
For more details about HTTP see the W3C HTTP specification at 
http://www.w3.org/Protocols/rfc2616/rfc2616.html.
 180



HTTP Overview
A resource is identifiable by a uniform resource locator (URL). As its name 
suggests, a URL is the address or location of a resource. A URL typically 
consists of protocol information followed by host (and optionally port) 
information followed by the full path to the resource. HTTP is not the only 
protocol or mechanism for data transfer; other examples include TELNET or 
the file transfer protocol (FTP). Each of the following is an example of a 
URL:

� http://www.iona.com/support/docs/index.xml

� ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf

� telnet://xyz.com

In the first of the preceding examples, http: denotes that the protocol for 
data transfer is HTTP, //www.iona.com denotes the hostname where the 
resource resides, and /support/docs/index.xml is the full path to the 
resource (in this case, an XML text file). The other URLs follow similar 
patterns.

HTTP transaction processing When a web user on the client-side requests a resource, either by typing a 
URL or by clicking on a hypertext link, the client browser builds an HTTP 
request and opens a TCP/IP socket connection to send the request to the 
internet protocol (IP) address for the host denoted by the URL for the 
requested resource. The web server host contains an HTTP daemon that 
waits for client browser requests and handles them when they arrive. When 
the HTTP daemon receives a request, the requested resource is then 
returned to the client browser. The server�s response can take the form of 
HTML pages and possibly other programs in the form of ActiveX controls or 
Java applets.

Format of HTTP client requests The following is an example of the typical format of an HTTP client request:

GET REQUEST-URI HTTP/1.1
header field: value
header field: value

HTTP request body (if applicable)
181



CHAPTER 11 | Working with HTTP
The preceding code can be explained as follows:

GET This is an HTTP method that instructs the server to return 
the requested resource.

Other HTTP methods might be used here instead. These 
include:

� HEAD�this instructs the server to just return 
information about the resource (in headers) but not 
the actual resource itself.

� POST�this can be used if you want to send data in 
the body of the request for subsequent processing 
by the server.

� PUT�this can be used to replace the contents of the 
target resource with data from the client.

Note: GET is the most commonly used method in HTTP 
client requests.

REQUEST-URI This represents the URL of the resource that the client is 
requesting. The typical format of a URL is:

http://hostname/path-to-resource

For example: 
http://www.iona.com/support/docs/index.xml

HTTP/1.1 This indicates that the client is using HTTP to transmit 
the request, and the version of HTTP that the client is 
using (in this example, 1.1).

header field Header information can be included to provide 
information about the request. In HTTP 1.1, the only 
mandatory header field is Host:, to identify the host 
where the requested resource resides.

In Artix, a number of HTTP client request headers can be 
configured and sent as part of a client request to a server. 
See �HTTP WSDL Extensions� on page 187 and �Server 
Transport Attributes� on page 210 for more details.

HTTP request 
body

This can contain user-entered data or files that are being 
sent to the server for processing.

Note: This is typically blank in an HTTP request unless 
the PUT or POST method is specified.
 182



HTTP Overview
Format of HTTP server responses The following is an example of the typical format of an HTTP server 
response:

The preceding code can be explained as follows:

HTTP/1.1 200 OK
header field: value
header field: value

HTTP response body

HTTP/1.1 This indicates that the server is using HTTP to transmit 
the response, and the version of HTTP that the server is 
using (in this example, 1.1).

200 OK This is status information that indicates whether the 
request was processed successfully. The 3-digit code is 
meant to be machine-readable, and the accompanying 
descriptive text is for human consumption.

Status codes can be broadly described as follows:

� 2xx�A status code starting with 2 means the 
request was processed successfully.

� 3xx�A status code starting with 3 means the 
resource is now located elsewhere and the client 
should redirect the request to that new location.

� 4xx�A status code starting with 4 means that the 
request has failed because the client has either sent 
a request in the wrong syntax, or it might have 
requested a resource that is invalid or that it is not 
authorized to access.

� 5xx�A status code starting with 5 means that the 
request has failed because the server has 
experienced internal problems or it does not support 
the request method specified.
183



CHAPTER 11 | Working with HTTP
HTTP properties The basic properties of HTTP can be summarized as follows:

� Comprehensive addressing�The target resource on which a client 
request is to be invoked is indicated by means of a universal resource 
identifier (URI), either as a location (URL) or name (URN). As 
explained in �Resources and URLs� on page 180, a URL consists of 
protocol information followed, typically, by host (and optionally port) 
information followed by the full path to the resource. For example:

See �Resources and URLs� on page 180 for more details.

� Request/response paradigm�A client (web browser) can establish an 
HTTP connection with a web server by means of a URI, to send a 
request to that server. See �Format of HTTP client requests� on 
page 181 for details of the format of a client request message. See 
�Format of HTTP server responses� on page 183 for details of the 
format of a server response message.

� Connectionless protocol�HTTP is termed a connectionless protocol 
because an HTTP connection is typically closed after a single 
request/response operation. While it is possible for a client to request 
the server to keep a connection open for subsequent request/response 

header field Header information can be included to provide 
information about the response itself or about the 
information contained in the body of the response.

In Artix, a number of HTTP server response headers can 
be configured and sent as part of the server response to 
the client. See �HTTP WSDL Extensions� on page 187 
and �Client Transport Attributes� on page 212 for more 
details.

HTTP response 
body

This is where the requested resource is returned to the 
client, if the request has been processed successfully. 
Otherwise, it might contain some explanatory text as to 
why the request was not processed successfully.

The data in the body of the response can be in a variety 
of formats, such as HTML or XML text, GIF or JPEG 
image, and so on.

http://www.iona.com/support/docs/index.xml
 184



HTTP Overview
operations, the server is not obliged to keep the connection open. The 
advantage of closing connections is that it does not incur any overhead 
in terms of session housekeeping; however, the disadvantage is that it 
makes it difficult to track user behavior.

� Stateless protocol�Because HTTP connections are typically closed 
after each request/response operation, there is no memory or footprint 
between connections. A workaround to this, in CGI applications, is to 
encode state information in hidden fields, in the path information, or in 
URLs in the form returned to the client browser. State can also be 
saved in a file, rather than being encoded, as in the typical example of 
a visitor counter program, where state is identified by means of a 
unique identifier in the form of a sequential integer.

� Multimedia support�HTTP supports the transfer of various types of 
data, such as text (for example, HTML or XML files), graphics (for 
example, GIF or JPEG files), sound, and video. These types are 
commonly referred to as multipart internet mail extension (MIME) 
types. A server response can include header information that informs 
the client of the MIME type of the information being sent by the server.

� Proxies and caches�The communication chain between a client and 
server might include intermediary programs known as proxies. A proxy 
can receive client requests, possibly modify the request in some way, 
and then forward the request along the chain possibly to another proxy 
or to the target server. Such intermediaries can employ caches to store 
responses that might be appropriate for subsequent requests. Caches 
can be shared (public) or private. Specific directives can be established 
in relation to cache behavior and not all responses might be cacheable.

Note: A potential workaround to tracking user behavior is through 
the use of cookies. A cookie is a string sent by a web server to a web 
browser and which is then sent back to the web server again each 
time the browser subsequently contacts that server.
185



CHAPTER 11 | Working with HTTP
� Security�Secure HTTP connections that run over the secure sockets 
layer (SSL) or transport layer security (TLS) protocol can also be 
established. A secure HTTP connection is referred to as HTTPS and 
uses port 443 by default. (A non-secure HTTP connection uses port 80 
by default.)

Note: See �HTTP WSDL Extensions� on page 187 for details of the 
various SSL-related configuration attributes that can be used in 
extending a WSDL contract.
 186



HTTP WSDL Extensions
HTTP WSDL Extensions

Overview This section provides an overview and description of the attributes that you 
can configure as extensions to a WSDL contract for the purposes of using 
the HTTP transport plug-in with Artix.

In this section This section discusses the following topics:

HTTP WSDL Extensions Overview page 188

HTTP WSDL Extensions Details page 190
187



CHAPTER 11 | Working with HTTP
HTTP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in 
configuring the HTTP transport plug-in for use with Artix.

Configuration layout Example 110 shows (in bold) the WSDL extensions used to configure the 
HTTP transport plug-in for use with Artix. (Ellipses (that is, �) are used to 
denotes sections of the WSDL that have been omitted for brevity.) 

Example 110:HTTP configuration WSDL extensions

<definitions…
xmlns:http=”http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
…
<service name="…">
    <port binding="…">
        <http-conf:client SendTimeout="…"
                          ReceiveTimeout="…"
                          AutoRedirect="…"
                          UserName="…"
                          Password="…"
                          AuthorizationType="…"
                          Authorization="…"
                          Accept="…"
                          AcceptLanguage="…"
                          AcceptEncoding="…"
                          ContentType="…"
                          Host="…"
                          Connection="…"
                          ConnectionAttempts="..."
                          CacheControl="…"
                          Cookie="…"
                          BrowserType="…"
                          Referer="…"
                          ProxyServer="…"
                          ProxyUserName="…"
                          ProxyPassword="…"
                          ProxyAuthorizationType="…"
                          ProxyAuthorization="…"
                          UseSecureSockets="…"
 188



HTTP WSDL Extensions
                          ClientCertificate="…"
                          ClientCertificateChain="…"
                          ClientPrivateKey="…"
                          ClientPrivateKeyPassword="…"
                          TrustedRootCertificate="…"/>

        <http-conf:server SendTimeout="…"
                          ReceiveTimeout="…"
                          SuppressClientSendErrors="…"
                          SuppressClientReceiveErrors="…"
                          HonorKeepAlive="…"
                          RedirectURL="…"
                          CacheControl="…"
                          ContentLocation="…"
                          ContentType="…"
                          ContentEncoding="…"
                          ServerType="…"
                          UseSecureSockets="…"
                          ServerCertificate="…"
                          ServerCertificateChain="…"
                          ServerPrivateKey="…"
                          ServerPrivateKeyPassword="…"
                          TrustedRootCertificate="…"/>

Example 110:HTTP configuration WSDL extensions
189



CHAPTER 11 | Working with HTTP
HTTP WSDL Extensions Details

Overview This subsection describes each of the configuration attributes that can be 
set up as part of the WSDL extensions for configuring the HTTP transport 
plug-in for use with Artix. It discusses the following topics:

� �Server configuration attributes� on page 190.

� �Client configuration attributes� on page 197.

Server configuration attributes Table 23 describes the server-side configuration attributes for the HTTP 
transport that are defined within the http-conf:server element.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifes the length of time, in milliseconds, that the server can 
continue to try to send a response to the client before the connection is 
timed out.

The timeout value is at the user�s discretion. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the server can 
continue to try to receive a request from the client before the connection 
is timed out.

The timeout value is at the user�s discretion. The default is 30000.

SuppressClientSendErrors This specifies whether exceptions are to be thrown when an error is 
encountered on receiving a client request.

Valid values are true and false. The default is false, to throw 
exceptions on encountering errors.

SuppressClientReceiveErrors This specifies whether exceptions are to be thrown when an error is 
encountered on sending a response to a client.

Valid values are true and false. The default is false, to throw 
exceptions on encountering errors.
 190



HTTP WSDL Extensions
HonorKeepAlive This specifies whether the server should honor client requests for a 
connection to remain open after a server response has been sent to a 
client. Servers can achieve higher concurrency per thread by honoring 
requests to keep connections alive.

Valid values are true and false. The default is false, to close the 
connection after a server response is sent.

If set to true, the request socket is kept open provided the client is using 
at least version 1.1 of HTTP and has requested that the connection is 
kept alive (via the client-side Connection configuration attribute). 
Otherwise, the connection is closed.

If set to false, the socket is automatically closed after a server response 
is sent, even if the client has requested the server to keep the connection 
alive (via the client-side Connection configuration attribute).

RedirectURL This specifies the URL to which the client request should be redirected if 
the URL specified in the client request is no longer appropriate for the 
requested resource.

In this case, if a status code is not automatically set in the first line of the 
server response, the status code is set to 302 and the status description 
is set to Object Moved.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
191



CHAPTER 11 | Working with HTTP
CacheControl This specifies directives about the behavior that must be adhered to by 
caches involved in the chain comprising a response from a server to a 
client.

Valid values are:

� no-cache�This prevents a cache from using a particular response 
to satisfy subsequent client requests without first revalidating that 
response with the server. If specific response header fields are 
specified with this value, the restriction  applies only to those 
header fields within the response. If no response header fields are 
specified, the restriction applies to the entire response.

� public�This indicates that a response can be cached by any 
cache.

� private�This indicates that a response is intended only for a 
single user and cannot be cached by a public (shared) cache. If 
specific response header fields are specified with this value, the 
restriction applies only to those header fields within the response. If 
no response header fields are specified, the restriction applies to 
the entire response.

� no-store�This indicates that a cache must not store any part of a 
response or any part of the request that evoked it.

� no-transform�This indicates that a cache must not modify the 
media type or location of the content in a response between a 
server and a client.

� must-revalidate�This indicates that if a cache entry relates to a 
server response that has exceeded its expiration time, the cache 
must revalidate that cache entry with the server before it can be 
used in a subsequent response.

� proxy-revalidate�This indicates the same as must-revalidate, 
except that it can only be enforced on shared caches and is ignored 
by private unshared caches. If using this directive, the public 
cache directive must also be used.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 192



HTTP WSDL Extensions
� max-age�This indicates that the client can accept a response 
whose age is no greater than the specified time in seconds.

� s-maxage�This indicates the same as max-age, except that it can 
only be enforced on shared caches and is ignored by private 
unshared caches. The age specified by s-maxage overrides the age 
specified by max-age. If using this directive, the proxy-revalidate 
directive must also be used.

� cache-extension�This indicates additional extensions to the other 
cache directives. Extensions might be informational (that is, do not 
require a change in cache behavior) or behavioral (that is, act as 
modifiers to the existing base of cache directives). An extended 
directive is specified in the context of a standard directive, so that 
applications not understanding the extended directive can at least 
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

ContentLocation This specifies the URL where the resource being sent in a server 
response is located.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
193



CHAPTER 11 | Working with HTTP
ContentType This specifies the media type of the information being sent in a server 
response (for example, text/html, image/gif, and so on). This is also 
known as the multipurpose internet mail extensions (MIME) type. MIME 
types are regulated by the Internet Assigned Numbers Authority (IANA). 
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a 
forward slash. For example, a main type of text might be qualified as 
follows: text/html or text/xml. Similarly, a main type of image might 
be qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include: 
application/jpeg, application/msword, application/xbitmap, 
audio/au, audio/wav, text/html,  text/text, image/gif, image/jpeg, 
video/avi, video/mpeg. Any content that does not fit into any type in the 
preceding list should be specified as application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

ContentEncoding This can be used in conjunction with ContentType. It specifies what 
additional content codings have been applied to the information being 
sent by the server, and what decoding mechanisms the client therefore 
needs to retrieve the information.

The primary use of ContentEncoding is to allow a document to be 
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

ServerType This specifies what type of server is sending the response to the client.

Values in this case take the form program-name/version. For example, 
Apache/1.2.5.

If this is set, it is sent as a transport attribute in the header of a response 
message from the server to the client.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 194



HTTP WSDL Extensions
UseSecureSockets This indicates whether the server wants a secure HTTP connection 
running over SSL or TLS. A secure HTTP connection is commonly 
referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that 
the server does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of 
https://, a secure HTTP connection is automatically enabled, even if  
UseSecureSockets is not set to true.

ServerCertificate This is only relevant if the HTTP connection is running securely over SSL 
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued 
by the certificate authority for the server. For example:

c:\aspen\x509\certs\key.cert.pem

A server must present such a certificate, so that the client can 
authenticate the server.

ServerCertificateChain This is only relevant if the HTTP connection is running securely over SSL 
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate 
authorities that are not trusted by the client, but which have had their 
certificates issued in turn by a trusted certificate authority. If this is the 
case, you can use ServerCertificateChain to allow the certificate chain 
of PEM-encoded X509 certificates to be presented to the client for 
verification.

This specifies the full path to the file that contains all the certificates in 
the chain. For example:

c:\aspen\x509\certs\key.cert.pem

ServerPrivateKey This is only relevant if the HTTP connection is running securely over SSL 
or TLS.

This is used in conjuction with ServerCertificate. It specifies the full 
path to the PEM-encoded private key that corresponds to the X509 
certificate specified by ServerCertificate. For example:

c:\aspen\x509\certs\privkey.pem

This is required if, and only if, ServerCertificate has been specified.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
195



CHAPTER 11 | Working with HTTP
ServerPrivateKeyPassword This is only relevant if the HTTP connection is running securely over SSL 
or TLS.

This specifies a password that is used to decrypt the PEM-encoded 
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending 
them over a public network, and the password is delivered by a secure 
means.

TrustedRootCertificate This is only relevant if the HTTP connection is running securely over SSL 
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the  
certificate authority. For example:

c:\aspen\x509\ca\cacert.pem

This is used to validate the certificate presented by the client.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 196



HTTP WSDL Extensions
Client configuration attributes Table 24 describes the client-side configuration attributes for the HTTP 
transport that are defined within the http-conf:client element.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifies the length of time, in milliseconds, that the client can 
continue to try to send a request to the server before the connection is 
timed out.

The timeout value is at the user�s discretion. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the client can 
continue to try to receive a response from the server before the 
connection is timed out.

The timeout value is at the user�s discretion. The default is 30000.

AutoRedirect This specifies whether a client request should be automatically 
redirected on behalf of the client when the server issues a redirection 
reply via the RedirectURL server-side configuration attribute.

Valid values are true and false. The default is false, to let the client 
redirect the request itself.

UserName Some servers require that client users can be authenticated. In the case 
of basic authentication, the server requires the client user to supply a 
username and password. This specifies the user name that is to be used 
for authentication.

Note: Artix does not perform any validation on user names specified. It 
is the user�s responsibility to ensure that user names are correct in terms 
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.
197



CHAPTER 11 | Working with HTTP
Password Some servers require that client users can be authenticated. In the case 
of basic authentication, the server requires the client user to supply a 
username and password. This specifies the password that is to be used 
for authentication.

Note: Artix does not perform any validation on passwords specified. It 
is the user�s responsibility to ensure that passwords are correct in terms 
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

AuthorizationType Some servers require that client users can be authenticated. If basic 
username and password-based authentication is not in use by the server, 
this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is 
specified and handled at application level. Artix does not perform any 
validation on this value. It is the user�s responsibility to ensure that the 
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being 
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Authorization Some servers require that client users can be authenticated. If basic 
username and password-based authentication is not in used by the 
server, this specifies the actual data that the server should use to 
authenticate the client.

This specifies the authorization credentials used to perform the 
authorization. These are encoded and handled at application-level. Artix 
does not perform any validation on the specified value. It is the user�s 
responsibility to ensure that the correct authorization credentials are 
specified, as appropriate.

Note: If basic username and password-based authentication is being 
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 198



HTTP WSDL Extensions
Accept This specifies what media types the client is prepared to handle. These 
are also known as multipurpose internet mail extensions (MIME) types. 
MIME types are regulated by the Internet Assigned Numbers Authority 
(IANA). See http://www.iana.org/assignments/media-types/ for more 
details.

Specified values consist of a main type and sub-type, separated by a 
forward slash. For example, a main type of text might be qualified as 
follows: text/html or text/xml. Similarly, a main type of image might 
be qualified as follows: image/gif or image/jpeg.

An asterisk (that is, *) can be used as a wildcard to specify a group of 
related types. For example, if you specify image/*, this means that the 
client can accept any image, regardless of whether it is a GIF or a JPEG, 
and so on. A value of */* indicates that the client is prepared to handle 
any type.

Examples of typical types that might be set are text/xml, text/html, 
text/text, image/gif, image/jpeg, application/jpeg, 
application/msword, application/xbitmap, audio/au, audio/wav, 
video/avi, video/mpeg. A full list of MIME types is available at 
http://www.iana.org/assignments/media-types/.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

AcceptLanguage This specifies what language (for example, American English) the client 
prefers for the purposes of receiving a response. Language tags are 
regulated by the International Organisation for Standards (ISO) and are 
typically formed by combining a language code (determined by the 
ISO-639 standard) and country code (determined by the ISO-3166 
standard) separated by a hyphen. For example, en-US represents 
American English. A full list of language codes is available at 
http://www.w3.org/WAI/ER/IG/ert/iso639.htm. A full list of country 
codes is available at http://www.iso.ch/iso/en/prods-services/
iso3166ma/02iso-3166-code-lists/list-en1.html.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
199



CHAPTER 11 | Working with HTTP
AcceptEncoding This specifies what content codings the client is prepared to handle. The 
primary use of content codings is to allow documents to be compressed 
using some encoding mechanism, such as zip or gzip. Content codings 
are regulated by the Internet Assigned Numbers Authority (IANA). See 
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more 
details of content codings.

Possible content coding values include zip, gzip, compress, deflate, 
and identity. Artix performs no validation on content codings. It is the 
user�s responsibility to ensure that a specified content coding is 
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

ContentType This is relevant if the client request specifies the POST method, to send 
data to the server for processing. This specifies the media type of the 
data being sent in the body of the client request.

For web services, this should be set to text/xml. If the client is sending 
HTML form data to a CGI script, this should be set to  
application/x-www-form-urlencoded. If the HTTP POST request is 
bound to a fixed payload format (as opposed to SOAP), the content type 
is typically set to application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Host This specifies the internet host (and port number) of the resource on 
which the client request is being invoked. This is sent by default based 
upon the URL specified in the URL attribute. It indicates what host the 
client prefers for clusters (that is, for virtual servers mapping to the same 
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you 
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 200



HTTP WSDL Extensions
Connection This specifies whether a particular connection is to be kept open or 
closed after each request/response dialog.

Valid values are close and Keep-Alive. The default is close, to close 
the connection to the server after each request/response dialog.

If Keep-Alive is specified, and the server honors it, the connection is 
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the 
connection open, and many servers and proxies (caches) do not honor 
such requests.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

ConnectionAttempts This specifies the number of times a client will transparently attempt to 
connect to server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
201



CHAPTER 11 | Working with HTTP
CacheControl This specifies directives about the behavior that must be adhered to by 
caches involved in the chain comprising a request from a client to a 
server.

Valid values are:

� no-cache�This prevents a cache from using a particular response 
to satisfy subsequent client requests without first revalidating that 
response with the server. If specific response header fields are 
specified with this value, the restriction  applies only to those 
header fields within the response. If no response header fields are 
specified, the restriction applies to the entire response.

� no-store�This indicates that a cache must not store any part of a 
response or any part of the request that evoked it.

� max-age�This indicates that the client can accept a response 
whose age is no greater than the specified time in seconds.

� max-stale�This indicates that the client can accept a response 
that has exceeded its expiration time. If a value is assigned to 
max-stale, it represents the number of seconds beyond the 
expiration time of a response up to which the client can still accept 
that response. If no value is assigned, it means the client can 
accept a stale response of any age.

� min-fresh�This indicates that the client wants a response that 
will be still be fresh for at least the specified number of seconds 
indicated by the value set for min-fresh.

� no-transform�This indicates that a cache must not modify media 
type or location of the content in a response between a server and a 
client.

� only-if-cached�This indicates that a cache should return only 
responses that are currently stored in the cache, and not responses 
that need to be reloaded or revalidated.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 202



HTTP WSDL Extensions
� cache-extension�This indicates additional extensions to the other 
cache directives. Extensions might be informational (that is, do not 
require a change in cache behavior) or behavioral (that is, act as 
modifiers to the existing base of cache directives). An extended 
directive is specified in the context of a standard directive, so that 
applications not understanding the extended directive can at least 
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Cookie This specifies the cookie to be sent to the server. Some session designs 
that maintain state use cookies to identify sessions.

Note: If the cookie is static, you can supply it here. However, if the 
cookie is dynamic, it must be set by the server when the server is first 
accessed, and is then handled automatically by the application runtime.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

BrowserType This specifies information about the browser from which the client 
request originates. In the standard HTTP specification from the World 
Wide Web consortium (W3C) this is also known as the user-agent. 
Some servers optimize based upon the client that is sending the request.

Specifying the browser type is usually only necessary if sites have HTML 
customized for use with Netscape as opposed to Internet Explorer, and 
so on. However, you can also specify the browser type to facilitate 
optimizing for different SOAP stacks.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
203



CHAPTER 11 | Working with HTTP
Referer If a client request is as a result of the browser user clicking on a 
hyperlink rather than typing a URL, this specifies the URL of the 
resource that provided the hyperlink.

This is sent automatically if AutoRedirect is set to true. This can allow 
the server to optimize processing based upon previous task flow, and to 
generate lists of back-links to resources for the purposes of logging, 
optimized caching, tracing of obsolete or mistyped links, and so on. 
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request 
message from the client to the server.

ProxyServer This specifies the URL of the proxy server, if one exists along the 
message path. A proxy can receive client requests, possibly modify the 
request in some way, and then forward the request along the chain 
possibly to the target server. A proxy can act as a special kind of security 
firewall.

Note: Artix does not support the existence of more than one proxy 
server along the message path.

ProxyUserName This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated 
regardless of whether those users have already been authenticated by 
any downstream login. In the case of basic authentication, the proxy 
server requires the client user to supply a username and password. This 
specifies the user name that is to be used for authentication.

Note: Artix does not perform any validation on user names specified. It 
is the user�s responsibility to ensure that user names are correct in terms 
of spelling and case (if case-sensitivity applies at application level).

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 204



HTTP WSDL Extensions
ProxyPassword This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated 
regardless of whether those users have already been authenticated by 
any downstream login. In the case of basic authentication, the proxy 
server requires the client user to supply a username and password. This 
specifies the password that is to be used for authentication.

Note: Artix does not perform any validation on passwords specified. It 
is the user�s responsibility to ensure that passwords are correct in terms 
of spelling and case (if case-sensitivity applies at application level).

ProxyAuthorizationType This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated 
regardless of whether those users have already been authenticated by 
any downstream login. If basic username and password-based 
authentication is not in use by the proxy server, this specifies the type of 
authentication that is in use.

This specifies the name of the authorization scheme in use. This name is 
specified and handled at application level. Artix does not perform any 
validation on this value. It is the user�s responsibility to ensure that the 
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being 
used by the proxy server, this does not need to be set.

ProxyAuthorization This is only relevant if proxy servers are in use along the 
request-response chain.

Some proxy servers require that client users can be authenticated 
regardless of whether those users have already been authenticated by 
any downstream login. If basic username and password-based 
authentication is not in used by the proxy server, this specifies the actual 
data that the proxy server should use to authenticate the client.

This specifies the authorization credentials used to perform the 
authorization. These are encoded and handled at application-level. Artix 
does not perform any validation on the specified value. It is the user�s 
responsibility to ensure that the correct authorization credentials are 
specified, as appropriate.

Note: If basic username and password-based authentication is being 
used by the proxy server, this does not need to be set.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
205



CHAPTER 11 | Working with HTTP
UseSecureSockets This indicates whether the client wants to open a secure connection 
(that is, HTTP running over SSL or TLS). A secure HTTP connection is 
commonly referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that 
the client does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of 
https://, a secure HTTP connection is automatically enabled, even if  
UseSecureSockets is not set to true.

ClientCertificate This is only relevant if the HTTP connection is to run securely over SSL 
or TLS (that is, if UseSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate issued 
by the certificate authority for the client. For example:

c:\aspen\x509\certs\key.cert.pem

Some servers might require the client to present a certificate, so that the 
server can authenticate the client.

ClientCertificateChain This is only relevant if the HTTP connection is to run securely over SSL 
or TLS (that is, if UseSecureSockets is set to true).

PEM-encoded X509 certificates can be issued by intermediate certificate 
authorities that are not trusted by the server, but which have had their 
certificates issued in turn by a trusted certificate authority. If this is the 
case, you can use ClientCertificateChain to allow the certificate chain 
of PEM-encoded X509 certificates to be presented to the server for 
verification.

This specifies the full path to the file that contains all the certificates in 
the chain. For example:

c:\aspen\x509\certs\key.cert.pem

ClientPrivateKey This is only relevant if the HTTP connection is to run securely over SSL 
or TLS (that is, if UseSecureSockets is set to true).

This is used in conjuction with ClientCertificate. It specifies the full 
path to the PEM-encoded private key that corresponds to the X509 
certificate specified by ClientCertificate. For example:

c:\aspen\x509\certs\privkey.pem

This is required if, and only if, ClientCertificate has been specified.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 206



HTTP WSDL Extensions
ClientPrivateKeyPassword This is only relevant if the HTTP connection is to run securely over SSL 
or TLS (that is, if UseSecureSockets is set to true).

This specifies a password that is used to decrypt the PEM-encoded 
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending 
them over a public network, and the password is delivered by a secure 
means.

Note: Artix does not perform any validation on passwords specified. It 
is the user�s responsibility to ensure that passwords are correct in terms 
of spelling and case (if case-sensitivity applies at application level).

TrustedRootCertificate This is only relevant if the HTTP connection is to run securely over SSL 
or TLS (that is, if UseSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the 
certificate authority. For example:

c:\aspen\x509\ca\cacert.pem

This is used to validate the certificate presented by the server.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
207



CHAPTER 11 | Working with HTTP
HTTP Transport Attributes

Overview One of the basic properties of HTTP is that client or server information, and 
information about the possible content of a message, is made available 
through a series of header fields on an HTTP message. This section outlines 
both the client transport attributes and server transport attributes that can 
be sent, using Artix, in an HTTP request or response message.

In this section This section discusses the following topics:

Transport Attributes Overview page 209

Server Transport Attributes page 210

Client Transport Attributes page 212
 208



HTTP Transport Attributes
Transport Attributes Overview

Overview This subsection outlines the background to the HTTP transport attributes 
that can be used with Artix. 

What are transport attributes? A number of the configuration attributes described in �HTTP WSDL 
Extensions� on page 187 can be subsequently transmitted, for information 
purposes, as transport attributes in the header of HTTP request and 
response messages. Client configuration attributes can be sent by the client 
as server transport attributes in the header of a request message. Similarly, 
server configuration attributes can be sent by the server as client transport 
attributes in the header of a response message.

Programmatic use of transport 
attributes

The application runtime can read transport attributes to facilitate it in the  
processing of client requests and server responses. See the C++ Artix 
Programmer�s Guide for more details of how applications can handle 
transport attributes.

Note: Transport attributes can only be sent if they have been configured 
as extensions to a WSDL contract, as described in �HTTP WSDL 
Extensions� on page 187.
209



CHAPTER 11 | Working with HTTP
Server Transport Attributes

Overview This subsection outlines the attributes that can be sent to a server for 
information purposes in the header of a request message.

Details Table 25 describes the transport attributes that can be sent from a client to 
a server in the header of a request message.

Table 25: HTTP Server Transport Attributes  (Sheet 1 of 2)

Configuration Attribute Explanation

UserName This lets the server know the user name of the browser user for the 
purposes of basic HTTP authentication by the server.

Password This lets the server know the password of the browser user for the 
purposes of basic HTTP authentication by the server.

AuthorizationType This lets the server know what type of authentication the client expects 
the server to use, if username and password-based basic authentication 
is not being used.

Authorization This lets the server know the actual authentication data (authorization 
token) being sent by the client, if username and password-based basic 
authentication is not being used.

Accept This lets the server know what multimedia (MIME) types (for example, 
text/html, image/gif, image/jpeg, and so on) the client can accept.

AcceptLanguage This lets the server know what language(s) (for example, English, 
French, German, and so on) the client prefers for the purposes of 
receiving a request.

AcceptEncoding This lets the server know what content codings (for example, gzip) the 
client can accept.

ContentType If a client request is using the POST method, to send data to the server for 
processing, this lets the server know the MIME type of the data being 
sent.

Note: This should be text/xml for web services. If the client is sending 
form data, this can be set to application/x-www-form-urlencoded.
 210



HTTP Transport Attributes
Host This lets the server know what host the client prefers for clusters (that is, 
for virtual servers mapping to the same IP).

Connection This lets the server know whether the client wants a particular 
connection to be kept open or not after each request/response dialog.

Note: The server can choose to not honor a request to keep the 
connection open, and many servers and proxies (caches) do not honor 
such requests.

CacheControl This lets the server know what behavior the client expects caches 
involved in the request chain to adhere to. See �CacheControl� on 
page 202 for more details of possible settings for this field.

Cookie This lets the server know what cookie is being sent to the server.

Note: This relates to static cookies. Dynamic cookies are set by the 
server when the server is first accessed, and are then handled 
automatically by the application runtime.

BrowserType This lets the server know details about the browser from which the client 
request originates.

Referer If the client request has resulted from the browser user clicking on a 
hyperlink rather than entering a URL from the keyboard, this lets the 
server know the URL that contains the hyperlink. This in turn lets the 
server generate lists of back-links to resources for the purposes of 
logging, optimized caching, tracing of obsolete or mistyped links, and so 
on.

Note: This is sent automatically if the client request is configured (via 
the AutoRedirect attribute) to be automatically redirected when the 
server issues a redirection reply via the RedirectURL server-side 
attribute. This can allow the server to optimize processing based upon 
previous task flow. However, it is typically not used in web services 
applications.

ClientCertificate If the HTTP connection is running securely over SSL or TLS, this lets the 
server know the PEM-encoded X509 certificate issued by the certificate 
authority for the client. Some servers can require the client to present a 
certificate, so that the server can authenticate the client.

Table 25: HTTP Server Transport Attributes  (Sheet 2 of 2)

Configuration Attribute Explanation
211



CHAPTER 11 | Working with HTTP
Client Transport Attributes

Overview This subsection outlines the attributes that can be sent to a client for 
information purposes in the header of a response message.

Details Table 25 describes the transport attributes that can be sent from a server to 
a client in the header of a response message.

Table 26: HTTP Client Transport Attributes

Configuration Attribute Explanation

RedirectURL This lets the client know the URL to which the client request was 
redirected if the URL specified in the client request was no longer 
appropriate for the requested resource.

In this case, if a status code is not automatically set in the first line of the 
server response, the status code in the first line of the response is set to 
302 and the status description is set to Object Moved.

CacheControl This lets the client know what behavior the server expects caches 
involved in the response chain to adhere to. See �CacheControl� on 
page 192 for more details of possible settings for this field.

ContentLocation This lets the client know the URL from which the requested resource is 
coming.

ContentType This lets the client know the MIME type (that is, text/html, image/gif, 
image/jpeg, and so on) of the information that is being sent by the 
server.

ContentEncoding This lets the client know how the information being sent by the server is 
encoded. This in turn lets the client know what decoding mechanisms it 
needs to retrieve the information.

ServerType This lets the client know what type of server is sending the information.
 212



CHAPTER 12

Working with IIOP 
Tunnels
IIOP tunnels provide access to CORBA services while using 
non-CORBA payload formats.

In this chapter This chapter discusses the following topics:

Introduction to IIOP Tunnels page 214

Modifying a Contract to Use an IIOP Tunnel page 215
213



CHAPTER 12 | Working with IIOP Tunnels
Introduction to IIOP Tunnels

Overview An IIOP tunnel provides a means for taking advantage of existing CORBA 
services while transmitting messages using a payload format other than 
CORBA. For example, you could use an IIOP tunnel to send fixed format 
messages to an endpoint whose address is published in a CORBA naming 
service.

Benefits Using IIOP tunnels provides the following benefits:

� Endpoints can publish their addresses in a CORBA naming service or a 
CORBA trader service

� Active connection management

� Transport level security

� Codeset negotiation

� Persistence

Supported payload formats IIOP tunnels can transport messages using the following payload formats:

� SOAP

� Fixed format

� Fixed record length

� G2++

� Octet streams

Configuring the Artix to use IIOP 
tunnels

IIOP tunnels require that the OTS plug-in is loaded by Artix at start-up. To 
ensure that the OTS plug-in is loaded edit your application�s orb plug-ins list 
to include ots. For more information on Artix configuration, see Deploying 
and Managing Artix Solutions.

Note: IIOP tunneling is unavailable in some editions of Artix. Please 
check the conditions of your Artix license to see whether your installation 
supports IIOP tunneling.
 214



Modifying a Contract to Use an IIOP Tunnel
Modifying a Contract to Use an IIOP Tunnel

Overview Service Access Points (SAPs) that use IIOP tunnels require that a special 
port be added to the physical portion of the Artix contract.The port definition 
specifies the IOR used to locate the CORBA object and any POA policies the 
used in exposing the IIOP tunnel.

IIOP tunnel ports are described using the IONA-specific WSDL elements 
<iiop:address> and <iiop:policy> within the WSDL <port> element, to 
specify how the IIOP tunnel is configured.

Address specification The IOR, or address, of the IIOP tunnel is specified using the 
<iiop:address> element. You have four options for specifying IORs in Artix 
contracts:

� Specify the objects IOR directly, by entering the object�s IOR directly 
into the contract using the stringified IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by 
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see the Artix 
Administration Guide.

� Specify the IOR using corbaloc, by specifying the port at which the 
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to 
start up on the specified host and port.

IOR:22342....

file://file_name

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
215



CHAPTER 12 | Working with IIOP Tunnels
Specifying type of payload 
encoding

The IIOP tunnel can perform codeset negotiation on the encoded messages 
passed through it if your CORBA system supports it. By default, this feature 
is turned off so that the agents sending the message maintain complete 
control over codeset conversion. If you wish to turn automatic codeset 
negotiation on use the following:

Specifying POA policies Using the optional <iiop:policy> element, you can describe a number of 
POA polices the Artix service will use when creating the IIOP tunnel. These 
policies include:

� POA Name

� Persistence

� ID Assignment

Setting these policies lets you exploit some of the enterprise features of 
IONA�s Application Server Platform 6.0, such as load balancing and fault 
tolerance, when deploying an Artix integration project using the IIOP tunnel. 
For information on using these advanced CORBA features, see the 
Application Server Platform documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify a name 
of the POA that Artix creates for the IIOP tunnel, you use the following:

The POA name is used for setting certain policies, such as direct persistence 
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA�s have a persistence policy of false. To set the POA�s 
persistence policy to true, use the following:

<iiop:payload type="string" />

<iiop:policy poaname="poa_name" />

<iiop:policy persistent="true" />
 216



Modifying a Contract to Use an IIOP Tunnel
ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that 
their ID is assigned by Artix. To specify that the IIOP tunnel�s POA should 
use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Example For example, an IIOP tunnel port for the personalInfoLookup binding would 
look similar to Example 111:

Artix expects the IOR for the IIOP tunnel to be located in a file called 
objref.ior, and creates a persistent POA with an object id of personalInfo 
to configure the IIOP tunnel.

<corba:policy serviceid="POAid" />

Example 111:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
  <port name="personalInfoLookupPort"
        binding="tns:personalInfoLookupBinding">
    <iiop:address location="file://objref.ior" />
    <iiop:policy persistent="true" />
    <iiop:policy serviceid="personalInfoLookup" />
  </ port>
</ service>
217



CHAPTER 12 | Working with IIOP Tunnels
 218



CHAPTER 13

Sending Messages 
using SOAP
The SOAP plug-in lets you configure an Artix integration 
solution to use the SOAP payload format for communication 
between distributed applications. This chapter first provides 
an introductory overview of SOAP. It then provides a 
description of the WSDL extensions involved in extending an 
Artix contract for SOAP. It outlines the XML types supported 
by SOAP in Artix.

In this chapter This chapter discusses the following topics:

Overview of SOAP page 220

SOAP WSDL Extensions page 238

Supported XML Types page 249
219



CHAPTER 13 | Sending Messages using SOAP
Overview of SOAP

Overview This section provides an introductory overview of the simple object access 
protocol (SOAP) in terms of its purpose, how it evolved, the elements of a 
SOAP message, and how it handles (encodes) application data types.

In this section This section discusses the following topics:

Background to SOAP page 221

SOAP Messages page 224

SOAP Encoding of Data Types page 230

Note: A complete introduction to SOAP is outside the scope of this guide. 
For more details see the W3C SOAP 1.1 specification at 
http://www.w3.org/TR/SOAP/. IONA�s Artix product supports only version 
1.1 of the W3C SOAP specification.
 220



Overview of SOAP
Background to SOAP

Overview This subsection discusses the purpose of SOAP and how it evolved. It 
discusses the following topics:

� �What is SOAP?� on page 221.

� �XML� on page 221.

� �XML and Unicode� on page 222.

� �HTTP� on page 222.

� �SOAP specification� on page 223.

What is SOAP? SOAP is a lightweight, XML-based protocol that is used for client-server 
communications on the World Wide Web. The primary function of SOAP is 
to enable access to distributed services and to facilitate the exchange of 
structured and typed information between peers across the Web.

With the evolution of the Web, and the ever-increasing need to do business 
more quickly and more proactively across it, there arose a need to have a 
dynamic, flexible, extensible, but standards-based system of communication 
between applications across the Internet. SOAP evolved as a solution to this 
need, by combining existing standards such as extensible markup language 
(XML) and the hypertext transfer protocol (HTTP).

SOAP is termed a messaging protocol. It is a framework for transporting 
client request and server response messages in the form of XML documents 
over (usually) the HTTP transport.

XML XML is a simple form of standard generalized markup language (SGML). The 
purpose of a markup language is to facilitate preparation of electronic 
documents, by allowing information to be added to the document text that 
indicates the logical components of the document or how they are to be 
formatted. SGML describes the relationship between a document�s content 
and its structure.

XML uses user-defined tags to describe the actual data elements contained 
within a web page or file. (This is unlike the hypertext markup language 
(HTML), which can only use a limited set of predefined tags to describe how 
the contents of a web page or file are to be formatted.) XML tags are 
221



CHAPTER 13 | Sending Messages using SOAP
unlimited, because they can be defined at the user�s discretion, depending 
on the data elements that need to be defined. This is why XML is termed 
extensible. XML processors now exist for any common platform or language.

XML and Unicode XML works on the assumption that all character data belongs to the 
universal character set (UCS). UCS is more commonly known as unicode. 
This is a mechanism for setting up binary codes for text or script characters 
that relate to the principal written languages of the world. Unicode therefore 
provides a standard means of interchanging, processing, and displaying 
written texts in diverse languages. See http://www.unicode.org for details.

Because unicode uses 16 bits to represent a particular character, it can 
represent more than 65,000 different international text characters. This 
makes Unicode much more powerful than other text representation formats, 
such as ASCII (American standard code for information interchange), which 
only uses 7 bits to represent a particular character and can only represent 
128 characters. Unicode uses a conversion method called UTF (universal 
transformation format) that can convert text to 8�bit or 16�bit Unicode 
characters. To this effect, there are UTF�8 and UTF�16 encoding formats. 
All XML processors, regardless of the platform or programming language for 
which they are implemented, must accept character data encoded using 
UTF�8 or UTF�16 encoding formats.

HTTP HTTP is the standard TCP/IP-based transport used for client-server 
communications on the Web. Its main function is to establish connections 
between distributed web browsers (clients) and web servers for exchanging 
files and possibly other information across the Internet. HTTP is available on 
all platforms, and HTTP requests are usually allowed through security 
firewalls. See �Working with HTTP� on page 179 for a more detailed 
overview of HTTP.

Given the dynamic features of XML and HTTP, SOAP has therefore become 
regarded as the optimum tool for enabling communication between 
distributed, heterogeneous applications over the Internet.

Note: Although most implementations of SOAP are HTTP-based, SOAP 
can be used with any transport that supports transmission of XML data. 
Depending on the particular transport in use, SOAP can also be 
implemented to support different types of message-exchange patterns, 
such as one-way or request-response.
 222



Overview of SOAP
SOAP specification SOAP is a framework for transporting client request and server response 
messages in the form of XML documents over HTTP or some other 
transport. The W3C SOAP specification at http://www.w3.org/TR/SOAP/ 
defines the standards for SOAP in relation to:

� Format and components of SOAP messages.

� SOAP usage with HTTP.

� SOAP encoding rules for application-defined data types.

� SOAP standards for representing remote procedure calls (RPCs) and 
responses.

�SOAP Messages� on page 224 briefly discusses the format and 
components of SOAP messages, and their use with HTTP. �SOAP Encoding 
of Data Types� on page 230 briefly discusses how data types are handled in 
SOAP. Again, a complete introduction to these topics is outside the scope of 
this guide, and you should see the W3C SOAP 1.1 specification at 
http://www.w3.org/TR/SOAP/ for full details.
223



CHAPTER 13 | Sending Messages using SOAP
SOAP Messages

Overview This subsection uses an example of a simple client-server application to 
outline the typical format of a SOAP request and response message. It 
discusses the following topics:

� �Example overview� on page 224.

� �Example of SOAP request message� on page 225.

� �Explanation of SOAP request message� on page 225.

� �Example of SOAP response message� on page 226.

� �Explanation of SOAP response message� on page 227.

� �Example of SOAP response with fault� on page 227.

� �Explanation of SOAP response with fault� on page 228.

Example overview The distributed application in this example involves a client that invokes a 
GetStudentGrade method on a target server. The client passes a student 
code and subject name, both of type string, as input parameters to the 
method request. On processing the request, the server returns the grade 
achieved by that student for that subject�the grade is of type int. The 
following example shows the logical definition of this application in a WSDL 
contract:

Example 112:Example of logical definition in WSDL

…
<message name="GetStudentGrade">
    <part name="StudentCode" type="xsd:string"/>
    <part name="Subject" type="xsd:string"/>
</message>
<message name="GetStudentGradeResponse">
    <part name="Grade" type="xsd:int"/>
</message>
<portType name="StudentPortType">
    <operation name="GetStudentGrade">
        <input message="tns:GetStudentGrade" name="GetStudentGrade"/>
        <output message="tns:GetStudentGradeResponse" name="GetStudentGradeResponse"/>
    </operation>
</portType>
…

 224



Overview of SOAP
Example of SOAP request 
message

Example 113 shows an example of the format of a typical SOAP request 
message, based on Example 112 on page 224 (in this case, the client has 
passed student code 815637 and subject History as input parameters):

Explanation of SOAP request 
message

Example 113 on page 225 can be explained as follows:

1. The first five lines represent HTTP header information (in this example, 
the SOAP request is running over HTTP). When a SOAP request is 
running over HTTP, the HTTP method must be set to POST, the HTTP 
Content-Type header must be set to text/xml, and a SOAPAction 
HTTP header should also be included that specifies a URI indicating 
what is being requested. (However, the SOAPAction field can be left 
blank, in which case the URI specified in the first couple of lines is 
taken to indicate the intent of the request instead.)

Example 113:Example of a SOAP Request Message

1 POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<?xml version="1.0" encoding=’UTF-8’?>
2 <SOAP-ENV:Envelope

    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
    SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
      encoding/"/>

3         <SOAP-ENV:Body>
            <m:GetStudentGrade xmlns:m="Some-URI">
                <StudentCode>815637</StudentCode>
                <Subject>History</Subject>
            </m:GetStudentGrade>
        </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: See �Working with HTTP� on page 179 for more details of the 
format of HTTP request headers.
225



CHAPTER 13 | Sending Messages using SOAP
2. The SOAP Envelope is the top-level element and is mandatory in every 
SOAP message. It defines a framework for describing what is in the 
message and how to process it.

3. The SOAP Body element is mandatory in every SOAP message. It holds 
the actual message data in sub-elements called body entries. Each 
body entry relates to a particular data type and must be encoded as an 
independent element. Body entries can contain attributes called 
encodingStyle, id, and href (see �SOAP Encoding of Data Types� on 
page 230 for more details of these).

In Example 113 on page 225, the SOAP Body contains two body 
entries, StudentCode and Subject, within a wrapper element that 
corresponds to the GetStudentGrade operation. The two body entries 
in this case correspond to the two input parameters for the 
GetStudentGrade operation.

Example of SOAP response 
message

Example 114 shows an example of the format of a typical SOAP response 
message, based on Example 112 on page 224 (in this case, the server has 
returned grade A):

Example 114:Example of a SOAP Response Message

1 HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<?xml version="1.0" encoding=’UTF-8’?>
2 <SOAP-ENV:Envelope

  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
    encoding/"/>

3         <SOAP-ENV:Body>
            <m:GetStudentGradeResponse xmlns:m="Some-URI">
                    <Grade>A</Grade>
            </m:GetStudentGradeResponse>
        </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
 226



Overview of SOAP
Explanation of SOAP response 
message

Example 114 can be explained as follows:

1. The first three lines represent HTTP header information (in this 
example, the SOAP response is running over HTTP). See �Working 
with HTTP� on page 179 for more details of the format of HTTP 
response headers.

2. The explanation of the SOAP Envelope element is the same as in 
�Explanation of SOAP request message� on page 225.

3. The explanation of the SOAP Body element is the same as in 
�Explanation of SOAP request message� on page 225, except in this 
case the SOAP Body contains one body entry, Grade, within a wrapper 
element that corresponds to the server response part of the 
GetStudentGrade operation. The body entry in this case corresponds to 
the output parameter returned by the server in response to the client 
request (that is, the grade for the student and subject combination 
specified by the client).

Example of SOAP response with 
fault

If an error occurs during the processing of a SOAP request, the server can 
handle and report the error within the SOAP Body of the response. 
Example 115 shows an example of the format of a typical SOAP response 
message indicating an error.

Example 115:Example of SOAP Response with Error Information

1 HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
   <SOAP-ENV:Body>

2        <SOAP-ENV:Fault>
           <faultcode>SOAP-ENV:Server</faultcode>
           <faultstring>Server Error</faultstring>
           <detail>
               <e:myfaultdetails xmlns:e="Some-URI">
                   <message>
                       Application did not work
                   </message>
227



CHAPTER 13 | Sending Messages using SOAP
Explanation of SOAP response 
with fault

Example 115 on page 227 can be explained as follows:

1. The first three lines represent HTTP header information (in this 
example, the SOAP response is running over HTTP). See �Working 
with HTTP� on page 179 for more details of the format of HTTP 
response headers.

2. Errors are reported within a SOAP Fault element within the SOAP 
Body. In this case, the SOAP Body must not contain any other 
elements. Only one SOAP Fault element can be defined in any SOAP 
message. SOAP Fault in turn defines the following four sub-elements:

                   <errorcode>
                       1001
                   </errorcode>
               </e:myfaultdetails>
           </detail>
       </SOAP-ENV:Fault>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 115:Example of SOAP Response with Error Information

faultcode This describes the error. The default faultcode values 
defined by the W3C SOAP specification are:

� VersionMismatch�This means the SOAP 
Envelope was associated with an invalid  
namespace (that is, a namespace other than 
http://schemas.xmlsoap.org/soap/envelope/).

� MustUnderstand�This means a header element 
that needed to be processed was not processed 
correctly.

� Client�This means the message was not 
properly formed or did not contain appopriate 
information to be successfully processed.

� Server�This means the message could not be 
processed, but not due to message contents.

faultstring This provides a human-readable explanation of the 
fault.
 228



Overview of SOAP
faultactor This indicates where the fault originated along the 
message path. This element is mandatory for an 
intermediary proxy application along the message 
path, but it is optional for the ultimate target server.

Note: Artix supports the use of only one intermediary 
proxy along the message path.

Example 115 on page 227 is an example of an error 
being reported by the ultimate target server, and it 
omits a faultactor attribute.

detail This in turn contains sub-elements, called detail 
elements, that hold application-specific error 
information when the fault is due to unsuccessful 
processing of the SOAP Body.
229



CHAPTER 13 | Sending Messages using SOAP
SOAP Encoding of Data Types

Overview This subsection provides an overview of the concepts of SOAP encoding. It 
discusses the following topics:

� �What is encoding?� on page 230.

� �Role of SOAP encoding� on page 230.

� �SOAP encoding styles� on page 232.

� �Encoding simple types� on page 232.

� �Encoding complex struct types� on page 234.

� �Encoding complex array types� on page 236.

What is encoding? Encoding is the process of converting application-defined data to binary 
form for transfer across a network. Decoding is the process of converting 
binary data back to an application-defined format. XML encoding and 
decoding rules, such as UTF-8 or UTF-16, define how data is to be 
converted between application-defined and binary form.

SOAP encoding rules define how application data types are to be structured 
in an XML document before being converted to binary. The overall process 
of encoding, data transfer, and subsequent decoding is termed serialization.

Role of SOAP encoding XML uses the UTF-8 and UTF-16 encoding formats to convert data to binary 
form. As explained in �Background to SOAP� on page 221, all XML 
processors (regardless of platform or programming language) must accept 
character data encoded using UTF-8 or UTF1-16 formats.

Problems can arise, however, when converting data to and from binary, if 
the data is represented differently by different applications. For example, 
some systems might have an integer as a 32-bit value, while others might 
have it as a 16-bit value. Such disparities can lead to data corruption during 
the data conversion process.

To avoid potential data corruption due to differences between source and 
target systems, SOAP encoding and decoding rules are used as a stepping 
stone between the expression of data types in a particular programming 
language and the XML UTF-8 or UTF-16 encoding or decoding rules used to 
convert those data types to and from binary. (See Figure 4 on page 231 for 
 230



Overview of SOAP
more details.) SOAP encoding rules, therefore, define the elements and data 
types that are designed to support serialization of data between disparate 
systems.

As shown in Figure 4, all data transferred as part of a SOAP payload is 
marshalled across the network as UTF-encoded binary strings.

Figure 4: Overview of Role of SOAP Encoding and Decoding

ArtixTransport Layer
(for example, HTTP)

Transport Layer
(for example, HTTP)

Application Data

SOAP Message

Binary data

Application Data

SOAP Message

Binary data

Network

UTF-decoded
binary strings

UTF-encoded
binary strings
231



CHAPTER 13 | Sending Messages using SOAP
SOAP encoding styles A standard XML schema for SOAP encoding has been developed by the 
W3C and is located at http://schemas/xmlsoap/org/soap/encoding/. This 
W3C SOAP encoding schema uses the following namespace declaration:

It is recommended, but not mandatory, that a SOAP implementation 
adheres to the encoding style based on the W3C SOAP encoding schema. 
The W3C SOAP specification states that a company can use alternative 
encoding styles if it wants. To this effect, an encodingStyle attribute can be 
specified for any element within a SOAP message, to indicate the encoding 
rules that apply to that particular element.

An encodingStyle attribute can take one or more URIs as its value, with 
each URI denoting the location of a particular set of encoding rules. If 
specifying a list of URIs, each URI should be separated by a space. A list 
should also be ordered so that the URI relating to the most restrictive set of 
encoding rules is specified first, and the URI relating to the least restrictive 
set of encoding rules is specified last.

Encoding simple types The W3C SOAP specification states that SOAP encodings can support all 
the simple types that are specified in the W3C XML Schema Part 2: 
Datatypes specification at http://www.w3.org/TR/SOAP/#XMLS2. In other 
words, a SOAP encoding should support any simple type that can be used in 
XML schema definition language.

The W3C SOAP encoding schema defines elements whose names 
correspond to each of the simple types defined in the W3C XML Schema 
Part 2: Datatypes specification. Among the simple types supported are 
integers, floats, doubles, booleans, and so on. Other types considered 
�simple� for the purposes of a SOAP encoding are strings, enumerations, 
and arrays of bytes.

In a SOAP encoding, each data value must be specified within an element. 
The type of a particular value can be denoted by the element name that 
encompasses it, provided that element name has been defined in the 

xmlns:SOAP-ENC="http://schemas.xmlsoap/org/soap/encoding/"
 232



Overview of SOAP
encoding schema as a derived type. The following is an example of a 
schema fragment that defines a series of elements (for example, an element 
called age of type int, an element called height of type float, and so on):

The following is an example of how the elements defined in the preceding 
sample schema might then be used in a SOAP encoding:

If an element name in a SOAP encoding has not been defined as a derived 
type in an encoding schema (for example, the element name relating to a 
member of an array), that element must include an xsi:type attribute in the 
SOAP encoding to indicate the data type. See �Encoding complex array 
types� on page 236 for an example of this.

<element name="age" type="int"/>
<element name="height" type="float"/>
<element name="displacement" type="negativeInteger"/>
<element name="color">
   <simpleType base="xsd:string">
      <enumeration value="Blue"/>
      <enumeration value="Brown"/>
   </simpleType>
</element>

<age>34</age>
<height>6.0</height>
<displacement>-350</displacement>
<color>Brown</color> 
233



CHAPTER 13 | Sending Messages using SOAP
Encoding complex struct types The W3C SOAP specification defines two complex data types�structs and 
arrays. A struct is a compound value whose members are each 
distinguished by a unique name (also known as that member�s accessor).

The following is an example of a schema fragment that defines elements 
called Book, Author, and Address respectively, each of which is a structure 
containing a series of types:

<element name="Book">
<complexType>
    <sequence>
    <element name="title" type="xsd:string"/>
    <element name="author" type="tns:Author"/>
    </sequence>
</complexType>
</e:Book>
<element name="Author">
<complexType>
    <sequence>
    <element name="name" type="xsd:string"/>
    <element name="address" type="tns:Address"/>
    </sequence>
</complexType>
</e:Author>
<element name="Address">
<complexType>
    <sequence>
    <element name="street" type="xsd:string"/>
    <element name="city" type="xsd:string"/>
    <element name="country" type="xsd:string"/>
    </sequence>
</complexType>
</e:Address>
 234



Overview of SOAP
The following is an example of how the preceding schema definition could 
be subsequently used in a SOAP encoding (the following example shows 
embedded single-reference values for the author and address):

In some cases an element might potentially contain more than one possible 
value. For example, if there was another book also called Great 
Expectations, written by some other author, there could be potentially more 
than one possible value for the author and address in the preceding 
example. When an element can contain more than one possible value it is 
termed multireference. In this case, an id attribute must be used to identify 
a multireference element, and a href attribute can be used to reference that 
element. For example, the href attribute of the <author> element in the 
following example refers to the id attribute of the multireference <Person> 
element. Similarly, the href attribute of the <address> element refers to the 
id attribute of the multireference <Home> element (this is assuming the 
author in question has more than one home).

<e:Book>
    <title>Great Expectations</title>
    <author>
        <name>Charles Dickens</name>
        <address>
            <street>Whitechurch Road</street>
            <city>London</city>
            <country>England</country>
        </address>
     </author>
</e:Book>

<e:Book>
    <title>Great Expectations</title>
    <author href="#Person-1"/>
</e:Book>
<e:Person id="Person-1">
    <name>Charles Dickens</name>
    <address> href="Home-1"/>
</e:Person>
<e:Home id="Home-1"/>
    <street>Whitechurch Road</street>
    <city>London</city>
    <country>England</country>
</e:Home>
235



CHAPTER 13 | Sending Messages using SOAP
Encoding complex array types The W3C SOAP specification defines two complex data types�structs and 
arrays. An array is a compound value whose member values are 
distinguished by means of ordinal position within the array. An array in 
SOAP is of type SOAP-ENC:Array or a type derived from that.

The following is an example (taken from the W3C SOAP specification) of a 
schema fragment that defines an element called myFavoriteNumbers that is 
of type SOAP-ENC:Array:

The following is an example (taken from the W3C SOAP specification) of 
how the array defined in the preceding sample schema could be 
subsequently used in a SOAP encoding:

The preceding example shows an array of two integers, with both members 
of the array called number (this is unlike the members of a struct which must 
all have unique names). The members of a SOAP array do not have to be all 
of the same type. The following is an example of the SOAP encoding for an 
array where an xsi:type attribute is used to specify the type of each 
member of the array:

<element name="myFavoriteNumbers"
    type="SOAP-ENC:Array"/>

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int[2]">
    <number>3</number>
    <number>4</number>
</myFavoriteNumbers>>

Note: As explained in �Encoding simple types� on page 232, if the type 
of a value is not identifiable from the element name (or accessor) 
corresponding to that value, an xsi:type attribute must be used in the 
SOAP encoding.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:ur-type[4]">
  <thing xsi:type="xsd:int">98765</thing>
  <thing xsi:type="xsd:decimal">3.857</thing>
  <thing xsi:type="xsd:string">The cat sat on the mat</thing>
  <thing xsi:type="xsd:uriReference">http://www.iona.com</thing>
</SOAP-ENC:Array>
 236



Overview of SOAP
SOAP encoding rules also support:

� Arrays of complex structs or other arrays.

� Multi-dimensional arrays.

� Partially transmitted arrays.

� Sparse arrays.

See the W3C SOAP specification for more details of the encoding guidelines 
for arrays.
237



CHAPTER 13 | Sending Messages using SOAP
SOAP WSDL Extensions

Overview This subsection provides an overview and description of the attributes that 
you can set as extensions to a WSDL contract for the purposes of using the 
SOAP payload format plug-in with Artix.

In this section This section discusses the following topics:

Generating a SOAP Binding from a Logical Interface page 239

SOAP WSDL Extensions Overview page 240

SOAP WSDL Extensions Details page 241
 238



SOAP WSDL Extensions
Generating a SOAP Binding from a Logical Interface

Overview Artix provides a command line tool, wsdltosoap, that will generate a SOAP 
binding from an existing logical interface defined in a WSDL <portType>. 
The tool will generate a new contract which includes the generated SOAP 
binding.

Using the tool To generate a SOAP binding using wsdltosoap use the following command:

The command has the following options:

wsdltosoap does not support the the generatoin of document/encoded SOAP 
bindings.

wsdltosoap -i portType -n namespace wsdl_file
           [-b binding][-d dir][-o file]
           [-style {document|rpc}][-use {literal|encoded}]

-i portType Specifies the name of the port type being mapped to a 
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

-b binding Specifies the name for the generated SOAP binding. 
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is 
written.

-o file Specifies the name of the generated WSDL file. Defaults 
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding. 
Defaults to document.

-use Specifies how the data is encoded. Default is literal.
239



CHAPTER 13 | Sending Messages using SOAP
SOAP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in 
configuring the SOAP payload format plug-in for use with Artix.

Configuration layout Example 116 shows (in bold) the WSDL extensions used to configure the 
SOAP message format plug-in for use with Artix. (Ellipses (that is, �) are 
used to denotes sections of the WSDL that have been omitted for brevity.)

Example 116:SOAP Configuration WSDL Extensions 

<definitions…
…
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap"
…

<definitions .... >
    <binding .... >
        <soap:binding style="rpc|document" transport="uri">
        <operation .... >
            <soap:operation soapAction="uri" style="rpc|document">
            <input>
                <soap:body use="literal|encoded" encodingStyle="uri-list">
            </input>
            <output>
                <soap:body use="literal|encoded" encodingStyle="uri-list">
            </output>
            <fault>*
                <soap:fault name="nmtoken" use="literal|encoded" encodingStyle="uri-list">
            </fault>
        </operation>
    </binding>

    <port .... >
        <soap:address location="uri"/> 
    </port>
</definitions>
 240



SOAP WSDL Extensions
SOAP WSDL Extensions Details

Overview This subsection describes each of the configuration attributes that can be 
set up as part of the WSDL extensions for configuring the SOAP message 
format plug-in for use with Artix. It discusses the following topics:

� �soap:binding element� on page 241.

� �soap:operation element� on page 243.

� �soap:body element� on page 244.

� �soap:fault element� on page 246.

� �soap:address element� on page 247.

soap:binding element The soap:binding element in a WSDL contract is defined within the 
<binding> component, as follows:

Only one soap:binding element is defined in a WSDL contract. It is used to 
signify that SOAP is the message format being used for the binding. 
Table 27 describes the attributes defined within the soap:binding element.

<binding name="…" type="…">
    <soap:binding style="…" transport="…">

Table 27: Attributes for soap:binding

Configuration Attribute Explanation

style The value of the style attribute within the soap:binding element acts 
as the default for the style attribute within each soap:operation 
element. It indicates whether request/response operations within this 
binding are RPC-based (that is, messages contain parameters and return 
values) or document-based (that is, messages contain one or more 
documents).

Valid values are rpc and document. The specified value determines how 
the SOAP Body within a SOAP message is structured.
241



CHAPTER 13 | Sending Messages using SOAP
If rpc is specified, each message part within the SOAP Body is a 
parameter or return value and will appear inside a wrapper element 
within the SOAP Body. The name of the wrapper element must match 
the operation name. The namespace of the wrapper element is based on 
the value of the soap:body namespace attribute. The message parts 
within the wrapper element correspond to operation parameters and 
must appear in the same order as the parameters in the operation. Each 
part name must match the parameter name to which it corresponds.

For example, the SOAP Body of a SOAP request message (based on the 
WSDL example in Example 112 on page 224) is as follows if the style is 
RPC-based:

<SOAP-ENV:Body>
    <m:GetStudentGrade xmlns:m="URL">
        <StudentCode>815637</StudentCode>
        <Subject>History</Subject>
    </m:GetStudentGrade>
</SOAP-ENV:Envelope>

If document is specified, message parts within the SOAP Body appear 
directly under the SOAP Body element as body entries and do not appear 
inside a wrapper element that corresponds to an operation. For example, 
the SOAP Body of a SOAP request message (based on the WSDL 
example in Example 112 on page 224) is as follows if the style is 
document-based:

<SOAP-ENV:Body>
    <StudentCode>815637</StudentCode>
    <Subject>History</Subject>
</SOAP-ENV:Envelope>

transport This defaults to the URL that corresponds to the HTTP binding in the 
W3C SOAP specification (http://schemas.xmlsoap.org/soap/http). If 
you want to use another transport (for example, SMTP), modify this 
value as appropriate for the transport you want to use.

Table 27: Attributes for soap:binding

Configuration Attribute Explanation
 242



SOAP WSDL Extensions
soap:operation element A soap:operation element in a WSDL contract is defined within an  
<operation> component, which is defined in turn within the <binding> 
component, as follows:

A soap:operation element is used to encompass information for an 
operation as a whole, in terms of input criteria, output criteria, and fault 
information. Table 27 describes the attributes defined within a 
soap:operation element.

<binding name="…" type="…" >
    <soap:binding style="…" transport="…">
    <operation name="…" >
        <soap:operation style="…" soapAction="…">

Table 28: Attributes for soap:operation

Configuration Attribute Explanation

style This indicates whether the relevant operation is RPC-based (that is, 
messages contain parameters and return values) or document-based 
(that is, messages contain one or more documents).

Valid values are rpc and document. See �soap:binding element� on 
page 241 for more details of the style attribute.

The default value for soap:operation style is based on the value 
specified for the soap:binding style attribute.

soapAction This specifies the value of the SOAPAction HTTP header field for the 
relevant operation. The value must take the form of the absolute URI 
that is to be used to specify the intent of the SOAP message.

Note: This attribute is mandatory only if you want to use SOAP over 
HTTP. Leave it blank if you want to use SOAP over any other transport.
243



CHAPTER 13 | Sending Messages using SOAP
soap:body element A soap:body element in a WSDL contract is defined within both the <input> 
and <output> components within an <operation> component, as follows:

A soap:body element is used to provide information on how message parts 
are to be appear inside the body of a SOAP message. As explained in 
�soap:operation element� on page 243, the structure of the SOAP Body 
within a SOAP message is dependent on the setting of the soap:operation 
style attribute.

Table 27 describes the attributes defined within the soap:body element.

<binding name="…" type="…">
    <soap:binding style="…" transport="…">
    <operation name="…">
        <soap:operation style="…" soapAction="…">
        <input>
            <soap:body use="…" encodingStyle="…" namespace="…">
        </input>
        <output>
            <soap:body use="…" encodingStyle="…" namespace="…">
        </output>
    </operation>

Table 29: Attributes for soap:body

Configuration Attribute Explanation

use This attribute indicates how message parts are used to denote data 
types. Each message part relates to a particular data type that in turn 
might relate to an abstract type definition or a concrete schema 
definition.

An abstract type definition is a type that is defined in some remote 
encoding schema whose location is referenced in the WSDL contract via 
an encodingStyle attribute. In this case, types are serialized based on 
the set of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the 
WSDL contract itself, within a <schema> element within the <types> 
component of the contract.

Valid values for soap:body use are encoded and literal.
 244



SOAP WSDL Extensions
If encoded is specified, the type attribute that is specified for each  
message part (within the <message> component of the WSDL contract) is 
used to reference an abstract type defined in some remote encoding 
schema. In this case, a concrete SOAP message is produced by applying 
encoding rules to the abstract types. The encoding rules are based on 
the encoding style identified in the soap:body encodingStyle attribute. 
The encoding takes as input the name and type attribute for each 
message part (defined in the <message> component of the WSDL 
contract). If the encoding style allows variation in the message format for 
a given set of abstract types, the receiver of the message must ensure 
they can understand all the format variations.

If literal is specified, either the element or type attribute that is 
specified for each message part (within the <message> component of the 
WSDL contract) is used to reference a concrete schema definition 
(defined within the <types> component of the WSDL contract). If the 
element attribute is used to reference a concrete schema definition, the 
referenced element in the SOAP message appears directly under the 
SOAP Body element (if the operation style is document-based) or under 
a part accessor element that has the same name as the message part (if 
the operation style is RPC-based). If the type attribute is used to 
reference a concrete schema definition, the referenced type in the SOAP 
message becomes the schema type of the SOAP Body (if the operation 
style is documented-based) or of the part accessor element (if the 
operation style is document-based).

The use attribute is mandatory.

encodingStyle This attribute is used when the soap:body use attribute is set to 
encoded. It specifies a list of URIs (each separated by a space) that 
represent encoding styles that are to be used within the SOAP message. 
The URIs should be listed in order, from the most restrictive encoding to 
the least restrictive.

This attribute can also be used when the soap:body use attribute is set 
to literal, to indicate that a particular encoding was used to derive the 
concrete format, but that only the specified variation is supported. In this 
case, the sender of the SOAP message must conform exactly to the 
specified schema.

Table 29: Attributes for soap:body

Configuration Attribute Explanation
245



CHAPTER 13 | Sending Messages using SOAP
soap:fault element A soap:fault element in a WSDL contract is defined within the <fault> 
component within an <operation> component, as follows:

Only one soap:fault element is defined for a particular operation. The 
operation must be a request-response or solicit-response type of operation, 
with both <input> and <output> elements. The soap:fault element is used 
to transmit error and status information within a SOAP response message.

namespace If the soap:operation style attribute is set to rpc, each message part 
within the SOAP Body of a SOAP message is a parameter or return value 
and will appear inside a wrapper element within the SOAP Body. The 
name of the wrapper element must match the operation name. The 
namespace of the wrapper element is based on the value of the 
soap:body namespace attribute.

Table 29: Attributes for soap:body

Configuration Attribute Explanation

<binding name="…" type="…">
    <soap:binding style="…" transport="…">
    <operation name="…">
        <soap:operation style="…" soapAction="…">
        <input>
            <soap:body use="…" encodingStyle="…">
        </input>
        <output>
            <soap:body use="…" encodingStyle="…">
        </output>
        <fault>
            <soap:fault name="…" use="…" encodingStyle="…"
        </fault>
    </operation>
</binding>

Note: A fault message must consist of only a single message part. Also, it 
is assumed that the soap:operation style element in the WSDL is set to 
document, because faults do not contain parameters.
 246



SOAP WSDL Extensions
Table 27 describes the attributes defined within the soap:fault element.

soap:address element The soap:address element in a WSDL contract is defined within the <port> 
component within the <service> component, as follows:

Only one soap:address element is defined in a WSDL contract. It is only 
specified when you want to use SOAP over HTTP. If you want to use SOAP 
over a different transport (for example, IIOP), the element name in this case 
is iiop:address. Similarly, if you want to use a different payload format 
over HTTP, the http-conf:client URL attribute is used instead.

Table 30: soap:fault attributes

Configuration Attribute Explanation

name This specifies the name of the fault. This relates back to the name 
attribute for the <fault> element specified for the corresponding 
operation within the <portType> component of the WSDL contract.

use This attribute is used in the same way as the use attribute within the 
soap:body element. See �use� on page 244 for more details.

encodingStyle This attribute is used in the same way as the encodingStyle attribute 
within the soap:body element. See �encodingStyle� on page 245 for 
more details.

<service name="…">
    <port binding="…" name="…">
        <soap:address location="…">
    </port>
</service>

Note: When you are using SOAP over HTTP, the http-conf:client and 
http-conf:server elements can still be validly specified as peer elements 
of the soap:address element. See the "Using the HTTP Plug-in" chapter of 
this guide for more details of http-conf:client and http-conf:server.
247



CHAPTER 13 | Sending Messages using SOAP
Table 27 describes the location attribute defined within the soap:address 
element.

Table 31: Attribute for soap:address

Configuration Attribute Explanation

location This specifies the URL of the server to which the client request is being 
sent.

Valid values are of the form:

http://myserver/mypath/
https://myserver/mypath
http://myserver:9001/mypath
http://myserver:9001-9010/mypath

The soap:address element is mandatory if you want to use SOAP over 
HTTP. It does not need to be set if you want to use SOAP over any other 
transport.
 248



Supported XML Types
Supported XML Types

Overview This section provides an overview of the XML data types that are supported 
by SOAP with Artix. It discusses the following topics:

� �Supported simple (built-in) types� on page 249.

� �Other supported types� on page 250.

Supported simple (built-in) types The following simple (built-in) types are supported:

� xsd:string

� xsd:int

� xsd:long

� xsd:short

� xsd:float

� xsd:double

� xsd:boolean

� xsd:byte

� xsd:decimal

� xsd:dateTime

� xsd:base64Binary

� xsd:hexBinary

Note: Artix does not currently support the use of multipart/related MIME 
attachments with SOAP.
249



CHAPTER 13 | Sending Messages using SOAP
Other supported types The following list provides an overview (and in some cases an example of) 
other supported types:

Type Description/Example

Enumeration For example:

<xsd:element name="EyeColor" 
type="EyeColorType"/>

<xsd:simpleType name="EyeColorType" >
    <xsd:restriction base="xsd:string" >
        <xsd:enumeration value="Green" />
        <xsd:enumeration value="Blue" />
        <xsd:enumeration value="Brown" />
    </xsd:restriction>
</xsd:simpleType>

<xsd:complexType> For example:

<xsd:complexType name="USAddress">
  <xsd:sequence>
    <xsd:element name="name"
                 type="xsd:string"/>
    <xsd:element name="street"
                 type="xsd:string"/>
    <xsd:element name="city"
                 type="xsd:string"/>
    <xsd:element name="state"
                 type="xsd:string"/>
    <xsd:element name="zip"
                 type="xsd:decimal"/>
  </xsd:sequence>
  <xsd:attribute name="country"
                 type="xsd:NMTOKEN"
                 fixed="US"/>
</xsd:complexType>

Circular references that can occur with, for 
example, circular linked lists are not supported.

xsd:attribute For example:

<xsd:attribute name="country"
               type="xsd:NMTOKEN"
               fixed="US"/>
 250



Supported XML Types
xsd:element Occurence constraints (minOccurs and 
maxOccurs) for xsd:element within 
xsd:sequence. For example:

<xsd:complexType name="PurchaseOrderType">
  <xsd:sequence>
    <xsd:element name="shipTo" 

type="USAddress"/>
    <xsd:element name="billTo" 

type="USAddress"/>
    <xsd:element ref="comment" 

minOccurs="0"/>
    <xsd:element name="items" 

type="Items"/>
  </xsd:sequence>
  <xsd:attribute name="orderDate"
                 type="xsd:date"/>

</xsd:complexType>

<xsd:ref> Attribute for reference to global elements.

Derived simple 
types.

Derived simple types by restriction of an existing 
simple type. For example:

<xsd:simpleType name="myInteger">
    <xsd:restriction base="xsd:integer">
        <xsd:minInclusive value="10000"/>
        <xsd:maxInclusive value="99999"/>
    </xsd:restriction>
</xsd:simpleType>

Array derived from 
soap:Array.

Array derived from soap:Array by restriction 
using the wsdl:arrayType attribute. For example:

<complexType name="ArrayOfInteger">
    <complexContent>
        <restriction base="soapenc:Array">
           <attribute 

ref="soapenc:arrayType"
                      

wsdl:arrayType="xsd:int[]"/>
        </restriction>
    </complexContent>
</complexType>

Type Description/Example
251



CHAPTER 13 | Sending Messages using SOAP
<xsd:sequence> For example:

<xsd:complexType name="PurchaseOrderType">
  <xsd:sequence>
    <xsd:element name="shipTo" 

type="USAddress"/>
    <xsd:element name="billTo" 

type="USAddress"/>
    <xsd:element name="items" 

type="Items"/>
  </xsd:squence>
</xsd:complexType>

In this case, minOccurs and maxOccurs attributes 
are ignored.

<xsd:choice> For example:

<xsd:complexType name="PurchaseOrderType">
   <xsd:sequence>
      <xsd:choice>
         <xsd:group ref="shipAndBill"/>
         <xsd:element name="singleUSAddress"
                      type="USAddress"/>
       </xsd:choice>
       <xsd:element name="items" 

type="Items"/>
   </xsd:sequence>
</xsd:complexType>

In this case, minOccurs and maxOccurs attributes 
are ignored.

<xsd:all> For example:

<xsd:complexType name="PurchaseOrderType">
  <xsd:all>
    <xsd:element name="shipTo" 

type="USAddress"/>
    <xsd:element name="billTo" 

type="USAddress"/>
    <xsd:element name="items" 

type="Items"/>
  </xsd:all>
</xsd:complexType>

Type Description/Example
 252



Supported XML Types
Complex type 
derived from simple 
type.

For example:

<xsd:element name="internationalPrice">
    <xsd:complexType>
        <xsd:simpleContent>
            <xsd:extension 

base="xsd:decimal">
                <xsd:attribute 

name="currency"
                               

type="xsd:string"/>
            </xsd:extension>
        </xsd:simpleContent>
    </xsd:complexType>
</xsd:element>

Type Description/Example
253



CHAPTER 13 | Sending Messages using SOAP
 254



CHAPTER 14

Sending Messages 
as Fixed Record 
Length Data
Fixed record length data support allows Artix to interact with 
mainframe systems using COBOL.

Overview Many applications send data in fixed length records. For example, COBOL 
applications often send fixed record data over WebSphere MQ. Artix 
provides a binding that maps logical messages to concrete fixed record 
length messages. The binding allows you to specify attributes such as 
encoding style, justification, and padding characters.

Type support Artix supports text-based fixed length record data. For instance, numerals, 
such as 42, are represented as the ASCII characters ’4’ and ’2’. This 
allows the data to be easily translated from one codeset to another if 
needed.

Binary data, such as packed decimals, are not supported.

In this chapter This chapter discusses the following topics:

Creating a Fixed Binding from a COBOL Copybook page 257
255



CHAPTER 14 | Sending Messages as Fixed Record Length Data
Fixed Record Length Message Data Mapping page 259
 256



Creating a Fixed Binding from a COBOL Copybook
Creating a Fixed Binding from a COBOL 
Copybook

Overview The primary use of the fixed binding is to work with systems built using 
COBOL. To facilitate the mapping of COBOL operations to Artix contracts, 
Artix provides a command line tool, colboltowsdl, that will import COBOL 
copybook data and generate an Artix contract containing a fixed binding to 
define the COBOL interface for Artix applications.

Using the tool To generate an Artix contract from COBOL copybook data use the following 
command:

The command has the following options:

coboltowsdl -b binding -op operation -im [inmessage:]incopybook
            [-om [outmessage:]outcopybook]
            [-fm [faultmessage:]faultbook]
            [-i portType][-t target]
            [-x schema_name][-useTypes][-o file]

-b binding Specifies the name for the generated binding.

-op operation Specifies the name for the generated 
operation.

-im
 [inmessage:]incopybook

Specifies the name of the input message and 
the copybook file from which the data 
defining the message is taken. The input 
message name, inmessage, is optional. 
However, if the copybook has more than one 
01 levels, you will be asked to choose the one 
you want to use as the input message.

-om
 [outmessage:]outcopybook

Specifies the name of the output message 
and the copybook file from which the data 
defining the message is taken. The output 
message name, outmessage, is optional. 
However, if the copybook has more than one 
01 levels, you will be asked to choose the one 
you want to use as the output message.
257



CHAPTER 14 | Sending Messages as Fixed Record Length Data
Once the new contract is generated, you will still need to add the port 
information before you can use the contract to develop an Artix solution.

-fm
[faultmessage:]faultbook

Specifies the name of a fault message and 
the copybook file from which the data 
defining the message is taken. The fault 
message name, faultmessage, is optional. 
However, if the copybook has more than one 
01 levels, you will be asked to choose the one 
you want to use as the fault message. You 
can specify more than one fault message.

-i portType Specifies the name of the port type in the 
generated WSDL. Defaults to 
bindingPortType.a

-t target Specifies the target namespace for the 
generated WSDL. Defaults to 
http://www.iona.com/binding.

-x schema_name Specifies the namespace for the schema in 
the generated WSDL. Defaults to 
http://www.iona.com/binding/types.

-useTypes Specifies that the generated WSDL will use 
<types>. Default is to generate <element> for 
schema types.

-o file Specifies the name of the generated WSDL 
file. Defaults to binding.wsdl.

a. If binding ends in Binding or binding, it is stripped off before being used
in any of the default names.
 258



Fixed Record Length Message Data Mapping
Fixed Record Length Message Data Mapping

Overview Artix defines seven elements that extend the WSDL <binding> element to 
support the fixed record length binding. These elements are:

� <fixed:binding>

� <fixed:operation>

� <fixed:body>

� <fixed:field>

� <fixed:enumeration>

� <fixed:sequence>

� <fixed:choice>

� <fixed:case>

Binding namespace The IONA extensions used to describe fixed record length bindings are 
defined in the namespace http://schemas.iona.com/bindings/fixed. Artix 
tools use the prefix fixed to represent the fixed record length extensions and 
add the following line to your contracts:

If you add a fixed record length binding to an Artix contract by hand you 
must also include this namespace.

<fixed:binding> <fixed:binding> specifies that the binding is for fixed record length data. It 
has three optional attributes:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

justification Specifies the default justification of the data contained in 
the messages. Valid values are left and right. Default is 
left.

encoding Specifies the codeset used to encode the text data. Valid 
values are any valid ISO locale or IANA codeset name. 
Default is en.

padHexCode Specifies the hex value of the character used to pad the 
record.
259



CHAPTER 14 | Sending Messages as Fixed Record Length Data
The settings for the attributes on these elements become the default settings 
for all the messages being mapped to the current binding. All of the values 
can be overridden on a message by message basis.

<fixed:operation> <fixed:operation> is a child element of the WSDL <operation> element 
and specifies that the operation�s messages are being mapped to fixed 
record length data.

<fixed:operation> has one attribute, discriminator, that assigns a unique 
identifier to the operation. If your service only defines a single operation, you 
do not need to provide a discriminator. However, if your service has more 
than one service, you must define a unique discriminator for each operation 
in the service. Not doing so will result in unpredictable behavior when the 
service is deployed.

<fixed:body> <fixed:body> is a child element of the <input>, <output>, and <fault> 
messages being mapped to fixed record length data. It specifies that the 
message body is mapped to fixed record length data on the wire and 
describes the exact mapping for the message�s parts.

<fixed:body> takes three optional attributes:

These values override the defaults set in the <fixed:binding> element.

<fixed:body> will have one or more of the following child elements:

� <fixed:field>

� <fixed:sequence>

� <fixed:choice>

They describe the detailed mapping of the data to fixed length record data to 
be sent on the wire.

justification Specifies the default justification of the data contained in 
the messages. Valid values are left and right.

encoding Specifies the codeset used to encode the text data. Valid 
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the 
record.
 260



Fixed Record Length Message Data Mapping
<fixed:field> <fixed:field> is used to map simple data types to a fixed length record. 
Each <fixed:field> element has one required attribute, name, which 
corresponds to the name of the message part being mapped to the fixed 
record. This name must be the name of a message part defined in the 
logical message description.

Each <fixed:field> element that maps a message part also requires either 
the size attribute or the format attribute. A <fixed:field> element would 
never use both attributes.

size

size specifies the length of a string record. For example, the logical 
message part, raverID, described in Example 117 would be mapped to a 
<fixed:field> similar to Example 118.

In order to complete the mapping, you must know the length of the record 
field and supply it. In this case, the field, raverID, can contain no more 
than twenty characters.

format

format specifies how non-string data is formatted. For example, if a field 
contains a 2-digit numeric value with one decimal place,  it would be 
described in the logical part of the contract as an xsd:float, as shown in 
Example 119.

Example 117:Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string" />
</message>

Example 118:Fixed String Mapping

<fixed:field name="raverID" size="20" />

Example 119:Fixed Record Numeric Message

<message name="fixedNumberMessage">
  <part name="rageLevel" type="xsd:float" />
</message>
261



CHAPTER 14 | Sending Messages as Fixed Record Length Data
From the logical description of the message, Artix has no way of determining 
that the value of rageLevel is a 2-digit number with one decimal place 
because the fixed record length binding treats all data as characters. When 
mapping rageLevel in the fixed binding you would specify its format with 
##.#, as shown in Example 120. This provides Artix with the meta-data 
needed to properly handle the data.

Dates are specified in a similar fashion. For example, the format of the date 
12/02/72 is MM/DD/YY. When using the fixed binding it is recommended that 
dates are described in the logical part of the contract using xsd:string. For 
example, a message containing a date would be described in the logical part 
of the contract as shown in Example 121.

If goDate is entered using the standard short date format for US English 
locales, mm/dd/yyyy, you would map it to a fixed record field as shown in 
Example 122.

bindingOnly

<fixed:field> elements supports an optional bindingOnly attribute. 
bindingOnly is a boolean attribute that specifies that the field is specific to 
the binding and does not appear in the logical message description. When 
bindingOnly is set to true, the field described by the <fixed:field> 
element is not propagated beyond the binding. For input messages, this 
means that the field is read in and then discarded. For output messages, 
you must also use the fixedValue attribute.

fixedValue

Example 120:Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#" />

Example 121:Fixed Date Message

<message name="fixedDateMessage">
  <part name="goDate" type="xsd:string" />
</message>

Example 122:Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy" />
 262



Fixed Record Length Message Data Mapping
fixedValue can be used in place of the size and format attributes. It 
specifies a static value to be passed on the wire. When used without 
bindingOnly="true", the value specified by fixedValue replaces any data 
that is stored in the message part passed to the fixed record binding. For 
example, if goDate, shown in Example 121 on page 262, were mapped the 
the fixed field shown in Example 123, the actual message returned from the 
binding would always have the date 11/11/2112.

<fixed:enumeration> <fixed:enumeration> is a child element of <fixed:field> and is used to 
map enumerated types to a fixed record length message. It takes two 
required attributes, value and fixedValue. value corresponds to the 
enumeration value as specified in the logical description of the enumerated 
type. fixedValue specifies the concrete value that will be used to represent 
logical value on the wire.

For example, if you had an enumerated type with the values FruityTooty, 
Rainbow, BerryBomb, and OrangeTango the logical description of the type 
would be similar to Example 124.

When you map the enumerated type, you need to know the concrete 
representation for each of the enumerated values. The concrete 
respresentations can be identical to the logical or some other value. The 

Example 123:fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112" />

Example 124:Ice Cream Enumeration

<xs:simpleType name="flavorType">
  <xs:restriction base="xs:string">
    <xs:enumeration value="FruityTooty"/>
    <xs:enumeration value="Rainbow"/>
    <xs:enumeration value="BerryBomb"/>
    <xs:enumeration value="OrangeTango"/>
  </xs:restriction>
</xs:simpleType>
263



CHAPTER 14 | Sending Messages as Fixed Record Length Data
enumerated type in Example 124 could be mapped to the fixed field shown 
in Example 125. Using this mapping Artix will write OT to the wire for this 
field if the enumerations value is set to OrangeTango.

Note that the parent <fixed:field> element uses the size attribute to 
specify that the concrete representation is two characters long. When 
mapping enumerations, the size attribute will always be used to represent 
the size of the concrete representation.

<fixed:sequence> <fixed:sequence> maps arrays and sequences to a fixed record length 
message. It has one required attribute, name, that corresponds to the name 
of the logical message part being mapped by this element.

<fixed:sequence> also takes two optional attributes, occurs and 
counterName. occurs specifies the number of times this sequence occurs in 
the message buffer. The default for occurs is 1.

When you specify a value greater that 1 for occurs, you can also use 
counterName. counterName specifies the name of the field used for 
specifying the number of sequence elements are actually being sent in the 
message. The value of counterName corresponds to a <fixed:field> with at 
least enough digits to count to the value specified in occurs as shown in 
Example 126. The value passed to the counter field can be any number up 
to the value specified by occurs and allows operations to use less than the 
specified number of sequence elements. Artix will pad out the sequence to 

Example 125:Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
  <fixed:enumeration value="FruityTooty" fixedValue="FT" />
  <fixed:enumeration value="Rainbow" fixedValue="RB" />
  <fixed:enumeration value="BerryBomb" fixedValue="BB" />
  <fixed:enumeration value="OrangeTango" fixedValue="OT" />
</fixed:field>
 264



Fixed Record Length Message Data Mapping
the number of elements specified by occurs when the data is transmitted to 
the reciever so that the reciever will get the data in in the promised fixed 
format.

A <fixed:sequence> can contain any number of <fixed:field>, 
<fixed:sequence>, or <fixed:choice> child elements to describe the data 
contained within the sequence being mapped. For example, a structure 
containing a name, a date, and an ID number would contain three 
<fixed:field> elements to fully describe the mapping of the data to the 
fixed record message. Example 127 shows an Artix contract fragment for 
such a mapping.

Example 126:Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

Example 127:Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample" 

targetNamespace="http://www.iona.com/FixedService" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:fixed="http://schemas.iona.com/bindings/fixed" 
    xmlns:tns="http://www.iona.com/FixedService" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
  <schema targetNamespace="http://www.iona.com/FixedService" 

xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

   <xsd:complexType name="person">
     <xsd:sequence>
       <xsd:element name="name" type="xsd:string"/>
       <xsd:element name="date" type="xsd:string"/>
       <xsd:element name="ID" type="xsd:int"/>
     </xsd:sequence>
   </xsd:complexType>
...
</types>
<message name="fixedSequence">
  <part name="personPart" type="tns:person" />
</message>
265



CHAPTER 14 | Sending Messages as Fixed Record Length Data
<fixed:choice> <fixed:choice> is used to map unions into fixed record length messages. It 
takes one required attribute, name, which corresponds to the name of the 
logical message part being mapped.

<fixed:choice> also supports an optional attribute, discriminatorName, 
that specifies the message part used as the discriminator for the union. The 
value for discriminatorName corresponds to the name of a bindingOnly 
<fixed:field> that describes the type used for the union�s descriminator as 
shown in Example 128. The only restriction in describing the descriminator 
is that it must be able to handle the values used to determine the case of the 
union. Therefore the values used in the union mapped in Example 128 must 
be two digit integers.

A <fixed:choice> may contain one or more <fixed:case> child elements to 
map the cases for the union to a fixed record length message.

<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
         type="tns:fixedSequencePortType">
  <fixed:binding />
...
    <fixed:sequence name="personPart">
      <fixed:field name="name" size="20" />
      <fixed:field name="date" format="MM/DD/YY" />
      <fixed:field name="ID" format="#####" />
    </fixed:sequence>
...
</binding>
...
</definition>

Example 127:Mapping a Sequence to a Fixed Record Length Message

Example 128:Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">
...
</fixed:choice>
 266



Fixed Record Length Message Data Mapping
<fixed:case> <fixed:case> is a child element of <fixed:choice> and describes the 
complete mapping of a union�s individual cases to a fixed record length 
message. It takes two required attributes, name and fixedValue. name 
corresponds to the name of the case element in the union�s logical 
description. fixedValue specifies the value of the descriminator that selects 
this case. The value of fixedValue must correspond to the format specified 
by the discriminatorName attribute of <fixed:choice>.

<fixed:case> must contain one child element to describe the mapping of 
the case�s data to a fixed record length message. Valid child elements are 
<fixed:field>, <fixed:sequence>, and <fixed:choice>. Example 129 
shows an Artix contract fragment mapping a union to a fixed record length 
message.

Example 129:Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample" 

targetNamespace="http://www.iona.com/FixedService" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:fixed="http://schemas.iona.com/bindings/fixed" 
    xmlns:tns="http://www.iona.com/FixedService" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
  <schema targetNamespace="http://www.iona.com/FixedService" 

xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

   <xsd:complexType name="unionStationType">
     <xsd:choice>
       <xsd:element name="train"  type="xsd:string"/>
       <xsd:element name="bus"    type="xsd:int"/>
       <xsd:element name="cab"    type="xsd:int"/>
       <xsd:element name="subway" type="xsd:string" />
     </xsd:choice>
   </xsd:complexType>
...
</types>
<message name="fixedSequence">
  <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="fixedSequencePortType">
...
</portType>
267



CHAPTER 14 | Sending Messages as Fixed Record Length Data
Example Example 130 shows an example of an Artix contract containing a fixed 
record length message binding.

<binding name="fixedSequenceBinding"
         type="tns:fixedSequencePortType">
  <fixed:binding />
...
    <fixed:field name="disc" format="##" bindingOnly="true" />
    <fixed:choice name="stationPart"
                  descriminatorName="disc">
      <fixed:case name="train" fixedValue="01">
        <fixed:field name="name" size="20" />
      </fixed:case>
      <fixed:case name="bus" fixedValue="02">
        <fixed:field name="number" format="###" />
      </fixed:case>
      <fixed:case name="cab" fixedValue="03">
        <fixed:field name="number" format="###" />
      </fixed:case>
      <fixed:case name="subway" fixedValue="04">
        <fixed:field name="name" format="10" />
      </fixed:case>
    </fixed:choice>
...
</binding>
...
</definition>

Example 129:Mapping a Union to a Fixed Record Length Message

Example 130:Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schemas.iona.com/binings/fixed"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
  <types>
    <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 268



Fixed Record Length Message Data Mapping
      <xsd:simpleType name="widgetSize">
        <xsd:restriction base="xsd:string">
          <xsd:enumeration value="big"/>
          <xsd:enumeration value="large"/>
          <xsd:enumeration value="mungo"/>
          <xsd:enumeration value="gargantuan"/>
        </xsd:restriction>
      </xsd:simpleType>
      <xsd:complexType name="Address">
        <xsd:sequence>
          <xsd:element name="name" type="xsd:string"/>
          <xsd:element name="street1" type="xsd:string"/>
          <xsd:element name="street2" type="xsd:string"/>
          <xsd:element name="city" type="xsd:string"/>
          <xsd:element name="state" type="xsd:string"/>
          <xsd:element name="zipCode" type="xsd:string"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:complexType name="widgetOrderInfo">
        <xsd:sequence>
          <xsd:element name="amount" type="xsd:int"/>
          <xsd:element name="order_date" type="xsd:string"/>
          <xsd:element name="type" type="xsd1:widgetSize"/>
          <xsd:element name="shippingAddress" type="xsd1:Address"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:complexType name="widgetOrderBillInfo">
        <xsd:sequence>
          <xsd:element name="amount" type="xsd:int"/>
          <xsd:element name="order_date" type="xsd:string"/>
          <xsd:element name="type" type="xsd1:widgetSize"/>
          <xsd:element name="amtDue" type="xsd:float"/>
          <xsd:element name="orderNumber" type="xsd:string"/>
          <xsd:element name="shippingAddress" type="xsd1:Address"/>
        </xsd:sequence>
      </xsd:complexType>
    </schema>
  </types>
  <message name="widgetOrder">
    <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
  </message>
  <message name="widgetOrderBill">
    <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
  </message>

Example 130:Fixed Record Length Message Binding
269



CHAPTER 14 | Sending Messages as Fixed Record Length Data
  <portType name="orderWidgets">
    <operation name="placeWidgetOrder">
      <input message="tns:widgetOrder" name="order"/>
      <output message="tns:widgetOrderBill" name="bill"/>
    </operation>
  </portType>
  <binding name="orderWidgetsBinding" type="tns:orderWidgets">
    <fixed:binding/>
      <operation name="placeWidgetOrder">
        <fixed:operation discriminator="widgetDisc"/>
        <input name="widgetOrder">
          <fixed:body>
            <fixed:sequence name="widgetOrderForm">
              <fixed:field name="amount" format="###" />
              <fixed:field name="order_date" format="MM/DD/YYYY" />
              <fixed:field name="type" size="2">
                <fixed:enumeration value="big" fixedValue="bg" />
                <fixed:enumeration value="large" fixedValue="lg" />
                <fixed:enumeration value="mungo" fixedValue="mg" />
                <fixed:enumeration value="gargantuan" fixedValue="gg" />
              </fixed:field>
              <fixed:sequence name="shippingAddress">
                <fixed:field name="name" size="30" />
                <fixed:field name="street1" size="100" />
                <fixed:field name="street2" size="100" />
                <fixed:field name="city" size="20" />
                <fixed:field name="state" size="2" />
                <fixed:field name="zip" size="5" />
              </fixed:sequence>
            </fixed:sequence>
          </fixed:body>
        </input>

Example 130:Fixed Record Length Message Binding
 270



Fixed Record Length Message Data Mapping
        <output name="widgetOrderBill">
          <fixed:body>
            <fixed:sequence name="widgetOrderConformation">
              <fixed:field name="amount" format="###" />
              <fixed:field name="order_date" format="MM/DD/YYYY" />
              <fixed:field name="type" size="2">
                <fixed:enumeration value="big" fixedValue="bg" />
                <fixed:enumeration value="large" fixedValue="lg" />
                <fixed:enumeration value="mungo" fixedValue="mg" />
                <fixed:enumeration value="gargantuan" fixedValue="gg" />
              </fixed:field>
              <fixed:field name="amtDue" format="####.##" />
              <fixed:field name="orderNumber" size="20" />
              <fixed:sequence name="shippingAddress">
                <fixed:field name="name" size="30" />
                <fixed:field name="street1" size="100" />
                <fixed:field name="street2" size="100" />
                <fixed:field name="city" size="20" />
                <fixed:field name="state" size="2" />
                <fixed:field name="zip" size="5" />
              </fixed:sequence>
            </fixed:sequence>
          </fixed:body>
        </output>
    </operation>
  </binding>
  <service name="orderWidgetsService">
    <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
      <http:address location="http://localhost:8080"/>
    </port>
  </service>
</definitions>

Example 130:Fixed Record Length Message Binding
271



CHAPTER 14 | Sending Messages as Fixed Record Length Data
 272



CHAPTER 15

Sending Messages 
as Tagged Data
The Artix tagged data binding allows the use of self-describing 
messages.

Overview The tagged data format supports applications that use self-describing, or 
delimited, messages to communicate. Artix can read tagged data and write 
it out in any supported data format. Similarly, Artix is capable of converting 
a message from any of its supported data formats into a self-describing or 
tagged data message.

In this chapter This chapter discusses the following topics:

Tagged Data Mapping page 274
273



CHAPTER 15 | Sending Messages as Tagged Data
Tagged Data Mapping

Overview Artix defines seven elements that extend the WSDL binding element to 
support the tagged data format. These elements are:

� <tagged:binding>

� <tagged:operation>

� <tagged:body>

� <tagged:field>

� <tagged:enumeration>

� <tagged:sequence>

� <tagged:choice>

� <tagged:case>

Binding namespace The IONA extensions used to describe tagged data bindings are defined in 
the namespace http://schemas.iona.com/bindings/tagged. Artix tools 
use the prefix tagged to represent the tagged data extensions and add the 
following line to your contracts:

If you add a tagged data binding to an Artix contract by hand you must also 
include this namespace.

<tagged:binding> <tagged:binding> specifies that the binding is for tagged data format 
messages. It has ten attributes:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

selfDescribing Required attribute specifying if the message data 
on the wire includes the field names. Valid 
values are true or false. If this attribute is set to 
false, the setting for fieldNameValueSeparator 
is ignored.

fieldSeparator Required attribute that specifies the delimiter the 
message uses to separate fields. Supported 
values are newline(\n), comma(,), semicolon(;), 
and pipe(|).
 274



Tagged Data Mapping
The settings for the attributes on these elements become the default settings 
for all the messages being mapped to the current binding.

fieldNameValueSeparatorSpecifies the delimiter used to separate field 
names from field values in self-describing 
messages. Supported vales are: equals(=), 
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex 
messages. Supported values are tab(\t), 
curlybrace({data}), and none. The default is 
tab.

flattened Specifies if data structures are flattened when 
they are put on the wire. If selfDescribing is 
false, then this attribute is automatically set to 
true.

messageStart Specifies a special token at the start of a 
message. It is used when messages that require 
a special character at the start of a the data 
sequence. Currently the only supported value is 
star(*).

messageEnd Specifies a special token at the end of a 
message. Supported values are newline(\n) and 
percent(%).

unscopedArrayElement Specifies if array elements need to be scoped as 
children of the array. If set to true arrays take 
the form 
echoArray{myArray=2;item=abc;item=def}. If 
set to false arrays take the form 
echoArray{myArray=2;{0=abc;1=def;}}. Default 
is false.

ignoreUnknownElements Specifies if Artix ignores undefined element in the 
message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with element 
names in the message payload. Default is false.
275



CHAPTER 15 | Sending Messages as Tagged Data
<tagged:operation> <tagged:operation> is a child element of the WSDL <operation> element 
and specifies that the operation�s messages are being mapped to a tagged 
data format. It takes two optional attributes:

<tagged:body> <tagged:body> is a child element of the <input>, <output>, and <fault> 
messages being mapped to a tagged data format. It specifies that the 
message body is mapped to tagged data on the wire and describes the exact 
mapping for the message�s parts.

<tagged:body> will have one or more of the following child elements:

� <tagged:field>

� <tagged:sequence>

� <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be 
sent on the wire.

<tagged:field> <tagged:field> is used to map simple types and enumerations to a tagged 
data format. It has two attributes:

When describing enumerated types <tagged:field> will have a number of 
<tagged:enumeration> child elements.

discriminator Specifies a name to the operation for identifying the 
operation as it is sent down the wire by the Artix 
runtime.

discriminatorStyle Specifies how the discriminator will identify data as it 
is sent down the wire by the Artix runtime. Supported 
values are msgname, partlist, and fieldname.

name A required attribute that must correspond to the name of 
the logical message part that is being mapped to the 
tagged data field.

alias An optional attribute specifying an alias for the field that 
can be used to identify it on the wire.
 276



Tagged Data Mapping
<tagged:enumeration> <tagged:enumeration> is a child element of <taggeded:field> and is used 
to map enumerated types to a tagged data format. It takes one required 
attribute, value, that corresponds to the enumeration value as specified in 
the logical description of the enumerated type.

For example, if you had an enumerated type, flavorType, with the values 
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description 
of the type would be similar to Example 131.

flavorType would be mapped to the tagged data format shown in 
Example 132.

<tagged:sequence> <taggeded:sequence> maps arrays and sequences to a tagged data  format. 
It has three attributes:

Example 131:Ice Cream Enumeration

<xs:simpleType name="flavorType">
  <xs:restriction base="xs:string">
    <xs:enumeration value="FruityTooty"/>
    <xs:enumeration value="Rainbow"/>
    <xs:enumeration value="BerryBomb"/>
    <xs:enumeration value="OrangeTango"/>
  </xs:restriction>
</xs:simpleType>

Example 132:Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
  <tagged:enumeration value="FruityTooty" />
  <tagged:enumeration value="Rainbow" />
  <tagged:enumeration value="BerryBomb" />
  <tagged:enumeration value="OrangeTango" />
</tagged:field>

name A required attribute that must correspond to the name of 
the logical message part that is being mapped to the 
tagged data sequence.

alias An optional attribute specifying an alias for the sequence 
that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times the 
sequence appears. This attribute is used to map arrays.
277



CHAPTER 15 | Sending Messages as Tagged Data
A <tagged:sequence> can contain any number of <tagged:field>, 
<tagged:sequence>, or <tagged:choice> child elements to describe the 
data contained within the sequence being mapped. For example, a structure 
containing a name, a date, and an ID number would contain three 
<tagged:field> elements to fully describe the mapping of the data to the 
fixed record message. Example 133 shows an Artix contract fragment for 
such a mapping.

Example 133:Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample" 

targetNamespace="http://www.iona.com/taggedService" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:fixed="http://schemas.iona.com/bindings/tagged" 
    xmlns:tns="http://www.iona.com/taggedService" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
  <schema targetNamespace="http://www.iona.com/taggedService" 

xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

   <xsd:complexType name="person">
     <xsd:sequence>
       <xsd:element name="name" type="xsd:string"/>
       <xsd:element name="date" type="xsd:string"/>
       <xsd:element name="ID" type="xsd:int"/>
     </xsd:sequence>
   </xsd:complexType>
...
</types>
<message name="taggedSequence">
  <part name="personPart" type="tns:person" />
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
         type="tns:taggedSequencePortType">
  <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 278



Tagged Data Mapping
<tagged:choice> <tagged:choice> maps unions to a tagged data format. It takes three 
attributes:

A <tagged:choice> may contain one or more <tagged:case> child elements 
to map the cases for the union to a tagged data format.

<tagged:case> <tagged:case> is a child element of <tagged:choice> and describes the 
complete mapping of a unions individual cases to a tagged data format. It 
takes one required attribute, name, that corresponds to the name of the case 
element in the union�s logical description.

    <tagged:sequence name="personPart">
      <tagged:field name="name"/>
      <tagged:field name="date" />
      <tagged:field name="ID" />
    </tagged:sequence>
...
</binding>
...
</definition>

Example 133:Mapping a Sequence to a Tagged Data Format

name A required attribute that must correspond to the name 
of the logical message part that is being mapped to the 
tagged data union.

discriminatorNameSpecifies the message part used as the discriminator for 
the union.

alias An optional attribute specifying an alias for the union 
that can be used to identify it on the wire.
279



CHAPTER 15 | Sending Messages as Tagged Data
<tagged:case> must contain one child element to describe the mapping of 
the case�s data to a tagged data format. Valid child elements are 
<tagged:field>, <tagged:sequence>, and <tagged:choice>. Example 134 
shows an Artix contract fragment mapping a union to a tagged data format.

Example 134:Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample" 

targetNamespace="http://www.iona.com/tagService" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:fixed="http://schemas.iona.com/bindings/tagged" 
    xmlns:tns="http://www.iona.com/tagService" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
  <schema targetNamespace="http://www.iona.com/tagService" 

xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

   <xsd:complexType name="unionStationType">
     <xsd:choice>
       <xsd:element name="train"  type="xsd:string"/>
       <xsd:element name="bus"    type="xsd:int"/>
       <xsd:element name="cab"    type="xsd:int"/>
       <xsd:element name="subway" type="xsd:string" />
     </xsd:choice>
   </xsd:complexType>
...
</types>
<message name="tagUnion">
  <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
  <tagged:binding selfDescribing="false"
                  fieldSeparator="comma"/>
...
 280



Tagged Data Mapping
Example Example 135 shows an example of an Artix contract containing a tagged 
data format binding.

    <tagged:choice name="stationPart" descriminatorName="disc">
      <tagged:case name="train">
        <tagged:field name="name" />
      </tagged:case>
      <tagged:case name="bus">
        <tagged:field name="number" />
      </tagged:case>
      <tagged:case name="cab">
        <tagged:field name="number" />
      </tagged:case>
      <tagged:case name="subway">
        <tagged:field name="name"/>
      </tagged:case>
    </tagged:choice>
...
</binding>
...
</definition>

Example 134:Mapping a Union to a Tagged Data Format

Example 135:Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schames.iona.com/binings/tagged"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
  <types>
    <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
281



CHAPTER 15 | Sending Messages as Tagged Data
      <xsd:simpleType name="widgetSize">
        <xsd:restriction base="xsd:string">
          <xsd:enumeration value="big"/>
          <xsd:enumeration value="large"/>
          <xsd:enumeration value="mungo"/>
          <xsd:enumeration value="gargantuan"/>
        </xsd:restriction>
      </xsd:simpleType>
      <xsd:complexType name="Address">
        <xsd:sequence>
          <xsd:element name="name" type="xsd:string"/>
          <xsd:element name="street1" type="xsd:string"/>
          <xsd:element name="street2" type="xsd:string"/>
          <xsd:element name="city" type="xsd:string"/>
          <xsd:element name="state" type="xsd:string"/>
          <xsd:element name="zipCode" type="xsd:string"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:complexType name="widgetOrderInfo">
        <xsd:sequence>
          <xsd:element name="amount" type="xsd:int"/>
          <xsd:element name="order_date" type="xsd:string"/>
          <xsd:element name="type" type="xsd1:widgetSize"/>
          <xsd:element name="shippingAddress" type="xsd1:Address"/>
        </xsd:sequence>
      </xsd:complexType>
      <xsd:complexType name="widgetOrderBillInfo">
        <xsd:sequence>
          <xsd:element name="amount" type="xsd:int"/>
          <xsd:element name="order_date" type="xsd:string"/>
          <xsd:element name="type" type="xsd1:widgetSize"/>
          <xsd:element name="amtDue" type="xsd:float"/>
          <xsd:element name="orderNumber" type="xsd:string"/>
          <xsd:element name="shippingAddress" type="xsd1:Address"/>
        </xsd:sequence>
      </xsd:complexType>
    </schema>
  </types>
  <message name="widgetOrder">
    <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
  </message>
  <message name="widgetOrderBill">
    <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
  </message>

Example 135:Tagged Data Format Binding
 282



Tagged Data Mapping
  <portType name="orderWidgets">
    <operation name="placeWidgetOrder">
      <input message="tns:widgetOrder" name="order"/>
      <output message="tns:widgetOrderBill" name="bill"/>
    </operation>
  </portType>
  <binding name="orderWidgetsBinding" type="tns:orderWidgets">
    <tagged:binding selfDescribing="false" fieldSeparator="pipe" />
      <operation name="placeWidgetOrder">
        <tagged:operation discriminator="widgetDisc"/>
        <input name="widgetOrder">
          <tagged:body>
            <tagged:sequence name="widgetOrderForm">
              <tagged:field name="amount" />
              <tagged:field name="order_date" />
              <tagged:field name="type" >
                <tagged:enumeration value="big" />
                <tagged:enumeration value="large" />
                <tagged:enumeration value="mungo" />
                <tagged:enumeration value="gargantuan" />
              </tagged:field>
              <tagged:sequence name="shippingAddress">
                <tagged:field name="name" />
                <tagged:field name="street1" />
                <tagged:field name="street2" />
                <tagged:field name="city" />
                <tagged:field name="state" />
                <tagged:field name="zip" />
              </tagged:sequence>
            </tagged:sequence>
          </tagged:body>
        </input>

Example 135:Tagged Data Format Binding
283



CHAPTER 15 | Sending Messages as Tagged Data
        <output name="widgetOrderBill">
          <tagged:body>
            <tagged:sequence name="widgetOrderConformation">
              <tagged:field name="amount" />
              <tagged:field name="order_date" />
              <tagged:field name="type">
                <tagged:enumeration value="big" />
                <tagged:enumeration value="large" />
                <tagged:enumeration value="mungo" />
                <tagged:enumeration value="gargantuan" />
              </tagged:field>
              <tagged:field name="amtDue" />
              <tagged:field name="orderNumber" />
              <tagged:sequence name="shippingAddress">
                <tagged:field name="name"/>
                <tagged:field name="street1"/>
                <tagged:field name="street2" />
                <tagged:field name="city" />
                <tagged:field name="state" />
                <tagged:field name="zip" />
              </tagged:sequence>
            </tagged:sequence>
          </tagged:body>
        </output>
    </operation>
  </binding>
  <service name="orderWidgetsService">
    <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
      <http:address location="http://localhost:8080"/>
    </port>
  </service>
</definitions>

Example 135:Tagged Data Format Binding
 284



CHAPTER 16

Other Data 
Bindings for 
Sending Messages
Artix supports other data bindings such as G2++ and XML 
documents.

In this chapter This chapter discusses the following topics:

G2++ Data Binding page 286

Pure XML Format page 293
285



CHAPTER 16 | Other Data Bindings for Sending Messages
G2++ Data Binding

Overview G2++ is a set of mechanisms for defining and manipulating hierarchically 
structured messages. G2++ messages can be thought of as records, which 
are described in terms of their structure and the data types they contain.

G2++ is an alternative to �raw� structures (such as C or C++ structs), 
which rely on common data representation characteristics that may not be 
present in a heterogeneous distributed system. 

Simple G2++ mapping example  Consider the following instance of a G2++ message:

This G2++ message can be mapped to the following logical description, 
expressed in WSDL:

Note: Because tabs are significant in G2++ files (that is, tabs indicate 
scoping levels and are not simply treated as �white space�), examples in 
this chapter indicate tab characters as an up arrow (caret) followed by 
seven spaces.

Example 136:ERecord G2++ Message

ERecord
^       XYZ_Part
^       ^       XYZ_Code^       someValue1
^       ^       password^       someValue2
^       ^       serviceFieldName^       someValue3
^       newPart
^       ^       newActionCode^       someValue4
^       ^       newServiceClassName^       someValue5
^       ^       oldServiceClassName^       someValue6

Example 137:WSDL Logical Description of ERecord Message

<types>
    <schema targetNamespace="http://soapinterop.org/xsd"
      xmlns="http://www.w3.org/2001/XMLSchema"
      xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 286



G2++ Data Binding
Note that each of the message sub-structures (newPart and XYZ_Part) are 
initially described separately in terms of their elements, then the two 
sub-structure are aggregated together to form the enclosing record 
(PRequest).

      <complexType name="XYZ_Part">
        <all>
          <element name="XYZ_Code" type="xsd:string"/>
          <element name="password" type="xsd:string"/>
          <element name="serviceFieldName" type="xsd:string"/>
        </all>
      </complexType>
      <complexType name="newPart">
        <all>
          <element name="newActionCode" type="xsd:string"/>
          <element name="newServiceClassName" type="xsd:string"/>
          <element name="oldServiceClassName" type="xsd:string"/>
        </all>
      <complexType name="PRequest">
        <all>
          <element name="newPart" type="xsd1:newPart"/>
          <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
        </all>
      </complexType>

Example 137:WSDL Logical Description of ERecord Message
287



CHAPTER 16 | Other Data Bindings for Sending Messages
This logical description is mapped to a physical representation of the G2++ 
message, also expressed in WSDL:

Note that all G2++ definitions are contained within the scope of the 
<G2Definitions> </G2Definitions> tags. Each of the messages are 
defined with the scope of a <G2MessageDescription> 
</G2MessageDescription> construct. The type attribute for message 
descriptions must be "msg" while the name attribute simply has to be 
unique.

Each record is described within the scope of a <G2MessageComponent> 
</G2MessageComponent> construct. Within this, the name attribute must    
reflect the G2++ record name and the type attribute must be "struct".

Nested within the records are the element definitions, however if required a 
record could be nested here by inclusion of a nested <G2MessageComponent> 
scope (newPart and XYZ_Part are nested records of parent ERecord). 
Element �name� attributes must match the G2 element name. Defining a 
record and then referencing it as a nested struct of a parent is legal for the 
logical mapping but not the physical. In the physical mapping, nested 
structs must be defined in-place.

Example 138:WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
  <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
  <artix:binding transport="tuxedo" format="g2++">
    <G2Definitions>
      <G2MessageDescription name="creation" type="msg">
        <G2MessageComponent name="ERecord" type="struct">
          <G2MessageComponent name="XYZ_Part" type="struct">
            <element name="XYZ_Code" type="element"/>
            <element name="password" type="element"/>
            <element name="serviceFieldName" type="element"/>
          </G2MessageComponent>
          <G2MessageComponent name="newPart" type="struct">
            <element name="newActionCode" type="element"/>
            <element name="newServiceClassName" type="element"/>
            <element name="oldServiceClassName" type="element"/>
          </G2MessageComponent>
        </G2MessageComponent>
      </G2MessageDescription>
    </G2Definitions>
</artix:binding>
 288



G2++ Data Binding
The following example illustrates the custom mapping of arrays, which 
differs from strictly defined G2++ array mappings. The array definition is 
shown below:

This represents an array with two elements. When placed in a G2++ 
message, the result is as follows:

In this version of the ERecord record, XYZ_Part contains an array called 
XYZ_MetaData, whose size is one. The single entry can be thought of as a 
name/value pair: pushToTalk/PT01, which allows us to ignore columnName 
and columnValue.

IMS_MetaData^       2
^       0
^       ^       columnName^        SERVICENAME
^       ^       columnValue^       someValue1
^       1
^       ^       columnName^        SERVICEACTION
^       ^       columnValue^       someValue2

Example 139:Extended ERecord G2++ Message

ERecord
^       XYZ_Part
^       ^       XYZ_Code^       someValue1
^       ^       password^       someValue2
^       ^       serviceFieldName^       someValue3
^       XYZ_Metadata^       1
^       ^       0
^       ^       ^       columnName^       pushToTalk
^       ^       ^       columnValue^       PT01
^       newPart
^       ^       newActionCode^       someValue4
^       ^       newServiceClassName^       someValue5
^       ^       oldServiceClassName^       someValue6
289



CHAPTER 16 | Other Data Bindings for Sending Messages
Mapping the new ERecord record to a WSDL logical description results in 
the following: 

Example 140:WSDL Logical Description of Extended ERecord Message

<types>
    <schema targetNamespace="http://soapinterop.org/xsd"
      xmlns="http://www.w3.org/2001/XMLSchema"
      xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

      <complexType name="XYZ_Part">
        <all>
          <element name="XYZ_Code" type="xsd:string"/>
          <element name="password" type="xsd:string"/>
          <element name="serviceFieldName" type="xsd:string"/>
           <element name="pushToTalk" type="xsd:string"/>
        </all>
      </complexType>

      <complexType name="newPart">
        <all>
          <element name="newActionCode" type="xsd:string"/>
          <element name="newServiceClassName" type="xsd:string"/>
          <element name="oldServiceClassName" type="xsd:string"/>
        </all>

      <complexType name="PRequest">
        <all>
          <element name="newPart" type="xsd1:newPart"/>
          <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
        </all>
      </complexType>
 290



G2++ Data Binding
Thus the array elements columnName and columnValue are �promoted� to a 
name/Value pair in the logical mapping. This physical G2++ representation 
can now be mapped as follows:

This physical mapping of the extended ERecord message now contains an 
array, described with its XYZ_MetaData name (as per the G2++ record 
definition). Its type is "array" and its size is one. This   
G2MessageComponent contains a single element called "pushToTalk".

Example 141:WSDL Physical Representation of Extended ERecord 
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
  <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
  <artix:binding transport="tuxedo" format="g2++">
    <G2Definitions>
      <G2MessageDescription name="creating" type="msg">
        <G2MessageComponent name="ERecord" type="struct">
          <G2MessageComponent name="XYZ_Part" type="struct">
            <element name="XYZ_Code" type="element"/>
            <element name="password" type="element"/>
            <element name="serviceFieldName" type="element"/>
             <G2MessageComponent name="XYZ_MetaData" type="array" size="1">
              <element name="pushToTalk" type="element"/>
             </G2MessageComponent>
          </G2MessageComponent>
          <G2MessageComponent name="newPart" type="struct">
            <element name="newActionCode" type="element"/>
            <element name="newServiceClassName" type="element"/>
            <element name="oldServiceClassName" type="element"/>
          </G2MessageComponent>
        </G2MessageComponent>
      </G2MessageDescription>
    </G2Definitions>
</artix:binding>
291



CHAPTER 16 | Other Data Bindings for Sending Messages
Ignoring unknown elements It is possible to create a G2Definitions scope that begins with a G2-specific 
configuration scope. This configuration scope is called G2Config in the 
following example:

In this scope, the only variable used is IgnoreUnknownElements, which can 
have a value of �true� or �false�. If the value is set to true, elements or array 
elements that are not defined in the G2 message definitions will be ignored. 
For example the following record would be valid if IgnoreUnknownElements 
is set to true. 

When parsed, the above ERecord would not include the elements 
"AnElement" or "AnArrayElement". If IgnoreUnknownElements is set to 
false, the above record would be rejected as invalid.

<G2Definitions>
^       <G2Config>
^       ^       <IgnoreUnknownElements value="true"/>
</G2Config>
   .
   .
   .

Example 142:Valid G2++ Record With Ignored Fields

ERecord
^       XYZ_Part
^       XYZ_Code^       someValue1
^       AnElement^       foo
^       password^       someValue2
^       serviceFieldName^       someValue3
^       XYZ_MetaData^       2   
^       ^       0
^       ^       ^       columnName^       pushToTalk
^       ^       ^       columnValue^       PT01
^       ^       1
^       ^       ^       columnName^       AnArrayElement
^       ^       ^       columnValue^       bar
^       newPart
^       ^       newActionCode^       someValue4
^       ^       newServiceClassName^       someValue5
^       ^       oldServiceClassName^       someValue6
 292



Pure XML Format
Pure XML Format

Overview The pure XML payload format provides an alternative to the SOAP binding 
by allowing services to exchange data using straight XML documents 
without needing the overhead of the SOAP envelope.

Binding namespace The IONA extensions used to describe XML format bindings are defined in 
the namespace http://schemas.iona.com/bindings/xmlformat. Artix tools 
use the prefix xmlformat to represent the fixed record length extensions and 
add the following line to your contracts:

If you add an XML format binding to an Artix contract by hand you must also 
include this namespace.

Type support The XML data format supports all of the types supported by the SOAP 
binding using doc/literal encoding. See �Supported XML Types� on 
page 249 for a full listing of the supported types.

Messages mapped to an XML format binding can only have one part. For 
example the message in Example 143 can be mapped to an XML format 
binding:

However, the message in Example 144 cannot be mapped to an XML 
format binding because it has more than one part.

xmlns:xmlformat="http://schemas.iona.com/bindings/xmlformat

Example 143:Valid XML Binding Message

<message name="operator">
 <part name="lineNumber" type="xsd:int" />
</message>

Example 144:Invalid XML Binding Message

<message name="matildas">
  <part name="dancing" type="xsd:boolean" />
  <part name="number" type="xsd:int" />
</message>
293



CHAPTER 16 | Other Data Bindings for Sending Messages
Mapping to an XML format 
binding

The XML format binding uses a single IONA-specific extension, 
<xmlformat:binding>, to identify the binding type. <xmlformat:binding> 
takes no attributes and is listed just after the <binding> element. Beyond 
the use of <xmlformat:binding>, an XML format binding is identical to a 
SOAP binding. Each operation is listed and its input, output, and fault 
messages are listed.

For example, Example 145 shows how the widget service would be mapped 
to an XML format binding.

Example 145:XML Format Binding for Widgets

<message name="widgetOrder">
  <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
  <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
</message>
<portType name="orderWidgets">
  <operation name="placeWidgetOrder">
    <input message="tns:widgetOrder" name="order"/>
    <output message="tns:widgetOrderBill" name="bill"/>
  </operation>
</portType>
<binding name="widgetXMLBinding" type="tns:orderWidgets">
  <xmlformat:binding />
  <operation name="placeWidgetOrder">
    <input name="order" />
    <output name="bill" />
  </operation>
</binding>
 294



Glossary
B Binding

A binding associates a specific protocol and data format to operations defined 
in a portType.

C Connection
An established communication link between any two Artix endpoints. Also 
the representation of such a link in System Designer, which displays 
connection characteristics such as its binding.

Contract
An Artix contract is a WSDL file that defines the interface and all connection 
(binding) information for that interface. A contract contains two components: 
logical and physical. The logical contract defines things that are independent 
of the underlying transport and wire format: �portType�, �Operation�, �Message�, 
�Type�, and �Schema.�

The physical contract defines the wire format, middleware transport, and 
service groupings, as well as the mapping between the portType �operations� 
and wire formats, and the buffer layout for fixed formats and extensors, The 
physical contract defines: �Port,� �Binding� and �Service.�

D Distillation
The process by which Artix helps the user reconcile type information among 
WSDL, message formats, and marshalling schemes. Artix supports only typed 
contracts, and type support for conversions is limited by the WSDL type 
meta-model and by the types supported for a specific marshalling. For 
example, ANYs are not supported in GIOP, and must be replaced with the 
typed data definition for the specific case. 

E Embedded Mode
Operational mode in which an application directly invokes Artix APIs. Code 
generated by System Designer is compiled into the application program. This 
provides the highest switch performance but is also the most invasive to the 
applications.
295



CHAPTER 17 | 
End-point
The runtime deployment of one or more contracts, where one or more 
transports and its marshalling is defined, and at least one contract results in 
a generated stub or skeleton (thus an end-point can be compiled into an 
application).

H Host
The network node on which a particular switch (service) resides. Also the 
representation of that node (in the context of an integration project) in Service 
Designer. 

L Language Binding
Support for a specified programming language, which allows Artix to generate 
server skeletons, client stubs, or both from a contract. Use of a language 
binding requires the Artix runtime to be linked with the application. 

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a 
transport. A marshalling format is bound to a transport in the WSDL definition 
of a Port and its binding. A binding can also be specified in a logical contract 
portType, which allows for a logical contract to have multiple bindings and 
thus multiple wire message formats for the same contract.

R Routing
The redirection of a message from one WSDL binding to another. Routing 
rules apply to an end-point, and the specification of routing rules is required 
for an Artix standalone service. Artix supports topic-, subject- and 
content-based routing. Topic- and subject-based routing rules can be fully 
expressed in the WSDL contract. However, content-based routing rules may 
need to be placed in custom handlers (C plug-ins). Content-based routing 
handler plug-ins are dynamically loaded.
 296



S Service
An Artix service is an instance of an Artix runtime deployed with one or more 
contracts, but no generated language bindings (contrast this with end-point). 
The service acts as a daemon that has no compile-time dependencies. A 
service is dynamically configured by deploying one or more contracts on it. 

Standalone Mode
Operational mode in which an Artix switch runs in a separate process, and is 
invoked as a service. This is the least invasive approach but provides the 
lowest performance.

Switch
The implementation of an Artix WSDL service contract. Also the 
representation of such a service contract in System Designer.

System
A collection of services�for example, an WebSphere MQ system with several 
different queues on it.

T Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type 
of middleware. When configured with a given transport plug-in, Artix will 
interoperate with the specified middleware at a remote location or in another 
process. The transport is specified in the �Port� property in of a contract.
297



CHAPTER 17 | 
 298



Index

Symbols
<complexContent> 79
<complexType> 73
<corba:anonsequence> 74
<corba:object> 86
<xsd:annotation> 85

A
Address specification

CORBA 97
IIOP 215

arrays
CORBA 68

Artix contract
logical view 23
physical view 25

B
binding 8
binding element 25
bindings

CORBA 93
bus contracts 3

C
colboltowsdl 257
configuring IIOP 216
Connecting to remote queues 146
corba:address 97
corba:alias 67
corba:array 68
corba:binding 93
corba:case 66
corba:enum 62
corba:enumerator 63
corba:excpetion 71
corba:fixed 63
corba:member 62, 71
corba:operation 93
corba:param 94
corba:policy 97
corba:raises 94
corba:return 94
corba:struct 62
corba:union 66
corba:unionbrach 66

E
Embedded mode 4
enumerations

CORBA 62
exceptions

CORBA 71
extension 79

F
Field Manipulation Language 110
fixed:binding 259
fixed:body 260
fixed:enumeration 263

fixedValue 263
fixed:field 261

bindingOnly 262
fixedValue 262
format 261
size 261

fixed:operation 260
fixed:sequnce 264
fixed data types

CORBA 63
FML 110
fml:binding 114
fml:element 114
fml:idNameMapping 114
fml:operation 114

G
generating contracts

from Java 47

I
ignorecase 41
iiop:address 215
iiop:payload 216
299



INDEX
iiop:policy 216
IOR specification 97, 215

J
javatowsdl 47

L
logical portion 3
logical view 23

M
mq:client 138, 172
mq:server 138, 172
MQ FormatType

working with mainframes 163
MQ remote queues 146

N
nillable 81

P
pa:attributeMap 116
pa:attributeRule 116
physical portion 3
physical view 25

defining 25
plugins

ws_orb 107
port 8
portType 8, 17

R
routing

broadcast 39
failover 40
fanout 39

routing:contains 42
routing:destination 34

port 34
service 34

routing:empty 42
routing:endswith 42
routing:equals 41

name 41
routing:greater 41
routing:less 41
routing:nonempty 42
 300
routing:operation 36
name 36
target 36

routing:propagateInputAttribute 43
routing:propagateOutputAttribute 44
routing:route 33

multiRoute 39, 40
failover 40
fanout 39

name 33
routing:source 33

port 33
service 33

routing:startswith 42
routing:transportAttribute 41

S
service access point 8, 22
service element 25
size 261
soapenc:base64 75
Specifying POA policies 97, 216
Standalone mode 4
structures

CORBA 62

T
tagged:binding 274
tagged:body 276
tagged:case 279
tagged:choice 279
tagged:enumeration 277
tagged:field 276
tagged:operation 276
tagged:sequence 277
tibrv:binding 121
tibrv:binding@stringEncoding 121
tibrv:input 121
tibrv:input@messageNameFieldPath 121
tibrv:input@messageNameFieldValue 121
tibrv:input@sortFields 121
tibrv:operation 121
tibrv:output 121
tibrv:output@messageNameFieldPath 121
tibrv:output@messageNameFieldValue 122
tibrv:output@sortFields 121
tibrv:port 126, 132
tibrv:port@bindingType 128



INDEX
tibrv:port@callbackLevel 128
tibrv:port@clientSubject 126
tibrv:port@cmListenerCancelAgreements 130
tibrv:port@cmQueueTransportClientName 131
tibrv:port@cmQueueTransportCompleteTime 131
tibrv:port@cmQueueTransportSchedulerActivation 1

31
tibrv:port@cmQueueTransportSchedulerHeartbeat 1

31
tibrv:port@cmQueueTransportSchedulerWeight 131
tibrv:port@cmQueueTransportServerName 130
tibrv:port@cmQueueTransportWorkerTasks 131
tibrv:port@cmQueueTransportWorkerWeight 131
tibrv:port@cmSupport 129
tibrv:port@cmTransportClientName 129
tibrv:port@cmTransportDefaultTimeLimit 130
tibrv:port@cmTransportLedgerName 130
tibrv:port@cmTransportRelayAgent 130
tibrv:port@cmTransportRequestOld 130
tibrv:port@cmTransportServerName 129
tibrv:port@cmTransportSyncLedger 130
tibrv:port@serverSubject 126
tibrv:port@transportBatchMode 129
tibrv:port@transportDaemon 129
tibrv:port@transportNetwork 129
tibrv:port@transportService 128
TibrvMsg 121
tuxedo:server 116
tuxedo:service 116
typedefs

CORBA 67

U
unions

Artix mapping 65
CORBA 64, 66
logical description 64

V
value 263

W
W3C 8
Web Service Definition Language 3
Web Services Definition Language 8
WebSphere MQ

AccessMode 153
AccountingToken 167
AliasQueueName 146
ApplicationData 166
ApplicationOriginData 170
ConnecitonName 148
ConnectionFastPath 150
ConnectionReusable 149
Convert 168
CorrelationId 165
CorrelationStyle 152
Delivery 158
Format 162
MessageExpiry 156
MessageId 164
MessagePriority 157
ModelQueueName 145
QueueManager 141
QueueName 142
ReplyQueueManager 144
ReplyQueueName 143
ReportOption 160
Timeout 155
Transactional 159
UsageStyle 151
UserIdentification 171

Websphere MQ
ApplicationIdData 169

World Wide Web Consortium 8
WSDL 3, 8
WSDL endpoint 8
wsdltocorba 95, 100
wsdltosoap 239

X
xmlformat:binding 294
XSD 11
xsd:base64Binary 75
xsd:hexBinary 75
301



INDEX
 302



INDEX
303



INDEX
 304


	List of Figures
	List of Tables
	Preface
	Introduction to Using Artix
	The Artix Bus
	The Artix Design Process

	Understanding WSDL
	Web Services Description Language Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Understanding Artix Contracts
	Artix Contract Overview
	The Logical Section
	The Physical Section

	Routing
	Artix Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Attribute Propagation through Routes
	Error Handling

	Building Contracts from Java Classes
	Working with CORBA
	CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Recursive Type Mapping
	Mapping XMLSchema Features that are not Native to IDL
	Artix References

	Modifying a Contract to Use CORBA
	Adding a CORBA Binding
	Adding a CORBA Port

	Generating IDL from an Artix Contract
	Generating a Contract from IDL
	Configuring Artix to Use the CORBA Plug-in

	Working with Tuxedo
	Introduction
	Using FML Buffers
	Mapping FML Buffer Descriptions to Artix Contracts

	Using the Tuxedo Transport

	Working with TIBCO Rendezvous
	Introduction
	Using TibrvMsg
	Using the TIB/RV Transport
	Understanding the TIB/RV Port Properties
	Adding a TIB/RV Port to an Artix Contract


	Working with WebSphere MQ
	Introduction
	Describing an Artix WebSphere MQ Port
	Configuring an Artix WebSphere MQ Port
	QueueManager
	QueueName
	ReplyQueueName
	ReplyQueueManager
	ModelQueueName
	AliasQueueName
	ConnectionName
	ConnectionReusable
	ConnectionFastPath
	UsageStyle
	CorrelationStyle
	AccessMode
	Timeout
	MessageExpiry
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format
	MessageId
	CorrelationId
	ApplicationData
	AccountingToken
	Convert
	ApplicationIdData
	ApplicationOriginData
	UserIdentification

	Adding an WebSphere MQ Port to an Artix Contract

	Working with the Java Messaging System
	Working with HTTP
	HTTP Overview
	HTTP WSDL Extensions
	HTTP WSDL Extensions Overview
	HTTP WSDL Extensions Details

	HTTP Transport Attributes
	Transport Attributes Overview
	Server Transport Attributes
	Client Transport Attributes


	Working with IIOP Tunnels
	Introduction to IIOP Tunnels
	Modifying a Contract to Use an IIOP Tunnel

	Sending Messages using SOAP
	Overview of SOAP
	Background to SOAP
	SOAP Messages
	SOAP Encoding of Data Types

	SOAP WSDL Extensions
	Generating a SOAP Binding from a Logical Interface
	SOAP WSDL Extensions Overview
	SOAP WSDL Extensions Details

	Supported XML Types

	Sending Messages as Fixed Record Length Data
	Creating a Fixed Binding from a COBOL Copybook
	Fixed Record Length Message Data Mapping

	Sending Messages as Tagged Data
	Tagged Data Mapping

	Other Data Bindings for Sending Messages
	G2++ Data Binding
	Pure XML Format

	Glossary
	Index

