IONA

>3 Artix™

Designing Artix Solutions from

the Command Line
Version 2.0, March 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E,
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 30-Apr-2004

M3189

Contents

List of Figures
List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
Online Help
Finding Your Way Around the Artix Librabry
Additional Resources for Help
Typographical Conventions
Keying Conventions

Chapter 1 Introduction to Using Artix
The Artix Bus
The Artix Design Process

Chapter 2 Understanding WSDL
Web Services Description Language Basics
Abstract Data Type Definitions
Abstract Message Definitions
Abstract Interface Definitions
Mapping to the Concrete Details

Chapter 3 Understanding Artix Contracts
Artix Contract Overview
The Logical Section
The Physical Section

Chapter 4 Routing
Artix Routing

vii

Xi
Xi
Xi
Xii
Xiii
Xiv
XV
XV
Xvi

N

11
14
17
20

21
22
23
25

27
28

CONTENTS

Compatibility of Ports and Operations
Defining Routes in Artix Contracts
Using Port-Based Routing
Using Operation-Based Routing
Advanced Routing Features
Attribute Propagation through Routes
Error Handling

Chapter 5 Building Contracts from Java Classes

Chapter 6 Working with CORBA
CORBA Type Mapping
Primitive Type Mapping
Complex Type Mapping
Recursive Type Mapping
Mapping XMLSchema Features that are not Native to IDL
Artix References
Modifying a Contract to Use CORBA
Adding a CORBA Binding
Adding a CORBA Port
Generating IDL from an Artix Contract
Generating a Contract from IDL
Configuring Artix to Use the CORBA Plug-in

Chapter 7 Working with Tuxedo
Introduction
Using FML Buffers
Mapping FML Buffer Descriptions to Artix Contracts
Using the Tuxedo Transport

Chapter 8 Working with TIBCO Rendezvous
Introduction
Using TibrvMsg
Using the TIB/RV Transport
Understanding the TIB/RV Port Properties
Adding a TIB/RV Port to an Artix Contract

29
32
33
36
39
43
45

47

57
58
59
61
73
75
85
92
93
97

100
101
107

109
110
111
112
116

119
120
121
125
126
132

CONTENTS

Chapter 9 Working with WebSphere MQ 133
Introduction 134
Describing an Artix WebSphere MQ Port 136

Configuring an Artix WebSphere MQ Port 138
QueueManager 141
QueueName 142
ReplyQueueName 143
ReplyQueueManager 144
ModelQueueName 145
AliasQueueName 146
ConnectionName 148
ConnectionReusable 149
ConnectionFastPath 150
UsageStyle 151
CorrelationStyle 152
AccessMode 153
Timeout 155
MessageExpiry 156
MessagePriority 157
Delivery 158
Transactional 159
ReportOption 160
Format 162
Messageld 164
Correlationld 165
ApplicationData 166
AccountingToken 167
Convert 168
ApplicationldData 169
ApplicationOriginData 170
Userldentification 171
Adding an WebSphere MQ Port to an Artix Contract 172

Chapter 10 Working with the Java Messaging System 175

Chapter 11 Working with HTTP 179
HTTP Overview 180

HTTP WSDL Extensions 187

CONTENTS

HTTP WSDL Extensions Overview

HTTP WSDL Extensions Details
HTTP Transport Attributes

Transport Attributes Overview

Server Transport Attributes

Client Transport Attributes

Chapter 12 Working with IIOP Tunnels
Introduction to IIOP Tunnels
Modifying a Contract to Use an IIOP Tunnel

Chapter 13 Sending Messages using SOAP

Overview of SOAP
Background to SOAP
SOAP Messages
SOAP Encoding of Data Types

SOAP WSDL Extensions
Generating a SOAP Binding from a Logical Interface
SOAP WSDL Extensions Overview
SOAP WSDL Extensions Details

Supported XML Types

Chapter 14 Sending Messages as Fixed Record Length Data
Creating a Fixed Binding from a COBOL Copybook
Fixed Record Length Message Data Mapping

Chapter 15 Sending Messages as Tagged Data
Tagged Data Mapping

Chapter 16 Other Data Bindings for Sending Messages
G2+ + Data Binding
Pure XML Format

Glossary

Index

Vi

188
190
208
209
210
212

213
214
215

219
220
221
224
230
238
239
240
241
249

255
257
259

273
274

285
286
293

295

299

List of Figures

Figure 1: Artix Message Transporting 2
Figure 2: An Artix Contract 22
Figure 3: MQ Remote Queues 147
Figure 4: Overview of Role of SOAP Encoding and Decoding 231

vii

LIST OF FIGURES

viii

List of Tables

Table 1: Part Data Type Attributes

Table 2: Operation Message Elements

Table 3: Attributes of the Input and Output Elements
Table 4: Artix Namespaces

Table 5: Java to WSDL Mappings

Table 6: Primitive Type Mapping for CORBA Plug-in
Table 7: Complex Type Mapping for CORBA Plug-in
Table 8: Complex Content Identifiers in CORBA Typemap
Table 9: Artix FML Feature Support

Table 10: Supported TIBCO Rendezvous Features
Table 11: TibrvMsg Binding Attributes

Table 12: TIBCO to XSD Type Mapping

Table 13: TIB/RV Transport Properties

Table 14: TIB/RV Supported Payload formats

Table 15: Supported WebSphere MQ Features
Table 16: WebSphere MQ Port Attributes

Table 17: UsageStyle Settings

Table 18: MQGET and MQPUT Actions

Table 19: Artix WebSphere MQ Access Modes
Table 20: Transactional Attribute Settings

Table 21: ReportOption Attribute Settings

Table 22: FormatType Attribute Settings

Table 23: HTTP Server Configuration Attributes
Table 24: HTTP Client Configuration Attributes
Table 25: HTTP Server Transport Attributes

Table 26: HTTP Client Transport Attributes

15
17
18
23
48
59
61
80
110
120
121
122
126
128
134
138
151
152
153
159
160
162
190
197
210
212

LIST OF TABLES

Table 27: Attributes for soap:binding
Table 28: Attributes for soap:operation
Table 29: Attributes for soap:body
Table 30: soap:fault attributes

Table 31: Attribute for soap:address

241
243
244
247
248

Preface

What is Covered in this Book

Designing Artix Solutions from the Command Line provides the reader with
detailed information about how to design Artix solutions and describe those
solutions in Artix contracts. It begins with an overview of the conceptes
needed by a user of Artix and a description of WSDL. It hen moves into
detialed descriptions of the Artix WSDL extentions used to describe each of
the transports and payload formats supported by Artix. These detailed
descriptions cover how complex data types are mapped to into a paylaod
format and how to provide specific configuration information for particular
transports.

Note: This book does not provide descriptions or information about the
supported transports. For information on how to set-up and use them see
the documentation provided by the vendors.

In addition, this book covers all of the command line tools provided with
Artix to assist you in building your Artix contracts. These include tools to
convert IDL to WSDL, tools to add CORBA bindings to existing Artix
contracts, and others.

Who Should Read this Book

The target audience for Designing Artix Solutions from the Command Line
is the designer of Artix solutions who wants an understanding of the
internals of Artix contracts. The reader should have a working knowledge of
the middleware transports that are being used to implement the Artix
soultion.

Xi

PREFACE

Xii

How to Use this Book

If you are new to Artix and WSDL, the first three chapters of this book
provide overviews of Artix and WSDL. “Introduction to Using Artix” provides
an overview of the concepts behind using Artix to solve integration projects.
“Understanding WSDL” describes the basics of Web Services Description
Language and how to map services. “Understanding Artix Contracts”
describes how Artix extends WSDL to describe transport independent
services and integration. A working knowledge of this information is helpfull
in understanding the content of the following chapters which deal with
specific middleware products, transports, and payload formats.

If you are interested in adding routing information to you Artix solution,

Chapter 4 describes how to create message routes in an Artix contract.

To learn about how Artix interacts with the major middleware products it

can integrate, you will want to read one or more of the following chapters:

® Chapter 6 describes how to integrate CORBA systems into an Artix
solution.

® Chapter 7 describes how to integrate BEA Tuxedo in an Artix solution.

Note: BEA Tuxedo integration is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether
your installation supports BEA Tuxedo integration.

® Chapter 8 describes how to integrate TIBCO Rendezvous into an Artix
solution.

Note: TIBCO Rendezvous integration is unavailable in some editions
of Artix. Please check the conditions of your Artix license to see
whether your installation supports TIBCO Rendezvous integration.

® Chapter 9 describes how to integrate IBM WebSphere MQ systems
into an Artix solution.

Note: IBM WebSphere MQ integration is unavailable in some
editions of Artix. Please check the conditions of your Artix license to
see whether your installation supports IBM WebSphere MQ
integration.

PREFACE

Chapter 10 describes how to use Artix with the Java Messaging
System.

Note: Java Messaging System integration is unavailable in some
editions of Artix. Please check the conditions of your Artix license to
see whether your installation supports Java Messaging System
integration.

These chapters are focused on describing data and port configurations using
Artix. They do not provide details about the middleware products beyond
what is related to making Artix solutions interact with them.

If you are using artix with transports and paylaod formats that have open
standards, you will want to read one or more of the following:

Chapter 11 describes how to use HTTP with Artix.
Chapter 12 describes how to use the 1I0OP tunnel transport.

Note: The IIOP tunnel transport is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether
your installation supports the [IOP tunnel transport.

Chapter 13 describes how to use SOAP messages in Artix.

Chapter 14 describes how to use fixed record length data in Artix.
Chapter 15 describes how to use self-describing messages in Artix.
Chapter 16 describes how to use the G2+ + and XML payload formats
supported by Artix.

Online Help

While using the Artix Designer you can access contextual online help,
providing:

A description of your current Artix Designer screen

Detailed step-by-step instructions on how to perform tasks from this
screen

A comprehensive index and glossary

A full search feature

There are two ways that you can access the Online Help:

Click the Help button on the Artix Designer panel, or
Select Contents from the Help menu

xiii

PREFACE

If you are new to Artix

To design Artix solutions

To develop applications using
Artix stub and skeleton code

To manage and configure your
Artix solution

Xiv

Finding Your Way Around the Artix Librabry

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The remainder of the Artix library is listed
here, with an short description of each book.

You may be interested in reading:

® Getting Started with Artix - the Getting Started books (Encompass,
Relay, and Java) describe basic Artix concepts. These books also
provide a walk through Artix to solve a real world problem using code
provided in the product kit.

® Artix Tutorial - this book guides you through programming Artix
applications against all of the supported transports.

You should read one or more of the following:

® Designing Artix Solutions - this book provides detailed information
about using the Artix Designer to create WSDL based Artix contracts,
Artix stub and skeleton code, and Artix deployment descriptors.

® Designing Artix Solutions from the Command Line - this book provides
detailed information about the WSDL extensions used in Artix
contracts, and explains the mappings between data types and Artix
bindings.

Depending on your development environment you should read one or more

of the following:

® Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the Artix C++
API

® Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Artix Java API

You should read Deploying and Managing Artix Solutions. It describes how
to configure and deploy Artix-enabled systems. It also discusses how to
manage them once they are deployed.

If you want to know more about
Artix security

Have you got the latest version?

PREFACE

You should read the Artix Security Guide. It outlines how to enable and
configure Artix's security features. It also discusses how to integrate Artix
solutions into a secure environment.

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (at the bottom of the copyright notice).

Additional Resources for Help

The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QCRBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

XV

http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Italic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying Conventions
This book uses the following keying conventions:

No prompt

%

(1

{

XVi

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

CHAPTER 1

Introduction to
Using Artix

Artix allows you to design and deploy integration solutions that
are middleware-neutral.

In this chapter This chapter discusses the following topics:
The Artix Bus page 2
The Artix Design Process page 5

CHAPTER 1 | Introduction to Using Artix

The Artix Bus

Overview

The Artix bus provides a middleware connectivity solution that minimizes
invasiveness and lets an organization avoid being locked into any one
middleware transport. For example, the Artix bus can be used to connect a
BEA Tuxedo™-based server to a CORBA client. The Artix bus transparently
handles the message mapping and transformation between them. The
Tuxedo server is unaware that its client is using CORBA. In fact, with the
bus handling the communication, the client could be changed to an IBM
WebSphere MQ™ client without modifying the server.

Bus message transporting

The Artix bus shields applications from the details of the transports used by
applications on the other end of the bus, by providing on-the-wire message
transformation and mapping. Unlike the approach taken by Enterprise
Application Integration (EAI) products, the Artix bus does not use an
intermediate canonical format; it transforms the messages once. Figure 1
shows a high level view of how a message passes through the bus.

No Canonical Format: Direct On-The-Wire Transformation

Tuxedo Artix Bus MQSeries

"—I binding 1—| I—P biirvcling l—*

LTranspnrt of Choice <J

Figure 1: Artix Message Transporting

The approach taken by the Artix bus provides a high level of throughput by
avoiding the overhead of making two transformations for each message. The
approach does, however, limit the flexibility of message mapping. The Artix
bus can only map messages across varying transports; it cannot modify the
content or structure of the message.

Supported message transports

Supported payload formats

Bus contracts

The Artix Bus

The Artix bus supports the following message transports:
® HTTP

® BEA Tuxedo

®* IBM WebSphere MQ

* |IOP
® TIBCO Rendezvous™
® |IOP Tunnel

The Artix bus can automatically transform between the following payload
formats:

* G2++

® FML - Tuxedo format

® CORBA (GIOP) — CORBA format

® FRL - fixed record length

® VRL - variable record length

® SOAP

® TibrvMsg - TIBCO Rendezvous format

An Artix bus contract defines the interaction of a Service Access Point (SAP)
or endpoint with an Artix bus. Contracts are written using a superset of the

standard Web Service Definition Language (WSDL). Following the procedure
described by W3C, IONA has extended WSDL to support the bus’ advanced
functionality, and use of transports and formats other than HTTP and SOAP.

A bus contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It is made
up of the WSDL tags <message>, <oper ati on>, and <por t Type>.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each

CHAPTER 1 | Introduction to Using Artix

Deployment models

Advanced Features

of the defined transports and bindings. The physical portion of the contract
is made up of the standard WSDL tags <bi ndi ng>, <port >, and

<oper at i on>. It is also the portion of the contract that may contain IONA
WSDL extensions.

Applications that use the Artix bus can be deployed in one of two ways:

Embedded mode is the most invasive use of the Artix bus and provides the
highest performance. In embedded mode, an application is modified to
invoke Artix functions directly and locally, as opposed to invoking a
standalone Artix service. This approach is the most invasive to the
application, but also provides the highest performance. Embedded mode
requires linking the application with Artix-generated stubs and skeletons to
connect client and server (respectively) to the Bus.

Standalone mode runs as a separate process invoked as a service. In
standalone mode, the Artix bus provides a zero-touch integration solution on
the application side. When designing a system, you simply generate and
deploy the Artix contracts that specify each endpoint of the bus. Because a
standalone switch is not linked directly with the applications that use it (as
in embedded mode), a contract for standalone mode deployment must
specify routing information. This is the least efficient of the two modes.

The Artix bus also supports the following advanced functionality:

® Message routing based on the operation or the port, including routing
based on characteristics of the port.

® Transaction support over Tuxedo and WebSphere MQ.

® SSL and TLS support.

® Security support for Tuxedo and WebSphere MQ.

® Container based deployment with IONA’s Application Server Platform
6.0 and Tuxedo 7.1 or higher.

The Artix Design Process

The Artix Design Process

Overview

Creating an Artix contract

Artix is a flexible and easy to use tool for integrating your existing
applications across a number of different middleware platforms. Artix also
makes it easy to expose your existing applications as Web services or as a
service for any number of applications using other middleware transports. In
addition, Artix provides a flexible programming model that allows you to
create new applications that can communicate using any of protocols that
Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a
straightforward process which requires a minimum of coding. The Artix
Designer provides a full suite of wizards to guide you through the modeling
of your systems, the generation of Artix components, and the deployment of
your system. Artix also ships with a number of command line tools that can
be used to generate Artix components.

Regardless of the complexity of your Artix project or the tools you chose to
develop your Artix project, there are four basic steps in developing a solution
using Artix:

1. Create an Artix contract to model your existing services.

2. Modify your Artix contract to describe how you intend to integrate or
expose your systems.

3. Generate the Artix components.

4. Develop any application level code needed to complete the solution.

The first step in solving a problem using Artix is to create a contract which
models the services you want to integrate. This involves creating logical
descriptions of the data and the operations you want the services to share,
and mapping them to the physical payload formats and transports the
services use to expose themselves to the network. Artix uses the industry
standard Web Services Description Language (WSDL) to model services.

For more information on Artix contracts and modeling services in WSDL,
read “Understanding WSDL" on page 7.

CHAPTER 1 | Introduction to Using Artix

Describe the integration of the
services

Generate Artix components

Develop application code

After describing how your services are currently deployed, you must decide
how you want them to be integrated. If your services share a common
interface, you may simply need to add routing rules to your contract. Artix
provides a rich set of routing capabilities to map operations and interfaces to
one another. For a detailed discussion of routing, see Chapter 4 on page 27.

If you are exposing an existing service using a new transport or payload
format, you need to add the mapping of the service's data and operations to
the new payload format and transport.

If you are using Artix in standalone mode, you will need to generate a
configuration scope for your Artix switch and save the Artix contract defining
the interaction of your services.

If you are using Artix in embedded mode, you will also need to generate the
Artix stubs and skeletons that will form the backbone of your Artix
application code.

For a detailed discussion of Artix configuration, see the Artix Administration

Guide. For a detailed description of generating Artix stubs and skeletons,
see the Artix C++ Programmer’s Guide.

Unless your services share identical interfaces, you will need to develop
some application code. Artix can only map between services that share a
common interface. Typically, you can make the required changes to only
one side of the services you are integrating and you can write the application
code using a familiar programming paradigm. For example, if you are a
CORBA developer integrating a CORBA system with a Tuxedo application,
Artix will generate the IDL representing the interface used in the service
integration. You can then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the
application logic from scratch using the stubs and skeletons generated by
Artix. For a detailed discussion of developing applications using Artix, see
the Artix C++ Programmer’s Guide.

In this chapter

CHAPTER 2

Understanding
WSDL

Artix contracts are WSDL documents that describe logical
services and the data they use.

This chapter discusses the following topics:

Web Services Description Language Basics page 8

Abstract Data Type Definitions page 11
Abstract Message Definitions page 14
Abstract Interface Definitions page 17
Mapping to the Concrete Details page 20

CHAPTER 2 | Understanding WSDL

Web Services Description Language Basics

Overview

Web service endpoints and Artix
service access points

Abstract operations

Port types

Concrete details

Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

WSDL documents describe a service as a collection of endpoints. Each
endpoint is defined by binding an abstract operation description to a
concrete data format and specifying a network protocol and address for the
resulting binding.

Artix service access points extend the concept of endpoint to include
services that are available over any computer network, not just the web. A
service access point can be bound to payload formats other than SOAP and
can use transports other than HTTP.

The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Or, one WSDL document could be used to define several services
that use the same abstract messages.

A portType is a collection of abstract operations that define the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.

The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.

http://www.w3.org/TR/wsdl

Namespaces and imported
descriptions

Elements of a WSDL document

Example

Web Services Description Language Basics

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

WSDL supports the use of XML namespaces defined in the <def i ni ti on>
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

A WSDL document is made up of the following elements:

® <types> — the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema (XSD).

® <nessage> — the abstract definition of the data being communicated.

® <operation>- the abstract description of an action.

® <port Type> — the set of operations representing an absract endpoint.

® <bindi ng>— the concrete data format specification for a port type.

® <port> - the endpoint defined by a binding and a physical address.

® <service> — a set of ports.

Example 1 shows a simple WSDL document. It defines a SOAP over HTTP
service access point that returns the date.

Example 1: Simple WSDL

<?xm version="1.0"?>
<defi ni ti ons nanme="Dat eServi ce"
t ar get Namespace="ur n: dat eser vi ce"
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: t ns="ur n: dat eservi ce"
xm ns: xsd="ht t p: / / waw. W8. or g/ 2001/ XM_Schena"
xm ns: xsd1="http: //i ona. coni dat es/ schenas" >

CHAPTER 2 | Understanding WSDL

Example 1: Simple WSDL

<t ypes>
<schena t ar get Namespace="htt p: //i ona. coni dat es/ schenas"
xm ns="ht t p: / / waw. W8. or g/ 2000/ 10/ XM_Schena" >
<el ement nane="dat eType" >
<conpl exType>>
<al | >
<el ement nanme="day" type="xsd:int"/>
<el ement nanme="nonth" type="xsd:int"/>
<el enent name="year" type="xsd:int" />
</all>
</ conpl exType>
<el erment >
</ schenma>
</ types>
<message nane="Dat eResponse" >
<part name="date" el enent ="xsdl: dateType" />
</ message>
<port Type nane="Dat ePort Type" >
<oper ati on name="sendDat e" >
<out put nessage="t ns: Dat eResponse" nane="sendDate" />
</ oper at i on>
</ port Type>
<bi ndi ng name="Dat ePor t Bi ndi ng" type="t ns: Dat ePort Type" >
<soap: bi ndi ng styl e="rpc"
transport ="http://schemas. xni soap. or g/ soap/ http" />
<oper ati on nane="sendDat e" >
<soap: oper ati on soapAction="" style="rpc" />
<out put nane="sendDat e" >
<soap: body

encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ "

namespace="ur n: dat eservi ce" use="encoded" />
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce nane="Dat eServi ce">
<port bi ndi ng="t ns: Dat ePort Bi ndi ng" name="Dat ePort" >

<soap: address | ocation="http://ww. iona.coni DatePort/"

</ port>
</ servi ce>
</ definitions>

10

/>

Abstract Data Type Definitions

Abstract Data Type Definitions

Overview Applications typically use datatypes that are more complex than the
primitive types, like i nt, defined by most programming languages. WSDL
documents represent these complex datatypes using a combination of
schema types defined in referenced external XML schema documents and
complex types described in <t ypes> elements.

Complex type definitions Complex data types are described in a <t ypes> element. The W3C
specification states the XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

® Use elements, not attributes.
® Do not use protocol-specific types as base types.

® Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, per sonal | nf o, defined in Example 2, contains a string, an
i nt, and an enum The string and the i nt both have equivalent XSD types
and do not require special type mapping. The enumerated type
hai r Col or Type, however, does need to be described in XSD.

Example 2: personalinfo

enum hai r Col or Type {red, brunette, blonde};

struct personal | nfo
{ .

string nang;

int age;

hai r Col or Type hai r Col or;
}

11

CHAPTER 2 | Understanding WSDL

Example 3 shows one mapping of per sonal I nf o into XSD. This mapping is
a direct representation of the data types defined in Example 2.

hai r Col or Type is described using a named si npl eType because it does not
have any child elements. per sonal | nf o is defined as an el enent so that it
can be used in messages later in the contract.

Example 3: XSD type definition for personallnfo

<types>
<xsd: schema t ar get Nanmespace="ht t p: \\i ona. com per sonal \ schema"
xm ns: xsd1="htt p:\\i ona. com per sonal \ schena"
xm ns="ht t p: / / waw. W8. or g/ 2000/ 10/ XM_Schena" >
<si npl eType name="hai r Col or Type" >
<restriction base="xsd:string">
<enuner ation val ue="red" />
<enuner ation val ue="brunette" />
<enuner ati on val ue="bl onde" />
</ restriction>
</ si npl eType>
<el enment nane="personal | nf 0" >
<conpl exType>
<el enent name="name" type="xsd:string" />
<el enent nanme="age" type="xsd:int" />
<el enent name="hair Col or" type="xsdl: hair Col or Type" />
</ conpl exType>
</ el ement>
</ schena>
</ types>

Another way to map personallnfo is to describe hai r Gol or Type in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hai r Col or Type.

Example 4: Alternate XSD mapping for personalinfo

<types>
<xsd: schema t ar get Nanespace="ht t p: \\i ona. com per sonal \ schema"
xm ns: xsd1="htt p: \\i ona. com per sonal \ schena"
xm ns="ht t p: / / waw. W3. or g/ 2000/ 10/ XM_Schena" >
<el enment nane="personal | nf 0" >
<conpl exType>

<el enent name="nane" type="xsd:string" />
<el enent nanme="age" type="xsd:int" />

12

Abstract Data Type Definitions

Example 4: Alternate XSD mapping for personalinfo

<el enent nane="hai r Col or ">
<si npl eType>
<restriction base="xsd: string">
<enuner ation val ue="red" />
<enuner ation val ue="brunette" />
<enurrer ati on val ue="bl onde" />
</ restriction>
</ si npl eType>
</ el enent >
</ conpl exType>
</ el enent >
</ schena>
</ types>

13

CHAPTER 2 | Understanding WSDL

Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <nessage> elements. Each
abstract message consists of one or more parts, defined in <part > elements.
These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <bi ndi ng> elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation. In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part > elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in
Example 2 on page 11 and provided a method that returned an employee’s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 5.

Example 5: personalinfo lookup method

per sonal | nfo | ookup(l ong enpl d)

14

Abstract Message Definitions

This method signature could be mapped to the WSDL fragment shown in
Example 6.

Example 6: WSDL Message Definitions

<nessage name="per sonal LookupRequest ">
<part name="enpl d" type="xsd:int" />
<nessage />
<nessage name="per sonal LookupResponse>
<part name="return" el enent="xsdl: personal | nfo" />
<nessage />

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages, requests, or output messages,
responses.

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 1

Table 1: Part Data Type Attributes

Attribute Description

type="t ype_nane" The datatype of the part is defined by a
si npl eType or conpl exType called t ype_nane

el enent ="el em nane" | The datatype of the part is defined by an
el enent called el em nane.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, f oo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in

Example 7.

Example 7: Reused part
<nessage nanme="f ooRequest ">

<part name="foo" type="xsd:int" />
<nessage>

15

CHAPTER 2 | Understanding WSDL

Example 7: Reused part
<nessage nane="f ooRepl y" >

<part name="foo" type="xsd:int" />
<nessage>

16

Abstract Interface Definitions

Abstract Interface Definitions

Overview

Port types

Operations

Elements of an operation

WSDL <por t Type> elements define, in an abstract way, the operations
offered by a service. The operations defined in a port type list the input,
output, and any fault messages used by the service to complete the
transaction the operation describes.

A port Type can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <port Type> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <oper at i on> elements. A WSDL document can
describe any number of port types.

Operations, described in <oper at i on> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the nare attribute. The nane attribute is required to define an operation.

Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description
<i nput > Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.

17

CHAPTER 2 | Understanding WSDL

Return values

18

Table 2: Operation Message Elements

Element Description

<out put > Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

<faul t> Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

An operation is required to have at least one i nput or out put element. The
elements are defined by two attributes listed inTable 3.

Table 3: Attributes of the Input and Output Elements

Attribute Description

nane Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the nessage attribute
must correspond to the nane attribute of one of the abstract
messages defined in the WSDL document.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an i nput and an out put
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Because the port type is an abstract definition of the data passed during in
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the out put
message as the last <par t > of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the binding section.

Example

Abstract Interface Definitions

For example, in implementing a server that stored personal information in
the structure defined in Example 2 on page 11, you might use an interface
similar to the one shown in Example 8.

Example 8: personallnfo lookup interface

interface personal | nf oLookup

{
personal | nfo | ookup(in int enplD)
rai ses(i d\ot Found) ;

}
This interface could be mapped to the port type in Example 9.
Example 9: personalinfo lookup port type

<nessage name="per sonal LookupRequest ">
<part name="enpl d" type="xsd:int" />
<nessage />
<nessage name="per sonal LookupResponse" >
<part name="return" el enent="xsdl: personal | nfo" />
<nessage />
<nessage name="i dNot FoundExcept i on">
<part nane="exception" el enent="xsd1:idNot Found" />
<nessage />
<port Type nane="per sonal | nf oLookup" >
<oper ati on name="| ookup" >
<i nput name="enpl D' nessage="per sonal LookupRequest" />
<out put nane="return" message="personal LookupResponse" />
<fault name="excepti on" nmessage="i dN\Not FoundException" />
</ operation>
</ port Type>

19

CHAPTER 2 | Understanding WSDL

Mapping to the Concrete Details

Overview

Bindings

Services

20

The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions need
to be mapped to concrete representations of the data passed between the
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port
syntax is not tightly specified by W3C. While there is a specification defining
the mechanism for defining the syntaxes, the syntaxes for bindings other
than SOAP and network transports other than HTTP are not bound to a
W3C specification.

To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <bi ndi ng> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port > element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <ser vi ce> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.

CHAPTER 3

Understanding
Artix Contracts

Artix contracts are WSDL documents that have IONA-specific
WSDL extensions, and which define Artix applications.

In this chapter This chapter discusses the following topics:
Artix Contract Overview page 22
The Logical Section page 23
The Physical Section page 25

21

CHAPTER 3 | Understanding Artix Contracts

Artix Contract Overview

Overview

22

Artix contracts are WSDL documents that describe Artix service access
points and their integration. Each mapping of a port type to a binding and
port defines an Artix service access point. An Artix contract also describes
the routing between service access points.

An Artix contract has two sections as shown in Figure 2:

Logical describes the abstract operations, messages, and data types used
by a service access point.

Physical describes the concrete message formats and transports used by a
service access point. The routing information defining how messages are
mapped between different service access points is also specified here.

Artix WSDL

- PortType
& Operations ~ _ Generates o,
o Messages « Java
= Types

. . . -XML - FML
- Bl nd i ng Specifies o i oL
- — » _FRL -FRL
“
12
O Specifies -MQ - TIB/RV
2 POI't e . IOP + HTTP

- TUX

Figure 2: An Artix Contract

The Logical Section

The Logical Section

Overview The logical section of an Artix contract defines the abstract operations that
the service access points offer. The logical view includes the <t ypes>,
<nessage>, and <por t Type> tags in a WSDL document. This portion of the
contract also specifies the namespaces used in defining the contract.

Namespaces Artix contracts use several IONA-specific namespaces to define the Artix
extensions for mapping to different data formats and network transports.

These namespaces include:

Table 4:

Artix Namespaces

Namespace

Description

http://schenas. i ona. comtransports/http

Specifies the WSDL extensions for HTTP

http://schenas. iona.comtransports/http/configuration

Specifies additional extensions to configure
the HTTP transport.

http: // schenas. i ona. con bi ndi ngs/ cor ba

Specifies the WSDL extensions used to map
data to CORBA. This namespace also
specifies the transport specific configuration
setting for a CORBA port.

http: // schenas. i ona. con bi ndi ngs/ cor ba/ t ypermap

Specifies the type mapping information used
to fully describe complex CORBA types
defined in IDL.

http://schenas. i ona. cont bi ndi ngs/ fi xed

Specifies the WSDL extentions used to
describe fixed data bindings.

ht t p?schenas. i ona. cont bi ndi ngs/ t agged

Specifies the WSDL extentions used to
describe tagged data bindings.

http://schenas. i ona.conirouting

Specifies the WSDL extensions to define
routing between Artix SAPs.

http://schenas.iona.conitransports/jns

Specifies the WSDL extentions used to
describe a JMS port.

23

CHAPTER 3 | Understanding Artix Contracts

Table 4: Artix Namespaces

Namespace Description

http://schemas. i ona. coni transports/ ny Specifies the WSDL extensions to configure
the WebSphere MQ transport.

Port types and code generation The Artix code generation tools, including the IDL generator, are driven by
the port types defined in an Artix contract. For each port type defined in a
contract, the code generators create an object named for the port type it
represents. For example, the port type defined in Example 9 on page 19
results in an object similar to the one shown in Example 10.

Example 10: personallnfo Object
cl ass personal | nf oLookup
{

per sonal | nf oLookup() ;
~per sonal | nf oLookup() ;

voi d | ookup(int enpl D, personal LookupResponse &return);

}

For more information on Artix code generation, see Developing Artix
Applications in C++ and Developing Artix Applications in Java.

24

The Physical Section

The Physical Section

Overview

Bindings

Network protocols

CORBA type map

Routing

The physical section of an Artix contract defines the actual bindings and
transports used by the service access points. It includes the information
specified in the <bi ndi ng> and <ser vi ce> tags of a WSDL document. It also
includes the routing rules defining how the messages are routed between
the endpoints defined in the contract.

WSDL is intended to describe service offered over the Web and therefore
most bindings are specified using SOAP as the message format. WSDL can
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA and
FML. For specific information on using these bindings see the appropriate
chapter in this guide.

WSDL documents typically use HTTP as the network protocol. However,
WSDL is not limited to representing connections over HTTP. Artix provides
port descriptions for several network protocols including IIOP and
WebSphere MQ. For more information on using these network protocols in
Artix see the appropriate chapter in this guide.

When using the CORBA additional data is required to fully map the logical

types to concrete CORBA data types. This is done using a CORBA type map
extension to standard WSDL. For a detailed description of how Artix maps

logical types to CORBA types read “CORBA Type Mapping” on page 58.

To fully describe the integration of service access points across an
enterprise, Artix contracts include routing rules for directing data between
the service access points. Routing rules are described in “Routing” on
page 27.

25

CHAPTER 3 | Understanding Artix Contracts

26

In this chapter

Routing

CHAPTER 4

Artix provides messages routing based on operations, ports, or

message attributes.

This chapter discusses the following topics:

Artix Routing page 28
Compatibility of Ports and Operations page 29
Defining Routes in Artix Contracts page 32
Attribute Propagation through Routes page 43
Error Handling page 45

27

CHAPTER 4 | Routing

Artix Routing

Overview

Port-based

Operation-based

28

Artix routing is implemented within Artix service access points and is
controlled by rules specified in the SAP’s contract. Artix SAPs that include
routing rules can be deployed either in standalone mode or embedded into
an Artix service.

Artix supports the following types of routing:
® Port-based
® Operation-based

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based routing acts on the port or transport-level identifier, specified by
a <port > element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <port Type>, level or the finer grained operation
level.

Compatibility of Ports and Operations

Compatibility of Ports and Operations

Overview

Port-based routing

Artix can route messages between services that expect similar messages.
The services can use different message transports and different payload
formats, but the messages must be logically identical. For example, if you
have a baseball scoring service that transmits data using SOAP over HTTP,
Artix can route the score data to a reporting service that consumes data
using CORBA. The only requirement for operation-based routing is that the
two services have an operation that uses messages with the same logical
description in the Artix contract defining their integration. For port-based
routing, the destination service must have a matching operation defined for
each of the operations defined for the source service.

Port-based routing is rough grained in that it the routing rules are defined on
the <port > elements of an Artix contract and do not look at the individual
operations defined in the logical interface, or <port Type>, to which the port
is bound. Therefore, port-based routing requires that the services between
which messages are being routed must have compatible logical interface
descriptions.

For two ports to have compatible logical interfaces the following conditions

must be met:

® The destination’s logical interface must contain a matching operation
for each operation in the source’s logical interface. Matching
operations must have the same name.

® Each of the matching operations must have the same number of input,
output, and fault messages.

® Each of the matching operations’ messages must have the same
sequence of part types.

For example, given the two logical interfaces defined in Example 11 you

could construct a route from a port bound to basebal | Scor ePort Type to a

port bound to basebal | GanePor t Type. However, you could not create a

29

CHAPTER 4 | Routing

route from a port bound to fi nal Scor ePort Type to a port bound to
basebal | GanePor t Type because the message types used for the get Scor e
operation do not match.

Example 11: Logical interface compatibility example

<message nane="scor eRequest >
<part name="gameNunber" type="xsd:int" />
</ message>
<nessage nane="basebal | Score">
<part name="homeTeam type="xsd:int" />
<part name="awayTeanm type="xsd:int" />
<part name="final" type="xsd:bool ean" />
</ message>
<nessage nane="fi nal Score">
<part name="home" type="xsd:int" />
<part name="away" type="xsd:int" />
<part name="wi nni ngTean! type="xsd:string" />
</ message>
<nessage nanme="w nner">
<part name="wi nni ngTean! type="xsd:string" />
</ message>
<port Type nane="basebal | GanePort Type" >
<oper ati on nane="get Scor e" >
<i nput nmessage="t ns: scor eRequest" nanme="scor eRequest "/ >
<out put message="t ns: basbal | Score" nane="basebal | Score"/>
</ operati on>
<oper ati on nane="get W nner" >
<i nput nessage="t ns: scor eRequest" name="w nner Request"/>
<out put message="tns:w nner" nane="w nner"/>
</ operati on>
</ port Type>
<port Type nane="basebal | Scor ePort Type" >
<oper ati on nane="get Scor e" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest "/ >
<out put message="tns: basbal | Score" nane="basebal | Score"/>
</ operati on>
</ port Type>
<port Type nane="fi nal Scor ePort Type">
<oper ati on nane="get Scor e" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest"/>
<out put message="tns: final Score" name="fi nal Score"/>
</ operati on>
</ port Type>

30

Operation-based routing

Compatibility of Ports and Operations

Operation-based routing provides a finer grained level of control over how
messages can be routed. Operation-based routing rules check for
compatibility on the <oper at i on> level of the logical interface description.
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

® The operations must have the same number of input, output, and fault
messages.
® The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 12 to the
interfaces in Example 11 on page 30, you could specify a route from

get Fi nal Scor e defined in ful | Scor ePort Type to get Scor e defined in
final ScorePort Type. You could also define a route from get Scor e defined
in ful | Scor ePort Type to get Scor e defined in basebal | Scor ePort Type.

Example 12: Operation-based routing interface

<port Type nane="ful | Scor ePort Type" >
<oper ati on name="get Score" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest "/ >
<out put message="tns: basbal | Score" nane="basebal | Score"/>
</ oper at i on>
<oper ati on name="get Fi nal Score">
<i nput nessage="t ns: scor eRequest " nanme="scor eRequest "/ >
<out put message="tns: final Score" nanme="fi nal Score"/>
</ oper at i on>
</ por t Type>

31

CHAPTER 4 | Routing

Defining Routes in Artix Contracts

Overview Artix port-based and operation-based routing are fully implemented in the
contract defining the integration of your systems. Routes are defined using
WSDL extensions that are defined in the namespace
http://schenas. i ona. con rout i ng. The most commonly used of these
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

In this section This section discusses the following topics:
Using Port-Based Routing page 33
Using Operation-Based Routing page 36
Advanced Routing Features page 39

32

Defining Routes in Artix Contracts

Using Port-Based Routing

Overview

Describing routes in an Artix
contract

Port-based routing is the highest performance type of routing Artix performs.
It is also the easiest to implement. All of the rules are specified in the Artix
contract describing how your systems are integrated. The routes specify the
source port for the messages and the destination port to which messages
are routed.

The Artix routing elements are defined in the

http://schenas. i ona. con r out i ng namespace. When describing routes in
an Artix contract you must add the following to your contract’s definition
element:

<definition ...
xm ns: routi ng="http://schenas. i ona. coni routi ng"
R

To describe a port-based route you use three elements:

<routing:route>

<rout i ng: rout e> is the root element of each route you describe in your
contract. It takes on required attribute, nane, the specifies a unique identifier
for the route. rout e also has an optional attribute, mul ti Rout e, which is
discussed in “Advanced Routing Features” on page 39.

<routing:source>

<rout i ng: sour ce> specifies the port from which the route will redirect
messages. A route can have several source elements as long as they all
meet the compatibility rules for port-based routing discussed in “Port-based
routing” on page 29.

<rout i ng: sour ce> requires two attributes, servi ce and port . servi ce
specifies the service element in which the source port is defined. port
specifies the name of the port element from which messages are being
received.

33

CHAPTER 4 | Routing

Example

1

34

<routing:destination>

<routi ng: dest i nati on> specifies the port to which the source messages
are directed. The destination must be compatible with all of the source
elements. For a discussion of the compatibility rules for port-based routing
see “Port-based routing” on page 29.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the route element’s mul i Rout e
attribute that is discussed in “Advanced Routing Features” on page 39.

<routing: desti nati on> requires two attributes, servi ce and port. servi ce
specifies the service element in which the destination port is defined. port
specifies the name of the port element to which messages are being sent.

For example, to define a route from basebal | Scor ePort Type to
basebal | GanePor t Type, defined in Example 11 on page 30, your Artix
contract would contain the elements in Example 13.

Example 13: Port-based routing example

<servi ce name="basebal | Scor eServi ce">
<port bi ndi ng="t ns: basebal | Scor eBi ndi ng"
name="basebal | Scor ePort" >
<soap: address | ocation="http://|ocal host:8991"/ >
</ port>
</ servi ce>
<servi ce name="basebal | GameSer vi ce" >
<port bi ndi ng="t ns: basebal | GaneBi ndi ng"
name="basebal | GarePort ">
<cor ba: address | ocation="file://basebal | .ref"/>
</ port>
</ servi ce>
<routing: route name="basebal | Rout ">
<routing: source servi ce="tns: basebal | Scor eSer vi ce"
port="tns: basebal | ScorePort" />
<routing: destinati on service="tns: basebal | GameSer vi ce"
port ="t ns: basebal | GanePort" />
</routi ng: rout e>

Defining Routes in Artix Contracts

There are two sections to the contract fragment shown in Example 13:

1. The logical interfaces must be bound to physical ports in <ser vi ce>
elements of the Artix contract.

2. The route, basebal | Rout e, is defined with the appropriate service and
port attributes.

35

CHAPTER 4 | Routing

Using Operation-Based Routing

Overview

Describing routes in an Artix
contract

How operation-based rules are
applied

36

Operation-based routing is a refinement of port-based routing. With
operation-based routing you can specify specific operations within a logical
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by
adding routing rules to Artix contracts.

The contract elements for defining operation-based routes are defined in the
same namespace as the elements for port-based routing and you will need
to include in your contract’'s namespace declarations to use operation based
routing.

To specify an operation-based route you need to specify one additional
element in your route description: <routi ng: oper ati on>.

<routi ng: oper at i on> specifies an operation defined in the source port's
logical interface and an optional target operation in the destination port's
logical interface. You can specify any number of operation elements in a
route. The operation elements must be specified after all of the source
elements and before any destination elements.

oper at i on takes one required attribute, nane, that specifies the name of the
operation in the source port’s logical interface that is to be used in the route.

oper at i on also has an optional attribute, t ar get , that specifies the name
operation in the destination port’s logical interface to which the message is
to be sent. If a target is specified, messages are routed between the two
operations. If no target is specified, the source operation’s name is used as
the name of the target operation. The source and target operations must
meet the compatibility requirements discussed in “Operation-based routing”
on page 31.

Operation-based routing rules apply to all of the source elements listed in

the route. Therefore, if an operation-based routing rule is specified, a

message will be routed if all of the following are true:

® The message is received from one of the ports specified in a source
element.

Defining Routes in Artix Contracts

® The operation name associated with the received message is specified
in one of the <oper at i on> elements.

If there are multiple operation-based rules in the route, the message will be

routed to the destination specified in the matching operation’s t ar get

attribute.

Example For example to route messages from get Fi nal Scor e defined in
ful | Scor ePort Type, shown in Example 12 on page 31, to get Scor e defined
in fi nal Scor ePort Type, shown in Example 11 on page 30, your Artix
contract would contain the elements in Example 14.

Example 14: Operation to Operation Routing

1 <service nane="ful | ScoreService">
<port bi ndi ng="t ns: ful | Scor eBi ndi ng"
narme="ful | ScorePort">
<cor ba: address="file://score.ref" />
</ port >
</ servi ce>
<servi ce nanme="fi nal ScoreSerice">
<port bi ndi ng="t ns: fi nal Scor eBi ndi ng"
name="fi nal ScorePort">
<t uxedo: addr ess servi ceNane="fi nal Scor eServer" />
</ port >
</ servi ce>
2 <routing:route name="scor eRoute">
<routing: source service="tns: full ScoreServi ce"
port="tns:full ScorePort"/>
<routing: operati on name="get Fi nal Score" target="get Score"/>
<routing: destination service="tns: final Scor eServi ce"
port="tns: fi nal ScorePort"/>
</routi ng: r out e>

There are two sections to the contract fragment shown in Example 14-:

1. The logical interfaces must be bound to physical ports in <ser vi ce>
elements of the Artix contract.

2. The route, scoreRout e, is defined using the <rout e: oper ati on>
element.

37

CHAPTER 4 | Routing

38

You could also create a route between get Scor e in basebal | GanePor t Type
to a port bound to basebal | Scor ePort Type; see Example 11 on

page 30.The resulting contract would include the fragment shown in
Example 15.

Example 15: Operation to Port Routing Example

<servi ce name="basebal | GareSer vi ce" >
<port bi ndi ng="t ns: basebal | GaneBi ndi ng"
nane="basebal | GanePort ">
<soap: address | ocati on="http://|ocal host:8991"/ >
</ port >
</ servi ce>
<servi ce name="basebal | Scor eServi ce">
<port bi ndi ng="t ns: basebal | Scor eBi ndi ng"
nane="basebal | Scor ePort" >
<iiop:address |ocation="file:\\score.ref"/>
</ port >
</ servi ce>
<routi ng: rout e name="scor eRout ">
<routi ng: source servi ce="tns: basebal | GameSer vi ce"
port="tns: basebal | GanePort"/ >
<routi ng: operati on nane="get Score"/>
<routing: destination service="t ns: basebal | ScoreServi ce"

port ="t ns: basebal | ScorePort"/>
</routi ng: rout e>

Note that the <routi ng: oper at i on> element only uses the name attribute.
In this case the logical interface bound to basebal | ScorePort,

basebal | Scor ePor t Type, must contain an operation get Scor e that has
matching messages as discussed in “Port-based routing” on page 29.

Defining Routes in Artix Contracts

Advanced Routing Features

Overview

Message broadcasting

Artix routing also supports the following advanced routing capabilities:

® Broadcasting a message to a number of destinations.

® Specifying a failover service to route messages to provide a level of
high-availability.

® Routing messages based on transport attributes in the received
message’s header.

Broadcasting a message with Artix is controlled by the routing rules in an
Artix contract. Setting the mul ti Rout e attribute to the <routi ng: rout e>
element to fanout in your route definition allows you to specify multiple
destinations in your route definition to which the source messages are
broadcast.

To do this using the routing editor of the Artix Designer

There are three restrictions to using the fanout method of message

broadcasting:

® All of the sources and destinations must be oneways. In other words,
they cannot have any output messages.

® The sources and destinations cannot have any fault messages.

® The input messages of the sources and destinations must meet the
compatibility requirements as described in “Compatibility of Ports and
Operations” on page 29.

Example 16 shows an Artix contract fragment describing a route for
broadcasting a message to a number of ports.

Example 16: Fanout Broadcasting
<nessage nane="statusA ert">
<part name="al ert Type" type="xsd:int"/>

<part name="al ert Text" type="xsd:string"/>
</ message>

39

CHAPTER 4 | Routing

Example 16: Fanout Broadcasting

<por t Type nane="st at usGener at or" >
<oper at i on nane="event Happens" >
<i nput nessage="t ns: st at usAl ert
</ operati on>
</ port Type>
<port Type nane="st at usChecker">
<oper ati on nane="event Checker" >
<i nput nessage="tns: stat usAl ert
</ operat i on>
</ port Type>
<servi ce name="st at usGener at or Servi ce">
<port bi ndi ng="t ns: st at usGener at or Bi ndi ng"
name="st at usGener at or Port ">
<soap: address | ocati on="http:\\local host : 8081"/ >
</ port >
</ servi ce>
<servi ce name="st at usChecker Servi ce">
<port bi ndi ng="t ns: st at usChecker Bi ndi ng"
name="st at usChecker Port 1" >
<corba: address | ocation="file:\\statusl.ref"/>
</ port >
<port bi ndi ng="t ns: st at usChecker Bi ndi ng"
nane="st at usChecker Port 2" >
<t uxedo: addr ess servi ceName="st at usServi ce"/ >
</ port >
</ servi ce>
<routing: route name="st at usBroadcast" mul ti Rout e="fanout">
<routi ng: source servi ce="tns: st at usGener at or Servi ce"
port="tns: statusGeneratorPort"/>
<routi ng: operati on nane="event Happens" target ="event Checker"/>
<routing: destination service="tns: st at usChecker Servi ce"
port ="t ns: st at usChecker Port 1"/ >
<routing: destinati on service="tns: st at usChecker Servi ce"
port ="t ns: st at usChecker Port 2"/ >

nane="statusA ert"/>

name="statusA ert"/>

</routi ng: rout e>

Failover routing Artix failover routing is also specified using the <routi ng: r out e>'s
mul ti Rout e attribute. To define a failover route you set mul t i Rout e to equal
fail over. When you designate a route as failover, the routed message’s
target is selected in the order that the destinations are listed in the route. If
the first target in the list is unable to receive the message, it is routed to the
second target. The route will traverse the destination list until either one of
the target services can receive the message or the end of the list is reached.

40

Routing based on transport
attributes

Defining Routes in Artix Contracts

To create a failover route using the Artix Designer...

Given the route shown in Example 17, the message will first be routed to
desti nationPort A If service on desti nati onPort A cannot receive the
message, it is routed to desti nati onPort B.

Example 17: Failover Route

<routing:route nane="fail over Route" mul ti Rout e="fail over">
<routi ng: source servi ce="tns: sour ceServi ce"
port="tns: sourcePort"/>
<routing: destination service="tns: destinationServi ceA"
port ="t ns: desti nati onPort A"/ >
<routing: destination service="tns: destinationServiceB"
port ="t ns: desti nati onPortB"'/>
</routi ng: r out e>

Artix allows you to specify routing rules based on the transport attributes set
in a message’s header when using HTTP or WebSphere MQ. Rules based on
message header transport attributes are defined in
<routing:transportAttribute> elements in the route definition. Transport
attribute rules are defined after all of the operation-based routing rules and
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule
are specified in sub-elements to the <routing: tranport Attribute>. A
message passes the rule if it meets each criteria specified in the listed
sub-element.

Each sub-element has a nane attribute to specify the transport attribute, and
most have a value attribute that can be tested. Attributes dealing with string
comparisons have an optional i gnor ecase attribute that can have the values
yes or no (no is the default). Each of the sub-elements can occur zero or
more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the
i gnor ecase attribute may be used.

<routing:greater> applies only to numeric attributes and tests whether the
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the
attribute is less than the value.

41

CHAPTER 4 | Routing

42

<routing:startswith> applies to string attributes and tests whether the
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. cont ai ns accepts an optional i gnor ecase attribute
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if
the list is not empty. For strings, it passes the string is not empty.

For information on the transport attributes for HTTP see “Working with
HTTP” on page 179. For information on the transport attributes for
WebSphere MQ see “Working with WebSphere MQ” on page 133.

To add transport attributes rules to your route using the Artix Designer...

Example 18 shows a route using transport attribute rules based on HTTP
header attributes. Only messages whose | f - Modi fi ed- Si nce is equal to
"Sat, 29 Qct 1994 19:43:31 QVI™.

Example 18: Transport Attribute Rules

<rot ui ng: rout e name="htt pTransport Rout ">
<routi ng: source servi ce="tns: httpService"
port="tns:httpPort"/>
<routing:trasnportAttributes>
<rot ui ng: equal s nane="If Mdi fi edS nce"
val ue="Sat, 29 Cct 1994 19:43:31 GQVI'/>
</routing:transportAttri butes>
<routing: destination service="tns: httpDest"
port="tns: httpDest Port"/>
</routi ng: rout e>

Attribute Propagation through Routes

Attribute Propagation through Routes

Overview

Describing attribute propagation
rules in an Artix contract

Often you will need to ensure that message attributes are propagated
through the router when it transforms messages between different payload
formats or translates it across different transports. Artix can either simply
drop the message attributes between the formats or it can use attribute
propagation rules specified in the Artix contract describing the system.

The rule describing attribute propagation between two endpoints are
specified in the routing section of the Artix contract for the system. Each
route must specify the attributes it wants to propagate and for which
message it is propagated. If the attribute is not explicitly listed, the router
will not propagate it.

Note: There are a few attributes that are included as part of the message
body and these are propagated regardless of the specified propagation
rules.

To describe attribute propagation rules in a contract you use two elements.
One describes the attributes of the input message passed between the two
endpoints. The other describes the attributes of the output message
between the two endpoints.

<routing:propagatelnputAttribute >

<rout i ng: propagat el nput At t ri but e> specifies an attribute from the input
message to propagate through the route. It takes one required property,
nane, which specifies the name of the message attribute to be propagated
through the route. For example, if you wanted to propagate the attribute
User Nane between two HTTP endpoints you would include the rule shown in
Example 19 in your contract’s route.

Example 19: Attribute Propagation Input Rule

<routing:route nane="VvaD' >
<routing: propagat el nput At tri bute name="User Nane" />

</routi ng: r out e>

43

CHAPTER 4 | Routing

44

propagat el nput At tri but e also takes a second optional property, t ar get ,
that allows you to specify the name of the coressponding attribute name in
the destination endpoint’s transport. If you do not specify a target, the router
assumes that the attribute names for both transports are identical.

For example, if your route is between an HTTP port and a JMS port and you
want to propagate the HTTP port's User Nane attribute to the JMS port’s
JMeXUser | D attribute you would include the rule shown in Example 20 in
your contract’s route.

Example 20: Attribute Propagation Input Rule with Target

<routing: route nane="VOoD' >
<routi ng: propagat el nput At tri but e nanme="User Nane"
target ="JMsXUser | D' />

</routi ng: rout e>

<routing:propagateOutputAttribute >

<routi ng: propagat eQut put At t ri but e> specifies an attribute from the
output message to propagate through the route. It takes the same properties
as propagat el nput Attri butes.

For example, if you needed the service at the HTTP endpoint in Example 20
needed to validate the UserName of the message returned from the JMS
endpoint, you would need to specify that the output message’s JMSXUserID
was propagated to the HTTP endpoint’s UserName attribute by including
the rule shown in Example 21 in your contract’s route.

Example 21: Attribute Propagation Output Rule with Target
<routing: route nane="VaD' >
<routi ng: propagat eQut put At tri bute name="JMsXUser | D'

t ar get =" User Nare" />

</routi ng: rout e>

Error Handling

Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL,
such as routing between incompatible logical interfaces and some kinds of
route ambiguity, are logged and an exception is raised. This exception aborts
the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned
to the client; for example “no route” or “ambiguous routes”.

45

CHAPTER 4 | Routing

46

Overview

javatowsdl tool

CHAPTER 5

Building Contracts
from Java Classes

Artix provides tools for quickly building contracts from Java
objects.

Many applications have been developed using Java to take advantage of
Java's platform independence among other things. Java’s platform
independence is a perfect compliment to Artix’s transport independence. To
facilitate the integration of Java applications with Artix, Artix provides tools
for generating the logical portion of an Artix contract from existing Java
classes. These tools use the mapping rules described in Sun’s JAX-RPC 1.1
specification.

Artix supplies a command line tool, j avat owsdl , that generates the logical
portion of an Artix contract for existing Java class files. To generate the
logical portion of an Artix contract using the j avat owsdl tool use the
following command:

javatowsdl [-t namespace][-x namespace][-i porttype]
[-o file][-useTypes][-v][-?] O assNane

47

CHAPTER 5 | Building Contracts from Java Classes

Supported types

48

The command has the following options:

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http: \\wav i ona. com d assNane.

-X namespace Specifies the target namespace of the XMLSchema
information generated to represent the data types inside
the WSDL document.By default, the generated target
namespace of the XMLSchema will be
htt p: \\waw i ona. coml d assNane\ xsd.

-i porttype Specifies the name of the generated <port Type> in the
WSDL document. By default the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

- useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/l i teral style. A wrapper
element with a sequence will be created to hold method

parameters.

-v Prints out the version of the tool.

-? Prints out a help message explaining the command line
flags.

The generated WSDL will not contain any physical details concerning the
payload formats or network transports that will be used when exposing the
service. You will need to add this information manually.

Note: When generating contracts, j avat owsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.

Table 5 shows the Java types Artix can map to an Artix contract.

Table 5: Java to WSDL Mappings

Java Artix Contract

bool ean xsd: bool ean

Exceptions

Table 5: Java to WSDL Mappings

Java Artix Contract
byte xsd: byt e
short xsd: short
int xsd: i nt
| ong xsd: | ong
f1 oat xsd: f| oat
doubl e xsd: doubl e
byte[] xsd: base64bi nary
java.lang. String xsd: string
j ava. mat h. Bi gl nt eger xsd: i nt eger
j ava. mat h. Bi gDeci nal xsd: deci nmal
java. util . Cal endar xsd: dat eTi e
java.util.Date xsd: dat eTi me
j ava. xnl . namespace. Q\ane xsd: Q\Nane
java.net. R xsd: anyUR

In the case of helper classes for a Java primitive, such as

java.lang. I nt eger, the instance is mapped to an element with the nillable
attribute set to true and the type set to the corresponding Java primitive
type. Example 22 shows the mapping for a j ava. | ang. Fl oat .

Example 22: Mapping of java.lang.Float to XMLSchema

<el enent name="floatie" nillable="true" type="xsd:float" />

Aritx will map user defined exceptions to the logical Artix contract according
to the rules laid out in the JAX-RPC specification. The exception will be
mapped to a <f aul t > within the operation representing the corresponding

49

CHAPTER 5 | Building Contracts from Java Classes

Example

50

Java method. The generated <f aul t > will reference a generated <nessage>
describing the Java exception class. The name attribute of the <nessage>
will be taken from the name of the Java exception class.

Because SOAP only supports <f aul t > messages with a single <part >, the
generated <nessage> is mapped to have only one <part>. When the Java
exception only has one field, it is used as the <part > and its name and t ype
attributes are mapped from the exception’s field. When the Java exception
contains more than one field, Artix generates a <conpl exType> to describe
the exception’s data. The generated <conpl exType> will have one element
for each field of the exception. The name and t ype attributes of the generated
element will be taken from the corresponding field in the exception.

Note: Standard Java exceptions are not mapped into the generated Artix
contract.

For example, if you had a Java interface similar to that shown in
Example 23, you could generate an Artix contract on it by compiling the
interface into a . cl ass file and running the command j avat onsdl Base.

Example 23: Base Java Class

/1 Java

public interface Base

{ public byte[] echoBase64(byte[] i nputBase64);
publ i ¢ bool ean echoBool ean(bool ean i nput Bool ean) ;
public float echoFl oat(float inputFloat);
public float[] echoFl oat Array(float[] inputFl oatArray);

public int echol nteger(int inputlnteger);

public int[] echolntegerArray(int[] inputlntegerArray);

The resulting Artix contract will be similar to Example 24.
Example 24: Base Artix Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wsdl : def i ni ti ons name="Base" target Nanespace="htt p://wmn i ona. coni Base"
xm ns: ns1="http://ww i ona. conl Base" xmi ns: wsdl ="http://schemas. xm soap. or g/ wsdl /
xm ns: xsd="htt p: / / wan W3. or g/ 2001/ XM_Schema"
xm ns: xsd1="ht t p: / / waw. i ona. com Base/ xsd" >
<wsdl : t ypes>
<schera t ar get Namespace="ht t p: / / waw. i ona. coni Base/ xsd"
xm ns="ht t p: / / waww. W8. or g/ 2001/ XM_Schera" >
<el enent nane="echoBool ean" >
<conpl exType>
<sequence>
<el ement name="bool eanPar an0" type="xsd: bool ean"/ >
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echoBool eanResponse" >
<conpl exType>
<sequence>
<el ement name="return" type="xsd: bool ean"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echoBase64" >
<conpl exType>
<sequence>
<el ement maxCccur s="unbounded" m nCccurs="0" name="_bPar anD"
type="xsd: byt e"/ >
</ sequence>
</ conpl exType>
</ el enent >
<el enent nanme="echoBase64Response" >
<conpl exType>
<sequence>
<el ement nmaxCccur s="unbounded" m nCccurs="0" name="return"
type="xsd: byte"/>
</ sequence>
</ conpl exType>
</ el erent >

51

CHAPTER 5 | Building Contracts from Java Classes

52

Example 24: Base Artix Contract

<el ement nanme="echoHexBi nary" >
<conpl exType>
<sequence>
<el ement nmaxCccur s="unbounded” m nCccur s="0"
type="xsd: byt e"/ >
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="echoHexBi nar yResponse" >
<conpl exType>
<sequence>
<el ement nmaxCccur s="unbounded" m nCccur s="0"
type="xsd: byt e"/ >
</ sequence>
</ conpl exType>
</ el emrent >
<el ement name="echoFl oat " >
<conpl exType>
<sequence>

nanme="_bPar an0"

name="r et urn"

<el ement nanme="f| oat Paran0" type="xsd:float"/>

</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echoFl oat Response" >
<conpl exType>
<sequence>
<el enent name="return" type="xsd:float"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echoFl oat Array" >
<conpl exType>
<sequence>
<el ement maxCccur s="unbounded" m nCccur s="0"
type="xsd: fl oat"/>
</ sequence>
</ conpl exType>
</ el enent >

nane="_f Par an0"

Example 24: Base Artix Contract

<el enent name="echoFl oat Ar r ayResponse" >
<conpl exType>
<sequence>
<el ement nmaxCccur s="unbounded" m nCccurs="0" name="ret urn"
type="xsd: float"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echol nt eger " >
<conpl exType>
<sequence>
<el enent name="i nt Param®" type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echol nt eger Response" >
<conpl exType>
<sequence>
<el enent name="return" type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echol nt eger Arr ay" >
<conpl exType>
<sequence>
<el ement maxCccur s="unbounded” m nCccurs="0" nanme="_i Par an0"
type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el enent >
<el enent name="echol nt eger Ar r ayResponse" >
<conpl exType>
<sequence>
<el enent maxCccur s="unbounded” m nCccurs="0" nanme="ret urn"
type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el enent >
</wsdl : t ypes>
<wsdl : nessage name="echoBool ean" >
<wsdl : part el enent =" xsd1: echoBool ean" nane="paraneters"/>
</wsdl : message>
<wsdl : nessage name="echoBool eanResponse" >
<wsdl : part el enent =" xsd1: echoBool eanResponse" nane="par anet ers"/>
</ wsdl : message>

53

CHAPTER 5 | Building Contracts from Java Classes

54

Example 24: Base Artix Contract

<wsdl : nessage nane="echoBase64" >
<wsdl : part el enent ="xsd1l: echoBase64" name="paraneters"/>
</ wsdl : message>
<wsdl : nessage nane="echoBase64Response" >
<wsdl : part el enent =" xsd1: echoBase64Response” nane="par aneters"/>
</ wsdl : message>
<wsdl : nessage nane="echoHexBi nary" >
<wsdl : part el enent =" xsd1: echoHexBi nary" nane="par aneters"/>
</ wsdl : message>
<wsdl : nessage nanme="echoHexBi nar yResponse" >
<wsdl : part el enent =" xsd1: echoHexBi nar yResponse" nane="par anet ers"/ >
</ wsdl : message>
<wsdl : nessage name="echoFl oat " >
<wsdl : part el enent =" xsd1: echoFl oat" name="paraneters"/>
</ wsdl : message>
<wsdl : nessage name="echoFl oat Response" >
<wsdl : part el enent =" xsd1: echoFl oat Response" nane="paranet ers"/>
</ wsdl : message>
<wsdl : nessage name="echoFl oat Array" >
<wsdl : part el enent =" xsd1: echoFl oat Array" nanme="paraneters"/>
</ wsdl : message>
<wsdl : nessage name="echoFl oat Ar r ayResponse" >
<wsdl : part el enent =" xsd1: echoFl oat Ar r ayResponse" nanme="par aneters"/>
</ wsdl : message>
<wsdl : nessage name="echol nt eger ">
<wsdl : part el enent =" xsd1: echol nt eger" nane="paraneters"/>
</ wsdl : message>
<wsdl : nessage name="echol nt eger Response" >
<wsdl : part el enent =" xsd1: echol nt eger Response" nanme="par aneters"/>
</ wsdl : message>
<wsdl : nessage name="echol nt eger Arr ay" >
<wsdl : part el enent =" xsd1: echol nt eger Array" nane="par aneters"/>
</ wsdl : message>
<wsdl : nessage name="echol nt eger Ar r ayResponse" >
<wsdl : part el enent =" xsd1: echol nt eger Arr ayResponse” nane="par anet ers"/ >
</ wsdl : message>
<wsdl : port Type nanme="Base">
<wsdl : oper ati on nane="echoBool ean">
<wsdl : i nput message="ns1: echoBool ean" nane="echoBool ean"/>
<wsdl : out put message="nsl: echoBool eanResponse" name="echoBool ean"/>
</wsdl : oper ati on>
<wsdl : operati on nane="echoBase64" >
<wsdl : i nput message="ns1l: echoBase64" name="echoBase64"/>
<wsdl : out put nmessage="nsl: echoBase64Response" nane="echoBase64"/>
</wsdl : operati on>

Example 24: Base Artix Contract

<wsd| : oper ati on nane="echoHexBi nary" >
<wsdl : i nput nessage="ns1l: echoHexBi nary" nane="echoHexBi nary"/>
<wsdl : out put message="nsl: echoHexBi nar yResponse" nane="echoHexBi nary"/>
</ wsdl : oper ati on>
<wsd| : oper ati on nane="echoFl oat ">
<wsdl : i nput nmessage="ns1: echoFl oat" name="echoFl oat"/>
<wsdl : out put nmessage="nsl: echoFl oat Response" nanme="echoFl oat"/>
</ wsdl : oper ati on>
<wsdl : oper ati on nane="echoFl oat Array">
<wsdl : i nput nessage="nsl: echoFl oat Array" name="echoFl oat Array"/>
<wsdl : out put nmessage="nsl: echoFl oat Arr ayResponse" nanme="echoFl oat Array"/>
</ wsdl : oper ati on>
<wsd| : oper ati on nane="echol nt eger ">
<wsdl : i nput nessage="ns1: echol nteger" nane="echol nteger"/>
<wsdl : out put message="nsl: echol nt eger Response" name="echol nt eger"/ >
</ wsdl : oper ati on>
<wsdl : oper ati on nane="echol nt eger Arr ay" >
<wsdl : i nput message="ns1: echol nt eger Array" name="echol nteger Array"/>
<wsdl : out put message="ns1l: echol nt eger Arr ayResponse" nane="echol nt eger Array"/>
</ wsdl : oper ati on>
</wsdl : port Type>
</ wsdl : defini ti ons>

CHAPTER 5 | Building Contracts from Java Classes

56

In this chapter

CHAPTER 6

Working with
CORBA

The CORBA Plug-in allows CORBA applications to be used with
an Artix integration solution. It also provides CORBA
functionality to Artix applications.

This chapter discusses the following topics:

CORBA Type Mapping page 58
Modifying a Contract to Use CORBA page 92
Generating IDL from an Artix Contract page 100
Generating a Contract from IDL page 101

57

CHAPTER 6 | Working with CORBA

CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types. For primitive types, the mapping
is straightforward. However, complex types such as structures, arrays, and
exceptions require more detailed descriptions.

Unsupported types The following CORBA types are not supported:
® value types
® boxed values
® local interfaces
® abstract interfaces
® forward-declared interfaces

In this section This section discusses the following topics:
Primitive Type Mapping page 59
Complex Type Mapping page 61
Recursive Type Mapping page 73

Mapping XMLSchema Features that are not Native to IDL page 75

Artix References page 85

58

CORBA Type Mapping

Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 6 lists the mappings for the supported IDL primitive types.
Table 6: Primitive Type Mapping for CORBA Plug-in
IDL Type XML Schema Type CORBA Binding Type Artix C++ Type

Any xsd: anyType cor ba: any | T_Bus: : AnyHol der

bool ean xsd: bool ean cor ba: bool ean | T_Bus: : Bool ean

char xsd: byt e cor ba: char | T_Bus: : Char

wchar xsd: string cor ba: wchar

doubl e xsd: doubl e cor ba: doubl e | T_Bus: : Doubl e

f1 oat xsd: fl oat cor ba: fl oat | T_Bus: : Fl oat

oct et xsd: unsi gnedByt e cor ba: oct et I T_Bus:: Cctet

| ong xsd: i nt corba: | ong I T_Bus: : Long

I ong | ong xsd: | ong cor ba: | ongl ong | T_Bus: : LongLong

short xsd: short cor ba: short | T_Bus: : Short

string xsd: string corba: string I T _Bus::String

wstring xsd: string corba: wstring

unsi gned short xsd: unsi gnedshort cor ba: ushort | T_Bus: : Ushort

unsi gned | ong xsd: unsi gnedlI nt cor ba: ul ong | T_Bus: : ULong

unsi gned | ong | ong

xsd: unsi gnedLong

cor ba: ul ongl ong

I T_Bus: : ULonglLong

Unsupported types

Artix does not support the CORBA I ong doubl e type.

59

CHAPTER 6 | Working with CORBA

Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
scor e, that is described as an xsd: i nt as shown in Example 25.

Example 25: WSDL Operation Definition

<nessage nane="runsScor ed" >
<part name="score" />
</ message>
<portType ...>
<oper ati on nane="get Runs" >
<i nput nessage="tns: runsScored" nane="runsScored" />
</ operati on>
</ port Type>

It is described in the CORBA binding as shown in Example 26.
Example 26: Example CORBA Binding

<binding ...>
<oper ati on nane="get Runs" >
<cor ba: operati on name="get Runs" >
<cor ba: par am nane="score" nmode="in" idltype="corba:long"/>
</ cor ba: oper at i on>
<i nput />
<out put / >
</ operati on>
</ bi ndi ng>

The IDL is shown in Example 27.
Example 27: getRuns IDL

/1 1DL
voi d get Runs(in score);

60

CORBA Type Mapping

Complex Type Mapping

Overview

Mapping chart

Because complex types (such as structures, arrays, and exceptions) require
a more involved mapping to resolve type ambiguity, the full mapping for a
complex type is described in a <cor ba: t ypeMappi ng> element at the bottom
of an Artix contract. This element contains a type map describing the
metadata required to fully describe a complex type as a CORBA data type.
This metadata may include the members of a structure, the bounds of an
array, or the legal values of an enumeration.

The <cor ba: t ypeMappi ng> element requires a t ar get Namespace attribute
that specifies the namespace for the elements defined by the type map. The
default URI is htt p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypemap. By
default, the types defined in the type map are referred to using the cor bat m
prefix.

Table 7 shows the mappings from complex IDL types to XMLSchema, Artix
CORBA type, and Artix C++ types.

Table 7:

Complex Type Mapping for CORBA Plug-in

IDL Type

XML Schema Type

CORBA Binding Type

Artix C++ Type

struct

See Example 28

cor ba: struct

I T_Bus::

SequenceConpl exType

enum

See Example 29

cor ba: enum

I T_Bus::

AnySi npl eType

fixed

xsd: deci nal

corba: fi xed

I T_Bus::

Deci nal

uni on

See Example 34

cor ba: uni on

I T_Bus::

Choi ceConpl exType

t ypedef

See Example 37

array

See Example 39

cor ba: array

| T_Bus::

ArrayT<>

sequence

See Example 45

cor ba: sequence

I T_Bus::

ArrayT<>

exception

See Example 48

cor ba: exception

I T_Bus::

User Faul t Except i on

61

CHAPTER 6 | Working with CORBA

Structures

Structures are mapped to <cor ba: st ruct > elements. A <cor ba: struct >
element requires three attributes:

name A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

repositoryl D The fully specified repository ID for the CORBA type.

The elements of the structure are described by a series of <cor ba: menber >
elements. The elements must be declared in the same order used in the IDL
representation of the CORBA type. A <cor ba: nenber > requires two
attributes:

nane The name of the element

i dl type The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.

For example, the structure defined in Example 2 on page 11, personal I nf o,
can be represented in the CORBA type map as shown in Example 28:

Example 28: CORBA Type Map for personallnfo

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >

<cor ba: struct nanme="personal | nfo" type="xsd1l: personal | nf 0" repositoryl D="1DL: personal | nfo: 1. 0">
<cor ba: nenber name="nane" idl type="corba:string" />
<cor ba: menber name="age" idltype="corba:long" />
<cor ba: menber name="hair Col or" idltype="corbatm hai r Col or Type" />

</ cor ba: st ruct >
</ cor ba: t ypeMappi ng>

Enumerations

62

The idltype cor bat m hai r Col or Type refers to a complex type that is defined
earlier in the CORBA type map.

Enumerations are mapped to <cor ba: enun® elements. A <cor ba: enun»
element requires three attributes:

name A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

CORBA Type Mapping

repositorylD The fully specified repository ID for the CORBA type.

The values for the enumeration are described by a series of

<cor ba: enuner at or > elements. The values must be listed in the same order
used in the IDL that defines the CORBA enumeration. A

<cor ba: enurrer at or > element takes one attribute, val ue.

For example, the enumeration defined in Example 2 on page 11,
hai r Col or Type, can be represented in the CORBA type map as shown in
Example 29:

Example 29: CORBA Type Map for hairColorType

<cor ba: t ypeMappi ng tar get Nanespace="ht t p: // schemas. i ona. com bi ndi ngs/ cor ba/ t ypemap" >

<cor ba: enum nane="hai r Gol or Type" type="xsd1: hai r Gol or Type"
reposi toryl D="1 DL: hai r Gol or Type: 1. 0" >

Fixed

<cor ba: enunerat or val ue="red" />
<cor ba: enurer at or val ue="brunette" />
<cor ba: enurer at or val ue="bl onde" />
</ cor ba: enun»
</ cor ba: t ypeMappi ng>

Fixed point data types are a special case in the Artix contract mapping. A
CORBA fixed type is represented in the logical portion of the contract as the
XML Schema primitive type xsd: deci mal . However, because a CORBA fixed
type requires additional information to be fully mapped to a physical CORBA
data type, it must also be described in the CORBA type map section of an
Artix contract.

CORBA fixed data types are described using a <cor ba: fi xed> element. A
<cor ba: fi xed> element requires five attributes:

nane A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd: deci nal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

63

CHAPTER 6 | Working with CORBA

scal e The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

For example, the fixed type defined in Example 30, nyFi xed, would be
Example 30: myFixed Fixed Type

\\ I DL
typedef fixed<4, 2> nyFi xed,;

described by a type entry in the logical type description of the contract, as
shown in Example 31.

Example 31: Logical description from myFixed

<xsd: el ement nane="nyF xed" type="xsd: deci mal "/>

In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 32. Notice that the description in the CORBA type
map includes the information needed to fully represent the characteristics of
this particular fixed data type.

Example 32: CORBA Type Map for myFixed

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenap" >

<cor ba: fi xed nane="nyFi xed" repositoryl D="1DL: nyFi xed: 1. 0" type="xsd: deci nal " di gits="4"

scal e="2" />
</ corba: t ypeMappi ng>

Unions

64

Unions are particularly difficult to describe using the WSDL framework of an
Artix contract. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an <xsd: choi ce> and list the members
in the specified order. The OMG'’s proposed method is to describe the union
as an <xsd: sequence> containing one element for the discriminator and an
<xsd: choi ce> to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

CORBA Type Mapping

Artix's IDL compiler generates a contract that describes the logical union
using both methods. The description using <xsd: sequence> is named by
prepending _onyg_ to the types name. The description using <xsd: chi oce> is
used as the representation of the union throughout the contract.

For example consider the union, nyuni on, shown in Example 33:
Example 33: myUnion IDL

/11DL
uni on nylni on switch (short)
{
case 0O:
string caseo;
case 1:
case 2:
float casel2;
defaul t:
| ong caseDef;

iE

This union is described in the logical portion of the contact with entries
similar to those shown in Example 34:

Example 34: myUnion Logical Description

<xsd: conpl exType name="nyUhi on">
<xsd: choi ce>
<xsd: el enent nane="case0" type="xsd:string"/>
<xsd: el ement nane="casel2" type="xsd:float"/>
<xsd: el ement nane="caseDef" type="xsd:int"/>
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: conpl exType name="_onyg_nyUni on4" >
<xsd: sequence>
<xsd: el ement m nCccurs="1" maxCccurs="1" nane="di scrim nator" type="xsd:short"/>
<xsd: choi ce m nCQccurs="0" nmaxCQccurs="1">
<xsd: el ement nane="case0" type="xsd:string"/>
<xsd: el ement nane="casel2" type="xsd:float"/>
<xsd: el ement nanme="caseDef" type="xsd:int"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>

65

CHAPTER 6 | Working with CORBA

In the CORBA type map portion of the contract, the relationship between
the union’s discriminator and its members must be resolved. This is
accomplished using a <cor ba: uni on> element. A <cor ba: uni on> element
has four mandatory attributes.

nane A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

descrimnator The IDL type used as the discriminator for the union.
repositoryl D The fully specified repository ID for the CORBA type.

The members of the union are described using a series of nested
<cor ba: uni onbr anch> elements. A <cor ba: uni onbr anch> element has two
required attributes and one optional attribute.

name A unique identifier used to reference the union member.

i dltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.

def aul t The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to t r ue.

Each <cor ba: uni onbr anch> except for one describing the union’s default
member will have at least one nested <cor ba: case> element. The
<cor ba: case> element’s only attribute, | abel , specifies the value used to
select the union member described by the <cor ba: uni onbr anch>.

For example nyuni on, Example 33 on page 65, would be described with a
CORBA type map entry similar to that shown in Example 35.

Example 35: myUnion CORBA type map

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >

<cor ba: uni on nane="nyUni on" type="xsd1l: nylhi on" di scri m nator="cor ba: short"
reposi toryl D="1DL: nyUni on: 1. 0" >
<cor ba: uni onbr anch name="case0" idltype="corba: string">

<cor ba: case | abel ="0"
</ cor ba: uni onbr anch>

66

CORBA Type Mapping

Example 35: myUnion CORBA type map

<cor ba: uni onbr anch name="casel2" idltype="corba: fl oat">
<cor ba: case | abel ="1" />
<cor ba: case | abel ="2" />
</ cor ba: uni onbr anch>
<cor ba: uni onbr anch name="caseDef" idltype="corba:long" defaul t="true"/>
</ cor ba: uni on>
</ cor ba: t ypeMappi ng>

Type Renaming Renaming a type using a t ypedef statement is handled using a
<cor ba: al i as> element in the CORBA type map. The Artix IDL compiler
also adds a logical description for the renamed type in the <t ypes> section
of the contract, using an <xsd: si npl eType>.

For example, the definition of myLong in Example 36, can be described as
Example 36: myLong IDL

/11DL
typedef |ong nylLong;

shown in Example 37:
Example 37: myLong WSDL

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions name="typedef.idl" ...>
<t ypes>

<xsd: si npl eType nane="nyLong">
<xsd:restriction base="xsd:int"/>
</ xsd: si npl eType>

</ types>

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schemas. i ona. con bi ndi ngs/ cor ba/ t ypenmap" >
<corba: al i as nane="nyLong" type="xsd:int" repositoryl D="I1DL: nyLong: 1. 0"
baset ype="cor ba: | ong"/ >
</ cor ba: t ypeMappi ng>
</ defini ti ons>

67

CHAPTER 6 | Working with CORBA

Arrays Arrays are described in the logical portion of an Artix contract, using an
<xsd: sequence> with its m nCccur s and maxCeccur s attributes set to the
value of the array’s size. For example, consider an array, nyArray, as
defined in Example 38.

Example 38: myArray IDL

/11 DL
typedef | ong nyArray[10];

Its logical description will be similar to that shown in Example 39:
Example 39: myArray logical description

<xsd: conpl exType name="nyArray">
<xsd: sequence>
<xsd: el ement nane="item!' type="xsd:int" m nQccurs="10" maxCccurs="10" />
</ xsd: sequence>
</ xsd: conpl exType>

In the CORBA type map, arrays are described using a <cor ba: arr ay>
element. A <cor ba: array> has five required attributes.

nane A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

el entype The IDL type of the array’s element. This type can be

either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.

For example, the array nyArray will have a CORBA type map description
similar to the one shown in Example 40:

Example 40: myArray CORBA type map
<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >
<cor ba: array nane="nyArray" repositoryl D="1DL: nyArray: 1. 0" type="xsdl: nyArray"

el ent ype="corba: | ong" bound="10"/>
</ cor ba: t ypeMappi ng>

68

CORBA Type Mapping

Multidimensional Arrays Multidimensional arrays are handled by creating multiple arrays and
combining them to form the multidimensional array. For example, an array
defined as follows:

Example 41: Multidimensional Array

\\ 1D
typedef |ong array2d[10] [10];

generates the following logical description:
Example 42: Logical Description of a Multidimensional Array

<xsd: conpl exType name="_1 array2d">
<xsd: sequence>
<xsd: el ement nane="iten!' type="xsd:int" m nQccurs="10" maxCccurs="10"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="array2d">
<xsd: sequence>
<xsd: el ement nane="iten! type="xsdl: 1 array2d" m nCccurs="10" nmaxCccurs="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

The corresponding entry in the CORBA type map is:
Example 43: CORBA Type Map for a Multidimensional Array

<cor ba: t ypeMappi ng tar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenap" >
<cor ba: anonarray name="_2 array2d" type="xsdl:_2_array2d" el emype="corba:long" bound="10"/>
<corba: array nane="array2d" repositoryl D="1DL: array2d: 1. 0" type="xsdl: array2d"
el ent ype="corbatm _2 array2d" bound="10"/>
</ cor ba: t ypeMappi ng>

Sequences Because CORBA sequences are an extension of arrays, sequences are
described in Artix contracts similarly. Like arrays, sequences are described
in the logical type section of the contract using <xsd: sequence> elements.
Unlike arrays, the nmi nCccurs and naxCecur s attributes do not have the
same value. ninCccurs is set to 0 and maxQeceurss is set to the upper limit of
the sequence. If the sequence is unbounded, maxCccurs is set to unbounded.

69

CHAPTER 6 | Working with CORBA

For example, the two sequences defined in Example 44, | ongSeq and
char Seq:

Example 44: /DL Sequences
\\ 1DL
t ypedef sequence<| ong> | ongSeq;

typedef sequence<char, 10> char Seq;

are described in the logical section of the contract with entries similar to
those shown in Example 45:

Example 45: Logical Description of Sequences

<xsd: conpl exType name="I| ongSeq" >

<xsd: sequence>

<xsd: el enent name="iten' type="xsd:int" m nCccurs="0" maxCccurs="unbounded"/>

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="char Seq" >

<xsd: sequence>

<xsd: el ement nane="iten! type="xsd:byte" m nCccurs="0" maxCccurs="10"/>

</ xsd: sequence>
</ xsd: conpl exType>

70

In the CORBA type map, sequences are described using a
<cor ba: sequence> element. A <cor ba: sequence> has five required
attributes.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

el entype The IDL type of the sequence’s elements. This type can

be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

CORBA Type Mapping

For example, the sequences described in Example 45 has a CORBA type
map description similar to that shown in Example 46:

Example 46: CORBA type map for Sequences

<cor ba: t ypeMappi ng tar get Nanespace="ht t p: // schermas. i ona. com bi ndi ngs/ cor ba/ t ypemap" >
<cor ba: sequence nane="|ongSeq" repositoryl D="1DL:|ongSeq: 1. 0" type="xsdl:| ongSeq"
el ent ype="cor ba: | ong" bound="0"/>
<cor ba: sequence nane="char Seq" repositoryl D="1DL: char Seq: 1. 0" type="xsd1: char Seq"
el ent ype="cor ba: char" bound="10"/>

</ cor ba: t ypeMappi ng>

Exceptions

Because exceptions typically return more than one piece of information, they
require both an abstract type description and a CORBA type map entry. In
the abstract type description, exceptions are described much like structures.
In the CORBA type map, exceptions are described using <cor ba: except i on>
elements. A <cor ba: except i on> element has three required attributes:

nane A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

repositoryl D The fully specified repository ID for the CORBA type.

The pieces of data returned with the exception are described by a series of
<cor ba: menber > elements. The elements must be declared in the same
order as in the IDL representation of the exception. A <cor ba: menber > has
two required attributes:

name The name of the element

idtype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
within the type map.

For example, the exception defined in Example 47, i dNot Found,
Example 47: idNotFound Exception

\\ I DL
exception i dNot Found

{
short id;
iE

71

CHAPTER 6 | Working with CORBA

would be described in the logical type section of the contract, with an entry
similar to that shown in Example 48:

Example 48: idNotFound logical structure

<xsd: conpl exType name="i dNot Found" >
<xsd: sequence>
<xsd: el enent nanme="id" type="xsd: short"/>
</ xsd: sequence>
</ xsd: conpl exType>

In the CORBA type map portion of the contract, i dN\ot Found is described by
an entry similar to that shown in Example 49:

Example 49: CORBA Type Map for idNotFound
<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schenas. i ona. cond bi ndi ngs/ cor ba/ t ypemap" >
<cor ba: excepti on name="i dNot Found" type="xsd1:i dNot Found" repositoryl D="1DL:i dN\ot Found: 1. 0" >
<cor ba: menber nanme="id" idltype="corba: short" />

</ cor ba: excepti on>
</ corba: t ypeMappi ng>

72

CORBA Type Mapping

Recursive Type Mapping

Overview

Defining recursive types in
XMLSchema

CORBA typemap

Both CORBA IDL and XMLSchema allow you define recursive data types.
Because both type definition schemes support recursion, Artix directly maps
recursive types between IDL and XMLSchema. The CORBA typemap
generated by Artix to support the CORBA binding is straightforward and
directly reflects the recursive nature of the data types.

Recursive data types are defined in XMLSchema as complex types using the
<conpl exType> element. XMLSchema supports two means of defining a
recursive type. The first is to have an element of a complex type be of a type
that includes an element of the type being defined. Example 50 shows a
recursive complex type XMLSchema type, al | About Me, defined using a
named type.

Example 50: Recursive XMLSchema Type

<conpl exType nane="al | About Me" >
<sequence>
<el enent name="shoeSi ze" type="xsd:int" />
<el enent name="nat ed" type="xsd: bool ean" />
<el enent name="conversation" type="tns: noreMe" />
</ sequence>
</ conpl exType>
<conpl exType nane="noreMe">
<sequence>
<el enent name="iten' type="tns: al | About Me"
maxCceur s="unbounded" />
</ sequence>
</ conpl exType>

XMLSchema also supports the definition of recursive types using anonymous
types. However, Artix does not support this style of defining recursive types.

As shown in Example 51, Artix maps recursive types into the CORBA
typemap section of the Artix contract as it would non-recursive types, except
that it maps the recursive element, which is a sequence in this case, to an

73

CHAPTER 6 | Working with CORBA

Generated IDL

74

anonymous type using the <cor ba: anonsequence> element. The
<cor ba: anonsequence> specifies that when IDL is generated from this
binding the associated sequence will not generate a new type for itself.

Example 51: Recursive CORBA Typemap

<cor ba: anonsequence name="noreM" bound="0"
el entype="ns1: al | About Me" type="xsdl: ne" />
<cor ba: struct nane="al | About Me"
repositoryl D="1DL: al | About Me: 1. 0"
type="tns: al | About M&" >
<cor ba: nenber nane="shoeSi ze" i dl t ype="corba: | ong"/>
<cor ba: nenber nanme="nmated" idl type="cor ba: bool ean"/>
<cor ba: nenber nane="conversation" idltype="nsl: moreMe"/>
</ corba: st ruct >

While the XML in the CORBA typemap does not explicitly retain the
recursive nature of recursive XMLSchema types, the IDL generated from the
typemap restores the recursion in the IDL type. The IDL generated from the
typemap in Example 51 on page 74 defines al | About Me using recursion.
Example 52 shows the generated IDL.

Example 52: /DL for a Recursive Data Type

\\ I DL
struct al | About Me
{
| ong shoeSi ze;
bool ean nat ed;
sequence<al | About Me> conver sati on;

g

CORBA Type Mapping

Mapping XMLSchema Features that are not Native to IDL

Overview

Binary type mappings

There are a number of data types that you can describe in your Artix
contract using XMLSchema that are not native to IDL. Artix can map these
data types into legal IDL so that your CORBA systems can interoperate with
applications that use these data type descriptions in their contracts.

These features include:

® Binary type mappings
® Attribute mapping

® Nested choice mapping
® Inheritance mapping

® Nillable mapping

There are three binary types defined in XMLSchema that have direct
correlation to IDL data-types. These types are:

® xsd: base64Bi nary
® xsd: hexBi nary

® soapenc: base64

These types are all mapped to octet sequences in CORBA. For example, the
schema type, j oeBi nary, described in Example 53 results in the CORBA
typemap description shown in Example 54.

Example 53: joeBinary schema description

<xsd: el ement nane="j oeBi nary type="xsd: hexBi nary" />
The resulting IDL for j oeBi nary is shown in Example 55.
Example 54: joeBinary CORBA typemap

<cor ba: sequence nane="j oeBi nary" bound="0"
el entype="corba: octet" repositoryl D="1DL: | oeBi nary: 1. 0"
type="xsd: hexBi nary" />

75

CHAPTER 6 | Working with CORBA

Attribute mapping

The mappings for xsd: base64Bi nary and soapenc: base64 would be similar
except that the t ype attribute in the CORBA typemap would specify the
appropriate type.

Example 55:joeBinary IDL

\\ I DL
t ypedef sequence<octet> j oeBi nary;

Required XMLSchema attributes are treated as normal elements in a
CORBA structure.

Note: Attributes are not supported for complex types defined with
<choi ce>.

For example, the complex type, madAt t r, described in Example 56 contains
two attributes, materi al and si ze.

Example 56: madAttr XMLSchema

<conpl exType nane="nadAttr">
<sequence>
<el enent name="styl e" type="xsd:string" />
<el enent name="gender" type="xsd: byte" />
</ sequence>
<attribute nane="size" type="xsd:int" />
<attribute nane="naterial" />
<si npl eType>
<restriction base="xsg: string">
<maxLengt h val ue="3" />
</restriction>
</ si npl eType>
</attribute>
<conpl exType>

madAt t r would generate the CORBA typemap shown in Example 57. Notice
that si ze and material are simply incorporated into the madAt t r structure
in the CORBA typemap.

Example 57: madAttr CORBA typemap

<cor ba: annonst ri ng bound="3" name="nat eri al Type" type="tns:naterial" />

76

CORBA Type Mapping

Example 57: madAttr CORBA typemap

<corba: struct name="nmadAttr" repositoryl D="1DL: madAttr: 1. 0" type="typens: nadAttr">
<cor ba: menber name="styl e" idltype="corba:string"/>
<cor ba: nenber name="gender" idltype="corba: char"/>
<cor ba: menber name="si ze" idltype="corba:long"/>
<cor ba: menber name="nmaterial" idltype="nsl:naterial Type"/>

</ cor ba: st ruct >

Nested choice mapping

Similarly, in the IDL generated using a contract containing madAt tr, the
attributes are made elements of the structure and are placed in the order in
which they are listed in the contract. The resulting IDL structure is shown in
Example 58.

Example 58: madAttr IDL

\\ I DL
struct nadAttr
{
string style;
char gender;
I ong si ze;
string<3> naterial ;

When mapping complex types containing nested xsd: choi ce elements into
CORBA, Artix will break the nested xsd: choi ce elements into separate

uni ons in CORBA. The resulting union will have the name of the original
complex type with Choi ceType appended to it. So, if the original complex
type was named j oe, the union representing the nested choice would be
named j oeChoi ceType.

The nested choice in the original complex type will be replaced by an
element of the new union created to represent the nested choice. This
element will have the name of the new union with _f appended. So if the
original structure was named car | a, the replacement element will be named
car |l athoi ceType_f .

The original type description will not be changed, the break out will only
appear in the CORBA typemap and in the resulting IDL.

77

CHAPTER 6 | Working with CORBA

For example, the complex type det ai | s, shown in Example 59, contains a
nested choi ce.

Example 59: details XMLSchema

<conpl exType nane="Detail s">
<sequence>
<el ement nanme="nane" type="xsd:string"/>
<el enent name="addr ess" type="xsd:string"/>
<choi ce>
<el ement nanme="enpl oyer" type="xsd:string"/>
<el enent name="unenpl oynent Nunber" type="xsd:int"/>
</ choi ce>
</ sequence>
</ conpl exType>

The resulting CORBA typemap, shown in Example 60, contains a new
union, det ai | sChoi ceType, to describe the nested choice. Note that the

t ype attribute for both det ai | s and det ai | sChoi ceType have the name of
the original complex type defined in the schema. The nested choice is
represented in the original structure as a member of type

det ai | sChoi ceType.

Example 60: details CORBA typemap

<cor ba: struct name="details" repositoryl D="1DL: details:1.0" type="xsdl:details">
<cor ba: menber idltype="corba: string" nane="nane"/>
<cor ba: menber idltype="corba:string" name="address"/>
<cor ba: nenber idltype="ns1: detail sChoi ceType" nane="det ai | sChoi ceType_f"/>
</ cor ba: st ruct >
<cor ba: uni on di scri m nat or =" cor ba: | ong" nane="det ai | sChoi ceType"
repositoryl D="1DL: det ai | sChoi ceType: 1. 0" type="xsdl: detail s">
<cor ba: uni onbranch i dl t ype="corba: stri ng" name="enpl oyer ">
<cor ba: case | abel ="0"/>
</ cor ba: uni onbr anch>
<cor ba: uni onbranch i dl t ype="corba: | ong" nane="unenpl oynment Nunber ">
<cor ba: case | abel ="1"/>
</ cor ba: uni onbr anch>
</ cor ba: uni on>

78

Inheritance mapping

The resulting IDL is shown in Example 61.

Example 61: details IDL

\\ I DL
uni on det ai | sChoi ceType swi t ch(| ong)

{
case 0:
string enpl oyer;
case 1:
| ong unenpl oyrment Nunber ;
ik
struct details
{
string nane;
string address;

ks

det ai | sChoi ceType Det ai | sChoi ceType_f;

CORBA Type Mapping

XMLSchema describes inheritance using the <conpl exCont ent > tag and the
<ext ensi on> tag. For example the complex type seaKayak, described in
Example 62, extends the complex type kayak by including two new fields.

Example 62: seaKayak XMLSchema

<conpl exType nane="kayak" >
<sequence>

<el enent name="I| engt h" type="xsd:int" />
<el enent name="wi dth" type="xsd:int" />

<el enent name="naterial" type="xsd:string" />

</ sequence>
</ conpl exType>
<conpl exType nane="seaKayak" >
<conpl exCont ent >
<ext ensi on base="kayak">
<sequence>

<el enent name="chi nes" type="xsd:string" />
<el enent name="cockpitStyle" type="xsd:string" />

</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

79

CHAPTER 6 | Working with CORBA

When complex types using <conpl exCont ent > are mapped into CORBA
types, Artix creates generates an intermediate type to represent the complex
data defined within the <conpexCont ent > element. The intermediate type is
named by appending an indentifier describing the complex content to the
new type’s name. Table 8 shows the complex content identifiers used
appended to the intermediate type name.

Table 8: Complex Content Identifiers in CORBA Typemap

XMLSchema Type Typemap ldentifier
<sequence> SequenceSt r uct
<al |l > Al Struct
<choi ce> Choi ceType

The CORBA type generated to represent the XMLSchema type generated to
represent the type derived by extension will have an element of the type that
it extends, named baseType_f and an element of the intermediate type,
named i nt er medi at eType_f . Any attributes that are defined in the extended
type are then mapped into the new CORBA type following the rules for
mapping XMLSchema attributes into CORBA types.

Example 63 shows how Artix maps the complex types defined in
Example 62 on page 79 into a CORBA type map.

Example 63: seaKayak CORBA type map

<cor ba: st ruct name="kayak" repositoryl D="IDL: kayak: 1. 0" type="t ns: kayak" >
<cor ba: el ement nane="I| engt h" i dl t ype="corba: | ong" />
<cor ba: el ement nanme="wi dth" idltype="corba:long" />
<cor ba: el enent name="naterial" idltype="corba:string" />
</ cor ba: st ruct >
<cor ba: st ruct name="seaKayak" repositoryl D="1 DL: seaKayak: 1. 0" type="t ns: seaKayak">
<cor ba: el enent name="kayak_f" idltype="ns1: kayak" />
<cor ba: el ement nane="seaKayakSequenceStruct _f" idltype="nsl: seaKayakSequenceStruct" />
</ cor ba: st ruct >
<cor ba: st ruct name="seaKayakSequenceStruct" repositoryl D="1DL: seaKayakSequenceSt ruct : 1. 0"
t ype="t ns: seaKayakSequenceSt r uct ">
<cor ba: el ement nane="chi nes" idl type="corba:string" />
<cor ba: el enent name="cockpi t Styl e" idl type="corba:string" />
</ cor ba: st ruct >

80

Nillable mapping

CORBA Type Mapping

The IDL generated by Artix for the types defined in Example 62 on page 79
is shown in Example 64.

Example 64: seaKayak IDL

\\ IDL
struct kayak
{
I ong | engt h;
I ong wi dt h;
string naterial ;
ik
struct seaKayakSequenceStruct
{
string chines;
string cockpitStyle;
IE
struct seaKayak
{
kayak kayak_f;
seaKayakSequenceStruct segKayakSequenceStruct f;
bé

XMLSchema supports an optional attribute, ni I I abl e, that specifies that an
element can be ni | . Setting an element to ni | is different than omitting an
element whose nmi nCceur s attribute is set to 0; the element must be
included as part of the data sent in the message.

Elements that have ni I | abl e="true" set in their logical description are

mapped to a CORBA union with a single case, TRUE, that holds the value of
the element if it is not set to ni | .

81

CHAPTER 6 | Working with CORBA

For example, imagine a service that maintains a database of information on
people who download software from a web site. The only required piece of
information the visitor needs to supply is their zip code. Optionally, visitors
can supply their name and e-mail address. The data is stored in a data
structure, webDat a, shown in Example 65.

Example 65: webData XMLSchema

<conpl exType nane="webDat a" >
<sequence>
<el enent name="zi pCode" type="xsd:int" />
<el enent name="nane" type="xsd:string" nillable="true />
<el enent name="enai | Address" type="xsd: string"
nillable="true" />
</ sequence>
</ conpl exType>

When webDat a is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and enai | Addr ess. Example 66 shows the CORBA typemap for webDat a.

Example 66: webData CORBA Typemap

<cor ba: t ypemapping ...>
<cor ba: struct name="webDat a" repositoryl D="IDL: webDat a: 1. 0" type="xsd1: webDat a" >
<cor ba: menber idltype="corba:long" nane="zi pCode"/>

<cor ba: menber idltype="nsl:string_nil" name="nane"/>
<cor ba: menber idl type="nsl:string_nil" name="enail| Address"/>
</ cor ba: st ruct >
<cor ba: uni on di scri m nat or =" cor ba: bool ean" name="string_ni|l" repositoryl D="IDL:string nil:1.0"

type="xsd1: enmai | Addr ess" >
<cor ba: uni onbranch idl type="corba: string" name="val ue">
<cor ba: case | abel =" TRUE"'/ >
</ cor ba: uni onbr anch>
</ cor ba: uni on>
</ cor ba: t ypeMappi ng>

The type assigned to the union, string_nil, does not matter as long as the
type assigned maps back to an xsd: stri ng. This is true for all nillable
element types.

82

Optional attributes

CORBA Type Mapping

Example 67 shows the IDL for webDat a.
Example 67: webData IDL

\\ I DL
union string_nil swtch(bool ean) {
case TRUE
string val ue;
ik
struct webData {
| ong zi pCode;
string_nil nane;
string_nil enail Address;

IE

Attributes defined as optional in XMLSchem are mapped similar toni | | abl e
elements. Attributes that do not have use="requi red" set in their logical
description are mapped to a CORBA union with a single case, TRUE, that
holds the value of the element if it is set.

Note: By default attributes are optional if use is not set to r equi r ed.

For example, you could define the complex type in Example 65 using
attributes instead of a sequence. The data description for webDat a defined
with attributes is shown in Example 68.

Example 68: webData XMLSchema Using Attributes

<conpl exType nane="webDat a" >
<attribute name="zi pCode" type="xsd:int" use="required"/>
<attribute name="nane" type="xsd:string"/>
<attribute name="enai| Address" type="xsd:string"/>

</ conpl exType>

83

CHAPTER 6 | Working with CORBA

When webDat a is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and enai | Addr ess. Example 69 shows the CORBA typemap for webDat a.

Example 69: webData CORBA Typemap

<cor ba: t ypemappi ng ...>
<cor ba: uni on di scri m nat or =" cor ba: bool ean" nane="string_nil" repositoryl D="1DL:string_nil:1. 0"
type="xsd1: emai | Addr ess" >
<cor ba: uni onbranch idl type="corba: string" name="val ue">
<cor ba: case | abel =" TRUE"'/ >
</ cor ba: uni onbr anch>
</ cor ba: uni on>
<cor ba: struct name="webDat a" repositoryl D="IDL: webDat a: 1. 0" type="xsd1: webDat a" >
<cor ba: menber idl type="corba: | ong" name="zi pCode"/>
<cor ba: menber idltype="nsl:string_nil" name="nane"/>
<cor ba: menber idltype="nsl:string_nil" name="email Address"/>
</ cor ba: st ruct >
</ cor ba: t ypeMappi ng>

The type assigned to the union, string_nil, does not matter as long as the
type assigned maps back to an xsd: stri ng. This is true for all optional
attributes.

Example 70 shows the IDL for webDat a.
Example 70: webData IDL

\\ I DL
union string_nil swtch(bool ean) {
case TRUE
string val ue;
ik
struct webData {
| ong zi pCode;
string_nil nane;
string_nil emnail Address;

iE

84

CORBA Type Mapping

Artix References

Overview

Specifying references to map to
CORBA

Artix references provide a means of passing a reference to a service between
two operations. Because Artix services are Web services, their references are
very different than references used in CORBA. Artix does, however, provide
a mechanism for passing Artix references to CORBA applications over the
Artix CORBA transport. This functionality allows CORBA applications to
make calls on Artix services that return references to other Artix services.

For a detailed discussion of Artix references read Developing Artix
Applications in C+ +.

Artix references are mapped into a CORBA in one of two ways. The simplest
way is to just specify your reference types as you would for an Artix service
using SOAP. In this case, the Artix references are mapped into generic
CORBA j ect s.

The second method allows you to generate type specific CORBA references,
but requires some preplaning in the creation of your XMLSxhema type
definitions. When creating a reference type, you can specify the name of the
CORBA binding that describes the interface in the physical section of the
contract using an <xsd: annot at i on> element. Example 71 shows the syntax
for specifying the binding in the type definition.

Example 71: Reference Binding Specification

<xsd: el ement nane="typeNane" type="ref erences: Ref erence">
<xsd: annot at i on>
<xsd: appi nf o>cor ba: bi ndi ng=CORBABI ndi ngNare</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >

When you specify a reference using the annotation, the CORBA binding
generator and the IDL generator will inspect the specified binding and create
a type specific reference in the IDL generated for the contract that allows
you to make use of the reference.

Note: Before you can generate a type specific reference you need to
generate the CORBA binding of the referenced interface.

85

CHAPTER 6 | Working with CORBA

CORBA typemap representation

Example

86

Artix references are mapped to <cor ba: obj ect > elements in the CORBA
typemap section of an Artix contract. <cor ba: obj ect > elements have four

attributes:

bi ndi ng

nane

repositoryl D

type

Specifies the binding to which the object refers. If the
annotation element is left off of the reference declaration
in the schema, this attribute will be blank.

Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the
schema, this attribute will be bj ect . If the annotation is
used and the binding can be found, this attribute will be
set to the name of the interface that the binding
represents.

Specifies the repository ID of the generated IDL type. If
the annotation element is left off the reference declaration
in the schema, this attribute will be set to

| DL: ong. or g/ CORBA/ (hj ect/ 1. 0. If the annotation is
used and the binding can be found, this attribute will be
set to a properly formed repository ID based on the
interface name.

Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
ref erences: Ref erence.

Example 72 shows an Artix contract fragment that uses Artix references.

Example 72: Reference Sample

<?xm version="1.0" encodi ng="UTF-8"?>
<defini ti ons nane="bankSer vi ce"
t ar get Nanespace="ht t p: / / schemas. nyBank. coni bankTypes"
xm ns="ht t p: // schenas. xn soap. or g/ wsdl / "
xm ns: tns="htt p: //schenas. nyBank. coni bankSer vi ce"
xm ns: xsd="ht t p: / / www W8. or g/ 2001/ XM-Schena"
xm ns: xsd1="ht t p: // schenas. nyBank. conl bankTypes"
xm ns: corba="http://schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat =" ht t p: // schenas. i ona. coni t ypemap/ cor ba/ bank. i dl "
xm ns: ref erences="http: // schenas. i ona. con r ef er ences" >

CORBA Type Mapping

Example 72: Reference Sample

<t ypes>
<schena
t ar get Nanespace="ht t p: / / schenmas. nyBank. coni bankTypes"
xm ns="htt p: / / www. wW8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / ">
<xsd: i nport schemalocation="./references. xsd"
nanespace="htt p: // schenas. i ona. coni r ef er ences" / >

<xsd: el ement nane="account" type="ref erences: Ref erence" >
<xsd: annot at i on>
<xsd: appi nf 0>
cor ba: bi ndi ng=Account CORBABI ndi ng
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >
</ schema>
</ types>

<nmessage name="find_account Response" >

<part name="return" el enent="xsdl: account"/>
</ message>
<message nane="cr eat e_account Response" >

<part name="return" el enent="xsdl: account"/>
</ message>

87

CHAPTER 6 | Working with CORBA

Example 72: Reference Sample

<t ypes>
<schena
t ar get Nanespace="ht t p: / / schenmas. nyBank. coni bankTypes"
xm ns="htt p: / / www. wW8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / ">
<xsd: i nport schemalocation="./references. xsd"
nanespace="htt p: // schenas. i ona. coni r ef er ences" / >

<xsd: el ement nane="account" type="ref erences: Ref erence" >
<xsd: annot at i on>
<xsd: appi nf 0>
cor ba: bi ndi ng=Account CORBABI ndi ng
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >
</ schema>
</ types>

<nmessage name="find_account Response" >

<part name="return" el enent="xsdl: account"/>
</ message>
<message nane="cr eat e_account Response" >

<part name="return" el enent="xsdl: account"/>
</ message>

88

CORBA Type Mapping

Example 72: Reference Sample

<port Type nane="Account">
<operati on name="account _i d">
<i nput nessage="tns: account _i d" nane="account _i d"/>
<out put message="t ns: account _i dResponse"
name="account _i dResponse" />
</ oper ati on>
<oper ati on name="bal ance" >
<i nput nessage="tns: bal ance" name="bal ance"/>
<out put message="t ns: bal anceResponse"
name="bal anceResponse" />
</ oper ati on>
<operati on name="wit hdraw'>
<i nput nmessage="tns:wi thdraw' name="wi t hdraw'/>
<out put message="tns: w t hdr anResponse"
name="wi t hdr anResponse"/ >
<fault nessage="tns: | nsuffi ci ent FundsExcepti on"
nanme="1| nsuf fi ci ent Funds"/ >
</ oper ati on>
<oper ati on nanme="deposit">
<i nput nessage="tns: deposit" name="deposit"/>
<out put message="t ns: deposi t Response"
name="deposi t Response" />
</ oper ati on>
</ port Type>
<port Type nane="Bank">
<operation nanme="find_account ">
<i nput nessage="tns:find_account" name="find_account"/>
<out put message="t ns: f i nd_account Response"
name="fi nd_account Response"/ >
<fault nessage="tns: Account Not Found"
nane="Account Not Found" / >
</ oper ati on>
<oper ati on name="creat e_account ">
<i nput message="tns: creat e_account" nane="create_account"/>
<out put nessage="t ns: creat e_account Response"
name="cr eat e_account Response"/ >
<fault nessage="tns: Account Al r eadyExi st sExcepti on"
nanme="Account Al r eadyExi st s"/>
</ oper ati on>
</ port Type>
</ defini ti ons>

The element named account is a reference to the interface defined by the
Account port type and the fi nd_account operation of Bank returns an
element of type account . The annotation element in the definition of

89

CHAPTER 6 | Working with CORBA

<cor ba: t ypeMappi ng

account specifies the binding, Account CCRBABI ndi ng, of the interface to
which the reference refers. Because you typically create the data types
before you create the bindings, you must be sure that the generated binding
name matches the name you specified. This can be controlled using the -b
flag to wsdl t ocor ba.

The first step to generating the Bank interface to use a type specific reference
to an Account is to generate the CORBA binding for the Account interface.
You would do this by using the command wsdl t ocor ba -corba -i Account
-b Account OORBABI ndi ng wsdl Nane. wsdl and replace wsdl Nane with the
name of your contract. Once you have generated the CORBA binding for the
Account interface, you can generate the CORBA binding and IDL for the
Bank interface.

Example 73 shows the generated CORBA typemap resulting from generating
both the Account and the Bank interfaces into the same contract.

Example 73: CORBA Typemap with References

t ar get Namespace="ht t p: / / schemas. nyBank. coni bankSer vi ce/ cor ba/ t ypenap/ " >

<cor ba: obj ect bi ndi ng="" nane="Chj ect"

repositoryl D="1DL: ong. or g/ CCRBA/ (hj ect/ 1. 0" type="ref er ences: Ref erence"/ >
<cor ba: obj ect bi ndi ng="Account CORBABi ndi ng" name="Account "

repositoryl D="1DL: Account: 1. 0" type="ref er ences: Ref erence"/ >

</ corba: t ypeMappi ng>

20

There are two entries because wsdl t ocor ba was run twice on the same file.
The first CORBA object is generated from the first pass of wedl t ocor ba to
generate the CORBA binding for Account . Because wsdl t ocor ba could not
find the binding specified in the annotation, it generated a generic oj ect
reference. The second CORBA object, Account , is generated by the second
pass when the binding for Bank was generated. On that pass, wsl dt ocor ba
could inspect the binding for the Account interface and generate a type
specific object reference.

Example 74 shows the IDL generated for the Bank interface.

Example 74: /DL Generated From Artix References
/11DL

i- nt erface Account

{ string account _id();

float bal ance();

void withdraw(in fl oat anount)
rai ses(:: I nsufficient FundsExcepti on);

voi d deposit(in float anmount);

CORBA Type Mapping

IE
interface Bank
{
::Account find_account(in string account_id)
rai ses(:: Account Not FoundExcepti on) ;
::Account create_account(in string account_id,
in float initial_bal ance)
rai ses(:: Account Al r eadyExi st sExcepti on);
bé

91

CHAPTER 6 | Working with CORBA

Modifying a Contract to Use CORBA

Overview

WSDL Namespace

In this section

92

Service Access Points (SAPs) that use CORBA require that special binding,
port, and type mapping information be added to the physical portion of the
Artix contract. The binding definition resolves any ambiguity about
parameter order, return values, and type. The port definition specifies the
addressing information need by clients or servers to locate the CORBA
object. The port can also specify POA policies the exposed CORBA object
uses. The type mapping information maps complex schema types, defined
in the logical portion of the contract, into CORBA data types.

The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace

htt p://schemas. i ona. cond bi ndi ngs/ corba. To use the CORBA extensions
you will need to include the following in the <defi ni ti ons> tag of your
contract:

xm ns: cor ba="ht t p: // schenas. i ona. coni bi ndi ngs/ cor ba"

This section discusses the following topics:

Adding a CORBA Binding page 93

Adding a CORBA Port page 97

Modifying a Contract to Use CORBA

Adding a CORBA Binding

Overview

Mapping to the binding

CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, maps the parts of a logical message to the proper
payload format for CORBA applications. The CORBA binding specifies the
repository ID of the IDL interface, resolves parameter order and mode
ambiguity, and maps the data types to CORBA data types.

The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: reposi t oryl D. r eposi t or yl D specifies the full
type ID of the interface. The type ID is embedded in the object’s IOR and
therefore must conform to the IDs that are generated from an IDL compiler.
These are of the form:

I DL: nodul e/ i nterface: 1.0

The cor ba: bi ndi ng element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

/11DL
interface clash{};
interface bad : clash{};

would produce the following cor ba: bi ndi ng:

<cor ba: bi ndi ng reposi toryl D="I DL: bad: 1. 0"
bases="1DL: cl ash: 1. 0"/ >

corba:operation is an IONA-specific element of <oper ati on> and describes

the parts of the operation’s messages. <cor ba: oper at i on> takes a single
attribute, name, which duplicates the name given in <oper at i on>.

93

CHAPTER 6 | Working with CORBA

94

corba:param is a member of <cor ba: oper ati on>. Each <part > of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding
<cor ba: par ane. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation. <cor ba: par an» has the
following required attributes:

node Specifies the direction of the parameter. The values
directly correspond to the IDL directions: i n, i nout , out .
Parameters set to i n must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to i nout must appear in both
the input and output messages of the logical operation.

i dltype Specifies the IDL type of the parameter. The type names
are prefaced with cor ba: for primitive IDL types, and
corbat m for complex data types, which are mapped out
in the cor ba: t ypeMappi ng portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

corba:return s a member of <cor ba: oper ati on> and specifies the return
type, if any, of the operation. It only has two attributes:

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with cor ba: for primitive IDL types and
corbat m for complex data types which are mapped out
in the cor ba: t ypeMappi ng portion of the contract.

corba:raises is a member of <cor ba: oper ati on> and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding <cor ba: r ai ses> element. <corba:raises> has one
required attribute, excepti on, which specifies the type of data returned in
the exception.

Using the command line

Modifying a Contract to Use CORBA

In addition to operations specified in <cor ba: oper ati on> tags, within the
<oper at i on> block, each <oper ati on> in the binding must also specify
empty <i nput > and <out put > elements as required by the WSDL
specification. The CORBA binding specification, however, does not use
them.

For each fault message defined in the logical description of the operation, a
corresponding <f aul t > element must be provided in the <operati on>, as
required by the WSDL specification. The nane attribute of the <f aul t >
element specifies the name of the schema type representing the data passed
in the fault message.

The wsdl t ocor ba tool adds CORBA binding information to an existing Artix
contract. To generate a CORBA binding using wsdl t ocor ba use the following
command:

wsdl t ocorba -corba -i portType [-d dir][-b binding][-0 file€]
[-n nanespace] wsdl _file

The command has the following options:

- corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-ddir Specifies the directory into which the new WSDL file is
written.
-b bindi ng Specifies the name for the generated CORBA binding.

Defaults to port TypeBi ndi ng.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl _file-corba. wsdl .

-n nanespace Specifies the namespace to use for the generated CORBA
typemap

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use
the Artix Designer.

95

CHAPTER 6 | Working with CORBA

Example For example, the logical operation per sonal I nf oLookup, shown in
Example 9 on page 19, has a CORBA binding similar to the one shown in
Example 75.

Example 75: personallnfoLookup CORBA Binding

<bi ndi ng nane="per sonal | nf oLookupBi ndi ng" type="t ns: per sonal | nf oLookup" >
<cor ba: bi ndi ng repositoryl D="1DL: per sonal | nf oLookup: 1. 0"/ >
<oper ati on name="| ookup" >
<cor ba: operati on nanme="| ookup" >
<cor ba: param nane="enpl d* node="in" idltype="corba:long"/>
<corba:return name="return" idltype="corbatm personal | nfo"/>
<cor ba: rai ses exception="cor bat mi dN\Not Found"/ >
</ cor ba: operat i on>
<i nput/ >
<out put / >
<faul t nanme="personal | nf oLookup. i dNot Found"/ >
</ operati on>
</ bi ndi ng>

96

Modifying a Contract to Use CORBA

Adding a CORBA Port

Overview

Address specification

Specifying POA policies

CORBA ports are described using the IONA-specific WSDL elements
<cor ba: addr ess> and <cor ba: pol i cy> within the WSDL <por t > element, to
specify how a CORBA object is exposed.

The IOR of the CORBA object is specified using the <cor ba: addr ess>
element. You have four options for specifying IORs in Artix contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified I0R format:

| OR 22342. . ..
® Specify a file location for the IOR, using the following syntax:
file:///file_name

® Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the cor baname format:

cor banane: ri r/ NameSer vi ce#obj ect _name

For more information on using the name service with Artix see the Artix
Administration Guide.

® Specify the IOR using corbal oc, by specifying the port at which the
service exposes itself, using the cor bal oc syntax.

corbal oc: i i op: host : port/servi ce_nane

When using cor bal oc, you must be sure to configure your service to
start up on the specified host and port.

Using the optional <cor ba: pol i cy> element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

®* POA Name
® Persistence

97

CHAPTER 6 | Working with CORBA

98

® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project. For information on
using these advanced CORBA features, see the Application Server Platform
documentation.

POA Name

Artix POAs are created with the default name of Ws_CRB. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

<cor ba: pol i cy poananme="poa_nane" />

Persistence

By default Artix POA’s have a persistence policy of f al se. To set the POA’s
persistence policy to true, use the following:

<cor ba: pol i cy persistent="true" />

ID Assignment

By default Artix POAs are created with a SYSTEM | D policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

<cor ba: pol i cy servi cei d="PQA d" />

This creates a POA with a USER | D policy and an object id of POA d.

Modifying a Contract to Use CORBA

Example For example, a CORBA port for the per sonal | nf oLookup binding would look
similar to Example 76:

Example 76: CORBA personallnfoLookup Port

<servi ce nane="per sonal | nf oLookupSer vi ce" >
<port name="personal | nf oLookupPort "
bi ndi ng="t ns: per sonal | nf oLookupBi ndi ng" >
<cor ba: address | ocation="file:///objref.ior" />
<cor ba: policy persistent="true" />
<cor ba: pol i cy servi cei d="personal | nf oLookup" />
</ port>
</ service>

Artix expects the I0OR for the CORBA object to be located in a file called
obj ref.ior, and creates a persistent POA with an object id of per sonal I nf o
to connect the CORBA application.

99

CHAPTER 6 | Working with CORBA

Generating IDL from an Artix Contract

Overview Artix clients that use a CORBA transport require that the IDL defining the
interface exist and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each <port Type> in the contract generates an
IDL module.

From the command line The wsdl t ocor ba tool compiles Artix contracts and generates IDL for the
specified CORBA binding and port type. To generate IDL using wsdl t ocor ba
use the following command:

wsdl tocorba -idl -b binding [-corba][-i portType][-d dir]
[-o file] wsdl _file

The command has the following options:

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

- cor ba Instructs the tool to generate a CORBA binding for the

specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-ddir Specifies the directory into which the new WSDL file is
written.
-o file Specifies the name of the generated WSDL file. Defaults

towsdl _file.idl.

By combining the -i dl and - cor ba flags with wsdl t ocor ba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
por t Type flag to specify the port type from which to generate the binding
and the - b bi ndi ng flag to specify the name of the binding to from which to
generate the IDL.

100

Generating a Contract from IDL

Generating a Contract from IDL

Overview

CORBA WSDL namespaces

Unsupported type handling

If you are starting from a CORBA server or client, Artix can build the logical
portion of the WSDL contract from IDL. Contracts generated from IDL have
CORBA-specific entries and namespaces added.

The IDL compiler also generates the binding information required to format

the operations specified in the IDL. However, since port information is
specific to the deployment environment, the port information is left blank.

Contracts generated from IDL include two additional name spaces:

xm ns: corba="htt p: //schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat =" ht t p: / / schenas. i ona. con bi ndi ngs/ cor ba/ t ypenap"

Be aware that the IDL compiler ignores any definitions that use unsupported
CORBA types. The IDL compiler also ignores any definition that uses a
previously ignored definition. For example, assume you have the following
IDL definitions infile.idl:

interface A

{

struct S

{
A nenber ;
¥

S get_op();

The IDL compiler does not generate any corresponding contract information
for the structure S because it contains a member that uses an object
reference. Similarly, the IDL complier does not generate any contract
information for the operation get _op() because it references structure S.

101

CHAPTER 6 | Working with CORBA

Using the command line

idl

102

IONA's IDL compiler supports several command line flags that specify how

to create a WSDL file from an IDL file. The IDL compiler is run using the
following command:

-wsdl : [-aaddress] [-ffile][-Qdir][-turi][-stype][-rfile][-Lfile][-Pfile][-wnanespace]
[- xnamespace] [-t nanespace] [-Tfile][-nfile][-b] idlfile

The command has the following options:

-wsdl

- aaddr ess
-ffile
-Qdir

-turi
-stype
-rfile
-Lfile
-Pfile

- wnanespace

Specifies that WSDL is to be generated. This flag is
required.

Specifies an absolute address through which the object
reference may be accessed. The addr ess may be a
relative or absolute path to a file, or a corbaname URL

Specifies a file containing a string representation of an
object reference. The contents of this file is incorporated
into the WSDL file. The fi | e must exist when you run the
IDL compiler.

Specifies the directory into which the WSDL file is
written.

Specifies the URI for the cor bat mnamespace. This
overrides the default.

Specifies the XMLSchema type used to map the IDL
sequence<oct et > type. Valid values are base64Bi nary
and hexBi nary. The default is base64Bi nary.

Specify the pathname of the schema file imported to
define the Ref er ence type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

Specifies that the logical portion of the generated WSDL
specification into is writtentofile. fil e is then imported
into the default generated file.

Specifies that the physical portion of the generated WSDL
specification into is written tofil e. fil e is then imported
into the default generated file.

Specifies the namespace to use for the WSDL
t ar get Nanespace. The default is
http://schemas.iona.coniidl/idl _nane.

Example

- Xnanespace

-t nanespace

-Tfile

-nfile

Generating a Contract from IDL

Specifies the namespace to use for the Schema
t ar get Nanespace. The default is
http://schenas.iona.coniidltypes/idl _nane.

Specifies the namespace to use for the CORBA
TypeMapping t ar get Nanespace. The default is
http://schenas.iona. conitypenap/ corba/i dl _nane.

Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the - n option.

Specifies that a schema file, fi | e, is to be included in the
generated contract by an import statement. This option
cannot be used with the - T option.

Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

To combine multiple flags in the same command, use a colon delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbanane URL are interpreted as part of the
URL syntax and not as delimiters.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

Imagine you needed to generate an Artix contract for a CORBA server that
exposes the interface shown in Example 77.

Example 77: personalinfoService Interface

interface personal | nfoService

{

enum hai r Gol or Type {red, brunette, blonde};

103

CHAPTER 6 | Working with CORBA

Example 77: personalinfoService Interface

struct personal | nfo
{

string nane;

| ong age;

hai r Col or Type hai r Col or;
IH

exception i d\ot Found

{
short id;
I

personal | nfo | ookup(in | ong enpl d)
rai ses (i dNot Found);
b

To generate the contract, you run it through the IDL compiler using either
the GUI or the command line. The resulting contract is similar to that shown
in Example 78.

Example 78: personallinfoService Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions nane="personal I nfo.idl"
t ar get Namespace="ht t p: / / schemas. i ona. com i dl / per sonal | nfo.i dl "
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: tns="http://schenas.iona.coniidl/personal Info.idl"
xm ns: xsd="ht t p: / / wan W3. or g/ 2001/ XM_Scherma"
xm ns: xsd1="http: // schenas. i ona. conii dl t ypes/ personal | nfo.idl "
xm ns: corba="htt p: // schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat m="ht t p: // schenas. i ona. con bi ndi ngs/ cor ba/ t ypermap" >
<t ypes>
<schera t ar get Nanespace="htt p: // schenas. i ona. conii dl t ypes/ per sonal I nfo.idl "
xm ns="ht t p: / / waw. w8. or g/ 2001/ XM_Schema"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">
<xsd: si npl eType nane="per sonal | nf oSer vi ce. hai r Gol or Type" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="red"/>
<xsd: enuner ati on val ue="brunette"/>
<xsd: enurner at i on val ue="bl onde"/ >
</xsd:restriction>
</ xsd: si npl eType>

104

Generating a Contract from IDL

Example 78: personalinfoService Contract

<xsd: conpl exType nane="per sonal | nf oSer vi ce. per sonal | nf 0" >
<xsd: sequence>
<xsd: el ement nane="nanme" type="xsd:string"/>
<xsd: el enent name="age" type="xsd:int"/>
<xsd: el enent name="hai r Col or" type="xsd1l: personal | nf oServi ce. hai r Col or Type"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="per sonal | nf oSer vi ce. i dNot Found" >
<xsd: sequence>
<xsd: el enent nanme="id" type="xsd: short"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="per sonal | nf oServi ce. | ookup. enpl d* type="xsd:int"/>
<xsd: el enent nane="per sonal | nf oServi ce. | ookup. r et urn"
t ype="xsd1: per sonal | nf oServi ce. per sonal | nf 0"/ >
<xsd: el ement name="per sonal | nf oServi ce. i d\Not Found"
t ype="xsd1: per sonal | nf oServi ce. i d\Not Found"/ >
</ schenma>
</ types>
<nessage nane="personal | nf oServi ce. | ookup" >
<part name="enpl d" el ement ="xsd1: personal | nf oSer vi ce. | ookup. enpl d"/>
</ message>
<nessage nane="personal | nf oServi ce. | ookupResponse" >
<part name="return" el enent="xsdl: personal | nf oServi ce. | ookup. return"/>
</ message>
<nessage nanme="_excepti on. personal | nf oSer vi ce. i d\Not Found" >
<part name="exception" el enent ="xsdl: personal | nf oServi ce. i dNot Found"/ >
</ message>
<port Type nane="personal | nf oServi ce" >
<oper ati on name="| ookup" >
<i nput nessage="t ns: per sonal | nf oSer vi ce. | ookup" name="I| ookup"/>
<out put message="t ns: per sonal | nf oServi ce. | ookupResponse" nane="| ookupResponse"/>
<fault nessage="tns:_exception. personal | nf oSer vi ce. i dNot Found"
name="per sonal | nf oSer vi ce. i d\ot Found"/ >
</ oper at i on>
</ por t Type>
<bi ndi ng name="personal | nf oServi ceBi ndi ng" type="t ns: personal | nf oServi ce">
<cor ba: bi ndi ng repositoryl D="IDL: personal | nf oServi ce: 1. 0"/ >
<oper ati on name="| ookup" >
<cor ba: operati on name="1| ookup" >
<cor ba: par am nane="enpl d* node="i n" idl type="corba:long"/>
<corba:return name="return" idltype="corbatm personal | nf oServi ce. personal | nfo"/>
<cor ba: rai ses excepti on="cor bat m per sonal | nf oSer vi ce. i dNot Found" / >
</ cor ba: oper ati on>

105

CHAPTER 6 | Working with CORBA

Example 78: personallinfoService Contract

<i nput/>
<out put / >
<faul t name="personal | nf oServi ce. i d\Not Found"/ >
</ oper at i on>
</ bi ndi ng>
<servi ce name="personal | nf oServi ceServi ce">
<port nane="personal | nfoServi cePort" bi ndi ng="t ns: per sonal | nf oSer vi ceBi ndi ng" >
<cor ba: address | ocation="..."/>
</ port>
</ servi ce>
<cor ba: t ypeMappi ng t ar get Namespace="htt p: // schenas. i ona. con bi ndi ngs/ cor ba/ t ypermap" >
<cor ba: enum nanme="per sonal | nf oSer vi ce. hai r Col or Type"
t ype="xsd1: per sonal | nf oSer vi ce. hai r Gol or Type"
reposi toryl D="1DL: per sonal | nf oSer vi ce/ hai r Col or Type: 1. 0" >
<cor ba: enunerat or val ue="red"/>
<cor ba: enunerat or val ue="brunette"/>
<cor ba: enuner at or val ue="bl onde"/ >
</ cor ba: enun
<corba: struct name="personal | nf oServi ce. personal | nf 0"
t ype="xsd1: per sonal | nf oServi ce. per sonal | nf 0"
reposi toryl D="1DL: per sonal | nf oSer vi ce/ per sonal | nf o: 1. 0" >
<cor ba: nenber name="name" idltype="corba:string"/>
<cor ba: menber name="age" idltype="corba:long"/>
<cor ba: nenber name="hair Col or" idltype="corbat m personal | nf oServi ce. hai r Col or Type"/ >
</ cor ba: struct >
<cor ba: excepti on nanme="per sonal | nf oServi ce. i dNot Found"
t ype="xsd1: per sonal | nf oServi ce. i dNot Found"
reposi toryl D="1DL: per sonal | nf oServi ce/ i dNot Found: 1. 0" >
<cor ba: menber name="id" idltype="corba: short"/>
</ cor ba: except i on>
</ cor ba: t ypeMappi ng>
</ defi ni ti ons>

106

Configuring Artix to Use the CORBA Plug-in

Configuring Artix to Use the CORBA Plug-in

Overview

Loading the plug-in

Plug-in configuration

The CORBA interopability features of Artix are provided through a plug-in. If
you are using Artix with the CORBA transport, you need to ensure that the
CORBA plug-in is loaded by the Artix runtime and that the plug-in is
properly configured.

To configure the Artix runtime to load the CORBA plug-in add ws_or b to the
or b_pl ugi ns list for your Artix instance. For example, if your Artix instance
is getting its configuration from the configuration scope, the or b_pl ugi ns list
would look like Example 79.

Example 79:0rb_plugin list for CORBA

{
corba_i nterop
{
orb plugins = ["xmfile_|log_streant, "iiop_profile", "giop",
“iiop", "my", "ws_orb", "fixed"];
}
}

The CORBA plug-in is configured using the same configuration variables as
IONA's Application Server Platform’s CORBA implementation. For more
information on configuring the CORBA plug-in, see the Application Server
Platform Configuration Reference.

107

CHAPTER 6 | Working with CORBA

108

In this chapter

CHAPTER 7

Working with
Tuxedo

Artix easily integrates BEA Tuxedo applications with CORBA
and Web service applications.

This chapter discusses the following topics:

Introduction page 110
Using FML Buffers page 111
Using the Tuxedo Transport page 116

109

CHAPTER 7 | Working with Tuxedo

Introduction

Overview

FML support

110

Artix provides integration with BEA Tuxedo applications by supporting use of
the Tuxedo ATMI transport. Artix also supports Field Manipulation Language
(FML) buffers, in Tuxedo Version 7.1 or higher.

Note: BEA Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports BEA Tuxedo integration.

Artix supports the following FML features:

Table 9: Artix FML Feature Support

Feature Supported Not
Supported
16-bit FML Buffers X
32-bit FML Buffers X
VIEWS X
Buffer Pointers X
Embedded 32-bit FML Buffers X
Embedded 32-bit Views X
Character Arrays X
Multi-Byte Character Arrays X
Packed Decimals X
Multiple Occurrence Fields X

Using FML Buffers

Using FML Buffers

Overview

In this section

Field Manipulation Language (FML) buffers allow Tuxedo applications to
manipulate data stored outside of their application space with ease. FML
buffers are described using field table files that may be compiled into C
header files.

Artix enables non-Tuxedo applications to interact with Tuxedo applications
that use FML buffers by translating the data stored in the buffers into data
that the non-Tuxedo application can understand. Artix allows the
non-Tuxedo application to manipulate the data in the buffer in the same
manner as a Tuxedo application.

This section discusses the following topics:

Mapping FML Buffer Descriptions to Artix Contracts page 112

111

CHAPTER 7 | Working with Tuxedo

Mapping FML Buffer Descriptions to Artix Contracts

Overview

Mapping to logical type
descriptions

personal Info Field Table

nane nunber type
name 100 string
age 102 short
hai r Gol or 103 string

112

FML buffers used by Tuxedo applications are described in one of two ways:
® Afield table file that is loaded at run time.

® A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field’s name, id number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable f1 di ds at run time.

The C header file description of an FML buffer simply maps field names to
their f1 di d. The f1did is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field. To
create an FML header file from a field table file, you use the Tuxedo

mkf I dhdr and nkf | dhdr 32 utility programs.

Because FML does not provide a means for determining if a field has
multiple entries without scanning the buffer, FML buffers must be described
as a sequence of sequences. Each field of a buffer is described as an
unbounded sequence of the type specified in the field description table. The
field elements are ordered in increasing order by their f1di d.

For example, the per sonal | nf o structure, defined in Example 2 on page 11,
could be described by the field table file shown in Example 80.

Example 80: personalinfo Field Table File

comrent

Person’ s name
Person’ s age
Person’s hair col or

fl ags

Using FML Buffers

The C++ header file generated by the Tuxedo nkf | dhdr tool to represent
the per sonl I nf o FML buffer is shown in Example 81. Even if you are not
planning to access the FML buffer using the compile time method, you will
need to generate the header file when using Artix because this will give you
the f1di d values for the fields in the buffer.

Example 81: personalinfo C++ header

/* f name fldid */
[* ee--e e */
#def i ne nane ((FLD D) 41060) /* nunber: 100 type: string */
#def i ne age ((FLD D) 102) /* nunber: 102 type: short */

#def i ne hai r Col or ((FLD D) 41063) /* nunber: 103 type: string */

<t ypes>

The order of the elements in the sequence used to logically describe the
FML buffer are ordered in increasing order by 1 di d value. For the

per sonal I nf o FML buffer age must be listed first in the Artix contract
despite the fact that it is the second element listed in the field table. The
corresponding logical description of the FML buffer data in an Artix contract
is shown in Example 82.

Example 82: Logical description of personallnfo FML buffer

<schema t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. w3. or g/ 2001/ XM_Schena"
xm ns: wsdl =" ht t p: // schenmas. xm soap. or g/ wsdl /" >
<conpl exType nane="per sonal | nf oFM_16" >

<sequence>

<el enent nane="age" type="xsd: short" m nCccurs="0" maxCccurs="unbounded"/>
<el enent nane="nane" type="xsd:string" m nGccurs="0" maxCccur s="unbounded"/ >
<el ement name="hai r Col or" type="xsd: string" m nCccurs="0" maxCccurs="unbounded"/>

</ sequence>
</ conpl exType>
</ schenma>
</ types>

Mapping to the physical FML
binding

Artix defines an FML namespace to describe the physical binding of a
message to an FML buffer. To include the FML namespace to your Artix
contract include the following in the <def i ni ti on> element at the beginning
of the contract.

xmns: fm ="http://ww. iona.con bus/fm"

113

CHAPTER 7 | Working with Tuxedo

Example

114

The FML namespace defines a number of elements to extend the Artix
contract’s <bi ndi ng> element. These include:

<fml:binding>
The <f i : bi ndi ng> element identifies that this binding definition is for an

FML buffer. It also specifies the encoding style and transport used with this
message.

The encoding style is specified using the mandatory styl e attribute. The
valid encoding styles are doc and rpc.

The transport is specified using the mandatory transport attribute. This
attribute can take the URI for any of the valid Artix transport definitions.

<fml:idNameMapping>

The <f m : i dNameMappi ng> element contains the map describing how the
element names defined in the logical portion of the contract to the f1di d
values for the corresponding fields in the FML buffer. This map consists of a
series of <f m : el enent > elements whose fi el dNarre attribute is the name of
the logical type describing the element and whose fi el di d attribute is the
f1di d value for the field in the FML buffer. The field elements must be listed
in increasing order of their f1di d values.

The <f mi : i dNareMappi ng> element also specifies if the application is to use
FML16 buffers or FML32 buffers. This is done using the mandatory t ype
attribute. t ype can be either f m 16 for specifying FML16 buffers or f m 32 for
specifying FML32 buffers.

<fml:operation>

The <f i : oper ati on> element is a child of the standard <oper at i on>
element. It informs Artix that the operation’s messages are to be packed into
an FML buffer. <f ni : oper at i on> takes a single attribute, name, whose value
must be identical to the nare attribute of the <oper at i on> element.

For example, the binding for the personallnfo FML buffer, defined in
Example 80 on page 112, will be similar to the binding shown in
Example 83.

Using FML Buffers

Example 83: personallinfo FML binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="per sonal | nf oServi ce" target Nanespace="http://info.org/"
xm ns="ht tp: // schenas. xm soap. or g/ wsdl / "
xm ns: tns="htt p://soapi nt erop. org/ "
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM-Schera"
xm ns: xsd1="ht t p: / / soapi nt er op. or g/ xsd"
xmns: fm ="http://ww i ona. cond bus/ fm ">

<nessage name="r equest | nf 0" >

<part name="request" type="xsdl: personal | nf oFM.16"/ >
</ message>
<nessage name="i nf oRepl y" >

<part name="reply" type="xsdl: personal | nf oFM.16"/ >
</ message>

<port Type nane="per sonal | nf oPort">
<oper ati on name="i nf oRequest ">
<i nput nessage="tns:request | nfo" nanme="request|nfo" />
<out put message="tns: i nfoRepl y" name="i nf oRepl y" />
</ oper at i on>
</ por t Type>

<bi ndi ng nane="per sonal | nf oBi ndi ng" type="tns: personal | nf oPort ">
<fm :binding style="rpc" transport="http://schenas.iona.conitransports/tuxedo"/>
<fm : i dNaneMappi ng type="fni 16" >
<fm:element field\Nane="age" fiel dl d="102" />
<fm:element field\ame="nanme" fi el dl d="41060" />
<fm:element fieldName="hairColor" fieldld="41063" />
</fn :i dNaneMappi ng>

<oper ati on name="i nf oRequest ">
<fm : operati on nanme="i nf oRequest"/ >
<i nput nanme="request | nfo" />
<out put nane="i nf oRepl y" />
</ oper at i on>
</ bi ndi ng>

</ definitions>

115

CHAPTER 7 | Working with Tuxedo

Using the Tuxedo Transport

Overview

Tuxedo namespaces

Defining the Tuxedo services

Mapping operations to a Tuxedo
service

116

Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the namespaces:

xm ns: t uxedo="htt p: // schemas. i ona. con t r ansport s/ t uxedo"
xm ns: pa="http://schenas.iona.com port/attri butes"

These namespace will need to be included in your Artix contract’s
<defini ti on>element.

As with other transports, the Tuxedo transport description is contained
within a <por t > element. Artix uses <t uxedo: ser ver > to describe the
attributes of a Tuxedo port. <t uxedo: ser ver > has a child element,

<t uxedo: ser vi ce>, that gives the bulletin board name of a Tuxedo port. The
bulletin board name for the service is specified in the element’'s nane
attribute. You can define more than one Tuxedo service to act as an
endpoint.

After defining the Tuxedo services that are endpoints, you must map the
operations bound to the port being defined to one of the defined Tuxedo
services. This is done using a <pa: at t ri but eMap> element. The attribute
map element takes one required attribute, attri but e, that is always set to
servi ceNane. The attribute map is defined by <pa: attri but eRul e>
elements. Each attribute rule has two attributes:

val ue Specifies the name of the Tuxedo service on which to
invoke.
oper ati on Specifies the operation name from the binding associated

with the port being defined.

You must create an attribute rule for all of the operations defined for the
port.

Using the Tuxedo Transport

Example An Artix contract exposing the per sonal | nf oServi ce, defined in

Example 83 on page 115, would contain a <ser vi ce> element similar to
Example 84 on page 117.

Example 84: Tuxedo port description

<servi ce name="personal | nf oServi ce">
<port bi ndi ng="t ns: per sonal | nf oBi ndi ng" nane="t uxl nf oPort">
<t uxedo: server >
<t uxedo: servi ce nanme="per sonal | nf oServi ce" />
</t uxedo: server >
<pa: attri buteMap attribute="servi ceNane">
<pa: attribut eRul e val ue="personal | nf oServi ce"

oper at i on="i nf oRequest "/ >
</pa:attribut eMap>
</ port>
</ servi ce>

117

CHAPTER 7 | Working with Tuxedo

118

In this chapter

CHAPTER 8

Working with
TIBCO
Rendezvous

Artix supports the integration of applications using TIBCO
Rendezvous and TIBCO JMS messaging systems. Artix also
supports the use of the TibrvMsg payload format.

This chapter discusses the following topics:

Introduction page 120
Using TibrvMsg page 121
Using the TIB/RV Transport page 125

119

CHAPTER 8 | Working with TIBCO Rendezvous

Introduction

Overview

Requirements

Supported Features

120

The TIBCO Rendezvous plug-in lets you use Artix to integrate systems based
on TIBCO Rendezvous (TIB/RV) software. TIB/RV uses its own proprietary
message schema and transport protocol, and the plug-in bridges these to
and from Artix data types, based on a given WSDL contract and the
mapping rule. Artix also allows you to send raw XML and opaque data
across the TIB/RV messaging transport.

Note: TIBCO Rendezvous integration is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether your
installation supports TIBCO Rendezvous integration.

To use the plug-in, you need to have a TIBCO Rendezvous 7.1 installed on
your system. No special configuration is required for running the plug-in. At
this time, the plug-in is only supported on Solaris 8 and Windows 2000.

Table 10 shows the matrix of TIBCO Rendezvous features Artix supports.

Table 10: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks X

Certified Message Delivery X

Fault Tolerance (Ti br vFt Menber / Moni t or) X
Virtual Connections (Ti br vVcTransport) X
Secure Daemon (rvsd/ Ti br vSDCont ext) X
TI BRUESG | PADDR32 X
TI BRWESG | PPCRT16 X

Using TibrvMsg

Using TibrvMsg

Overview Artix supports the use of the TibrvMsg format when using the TIBCO
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the
interface you are exposing and the TibrvMsg format. The binding description
is placed inside the standard <bi ndi ng> tag and uses the tags listed in
Table 11.

Table 11: TibrvMsg Binding Attributes
Attribute Description
ti brv: bi ndi ng Specifies that the interface is exposed using TibrvMsgs.
ti brv: bi ndi ng@t ri ngEncodi ng Specifies the charset used to encode TI BRUWBG STRI NGdata. Use

IANA preferred MIME charset names
(http://www.iana.org/assignments/character-sets). This parameter
must be the same for both client and server.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.

tibrv:input Specifies that the input message is mapped to a TibrvMsg.

tibrv:input @ortFields Specifies whether the server will sort the input message parts when
they are unmarshalled.

ti brv:input @essageNaneFi el dPat h Specifies the field path that includes the input message name.

ti brv:input @essageNaneFi el dval ue Specifies the field value that corresponds to the input message
name.

ti brv: out put Specifies that the output message is mapped to a TibrvMsg.

ti brv: out put @ortFi el ds Specifies whether the client will sort the output message parts
when they are unmarshalled.

tibrv:out put @essageNaneFi el dPath | Specifies the field path that includes the output message name.

121

http://www.iana.org/assignments/character-sets

CHAPTER 8 | Working with TIBCO Rendezvous

Table 11: TibrvMsg Binding Attributes

Attribute Description
tibrv: out put @essageNarreFi el dVal ue | Specifies the field value that corresponds to the output message
name.
TIBRVMSG type mapping Table 12 shows how TibrvMsg data types are mapped to XSD types in Artix

contracts and C+ + data types in Artix application code.

Table 12: T/BCO to XSD Type Mapping

TIBRVMSG XSD Artix C++
TI BRUMBG_STR NGL xsd: string IT BUS :String
Tl BRVWBG_BOOL xsd: bool ean | T_BUS: : Bool ean
TI BRYMSG | 8 xsd: byt e | T_BUS: : Byte
TI BRVVBG | 16 xsd: short I T_BUS: : Short
TI BRYMSG | 32 xsd: i nt I T_BUS: : I nt
TI BRVMSG | 64 xsd: | ong I T_BUS: : Long
TI BRUMSG_UB xsd: unsi gnedByt e I T_BUS: : UByte
TI BRYMBG_U16 xsd: unsi gnedShor t | T_BUS: : UShor t
TI BRYMBG_U32 xsd: unsi gnedl! nt I T_BUS: : U nt
TI BRYMBG_U64 xsd: unsi gnedLong | T_BUS: : ULong
Tl BRYMBG_F32 xsd: f| oat I T_BUS: : Fl oat
TI BRVVMBG _F64 xsd: doubl e | T_BUS: : Doubl e
TI BRVMBG_STRI NG xsd: deci nal I T_BUS: : Deci nal
Tl BRVVBG _DATETI ME2 xsd: dat eTi e I T_BUS: : Dat eTi ne
TI BRYMBG_CPAQUE xsd: base64Bi nary | T_BUS: : Base64Bi nary
TI BRUMBG_CPAQUE xsd: hexBi nary I T_BUS: : HexBi nary
TI BRUMBG_MBG3 xsd: conpl exType/ sequence | | T_BUS: : SequenceConpl exType

122

Table 12:

Using TibrvMsg

TIBCO to XSD Type Mapping

TIBRVMSG

XSD Artix C++

TI BRYBG M5GA

xsd: conpl exType/ al | I T_BUS: : Al | Conpl exType

TI BRISG_M5GB

xsd: conpl exType/ choi ce I T_BUS: : Choi ceConpl exType

TI BRVVBG _* ARRAY/ MBG6

xsd: conpl exType/ sequence
with el enent
MaxQoccurs > 1

I T_BUS:: Array

TI BRVMBG_* ARRAY/ M5G6

SQOAP- ENC: Array7 I T_BUS:: Array

TI BRVWBG MBGE3

SQOAP- ENV: Faul t 8 I T_BUS: : Faul t Excepti on

TIB/RV does not provide any mechanism to indicate the encoding of
strings in a TibrvMsg. The TIBCO plug-in port definition includes a
property, st ri ngEncodi ng, for specifying the string encoding. However,
neither TIB/RV nor Artix look at this attribute; they merely pass the
data along. It is up to the application developer to handle the encoding
details if desired.

TI BRYMBG_DATATI ME has microsecond precision. However,
xsd: dat eTi e has only millisecond precision. Therefore, when using
Artix sub-millisecond percision will be lost.

Sequences are mapped to nested messages where each element is a
separate field. These fields are placed in the same order as they appear
in the original sequence with field IDs beginning at 1. The fields are
accessed by their field ID.

Alls are mapped to nested messages where each elements is mapped
to a separate field. The fields representing the elements of the all are
given the same field name as element name and field IDs beginning
from 1. They can be accessed by field name beginning from field ID 1.
That means that the order of fields can be changed.

Choices are mapped to nested messages where each elements is a
separate field. Each field is enclosed with the same field name/type as
element name/type of active member, and accessed by field name with
field ID 1.

Arrays having i nteger or float elements are mapped to appropriate
TIB/RV array types; otherwise they are mapped to nested messages.

123

CHAPTER 8 | Working with TIBCO Rendezvous

124

SOAP RPC-encoded multi-dimensional arrays will be treated as
one-dimensional: e.g. a 3x5 array will be serialized as a
one-dimensional array having 15 elements. To keep dimensional
information, use nested sequences with maxCccurs > 1 instead.

When a server response message has a fault, it includes a field of type
TI BRUWWBG MG with the field name faul t and field ID 1. This
submessage has two fields of TI BRUMBG STRI NG One is named

faul t code and has field ID 1, and the other is named faul tstring
and has field ID 2.

Using the TIB/RV Transport

Using the TIB/RV Transport

Overview Artix contract descriptions of TIB/RV ports use a number of Artix specific
WSDL extensions. These extensions allow you to specify a number of
TIB/RV properties for the port.

In this section This section discusses the following topics:
Understanding the TIB/RV Port Properties page 126
Adding a TIB/RV Port to an Artix Contract page 132

125

CHAPTER 8 | Working with TIBCO Rendezvous

Understanding the TIB/RV Port Properties

Port attributes

Table 13 lists the Artix contract elements used to describe a TIB/RV port.

Table 13: TIB/RV Transport Properties

Attribute Explanation
tibrv: port Indicates that the port uses the TIB/RV transport.
tibrv: port @er ver Subj ect A required element that specifies the subject to which

the server listens. This parameter must be the same
between client and server.

tibrv:

port @l i ent Subj ect

Specifies the subject that the client listens to. The
default is to use the transport inbox name. This
parameter only affects clients.

tibrv:

por t @i ndi ngType

Specifies the message binding type.

tibrv:

port @al | backLevel

Specifies the server-side callback level when TIB/RV
system advisory messages are received.

tibrv:

port @esponseDi spat chTi nmeout

Specifies the client-side response receive dispatch
timeout.

tibrv:

port @ransport Servi ce

Specifies the UDP service name or port for
TibrvNetTransport.

tibrv:

port @ransport Net wor k

Specifies the binding network addresses for
TibrvNetTransport.

tibrv:

port @r anspor t Daenon

Specifies the TCP daemon port for the
TibrvNetTransport.

tibrv:

port @ransport Bat chMbde

Specifies if the TIB/RV transport uses batch mode to
send messages.

tibrv:

port @n8uppor t

Specifies if Certified Message Delivery support is
enabled.

tibrv:

port @nTr anspor t Ser ver Nane

Specifies the server's TibrvCmTransport
correspondent name.

126

Using the TIB/RV Transport

Table 13: TIB/RV Transport Properties

Attribute Explanation

tibrv: port @niransport d i ent Name Specifies the client TibrvCmTransport correspondent
name.

ti brv: port @nir anspor t Request d d Specifies if the endpoint can request old messages on
start-up.

ti brv: port @nilr anspor t Ledger Nane Specifies the TibrvCmTransport ledger file.

ti brv: port @nir anspor t SyncLedger Specifies if the endpoint uses a synchronous ledger.

ti brv: port @nir anspor t Rel ayAgent Specifies the endpoint’s TibrvCmTransport relay
agent.

tibrv: port @nilr anspor t Def aul t Ti neLi ni t Specifies the default time limit for a Certified
Message to be delivered.

tibrv: port @nLi st ener Cancel Agr eenent s Specifies if Certified Message agreements are
canceled when the endpoint disconnects.

ti brv: port @nQueueTr anspor t Ser ver Nane Specifies the server's TibrvCmQueueTransport
correspondent name.

ti brv: port @nQueueTr ansport d i ent Nane Specifies the client's TibrvCmQueueTransport
correspondent name.

ti brv: port @nueueTr anspor t Wr ker Vi ght Specifies the endpoint’s TibrvCmQueueTransport
wor ker wei ght .

ti brv: port @nueueTr anspor t Wr ker Tasks Specifies the endpoint’s TibrvCmQueueTransport
wor ker tasks parameter.

tibrv: port @nQueueTr anspor t Schedul er Vi ght Specifies the TibrvCmQueueTransport schedul er
wei ght parameter.

tibrv: port @nQueueTranspor t Schedul er Hear t beat Specifies the endpoint’s TibrvCmQueueTransport
schedul er heartbeat parameter.

tibrv: port @nQueueTr ansport Schedul er Activation | Specifies the TibrvCmQueueTransport schedul er
activation parameter.

ti brv: port @nmQueueTr anspor t Conpl et eTi me Specifies the TibrvCmQueueTransport conpl ete time

parameter.

127

CHAPTER 8 | Working with TIBCO Rendezvous

tibrv:port@bindingType

ti brv: port @i ndi ngType specifies the message binding type. TIB/RV Artix
ports support three types of payload formats as described in Table 14.

Table 14: T/B/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

nsg TibrvMsg

The top-level messages will have fields of type Tl BRYMSG STR NG
The value of each field is the name of a WSDL part name from
the corresponding WSDL message. If the WSDL part is a
primitive type then the value of this type is put against the name
of the WSDL part. If the WSDL part is a complex type then a
nested TibrvMsg is created and added against the WSDL part

name.

xn SOAP, tagged data The message data is encapsulated in a field of TI BRWBG XMW with
a null name and an ID of 0.

opaque fixed record length data, The message data is encapsulated in a field of TI BRYMBG CPAQUE

variable record length data | with a null name and an ID of 0.

tibrv:port@callbackLevel

tibrv:port@responseDispatchTim
eout

tibrv:port@transportService

128

tibrv: port @al | backLevel specifies the server-side callback level when
TIB/RV system advisory messages are received. It has three settings:

° I NFO
° WARN
® ERRCR(default)

This parameter only affects servers.

tibrv: port @esponseDi spat chTi meout specifies the client-side response
receive dispatch timeout. The default is TI BRV_WAl T_FCREVER. Note that if
only the TibrvNetTransport is used and there is no server return response for
a request, then not setting a timeout value causes the client to block forever.
This is because client has no way to know whether any server is processing
on the sending subject or not. In this case, we recommend that

r esponseDi spat chTi neout is set.

tibrv: port @ransport Servi ce specifies the UDP service name or port for
TibrvNetTransport. If empty or omitted, the default is r endezvous. If no

tibrv:port@transportNetwork

tibrv:port@transportDaemon

tibrv:port@transportBatchMode

tibrv:port@cmSupport

tibrv:port@cmTransportServerNa
me

tibrv:port@cmTransportClientNa
me

Using the TIB/RV Transport

corresponding entry exists in / et ¢/ servi ces, 7500 for the TRDP daemon, or
7550 for the PGidaemon will be used. This parameter must be the same for
both client and server.

ti brv: port @r anspor t Net wor k specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224. 0. 1. 78 for the P@GMdaemon. This parameter must
be interoperable between the client and the server.

ti brv: port @r anspor t Daenon specifies the TCP daemon port for
TibrvNetTransport. The default is to use 7500 for the TROP daemon, or 7550
for the PGQvdaemon.

ti brv: port @r anspor t Bat chMbde specifies if the TIB/RV transport uses
batch mode to send messages. The default is f al se which specifies that the
endpoint will send messages as soon as they are ready. When set to true,
the endpoint will send its messages in timed batches.

ti brv: port @nsupport specifies if Certified Message Delivery support is
enabled. The default is f al se which disables CM support. Set this
parameter to t rue to enable CM support.

Note: When CM support is disabled all other CM properties are ignored.

ti brv: port @nir ansport Ser ver Nare specifies the server's
TibrvCmTransport correspondent name. The default is to use a transient
correspondent name. This parameter must be the same for both client and
server if the client also uses Certified Message Delivery.

tibrv: port @niransport d i ent Name specifes the client’s
TibrvCMTransport correspondent name. The default is to use a transient
correspondent name.

129

CHAPTER 8 | Working with TIBCO Rendezvous

tibrv:port@cmTransportRequest
old

tibrv:port@cmTransportLedgerN
ame

tibrv:port@cmTransportSyncLed
ger

tibrv:port@cmTransportRelayAge
nt

tibrv:port@cmTransportDefaultTi
meLimit

tibrv:port@cmListenerCancelAgr
eements

tibrv:port@cmQueueTransportSe
rverName

130

ti brv: port @nilr anspor t Request A d specifies if the endpoint can request
old messages on start-up. requestOld parameter. The default is f al se which
disables the endpoint’s ability to request old messages when it starts up.
Setting this property to t r ue enables the ability to request old messages.

ti brv: port @nilr anspor t Ledger Nare specifes the file name of the
endpoint’s TibrvCMTrasnport ledger. The default is to use an in-process
ledger that is stored in memory.

ti brv: port @nilr anspor t SyncLedger Specifies if the endpoint uses a
synchronous ledger. t r ue specifies that the endpoint uses a synchronous
ledger. The default is f al se.

ti brv: port @nilr anspor t Rel ayAgent Specifies the endpoint’s
TibrvCmTransport relay agent. If this property is not set, the endpoint does
not use a relay agent.

ti brv: port @nilr anspor t Def aul t Ti meLi mit specifies TibrvCmTransport
message default time limit. The default is that no message time limit will be
set.

tibrv: port @nli st ener Cancel Agr eenent s specifies if the TibrvCmListener
cancels Certified Message agreements when the endpoint disconnects.
parameter. If set to t rue, CM agreements are cancelled when the endpoint
disconnects. The default is f al se.

ti brv: port @mQueueTr anspor t Ser ver Nane specifies the server's
TibrvCmQueueTransport correspondent name. If this property is set, the
server listener joins to the distributed queue of the specified name. This
parameter must be the same among the server queue members.

tibrv:port@cmQueueTransportCli
entName

tibrv:port@cmQueueTransportW
orkerWeight

tibrv:port@cmQueueTransportW
orkerTasks

tibrv:port@cmQueueTransportSc
hedulerWeight

tibrv:port@cmQueueTransportSc
hedulerHeartbeat

tibrv:port@cmQueueTransportSc
hedulerActivation

tibrv:port@cmQueueTransportCo
mpleteTime

Using the TIB/RV Transport

ti brv: port @nmQueueTr anspor t A i ent Nane specifies the client’s
TibrvCmQueueTransport correspondent name. If this property is set, the
client listener joins to the distributed queue of the specifies name. This
parameter must be the same among all client queue members.

Note: If distributed queue is enabled on the client side, the transport
does not handle any request-response semantics. This is for load-balanced
polling-type clients, e.g. one client in the distributed queue periodically
invokes an operation that only has outputs and no input, and one listener
in the group processes the response.

ti brv: port @mQueueTr anspor t Wr ker Vi ght specifies the endpoint’s
TibrvCmQueueTransport wor ker wei ght . The default is
Tl BRVOV DEFAULT_WRKER V| GHT.

ti brv: port @mQueueTr anspor t Wr ker Tasks specifies the endpoint’s
TibrvCmQueueTransport wor ker t asks parameter. The default is
Tl BRVOM DEFAULT WRKER TASKS.

ti brv: port @nmQueueTr anspor t Schedul er Wi ght specifies the
TibrvCmQueueTransport schedul er wei ght parameter. The default is
TI BRVCM DEFAULT_SCHEDULER VI GHT.

ti brv: port @nmQueueTr anspor t Schedul er Hear t beat specifies the
TibrvCmQueueTransport schedul er heartbeat parameter. The default is
Tl BRVOM DEFAULT_SCHEDULER HB.

ti brv: port @nmQueueTr anspor t Schedul er Act i vat i on Specifies the
TibrvCmQueueTransport schedul er activati on parameter. The default is
TI BRVCM DEFAULT_SCHEDULER ACTI VE.

ti brv: port @nmQueueTr anspor t Conpl et eTi me specifies the
TibrvCmQueueTransport conpl et e ti me parameter. The default is 0.

131

CHAPTER 8 | Working with TIBCO Rendezvous

Adding a TIB/RV Port to an Artix Contract

Namespace To use the TIB/RV transport, you need to describe the port using TIB/RV in
the physical part of an Artix contract. The extensions used to describe a
TIB/RV port are defined in the namespace:

xm ns: tibrv="http://schenmas.iona.conitransports/tibrv"

This namespace will need to be included in your Artix contract’s
<def i ni ti on> element.

Describing the port As with other transports, the TIB/RV transport description is contained
within a <por t > element. Artix uses <ti brv: port > to describe the attributes
of a TIB/RV port. The only required attribute for a <ti brv: port> is
ser ver Subj ect which specifies the subject to which the server listens.

Example Example 85 shows an Artix description for a TIB/RV port.
Example 85: TIB/RV Port Description

<servi ce nane="BaseServi ce">
<port bi ndi ng="t ns: BasePor t Bi ndi ng" name="BasePort ">

<tibrv:port
server Subj ect =" Arti x. BaseServi ce. BasePort "
/>
</ port >

</ servi ce>

132

In this chapter

CHAPTER 9

Working with
WebSphere MQ

Artix provides the ability to integrate with IBM WebSphere MQ
applications or provide WebSphere MQ qualities of service to
non-WebSphere MQ applications.

This chapter discusses the following topics:

Introduction page 134
Describing an Artix WebSphere MQ Port page 136
Adding an WebSphere MQ Port to an Artix Contract page 172

133

CHAPTER 9 | Working with WebSphere MQ

Introduction

Overview

Integration with synchronous
messaging models

Supported Features

134

Artix provides connectivity to IBM’s WebSphere MQ messaging system. This
connectivity opens several opportunities for using Artix. The most obvious
use is to integrate non-WebSphere MQ applications with WebSphere MQ
applications. Another powerful use of Artix's WebSphere MQ connectivity is
writing Artix code that leverages WebSphere MQ qualities of service to
provide enterprise class solutions.

Note: IBM WebSphere MQ integration is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether your
installation supports IBM WebSphere MQ integration.

Because Artix abstracts the details of the messaging infrastructure from the
application level code, Artix allows for a seamless integration between
WebSphere MQ, which uses an asynchronous messaging model, and
applications that use a synchronous messaging model. Asynchronous
WebSphere MQ applications will still send messages without blocking and
poll the reply queue for a response if one is expected. Synchronous
applications, such as CORBA applications, will continue to block between
making a request and receiving a response. Neither end needs to be aware
of how the other end handles messages.

Table 15 shows the matrix of WebSphere MQ features Artix supports.

Table 15: Supported WebSphere MQ Features

Feature Supported Not
Supported
Dynamic Queue Creation X
SSL X
Queue Manager Clustering X
LDAP X

Table 15: Supported WebSphere MQ Features

Introduction

Feature Supported Not
Supported
Channel Process Pooling X
Wildcards for Security Settings X

135

CHAPTER 9 | Working with WebSphere MQ

Describing an Artix WebSphere MQ Port

Overview To enable Artix to interoperate with WebSphere MQ, you must describe the
WebSphere MQ port in the Artix contract defining the behavior of your Artix
instance. Artix uses a number of proprietary WSDL extensions to specify all
of the attributes that can be set on an WebSphere MQ port. The
XMLSchema describing the extensions used for the WebSphere MQ port
definition is included in the Artix installation under the schenas directory.

In this section This section discusses the following topics:
Configuring an Artix WebSphere MQ Port page 138
QueueManager page 141
QueueName page 142
ReplyQueueName page 143
ReplyQueueManager page 144
ModelQueueName page 145
AliasQueueName page 146
ConnectionName page 148
ConnectionReusable page 149
ConnectionFastPath page 150
UsageStyle page 151
CorrelationStyle page 152
AccessMode page 153
Timeout page 155
MessageExpiry page 156
MessagePriority page 157

136

Describing an Artix WebSphere MQ Port

Delivery page 158
Transactional page 159
ReportOption page 160
Format page 162
Messageld page 164
Correlationld page 165
ApplicationData page 166
AccountingToken page 167
Convert page 168
ApplicationldData page 169
ApplicationOriginData page 170
Userldentification page 171

137

CHAPTER 9 | Working with WebSphere MQ

Configuring an Artix WebSphere MQ Port

Overview The Artix WebSphere MQ port description distinguishes between ports used
for server applications and ports used by client applications because the
port attributes have different implications for serer application and client
applications. Many of the attributes that can be set in an MQ message
descriptor are definable using attributes to the MQ port definition.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace htt p:// schenas. i ona. com bi ndi ngs/ ng.
To use the WebSphere MQ extensions you will need to include the following
in the <defi ni ti ons> tag of your contract:

xm ns: mg="ht t p: // schenas. i ona. con bi ndi ngs/ ng"

WebSphere MQ port elements When describing an WebSphere MQ port in your Artix contract you use two
child elements to the port:

<mq:client> defines a port for a WebSphere MQ client application.

<maq:server> defines a port a WebSphere MQ server application.

You must use at least one of these elements in your Artix WebSphere MQ
port description.

WebSphere MQ port attributes Table 16 lists the attributes that are use to define the properties of a
WebSphere MQ port. They are described in detail in the section that follow
the table.

Table 16: WebSphere MQ Port Attributes

Attributes Description
QueueManager Specifies the name of the queue manager.
QueueNane Specifies the name of the message queue.

138

Describing an Artix WebSphere MQ Port

Table 16: WebSphere MQ Port Attributes

Attributes

Description

Repl yQueueNane

Specifies the name of the queue where response messages are received. This
setting is ignored by WebSphere MQ servers when the client specifies the
Repl yToQin the request message’s message descriptor.

Repl yQueueManager

Specifies the name of the reply queue manager. This setting is ignored by
WebSphere MQ servers when the client specifies the Repl yToQwr in the
request message’s message descriptor.

Mbdel QueueNane

Specifies the name of the queue to be used as a model for creating dynamic
queues.

Al i asQueueNane

Specifies the remote queue to which a server will put replies if its queue
manager is not on the same host as the client’s local queue manager.

Connect i onNane

Specifies the name of the connection by which the adapter connects to the
queue.

Connect i onReusabl e

Specifies if the connection can be used by more than one application.

Connect i onFast Pat h

Specifies if the queue manager will be loaded in process.

UsageStyl e

Specifies if messages can be queued without expecting a response.

Correl ationStyl e

Specifies what identifier is used to correlate request and response messages.

AccessMde

Specifies the level of access applications have to the queue.

Ti neout

Specifies the amount of time within which the send and receive processing
must begin before an error is generated.

MessageExpiry

Specifies the value of the MQ message descriptor's Expi ry field.

MessagePriority

Specifies the value of the MQ message descriptor's Priority field.

Del i very

Specifies the value of the MQ message descriptor's Per si st ence field.

Transacti onal

Specifies if transaction operations must be performed on the messages.

Repor t Opt i on Specifies the value of the MQ message descriptor's Report field.
For mat Specifies the value of the MQ message descriptor's For mat field.
Messagel d Specifies the value for the MQ message decscriptor's Mgl d field..

139

CHAPTER 9 | Working with WebSphere MQ

Table 16: WebSphere MQ Port Attributes

Attributes

Description

Correl ationld

Specifies the value for the MQ message decscriptor's Correl 1d field.

Appl i cati onDat a

Specifies optional information to be associated with the message.

Account i ngToken

Specifies the value for the MQ message decscriptor's Account i ngToken field.

Convert

Specifies in the messages in the queue need to be converted to the system’s
native encoding.

Appl i cati onl dDat a

Specifies the value for the MQ message decscriptor's Appl | denti t yDat a
field.

ApplicationCri gi nDat a

Specifies the value for the MQ message decscriptor's Appl Oi gi nDat a field.

Userldentification

Specifies the value for the MQ message decscriptor's User I denti fi er field.

140

Describing an Artix WebSphere MQ Port

QueueManager

Overview

Example

QueueManager specifies the name of the WebSphere MQ queue manager
used for request messages. Client applications will use this queue manager
to place requests and server applications will use this queue manager to
listen for request messages. You must provide this information when
configuring a Websphere MQ port.

Example 86 shows a simple WebSphere MQ server port configuration for
servers that listen for requests using a queue manager called | eo.

Example 86: MQ Port Definition

<ny: server QueueManager="1e0" QueueNane="requestQ />

141

CHAPTER 9 | Working with WebSphere MQ

QueueName

Overview

Example

142

QueueNane is a required attribute for a WebSphere MQ port. It specifies the
request message queue. Client applications place request messages into this
queue. Server applications take requests from this queue. The queue must

be configured under the specified queue manager before it can be used.

Example 87 shows a definition of a simple WebSphere MQ client that
places oneway requests onto a queue called et her .

Example 87: WebSphere MQ QueueName example

<ny: cl i ent QueueManager="Qmgr" QueueNarme="ether" />

Describing an Artix WebSphere MQ Port

ReplyQueueName

Overview

Server handling of
ReplyQueueName

Example

Repl yQueueNane is mapped to the MQ message descriptor's Repl yToQfield.
It specifies the name of the reply message queue used by the port. When
configuring an MQ client port this attribute is required if the clients expect
replys to their requests. When configuring an MQ server port you can leave
this attribute unset if you are sure that all clients are populating the

Repl yToQfield in the message descriptor of their requests.

When a WebSphere MQ server receives a request, it first looks at the
request’s message descriptor's Repl yToQfield. If the request’'s message
descriptor has Repl yToQset, the server uses the reply queue specified in the
message descriptor and ignores the Repl yQueueNane setting. If the Repl yToQ
field in the message descriptor is not set, the server will use the

Repl yQueueNarre to determine where to send reply messages.

Example 88 shows a WebSphere MQ server port that defaults to placing
reply messages onto the queue out box.

Example 88: MQ Server with ReplyQueueName Set

<ny: server QueueNane="et her" QueueManager ="| eo"
Repl yQueueNarre="out box" Repl yQueueManager =" pager" />

143

CHAPTER 9 | Working with WebSphere MQ

ReplyQueueManager

Overview

Server handling of
ReplyQueueManager

Example

144

Repl yQueueManager is mapped to the MQ message descriptor’'s Repl yToQwr
field. It specifies the name of the WebSphere MQ queue manager that
controls the reply message queue. When configuring an MQ client port this
attribute is required if the clients expect replys to their requests. When
configuring an MQ server port you can leave this attribute unset if you are
sure that all clients are populating the Repl yToQwr field in the message
descriptor of their requests.

When a WebSphere MQ server receives a request, it first looks at the
request’s message descriptor's Repl yToQwr field. If the request’'s message
descriptor has Repl yToQVigr set, the server uses the reply queue specified in
the message descriptor and ignores the Repl yQueueManager setting. If the
Repl yToQwr field in the message descriptor is not set, the server will use
the Repl yQueueManager to determine where to send reply messages.

Example 89 shows a WebSphere MQ client port that is configured to receive
replies from the server defined in Example 88 on page 143.

Example 89: MQ Client with ReplyQueueName Set

<ny: cl i ent QueueNane="et her" QueueManager="| eo"
Repl yQueueNane="out box" Repl yQueueManager =" pager" />

Describing an Artix WebSphere MQ Port

ModelQueueName

Overview Model QueueNane is only needed if you are using dynamically created queues.
It specifies the name of the queue from which the dynamically created
queues are created.

145

CHAPTER 9 | Working with WebSphere MQ

AliasQueueName

Overview

Effect of AliasQueueName

Example

146

When interoperating between WebSphere MQ applications whose queue
managers are on different hosts, Artix requires that you specify the name of
the remote queue to which the server will post reply messages. This ensures
that the server will put the replies on the proper queue. Otherwise, the
server will recieve a request message with the Repl yToQfield set to a queue
that is managed by a queue manager on a remote host and will be unable to
send the reply.

You specify this server's local reply queue name in the WebSphere MQ
client’s Al i asQueueNane attribute when you define it in an Artix contract.

When you specify a value for Al i asQueueNare in a WebSphere MQ client
port definition, you are altering how Artix populates the request message’s
Repl yToQfield and Repl yToQwr field. Typically, Artix populates the reply
queue information in the request message’s message descriptor with the
values specified in Repl yQueueManager and Repl yQueueNane. Setting

Al i asQueueNarre cuases Artix to leave Repl yt oQwyr empty, and to set

Repl yToQto the value of Al i asQueueNane. When the Repl yToQwr field of
the message descriptor is left empty, the sending queue manager inspects
the queue named in the Repl yToQfield to determine who its queue manager
is and uses that value for Repl yToQwr . The server puts the message on the
remote queue that is configured as a proxy for the client’s local reply queue.

If you had a system defined similar to that shown in Figure 3, you would
need to use the Al i asQueueNane attribute setting when configuring your
WebSphere MQ client. In this set up the client is running on a host with a
local queue manager Qwr A. Qwr A has two queues configured. RyA is a
remote queue that is a proxy for RgB and Rpl yA is a local queue. The server
is running on a different machine whose local queue manager is Qwr B.

Describing an Artix WebSphere MQ Port

Qwr B also has two queues. RgB is a local queue and Rol yB is a remote
queue that is a proxy for Rol yA. The client places its request on RgA and
expects replies to arrive on Rpl yA.

Client Server
QMgrA QMgrB
RqA RqB
RplyA RplyB

Figure 3: MQ Remote Queues

The Artix WebSphere MQ port definitions for the client and server for this
deployment are shown in Example 90. Al i asQueueNare is set to Rol yB
because that is the remote queue proxying for the reply queue on in server's
local queue manager. Repl yQueueManager and Repl yQueueNane are set to
the client’s local queue manager so that it knows where to listen for
responses. In this example, the server's Repl yQueueManager and

Repl yQueueNare do not need to be set because you are asured that the
client is populating the request’'s message descriptor with the needed
information for the server to determine where replies are sent,

Example 90: Setting Up WebSphere MQ Ports for Intercommunication

<ng: cl i ent QueueManager="Qwgr A" QueueNane="RgA"
Repl yQueueManager =" QWir A" Repl yQueueNanme="Rpl yA"
Al i asQueueNane=" Rpl yB"
Format ="string" Convert="true" />

<ny: server QueueManager ="QwrB" QueueNane="RgB"
Format="String" Convert="true" />

147

CHAPTER 9 | Working with WebSphere MQ

ConnectionName

Overview Connect i onNane specifies the name of the connection Artix uses to connect
to its queue.

Note: If you set Correl ati onStyl e to messagel D copy and specify a
value for Connect i onNare your system will not work as expected.

148

Describing an Artix WebSphere MQ Port

ConnectionReusable

Overview Connect i onReusabl e specifies if the connection named in the
Connect i onNane field can be used by more than one application. Valid
entries are true and f al se. Defaults to fal se.

149

CHAPTER 9 | Working with WebSphere

MQ

ConnectionFastPath

Overview

Example

150

Connect i onFast Pat h specifies if you want to load the request queue
manager in process. Valid entries are true and f al se. Defaults to f al se.

Example 91 shows a WebSphere MQ client port that loads its request queue
manager in process.

Example 91: WebSphere Client Port using ConnectionfastPath
<ny: cl i ent QueueNane="gate" QueueManager="dhd"

Repl yQueueNane="i nbound" Repl yQueueManager="fli psi de"
Connect i onFast Pat h="true" />

Describing an Artix WebSphere MQ Port

UsageStyle

Overview

Attribute settings

Example

UsageStyl e specifies if a message can be queued without expecting a
response. Valid entries are peer, requester, and responder . The default
value is peer .

The behavior of each setting is described in Table 17.

Table 17: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response.

r equest er Specifies that the message sender expects a
response message.

r esponder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

In Example 92, the WebSphere MQ client wants a response from the server
and needs to be able to associate the response with the request that
generated it. Setting the UsageSt yl e to responder ensures that the server's
response will properly populate the response message descriptor's Correl I D
field according to the defined correlation style. In this case, the correlation
style is set to correl ati onl d.

Example 92: MQ Client with UsageStyle Set
<ng: cl i ent QueueManager =" post mast er" QueueNanme="eddi e"
Repl yQueueManager =" post mast er" Repl yQueueNanme="f r ed"

UsageStyl e="r esponder"
Correl ati onStyl e="correl ationld" />

151

CHAPTER 9 | Working with WebSphere MQ

CorrelationStyle

Overview

Attribute settings

Correl ati onStyl e determines how WebSphere MQ matches both the
message identifier and the correlation identifier to select a particular
message to be retrieved from the queue (this is accomplished by setting the
corresponding MQMD MATCH_MSG | D and MQMD MATCH OCRREL_I Din the

Mat chQpt i ons field in M@V to indicate that those fields should be used as
selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are nessagel d,
correl ati onl d, and messagel d copy.

Note: When a value is specified for Connect i onNare, you cannot use
nessagel D copy as the correlation style.

Table 18 shows the actions of MQGET and MJPUT when receiving a message
using a WSDL specified message ID and a WSDL specified correlation ID.

Table 18: MQGET and MQPUT Actions

Artix Port Setting Action for MQGET Action for MQPUT

nessagel d Set the Correl 1d of the message Copy Messagel Donto the message
descriptor to Messagel D. descriptor’s Correl I d.

correl ationld Set Correl I d of the message descriptor to | Copy Correl ati onl Donto message
Correl ationl D. descriptor’s Correl I d.

messagel d copy Set Msgl d of the message descriptor to Copy Messagel D onto message
messagel D. descriptor's Msgl d.

Example

152

Example 93 shows a WebSphere MQ client application that wants to
correlate messages using the messagel D copy setting.

Example 93: MQ Client using messagelD copy
<ny: cl i ent QueueManager ="grub" QueueNarme="gnone"

Repl yQueueManager ="1i | 0" Repl yQueueNane="kde"
Correl ati onStyl e="nessagel d copy" />

Describing an Artix WebSphere MQ Port

AccessMode

Overview

Attribute settings

AccessMde controls the action of MQOPEN in the Artix WebSphere MQ
transport. Its values can be peek, send, reci ve, recei ve excl usi ve, and
recei ve shared. Each setting mapping corresponds to a WebSphere MQ
setting for the MQOPEN. The default is r eci eve.

Table 19 describes the correlation between the Artix attribute settings and
the MQOPEN settings.

Table 19: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO BROABE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO QUTPUT. send opens a queue
to put messages into it. The queue is opened for
use with subsequent MZPUT calls.

recei ve (default) | Equivalent to MQOO | NPUT_AS Q DEF. recei ve
opens a queue to get messages using a
queue-defined default. The default value depends
on the Def I nput QpenQpt i on queue attribute
(MO I NPUT_EXQLUSI VE or MOD | NPUT_SHARED).

reci eve exclusive | Equivalent to MQOO | NPUT_EXCLUSI VE. r ecei ve
excl usi ve opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_CBJECT_| N_USE if the queue is
currently open (by this or another application) for
input of any type.

153

CHAPTER 9 | Working with WebSphere MQ

Table 19: Artix WebSphere MQ Access Modes

Attribute Setting

Description

recei ve shared

Equivalent to MQOO | NPUT_SHARED. r ecei ve

shar ed opens queue to get messages with shared
access. The queue is opened for use with
subsequent MIGET calls. The call can succeed if
the queue is currently open by this or another
application with MO0 | NPUT_SHARED.

Example Example 94 shows the settings for a WebSphere MQ server port that is set
up so that only one application at a time can access the queue.

Example 94: WebSphere MQ Server setting AccessMode

<ny: server QeueManager ="wel k" QueueNanme="anacani "
Repl yQueueManager =" sever i nsen" Repl yQueueNane="j ohnny"
AccessMbde="r eci eve excl usive" />

154

Describing an Artix WebSphere MQ Port

Timeout

Overview

Example

Ti meout specifies the amount of time, in milliseconds, between a request
and the cooresponding reply before an error message is generated. If the
reply to a particular request has not arrived after the specified period, it is
treated as an error.

Example 95 shows the settings for a MQ client port where replies are
required in at most 3 minutes.

Example 95: WebSphere MQ Client Port with a 3 Minute Timeout
<ny: cli ent QueueManager="jpl" QueueNane="appol | 0"

Repl yQueueManager ="j pl " Repl yQueueNane="rrer cury"
Ti meout =" 180000" />

155

CHAPTER 9 | Working with WebSphere MQ

MessageExpiry

Overview

Example

156

MessageExpi ry is mapped to the MQ message descriptor's Expi ry field. It
specifies message lifetime, expressed in tenths of a second. It is set by the
Artix endpoint that puts the message onto the queue. The message becomes
eligible to be discarded if it has not been removed from the destination
queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the
put is to a remote queue. It may also be decremented by message channel
agents to reflect transmission times, if these are significant.

MessageExpi ry can also be set to | NFI N TE which indicates that the
messages have unlimited lifetime and will never be eligible for deletion. If
MessageExpi ry is not specified, it defaults to | NFI NI TE lifetime.

Example 96 shows the settings for a WebSphere MQ client port where the
messages sent from applications using this port have a lifetime of 30
minutes.

Example 96: Client Port with a 3 Minute Message Lifetime
<ng: cl i ent QueueManager ="dom no" QueueNane="dot "

Repl yQueueManager =" dom no" Repl yQueueNane="cash"
MessageExpi ry="18000" />

Describing an Artix WebSphere MQ Port

MessagePriority

Overview

MessagePriority is mapped to the MQ message descriptor's Priority
fileld. It specifies the message’s priority. Its value must be greater than or
equal to zero; zero is the lowest priority. If not specified, this field defaults to
priority nornal, which is 5. The special values for MessagePriority
include hi ghest (9), hi gh (7), nmedi um(5), | ow(3) and | owest (0).

157

CHAPTER 9 | Working with WebSphere MQ

Delivery

Overview

Example

158

Del i very can be persi stent or not persistent. persistent means that
the message survives both system failures and restarts of the queue
manager. Internally, this sets the MQVMD's Per si st ence field to

MZPER _PERSI STENT or MQPER_NOT_PERS| STENT. The default value is not

per si stent. To support transactional messaging, you must make the
messages per si stent .

Example 97 shows the settings for a WebSphere MQ port that sends
persistent oneway messages.

Example 97: Persistent WebSphere MQ Port

<ny: cl i ent QueueManager ="noi nt or" QueueName="nsgQ'
Del i very="persi stent" />

Describing an Artix WebSphere MQ Port

Transactional

Overview Transact i onal controls how messages participate in transactions and what
role Webshpere MQ plays in the transactions.

Attribute settings The values of this attribute are explained in Table 20.

Table 20: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
roleback actions will be taken if errors occur.

i nternal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a transaction with
WebSphere MQ serving as the resource manager.

Example Example 98 shows the settings for a WebSphere MQ client port whose
requests will be part of transactions managed by WebSphere MQ. Note that
the Del i very attribute must be set to persi st ent when using transactions.

Example 98: MQ Client setup to use Transactions

<ny: cl i ent QueueManager ="her ran" QueueNane="eddi e"
Repl yQueueManager =" gonez" Repl yQueueNane="| ur ch"
UsageStyl e="responder" Delivery="persistent"
Correl ati onStyl e="correl ati onl d"
Transactional ="internal " />

159

CHAPTER 9 | Working with WebSphere MQ

ReportOption

Overview Report Qpt i on is mapped the MQ message descriptor’s Report field. It
enables the application sending the original message to specify which report
messages are required, whether the application message data is to be
included in them, and how the message and correlation identifiers in the
report or reply message are to be set. Artix only allows you to specify one
Report Qpt i on per Artix port. Setting more than one will result in
unpredictable behavior.

Attribute settings The values of this attribute are explained in Table 21.

Table 21: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO NONE. none specifies that no
reports are required. You should never specifically
set Report Opt i on to none; it will create validation
errors in the contract.

coa Corresponds to MQRO_OQA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO QCD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.

160

Describing an Artix WebSphere MQ Port

Table 21: ReportOption Attribute Settings

Attribute Setting Description

exception Corresponds to MQRO_EXCEPTI ON. except i on
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
gueue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPI RATI ON. expi rati on
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.

di scard Corresponds to MQRO DIl SCARD MSG. di scard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Example Example 99 shows the settings for a WebSphere MQ client that wants to be
notified if any of its message expire before they are delivered.

Example 99: MQ Client Setup to Receive Expiration Reports
<ny: cl i ent QueueManager ="her man" QueueNane="eddi e"

Repl yQueueManager =" gonez" Repl yQueueNane="| ur ch"
Report Opti on="expi ration" />

161

CHAPTER 9 | Working with WebSphere MQ

Format

Overview

Special values

162

Format is mapped to the MQ message descriptor’s For nat field. It specifies
an optional format name to indicate to the receiver the nature of the data in
the message. The name may contain any character in the queue manager's
character set, but it is recommended that the name be restricted to the

following:

® Uppercase A through Z

® Numeric digits O through 9

For mat Type can take the special values none, string, event, programabl e
command, and uni code. These settings are described in Table 22.

Table 22: FormatType Attribute Settings

Attribute Setting

Description

none (Defaul t)

Corresponds to MFMI_NCNE. No format name
is specified.

string

Corresponds to MFMI_STR NG. st ri ng
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

uni code

Corresponds to MFMI_STR NG. uni code
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)

event

Corresponds to MFMI_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

Example

Describing an Artix WebSphere MQ Port

Table 22: FormatType Attribute Settings

Attribute Setting

Description

pr ogr anmabl e comand

Corresponds to MFMI_PCF. pr ogr anmabl e
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

When you are interoperating with WebSphere MQ applications host on a
mainframe and the data needs to be converted into the systems native data
format, you should set Format to string. Not doing so will result in the
mainframe receiving corrupted data.

Example 100 shows a WebSphere MQ client port used for making requests
against a server on a mainframe system. Note that the Convert attribute is
set to true signifying that WebSphere will convert the data into the
mainframes native data mapping.

Example 100:WebSphere MQ Client Talking to the Mainframe

<ng: cl i ent QueueManager="hunter" QueueNane="hbi gQuy"
Repl yQueueManager ="sl at e" Repl yQueueName="r usty"
Format="string" Convert="true"/>

163

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 9 | Working with WebSphere MQ

Messageld

Overview

Example

164

Messagel d is is mapped to the MQ message descriptor's Msgl d field. It is an
alphanumeric string of up to 20 bytes in length. Depending on the setting of
Correl ati onStyl e, this string may be used to correlate request and
response messages with each other. A value must be specified in this
attribute if Correl ati onStyl e is set to none.

Example 101 shows the settings for a WebSphere MQ client that wants to
use message lds to correlate response and request messages.

Example 101:WebSphere MQ Client using MessagelD
<nyg: cl i ent QueueManager="QV QueueNanme="reqQueue"

Repl yQueueManager =" RQM' Repl yQueueNane="RepQueue"
Correl ati onStyl e="nessagel d* Messagel D="f 00"/ >

Describing an Artix WebSphere MQ Port

Correlationld

Overview

Example

Correl ationldis mapped to the MQ message descriptor’s Correl | d field. It
is an alphanumeric string of up to 20 bytes in length. Depending on the
setting of Correl ati onStyl e, this string will be used to correlate request
and response messages with each other. A value must be specified in this
attribute if Correl ati onStyl e is set to none.

Example 102 shows the settings for a WebSphere MQ client that wants to
use correlation Ids to correlate response and request messages.

Example 102:WebSphere MQ Client using CorrelationID
<ny: cli ent QueueManager="QV QueueNanme="regQueue"

Repl yQueueManager =" RQM' Repl yQueueNane=" RepQueue"
Correl ati onStyl e="correl ationld" Correl ati onl D="f 00"/ >

165

CHAPTER 9 | Working with WebSphere MQ

ApplicationData

Overview Appl i cat i onDat a specifies any application specific information that needs
to be set in the message header.

166

Describing an Artix WebSphere MQ Port

AccountingToken

Overview

Example

Account i ngToken is mapped to the MQ message descriptor's
Account i ngToken field. It specifies application specific information used for
accounting purposes.

Example 103 shows the settings for a WebSphere MQ client used for
making requests against a server on a mainframe system that keeps tracks
of what department is using its resources.

Example 103:WebSphere MQ Client Sending Accounting Token
<ny: cl i ent QueueManager="hunter" QueueNane="hi gQuy"
Repl yQueueManager =" sl at e" Repl yQueueNanme="r usty"

Format ="string" Convert="true"
Account i ngToken="dar kHor se" />

167

CHAPTER 9 | Working with WebSphere MQ

Convert

Overview

Example

168

Convert specifies if messages are to be converted to the receiving systems
native data format. Valid values are true and f al se. Default is f al se.

Note: The WebSphere MQ transport will always attempt to convert string
data and always ignore non-string data. This setting is ignored.

Example 104 shows a WebSphere MQ client port used for making requests
against a server on a Unix system.

Example 104:WebSphere MQ Client using Convert
<ny: cl i ent QueueManager ="at n5" QueueName="ReqQ'

Repl yQueueManager =" hpux1" Repl yQueueNane="RepQ'
Format ="stri ng" Convert="true"/>

Describing an Artix WebSphere MQ Port

ApplicationldData

Overview

Appl i cationl dDat a is mapped to the MQ message descriptor’s

Appl I denti t yDat a field. It is application specific string data that can be
used to provide additional information about the message or the applciation
from which it originated. This attribute is only valid when defining
Websphere MQ clients using an <nu: cl i ent > element.

169

CHAPTER 9 | Working with WebSphere MQ

ApplicationOriginData

Overview

Example

170

Appl i cationQi gi nDat a is mapped to the MQ message descriptor's
Appl O'i gi nDat a field. It is application specific string data that can be used
to provide additional information about the origin of the message.

Example 105 shows the settings for a WebSphere MQ client that wants to
identify itself to the server.

Example 105:WebSphere MQ Client Sending Origin Data
<nyg: cl i ent QueueManager="QV QueueNanme="reqQueue"

Repl yQueueManager =" RQM' Repl yQueueNane="RepQueue"
Appl i cationCri gi nData="SSLclient" />

Describing an Artix WebSphere MQ Port

Userldentification

Overview

Example

User | denti fication is mapped to the MQ message descriptor's

User I denti fier field. It is a string that represents the User ID of the
application from which the message originated. This attribute is only valid
when defining Websphere MQ clients using an <ng: cl i ent > element.

Example 106 shows the settings for a WebSphere MQ client that needs to
specify the User that is making the request.

Example 106:WebSphere MQ Client Sending UserlD
<ny: cl i ent QueueManager="QV QueueNane="reqQueue"

Repl yQueueManager =" RQM' Repl yQueueNane=" RepQueue"
User | dentification="tux" />

171

CHAPTER 9 | Working with WebSphere MQ

Adding an WebSphere MQ Port to an Artix

Contract

Overview

WebSphere MQ namespace

172

The description for an Artix WebSphere MQ port is entered in a <port >
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

<maq:client> defines a port for a WebSphere MQ client application.

<mq:server> defines a port a WebSphere MQ server application.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace htt p:// schenas. i ona. com bi ndi ngs/ ng.
To use the WebSphere MQ extensions you will need to include the following
in the <defi ni ti ons> tag of your contract:

xm ns: mg="ht t p: // schenas. i ona. coni bi ndi ngs/ ng"

Adding an WebSphere MQ Port to an Artix Contract

Example An Artix contract exposing an interface, nonst er Bash, bound to a SOAP
payload format, Raydon, on an WebSphere MQ queue, U traMan would
contain a service element similar to Example 107.

Example 107:Sample WebSphere MQ Port

<servi ce name="Mt hra">
<port name="X' bi ndi ng="t ns: Raydon" >
<ny: server QueueManager =" UVA'
QueueNarre="U t r aMan"
Repl yQueueManager =" W NR'
Repl yQueueNane="H ek"
AccessMbde="r ecei ve"
Correl ati onStyl e="nessagel d copy"/>
</ port>
</ servi ce>

173

CHAPTER 9 | Working with WebSphere MQ

174

Overview

CHAPTER 10

Working with the
Java Messaging
System

Artix allows C++ applications to take advantage of the Java
Messaging System.

The Java Messaging System(JMS) provides a standardized means for Java
applications to send messages. Artix provides a transport plug-in that
enables systems to place and receive messages from JMS message queues
and topics. One large advantage of this is that Artix allows C+ +
applications to interact directly with Java applications over JMS.

Note: JMS integration is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports JMS integration.

Artix's JMS transport plug-in uses JNDI to locate and obtain references to
the JMS provider that brokers for the JMS destination with which it wants to
connect. The destinations are specified in the Artix contract describing the
application and can be changed without any change in the application code.
Once Artix has established a connection to a JMS provider, Artix supports
the passing of messages packaged as either a JMS Qbj ect Message or a JMS
Text Message.

175

CHAPTER 10 | Working with the Java Messaging System

Message formatting

Port configuration

176

The Artix JMS transport supports the following Artix payload format
bindings:

* SOAP
® Fixed

® Tagged
® XML

The JMS transport takes the payload formatting and packages it into either a
JMS Quj ect Message or a Text Message. When a message is packaged as an
vj ect Message the message information, any format specific information, is
serialized into a byte[] and placed into the JMS message body. When a
message is packaged as a Text Message, the message information, including
any format specific information, is converted into a string and placed into
the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS
application is responsible for understanding how to interpret the message
and the formatting information. For example, if the Artix contract specifies
that the binding used for a JMS port is SOAP, and the messages are
packaged as Text Message, the receiving JMS application will get a text
message containing all of the SOAP envelope information. For a message
encoded using the fixed binding, the message will contain no formatting
information, simply a string of characters, numbers, and spaces.

Artix JMS ports are configured entirely in the Artix contract describing your
service. The JMS port configuration is done by using a <j ns: addr ess>
element in your service’s <port > description. <j ns: addr ess> takes six
required attributes to configure the JMS connection:

destinationStyl e Specifies if the JMS destination is a JMS
queue or a JMS topic.
j ndi Provi der URL Specifies the URL of the JNDI service where

the connection information for the JMS
destination is stored.

Example

initial ContextFactory

j ndi Connect i onFact or yNane

j ndi Desti nati onNane

nmessageType

Specifies the name of the

I ni tial ContextFactory class or a list of
package prefixes used to construct URL
context factory classnames. For more details
on specifying a JNDI I ni ti al Cont ext Factory,
see “JNDI InitalContextFactory settings” on
page 177.

Specifies the JNDI name bound to the JMS
connection factory to use when connecting to
the JMS destination.

Specifies the JNDI name bound to the JMS
destination to which Artix connects.

Specifies how the message data will be
packaged as a JMS message. text specifies
that the data will be packaged as a

Text Message. bi nary specifies that the data
will be packaged as an (bj ect Message.

Example 108 shows an example of an Artix JMS port specification.

Example 108:Artix JMS Port

<servi ce name="Hel | oWr| dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng" nanme="Hel | oVor | dPort ">
<j ms: addr ess desti nati onStyl e="queue"

j ndi Provi der URL="t cp: / /| ocal host : 2506"

i nitial Cont ext Fact or y="com soni csw. j ndi . nf cont ext . M-Cont ext Fact or y"

j ndi Connect i onFact or yNane=" QCF"

j ndi Desti nat i onNane="t est Queue"
nessageType="text" />

</ port>
</ servi ce>

JNDI InitalContextFactory
settings

The usual method of specifying the JNDI is to enter the class name provided
by your JNDI provider. In Example 108, the JMS port is using the JNDI
provided with SonicMQ and the class specified,

com soni csw. j ndi . nf cont ext . MFCont ext Fact ory, is the class used by

Sonic's JNDI server to create

a JNDI context.

177

CHAPTER 10 | Working with the Java Messaging System

Alternatively, you can specify a colon separated list of package prefixes to
use when loading URL context factories. The JNDI service takes each
package prefix and appends the URL schema name to form a sub-package.
It then prepends the URL schema name to URLCont ext Fact ory to form a
class name within the sub-package. Once the new class name is formed,
the JNDI service then tries to instantiate the class using the newly formed
name. For example, if your Artix contract described the JMS port shown in
Example 109, the JNDI service would instantiate a context factory with the
class name com i ona. j bus. j ns. nam ng. soni c. soni cURLCont ext Fact ory to
perform lookups.

Example 109:JMS Port with Alternate InitialContextFactory Specification

<servi ce name="Hel | oWr | dServi ce">
<port bindi ng="t ns: Hel | oWr | dPor t Bi ndi ng" name="Hel | oV&r| dPort" >
<j ms: address desti nati onStyl e=" queue"

</ port>
</ servi ce>

178

j ndi Provi der URL="t cp: / /| ocal host : 2506"

initial ContextFact ory="com i ona.j bus. j ns. nam ng"

j ndi Connect i onFact or yNanme="soni c: j ns/ queue/ connect i onFact or y"
j ndi Desti nat i onNane="soni c: j ns/ queue/ hel | oWr | dQueue"
messageType="text" />

The URLCont ext Fact ory then uses the URL specified in the

j ndi Connect i onFact or yNane and the j ndi Dest i nat i onFact or yNane
attributes to obtain references to the desired JMS Connect i onFact ory and
the desired JMS Desti nati on. The JNDI service is completely bypassed
using this method and allows you to connect to JMS implementations that
do not use JNDI or to connect to JMS Desti nati on that are not registered
with the JNDI service.

So instead of looking up the JMS Connect i onFact ory using the JNDI name
bound to it, Artix will get a reference directly to Connect i onFact ory using
the name given to it when it was created. Using the contract in

Example 109, Artix would use the URL soni c: j ns/ queue/ hel | oVr | dQueue
to get a reference to the desired queue. Artix would be handed a reference to
a queue named hel | oWr | dQueue if the JMS broker has such a queue.

Note: Due to a known bug in the SonicMQ JNDI service, it is
recommended that you use this method of specifying the
I ni tial Cont ext Fact ory when using SonicMQ.

In this chapter

CHAPTER 11

Working with
HTTP

The HTTP plug-in lets you configure an Artix integration
solution to use the HTTP transport. This chapter first provides
a brief introductory overview of HTTP. It then provides a
description of the WSDL extensions involved. Finally it
provides an overview of the WSDL extension schema that
supports the use of HTTP with Artix.

This chapter discusses the following topics:

HTTP Overview page 180
HTTP WSDL Extensions page 187
HTTP Transport Attributes page 208

179

CHAPTER 11 | Working with HTTP

HTTP Overview

Overview

What is HTTP?

Resources and URLs

180

This section provides an introductory overview of the hypertext transport
protocol (HTTP). The following topics are discussed:

® “Whatis HTTP?” on page 180.

® “Resources and URLs” on page 180.

® “HTTP transaction processing” on page 181.

® “Format of HTTP client requests” on page 181.
® “Format of HTTP server responses” on page 183.
® “HTTP properties” on page 184.

Note: A complete introduction to HTTP is outside the scope of this guide.
For more details about HTTP see the W3C HTTP specification at
http://wawv W8. or g/ Prot ocol s/ rfc2616/ rfc2616. ht m .

HTTP is the standard TCP/IP-based protocol used for client-server

communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

HTTP is termed an application protocol. It defines how messages between
web browsers and web servers should be formatted and transmitted. It also
defines how web browsers and web servers should behave in response to
various commands.

The files and other information that can be transmitted are collectively
known as resources. A resource is basically a block of information. Files are
the most common example of resources and they can be in various
multimedia formats, such as text, graphics, sound, and video. Other
examples of resources are server-side script output or dynamically generated
query results.

HTTP transaction processing

Format of HTTP client requests

HTTP Overview

A resource is identifiable by a uniform resource locator (URL). As its name
suggests, a URL is the address or location of a resource. A URL typically
consists of protocol information followed by host (and optionally port)
information followed by the full path to the resource. HTTP is not the only
protocol or mechanism for data transfer; other examples include TELNET or
the file transfer protocol (FTP). Each of the following is an example of a
URL:

o htt p: //wwv i ona. cond suppor t/ docs/ i ndex. xm

® ftp://ftp.omy. org/ pub/ docs/ formal / 01- 12- 35. pdf
® telnet://xyz.com

In the first of the preceding examples, htt p: denotes that the protocol for
data transfer is HTTP, // www i ona. comdenotes the hostname where the
resource resides, and / suppor t/ docs/ i ndex. xmt is the full path to the
resource (in this case, an XML text file). The other URLs follow similar
patterns.

When a web user on the client-side requests a resource, either by typing a
URL or by clicking on a hypertext link, the client browser builds an HTTP
request and opens a TCP/IP socket connection to send the request to the
internet protocol (IP) address for the host denoted by the URL for the
requested resource. The web server host contains an HTTP daemon that
waits for client browser requests and handles them when they arrive. When
the HTTP daemon receives a request, the requested resource is then
returned to the client browser. The server's response can take the form of
HTML pages and possibly other programs in the form of ActiveX controls or
Java applets.

The following is an example of the typical format of an HTTP client request:
CGET REQUEST-UR HTTP/ 1.1
header field: value

header field: val ue

HTTP request body (if applicable)

181

CHAPTER 11 | Working with HTTP

The preceding code can be explained as follows:

CGET

REQUEST- LR

HTTP/ 1.1

header field

HTTP request
body

182

This is an HTTP method that instructs the server to return
the requested resource.

Other HTTP methods might be used here instead. These

include:

® HeAD—this instructs the server to just return
information about the resource (in headers) but not
the actual resource itself.

® pcsT—this can be used if you want to send data in
the body of the request for subsequent processing
by the server.

® pur—this can be used to replace the contents of the
target resource with data from the client.

Note: GET is the most commonly used method in HTTP
client requests.

This represents the URL of the resource that the client is
requesting. The typical format of a URL is:

htt p: // host narre/ pat h-t o-r esour ce

For example:
http://wwv i ona. cond suppor t/ docs/ i ndex. xm

This indicates that the client is using HTTP to transmit
the request, and the version of HTTP that the client is
using (in this example, 1. 1).

Header information can be included to provide
information about the request. In HTTP 1.1, the only
mandatory header field is Host :, to identify the host
where the requested resource resides.

In Artix, a number of HTTP client request headers can be
configured and sent as part of a client request to a server.
See “HTTP WSDL Extensions” on page 187 and “Server
Transport Attributes” on page 210 for more details.

This can contain user-entered data or files that are being
sent to the server for processing.

Note: This is typically blank in an HTTP request unless
the PUT or PCST method is specified.

HTTP Overview

Format of HTTP server responses The following is an example of the typical format of an HTTP server
response:

HTTP/ 1.1 200 K
header field: val ue
header field: val ue

HTTP response body

The preceding code can be explained as follows:

HTTP/ 1. 1 This indicates that the server is using HTTP to transmit
the response, and the version of HTTP that the server is
using (in this example, 1. 1).

200 K This is status information that indicates whether the
request was processed successfully. The 3-digit code is
meant to be machine-readable, and the accompanying
descriptive text is for human consumption.

Status codes can be broadly described as follows:

® 2xx—A status code starting with 2 means the
request was processed successfully.

® 3xx—A status code starting with 3 means the
resource is now located elsewhere and the client
should redirect the request to that new location.

® 4xx—A status code starting with 4 means that the
request has failed because the client has either sent
a request in the wrong syntax, or it might have
requested a resource that is invalid or that it is not
authorized to access.

® 5xx—A status code starting with 5 means that the
request has failed because the server has
experienced internal problems or it does not support
the request method specified.

183

CHAPTER 11 | Working with HTTP

HTTP properties

184

header field Header information can be included to provide

information about the response itself or about the
information contained in the body of the response.

In Artix, a number of HTTP server response headers can
be configured and sent as part of the server response to
the client. See “HTTP WSDL Extensions” on page 187
and “Client Transport Attributes” on page 212 for more
details.

HTTP response This is where the requested resource is returned to the

body client, if the request has been processed successfully.
Otherwise, it might contain some explanatory text as to
why the request was not processed successfully.

The data in the body of the response can be in a variety
of formats, such as HTML or XML text, GIF or JPEG
image, and so on.

The basic properties of HTTP can be summarized as follows:

Comprehensive addressing—The target resource on which a client
request is to be invoked is indicated by means of a universal resource
identifier (URI), either as a location (URL) or name (URN). As
explained in “Resources and URLs” on page 180, a URL consists of
protocol information followed, typically, by host (and optionally port)
information followed by the full path to the resource. For example:

htt p: // waw. i ona. com support/ docs/ i ndex. xm

See “Resources and URLs” on page 180 for more details.

Request/response paradigm—A client (web browser) can establish an
HTTP connection with a web server by means of a URI, to send a
request to that server. See “Format of HTTP client requests” on

page 181 for details of the format of a client request message. See
“Format of HTTP server responses” on page 183 for details of the
format of a server response message.

Connectionless protocol—HTTP is termed a connectionless protocol
because an HTTP connection is typically closed after a single
request/response operation. While it is possible for a client to request
the server to keep a connection open for subsequent request/response

HTTP Overview

operations, the server is not obliged to keep the connection open. The
advantage of closing connections is that it does not incur any overhead
in terms of session housekeeping; however, the disadvantage is that it
makes it difficult to track user behavior.

Note: A potential workaround to tracking user behavior is through
the use of cookies. A cookie is a string sent by a web server to a web
browser and which is then sent back to the web server again each
time the browser subsequently contacts that server.

Stateless protocol—Because HTTP connections are typically closed
after each request/response operation, there is no memory or footprint
between connections. A workaround to this, in CGI applications, is to
encode state information in hidden fields, in the path information, or in
URLs in the form returned to the client browser. State can also be
saved in a file, rather than being encoded, as in the typical example of
a visitor counter program, where state is identified by means of a
unique identifier in the form of a sequential integer.

Multimedia support—HTTP supports the transfer of various types of
data, such as text (for example, HTML or XML files), graphics (for
example, GIF or JPEG files), sound, and video. These types are
commonly referred to as multipart internet mail extension (MIME)
types. A server response can include header information that informs
the client of the MIME type of the information being sent by the server.
Proxies and caches—The communication chain between a client and
server might include intermediary programs known as proxies. A proxy
can receive client requests, possibly modify the request in some way,
and then forward the request along the chain possibly to another proxy
or to the target server. Such intermediaries can employ caches to store
responses that might be appropriate for subsequent requests. Caches
can be shared (public) or private. Specific directives can be established
in relation to cache behavior and not all responses might be cacheable.

185

CHAPTER 11 | Working with HTTP

® Security—Secure HTTP connections that run over the secure sockets
layer (SSL) or transport layer security (TLS) protocol can also be
established. A secure HTTP connection is referred to as HTTPS and
uses port 443 by default. (A non-secure HTTP connection uses port 80
by default.)

Note: See “HTTP WSDL Extensions” on page 187 for details of the
various SSL-related configuration attributes that can be used in
extending a WSDL contract.

186

HTTP WSDL Extensions

HTTP WSDL Extensions

Overview This section provides an overview and description of the attributes that you
can configure as extensions to a WSDL contract for the purposes of using
the HTTP transport plug-in with Artix.

In this section This section discusses the following topics:
HTTP WSDL Extensions Overview page 188
HTTP WSDL Extensions Details page 190

187

CHAPTER 11 | Working with HTTP

HTTP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the HTTP transport plug-in for use with Artix.

Configuration layout Example 110 shows (in bold) the WSDL extensions used to configure the
HTTP transport plug-in for use with Artix. (Ellipses (that is, ...) are used to
denotes sections of the WSDL that have been omitted for brevity.)

Example 110:HTTP configuration WSDL extensions

<definitions...

xm ns: htt p="http://schemas. i ona. com t ransports/http"

xm ns: htt p-conf="http://schenas. i ona. coni transports/ http/configu
ration"

<servi ce name="..">
<port bi ndi ng="..">

<http-conf:client SendTi neout=".."
Recei veTi neout =" ..!
Aut oRedi rect =" .."!
User Nanme=".."
Passwor d=".."
Aut hori zati onType=".."
Aut hori zati on=".."
Accept =" .."
Accept Language=".."
Accept Encodi ng=".."
Cont ent Type=".."
Host =" .."
Connecti on=".."
Connecti onAttenpts="..."
CacheControl =".."
Cooki e=".."
Browser Type=".."
Referer=".."
ProxyServer=".."
ProxyUser Nanme=".."!
Pr oxyPasswor d="..".
ProxyAut hori zat i onType=".."
Pr oxyAut hori zati on=".."
UseSecur eSocket s=".."

188

HTTP WSDL Extensions

Example 110:HTTP configuration WSDL extensions

<ht t p- conf : server

dientCertificate="."
dientCertificateChai n=".."
dientPrivateKey=".."

d i ent Pri vat eKeyPasswor d=".."
Trust edRoot Certificate="."/>

SendTi neout =" .."
Recei veTi meout =" .."
Suppr essd i ent SendEr r or s=".."

Suppr essd i ent Recei veErrors=".."

Honor KeepAl i ve=".."

Redi rect URL=".."

CacheControl =".."

Cont ent Locat i on="".."

Cont ent Type=".."

Cont ent Encodi ng="".."

Server Type=".."

UseSecur eSocket s=".."
ServerCertificate="."

Server Certifi cat eChai n=".."
Server Pri vat eKey=".."

Server Pri vat eKeyPasswor d=".."
Trust edRoot Certificate="..""/>

189

CHAPTER 11 | Working with HTTP

HTTP WSDL Extensions Details

Overview

Server configuration attributes

This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the HTTP transport
plug-in for use with Artix. It discusses the following topics:

® “Server configuration attributes” on page 190.

® “Client configuration attributes” on page 197.

Table 23 describes the server-side configuration attributes for the HTTP
transport that are defined within the htt p- conf : server element.

Table 23: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

SendTi neout

This specifes the length of time, in milliseconds, that the server can
continue to try to send a response to the client before the connection is
timed out.

The timeout value is at the user’s discretion. The default is 30000.

Recei veTi meout

This specifies the length of time, in milliseconds, that the server can
continue to try to receive a request from the client before the connection
is timed out.

The timeout value is at the user’s discretion. The default is 30000.

Suppressd i ent SendErrors

This specifies whether exceptions are to be thrown when an error is
encountered on receiving a client request.

Valid values are true and f al se. The default is f al se, to throw
exceptions on encountering errors.

Suppr essd i ent Recei veErrors

This specifies whether exceptions are to be thrown when an error is
encountered on sending a response to a client.

Valid values are true and f al se. The default is f al se, to throw
exceptions on encountering errors.

190

HTTP WSDL Extensions

Table 23: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

Honor KeepAl i ve

This specifies whether the server should honor client requests for a
connection to remain open after a server response has been sent to a
client. Servers can achieve higher concurrency per thread by honoring
requests to keep connections alive.

Valid values are true and fal se. The default is fal se, to close the
connection after a server response is sent.

If set to t rue, the request socket is kept open provided the client is using
at least version 1.1 of HTTP and has requested that the connection is
kept alive (via the client-side Connect i on configuration attribute).
Otherwise, the connection is closed.

If set to f al se, the socket is automatically closed after a server response
is sent, even if the client has requested the server to keep the connection
alive (via the client-side Connect i on configuration attribute).

Redi rect URL

This specifies the URL to which the client request should be redirected if
the URL specified in the client request is no longer appropriate for the
requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code is set to 302 and the status description
is set to (hbj ect Moved.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

191

CHAPTER 11 | Working with HTTP

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation
CacheCont r ol This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a response from a server to a
client.

Valid values are:

® no-cache—This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® public—This indicates that a response can be cached by any
cache.

®* private—This indicates that a response is intended only for a
single user and cannot be cached by a public (shared) cache. If
specific response header fields are specified with this value, the
restriction applies only to those header fields within the response. If
no response header fields are specified, the restriction applies to
the entire response.

® no-store—This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® no-transform—This indicates that a cache must not modify the
media type or location of the content in a response between a
server and a client.

® nust-reval i dat e—This indicates that if a cache entry relates to a
server response that has exceeded its expiration time, the cache
must revalidate that cache entry with the server before it can be
used in a subsequent response.

® proxy-reval i dat e—This indicates the same as nust -reval i dat e,
except that it can only be enforced on shared caches and is ignored
by private unshared caches. If using this directive, the public
cache directive must also be used.

192

HTTP WSDL Extensions

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation

® nmax-age—This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

® s-maxage—This indicates the same as max- age, except that it can
only be enforced on shared caches and is ignored by private
unshared caches. The age specified by s- mraxage overrides the age
specified by max- age. If using this directive, the proxy-revali dat e
directive must also be used.

® cache- ext ensi on—This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Cont ent Locat i on This specifies the URL where the resource being sent in a server
response is located.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

193

CHAPTER 11 | Working with HTTP

Table 23: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

Cont ent Type

This specifies the media type of the information being sent in a server
response (for example, text/html, image/gif, and so on). This is also
known as the multipurpose internet mail extensions (MIME) type. MIME
types are regulated by the Internet Assigned Numbers Authority (IANA).
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of t ext might be qualified as
follows: text/htm or text/xm . Similarly, a main type of image might
be qualified as follows: i mage/ gi f or i mage/ j peg.

The default type is t ext / xni . Other specifically supported types include:
appl i cation/jpeg, appl i cati on/ mswor d, appl i cati on/ xbi t map,

audi o/ au, audi o/ wav, text/htm , text/text,image/ gif, i mage/]peg,
vi deo/ avi , vi deo/ npeg. Any content that does not fit into any type in the
preceding list should be specified as appl i cati on/ oct et - st r eam

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Gont ent Encodi ng

This can be used in conjunction with Cont ent Type. It specifies what
additional content codings have been applied to the information being
sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

The primary use of Cont ent Encodi ng is to allow a document to be
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Server Type

This specifies what type of server is sending the response to the client.

Values in this case take the form pr ogr am nane/ ver si on. For example,
Apache/ 1. 2. 5.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

194

HTTP WSDL Extensions

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation

UseSecur eSocket s This indicates whether the server wants a secure HTTP connection
running over SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS.

Valid values are true and f al se. The default is f al se, to indicate that
the server does not want to open a secure connection.

Note: Ifthehttp-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecur eSocket s is not set to true.

Server Certificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the server. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

A server must present such a certificate, so that the client can
authenticate the server.

Server CertificateChain This is only relevant if the HTTP connection is running securely over SSL
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use Server Certi fi cat eChai n to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the client for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

Server Pri vat eKey This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This is used in conjuction with Server Certifi cate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by Server Certificate. For example:

c:\ aspen\ x509\ cert s\ pri vkey. pem

This is required if, and only if, Server Certifi cate has been specified.

195

CHAPTER 11 | Working with HTTP

Table 23: HTTP Server Configuration Attributes

Configuration Attribute Explanation

Server Pri vat eKeyPasswor d This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

Trust edRoot Certificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c: \ aspen\ x509\ ca\ cacert. pem

This is used to validate the certificate presented by the client.

196

HTTP WSDL Extensions

Client configuration attributes Table 24 describes the client-side configuration attributes for the HTTP
transport that are defined within the htt p-conf: cl i ent element.

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
SendTi meout This specifies the length of time, in milliseconds, that the client can
continue to try to send a request to the server before the connection is
timed out.

The timeout value is at the user’s discretion. The default is 30000.

Recei veTi neout This specifies the length of time, in milliseconds, that the client can
continue to try to receive a response from the server before the
connection is timed out.

The timeout value is at the user’s discretion. The default is 30000.

Aut oRedi r ect This specifies whether a client request should be automatically
redirected on behalf of the client when the server issues a redirection
reply via the Redi rect URL server-side configuration attribute.

Valid values are true and fal se. The default is fal se, to let the client
redirect the request itself.

User Nane Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the user name that is to be used
for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

197

CHAPTER 11 | Working with HTTP

Table 24: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Passwor d

Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the password that is to be used
for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Aut hori zat i onType

Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in use by the server,
this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Aut hori zation

Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in used by the
server, this specifies the actual data that the server should use to
authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

198

HTTP WSDL Extensions

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Accept This specifies what media types the client is prepared to handle. These
are also known as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See ht t p: // waw. i ana. or g/ assi gnnent s/ medi a- t ypes/ for more
details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/htm or text/xm . Similarly, a main type of image might
be qualified as follows: i mage/ gi f or i mage/j peg.

An asterisk (that is, *) can be used as a wildcard to specify a group of
related types. For example, if you specify i mage/ *, this means that the
client can accept any image, regardless of whether it is a GIF or a JPEG,
and so on. A value of */* indicates that the client is prepared to handle
any type.

Examples of typical types that might be set are text/xm , text/htni,
text/text, image/ gif, i mage/j peg, appl i cation/j peg,

appl i cati on/ nswor d, appl i cati on/ xbi t map, audi o/ au, audi o/ wav,

vi deo/ avi , vi deo/ npeg. A full list of MIME types is available at
http://wwv i ana. or g/ assi gnrent s/ nedi a- t ypes/ .

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Accept Language This specifies what language (for example, American English) the client
prefers for the purposes of receiving a response. Language tags are
regulated by the International Organisation for Standards (ISO) and are
typically formed by combining a language code (determined by the
ISO-639 standard) and country code (determined by the ISO-3166
standard) separated by a hyphen. For example, en- US represents
American English. A full list of language codes is available at
http://ww w3. org/ WAl / ER/ | G ert/is0639. htm A full list of country
codes is available at http: //wwv i so. ch/i so/ en/ pr ods- ser vi ces/

i s03166ma/ 02i so- 3166- code- | i sts/list-enl.htm .

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

199

CHAPTER 11 | Working with HTTP

Table 24: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Accept Encodi ng

This specifies what content codings the client is prepared to handle. The
primary use of content codings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Content codings
are regulated by the Internet Assigned Numbers Authority (IANA). See
ht t p: // waw. w8. or g/ Prot ocol s/ rf c2616/ r f c2616- sec3. ht mi for more
details of content codings.

Possible content coding values include zi p, gzi p, conpress, defl ate,
and i dentity. Artix performs no validation on content codings. It is the
user's responsibility to ensure that a specified content coding is
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cont ent Type

This is relevant if the client request specifies the POST method, to send
data to the server for processing. This specifies the media type of the
data being sent in the body of the client request.

For web services, this should be set to text/ xni . If the client is sending
HTML form data to a CGl script, this should be set to

appl i cat i on/ x- wawwf or m ur | encoded. If the HTTP PCST request is
bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to appl i cati on/ oct et - stream

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Host

This specifies the internet host (and port number) of the resource on
which the client request is being invoked. This is sent by default based
upon the URL specified in the URL attribute. It indicates what host the
client prefers for clusters (that is, for virtual servers mapping to the same
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

200

HTTP WSDL Extensions

Table 24: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Connecti on

This specifies whether a particular connection is to be kept open or
closed after each request/response dialog.

Valid values are cl ose and Keep- Al i ve. The default is cl ose, to close
the connection to the server after each request/response dialog.

If Keep- Al i ve is specified, and the server honors it, the connection is
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Connecti onAtt enpt s

This specifies the number of times a client will transparently attempt to
connect to server.

201

CHAPTER 11 | Working with HTTP

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation
CacheCont r ol This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a request from a client to a
server.

Valid values are:

® no-cache—This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® no-store—This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® nmax- age—This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

® max-stal e—This indicates that the client can accept a response
that has exceeded its expiration time. If a value is assigned to
max- st al e, it represents the number of seconds beyond the
expiration time of a response up to which the client can still accept
that response. If no value is assigned, it means the client can
accept a stale response of any age.

® mn-fresh—This indicates that the client wants a response that
will be still be fresh for at least the specified number of seconds
indicated by the value set for min-fresh.

® no-transform—This indicates that a cache must not modify media
type or location of the content in a response between a server and a
client.

® only-if-cached—This indicates that a cache should return only
responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

202

HTTP WSDL Extensions

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation

® cache-ext ensi on—This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cooki e This specifies the cookie to be sent to the server. Some session designs
that maintain state use cookies to identify sessions.

Note: If the cookie is static, you can supply it here. However, if the
cookie is dynamic, it must be set by the server when the server is first
accessed, and is then handled automatically by the application runtime.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Browser Type This specifies information about the browser from which the client
request originates. In the standard HTTP specification from the World
Wide Web consortium (W3C) this is also known as the user-agent.
Some servers optimize based upon the client that is sending the request.

Specifying the browser type is usually only necessary if sites have HTML
customized for use with Netscape as opposed to Internet Explorer, and
so on. However, you can also specify the browser type to facilitate
optimizing for different SOAP stacks.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

203

CHAPTER 11 | Working with HTTP

Table 24: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Ref erer

If a client request is as a result of the browser user clicking on a
hyperlink rather than typing a URL, this specifies the URL of the
resource that provided the hyperlink.

This is sent automatically if Aut oRedi rect is set to true. This can allow
the server to optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of logging,
optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Pr oxySer ver

This specifies the URL of the proxy server, if one exists along the
message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

Note: Artix does not support the existence of more than one proxy
server along the message path.

Pr oxyUser Nane

This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the user name that is to be used for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

204

HTTP WSDL Extensions

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Pr oxyPasswor d This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the password that is to be used for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

Pr oxyAut hor i zat i onType This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in use by the proxy server, this specifies the type of
authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

ProxyAut hori zat i on This is only relevant if proxy servers are in use along the
request-response chain.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in used by the proxy server, this specifies the actual
data that the proxy server should use to authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

205

CHAPTER 11 | Working with HTTP

Table 24: HTTP Client Configuration Attributes

Configuration Attribute Explanation

UseSecur eSocket s This indicates whether the client wants to open a secure connection
(that is, HTTP running over SSL or TLS). A secure HTTP connection is
commonly referred to as HTTPS.

Valid values are true and f al se. The default is f al se, to indicate that
the client does not want to open a secure connection.

Note: Ifthehttp-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecur eSocket s is not set to true.

QientCertificate This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the client. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

Some servers might require the client to present a certificate, so that the
server can authenticate the client.

AientCertificateChain This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the server, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use dient Certifi cat eChai nto allow the certificate chain
of PEM-encoded X509 certificates to be presented to the server for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

dientPrivat ekey This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This is used in conjuction with Qi ent Certi fi cate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by d i ent Certifi cate. For example:

c:\ aspen\ x509\ cert s\ pri vkey. pem

This is required if, and only if, Qi ent Certi ficat e has been specified.

206

HTTP WSDL Extensions

Table 24: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

dientPrivat eKeyPassword

This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

Trust edRoot Certificate

This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c:\ aspen\ x509\ ca\ cacert . pem

This is used to validate the certificate presented by the server.

207

CHAPTER 11 | Working with HTTP

HTTP Transport Attributes

Overview One of the basic properties of HTTP is that client or server information, and
information about the possible content of a message, is made available
through a series of header fields on an HTTP message. This section outlines
both the client transport attributes and server transport attributes that can
be sent, using Artix, in an HTTP request or response message.

In this section This section discusses the following topics:
Transport Attributes Overview page 209
Server Transport Attributes page 210
Client Transport Attributes page 212

208

HTTP Transport Attributes

Transport Attributes Overview

Overview

What are transport attributes?

Programmatic use of transport
attributes

This subsection outlines the background to the HTTP transport attributes
that can be used with Artix.

A number of the configuration attributes described in “HTTP WSDL
Extensions” on page 187 can be subsequently transmitted, for information
purposes, as transport attributes in the header of HTTP request and
response messages. Client configuration attributes can be sent by the client
as server transport attributes in the header of a request message. Similarly,
server configuration attributes can be sent by the server as client transport
attributes in the header of a response message.

Note: Transport attributes can only be sent if they have been configured
as extensions to a WSDL contract, as described in “HTTP WSDL
Extensions” on page 187.

The application runtime can read transport attributes to facilitate it in the
processing of client requests and server responses. See the C++ Artix
Programmer’s Guide for more details of how applications can handle
transport attributes.

209

CHAPTER 11 | Working with HTTP

Server Transport Attributes

Overview

Details

This subsection outlines the attributes that can be sent to a server for
information purposes in the header of a request message.

Table 25 describes the transport attributes that can be sent from a client to
a server in the header of a request message.

Table 25: HTTP Server Transport Attributes (Sheet 1 of 2)

Configuration Attribute

Explanation

User Nane This lets the server know the user name of the browser user for the
purposes of basic HTTP authentication by the server.
Passwor d This lets the server know the password of the browser user for the

purposes of basic HTTP authentication by the server.

Aut hori zat i onType

This lets the server know what type of authentication the client expects
the server to use, if username and password-based basic authentication
is not being used.

Aut hori zation

This lets the server know the actual authentication data (authorization
token) being sent by the client, if username and password-based basic
authentication is not being used.

Accept This lets the server know what multimedia (MIME) types (for example,
text/html, image/gif, image/jpeg, and so on) the client can accept.
Accept Language This lets the server know what language(s) (for example, English,

French, German, and so on) the client prefers for the purposes of
receiving a request.

Accept Encodi ng

This lets the server know what content codings (for example, gzip) the
client can accept.

Cont ent Type

If a client request is using the POST method, to send data to the server for
processing, this lets the server know the MIME type of the data being
sent.

Note: This should be text/xm for web services. If the client is sending
form data, this can be set to appl i cat i on/ x- ww- f or m ur | encoded.

210

HTTP Transport Attributes

Table 25: HTTP Server Transport Attributes (Sheet 2 of 2)

Configuration Attribute Explanation

Host This lets the server know what host the client prefers for clusters (that is,
for virtual servers mapping to the same IP).

Connecti on This lets the server know whether the client wants a particular
connection to be kept open or not after each request/response dialog.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

CacheCont rol This lets the server know what behavior the client expects caches
involved in the request chain to adhere to. See “CacheControl” on
page 202 for more details of possible settings for this field.

Cooki e This lets the server know what cookie is being sent to the server.

Note: This relates to static cookies. Dynamic cookies are set by the
server when the server is first accessed, and are then handled
automatically by the application runtime.

Br owser Type This lets the server know details about the browser from which the client
request originates.

Ref er er If the client request has resulted from the browser user clicking on a
hyperlink rather than entering a URL from the keyboard, this lets the
server know the URL that contains the hyperlink. This in turn lets the
server generate lists of back-links to resources for the purposes of
logging, optimized caching, tracing of obsolete or mistyped links, and so
on.

Note: This is sent automatically if the client request is configured (via
the Aut oRedi rect attribute) to be automatically redirected when the
server issues a redirection reply via the Redi rect URL server-side
attribute. This can allow the server to optimize processing based upon
previous task flow. However, it is typically not used in web services
applications.

QientCertificate If the HTTP connection is running securely over SSL or TLS, this lets the
server know the PEM-encoded X509 certificate issued by the certificate
authority for the client. Some servers can require the client to present a
certificate, so that the server can authenticate the client.

211

CHAPTER 11 | Working with HTTP

Client Transport Attributes

Overview This subsection outlines the attributes that can be sent to a client for
information purposes in the header of a response message.

Details Table 25 describes the transport attributes that can be sent from a server to
a client in the header of a response message.

Table 26: HTTP Client Transport Attributes

Configuration Attribute Explanation

Redi rect URL This lets the client know the URL to which the client request was
redirected if the URL specified in the client request was no longer
appropriate for the requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code in the first line of the response is set to
302 and the status description is set to hj ect Moved.

CacheCont r ol This lets the client know what behavior the server expects caches
involved in the response chain to adhere to. See “CacheControl” on
page 192 for more details of possible settings for this field.

Cont ent Locat i on This lets the client know the URL from which the requested resource is
coming.

Cont ent Type This lets the client know the MIME type (that is, text/ntml, image/gif,
image/jpeg, and so on) of the information that is being sent by the
server.

Cont ent Encodi ng This lets the client know how the information being sent by the server is

encoded. This in turn lets the client know what decoding mechanisms it
needs to retrieve the information.

Server Type This lets the client know what type of server is sending the information.

212

In this chapter

CHAPTER 12

Working with [IOP
Tunnels

IIOP tunnels provide access to CORBA services while using
non-CORBA payload formats.

This chapter discusses the following topics:

Introduction to I1IOP Tunnels page 214

Modifying a Contract to Use an [IOP Tunnel page 215

213

CHAPTER 12 | Working with 11OP Tunnels

Introduction to IIOP Tunnels

Overview

Benefits

Supported payload formats

Configuring the Artix to use IIOP
tunnels

214

An 1IOP tunnel provides a means for taking advantage of existing CORBA
services while transmitting messages using a payload format other than
CORBA. For example, you could use an IIOP tunnel to send fixed format
messages to an endpoint whose address is published in a CORBA naming
service.

Note: [IOP tunneling is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports [IOP tunneling.

Using IIOP tunnels provides the following benefits:

® Endpoints can publish their addresses in a CORBA naming service or a
CORBA trader service

® Active connection management

® Transport level security

® Codeset negotiation

® Persistence

[IOP tunnels can transport messages using the following payload formats:
* SOAP

® Fixed format

® Fixed record length

* G2++

® Octet streams

[IOP tunnels require that the OTS plug-in is loaded by Artix at start-up. To
ensure that the OTS plug-in is loaded edit your application’s orb plug-ins list
to include ot s. For more information on Artix configuration, see Deploying
and Managing Artix Solutions.

Modifying a Contract to Use an IIOP Tunnel

Modifying a Contract to Use an IIOP Tunnel

Overview

Address specification

Service Access Points (SAPs) that use 1IOP tunnels require that a special
port be added to the physical portion of the Artix contract.The port definition
specifies the IOR used to locate the CORBA object and any POA policies the
used in exposing the IIOP tunnel.

[IOP tunnel ports are described using the IONA-specific WSDL elements
<i i op: addr ess> and <i i op: pol i cy> within the WSDL <port > element, to
specify how the 1IOP tunnel is configured.

The IOR, or address, of the IIOP tunnel is specified using the
<i i op: addr ess> element. You have four options for specifying IORs in Artix
contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified I0OR format:

I CR 22342. ...
® Specify a file location for the I0R, using the following syntax:
file://file_nane

® Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the cor baname format:

cor banane: ri r/ NameSer vi ce#obj ect _nare

For more information on using the name service with Artix see the Artix
Administration Guide.

® Specify the IOR using cor bal oc, by specifying the port at which the
service exposes itself, using the cor bal oc syntax.

corbal oc: i i op: host : port/servi ce_nane

When using cor bal oc, you must be sure to configure your service to
start up on the specified host and port.

215

CHAPTER 12 | Working with 11OP Tunnels

Specifying type of payload
encoding

Specifying POA policies

216

The 1IOP tunnel can perform codeset negotiation on the encoded messages
passed through it if your CORBA system supports it. By default, this feature
is turned off so that the agents sending the message maintain complete
control over codeset conversion. If you wish to turn automatic codeset
negotiation on use the following:

<iiop: payl oad type="string" />

Using the optional <i i op: pol i cy> element, you can describe a number of
POA polices the Artix service will use when creating the [IOP tunnel. These
policies include:

* POA Name

® Persistence

® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project using the I1OP tunnel.
For information on using these advanced CORBA features, see the
Application Server Platform documentation.

POA Name

Artix POAs are created with the default name of Ws_CRB. To specify a name
of the POA that Artix creates for the IIOP tunnel, you use the following:

<iiop: policy poanane="poa_nane" />

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA’s have a persistence policy of f al se. To set the POA’s
persistence policy to true, use the following:

<iiop:policy persistent="true" />

Modifying a Contract to Use an 1IOP Tunnel

ID Assignment

By default Artix POAs are created with a SYSTEM | D policy, meaning that
their ID is assigned by Artix. To specify that the 1IOP tunnel’s POA should
use a user-assigned ID, use the following:

<cor ba: pol i cy servi cei d="PQA d" />

This creates a POA with a USER | D policy and an object id of PQai d.

Example For example, an IIOP tunnel port for the per sonal I nf oLookup binding would
look similar to Example 111:

Example 111:CORBA personallnfoLookup Port

<servi ce name="per sonal | nf oLookupSer vi ce" >
<port nane="personal | nf oLookupPort "
bi ndi ng="t ns: per sonal | nf oLookupBi ndi ng" >
<iiop:address location="file://objref.ior" />
<iiop:policy persistent="true" />
<iiop:policy serviceid="personal | nfoLookup" />
</ port>
</ service>

Artix expects the IOR for the [IOP tunnel to be located in a file called
objref.ior, and creates a persistent POA with an object id of per sonal | nf o
to configure the 11OP tunnel.

217

CHAPTER 12 | Working with 1IOP Tunnels

218

In this chapter

CHAPTER 13

Sending Messages
using SOAP

The SOAP plug-in lets you configure an Artix integration
solution to use the SOAP payload format for communication
between distributed applications. This chapter first provides
an introductory overview of SOAP. It then provides a
description of the WSDL extensions involved in extending an
Artix contract for SOAP. It outlines the XML types supported
by SOAP in Artix.

This chapter discusses the following topics:

Overview of SOAP page 220
SOAP WSDL Extensions page 238
Supported XML Types page 249

219

CHAPTER 13 | Sending Messages using SOAP

Overview of SOAP

Overview

In this section

220

This section provides an introductory overview of the simple object access
protocol (SOAP) in terms of its purpose, how it evolved, the elements of a
SOAP message, and how it handles (encodes) application data types.

This section discusses the following topics:

Background to SOAP page 221
SOAP Messages page 224
SOAP Encoding of Data Types page 230

Note: A complete introduction to SOAP is outside the scope of this guide.
For more details see the W3C SOAP 1.1 specification at

ht t p: // wawv. w3. or g/ TR/ SQAP/ . IONA’s Artix product supports only version
1.1 of the W3C SOAP specification.

Overview of SOAP

Background to SOAP

Overview

What is SOAP?

XML

This subsection discusses the purpose of SOAP and how it evolved. It
discusses the following topics:

® “What is SOAP?” on page 221.

® “XML" on page 221.

® “XML and Unicode” on page 222.

® “HTTP” on page 222.

® “SOAP specification” on page 223.

SOAP is a lightweight, XML-based protocol that is used for client-server
communications on the World Wide Web. The primary function of SOAP is
to enable access to distributed services and to facilitate the exchange of
structured and typed information between peers across the Web.

With the evolution of the Web, and the ever-increasing need to do business
more quickly and more proactively across it, there arose a need to have a
dynamic, flexible, extensible, but standards-based system of communication
between applications across the Internet. SOAP evolved as a solution to this
need, by combining existing standards such as extensible markup language
(XML) and the hypertext transfer protocol (HTTP).

SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

XML is a simple form of standard generalized markup language (SGML). The
purpose of a markup language is to facilitate preparation of electronic
documents, by allowing information to be added to the document text that
indicates the logical components of the document or how they are to be
formatted. SGML describes the relationship between a document’s content
and its structure.

XML uses user-defined tags to describe the actual data elements contained
within a web page or file. (This is unlike the hypertext markup language
(HTML), which can only use a limited set of predefined tags to describe how
the contents of a web page or file are to be formatted.) XML tags are

221

CHAPTER 13 | Sending Messages using SOAP

XML and Unicode

HTTP

222

unlimited, because they can be defined at the user’s discretion, depending
on the data elements that need to be defined. This is why XML is termed
extensible. XML processors now exist for any common platform or language.

XML works on the assumption that all character data belongs to the
universal character set (UCS). UCS is more commonly known as unicode.
This is a mechanism for setting up binary codes for text or script characters
that relate to the principal written languages of the world. Unicode therefore
provides a standard means of interchanging, processing, and displaying
written texts in diverse languages. See ht t p: / / wwa. uni code. or g for details.

Because unicode uses 16 bits to represent a particular character, it can
represent more than 65,000 different international text characters. This
makes Unicode much more powerful than other text representation formats,
such as ASCII (American standard code for information interchange), which
only uses 7 bits to represent a particular character and can only represent
128 characters. Unicode uses a conversion method called UTF (universal
transformation format) that can convert text to 8-bit or 16-bit Unicode
characters. To this effect, there are UTF-8 and UTF-16 encoding formats.
All XML processors, regardless of the platform or programming language for
which they are implemented, must accept character data encoded using
UTF-8 or UTF-16 encoding formats.

HTTP is the standard TCP/IP-based transport used for client-server
communications on the Web. Its main function is to establish connections
between distributed web browsers (clients) and web servers for exchanging
files and possibly other information across the Internet. HTTP is available on
all platforms, and HTTP requests are usually allowed through security
firewalls. See “Working with HTTP” on page 179 for a more detailed
overview of HTTP.

Given the dynamic features of XML and HTTP, SOAP has therefore become
regarded as the optimum tool for enabling communication between
distributed, heterogeneous applications over the Internet.

Note: Although most implementations of SOAP are HTTP-based, SOAP
can be used with any transport that supports transmission of XML data.
Depending on the particular transport in use, SOAP can also be
implemented to support different types of message-exchange patterns,
such as one-way or request-response.

SOAP specification

Overview of SOAP

SOAP is a framework for transporting client request and server response
messages in the form of XML documents over HTTP or some other
transport. The W3C SOAP specification at ht t p: // waw. w8. or g/ TRl SQAP/
defines the standards for SOAP in relation to:

Format and components of SOAP messages.

SOAP usage with HTTP.

SOAP encoding rules for application-defined data types.

SOAP standards for representing remote procedure calls (RPCs) and
responses.

“SOAP Messages” on page 224 briefly discusses the format and
components of SOAP messages, and their use with HTTP. “SOAP Encoding
of Data Types” on page 230 briefly discusses how data types are handled in
SOAP. Again, a complete introduction to these topics is outside the scope of
this guide, and you should see the W3C SOAP 1.1 specification at

ht t p: // www. W8. or g/ TR/ SQAP/ for full details.

223

CHAPTER 13 | Sending Messages using SOAP

SOAP Messages

Overview This subsection uses an example of a simple client-server application to
outline the typical format of a SOAP request and response message. It
discusses the following topics:
® “Example overview” on page 224.
® “Example of SOAP request message” on page 225.
® ‘“Explanation of SOAP request message” on page 225.
® “Example of SOAP response message” on page 226.
® “Explanation of SOAP response message” on page 227.
® “Example of SOAP response with fault” on page 227.
® ‘“Explanation of SOAP response with fault” on page 228.

Example overview The distributed application in this example involves a client that invokes a
Get St udent @ ade method on a target server. The client passes a student
code and subject name, both of type string, as input parameters to the
method request. On processing the request, the server returns the grade
achieved by that student for that subject—the grade is of type i nt. The
following example shows the logical definition of this application in a WSDL
contract:

Example 112:Example of logical definition in WSDL

<nessage nane="CGet St udent G ade" >
<part nanme="Student Code" type="xsd:string"/>
<part name="Subj ect" type="xsd:string"/>
</ message>
<nessage name="CGet St udent G adeResponse” >
<part name="QG ade" type="xsd:int"/>
</ message>
<por t Type nanme="St udent Port Type" >
<oper ati on name="Get St udent G ade" >
<i nput nmessage="t ns: Get St udent G ade" nanme="Cet St udent @ ade"/ >
<out put message="tns: Get St udent @ adeResponse" nane="Get St udent @ adeResponse"/ >
</ oper at i on>
</ port Type>

224

Overview of SOAP

Example of SOAP request Example 113 shows an example of the format of a typical SOAP request
message message, based on Example 112 on page 224 (in this case, the client has
passed student code 815637 and subject H st ory as input parameters):

Example 113:Example of a SOAP Request Message

1 PCST /StockQuote HITP/ 1.1
Host: www st ockquot eserver. com
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn
SQAPAct i on: " Sone- UR "

<?xm versi on="1.0" encodi ng=" UTF-8" ?>
2 <SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xn soap. or g/ soap/ envel ope/ "
SQOAP- ENV: encodi ngStyl e="ht t p: / / schenmas. xn soap. or g/ soap/
encodi ng/ "/ >
3 <SQAP- ENV: Body>
<m Cet St udent & ade xni ns: n¥" Sone- UR ">
<St udent Code>815637</ St udent Code>
<Subj ect >H st or y</ Subj ect >
</ m Get St udent G ade>
</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Explanation of SOAP request Example 113 on page 225 can be explained as follows:

message 1. Thefirst five lines represent HTTP header information (in this example,

the SOAP request is running over HTTP). When a SOAP request is
running over HTTP, the HTTP method must be set to PCsT, the HTTP
Cont ent - Type header must be set to text/xm , and a SOAPAct i on
HTTP header should also be included that specifies a URI indicating
what is being requested. (However, the SOAPAct i on field can be left
blank, in which case the URI specified in the first couple of lines is
taken to indicate the intent of the request instead.)

Note: See “Working with HTTP” on page 179 for more details of the
format of HTTP request headers.

225

CHAPTER 13 | Sending Messages using SOAP

Example of SOAP response
message

226

2. The SOAP Envelope is the top-level element and is mandatory in every
SOAP message. It defines a framework for describing what is in the
message and how to process it.

3. The SOAP Body element is mandatory in every SOAP message. It holds

the actual message data in sub-elements called body entries. Each
body entry relates to a particular data type and must be encoded as an
independent element. Body entries can contain attributes called
encodi ngStyl e, i d, and href (see “SOAP Encoding of Data Types” on
page 230 for more details of these).

In Example 113 on page 225, the SOAP Body contains two body
entries, St udent Code and Subj ect , within a wrapper element that
corresponds to the Get St udent G ade operation. The two body entries
in this case correspond to the two input parameters for the

Get St udent G ade operation.

Example 114 shows an example of the format of a typical SOAP response
message, based on Example 112 on page 224 (in this case, the server has
returned grade A):

Example 114:Example of a SOAP Response Message

HTTP/ 1.1 200 CK
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<?xm version="1.0" encodi ng=" UTF- 8’ ?>
<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ "
SQOAP- ENV: encodi ngSt yl e="htt p: / / schenas. xni soap. or g/ soap/
encodi ng/ "/ >
<SQAP- ENV: Body>
<m Get St udent & adeResponse xm ns: m&" Sorre- URl " >
<G ade>A</ G ade>
</ m Get St udent @ adeResponse>
</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Explanation of SOAP response
message

Example of SOAP response with
fault

Overview of SOAP

Example 114 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See “Working
with HTTP” on page 179 for more details of the format of HTTP
response headers.

2. The explanation of the SOAP Envelope element is the same as in
“Explanation of SOAP request message” on page 225.

3. The explanation of the SOAP Body element is the same as in
“Explanation of SOAP request message” on page 225, except in this
case the SOAP Body contains one body entry, G ade, within a wrapper
element that corresponds to the server response part of the
Get St udent @ ade operation. The body entry in this case corresponds to
the output parameter returned by the server in response to the client
request (that is, the grade for the student and subject combination
specified by the client).

If an error occurs during the processing of a SOAP request, the server can
handle and report the error within the SOAP Body of the response.
Example 115 shows an example of the format of a typical SOAP response
message indicating an error.

Example 115:£xample of SOAP Response with Error Information

HTTP/ 1.1 500 Internal Server Error
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenmas. xn soap. or g/ soap/ envel ope/ ">
<SQAP- ENV: Body>
<SQAP- ENV: Faul t >
<f aul t code>S0OAP- ENV: Ser ver </ f aul t code>
<faul tstring>Server Error</faul tstring>

<det ai | >
<e:nyfaul tdetails xm ns: e="Some- UR ">
<message>
Application did not work
</ message>

227

CHAPTER 13 | Sending Messages using SOAP

Explanation of SOAP response

with fault

228

Example 115:E£xample of SOAP Response with Error Information

<error code>
1001
</ error code>
</ e: nyfaul tdetail s>
</detail >
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 115 on page 227 can be explained as follows:

1. The first three lines represent HTTP header information (in this

example, the SOAP response is running over HTTP). See “Working
with HTTP” on page 179 for more details of the format of HTTP
response headers.

2. Errors are reported within a SOAP Fault element within the SOAP

Body. In this case, the SOAP Body must not contain any other
elements. Only one SOAP Fault element can be defined in any SOAP
message. SOAP Fault in turn defines the following four sub-elements:

faul t code This describes the error. The default faultcode values

defined by the W3C SOAP specification are:

® \Versi onM smat ch—This means the SOAP
Envelope was associated with an invalid
namespace (that is, a namespace other than
ht t p: // schemas. xm soap. or g/ soap/ envel ope/).

® Mist Under st and—This means a header element
that needed to be processed was not processed
correctly.

® dient—This means the message was not
properly formed or did not contain appopriate
information to be successfully processed.

® Server—This means the message could not be
processed, but not due to message contents.

faultstring This provides a human-readable explanation of the
fault.

faul tactor

detail

Overview of SOAP

This indicates where the fault originated along the
message path. This element is mandatory for an
intermediary proxy application along the message
path, but it is optional for the ultimate target server.

Note: Artix supports the use of only one intermediary
proxy along the message path.

Example 115 on page 227 is an example of an error
being reported by the ultimate target server, and it
omits a faul tactor attribute.

This in turn contains sub-elements, called detail
elements, that hold application-specific error
information when the fault is due to unsuccessful
processing of the SOAP Body.

229

CHAPTER 13 | Sending Messages using SOAP

SOAP Encoding of Data Types

Overview

What is encoding?

Role of SOAP encoding

230

This subsection provides an overview of the concepts of SOAP encoding. It
discusses the following topics:

® “What is encoding?” on page 230.

® “Role of SOAP encoding” on page 230.

® “SOAP encoding styles” on page 232.

® “Encoding simple types” on page 232.

® “Encoding complex struct types” on page 234.
® “Encoding complex array types” on page 236.

Encoding is the process of converting application-defined data to binary
form for transfer across a network. Decoding is the process of converting
binary data back to an application-defined format. XML encoding and
decoding rules, such as UTF-8 or UTF-16, define how data is to be
converted between application-defined and binary form.

SOAP encoding rules define how application data types are to be structured
in an XML document before being converted to binary. The overall process
of encoding, data transfer, and subsequent decoding is termed serialization.

XML uses the UTF-8 and UTF-16 encoding formats to convert data to binary
form. As explained in “Background to SOAP” on page 221, all XML
processors (regardless of platform or programming language) must accept
character data encoded using UTF-8 or UTF1-16 formats.

Problems can arise, however, when converting data to and from binary, if
the data is represented differently by different applications. For example,
some systems might have an integer as a 32-bit value, while others might
have it as a 16-bit value. Such disparities can lead to data corruption during
the data conversion process.

To avoid potential data corruption due to differences between source and
target systems, SOAP encoding and decoding rules are used as a stepping
stone between the expression of data types in a particular programming
language and the XML UTF-8 or UTF-16 encoding or decoding rules used to
convert those data types to and from binary. (See Figure 4 on page 231 for

Overview of SOAP

more details.) SOAP encoding rules, therefore, define the elements and data
types that are designed to support serialization of data between disparate
systems.

As shown in Figure 4, all data transferred as part of a SOAP payload is
marshalled across the network as UTF-encoded binary strings.

Application Data Application Data
Binary data——————Binary data

SOAP Message SOAP Message
UTF-encoded UTF-decoded
binary strings binary strings

Transport Layer Artix Transport Layer

(for example, HTTP) /4 (for example, HTTP)
Network

Figure 4: Overview of Role of SOAP Encoding and Decoding

231

CHAPTER 13 | Sending Messages using SOAP

SOAP encoding styles

Encoding simple types

232

A standard XML schema for SOAP encoding has been developed by the
W3C and is located at http://schemas/xmlsoap/org/soap/encoding/. This
W3C SOAP encoding schema uses the following namespace declaration:

xm ns: SOAP- ENC="ht t p: / / schenas. xml soap/ or g/ soap/ encodi ng/ "

It is recommended, but not mandatory, that a SOAP implementation
adheres to the encoding style based on the W3C SOAP encoding schema.
The W3C SOAP specification states that a company can use alternative
encoding styles if it wants. To this effect, an encodi ngSt yl e attribute can be
specified for any element within a SOAP message, to indicate the encoding
rules that apply to that particular element.

An encodi ngStyl e attribute can take one or more URIs as its value, with
each URI denoting the location of a particular set of encoding rules. If
specifying a list of URIs, each URI should be separated by a space. A list
should also be ordered so that the URI relating to the most restrictive set of
encoding rules is specified first, and the URI relating to the least restrictive
set of encoding rules is specified last.

The W3C SOAP specification states that SOAP encodings can support all
the simple types that are specified in the W3C XML Schema Part 2:
Datatypes specification at ht t p: // wwv. w3. or g/ TR SOAP/ #XM.S2. In other
words, a SOAP encoding should support any simple type that can be used in
XML schema definition language.

The W3C SOAP encoding schema defines elements whose names
correspond to each of the simple types defined in the W3C XML Schema
Part 2: Datatypes specification. Among the simple types supported are
integers, floats, doubles, booleans, and so on. Other types considered
“simple” for the purposes of a SOAP encoding are strings, enumerations,
and arrays of bytes.

In a SOAP encoding, each data value must be specified within an element.
The type of a particular value can be denoted by the element name that
encompasses it, provided that element name has been defined in the

Overview of SOAP

encoding schema as a derived type. The following is an example of a
schema fragment that defines a series of elements (for example, an element
called age of type i nt, an element called hei ght of type fl oat, and so on):

<el ement nane="age" type="int"/>
<el ement nane="hei ght" type="float"/>
<el enent name="di spl acenent" type="negati vel nteger"/>
<el enent name="col or">
<si npl eType base="xsd: string">
<enuner ation val ue="Bl ue"/>
<enuner ati on val ue="Brown"/>
</ si npl eType>
</ el ement >

The following is an example of how the elements defined in the preceding
sample schema might then be used in a SOAP encoding:

<age>34</ age>

<hei ght >6. 0</ hei ght >

<di spl acenent >- 350</ di spl acenent >
<col or >Br own</ col or >

If an element name in a SOAP encoding has not been defined as a derived
type in an encoding schema (for example, the element name relating to a
member of an array), that element must include an xsi : t ype attribute in the
SOAP encoding to indicate the data type. See “Encoding complex array
types” on page 236 for an example of this.

233

CHAPTER 13 | Sending Messages using SOAP

Encoding complex struct types The W3C SOAP specification defines two complex data types—structs and
arrays. A struct is a compound value whose members are each
distinguished by a unique name (also known as that member’s accessor).

The following is an example of a schema fragment that defines elements
called Book, Aut hor, and Addr ess respectively, each of which is a structure
containing a series of types:

<el enent nane="Book" >

<conpl exType>
<sequence>
<el ement name="title" type="xsd:string"/>
<el enent name="aut hor" type="tns: Aut hor"/>
</ sequence>

</ conpl exType>

</ e: Book>

<el enent name="Aut hor ">

<conpl exType>
<sequence>
<el enent name="nane" type="xsd:string"/>
<el ement name="addr ess" type="tns: Address"/>
</ sequence>

</ conpl exType>

</ e: Aut hor >

<el enent name="Address">

<conpl exType>
<sequence>
<el enent name="street" type="xsd:string"/>
<el enent name="city" type="xsd:string"/>
<el enent name="country" type="xsd:string"/>
</ sequence>

</ conpl exType>

</ e: Addr ess>

234

Overview of SOAP

The following is an example of how the preceding schema definition could
be subsequently used in a SOAP encoding (the following example shows
embedded single-reference values for the author and address):

<e: Book>
<title>Qeat Expectations</title>
<aut hor >
<nane>Char | es D ckens</ nane>
<addr ess>
<street >Whi t echurch Road</ street >
<ci ty>London</ci ty>
<count r y>Engl and</ count r y>
</ addr ess>
</ aut hor >
</ e: Book>

In some cases an element might potentially contain more than one possible
value. For example, if there was another book also called Great
Expectations, written by some other author, there could be potentially more
than one possible value for the author and address in the preceding
example. When an element can contain more than one possible value it is
termed multireference. In this case, an i d attribute must be used to identify
a multireference element, and a href attribute can be used to reference that
element. For example, the href attribute of the <aut hor > element in the
following example refers to the i d attribute of the multireference <Per son>
element. Similarly, the href attribute of the <addr ess> element refers to the
i d attribute of the multireference <Hone> element (this is assuming the
author in question has more than one home).

<e: Book>
<title>Qeat Expectations</title>
<aut hor hr ef =" #Per son- 1"/ >

</ e: Book>

<e: Person i d="Person-1">
<nane>Char| es D ckens</ name>
<addr ess> href =" Hone- 1"/ >

</ e: Per son>

<e: Hone i d="Home-1"/>
<st reet >Wi t echur ch Road</ st reet >
<ci t y>London</ ci t y>
<count r y>Engl and</ count r y>

</ e: Hone>

235

CHAPTER 13 | Sending Messages using SOAP

Encoding complex array types

236

The W3C SOAP specification defines two complex data types—structs and
arrays. An array is a compound value whose member values are
distinguished by means of ordinal position within the array. An array in
SOAP is of type SOAP- ENC. Array or a type derived from that.

The following is an example (taken from the W3C SOAP specification) of a
schema fragment that defines an element called nyFavori t eNunber s that is
of type SOAP- ENC. Array:

<el enent nanme="nyFavori t eNunber s"
type="SOAP- ENC. Array"/>

The following is an example (taken from the W3C SOAP specification) of
how the array defined in the preceding sample schema could be
subsequently used in a SOAP encoding:

<nyFavoriteNunbers SOAP- ENC arrayType="xsd:int[2]">
<nunber >3</ nunber >
<nunber >4</ nunber >

</ nyFavori t eNunber s>>

The preceding example shows an array of two integers, with both members
of the array called nunber (this is unlike the members of a struct which must
all have unique names). The members of a SOAP array do not have to be all
of the same type. The following is an example of the SOAP encoding for an
array where an xsi : t ype attribute is used to specify the type of each
member of the array:

Note: As explained in “Encoding simple types” on page 232, if the type
of a value is not identifiable from the element name (or accessor)
corresponding to that value, an xsi : t ype attribute must be used in the
SOAP encoding.

<SQOAP- ENC: Array SOAP- ENC: arrayType="xsd: ur-type[4] ">

<t hi ng xsi :type="xsd: i nt">98765</t hi ng>

<t hi ng xsi : type="xsd: deci mal ">3. 857</t hi ng>

<t hing xsi:type="xsd: string">The cat sat on the nat</thing>

<t hi ng xsi:type="xsd: uri Ref erence">htt p://ww i ona. conx/t hi ng>
</ SOAP- ENC. Arr ay>

Overview of SOAP

SOAP encoding rules also support:

® Arrays of complex structs or other arrays.
® Multi-dimensional arrays.

® Partially transmitted arrays.

® Sparse arrays.

See the W3C SOAP specification for more details of the encoding guidelines
for arrays.

237

CHAPTER 13 | Sending Messages using SOAP

SOAP WSDL Extensions

Overview

In this section

238

This subsection provides an overview and description of the attributes that
you can set as extensions to a WSDL contract for the purposes of using the
SOAP payload format plug-in with Artix.

This section discusses the following topics:

Generating a SOAP Binding from a Logical Interface page 239
SOAP WSDL Extensions Overview page 240
SOAP WSDL Extensions Details page 241

SOAP WSDL Extensions

Generating a SOAP Binding from a Logical Interface

Overview

Using the tool

Artix provides a command line tool, wsdl t osoap, that will generate a SOAP
binding from an existing logical interface defined in a WSDL <por t Type>.
The tool will generate a new contract which includes the generated SOAP

binding.

To generate a SOAP binding using wsdl t osoap use the following command:

wsdl t osoap -i portType -n nanespace wsdl _file
[-b binding][-d dir][-0 file]
[-style {docunent|rpc}][-use {literal|encoded}]

The command has the following options:

-i portType

- N nanespace

-b binding

-d dir

-o file

-style

-use

Specifies the name of the port type being mapped to a
SOAP binding.

Specifies the namespace to use for the SOAP binding.

Specifies the name for the generated SOAP binding.
Defaults to port TypeBi ndi ng.

Specifies the directory into which the new WSDL file is
written.

Specifies the name of the generated WSDL file. Defaults
to wsdl _fil e-soap. wsdl .

Specifies the encoding style to use in the SOAP binding.
Defaults to docurent .

Specifies how the data is encoded. Defaultis literal .

wsdl t osoap does not support the the generatoin of docunent /encoded SOAP

bindings.

239

CHAPTER 13 | Sending Messages using SOAP

SOAP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the SOAP payload format plug-in for use with Artix.

Configuration layout Example 116 shows (in bold) the WSDL extensions used to configure the
SOAP message format plug-in for use with Artix. (Ellipses (that is, ...) are
used to denotes sections of the WSDL that have been omitted for brevity.)

Example 116:SOAP Configuration WSDL Extensions
<definitions...

xm ns: soap="ht t p: // schenmas. xm soap. or g/ wsdl / soap"

<definitions >
<binding >
<soap: bi ndi ng styl e="rpc| docunent" transport="uri">
<operation >
<soap: operation soapAction="uri" style="rpc|docunent">
<i nput >
<soap: body use="literal | encoded" encodi ngStyl e="uri-list">
</i nput >
<out put >
<soap: body use="literal | encoded" encodi ngStyl e="uri-list">
</ out put >
<faul t >*
<soap: faul t name="nnt oken" use="literal | encoded" encodi ngStyl e="uri-list">
</faul t>
</ oper ati on>
</ bi ndi ng>

<port >
<soap: address | ocation="uri"/>
</ port>
</ definitions>

240

SOAP WSDL Extensions

SOAP WSDL Extensions Details

Overview

soap:binding element

This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the SOAP message
format plug-in for use with Artix. It discusses the following topics:

® ‘“soap:binding element” on page 241.

® ‘“soap:operation element” on page 243.

® ‘“soap:body element” on page 244.

® ‘“soap:fault element” on page 246.

® ‘“soap:address element” on page 247.

The soap: bi ndi ng element in a WSDL contract is defined within the
<bi ndi ng> component, as follows:

<bi ndi ng name=".."" type=".."">
<soap: bi nding style=".!" transport=".">

Only one soap: bi ndi ng element is defined in a WSDL contract. It is used to
signify that SOAP is the message format being used for the binding.
Table 27 describes the attributes defined within the soap: bi ndi ng element.

Table 27: Attributes for soap:binding

Configuration Attribute

Explanation

style

The value of the styl e attribute within the soap: bi ndi ng element acts
as the default for the st yl e attribute within each soap: operati on
element. It indicates whether request/response operations within this
binding are RPC-based (that is, messages contain parameters and return
values) or document-based (that is, messages contain one or more
documents).

Valid values are r pc and docunent . The specified value determines how
the SOAP Body within a SOAP message is structured.

241

CHAPTER 13 | Sending Messages using SOAP

Table 27: Attributes for soap:binding

Configuration Attribute

Explanation

If r pc is specified, each message part within the SOAP Body is a
parameter or return value and will appear inside a wrapper element
within the SOAP Body. The name of the wrapper element must match
the operation name. The namespace of the wrapper element is based on
the value of the soap: body namespace attribute. The message parts
within the wrapper element correspond to operation parameters and
must appear in the same order as the parameters in the operation. Each
part name must match the parameter name to which it corresponds.

For example, the SOAP Body of a SOAP request message (based on the
WSDL example in Example 112 on page 224) is as follows if the style is
RPC-based:
<SQAP- ENV: Body>
<m Get St udent & ade xnm ns: m=" URL" >
<St udent Code>815637</ St udent Code>
<Subj ect >H st or y</ Subj ect >
</ m Get St udent G ade>
</ SOAP- ENV: Envel ope>

If docunent is specified, message parts within the SOAP Body appear
directly under the SOAP Body element as body entries and do not appear
inside a wrapper element that corresponds to an operation. For example,
the SOAP Body of a SOAP request message (based on the WSDL
example in Example 112 on page 224) is as follows if the style is
document-based:
<SQAP- ENV: Body>

<St udent Code>815637</ St udent Code>

<Subj ect >H st or y</ Subj ect >
</ SOAP- ENV: Envel ope>

transport

This defaults to the URL that corresponds to the HTTP binding in the
W3C SOAP specification (ht t p: / / schemas. xn soap. or g/ soap/ ht t p). If
you want to use another transport (for example, SMTP), modify this
value as appropriate for the transport you want to use.

242

soap:operation element

SOAP WSDL Extensions

A soap: oper at i on element in a WSDL contract is defined within an
<oper at i on> component, which is defined in turn within the <bi ndi ng>
component, as follows:

<bi ndi ng name=".." type="." >
<soap: bi nding style="." transport=".">
<operation name="." >
<soap: operation style="." soapAction=".."">

A soap: oper ati on element is used to encompass information for an
operation as a whole, in terms of input criteria, output criteria, and fault
information. Table 27 describes the attributes defined within a

soap: oper at i on element.

Table 28: Attributes for soap:operation

Configuration Attribute

Explanation

style

This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based
(that is, messages contain one or more documents).

Valid values are r pc and docunent . See “soap:binding element” on
page 241 for more details of the style attribute.

The default value for soap: operation styl e is based on the value
specified for the soap: bi ndi ng styl e attribute.

soapActi on

This specifies the value of the SOAPAct i on HTTP header field for the
relevant operation. The value must take the form of the absolute URI
that is to be used to specify the intent of the SOAP message.

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.

243

CHAPTER 13 | Sending Messages using SOAP

soap:body element A soap: body element in a WSDL contract is defined within both the <i nput >
and <out put > components within an <oper at i on> component, as follows:

<bi ndi ng name=".." type=".."">
<soap: bi ndi ng style=".!" transport="..">
<operati on nanme="..">
<soap: operation style="." soapAction="..">
<i nput >
<soap: body use=".." encodi ngStyl e=".." nanmespace="..">
</ i nput >
<out put >
<soap: body use=".." encodi ngStyl e=".." nanmespace="..">
</ out put >
</ oper ati on>

A soap: body element is used to provide information on how message parts
are to be appear inside the body of a SOAP message. As explained in
“soap:operation element” on page 243, the structure of the SOAP Body
within a SOAP message is dependent on the setting of the soap: operati on
styl e attribute.

Table 27 describes the attributes defined within the soap: body element.

Table 29: Attributes for soap:body

Configuration Attribute Explanation

use This attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema
definition.

An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL contract via
an encodi ngSt yl e attribute. In this case, types are serialized based on
the set of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the
WSDL contract itself, within a <schena> element within the <t ypes>
component of the contract.

Valid values for soap: body use are encoded and literal .

244

SOAP WSDL Extensions

Table 29: Attributes for soap:body

Configuration Attribute

Explanation

If encoded is specified, the type attribute that is specified for each
message part (within the <message> component of the WSDL contract) is
used to reference an abstract type defined in some remote encoding
schema. In this case, a concrete SOAP message is produced by applying
encoding rules to the abstract types. The encoding rules are based on
the encoding style identified in the soap: body encodi ngStyl e attribute.
The encoding takes as input the nane and t ype attribute for each
message part (defined in the <message> component of the WSDL
contract). If the encoding style allows variation in the message format for
a given set of abstract types, the receiver of the message must ensure
they can understand all the format variations.

Ifliteral is specified, either the el enent or type attribute that is
specified for each message part (within the <message> component of the
WSDL contract) is used to reference a concrete schema definition
(defined within the <t ypes> component of the WSDL contract). If the

el enent attribute is used to reference a concrete schema definition, the
referenced element in the SOAP message appears directly under the
SOAP Body element (if the operation style is document-based) or under
a part accessor element that has the same name as the message part (if
the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body (if the operation
style is documented-based) or of the part accessor element (if the
operation style is document-based).

The use attribute is mandatory.

encodi ngStyl e

This attribute is used when the soap: body use attribute is set to
encoded. It specifies a list of URIs (each separated by a space) that
represent encoding styles that are to be used within the SOAP message.
The URIs should be listed in order, from the most restrictive encoding to
the least restrictive.

This attribute can also be used when the soap: body use attribute is set
toliteral, to indicate that a particular encoding was used to derive the
concrete format, but that only the specified variation is supported. In this
case, the sender of the SOAP message must conform exactly to the
specified schema.

245

CHAPTER 13 | Sending Messages using SOAP

Table 29: Attributes for soap:body

Configuration Attribute Explanation

namespace If the soap: oper ation styl e attribute is set to rpc, each message part
within the SOAP Body of a SOAP message is a parameter or return value
and will appear inside a wrapper element within the SOAP Body. The
name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the

soap: body nanespace attribute.

soap:fault element A soap: faul t element in a WSDL contract is defined within the <faul t >
component within an <oper at i on> component, as follows:

<bi ndi ng name=".." type="..">
<soap: bi ndi ng style=".!" transport="..">
<operati on nanme="..">
<soap: operation style="." soapAction="..">
<i nput >
<soap: body use=".." encodi ngStyl e="..">
</ i nput >
<out put >
<soap: body use=".." encodi ngStyl e="..">
</ out put >
<faul t>
<soap: fault name=".. use=".! encodi ngStyl e=".."
</faul t>
</ oper ati on>
</ bi ndi ng>

Only one soap: faul t element is defined for a particular operation. The
operation must be a request-response or solicit-response type of operation,
with both <i nput > and <out put > elements. The soap: faul t element is used
to transmit error and status information within a SOAP response message.

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap: operati on styl e element in the WSDL is set to
docunent , because faults do not contain parameters.

246

SOAP WSDL Extensions

Table 27 describes the attributes defined within the soap: faul t element.

Table 30: soap:fault attributes

Configuration Attribute

Explanation

name This specifies the name of the fault. This relates back to the nane
attribute for the <f aul t > element specified for the corresponding
operation within the <port Type> component of the WSDL contract.

use This attribute is used in the same way as the use attribute within the

soap: body element. See “use” on page 244 for more details.

encodi ngStyl e

This attribute is used in the same way as the encodi ngStyl e attribute
within the soap: body element. See “encodingStyle” on page 245 for
more details.

soap:address element

The soap: addr ess element in a WSDL contract is defined within the <port >
component within the <servi ce> component, as follows:

<service name="..">
<port binding="." name=".">
<soap: address | ocati on="..">
</ port >

</ servi ce>

Only one soap: addr ess element is defined in a WSDL contract. It is only
specified when you want to use SOAP over HTTP. If you want to use SOAP
over a different transport (for example, IIOP), the element name in this case
is i i op: addr ess. Similarly, if you want to use a different payload format
over HTTP, the http-conf:client URL attribute is used instead.

Note: When you are using SOAP over HTTP, the htt p- conf: client and
ht t p- conf : server elements can still be validly specified as peer elements
of the soap: addr ess element. See the "Using the HTTP Plug-in" chapter of
this guide for more details of htt p-conf: client and htt p-conf : server.

247

CHAPTER 13 | Sending Messages using SOAP

Table 27 describes the | ocat i on attribute defined within the soap: addr ess
element.

Table 31: Attribute for soap:address

Configuration Attribute Explanation

| ocati on This specifies the URL of the server to which the client request is being
sent.

Valid values are of the form:

http:// nyserver/ nypat h/
https://nyserver/nypath

htt p: // nyser ver: 9001/ nypat h
http: // nyserver: 9001- 9010/ nypat h

The soap: addr ess element is mandatory if you want to use SOAP over
HTTP. It does not need to be set if you want to use SOAP over any other
transport.

248

Supported XML Types

Supported XML Types

Overview

Supported simple (built-in) types

This section provides an overview of the XML data types that are supported
by SOAP with Artix. It discusses the following topics:

® “Supported simple (built-in) types” on page 249.
® “Other supported types” on page 250.

Note: Artix does not currently support the use of multipart/related MIME
attachments with SOAP.

The following simple (built-in) types are supported:

xsd: string
xsd: i nt

xsd: | ong

xsd: short

xsd: f| oat

xsd: doubl e
xsd: bool ean
xsd: byte

xsd: deci mal
xsd: dat eTi ne
xsd: base64Bi nary
xsd: hexBi nary

249

CHAPTER 13 | Sending Messages using SOAP

Other supported types The following list provides an overview (and in some cases an example of)
other supported types:

Type Description/Example

Enumeration For example:

<xsd: el ement nane="EyeCol or"
type="EyeCol or Type"/ >
<xsd: si npl eType nane="EyeCol or Type" >
<xsd: restriction base="xsd:string" >
<xsd: enuneration val ue="Qeen" />
<xsd: enuneration val ue="Bl ue" />
<xsd: enurrer ati on val ue="Brown" />
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType> | For example:

<xsd: conpl exType nare="USAddr ess" >
<xsd: sequence>
<xsd: el enent name="narme"
type="xsd: string"/>
<xsd: el ement name="street"
type="xsd: string"/>
<xsd: el enent name="ci ty"
type="xsd: string"/>
<xsd: el enent nane="stat e"
type="xsd: string"/>
<xsd: el ement nane="zi p"
t ype="xsd: deci mal "/ >
</ xsd: sequence>
<xsd: attribute name="country"
t ype="xsd: NVTCKEN'
fixed="US"/>
</ xsd: conpl exType>

Circular references that can occur with, for
example, circular linked lists are not supported.

xsd: attribute For example:

<xsd:attribute name="country"
t ype="xsd: NMICKEN'
fixed="US"/>

250

Supported XML Types

Type

Description/Example

xsd: el ement

Occurence constraints (m nCccur s and
maxQeceur s) for xsd: el ement within
xsd: sequence. For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: el enent nane="shi pTo"
type="USAddr ess"/ >
<xsd: el ement nane="bi || To"
type="USAddr ess"/ >
<xsd: el enent ref="comment"
m nCcecurs="0"/>
<xsd: el ement nane="itens"
type="Iltens"/>
</ xsd: sequence>
<xsd: attribute name="order Date"
type="xsd: dat e"/ >

</ xsd: conpl exType>

<xsd: ref>

Attribute for reference to global elements.

Derived simple
types.

Derived simple types by restriction of an existing
simple type. For example:

<xsd: si npl eType nane="nyl nt eger">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="10000"/>
<xsd: max| ncl usi ve val ue="99999"/ >
</xsd:restriction>
</ xsd: si npl eType>

Array derived from
soap: Array.

Array derived from soap: Array by restriction
using the wsdl : ar r ayType attribute. For example:

<conpl exType nane="Array(f | nteger">
<conpl exCont ent >
<restriction base="soapenc: Array" >
<attribute
ref =" soapenc: arrayType"

wsdl : arrayType="xsd:int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

251

CHAPTER 13 | Sending Messages using SOAP

252

Type

Description/Example

<xsd: sequence>

For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: el ement name="shi pTo"
t ype="USAddr ess"/ >
<xsd: el ement narme="bi | | To"
t ype="USAddr ess"/ >
<xsd: el enent name="itens"
type="Itens"/>
</ xsd: squence>
</ xsd: conpl exType>

In this case, ni nCccur s and naxCeceur s attributes
are ignored.

<xsd: choi ce>

For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref="shi pAndBill"/>
<xsd: el ement name="si ngl eUSAddr ess"
t ype="USAddr ess"/ >
</ xsd: choi ce>
<xsd: el enent name="itens"
type="Itens"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, m nGccurs and maxQeeur s attributes
are ignored.

<xsd: al | >

For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd:al | >
<xsd: el enent nare="shi pTo"
t ype="USAddr ess"/ >
<xsd: el ement name="bi |l | To"
t ype="USAddr ess"/ >
<xsd: el ement nane="itens"
type="Itens"/>
</ xsd: al | >
</ xsd: conpl exType>

Supported XML Types

Type

Description/Example

Complex type
derived from simple

type.

For example:

<xsd: el ement nane="international Price">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on
base="xsd: deci nal ">
<xsd:attribute
nane="currency"

type="xsd: string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

253

CHAPTER 13 | Sending Messages using SOAP

254

Overview

Type support

In this chapter

CHAPTER 14

Sending Messages
as Fixed Record
Length Data

Fixed record length data support allows Artix to interact with
mainframe systems using COBOL.

Many applications send data in fixed length records. For example, COBOL
applications often send fixed record data over WebSphere MQ. Artix
provides a binding that maps logical messages to concrete fixed record
length messages. The binding allows you to specify attributes such as
encoding style, justification, and padding characters.

Artix supports text-based fixed length record data. For instance, numerals,
such as 42, are represented as the ASCII characters * 4 and’ 2'. This
allows the data to be easily translated from one codeset to another if
needed.

Binary data, such as packed decimals, are not supported.

This chapter discusses the following topics:

Creating a Fixed Binding from a COBOL Copybook page 257

255

CHAPTER 14 | Sending Messages as Fixed Record Length Data

256

Fixed Record Length Message Data Mapping

page 259

Creating a Fixed Binding from a COBOL Copybook

Creating a Fixed Binding from a COBOL
Copybook

Overview The primary use of the fixed binding is to work with systems built using
COBOL. To facilitate the mapping of COBOL operations to Artix contracts,
Artix provides a command line tool, col bol t owsdl , that will import COBOL
copybook data and generate an Artix contract containing a fixed binding to
define the COBOL interface for Artix applications.

Using the tool To generate an Artix contract from COBOL copybook data use the following
command:

cobol towsdl -b binding -op operation -im[inmessage:]i ncopybook
[- om [out nessage:] out copybook]
[-fm[faul t message:] f aul t book]
[-i portType][-t target]
[-x schema_nane] [-useTypes][-0 file]

The command has the following options:

-b bi ndi ng Specifies the name for the generated binding.

-op operation Specifies the name for the generated
operation.

-im Specifies the name of the input message and

[i nmessage:] i ncopybook the copybook file from which the data
defining the message is taken. The input
message name, i nnessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

-om Specifies the name of the output message
[out message:] out copybook and the copybook file from which the data
defining the message is taken. The output
message name, out nessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.

257

CHAPTER 14 | Sending Messages as Fixed Record Length Data

258

-fm
[faul t nessage:] f aul t book

-i portType

-t target

-Xx schena_nane

- useTypes

-o file

Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, f aul t message, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

Specifies the name of the port type in the
generated WSDL. Defaults to

bi ndi ngPor t Type.2

Specifies the target namespace for the

generated WSDL. Defaults to
http: //waw. i ona. cont bi ndi ng.

Specifies the namespace for the schema in
the generated WSDL. Defaults to
htt p: // waw. i ona. cond bi ndi ng/ t ypes.

Specifies that the generated WSDL will use
<t ypes>. Default is to generate <el enent > for
schema types.

Specifies the name of the generated WSDL
file. Defaults to bi ndi ng. wedl .

a. If bi ndi ng ends in Bi ndi ng or bi ndi ng, it is stripped off before being used

in any of the default names.

Once the new contract is generated, you will still need to add the port
information before you can use the contract to develop an Artix solution.

Fixed Record Length Message Data Mapping

Fixed Record Length Message Data Mapping

Overview

Binding namespace

<fixed:binding >

Artix defines seven elements that extend the WSDL <bi ndi ng> element to
support the fixed record length binding. These elements are:

® <fixed:binding>

® <fixed:operation>

® <fixed:body>

* <fixed:field>

® <fixed:enumeration>
® <fixed:sequence>

* <fixed:choice>

® <fixed:case>

The IONA extensions used to describe fixed record length bindings are
defined in the namespace ht t p: // schenas. i ona. cond bi ndi ngs/ fi xed. Artix
tools use the prefix f i xed to represent the fixed record length extensions and
add the following line to your contracts:

xm ns: fi xed="http://schenas. i ona. con bi ndi ngs/ fi xed

If you add a fixed record length binding to an Artix contract by hand you
must also include this namespace.

<fi xed: bi ndi ng> specifies that the binding is for fixed record length data. It
has three optional attributes:

justification Specifies the default justification of the data contained in
the messages. Valid values are | eft and ri ght . Default is
left.

encodi ng Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is en.

padHexCode Specifies the hex value of the character used to pad the
record.

259

CHAPTER 14 | Sending Messages as Fixed Record Length Data

<fixed:operation>

<fixed:body>

260

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message by message basis.

<fi xed: operation> is a child element of the WSDL <oper at i on> element
and specifies that the operation’s messages are being mapped to fixed
record length data.

<fi xed: oper at i on> has one attribute, di scri m nat or, that assigns a unique
identifier to the operation. If your service only defines a single operation, you
do not need to provide a discriminator. However, if your service has more
than one service, you must define a unique discriminator for each operation
in the service. Not doing so will result in unpredictable behavior when the
service is deployed.

<fi xed: body> is a child element of the <i nput >, <out put >, and <faul t >
messages being mapped to fixed record length data. It specifies that the
message body is mapped to fixed record length data on the wire and
describes the exact mapping for the message’s parts.

<fi xed: body> takes three optional attributes:

justification Specifies the default justification of the data contained in
the messages. Valid values are 1 eft and right.

encodi ng Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

These values override the defaults set in the <fi xed: bi ndi ng> element.
<fi xed: body> will have one or more of the following child elements:

* <fixed:field>

® <fixed:sequence>

® <fixed:choice>

They describe the detailed mapping of the data to fixed length record data to
be sent on the wire.

<fixed:field>

Fixed Record Length Message Data Mapping

<fixed: fiel d>is used to map simple data types to a fixed length record.
Each <fi xed: fi el d> element has one required attribute, name, which
corresponds to the name of the message part being mapped to the fixed
record. This name must be the name of a message part defined in the
logical message description.

Each <fi xed: fi el d> element that maps a message part also requires either
the si ze attribute or the for nat attribute. A <fi xed: fi el d> element would
never use both attributes.

size
si ze specifies the length of a string record. For example, the logical

message part, raver | D, described in Example 117 would be mapped to a
<fixed: fiel d>similar to Example 118.

Example 117:Fixed String Message

<nessage nane="fi xedStri ngMessage">
<part name="raverl|D' type="xsd:string" />
</ message>

In order to complete the mapping, you must know the length of the record
field and supply it. In this case, the field, raver | D, can contain no more
than twenty characters.

Example 118:Fixed String Mapping
<fixed:field nane="raver| D' size="20" />

format

format specifies how non-string data is formatted. For example, if a field
contains a 2-digit numeric value with one decimal place, it would be
described in the logical part of the contract as an xsd: f| oat, as shown in
Example 119.

Example 119:Ffixed Record Numeric Message

<nessage nane="fi xedNunber Message" >
<part name="ragelLevel " type="xsd:float" />
</ message>

261

CHAPTER 14 | Sending Messages as Fixed Record Length Data

262

From the logical description of the message, Artix has no way of determining
that the value of rageLevel is a 2-digit number with one decimal place
because the fixed record length binding treats all data as characters. When
mapping rageLevel in the fixed binding you would specify its f or mat with
##. #, as shown in Example 120. This provides Artix with the meta-data
needed to properly handle the data.

Example 120:Mapping Numerical Data to a Fixed Binding
<fixed:flield name="ragelLevel " fornat="## #" />

Dates are specified in a similar fashion. For example, the f or mat of the date
12/02/72 is v DIY YY. When using the fixed binding it is recommended that
dates are described in the logical part of the contract using xsd: stri ng. For
example, a message containing a date would be described in the logical part
of the contract as shown in Example 121.

Example 121:Fixed Date Message

<nessage nane="fi xedDat eMessage" >
<part name="goDate" type="xsd:string" />
</ message>

If goDat e is entered using the standard short date format for US English
locales, mn dd/ yyyy, you would map it to a fixed record field as shown in
Example 122.

Example 122:Fixed Format Date Mapping
<fixed: field nane="goDat e" format="nm dd/yyyy" />

bindingOnly

<fixed: fi el d> elements supports an optional bi ndi nginl y attribute.

bi ndi ngnl y is a boolean attribute that specifies that the field is specific to
the binding and does not appear in the logical message description. When
bi ndi ngnl y is set to true, the field described by the <fi xed: fi el d>
element is not propagated beyond the binding. For input messages, this
means that the field is read in and then discarded. For output messages,
you must also use the fi xedval ue attribute.

fixedValue

<fixed:enumeration>

Fixed Record Length Message Data Mapping

fixedVval ue can be used in place of the si ze and format attributes. It
specifies a static value to be passed on the wire. When used without

bi ndi ngOnl y="true", the value specified by fi xedVal ue replaces any data
that is stored in the message part passed to the fixed record binding. For
example, if goDat e, shown in Example 121 on page 262, were mapped the
the fixed field shown in Example 123, the actual message returned from the
binding would always have the date 11/11/2112.

Example 123:fixedValue Mapping

<fixed: field nane="goDat e" fixedVal ue="11/11/2112" />

<fixed: enuner ati on> is a child element of <fi xed: fi el d>and is used to
map enumerated types to a fixed record length message. It takes two
required attributes, val ue and fi xedval ue. val ue corresponds to the
enumeration value as specified in the logical description of the enumerated
type. fi xedval ue specifies the concrete value that will be used to represent
logical value on the wire.

For example, if you had an enumerated type with the values Frui tyToot y,
Rai nbow, Ber r yBonb, and O angeTango the logical description of the type
would be similar to Example 124.

Example 124:/ce Cream Enumeration

<xs: si npl eType narme="f| avor Type" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="FruityTooty"/>
<xs: enuner ati on val ue="Rai nbow'/ >
<xs: enuner ati on val ue="BerryBonb"/>
<xs: enuneration val ue="C angeTango"/ >
</xs:restriction>
</ xs: si npl eType>

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
respresentations can be identical to the logical or some other value. The

263

CHAPTER 14 | Sending Messages as Fixed Record Length Data

<fixed:sequence>

264

enumerated type in Example 124 could be mapped to the fixed field shown
in Example 125. Using this mapping Artix will write OT to the wire for this
field if the enumerations value is set to O angeTango.

Example 125:Fixed Ice Cream Mapping

<fixed:field name="fl avor" size="2">
<fixed: enuneration val ue="FruityTooty" fixedVal ue="FT" />
<fi xed: enuner ati on val ue="Rai nbow' fixedVal ue="RB" />
<fixed: enunerati on val ue="BerryBonb" fi xedVal ue="BB" />
<fixed: enuneration val ue="C angeTango" fi xedVal ue="0Or" />
</fixed:field>

Note that the parent <fi xed: fi el d> element uses the si ze attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the si ze attribute will always be used to represent
the size of the concrete representation.

<fi xed: sequence> maps arrays and sequences to a fixed record length
message. It has one required attribute, nane, that corresponds to the name
of the logical message part being mapped by this element.

<fi xed: sequence> also takes two optional attributes, occurs and
count er Nane. occur s specifies the number of times this sequence occurs in
the message buffer. The default for occurs is 1.

When you specify a value greater that 1 for occurs, you can also use

count er Nane. count er Narre specifies the name of the field used for
specifying the number of sequence elements are actually being sent in the
message. The value of count er Narre corresponds to a <fi xed: fi el d> with at
least enough digits to count to the value specified in occurs as shown in
Example 126. The value passed to the counter field can be any number up
to the value specified by occurs and allows operations to use less than the
specified number of sequence elements. Artix will pad out the sequence to

Fixed Record Length Message Data Mapping

the number of elements specified by occurs when the data is transmitted to
the reciever so that the reciever will get the data in in the promised fixed
format.

Example 126:Using counterName

<fixed:field nane="count" fornmat="##" bindi ngnl y="true"/>
<fixed: sequence nane="itens" counterName="count" occurs="10">

</ fi xed: sequence>

A <fi xed: sequence> can contain any number of <fi xed: fi el d>,

<fi xed: sequence>, or <fi xed: choi ce> child elements to describe the data
contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<fixed: fiel d>elements to fully describe the mapping of the data to the
fixed record message. Example 127 shows an Artix contract fragment for
such a mapping.

Example 127:Mapping a Sequence to a Fixed Record Length Message

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<defi ni ti ons nane="fi xedMvappi ngsanpl e"
t ar get Namespace="ht t p: / / www. i ona. coni Fi xedSer vi ce"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xm ns: tns="htt p: // ww. i ona. coni Fi xedSer vi ce"
xm ns: xsd="htt p: / / waww. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schera t ar get Nanespace="htt p: //wmv i ona. coni Fi xedSer vi ce"
xm ns="htt p: // waw. w3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >
<xsd: conpl exType name="person">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="date" type="xsd:string"/>
<xsd: el ement nanme="ID' type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ types>
<nessage nanme="fi xedSequence" >
<part name="personPart" type="tns: person" />
</ message>

265

CHAPTER 14 | Sending Messages as Fixed Record Length Data

<fixed:choice>

266

Example 127:Mapping a Sequence to a Fixed Record Length Message

<port Type nane="fi xedSequencePort Type" >

</ port Type>
<bi ndi ng name="f i xedSequenceBi ndi ng"
type="t ns: f i xedSequencePort Type" >
<fi xed: bi nding />

<f i xed: sequence nane="personPart">
<fixed: field nane="nane" size="20" />
<fixed:field nane="date" fornmat="MJ DD YY" />
<fixed:field nane="1D"' format="#####" >

</ fixed: sequence>

</ bi ndi ng>

</ definition>

<fi xed: choi ce> is used to map unions into fixed record length messages. It
takes one required attribute, name, which corresponds to the name of the
logical message part being mapped.

<fi xed: choi ce> also supports an optional attribute, di scri m nat or Nane,
that specifies the message part used as the discriminator for the union. The
value for di scri ni nat or Nane corresponds to the name of a bi ndi ngnl y
<fixed: fi el d>that describes the type used for the union’s descriminator as
shown in Example 128. The only restriction in describing the descriminator
is that it must be able to handle the values used to determine the case of the
union. Therefore the values used in the union mapped in Example 128 must
be two digit integers.

Example 128:Using discriminatorName

<fixed: field nane="di sc" format="##" bindi ngOnl y="true"/>
<fi xed: choi ce nane="uni onSt ati on" di scri nm nat or Nane="di sc">

</ fi xed: choi ce>

A <f i xed: choi ce> may contain one or more <f i xed: case> child elements to
map the cases for the union to a fixed record length message.

<fixed:case>

Fixed Record Length Message Data Mapping

<fixed: case> is a child element of <f i xed: choi ce> and describes the
complete mapping of a union’s individual cases to a fixed record length
message. It takes two required attributes, nane and fi xedval ue. nane
corresponds to the name of the case element in the union’s logical
description. fi xedVval ue specifies the value of the descriminator that selects
this case. The value of fi xedVal ue must correspond to the format specified
by the di scri mi nat or Nane attribute of <fi xed: choi ce>.

<fi xed: case> must contain one child element to describe the mapping of
the case’s data to a fixed record length message. Valid child elements are
<fixed: fiel d>, <fixed: sequence>, and <fi xed: choi ce>. Example 129
shows an Artix contract fragment mapping a union to a fixed record length
message.

Example 129:Mapping a Union to a Fixed Record Length Message

<?xm version="1.0" encodi ng="UTF-8" 2>
<defi ni ti ons nane="fi xedMvappi ngsanpl e"
t ar get Namespace="ht t p: / / www. i ona. coni Fi xedSer vi ce"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xm ns: tns="htt p: // ww. i ona. coni Fi xedSer vi ce"
xm ns: xsd="htt p: / / waww. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schera t ar get Nanmespace="htt p: // wmv. i ona. coni Fi xedSer vi ce"
xm ns="htt p: // waw. w3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >
<xsd: conpl exType name="uni on$t ati onType">
<xsd: choi ce>
<xsd: el ement nane="train" type="xsd:string"/>
<xsd: el ement nane="bus" type="xsd:int"/>
<xsd: el ement nane="cab" type="xsd:int"/>
<xsd: el ement nane="subway" type="xsd:string" />
</ xsd: choi ce>
</ xsd: conpl exType>
</ types>
<nessage name="fixedSequence">
<part name="stationPart" type="tns:unionStationType" />
</ message>
<port Type nane="fi xedSequencePort Type" >

</ por t Type>

267

CHAPTER 14 | Sending Messages as Fixed Record Length Data

Example 129:Mapping a Union to a Fixed Record Length Message

<bi ndi ng name="f i xedSequenceBi ndi ng"
type="t ns: f i xedSequencePort Type" >
<fi xed: bi nding />

<fixed:field nane="di sc" format="##" bi ndi ngOnl y="true" />
<fi xed: choi ce nane="st ati onPart"
descri m nat or Nane="di sc" >
<fi xed: case nanme="train" fixedVal ue="01">
<fixed: field name="nane" size="20" />
</ fi xed: case>
<fi xed: case nanme="bus" fi xedVal ue="02">
<fixed: field name="nunber" format="###" />
</ fi xed: case>
<fi xed: case nane="cab" fi xedVal ue="03">
<fixed: field name="nunber" format="###" />
</ fi xed: case>
<fi xed: case nanme="subway" fixedVal ue="04">
<fixed:field name="nane" format="10" />
</ fi xed: case>
</ fi xed: choi ce>

</ bi ndi ng>

</ definition>

Example Example 130 shows an example of an Artix contract containing a fixed
record length message binding.

Example 130:Fixed Record Length Message Binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defini ti ons nane="wi dget O der For m wsdl "
t ar get Namespace="ht t p: / / wi dget Vendor . com wi dget O der For n¥
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: tns="ht t p: // wi dget Vendor . com wi dget O der For ni
xm ns: soap="ht t p: // schenmas. xm soap. or g/ wsdl / soap/ "
xm ns: fi xed="http://schenas. i ona. coni bi ni ngs/ fi xed"
xm ns: xsd="ht t p: / / waw. W8. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: // wi dget Vendor . coni t ypes/ wi dget Types" >
<t ypes>
<schera t ar get Namespace="ht t p: / / wi dget Vendor . coni t ypes/ wi dget Types"
xm ns="ht t p: / / waw, w3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">

268

Fixed Record Length Message Data Mapping

Example 130:Fixed Record Length Message Binding

<xsd: si npl eType nane="wi dget Si ze" >
<xsd: restriction base="xsd:string">
<xsd: enuner ati on val ue="hi g"/>
<xsd: enuner ati on val ue="|arge"/>
<xsd: enuner ati on val ue="nmungo"/>
<xsd: enuner ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="Addr ess">
<xsd: sequence>
<xsd: el enent name="nane" type="xsd:string"/>
<xsd: el ement nane="street 1" type="xsd:string"/>
<xsd: el enent name="street2" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el enent nanme="type" type="xsdl:wi dgetSi ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget OrderBil || nfo">
<xsd: sequence>
<xsd: el enent name="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:wi dgetSi ze"/>
<xsd: el enent nanme="ant Due" type="xsd:float"/>
<xsd: el ement nane="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schenma>
</ types>
<nessage name="w dget O der" >
<part name="w dget O der Form{ type="xsd1l: w dget O der | nfo"/>
</ message>
<nessage name="w dget OrderBill">
<part name="w dget O der Conf or nati on" type="xsdl: w dget O derBillInfo"/>
</ message>

269

CHAPTER 14 | Sending Messages as Fixed Record Length Data

Example 130:Fixed Record Length Message Binding

<port Type nane="order W dget s" >
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCrderBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng nanme="or der W dget sBi ndi ng" type="tns: order Wdget s">
<f i xed: bi ndi ng/ >
<oper ati on name="pl aceW dget Or der" >
<fi xed: operation discri m nator="wi dget D sc"/>
<i nput nane="wi dget O der ">
<fi xed: body>
<f i xed: sequence nane="wi dget Or der For n{' >
<fixed:field nane="anount" format="###" />
<fixed: fi eld name="order_date" format="M DD YYYY" />
<fixed: field nane="type" size="2">
<fixed: enunerati on val ue="bi g" fi xedval ue="bg" />
<fixed: enuneration val ue="Iarge" fixedVval ue="1g" />
<fixed: enuneration val ue="nungo" fixedVal ue="nmg" />
<fi xed: enunerati on val ue="gargant uan" fixedval ue="gg" />
</fixed:field>
<fi xed: sequence nane="shi ppi ngAddr ess" >
<fixed: field nane="nane" size="30" />
<fixed:field name="street1" size="100" />
<fixed: field name="street2" size="100" />
<fixed:field nane="city" size="20" />
<fixed:field nane="state" size="2" />
<fixed: field nane="zi p" size="5" />
</ fi xed: sequence>
</ fixed: sequence>
</ fixed: body>
</i nput >

270

Fixed Record Length Message Data Mapping

Example 130:Fixed Record Length Message Binding

<out put nanme="wi dget OrderBill">
<fi xed: body>
<fi xed: sequence nane="wi dget O der Conf or mati on" >
<fixed:field nane="anount" fornat="###" />
<fixed: field nane="order_date" fornat="M DD YYYY" />
<fixed:field nane="type" size="2">
<fi xed: enuner ati on val ue="bi g" fi xedVval ue="bg" />
<fi xed: enunerati on val ue="l arge" fixedVal ue="1g" />
<fi xed: enurer ati on val ue="nungo" fixedVal ue="ng" />
<fi xed: enurer ati on val ue="gar gant uan" fi xedVal ue="gg" />
</fixed:field>
<fixed: field nane="ant Due" format ="####. ##" [>
<fixed: field name="order Nunber" size="20" />
<f i xed: sequence nane="shi ppi ngAddr ess" >
<fixed:field name="name" size="30" />
<fixed:field nane="street1" size="100" />
<fixed:field name="street2" size="100" />
<fixed:field name="city" size="20" />
<fixed:field name="state" size="2" />
<fixed:field name="zip" size="5" />
</ fi xed: sequence>
</ fixed: sequence>
</ fi xed: body>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="or der W dget sServi ce">
<port name="w dget O derPort" bi ndi ng="t ns: or der W dget sBi ndi ng" >
<http: address | ocati on="http://| ocal host: 8080"/ >
</ port >
</ servi ce>
</ defini ti ons>

271

CHAPTER 14 | Sending Messages as Fixed Record Length Data

272

Overview

In this chapter

CHAPTER 15

Sending Messages
as Tagged Data

The Artix tagged data binding allows the use of self-describing
messages.

The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

This chapter discusses the following topics:

Tagged Data Mapping page 274

273

CHAPTER 15 | Sending Messages as Tagged Data

Tagged Data Mapping

Overview

Binding namespace

<tagged:binding>

274

Artix defines seven elements that extend the WSDL binding element to
support the tagged data format. These elements are:

® <tagged:binding>

® <tagged:operation>

® <tagged:body>

® <tagged:field>

® <tagged:enumeration>

® <tagged:sequence>

® <tagged:choice>

® <tagged:case>

The IONA extensions used to describe tagged data bindings are defined in
the namespace htt p: // schemas. i ona. coni bi ndi ngs/ t agged. Artix tools
use the prefix t agged to represent the tagged data extensions and add the
following line to your contracts:

xm ns: t agged="htt p: // schemas. i ona. com bi ndi ngs/ t agged"

If you add a tagged data binding to an Artix contract by hand you must also
include this namespace.

<t agged: bi ndi ng> specifies that the binding is for tagged data format
messages. It has ten attributes:

sel f Descri bi ng Required attribute specifying if the message data
on the wire includes the field names. Valid
values are true or f al se. If this attribute is set to
fal se, the setting for fi el dNaneVal ueSepar at or
is ignored.

fi el dSepar at or Required attribute that specifies the delimiter the
message uses to separate fields. Supported
values are new i ne(\n), corma(,), sem col on(;),
and pi pe(]).

Tagged Data Mapping

fi el dNaneVal ueSepar at or Specifies the delimiter used to separate field

scopeType

flattened

messageSt art

nmessagekEnd

unscopedAr r ayEl enent

i gnor eUnknownEl enent s

i gnor eCase

names from field values in self-describing
messages. Supported vales are: equal s(=),
tab(\t), and col on(:).

Specifies the scope identifier for complex
messages. Supported values are t ab(\t),

curl ybrace({dat a}), and none. The default is
t ab.

Specifies if data structures are flattened when
they are put on the wire. If sel f Descri bi ng is

f al se, then this attribute is automatically set to
true.

Specifies a special token at the start of a
message. It is used when messages that require
a special character at the start of a the data
sequence. Currently the only supported value is
star (¥).

Specifies a special token at the end of a
message. Supported values are new i ne(\n) and
per cent (%).

Specifies if array elements need to be scoped as
children of the array. If set to t rue arrays take
the form

echoArray{ nyArray=2; i t emFabc; i t emedef } . If
set to f al se arrays take the form

echoAr ray{ nyArray=2; { O=abc; 1=def ; } } . Default
is fal se.

Specifies if Artix ignores undefined element in the
message payload. Default is f al se.

Specifies if Artix ignores the case with element
names in the message payload. Default is f al se.

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

275

CHAPTER 15 | Sending Messages as Tagged Data

<tagged:operation>

<tagged:body>

<tagged:field>

276

<t agged: oper at i on> is a child element of the WSDL <oper at i on> element
and specifies that the operation’s messages are being mapped to a tagged
data format. It takes two optional attributes:

di scri m nat or Specifies a name to the operation for identifying the
operation as it is sent down the wire by the Artix
runtime.

discrimnatorStyl e Specifies how the discriminator will identify data as it
is sent down the wire by the Artix runtime. Supported
values are nsgnane, partlist, and fi el dnane.

<t agged: body> is a child element of the <i nput >, <out put >, and <f aul t >
messages being mapped to a tagged data format. It specifies that the
message body is mapped to tagged data on the wire and describes the exact
mapping for the message’s parts.

<t agged: body> will have one or more of the following child elements:

® <tagged:field>

® <tagged:sequence>

® <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

<t agged: fi el d> is used to map simple types and enumerations to a tagged
data format. It has two attributes:

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.

When describing enumerated types <t agged: fi el d> will have a number of
<t agged: enurrer at i on> child elements.

Tagged Data Mapping

<tagged:enumeration> <t agged: enuner at i on> is a child element of <t aggeded: fi el d> and is used
to map enumerated types to a tagged data format. It takes one required
attribute, val ue, that corresponds to the enumeration value as specified in
the logical description of the enumerated type.

For example, if you had an enumerated type, f1 avor Type, with the values
Fr ui t yToot y, Rai nbow, BerryBonb, and O angeTango the logical description
of the type would be similar to Example 131.

Example 131:/ce Cream Enumeration

<xs: si npl eType name="f| avor Type" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="Frui tyTooty"/>
<xs: enuneration val ue="Rai nbow'/ >
<xs: enuner ati on val ue="BerryBonb"/>
<xs: enuneration val ue=" O angeTango"/ >
</xs:restriction>
</ xs: si npl eType>

fl avor Type would be mapped to the tagged data format shown in
Example 132.

Example 132:Tagged Data Ice Cream Mapping

<t agged: fi el d name="fl avor">
<t agged: enuner ati on val ue="FruityTooty" />
<t agged: enuner ati on val ue="Rai nbow' />
<t agged: enuner ati on val ue="BerryBonb" />
<t agged: enuner ati on val ue=" QO angeTango" />
</tagged: fiel d>

<tagged:sequence> <t aggeded: sequence> maps arrays and sequences to a tagged data format.
It has three attributes:

nane A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data sequence.

alias An optional attribute specifying an alias for the sequence
that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times the
sequence appears. This attribute is used to map arrays.

277

CHAPTER 15 | Sending Messages as Tagged Data

A <t agged: sequence> can contain any number of <t agged: fi el d>,

<t agged: sequence>, or <t agged: choi ce> child elements to describe the
data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three

<t agged: fi el d> elements to fully describe the mapping of the data to the
fixed record message. Example 133 shows an Artix contract fragment for
such a mapping.

Example 133:Mapping a Sequence to a Tagged Data Format

<?xm version="1.0" encodi ng="UTF-8"?>
<defini ti ons nane="t aggedDat alVappi ngsanpl e"
t ar get Namespace="ht t p: / / wwv. i ona. coni t aggedSer vi ce"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/t agged"
xm ns: tns="http://ww i ona. coni t aggedSer vi ce"
xm ns: xsd="htt p: // www W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schena t ar get Nanespace="ht t p: / / wwv. i ona. coni t aggedSer vi ce"
xm ns="ht t p: / / waw, wW3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">
<xsd: conpl exType nanme="person">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="dat e" type="xsd:string"/>
<xsd: el ement nane="ID' type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</types>
<nessage nane="t aggedSequence" >
<part name="personPart" type="tns: person" />
</ message>
<port Type nane="t aggedSequencePort Type" >

</ port Type>
<bi ndi ng nane="t aggedSequenceBi ndi ng"
t ype="t ns: t aggedSequencePor t Type" >
<t agged: bi ndi ng sel f Descri bi ng="f al se" fi el dSepar at or =" pi pe"/ >

278

<tagged:choice>

<tagged:case>

Tagged Data Mapping

Example 133:Mapping a Sequence to a Tagged Data Format

<t agged: sequence name="personPart">
<t agged: fi el d name="nane"/>
<t agged: fi el d name="date" />
<tagged: field name="1D" />

</ t agged: sequence>

</ bi ndi ng>

</ definition>

<t agged: choi ce> maps unions to a tagged data format. It takes three
attributes:

name A required attribute that must correspond to the name
of the logical message part that is being mapped to the
tagged data union.

di scri m nat or Nane Specifies the message part used as the discriminator for
the union.

alias An optional attribute specifying an alias for the union
that can be used to identify it on the wire.

A <t agged: choi ce> may contain one or more <t agged: case> child elements
to map the cases for the union to a tagged data format.

<t agged: case> is a child element of <t agged: choi ce> and describes the
complete mapping of a unions individual cases to a tagged data format. It
takes one required attribute, nare, that corresponds to the name of the case
element in the union’s logical description.

279

CHAPTER 15 | Sending Messages as Tagged Data

<t agged: case> must contain one child element to describe the mapping of
the case’s data to a tagged data format. Valid child elements are

<t agged: fi el d>, <t agged: sequence>, and <t agged: choi ce>. Example 134
shows an Artix contract fragment mapping a union to a tagged data format.

Example 134:Mapping a Union to a Tagged Data Format

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions nane="fi xedMvappi ngsanpl e"
t ar get Namespace="ht t p: / / wwv. i ona. coni t agSer vi ce"
xm ns="ht tp: // schemas. xm soap. or g/ wsdl / "
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/t agged"
xm ns: tns="http://ww i ona. coni t agSer vi ce"
xm ns: xsd="htt p: / / waww. wW3. or g/ 2001/ XM_Schena" >
<types>
<schena t ar get Nanespace="ht t p: / / wwv. i ona. coni t agSer vi ce"
xm ns="ht t p: / / waw, wW3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">
<xsd: conpl exType nanme="uni onSt at i onType" >
<xsd: choi ce>
<xsd: el ement nane="train" type="xsd:string"/>
<xsd: el ement nane="bus" type="xsd:int"/>
<xsd: el ement nane="cab" type="xsd:int"/>
<xsd: el ement nane="subway" type="xsd:string" />
</ xsd: choi ce>
</ xsd: conpl exType>
</ types>
<nessage nane="t aglnhi on">
<part name="stationPart" type="tns:unionStationType" />
</ message>
<port Type nane="t agUuni onPort Type" >

</ port Type>
<bi ndi ng nane="t aglni onBi ndi ng" type="tns:tagUni onPort Type">
<t agged: bi ndi ng sel f Descri bi ng="f al se"
fi el dSepar at or =" comma"/ >

280

Tagged Data Mapping

Example 134:Mapping a Union to a Tagged Data Format

<t agged: choi ce nane="stati onPart" descri m nat or Name="di sc" >
<t agged: case nane="train">
<t agged: fi el d name="nane" />
</ t agged: case>
<t agged: case nane="bus">
<t agged: fi el d name="nunber" />
</ t agged: case>
<t agged: case nane="cab">
<t agged: fi el d name="nunber" />
</ t agged: case>
<t agged: case nanme="subway" >
<t agged: fi el d name="name"/>
</ t agged: case>
</t agged: choi ce>

</ bi ndi ng>

</ definition>

Example Example 135 shows an example of an Artix contract containing a tagged
data format binding.

Example 135:Tagged Data Format Binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="wi dget O der For m wsdl "
t ar get Nanmespace="ht t p: / / wi dget Vendor . com wi dget O der For n¥
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: tns="htt p: //w dget Vendor . com w dget O der For n¥
xm ns: soap="ht t p: / / schenmas. xm soap. or g/ wsdl / soap/ "
xm ns: fi xed="http: //schanes. i ona. coni bi ni ngs/ t agged"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM-Schera"
xm ns: xsd1="ht t p: / / wi dget Vendor . con t ypes/ wi dget Types" >
<t ypes>
<schema t ar get Namespace="htt p: // wi dget Vendor . coni t ypes/ wi dget Types"
xm ns="ht t p: / / waw. w3. or g/ 2001/ XM_-Scherma"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >

281

CHAPTER 15 | Sending Messages as Tagged Data

Example 135:Tagged Data Format Binding

<xsd: si npl eType nane="wi dget Si ze">
<xsd:restriction base="xsd:string">
<xsd: enurrer ati on val ue="bi g"/>
<xsd: enurer ati on val ue="| arge"/ >
<xsd: enurrer at i on val ue="nungo"/ >
<xsd: enurrer ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="Address">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="street1" type="xsd:string"/>
<xsd: el ement nane="street2" type="xsd:string"/>
<xsd: el ement nane="city" type="xsd:string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O derBil || nfo">
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="ant Due" type="xsd:float"/>
<xsd: el ement name="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schena>
</ types>
<nessage nanme="w dget O der ">
<part name="w dget O der Form type="xsd1: w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">
<part name="w dget O der Conf or mati on" type="xsdl: w dget O derBilllnfo"/>
</ message>

282

Example 135:Tagged Data Format Binding

<port Type nane="order W dget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="tns: wi dget rder" nane="order"/>
<out put message="tns:w dget O derBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng nanme="or der W dget sBi ndi ng" type="tns: order Wdget s">

<t agged: bi ndi ng sel f Descri bi ng="fal se" fi el dSepar at or =" pi pe"

<oper ati on nane="pl aceW dget O der ">
<t agged: oper ati on di scri m nat or ="wi dget D sc"/>
<i nput nane="wi dget O der" >
<t agged: body>
<t agged: sequence name="wi dget O der For n{ >
<t agged: fi el d name="anmount" />
<t agged: fi el d name="or der_date" />
<t agged: fi el d name="t ype" >
<t agged: enuner ati on val ue="bi g" />
<t agged: enuner ati on val ue="| arge" />
<t agged: enuner ati on val ue="nungo" />
<t agged: enurer ati on val ue="gar gant uan" />
</tagged: fiel d>
<t agged: sequence name="shi ppi ngAddr ess" >
<t agged: fi el d name="nane" />
<tagged: field name="street1" />
<tagged: fi eld name="street2" />
<t agged: field name="city" />
<tagged: field name="state" />
<t agged: fi el d name="zi p" />
</ t agged: sequence>
</ t agged: sequence>
</t agged: body>
</i nput >

/>

Tagged Data Mapping

283

CHAPTER 15 | Sending Messages as Tagged Data

Example 135:Tagged Data Format Binding

<out put nane="wi dget OrderBil|">
<t agged: body>
<t agged: sequence nare="wi dget O der Conf or nat i on" >
<t agged: fi el d name="anmount" />
<t agged: fi el d name="order_date" />
<t agged: fi el d name="t ype">
<t agged: enuner ati on val ue="bi g" />
<t agged: enuner ati on val ue="Il arge" />
<t agged: enurrer at i on val ue="nungo" />
<t agged: enuner ati on val ue="gar gant uan" />
</tagged: fiel d>
<t agged: fi el d name="ant Due" />
<t agged: fi el d name="or der Nunber" />
<t agged: sequence nanme="shi ppi ngAddr ess" >
<tagged: fi el d name="name"/>
<tagged:field name="street1"/>
<tagged: field nane="street2" />
<tagged:field name="city" />
<tagged:field nane="state" />
<tagged: fi el d name="zip" />
</t agged: sequence>
</ t agged: sequence>
</ t agged: body>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="order W dget sServi ce">
<port name="w dget O derPort" bindi ng="t ns: or der W dget sBi ndi ng" >
<http: address | ocation="http://I ocal host: 8080"/ >
</ port>
</ servi ce>
</ defi ni ti ons>

284

CHAPTER 16

Other Data
Bindings for
Sending Messages

Artix supports other data bindings such as G2+ + and XML
documents.

In this chapter This chapter discusses the following topics:
G2 ++ Data Binding page 286
Pure XML Format page 293

285

CHAPTER 16 | Other Data Bindings for Sending Messages

G2+ + Data Binding

Overview

Simple G2+ + mapping example

<t ypes>

G2+ + is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2+ + messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2+ + is an alternative to “raw” structures (such as C or C++ structs),
which rely on common data representation characteristics that may not be
present in a heterogeneous distributed system.

Consider the following instance of a G2+ + message:

Note: Because tabs are significant in G2+ + files (that is, tabs indicate
scoping levels and are not simply treated as “white space”), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
Seven spaces.

Example 136:£Record G2+ + Message

ERecord

R XYZ_Part

N N XYZ_Code” soneVal uel

2 & passwor d? soneVal ue2

S S servi ceFi el dName” sonmeVal ue3

n newPar t

2 & newAct i onCode” soneVal ue4

S S newSer vi ced assNane” someVal ueb
S S ol dSer vi ced assNane” sonmeVal ue6

This G2++ message can be mapped to the following logical description,
expressed in WSDL:

Example 137:WSDL Logical Description of ERecord Message

<schera t ar get Namespace="htt p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. W3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl /" >

286

G2+ + Data Binding

Example 137:WSDL Logical Description of ERecord Message

<conpl exType nane="XYZ Part">
<al |l >
<el enent name="XYZ_Code" type="xsd:string"/>
<el ement nanme="passwor d" type="xsd:string"/>
<el enent nane="servi ceFi el d\ane" type="xsd:string"/>
</all>
</ conpl exType>
<conpl exType nane="newPart">
<all>
<el ement nanme="newActi onCode" type="xsd: string"/>
<el enent nane="newServi ced assNarme" type="xsd:string"/>
<el enent name="ol dServi ced assNarme" type="xsd:string"/>
</all>
<conpl exType nane="PRequest ">
<all>
<el enent name="newPart" type="xsdl: newPart"/>
<el ement nanme="XYZ Part" type="xsdl: XYZ Part"/>
</all>
</ conpl exType>

Note that each of the message sub-structures (newPart and XYZ_Part) are
initially described separately in terms of their elements, then the two
sub-structure are aggregated together to form the enclosing record
(PRequest).

287

CHAPTER 16 | Other Data Bindings for Sending Messages

This logical description is mapped to a physical representation of the G2+ +
message, also expressed in WSDL:

Example 138:WSDL Physical Representation of ERecord Message

<bi ndi ng name="ERecor dBi ndi ng" type="t ns: ERecor dRequest Por t Type" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenas. xnl soap. or g/ soap/ http"/>
<artix: bi ndi ng transport ="t uxedo" fornat="g2++">
<&0Defi ni ti ons>
<@MessageDescri pti on name="creation" type="nsg">
<@MessageConponent name="ERecord" type="struct">
<@MessageConponent nane="XYZ Part" type="struct">
<el ement name="XYZ_Code" type="el enent"/>
<el enent name="passwor d" type="el enent"/>
<el enent name="servi ceFi el dNane" type="el enent"/>
</ 2MessageConponent >
<@MessageConponent nane="newPart" type="struct">
<el enent name="newAct i onCode" type="el ement"/>
<el ement name="newServi ced assNanme" type="el enent"/>
<el ement nane="ol dServi ced assNanme" type="el enent"/>
</ 2MessageConponent >
</ @MessageConponent >
</ @MessageDescri pti on>
</ @Def i ni ti ons>
</ arti x: bi ndi ng>

Note that all G2+ + definitions are contained within the scope of the
<@Defini tions> </ @Definitions> tags. Each of the messages are
defined with the scope of a <@MessageDescri pti on>

</ @MessageDescri pti on> construct. The type attribute for message
descriptions must be "nsg" while the name attribute simply has to be
unique.

Each record is described within the scope of a <@MessageConponent >
</ @MessageConponent > construct. Within this, the nane attribute must
reflect the G2+ + record name and the t ype attribute must be "struct".

Nested within the records are the element definitions, however if required a
record could be nested here by inclusion of a nested <&@MessageConponent >
scope (newPart and XYZ_Part are nested records of parent ERecor d).
Element “name” attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defined in-place.

288

G2+ + Data Binding

The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2+ + array mappings. The array definition is
shown below:

| VB_Met aDat a® 2

2 0

S S col umNane? SERVI CENAMVE

o o col umVal ue” soneVal uel

2 1

n n col utmNane” SERVI CEACTI ON
o o col umVal ue” soneVal ue2

This represents an array with two elements. When placed in a G2+ +
message, the result is as follows:

Example 139:Extended ERecord G2+ + Message

ERecord

n XYZ_Part

& R XYZ_Code” soneVal uel

N A passwor d* soneVal ue2

o S servi ceFi el dName” soneVal ue3

& XYZ_Met adat a” 1

N N O

N A N col unnNarre” pushToTal k
& R & col umVal ue” PTO1

n newPar t

o S newAct i onCode” soneVal ued

2 2 newSer vi ced assNane” soneVal ueb
o S ol dServi ced assNane” soneVal ue6

In this version of the ERecord record, XYZ_Part contains an array called
XYZ_Met aDat a, whose size is one. The single entry can be thought of as a
name/value pair: pushToTal k/ PT01, which allows us to ignore col unmName
and col unmVval ue.

289

CHAPTER 16 | Other Data Bindings for Sending Messages

Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 140:WSDL Logical Description of Extended ERecord Message

<types>
<schera t ar get Namespace="htt p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: / / www. w8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl /" >

<conpl exType nane="XYZ Part">
<al | >
<el enent name="XYZ_Code" type="xsd:string"/>
<el enent name="passwor d" type="xsd:string"/>
<el enent name="ser vi ceFi el dNane" type="xsd:string"/>
<el enent name="pushToTal k" type="xsd: string"/>
</all>
</ conpl exType>

<conpl exType nane="newPart">
<al |l >
<el enent name="newAct i onCode" type="xsd:string"/>
<el enent name="newSer vi ced assNane" type="xsd:string"/>
<el enent name="ol dServi ced assNane" type="xsd:string"/>
</all>

<conpl exType nane="PRequest ">
<all>
<el enent name="newPart" type="xsdl: newPart"/>
<el enent name="XYZ Part" type="xsdl: XYZ Part"/>
</all>
</ conpl exType>

290

G2+ + Data Binding

Thus the array elements col umName and col umval ue are “promoted” to a

name/Value pair in the logical mapping. This physical G2+ + representation
can now be mapped as follows:

Example 141:WSDL Physical Representation of Extended ERecord
Message

<bi ndi ng name="ERecor dBi ndi ng" type="t ns: ERecor dRequest Por t Type" >
<soap: bi ndi ng styl e="rpc"
transport ="http://schenas. xnl soap. or g/ soap/ htt p"/>
<artix: binding transport="tuxedo" fornat="g2++">
<@Defi niti ons>
<@MessageDescri pti on name="creating" type="nsg">
<@MessageConponent name="ERecord" type="struct">
<@MessageConponent nanme="XYZ Part" type="struct">
<el enent name="XYZ_Code" type="el enent"/>
<el enent name="password" type="el enent"/>
<el enent name="ser vi ceFi el dNane" type="el enent"/>
<@MessageConponent nane="XYZ_Met aDat a" type="array" size="1">
<el enent name="pushToTal k" type="el ement"/>
</ @MessageConponent >
</ @MessageConponent >
<&MessageConponent name="newPart" type="struct">
<el enent name="newAct i onCode" type="el ement"/>
<el enent name="newSer vi ced assNane" type="el enent"/>
<el enent name="ol dServi ced assNane" type="el enent"/>
</ @MessageConponent >
</ @MessageConponent >
</ @MessageDescri pti on>
</ @Def i ni ti ons>
</ arti x: bi ndi ng>

This physical mapping of the extended ERecord message now contains an
array, described with its Xyz_Met aDat a name (as per the G2+ + record
definition). Its type is "array" and its size is one. This
@MessageConponent contains a single element called "pushToTal k" .

291

CHAPTER 16 | Other Data Bindings for Sending Messages

It is possible to create a GDef i ni t i ons scope that begins with a G2-specific
configuration scope. This configuration scope is called @Confi g in the
following example:

Ignoring unknown elements

<Q@&2Def i ni tions>

A <RXConfi g>

2 & <I gnor eUnknownH enents val ue="true"/>
</ QConfi g>

In this scope, the only variable used is | gnor eUnknownEl enent s, which can
have a value of “true” or “false”. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if | gnor eUnknownEl enent s
is set to true.

Example 142:Valid G2++ Record With Ignored Fields

ERecord

n XYZ_Part

S XYZ_Code” sonmeVal uel

2 AnH enent foo

A passwor d? soneVal ue2

S servi ceFi el dName” soneVal ue3

o XYZ_Met aDat a” 2

AN N O

N N N col utmNane” pushToTal k
2 & & col unmVal ue” PTO1

AN N 1

N N N col utmmNane” AnArrayH enent
2 & & col utmVal ue” bar

A newPar t

S S newAct i onCode” soneVal ued

2 & newSer vi ced assNane” soneVal ueb
2 & ol dServi ced assNane” soneVal ueé

When parsed, the above ERecord would not include the elements
"AnEl emrent " or " AnArrayFEl emrent . If | gnor eUnknownEl enent s is set to
false, the above record would be rejected as invalid.

292

Pure XML Format

Pure XML Format

Overview

Binding namespace

Type support

The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without needing the overhead of the SOAP envelope.

The IONA extensions used to describe XML format bindings are defined in
the namespace ht t p: / / schenas. i ona. cond bi ndi ngs/ xni f or mat . Artix tools
use the prefix xm f or mat to represent the fixed record length extensions and
add the following line to your contracts:

xm ns: xm f or mat ="ht t p: // schemas. i ona. cond bi ndi ngs/ xm f or nmat

If you add an XML format binding to an Artix contract by hand you must also
include this namespace.

The XML data format supports all of the types supported by the SOAP
binding using doc/literal encoding. See “Supported XML Types” on
page 249 for a full listing of the supported types.

Messages mapped to an XML format binding can only have one part. For
example the message in Example 143 can be mapped to an XML format
binding:

Example 143:Valid XML Binding Message

<message nane="operator" >
<part name="lineNunber" type="xsd:int" />
</ message>

However, the message in Example 144 cannot be mapped to an XML
format binding because it has more than one part.

Example 144:/nvalid XML Binding Message
<nessage name="nati | das" >
<part nanme="danci ng" type="xsd: bool ean" />

<part name="nunber" type="xsd:int" />
</ message>

293

CHAPTER 16 | Other Data Bindings for Sending Messages

Mapping to an XML format The XML format binding uses a single IONA-specific extension,

binding <xni f or mat : bi ndi ng>, to identify the binding type. <xmi f or mat : bi ndi ng>
takes no attributes and is listed just after the <bi ndi ng> element. Beyond
the use of <xni f or mat : bi ndi ng>, an XML format binding is identical to a
SOAP binding. Each operation is listed and its input, output, and fault
messages are listed.

For example, Example 145 shows how the widget service would be mapped
to an XML format binding.

Example 145:XML Format Binding for Widgets

<nessage name="w dget O der ">
<part name="wi dget O der Form type="xsdl: w dget O der | nfo"/>
</ message>
<nessage name="w dget O derBill">
<part name="wi dget O der Conf or mati on" type="xsdl:w dgetrderBilllnfo"/>
</ message>
<port Type nane="or der Wdget s">
<oper at i on name="pl aceW dget O der ">
<i nput nmessage="tns: w dget O der" name="order"/>
<out put message="tns:w dgetOderBill" nane="bill"/>
</ oper ati on>
</ port Type>
<bi ndi ng name="w dget XM_Bi ndi ng" type="t ns: or der Wdget s">
<xm f or mat : bi ndi ng />
<oper at i on name="pl aceW dget Or der ">
<i nput nane="order" />
<out put name="bill" />
</ oper ati on>
</ bi ndi ng>

294

Glossary

Binding
A binding associates a specific protocol and data format to operations defined
in a portType.

Connection

An established communication link between any two Artix endpoints. Also
the representation of such a link in System Designer, which displays
connection characteristics such as its binding.

Contract

An Artix contract is a WSDL file that defines the interface and all connection
(binding) information for that interface. A contract contains two components:
logical and physical. The logical contract defines things that are independent
of the underlying transport and wire format: ‘portType’, ‘Operation’, ‘Message’,
‘Type’, and ‘Schema.’

The physical contract defines the wire format, middleware transport, and
service groupings, as well as the mapping between the portType ‘operations’
and wire formats, and the buffer layout for fixed formats and extensors, The
physical contract defines: ‘Port,” ‘Binding’ and ‘Service.’

Distillation

The process by which Artix helps the user reconcile type information among
WSDL, message formats, and marshalling schemes. Artix supports only typed
contracts, and type support for conversions is limited by the WSDL type
meta-model and by the types supported for a specific marshalling. For
example, ANYs are not supported in GIOP, and must be replaced with the
typed data definition for the specific case.

Embedded Mode

Operational mode in which an application directly invokes Artix APIs. Code
generated by System Designer is compiled into the application program. This
provides the highest switch performance but is also the most invasive to the
applications.

295

CHAPTER 17 |

296

End-point

The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application).

Host

The network node on which a particular switch (service) resides. Also the
representation of that node (in the context of an integration project) in Service
Designer.

Language Binding

Support for a specified programming language, which allows Artix to generate
server skeletons, client stubs, or both from a contract. Use of a language
binding requires the Artix runtime to be linked with the application.

Marshalling Format

A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Routing

The redirection of a message from one WSDL binding to another. Routing
rules apply to an end-point, and the specification of routing rules is required
for an Artix standalone service. Artix supports topic-, subject- and
content-based routing. Topic- and subject-based routing rules can be fully
expressed in the WSDL contract. However, content-based routing rules may
need to be placed in custom handlers (C plug-ins). Content-based routing
handler plug-ins are dynamically loaded.

Service

An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but no generated language bindings (contrast this with end-point).
The service acts as a daemon that has no compile-time dependencies. A
service is dynamically configured by deploying one or more contracts on it.

Standalone Mode

Operational mode in which an Artix switch runs in a separate process, and is
invoked as a service. This is the least invasive approach but provides the
lowest performance.

Switch

The implementation of an Artix WSDL service contract. Also the
representation of such a service contract in System Designer.

System
A collection of services—for example, an WebSphere MQ system with several
different queues on it.

Transport Plug-In

A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the ‘Port’ property in of a contract.

297

CHAPTER 17 |

298

Index

Symbols corba:return 94
<complexContent> 79 corba:struct 62
<complexType> 73 corba:union 66
<corba:anonsequence> 74 corba:unionbrach 66
<corba:object> 86
<xsd:annotation> 85 E
Embedded mode 4
A enumerations
Address specification CORBA 62
CORBA 97 exceptions
[IOP 215 CORBA 71
arrays extension 79
CORBA 68
Artix contract F
logical view 23 Field Manipulation Language 110
physical view 25 fixed:binding 259
fixed:body 260
B fixed:enumeration 263
binding 8 fixedValue 263
binding element 25 fixed:field 261
bindings bindingOnly 262
CORBA 93 fixedValue 262
bus contracts 3 format 261
size 261
C fixed:operation 260

fixed:sequnce 264

colboltowsd| 257 fixed data types

configuring IIOP 216
Connecting to remote queues 146 FMCPIT?S 03
corba:address 97 fml:binding 114

corba:alias 67
corba:array 68
corba:binding 93
corba:case 66
corba:enum 62

fml:element 114
fml:idNameMapping 114
fml:operation 114

corba:enumerator 63 G)
corba:excpetion 71 generating contracts
corba:fixed 63 from Java 47
corba:member 62, 71

corba:operation 93 |

corba:param 94 ignorecase 41
corba:policy 97 iiop:address 215
corba:raises 94 iiop:payload 216

299

INDEX

iiop:policy 216
IOR specification 97, 215

J

javatowsd| 47

L
logical portion 3
logical view 23

M
mgq:client 138, 172
mq:server 138, 172
MQ FormatType
working with mainframes 163
MQ remote queues 146

N
nillable 81

P
pa:attributeMap 116
pa:attributeRule 116
physical portion 3
physical view 25
defining 25
plugins
ws_orb 107
port 8
portType 8, 17

R
routing
broadcast 39
failover 40
fanout 39
routing:contains 42
routing:destination 34
port 34
service 34
routing:empty 42
routing:endswith 42
routing:equals 41
name 41
routing:greater 41
routing:less 41
routing:nonempty 42

300

routing:operation 36
name 36
target 36
routing:propagatelnputAttribute 43
routing:propagateOutputAttribute 44
routing:route 33
multiRoute 39, 40
failover 40
fanout 39
name 33
routing:source 33
port 33
service 33
routing:startswith 42
routing:transportAttribute 41

S
service access point 8, 22
service element 25
size 261
soapenc:base64 75
Specifying POA policies 97, 216
Standalone mode 4
structures
CORBA 62

T
tagged:binding 274

tagged:body 276

tagged:case 279

tagged:choice 279
tagged:enumeration 277
tagged:field 276
tagged:operation 276
tagged:sequence 277
tibrv:binding 121
tibrv:binding@stringEncoding 121
tibrv:input 121

tibrv:input@messageNameFieldPath 121
tibrv:input@messageNameFieldValue 121

tibrv:input@sortFields 121
tibrv:operation 121
tibrv:output 121

tibrv:output@messageNameFieldPath 121
tibrv:output@messageNameFieldValue 122

tibrv:output@sortFields 121
tibrv:port 126, 132
tibrv:port@bindingType 128

tibrv:port@callbackLevel 128
tibrv:port@clientSubject 126
tibrv:port@cmlListenerCancelAgreements 130
tibrv:port@cmQueueTransportClientName 131
tibrv:port@cmQueueTransportCompleteTime 131
tibrv:port@cmQueueTransportSchedulerActivation 1
31
tibrv:port@cmQueueTransportSchedulerHeartbeat 1
31
tibrv:port@cmQueueTransportSchedulerWeight 131
tibrv:port@cmQueueTransportServerName 130
tibrv:port@cmQueueTransportWorkerTasks 131
tibrv:port@cmQueueTransportWorkerWeight 131
tibrv:port@cmSupport 129
tibrv:port@cmTransportClientName 129
tibrv:port@cmTransportDefaultTimeLimit 130
tibrv:port@cmTransportLedgerName 130
tibrv:port@cmTransportRelayAgent 130
tibrv:port@cmTransportRequestOld 130
tibrv:port@cmTransportServerName 129
tibrv:port@cmTransportSyncLedger 130
tibrv:port@serverSubject 126
tibrv:port@transportBatchMode 129
tibrv:port@transportDaemon 129
tibrv:port@transportNetwork 129
tibrv:port@transportService 128
TibrvMsg 121
tuxedo:server 116
tuxedo:service 116
typedefs
CORBA 67

u

unions
Artix mapping 65
CORBA 64, 66
logical description 64

\'}
value 263

w
W3C 8
Web Service Definition Language 3
Web Services Definition Language 8
WebSphere MQ
AccessMode 153
AccountingToken 167

INDEX

AliasQueueName 146
ApplicationData 166
ApplicationOriginData 170
ConnecitonName 148
ConnectionFastPath 150
ConnectionReusable 149
Convert 168
Correlationld 165
CorrelationStyle 152
Delivery 158
Format 162
MessageExpiry 156
Messageld 164
MessagePriority 157
ModelQueueName 145
QueueManager 141
QueueName 142
ReplyQueueManager 144
ReplyQueueName 143
ReportOption 160
Timeout 155
Transactional 159
UsageStyle 151
Userldentification 171
Websphere MQ
ApplicationldData 169
World Wide Web Consortium 8
WSDL 3,8
WSDL endpoint 8
wsdltocorba 95, 100
wsdltosoap 239

X

xmlformat:binding 294
XSD 11
xsd:base64Binary 75
xsd:hexBinary 75

301

INDEX

302

INDEX

303

INDEX

304

	List of Figures
	List of Tables
	Preface
	Introduction to Using Artix
	The Artix Bus
	The Artix Design Process

	Understanding WSDL
	Web Services Description Language Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Understanding Artix Contracts
	Artix Contract Overview
	The Logical Section
	The Physical Section

	Routing
	Artix Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Attribute Propagation through Routes
	Error Handling

	Building Contracts from Java Classes
	Working with CORBA
	CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Recursive Type Mapping
	Mapping XMLSchema Features that are not Native to IDL
	Artix References

	Modifying a Contract to Use CORBA
	Adding a CORBA Binding
	Adding a CORBA Port

	Generating IDL from an Artix Contract
	Generating a Contract from IDL
	Configuring Artix to Use the CORBA Plug-in

	Working with Tuxedo
	Introduction
	Using FML Buffers
	Mapping FML Buffer Descriptions to Artix Contracts

	Using the Tuxedo Transport

	Working with TIBCO Rendezvous
	Introduction
	Using TibrvMsg
	Using the TIB/RV Transport
	Understanding the TIB/RV Port Properties
	Adding a TIB/RV Port to an Artix Contract

	Working with WebSphere MQ
	Introduction
	Describing an Artix WebSphere MQ Port
	Configuring an Artix WebSphere MQ Port
	QueueManager
	QueueName
	ReplyQueueName
	ReplyQueueManager
	ModelQueueName
	AliasQueueName
	ConnectionName
	ConnectionReusable
	ConnectionFastPath
	UsageStyle
	CorrelationStyle
	AccessMode
	Timeout
	MessageExpiry
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format
	MessageId
	CorrelationId
	ApplicationData
	AccountingToken
	Convert
	ApplicationIdData
	ApplicationOriginData
	UserIdentification

	Adding an WebSphere MQ Port to an Artix Contract

	Working with the Java Messaging System
	Working with HTTP
	HTTP Overview
	HTTP WSDL Extensions
	HTTP WSDL Extensions Overview
	HTTP WSDL Extensions Details

	HTTP Transport Attributes
	Transport Attributes Overview
	Server Transport Attributes
	Client Transport Attributes

	Working with IIOP Tunnels
	Introduction to IIOP Tunnels
	Modifying a Contract to Use an IIOP Tunnel

	Sending Messages using SOAP
	Overview of SOAP
	Background to SOAP
	SOAP Messages
	SOAP Encoding of Data Types

	SOAP WSDL Extensions
	Generating a SOAP Binding from a Logical Interface
	SOAP WSDL Extensions Overview
	SOAP WSDL Extensions Details

	Supported XML Types

	Sending Messages as Fixed Record Length Data
	Creating a Fixed Binding from a COBOL Copybook
	Fixed Record Length Message Data Mapping

	Sending Messages as Tagged Data
	Tagged Data Mapping

	Other Data Bindings for Sending Messages
	G2++ Data Binding
	Pure XML Format

	Glossary
	Index

