
Configuration Reference
Version 2.1, September 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

COPYRIGHT NOTICE

No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 23-Sep-2005

iii

Contents
Preface vii

Chapter 1 Introduction 1
Artix Configuration Concepts 2
Configuration Data Types 6
Artix Configuration Files 7

Chapter 2 Artix Runtime Configuration 9
ORB Plug-ins 10
Policies 14
Binding Lists 15
Binding Lists for Custom Interceptors 17
Event Log 19
Thread Pool Control 20
Custom Plug-in Configuration 23

Chapter 3 Artix Plug-in Configuration 25
Locator Service 27
Locator Service Endpoint 28
Peer Manager 29
Response Time Collector 30
Routing Plug-in 33
Service Lifecycle 35
Session Manager 37
Session Manager Endpoint 38
Session Manager Simple Policy 40
SOAP Plug-in 41
Transformer Service 42
Tuxedo Plug-in 44
Web Service Chain Service 45
WSDL Publishing Service 47
XML File Log Stream 48

CONTENTS

 iv

Chapter 4 Artix Security 51
Applying Constraints to Certificates 53
initial_references 55
plugins:asp 56
plugins:atli2_tls 59
plugins:csi 60
plugins:gsp 61
plugins:http 65
plugins:iiop_tls 69
plugins:is2_authorization 73
plugins:kdm 74
plugins:kdm_adm 76
plugins:login_client 77
plugins:login_service 78
plugins:schannel 79
plugins:security 80
policies 81
policies:asp 87
policies:csi 88
policies:iiop_tls 91
principal_sponsor 100
principal_sponsor:csi 104

Chapter 5 CORBA Plug-ins 107
plugins:atli2_shm 109
plugins:codeset 111
plugins:egmiop 114
plugins:giop 116
plugins:giop_snoop 117
plugins:iiop 119
plugins:local_log_stream 124
plugins:naming 125
plugins:ots 127
plugins:ots_lite 130
plugins:ots_encina 132
plugins:poa 138
plugins:pss 139
plugins:pss_db:envs:env-name 140

CONTENTS

v

plugins:pss_db:envs:env-name:dbs:storage-home-type-id 147
plugins:shmiop 150

Index 153

CONTENTS

 vi

vii

Preface
What is Covered in this Book
The Artix Configuration Reference provides a comprehensive reference for

the configuration settings in Artix.

Who Should Read this Book
This book is intended for use by system administrators, in conjunction with

Managing and Deploying Artix Solutions. It assumes that the reader is

familiar with Artix administration. Anyone involved in designing a large scale

Artix solution will also find this book useful.

Knowledge of middleware or messaging transports is not required to

understand the general topics discussed in this book. However, if you are

using this book as a guide to deploying runtime systems, you should have a

working knowledge of the middleware transports that you intend to use in

your Artix solutions.

How to Use this Book
This book is organized as follows:

• Chapter 1 provides a brief overview of Artix configuration, how it is

organized, and the syntax for specifying variable entries.

• Chapter 2 describes the Artix runtime configuration variables.

• Chapter 3 describes the Artix plug-in namespaces and variables.

• Chapter 4 describes the configuration namespaces and variables used

to configure Artix security features.

• Chapter 5 describes the CORBA plug-in configuration namespaces and

variables.

PREFACE

 viii

Online Help
While using the Artix Designer you can access contextual online help,

providing:

• A description of your current Artix Designer screen.

• Detailed step-by-step instructions on how to perform tasks from this

screen.

• A comprehensive index and glossary.

• A full search feature.

There are two ways that you can access the online help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu.

Finding Your Way Around the Artix Library
The Artix library contains several books that provide assistance for any of the

tasks you are trying to perform. The remainder of the Artix library is listed

here, with an short description of each book.

If you are new to Artix

You may be interested in reading Learning About Artix. This book describes

the basic Artix concepts. It also walks you through an example of using Artix

to solve a real world problem using code provided in the product.

To design Artix solutions

You should read Designing Artix Solutions. This book provides detailed

information about using the Artix Designer GUI to create WSDL-based Artix

contracts, Artix stub and skeleton code, and Artix deployment descriptors.

This book also provides detailed information about Artix command-line

interface and the WSDL extensions used in Artix contracts. It also explains

the mappings between data types and Artix bindings.

PREFACE

ix

To develop applications using Artix stub and skeleton code

Depending on your development environment you should read one or more

of the following:

• Developing Artix Applications in C++. This book discusses the

technical aspects of programming applications using the Artix C++

API.

• Developing Artix Applications in Java. This book discusses the

technical aspects of programming applications using the Artix Java

API.

To configure and manage your Artix solution

You should read Deploying and Managing Artix Solutions. This describes

how to configure and deploy Artix-enabled systems. It also discusses how to

manage them when they are deployed.

In addition, if you are integrating Artix with either the IBM Tivoli or BMC

Patrol Enterprise Management System, you should read:

• IONA Tivoli Integration Guide.

• IONA BMC Patrol Integration Guide.

To learn more about Artix security

You should read the Artix Security Guide. This outlines how to enable and

configure Artix’s security features. It also discusses how to integrate Artix

solutions into a secure environment.

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs. Compare the version details provided there

with the last updated date printed on the inside cover of the book you are

using (at the bottom of the copyright notice).

http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

 x

Additional Resources for Help
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/

index.xml) contains helpful articles, written by IONA experts, about Artix

and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)

contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, go to IONA Online

Support (http://www.iona.com/support/index.xml).

Comments on IONA documentation can be sent to

.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text

represents portions of code and literal names of items

such as classes, functions, variables, and data

structures. For example, text might refer to the

CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/ your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE

xi

Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

PREFACE

 xii

1

CHAPTER 1

Introduction
This chapter introduces the main concepts and components
in the Artix runtime configuration (for example, configuration
domains, scopes, variables, and data types). It also explains
how to use Artix configuration files to manage your
applications.

In this chapter This chapter includes the following sections:

Artix Configuration Concepts page 2

Configuration Data Types page 6

Artix Configuration Files page 7

CHAPTER 1 | Introduction

 2

Artix Configuration Concepts

Overview Artix is built upon IONA’s Adaptive Runtime architecture (ART). Runtime

behaviors are established through common and application-specific

configuration settings that are applied during application startup. As a

result, the same application code can be run, and can exhibit different

capabilities, in different configuration environments. This section includes

the following:

• Configuration domains.

• Configuration scopes.

• Specifying configuration scopes.

• Configuration namespaces.

• Configuration variables.

Configuration domains An Artix configuration domain is a collection of configuration information in

an Artix runtime environment. This information consists of configuration

variables and their values. A default Artix configuration is provided when

Artix is installed. The default Artix configuration domain file has the

following location:

The contents of this file can be modified to affect aspects of Artix behavior

(for example, logging or routing).

Configuration scopes An Artix configuration domain is subdivided into configuration scopes.

These are typically organized into a hierarchy of scopes, whose

fully-qualified names map directly to ORB names. By organizing

configuration variables into various scopes, you can provide different

settings for individual services, or common settings for groups of services.

Windows %IT_PRODUCT_DIR%\artix\2.1\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/artix/2.1/etc/domains/artix.cfg

Artix Configuration Concepts

3

Local configuration scopes

Configuration scopes apply to a subset of services or to a specific service in

an environment. For example, the Artix demo configuration scope includes

example local configuration scopes for demo applications.

Application-specific configuration variables either override default values

assigned to common configuration variables, or establish new configuration

variables. Configuration scopes are localized through a name tag and

delimited by a set of curly braces terminated with a semicolon, for example,

(scopeNameTag {…};) .

A configuration scope may include nested configuration scopes.

Configuration variables set within nested configuration scopes take

precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For

example, the demo configuration scope includes nested configuration scopes

for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profi le",
 "giop", "iiop", "soap", "http", "G2", " tunnel",
 "mq", "ws_orb", "fml"];
 };
 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profil e",
 "giop”, "iiop”, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunn el";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_pr ofile",
 "giop", "iiop”, "ots", "soap ", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };

CHAPTER 1 | Introduction

 4

Specifying configuration scopes To make an Artix process run under a particular configuration scope, you

specify that scope using the -ORBname parameter. Configuration scope

names are specified using the following format

scope. subscope

For example, the scope for the telco server demo shown in Example 1 is

specified as demo.telco.server . During process initialization, Artix

searches for a configuration scope with the same name as the -ORBname

parameter.

There are two ways of supplying the -ORBname parameter to an Artix

process:

• Pass the argument on the command line.

• Specify the -ORBname as the third parameter to IT_Bus::init() .

For example, to start an Artix process using the configuration specified in the

demo.tibrv scope, you could start the process use the following syntax:

Alternately, you could use the following code fragment to initialize the Artix

bus:

 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profi le",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};

Note: The orb_plugins list is redefined within each configuration scope.

Example 1: Demo Configuration Scope

<processName> [application parameters] -ORBname demo.tibrv

IT_Bus::init (argc, argv, “demo.tibrv”);

Artix Configuration Concepts

5

If a corresponding scope is not located, the process starts under the highest

level scope that matches the specified scope name. If there are no scopes

that correspond to the ORBname parameter, the Artix process runs under the

default global scope. For example, if the nested tibrv scope does not exist,

the Artix process uses the configuration specified in the demo scope; if the

demo scope does not exist, the process runs under the default global scope.

Configuration namespaces Most configuration variables are organized within namespaces, which group

related variables. Namespaces can be nested, and are delimited by colons

(:). For example, configuration variables that control the behavior of a

plug-in begin with plugins: followed by the name of the plug-in for which

the variable is being set. For example, to specify the port on which the Artix

standalone service starts, set the following variable:

To set the location of the routing plug-in’s contract, set the following

variable:

Configuration variables Configuration data is stored in variables that are defined within each

namespace. In some instances, variables in different namespaces share the

same variable names.

Variables can also be reset several times within successive layers of a

configuration scope. Configuration variables set in narrower configuration

scopes override variable settings in wider scopes. For example, a

company.operations.orb_plugins variable would override a

company.orb_plugins variable. Plug-ins specified at the company scope

would apply to all processes in that scope, except those processes that

belong specifically to the company.operations scope and its child scopes.

plugins:artix_service:iiop:port

plugins:routing:wsdl_url

CHAPTER 1 | Introduction

 6

Configuration Data Types

Overview Each Artix configuration variable has an associated data type that

determines the variable’s value.

Data types can be categorized as follows:

• Primitive types

• Constructed types

Primitive types Artix supports the following three primitive types:

• boolean

• double

• long

Constructed types Artix supports two constructed types: string and ConfigList (a sequence

of strings).

• In an Artix configuration file, the string character set is ASCII.

• The ConfigList type is simply a sequence of string types. For

example:

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];

Artix Configuration Files

7

Artix Configuration Files

Overview This section explains how to use Artix configuration files to manage

applications in your environment. It includes the following:

• “Default configuration file”.

• “Importing configuration settings”.

• “Working with multiple installations”.

Default configuration file The Artix configuration domain file contains all the configuration settings for

the domain. You can edit the settings in this file to modify different aspects

of Artix behavior (for example, routing or levels of logging).

The default Artix configuration domain file is found in the following location:

Importing configuration settings You can manually create new Artix configuration domain files to

compartmentalize your applications. These new configuration domain files

can import information from other configuration domains using an include

statement in your configuration file. This provides a convenient way of

compartmentalizing your application-specific configuration from the global

ART configuration information that is contained in the default configuration

domain file.

Example 2 shows an include statement that imports the default

configuration file. The include statement is typically the first line the

configuration file.

Windows %IT_PRODUCT_DIR%\artix\2.1\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/artix/2.1/etc/domains/artix.cfg

Example 2: Configuration file include statement

include "../../../../../etc/domains/artix.cfg";

my_app_config {
...
}

CHAPTER 1 | Introduction

 8

For complete working examples of Artix applications that use this import

mechanism, see the configuration files provided with Artix demos. These

demo applications are available from the following directory:

<install-dir>\artix\2.1\demos

Working with multiple

installations

If you are using multiple installations or versions of Artix, you can use your

configuration files to help manage your applications as follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the artix.cfg file from whichever Artix release you want to use

into another directory (for example, an application directory).

4. In your application’s local configuration file, include the artix.cfg file

from your copy location.

This enables you to switch between Artix versions by copying the

corresponding artix.cfg file into a common location. This avoids having to

update the directory information in your configuration file whenever you

want to switch between Artix versions.

9

CHAPTER 2

Artix Runtime
Configuration
Artix is based on IONA’s highly configurable Adaptive Runtime
(ART) infrastructure. This provides a high-speed, robust, and
scalable backbone for deploying integration solutions. This
chapter explains the configuration settings for the Artix
runtime.

In this chapter This chapter includes the following:

ORB Plug-ins page 10

Policies page 14

Binding Lists page 15

Event Log page 19

Thread Pool Control page 20

Custom Plug-in Configuration page 23

CHAPTER 2 | Artix Runtime Configuration

 10

ORB Plug-ins

Overview The orb_plugins variable specifies the plug-ins that Artix processes load

during initialization. A plug-in is a class or code library that can be loaded

into an Artix application at runtime. These plug-ins enable you to load

network transports, payload format mappers, error logging streams, and

other features “on the fly.”

The default orb_plugins entry includes the following:

All other plug-ins implementing bindings and transports load transparently

when the WSDL file is loaded into an application. These plugins do not need

to be explicitly listed in orb_plugins . However, other service plug-ins (for

example, for security, locator, session manager, routing, XSLT

transformation, logging, etc.) must all be listed in the orb_plugins entry.

Each network transport and payload format that Artix interoperates with

uses its own plug-in. Many of the Artix services features also use plug-ins.

Artix plug-ins include the following:

• “Transport plug-ins”.

• “Payload format plug-ins”.

• “Service plug-ins”.

Java plug-ins

Plug-ins written in Java are configured differently from C++ plug-ins. For

the most part only custom plug-ins are written in Java, however, the JMS

transport plug-in is also written in Java and requires that you configure it

appropriately.

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop"];

ORB Plug-ins

11

When using a Java plug-in you must include an entry for the Java plug-in

loader in the orb_plugins list as shown in Example 3.

In addition to including the Java plug-in loader in the orb_plugin list you

need to include another configuration variable, java_plugins , that lists the

names of the java plug-ins that are to be loaded. java_plugins is a list like

orb_plugins . A plug-in cannot be listed in both variables. Only Java

plug-ins should be listed in java_plugins and the Java plug-ins should not

be listed in orb_plugins .

For example if you are using a Java plug-in called java_handler in your

application you would use the configuration similar to the fragment shown

in Example 4 to load the plug-ins.

Transport plug-ins

The Artix transport plug-ins are listed in Table 1.

Example 3: Including the Java Plug-in Loader

orb_plugins=[..., "java"];

Example 4: Loading a Java Plug-in

orb_plugins=["xml_log_stream", "java"];
java_plugins=["java_handler"];

Table 1: Artix Transport Plug-ins

Plug-in Transport

http Provides support for HTTP and HTTPS.

iiop Provides support for CORBA IIOP.

iiop_profile Provides support for CORBA IIOP profile.

giop Provides support for CORBA GIOP.

tunnel Provides support for the IIOP transport using
non-CORBA payloads.

tuxedo Provides support for Tuxedo interoperability.

CHAPTER 2 | Artix Runtime Configuration

 12

Payload format plug-ins

The Artix payload format plug-ins are listed in Table 2.

Service plug-ins

The Artix service feature plug-ins are listed in Table 3.

mq Provides support for WebSphere MQ interoperability.

tibrv Provides support for TIBCO Rendezvous
interoperability.

java Provides support for Java Message Service (JMS)
interoperability.

Table 1: Artix Transport Plug-ins

Plug-in Transport

Table 2: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

G2 Decodes and encodes messages packaged using the
G2++ format.

fml Decodes and encodes messages packaged in FML
format.

tagged Decodes and encodes messages packed in variable
record length messages or another self-describing
message format.

tibrv Decodes and encodes TIBCO Rendezvous messages.

fixed Decodes and encodes fixed record length messages.

ws_orb Decodes and encodes CORBA messages.

ORB Plug-ins

13

Table 3: Artix Service Plug-ins

Plug-in Artix Feature

routing Enables Artix routing.

locator_endpoint Enables endpoints to use the Artix locator
service.

service_locator Enables the Artix locator. An Artix server
acting as the locator service must load
this plug-in.

wsdl_publish Enables Artix endpoints to publish and
use Artix object references.

bus_response_monitor Enables performance logging. Monitors
response times of Artix client/server
requests.

session_manager_service Enables the Artix session manager. An
Artix server acting as the session
manager must load this plug-in.

session_endpoint_manager Enables the Artix session manager.
Endpoints wishing to be managed by the
session manager must load this plug-in.

sm_simple_policy Enables the policy mechanism for the
Artix session manager. Endpoints wishing
to be managed by the session manager
must load this plug-in.

service_lifecycle Enables service lifecycle for the Artix
router. This optimizes performance of the
router by cleaning up proxies/routes that
are no longer in use.

ws_chain Enables you to link together a series of
services into a multi-part process.

xmlfile_log_stream Enables you to view Artix logging output
in a file.

xslt Enables Artix to process XSLT scripts.

CHAPTER 2 | Artix Runtime Configuration

 14

Policies

Overview The policies namespace contains the following variables for controlling the

publishing of server hostnames:

• http:server_address_mode_policy:publish_hostname

• soap:server_address_mode_policy:publish_hostname

If the policy corresponding to the transport is used by the server, the

dynamically generated contract will be published with the original contents

of the address element.

http:server_address_mode_policy:publish_hostname

http:server_address_mode_policy:publish_hostname specifies how the

server’s address is published in dynamically generated Artix contracts.

When set this policy is set to false , the dynamically generated contract will

publish the IP address of the running server in the <http:address> element

describing the server’s location. When this policy is set to true , the

hostname of the machine hosting the running server is published in the

<http:address> element describing the server’s location.

soap:server_address_mode_policy:publish_hostname

soap:server_address_mode_policy:publish_hostname specifies how the

server’s address is published in dynamically generated Artix contracts.

When set this policy is set to false , the dynamically generated contract will

publish the IP address of the running server in the <soap:address> element

describing the server’s location. When this policy is set to true , the

hostname of the machine hosting the running server is published in the

<soap:address> element describing the server’s location.

Binding Lists

15

Binding Lists

Overview When using Artix’s CORBA functionality you need to configure how Artix

binds itself to message interceptors. The Artix binding namespace contains

variables that specify interceptor settings. An interceptor acts on a message

as it flows from sender to receiver.

Computing concepts that fit the interceptor abstraction include transports,

marshaling streams, transaction identifiers, encryption, session managers,

message loggers, containers, and data transformers. Interceptors are a form

of the “chain of responsibility” design pattern. Artix creates and manages

chains of interceptors between senders and receivers, and the interceptor

metaphor is a means of creating a virtual connection between a sender and

a receiver.

The binding namespace includes the following variables:

• client_binding_list

• server_binding_list

client_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA

collocation (where server and client are collocated in the same process).

Artix also provides and message-level interceptors used in client-side

bindings for IIOP, SHMIOP and GIOP.

The binding:client_binding_list specifies a list of potential client-side

bindings. Each item is a string that describes one potential interceptor

binding. The default value is:

Interceptor names are separated by a plus (+) character. Interceptors to the

right are “closer to the wire” than those on the left. The syntax is as follows:

• Request-level interceptors, such as GIOP, must precede message-level

interceptors, such as IIOP .

• GIOP or POA_coloc must be included as the last request-level

interceptor.

binding:client_binding_list = ["OTS+POA_Coloc","POA _Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

CHAPTER 2 | Artix Runtime Configuration

 16

• Message-level interceptors must follow the GIOP interceptor, which

requires at least one message-level interceptor.

• The last message-level interceptor must be a message-level transport

interceptor, such as IIOP or SHMIOP.

When a client-side binding is needed, the potential binding strings in the list

are tried in order, until one successfully establishes a binding. Any binding

string specifying an interceptor that is not loaded, or not initialized through

the orb_plugins variable, is rejected.

For example, if the ots plug-in is not configured, bindings that contain the

OTS request-level interceptor are rejected, leaving ["POA_Coloc",

"GIOP+IIOP", "GIOP+SHMIOP"] . This specifies that POA collocations should

be tried first; if that fails, (the server and client are not collocated), the GIOP

request-level interceptor and the IIOP message-level interceptor should be

used. If the ots plug-in is configured, bindings that contain the OTS request

interceptor are preferred to those without it.

server_binding_list

binding:server_binding_list specifies interceptors included in

request-level binding on the server side. The POA request-level interceptor is

implicitly included in the binding.

The syntax is similar to client_binding_list . However, in contrast to the

client_binding_list , the left-most interceptors in the

server_binding_list are “closer to the wire”, and no message-level

interceptors can be included (for example, IIOP). For example:

An empty string ("") is a valid server-side binding string. This specifies that

no request-level interceptors are needed. A binding string is rejected if any

named interceptor is not loaded and initialized.

The default server_binding_list is ["OTS", ""] . If the ots plug-in is not

configured, the first potential binding is rejected, and the second potential

binding ("") is used, with no explicit interceptors added.

binding:server_binding_list = ["OTS",""];

Binding Lists for Custom Interceptors

17

Binding Lists for Custom Interceptors

Overview The binding:artix namespace includes variables that configure Artix

applications to use custom-based interceptors. Message handlers are listed

in the order that they are invoked on a message when it passes through a

messaging chain.

For example, if a server request interceptor list is specified as

“tns:mercury+tns:hermes ”, a message is passed into the message handler

mercury as it leaves the binding. When mercury processes the message, it is

passed into hermes for more processing. hermes then passes the message

along to the application code.

All message handlers are specified as a qualified name (QName). This is a

unique tag name in an XML document, consisting of a namespace URI and

a local part (for example, “tns:mercury ”). The namespace must match the

namespace of the WSDL file that you are using. In addition, the interceptor

chain must be a single string, and each interceptor name must be separated

by a + delimiter (for example, “tns:mercury+tns:hermes ”).

The variables in the binding:artix namespace are as follows:

• client_message_interceptor_list

• client_request_interceptor_list

• server_message_interceptor_list

• server_request_interceptor_list

client_message_interceptor_list

binding:artix:client_message_interceptor_list is an ordered list of

QNames that specifies the message-level handers for a Java or C++ client

application. Entries take the following format:

There is no default value.

binding:artix:client_message_interceptor_list =
 "tns:message_handler_1+tns:message_handler_2";

CHAPTER 2 | Artix Runtime Configuration

 18

client_request_interceptor_list

binding:artix:client_request_interceptor_list is an ordered list of

QNames that specifies the request-level handlers for a Java or C++ client

application. Entries take the following format:

There is no default value.

server_message_interceptor_list

binding:artix:server_message_interceptor_list is an ordered list of

QNames that specifies the message-level handlers for a Java or C++ server

application. Entries take the following format:

There is no default value.

server_request_interceptor_list

binding:artix:server_request_interceptor_list is an ordered list of

QNames that specifies the request-level handlers for a Java or C++ server

application. Entries take the following format:

There is no default value.

binding:artix:client_request_interceptor_list =
 "tns:request_handler_1+tns:request_handler_2";

binding:artix:server_message_interceptor_list =
 "tns:message_handler_1+tns:message_handler_2";

binding:artix:server_request_interceptor_list =
 "tns:request_handler_1+tns:request_handler_2";

Event Log

19

Event Log
The event_log namespace control logging levels in Artix. It contains the

event_log:filters variable.

filters

The event_log:filters variable can be set to provide a wide range of

logging levels. The default event_log:filters setting displays errors only:

The following setting displays errors and warnings only:

Adding INFO_MED causes all of request/reply messages to be logged (for all

transport buffers):

The following setting displays typical trace statement output (without the

raw transport buffers being printed):

The following setting displays all logging:

The default configuration settings enable logging of only serious errors and

warnings. For more exhaustive output, select a different filter list at the

default scope, or include a more expansive event_log:filters setting in

your configuration scope. For more details about using this variable, see

Deploying and Managing Artix Solutions.

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_ME D"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI "];

event_log:filters = ["*=*"];

CHAPTER 2 | Artix Runtime Configuration

 20

Thread Pool Control

Overview Variables in the thread_pool namespace set policies related to thread

control. Thread pools can be configured at several levels, where the more

specific configuration settings take precedence over the less specific. They

can be set globally for Artix instances in a configuration scope, or they can

be set on a per-service basis. To set the values globally, use the following

syntax:

To set the values on a per-service basis, specify the service name (and

optionally the service URI) from the Artix contract. The syntax is as follows:

The high and low water mark settings specify the values for the thread pool

on a per-service basis. However, the initial thread setting works on a

per-port basis. This namespace includes following variables:

• initial_threads

• low_water_mark

• high_water_mark

initial_threads

initial_threads sets the number of initial threads in each port’s thread

pool. Defaults to 2.

This variable can be set at different levels in your configuration. The

following example is a global setting:

thread_pool: variable_name

thread_pool: variable_name: service_uri:service_name

thread_pool:initial_threads = "3";

Thread Pool Control

21

The following setting is at the service name level, which overrides the global

setting:

The following setting is at the fully-qualified service name level:

This overrides the service name level, and is useful when there is a naming

clash with service names from two different namespaces.

low_water_mark

low_water_mark sets the minimum number of threads in each service’s

thread pool. Artix will terminate unused threads until only this number

exists. Defaults to 5.

This variable can be set at different levels in your configuration. The

following example is a global setting:

The following setting is at the service name level, which overrides the global

setting:

The following setting is at the fully-qualified service name level:

This overrides the service name level, and is useful when there is a naming

clash with service names from two different namespaces.

thread_pool:initial_threads:SessionManager = "1";

thread_pool:initial_threads:http://my.tns1/:Session Manager= "1";

thread_pool:low_water_mark = "5";

thread_pool:low_water_mark:SessionManager = "5";

thread_pool:low_water_mark:http://my.tns1/:SessionM anager = "5";

CHAPTER 2 | Artix Runtime Configuration

 22

high_water_mark

high_water_mark sets the maximum number of threads allowed in each

service’s thread pool. Defaults to 25.

This variable can be set at different levels in your configuration. The

following example is a global setting:

The following setting is at the service name level, which overrides the global

setting:

The following setting is at the fully-qualified service name level:

This overrides the service name level, and is useful when there is a naming

clash with service names from two different namespaces.

thread_pool:high_water_mark = "10";

thread_pool:high_water_mark:SessionManager = "10";

thread_pool:high_water_mark:http://my.tns1/:Session Manager="10";

Custom Plug-in Configuration

23

Custom Plug-in Configuration

Overview When you write a custom plug-in for Artix, in either C++ or Java, you need

to provide some configuration information to the Artix runtime so that Artix

can locate the libraries and initial settings required to properly instantiate

the plug-in. This information is provided in the Artix configuration file used

by your application. Typically you will want to place the information in the

global scope so that more than one of your applications can use the plug-in.

C++ plug-in configuration When writing custom C++ plug-ins you build your plug-in as a shared

library that the bus loads at runtime. In the Artix configuration file you need

to provide the name of the shared library that loads the plug-in. This is done

using the configuration variable plugins: plugin_name:shlib _name. The

plug-in name provided must correspond to the plug-in name listed in the

orb_plugins list.

Example 5 shows an example of configuring a custom plug-in called

my_filter that is implemented by the shared library my_filter.dll .

Java plug-in configuration Java plug-ins are loaded using the plug-in factory you implemented for the

custom plugin. In the Artix configuration file you need to provide that name

for the plug-in factory class. This is done using the configuration variable

plugins: plugin_name:classname . The plug-in name provided must

correspond to the plug-in name listed in the orb_plugins list.

Example 5: Custom C++ Plug-in Configuration

plugins:my_filter:shlib_name="my_filter"
...
my_app
{
 orb_plugins=["my_filter" ...];
 ...
}

CHAPTER 2 | Artix Runtime Configuration

 24

Example 6 shows an example of configuring a custom plug-in called

my_java_filter that has the factory class myJavaFilterFactory .

Plug-in dependencies In addition to providing a pointer to the plug-in’s implementation you can

also provide a list of plug-ins that your plug-in requires to be loaded. This

information in provided in the configuration variable

plugins: plugin_name:prerequisite_plugins . The prerequisite plug-ins are

specified as a list of plug-in names similar to that specified in the

orb_plugins list. When you provide this list the bus will ensure that the

required plug-ins are loaded when ever your plug-in is loaded.

Example 6: Custom Java Plug-in Configuration

plugins:my_java_filter:shlib_name="myJavaFilterFact ory"
...
my_app
{
 orb_plugins=[..., "java"];
 java_plugins=["my_java_filter"];
 ...
}

25

CHAPTER 3

Artix Plug-in
Configuration
Artix is built on IONA’s Adaptive Runtime architecture (ART),
which enables users to configure services as plugins to the
core product. This chapter explains the configuration settings
for Artix-specific plug-ins. For information on CORBA plug-ins,
see Chapter 5.

Overview Each Artix transport, payload format, and service has properties that are

configurable as plug-ins to the Artix runtime. The variables used to configure

plug-in behavior are specified in the configuration scopes of each Artix

runtime instance, and follow the same order of precedence. A plug-in setting

specified in the global configuration scope is overridden in favor of a value

set in a narrower scope. For example, if you set

plugins:routing:use_pass_through to true in the global scope and set it

to false in the widget_form scope, all Artix runtimes, except for those

running in the widget_form scope, would use true for this value. Any Artix

instance using the widget_form scope would use false for this value.

In this chapter This chapter includes the following:

Locator Service page 27

Locator Service Endpoint page 28

CHAPTER 3 | Artix Plug-in Configuration

 26

Peer Manager page 29

Response Time Collector page 30

Routing Plug-in page 33

Service Lifecycle page 35

Session Manager page 37

Session Manager Endpoint page 38

Session Manager Simple Policy page 40

SOAP Plug-in page 41

Transformer Service page 42

Tuxedo Plug-in page 44

Web Service Chain Service page 45

WSDL Publishing Service page 47

XML File Log Stream page 48

Locator Service

27

Locator Service

Overview The locator service plugin, service_locator , has the following configuration

variables:

• plugins:locator:service_url

• plugins:locator:peer_timeout

plugins:locator:service_url

plugins:locator:service_url specifies the location of the Artix contract

defining the location service and configuring its address. A copy of this

contract, locator.wsdl , is located in the wsdl folder of your Artix

installation.

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in

milliseconds, that the locator plug-in waits between keep-alive pings of the

endpoints that are registered with it. The default is 4000000 (4 seconds).

The locator uses a third-party peer manager to ping its endpoints. For more

details, see “Peer Manager” on page 29.

CHAPTER 3 | Artix Plug-in Configuration

 28

Locator Service Endpoint

Overview The locator service endpoint plug-in, locator_endpoint , has the following

configuration variables:

• plugins:locator:wsdl_url

• plugins:locator:peer_timeout

plugins:locator:wsdl_url

plugins:locator:wsdl_url specifies the location of the Artix contract that

defines the location service, and specifies the address locator endpoints use

to communicate with the locator service. A copy of this contract,

locator.wsdl , is located in the wsdl folder of your Artix installation.

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in

milliseconds, that the locator endpoint plug-in waits between keep-alive

pings back to the locator. The default is 4000000 (4 seconds).

The locator service endpoint uses a third-party peer manager to ping back to

the locator. For more details, see “Peer Manager” on page 29.

Peer Manager

29

Peer Manager

Overview The peer manager is used by the locator and session manager to ping their

endpoints and verify that they are still running. The peer_manager plug-in is

transparently loaded by the following plug-ins:

• service_locator

• locator_endpoint

• session_manager_service

• session_endpoint_manager

The peer_manager includes the following configuration variables:

• plugins:peer_manager:wsdl_url

• plugins:peer_manager:timeout_delta

plugins:peer_manager:wsdl_url

plugins:peer_manager:wsdl_url specifies the location of the Artix contract

defining the peer manager service. A copy of this contract,

peer_manager.wsdl , is located in the wsdl folder of your Artix installation.

plugins:peer_manager:timeout_delta

plugins:peer_manager:timeout_delta specifies the time allowed for

failover detection in milliseconds. The default is 2000 . For example,

increasing this to 10000 ensures that only a real failure results in an

endpoint being removed from the locator’s list of endpoints.

CHAPTER 3 | Artix Plug-in Configuration

 30

Response Time Collector

Overview The Artix response time collector plug-in configures settings for Artix
performance logging. The response time collector plug-in periodically
collects data from the response monitor plug-in and logs the results. See the
Deploying and Managing Artix Solutions for full details of Artix performance
logging.

The response time collector plug-in includes the following variables:

• “plugins:it_response_time_collector:client-id”.

• “plugins:it_response_time_collector:filename”.

• “plugins:it_response_time_collector:log_properties”.

• “plugins:it_response_time_collector:period”.

• “plugins:it_response_time_collector:server-id”.

• “plugins:it_response_time_collector:syslog_appID”.

• “plugins:it_response_time_collector:system_logging_enabled”.

plugins:it_response_time_collector:client-id

plugins:it_response_time_collector:client-id specifies a client ID that

is reported in your log messages. For example:

This setting enables management tools to recognize log messages from

client applications. This setting is optional; and if omitted, it is assumed that

that a server is being monitored.

plugins:it_response_time_collector:filename

plugins:it_response_time_collector:filename specifies the location of

the performance log file for a C++ application. For example:

plugins:it_response_time_collector:client-id = "my_ client_app";

plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

Response Time Collector

31

plugins:it_response_time_collector:log_properties

plugins:it_response_time_collector:log_properties specifies the

Apache Log4J details. Artix Java applications use Apache Log4J instead of

the log filename used for C++. For example:

plugins:it_response_time_collector:period

plugins:it_response_time_collector:period specifies how often an

application should log performance data. For example, the following setting

specifies that an application should log performance data every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

plugins:it_response_time_collector:server-id

plugins:it_response_time_collector:server-id specifies a server ID

that will be reported in your log messages. This server ID is particularly

useful in the case where the server is a replica that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log

messages from different replica instances. For example:

This setting is optional; and if omitted, the server ID defaults to the ORB

name of the server. In a cluster, each replica must have this value set to a

unique value to enable sensible analysis of the generated performance logs.

plugins:it_response_time_collector:log_properties = ["log4j.rootCategory=INFO, A1",
"log4j.appender.A1=com.iona.management.logging.log4 jappender.TimeBasedRollingFileAppender",
"log4j.appender.A1.File="/var/log/my_app/perf_logs/ treasury_app.log",
"log4j.appender.A1.MaxFileSize=512KB",
"log4j.appender.A1.layout=org.apache.log4j.PatternL ayout",
"log4j.appender.A1.layout.ConversionPattern=%d{ISO8 601} %-80m %n"
];

plugins:it_response_time_collector:period = "90";

plugins:it_response_time_collector:server-id = "my_ server_app1";

CHAPTER 3 | Artix Plug-in Configuration

 32

plugins:it_response_time_collector:syslog_appID

plugins:it_response_time_collector:syslog_appID specifies an

application name that is prepended to all syslog messages. If you do not

specify an ID, it defaults to iona . For example:

plugins:it_response_time_collector:system_logging_enabled

plugins:it_response_time_collector:system_logging_e nabled specifies

whether system logging is enabled. For example:

This enables you to configure the collector to log to a syslog daemon or

Windows event log.

plugins:it_response_time_collector:syslog_appID = " treasury";

plugins:it_response_time_collector:system_logging_e nabled = "true";

Routing Plug-in

33

Routing Plug-in

Overview The routing plug-in uses the following variables:

• plugins:routing:wsdl_url

• plugins:routing:use_pass_through

plugins:routing:wsdl_url

plugins:routing:wsdl_url specifies the URL to search for Artix contracts

containing the routing rules for your application. This value can be either a

single URL or a list of URLs. If your application is using the routing plug-in,

you must specify a value for this variable. The following example is from a

default artix.cfg file:

plugins:routing:wsdl_url="../wsdl/router.wsdl" ;

Note: This variable does not accept a mixture of back slashes and
forward slashes. You must specify locations using only “\ ” or “/ ”.

CHAPTER 3 | Artix Plug-in Configuration

 34

plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies if the routing plug-in uses the

pass-through routing optimization. This optimization enables the router to

copy the message buffer directly from the source endpoint to the destination

endpoint (if both use the same binding). The default value is true .

Note: A few attributes are carried in the message body, instead of by the
transport. Such attributes are always propagated when the pass-through
optimization is in effect, regardless of attribute propagation rules.

WARNING: Do not enable pass through in a secure router. When pass
through is enabled, the authentication and authorization steps are
skipped. Therefore, you must always set
plugins:routing:use_pass_through to false in a secure router. See
IONA Security Advisory, ISA130905.

Service Lifecycle

35

Service Lifecycle

Overview The service lifecycle plug-in enables garbage collection of old or unused

proxy services. Dynamic proxy services are used when the Artix router

bridges services that have patterns such as callback, factory, or any

interaction that passes references to other services. When the router

encounters a reference in a message, it proxifies the reference into one that

a receiving application can use. For example, an IOR from a CORBA server

cannot be used by a SOAP client, so a new route is dynamically created for

the SOAP client.

However, dynamic proxies persist in the router memory and can have a

negative effect on performance. You can overcome this by using service

garbage collection to clean up old proxy services that are no longer used.

This cleans up unused proxies when a threshold has been reached on a

least recently used basis.

The Artix plugins:service_lifecycle namespace has the following

variable:

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size specifies the maximum

cache size of the service lifecycle. For example:

plugins:service_lifecycle:max_cache_size = "30";

To enable service lifecycle, you must also add the service_lifecycle

plugin to the orb_plugins list, for example:

orb_plugins = ["xmlfile_log_stream", "service_lifec ycle",
"routing"];

CHAPTER 3 | Artix Plug-in Configuration

 36

When writing client applications, you must also make allowances for the

garbage collection service; in particular, ensure that exceptions are handled

appropriately.

For example, a client may attempt to proxify to a service that has already

been garbage collected. To prevent this, do either of the following:

• Handle the exception, get a new reference, and continue. However, in

some cases, this may not be possible if the service has state.

• Set max_cache_size to a reasonable limit to ensure that all your clients

can be accommodated. For example, if you always expect to support

20 concurrent clients, each with a transient service session, you might

wish to configure the max_cache_size to 30.

You must not impact any clients, and ensure that a service is no longer

needed when it is garbage collected. However, if you set max_cache_size

too high, this may use up too much router memory and have a negative

impact on performance. For example, a suggested range for this setting is

30-100.

Session Manager

37

Session Manager

Overview The session manager, session_manager_service , has the following

configuration variables:

• plugins:session_manager_service:service_url

• plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

plugins:session_manager_service:service_url specifies the location of

the Artix contract defining the session manager. A copy of this contract,

session-manager.wsdl , is located in the wsdl folder of your Artix

installation.

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the amount of

time, in milliseconds, that the session manager plug-in waits between

keep-alive pings of the endpoints registered with it. The default is 4000000

(4 seconds).

The session manager uses a third-party peer manager to ping its endpoints

For more details, see “Peer Manager” on page 29.

CHAPTER 3 | Artix Plug-in Configuration

 38

Session Manager Endpoint

Overview The session manager endpoint plug-in, session_endpoint_manager , has the

following configuration variables:

• plugins:session_endpoint_manager:wsdl_url

• plugins:session_endpoint_manager:endpoint_manager_url

• plugins:session_endpoint_manager:default_group

• plugins:session_endpoint_manager:header_validation

• plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:wsdl_url

plugins:session_endpoint_manager:wsdl_url specifies the location of the

contract defining the session management service that the endpoint

manager is to contact.

plugins:session_endpoint_manager:endpoint_manager_url

plugins:session_endpoint_manager:endpoint_manager_u rl specifies the

location of the contract defining the endpoint manager. The contract

contains the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the default

group name for all endpoints that are instantiated using the configuration

scope.

Session Manager Endpoint

39

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies whether

or not a server validates the session headers passed to it by clients. Default

value is true .

plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:peer_timeout specifies the amount of

time, in milliseconds, the session endpoint manager plug-in waits between

keep-alive pings back to the session manager. The default is 4000000 (4

seconds).

The session endpoint manager uses a third-party peer manager to ping back

to the session manager. For more details, see “Peer Manager” on page 29.

CHAPTER 3 | Artix Plug-in Configuration

 40

Session Manager Simple Policy

Overview The session manager’s simple policy plug-in, sm_simple_policy , has the

following configuration variables:

• plugins:sm_simple_policy:max_concurrent_sessions

• plugins:sm_simple_policy:min_session_timeout

• plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the

maximum number of concurrent sessions the session manager will allocate.

Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the minimum

amount of time, in seconds, allowed for a session’s timeout setting. Zero

means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the maximum

amount of time, in seconds, allowed for a session’s timesout setting. Zero

means the unlimited. Default is 600.

SOAP Plug-in

41

SOAP Plug-in

Overview The SOAP plug-in, soap , has the following configuration setting:

• plugins:soap:encoding

plugins:soap:encoding

plugins:soap:encoding specifies the character encoding used when the

SOAP plugin writes service requests or notification broadcasts to the wire.

The valid settings are fully qualified IANA codeset names (Internet Assigned

Numbers Authority). The default value is UTF-8 . By default, this variable is

not listed in the artix.cfg file.

For a listing of valid codesets visit the IANA’s website

(http://www.iana.org/assignments/character-sets).

http://www.iana.org/assignments/character-sets

CHAPTER 3 | Artix Plug-in Configuration

 42

Transformer Service

Overview The Artix transformer service uses Artix endpoints that are configured in its

configuration scope using the artix:endpoint:endpoint_list . For each

endpoint that uses the transformer, you must specify an operation map with

the corresponding endpoint_name from the endpoint list. The

artix:endpoint namespace contains the following variables:

• artix:endpoint:endpoint_list

• artix:endpoint:endpoint_name:wsdl_location

• artix:endpoint:endpoint_name:service_namespace

• artix:endpoint:endpoint_name:service_name

• artix:endpoint:endpoint_name:port_name

The transformer service, xslt , has the following configuration settings:

• plugins:xslt:servant_list

• plugins:xslt:endpoint_name:operation_map

artix:endpoint:endpoint_list

artix:endpoint:endpoint_list specifies a list of endpoint names that will

be used to identify the defined endpoints. Each name in the list represents

an endpoint configured with the other variables in this namespace. The

endpoint names in this list are used by the Web service chain plugin and the

Artix transformer.

artix:endpoint:endpoint_name:wsdl_location

artix:endpoint: endpoint_name:wsdl_location specifies the location of

the Artix contract defining this endpoint.

Transformer Service

43

artix:endpoint:endpoint_name:service_namespace

artix:endpoint: endpoint_name:service_namespace specifies the XML

namespace in which the interface for this endpoint is defined.

artix:endpoint:endpoint_name:service_name

artix:endpoint: endpoint_name:service_name specifies the name of the

<portType> that defines this endpoint’s logical interface.

artix:endpoint:endpoint_name:port_name

artix:endpoint:endpoint_name:port_name specifes the <port> that

defines the physical representation of the endpoint

plugins:xslt:servant_list

plugins:xslt:servant_list specifies a list of endpoints that will be

instaniated as servants by the transformer.

plugins:xslt:endpoint_name:operation_map

plugins:xslt: endpoint_name:operation_map specifies an ordered list of

XSLT operations and scripts to be used in processing the recieved XML

messages.

CHAPTER 3 | Artix Plug-in Configuration

 44

Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

• plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix process is a

Tuxedo server and must be started using tmboot . The default is false .

Web Service Chain Service

45

Web Service Chain Service

Overview The Web service chain service refers back to the Artix endpoints configured

in its configuration scope using artix:endpoint:endpoint_list . For each

endpoint that will be part of the chain, you specify a service chain with the

corresponding endpoint_name from the endpoint list.

The Web service chain service, ws_chain , uses the following configuration

variables:

• plugins:chain:servant_list

• plugins:chain:endpoint_name:client:operation_list

• plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain:servant_list

plugins:chain:servant_list specifies a list of the endpoints in the Web

service chain. Each name in the list must correspond to an endpoint

specified in the artix:endpoint:endpoint_list set in the configuration

scope.

plugins:chain:endpoint_name:client:operation_list

plugins:chain: endpoint_name:operation_list specifies the list of

operations the Web service chain plug-in is implementing. The operations in

the list must be defined in the Artix contract defining the endpoint specified

by endpoint_name.

CHAPTER 3 | Artix Plug-in Configuration

 46

plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain: endpoint_name: operation_name:service_chain specifies

the chain followed by requests made on the operation specified by

opereration_name. The operation must be defined as part of the endpoint

specified by endpoint_name.

Service chains are specified using the syntax shown in Example 7.

Each operation and port entry correspond to an <operation> and a <port>

in the endpoint’s Artix contract. The request is passed through each service

in the order specified. The final operation in the list returns the response

back to the endpoint.

Example 7: Service Chain Specification Syntax

[" operation1@port1"," operation2@port2", ..., " operationN@portN"]

WSDL Publishing Service

47

WSDL Publishing Service

Overview The WSDL publishing service, wsdl_publishing , has the following

configuration variables:

• plugins:wsdl_publish:publish_port

• plugins:wsdl_publish:hostname

plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port specifies the port on which the

WSDL publishing service can be contacted.

plugins:wsdl_publish:hostname

plugins:wsdl_publish:hostname specifies how the hostname will be

published. By default, the local name of the machine will be published. The

possible values are as follows:

canonical Publishes the fully qualified hostname of the
machine in the dynamic WSDL.

unqualified Publishes the unqualified local hostname of the
machine in the dynamic WSDL. This does not
include domain name with the hostname.

ipaddress Publishes the IP address associated with the
machine in the dynamic WSDL.

CHAPTER 3 | Artix Plug-in Configuration

 48

XML File Log Stream

Overview The XML file log stream plug-in (xmlfile_log_stream) enables you to view

logging output in a file. It includes the following variables:

• “plugins:xmlfile_log_stream:filename”.

• “plugins:xmlfile_log_stream:max_file_size”.

• “plugins:xmlfile_log_stream:rolling_file”.

• “plugins:xmlfile_log_stream:use_pid”.

plugins:xmlfile_log_stream:filename

plugins:xmlfile_log_stream:filename specifies an optional filename for

your log file, for example:

The default filename is it_bus.log .

plugins:xmlfile_log_stream:max_file_size

plugins:xmlfile_log_stream:max_file_size specifies an optional

maximum size for your log file,for example:

The default maximum size is 2 MB.

plugins:xmlfile_log_stream:rolling_file

plugins:xmlfile_log_stream:rolling_file specifies that the logging

plug-in uses a rolling file to prevent the local log from growing indefinitely. In

this model, the log stream appends the current date to the configured

filename. This produces a complete filename, for example:

plugins:xmlfile_log_stream:filename = "artix_logfil e.xml";

plugins:xmlfile_log_stream:max_file_size = "100000" ;

/var/adm/art.log.02171999

XML File Log Stream

49

A new file begins with the first event of the day and ends at 23:59:59 each

day. The default behavior is true . To disable rolling file behavior, set this

variable to false:

plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:use_pid specifies that the logging plug-in

uses a optional process identifier. The default is false . To enable the

process identifier, set this variable to true :

plugins:xmlfile_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:use_pid = "true";

CHAPTER 3 | Artix Plug-in Configuration

 50

51

CHAPTER 4

Artix Security
This chapter describes variables used by the IONA Security
Framework. The Artix security infrastructure is highly
configurable.

In this chapter This chapter discusses the following topics:

Applying Constraints to Certificates page 53

initial_references page 55

plugins:asp page 56

plugins:atli2_tls page 59

plugins:csi page 60

plugins:csi page 60

plugins:gsp page 61

plugins:http page 65

plugins:iiop_tls page 69

plugins:is2_authorization page 73

plugins:kdm page 74

plugins:kdm_adm page 76

plugins:login_client page 77

CHAPTER 4 | Artix Security

 52

plugins:login_service page 78

plugins:schannel page 79

plugins:security page 80

policies page 81

policies:asp page 87

policies:csi page 88

policies:iiop_tls page 91

principal_sponsor page 100

principal_sponsor:csi page 104

Applying Constraints to Certificates

53

Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509

certificates by the default CertificateValidatorPolicy . These conditions

are applied to the owner’s distinguished name (DN) on the first certificate

(peer certificate) of the received certificate chain. Distinguished names are

made up of a number of distinct fields, the most common being

Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST= Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dubli n,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL , the certificate is acceptable.

 =, != Signify equality and inequality respectively.

CHAPTER 4 | Artix Security

 54

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ART testers
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see the Security Guide.

initial_references

55

initial_references
The initial_references namespace contains the following configuration

variables:

• IT_TLS_Toolkit:plugin

IT_TLS_Toolkit:plugin

(Windows only.) This configuration variable enables you to specify the

underlying SSL/TLS toolkit to be used by Artix. It is used in conjunction with

the plugins:baltimore_toolkit:shlib_name and

plugins:schannel_toolkit:shlib_name configuration variables to

implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel

SSL/TLS toolkit, you would set configuration variables as follows:

initial_references:IT_TLS_Toolkit:plugin = "schanne l_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schan nel";

CHAPTER 4 | Artix Security

 56

plugins:asp
The plugins:asp namespace contains the following variables:

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• default_password

• security_type

• security_level

authentication_cache_size

For SOAP bindings, the maximum number of credentials stored in the

authentication cache. If this size is exceeded the oldest credential in the

cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable

the cache.

authentication_cache_timeout

For SOAP bindings, the time (in seconds) after which a credential is

considered stale. Stale credentials are removed from the cache and the

server must re-authenticate with the Artix security service on the next call

from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means

disable the cache.

authorization_realm

Specifies the Artix authorization realm to which an Artix server belongs. The

value of this variable determines which of a user’s roles are considered

when making an access control decision.

plugins:asp

57

For example, consider a user that belongs to the ejb-developer and

corba-developer roles within the Engineering realm, and to the ordinary

role within the Sales realm. If you set plugins:asp:authorization_realm

to Sales for a particular server, only the ordinary role is considered when

making access control decisions (using the action-role mapping file).

The default is IONAGlobalRealm .

default_password

When the plugins:asp:security_type variable is set to either PRINCIPAL or

CERT_SUBJECT, this variable specifies the password to use on the server side.

The plugins:asp:default_password variable is used to get around the

limitation that a PRINCIPAL identity and a CERT_SUBJECT are propagated

without an accompanying password.

When either the PRINCIPAL or CERT_SUBJECT security type is selected, the

artix_security plug-in uses the received client principal together with the

password specified by plugins:asp:default_password to authenticate the

user through the Artix security service.

The default value is the string, default_password .

security_type

Specifies the source of the user identity that is sent to the Artix security

service for authentication. Because the Artix Security Framework supports

several different security mechanisms for propagating user identities, it is

necessary to specify which of the propagated identities is actually used for

the authentication step. The following options are currently supported by the

artix_security plug-in:

USERNAME_PASSWORD Authenticate the username and password
propagated as WSDL message attributes. For
example, you can configure these values on the
client side using the UserName and Password
attributes in the <http-conf:client> tag in the
WSDL contract.

CERT_SUBJECT Authenticate the Common Name (CN) from the
client certificate’s subject DN.

CHAPTER 4 | Artix Security

 58

security_level

Specifies the level from which security credentials are picked up. The

following options are supported by the artix_security plug-in:

ENCODED_TOKEN Reserved for future use.

KERBEROS_TOKEN Authenticate the Kerberos token. You must have
the Kerberos adapter configured to use this option.
For more information.

PRINCIPAL Authenticate the CORBA principal. This is needed
to support interoperability with legacy CORBA
applications. This options can be used in
combination with the
plugins:asp:default_password setting.

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.

plugins:atli2_tls

59

plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

• use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with

the CORBA binding. If true , the CORBA binding uses the JSSE/JCE

architecture to implement SSL/TLS security; if false , the CORBA binding

uses the Baltimore SSL/TLS toolkit.

The default is false .

CHAPTER 4 | Artix Security

 60

plugins:csi
The policies:csi namespace includes variables that specify settings for

Common Secure Interoperability version 2 (CSIv2):

• ClassName

• shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin. The

default setting is:

plugins:csi:ClassName = "com.iona.corba.security.cs i.CSIPlugin";

This configuration setting makes it possible for the Artix core to load the

plugin on demand. Internally, the Artix core uses a Java class loader to load

and instantiate the csi class. Plugin loading can be initiated either by

including the csi in the orb_plugins list, or by associating the plugin with

an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the

csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared library,

where it_csi_prot is the base name of the library. The library base name,

it_csi_prot , is expanded in a platform-dependent manner to obtain the full

name of the library file.

plugins:gsp

61

plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the

Generic Security Plugin (GSP). This provides authorization by checking a

user’s roles against the permissions stored in an action-role mapping file. It

includes the following:

• accept_asserted_authorization_info

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• sso_server_certificate_constraints

accept_asserted_authorization_info

If false , SAML data is not read from incoming connections. Default is true .

assert_authorization_info

If false , SAML data is not sent on outgoing connections. Default is true .

CHAPTER 4 | Artix Security

 62

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If

this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable

the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale

credentials are removed from the cache and the server must re-authenticate

with the Artix security service on the next call from that user. The cache

timeout should be configured to be smaller than the timeout set in the

is2.properties file (by default, that setting is

is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means

disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a

server belongs. The value of this variable determines which of a user's roles

are considered when making an access control decision.

For example, consider a user that belongs to the ejb-developer and

corba-developer roles within the Engineering realm, and to the ordinary

role within the Sales realm. If you set plugins:gsp:authorization_realm to

Sales for a particular server, only the ordinary role is considered when

making access control decisions (using the action-role mapping file).

plugins:gsp

63

ClassName

ClassName specifies the Java class that implements the gsp plugin. This

configuration setting makes it possible for the Artix core to load the plugin

on demand. Internally, the Artix core uses a Java class loader to load and

instantiate the gsp class. Plugin loading can be initiated either by including

the csi in the orb_plugins list, or by associating the plugin with an initial

reference.

enable_authorization

A boolean GSP policy that, when true , enables authorization using

action-role mapping ACLs in server.

Default is true .

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to

true .

enable_x509_sso

Enables certificate-based SSO when set to true .

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when

set to true . When this setting is true, the value of the SSL/TLS client secure

invocation policy does not affect the connection between the client and the

login service.

Default is true .

CHAPTER 4 | Artix Security

 64

enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication

on the server side using the Artix security service.

Default is false .

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS

connection between the client and the SSO login server. For details of the

pattern constraint language, see “Applying Constraints to Certificates” on

page 53.

plugins:http

65

plugins:http
The plugins:http namespace contains the following variables:

• client:client_certificate

• client:client_certificate_chain

• client:client_private_key

• client:client_private_key_password

• client:trusted_root_certificates

• client:use_secure_sockets

• server:server_certificate

• server:server_certificate_chain

• server:server_private_key

• server:server_private_key_password

• server:trusted_root_certificates

• server:use_secure_sockets

client:client_certificate

This variable specifies the full path to the PEM-encoded X.509 certificate

issued by the certificate authority for the client. For example:

plugins:http:client:client_certificate =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:client:use_secure_sockets is

false .

client:client_certificate_chain

(Optional) This variable specifies the full path to the PEM-encoded X.509

certificate chain for the client. For example:

plugins:http:client:client_certificate_chain =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:client:use_secure_sockets is

false .

CHAPTER 4 | Artix Security

 66

client:client_private_key

This variable specifies a PEM file containing the client certificate’s encrypted

private key. This private key enables the client to respond to a challenge

from a server during an SSL/TLS handshake.

This setting is ignored if plugins:http:client:use_secure_sockets is

false .

client:client_private_key_password

This variable specifies the password to decrypt the contents of the

client_private_key file.

This setting is ignored if plugins:http:client:use_secure_sockets is

false .

client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA

certificates in PEM format. The client uses this CA list during the TLS

handshake to verify that the server’s certificate has been signed by a trusted

CA.

This setting is ignored if plugins:http:client:use_secure_sockets is

false .

client:use_secure_sockets

This variable specifies whether the client wants to open a HTTPS

connection (that is, HTTP running over SSL or TLS) or an insecure

connection (that is, plain HTTP).

Valid values are true , for HTTPS, and false , for HTTP. The default is

false .

plugins:http

67

server:server_certificate

This variable specifies the full path to the PEM-encoded X.509 certificate

issued by the certificate authority for the server. For example:

plugins:http:server:server_certificate =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:server:use_secure_sockets is

false .

server:server_certificate_chain

(Optional) This variable specifies the full path to the PEM-encoded X.509

certificate chain for the server. For example:

plugins:http:server:server_certificate_chain =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:server:use_secure_sockets is

false .

server:server_private_key

This variable specifies a PEM file containing the server certificate’s

encrypted private key. This private key enables the server to respond to a

challenge from a client during an SSL/TLS handshake.

This setting is ignored if plugins:http:server:use_secure_sockets is

false .

server:server_private_key_password

This variable specifies the password to decrypt the contents of the

server_private_key file.

This setting is ignored if plugins:http:server:use_secure_sockets is

false .

CHAPTER 4 | Artix Security

 68

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA

certificates in PEM format. The server uses this CA list during the TLS

handshake to verify that the client’s certificate has been signed by a trusted

CA.

This setting is ignored if plugins:http:server:use_secure_sockets is

false .

server:use_secure_sockets

This variable specifies whether the server accepts HTTPS connection

attempts (that is, HTTP running over SSL or TLS) or insecure connection

attempts (that is, plain HTTP) from a client.

Valid values are true , for HTTPS, and false , for HTTP. The default is

false .

plugins:iiop_tls

69

plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

• buffer_pool:recycle_segments

• buffer_pool:segment_preallocation

• buffer_pools:max_incoming_buffers_in_pool

• buffer_pools:max_outgoing_buffers_in_pool

• delay_credential_gathering_until_handshake

• enable_iiop_1_0_client_support

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this

variable’s value instead of the

plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this

variable’s value instead of the

plugins:iiop:buffer_pool:segment_preallocation variable’s value.

CHAPTER 4 | Artix Security

 70

buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this

variable’s value instead of the

plugins:iiop:buffer_pools:max_incoming_buffers_in_p ool variable’s

value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this

variable’s value instead of the

plugins:iiop:buffer_pools:max_outgoing_buffers_in_p ool variable’s

value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an

alternative to using the principal_sponsor variables to specify an

application’s own certificate. When this variable is set to true and

principal_sponsor:use_principal_sponsor is set to false , the client

delays sending its certificate to a server. The client will wait until the server

explicitly requests the client to send its credentials during the SSL/TLS

handshake.

This configuration variable can be used in conjunction with the

plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Artix SSL/TLS

applications with legacy IIOP 1.0 SSL/TLS servers, which do not support

IIOP 1.1.

The default value is false . When set to true , Artix SSL/TLS searches secure

target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged

component data, and attempts to connect on the specified port.

Note: This variable will not be necessary for most users.

plugins:iiop_tls

71

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections

permitted to IIOP. IIOP does not accept new connections above this limit.

Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value

instead of the plugins:iiop:incoming_connections:hard_limit variable’s

value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for

further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing

incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value

instead of the plugins:iiop:incoming_connections:soft_limit variable’s

value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for

further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value

instead of the plugins:iiop:outgoing_connections:hard_limit variable’s

value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value

instead of the plugins:iiop:outgoing_connections:soft_limit variable’s

value.

CHAPTER 4 | Artix Security

 72

tcp_listener:reincarnate_attempts

(C++/Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the

number of attempts that are made to reincarnate a listener before giving up,

logging a fatal error, and shutting down the ORB. Datatype is long . Defaults

to 0 (no attempts).

Sometimes an network error may occur, which results in a listening socket

being closed. On Windows, you can configure the listener to attempt a

reincarnation. This enables new connections to be established.

tcp_listener:reincarnation_retry_backoff_ratio

(C++/Windows only)

plugins:iiop_tls:tcp_listener:reincarnation_retry_d elay specifies a

delay between reincarnation attempts. Data type is long . Defaults to 0 (no

delay).

tcp_listener:reincarnation_retry_delay

(C++/Windows only)

plugins:iiop_tls:tcp_listener:reincarnation_retry_b ackoff_ratio sp

ecifies the degree to which delays between retries increase from one retry to

the next. Datatype is long . Defaults to 1

plugins:is2_authorization

73

plugins:is2_authorization
The plugins:is2_authorization namespace contains the following variable:

• action_role_mapping

action_role_mapping

Specifies the action-role mapping file URL. For example:

plugins:is2_authorization:action_role_mapping =
"file:///my/action/role/mapping";

CHAPTER 4 | Artix Security

 74

plugins:kdm
The plugins:kdm namespace contains the following variables:

• cert_constraints

• iiop_tls:port

• checksums_optional

cert_constraints

Specifies the list of certificate constraints for principals attempting to open a

connection to the KDM server plug-in. See “Applying Constraints to

Certificates” on page 53 for a description of the certificate constraint syntax.

To protect the sensitive data stored within it, the KDM applies restrictions

on which entities are allowed talk to it. A security administrator should

choose certificate constraints that restrict access to the following principals:

• The locator service (requires read-only access).

• The kdm_adm plug-in, which is normally loaded into the itadmin utility

(requires read-write access).

All other principals should be blocked from access. For example, you might

define certificate constraints similar to the following:

plugins:kdm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Secure admin *",
"C=US,ST=Boston,O=ABigBank*,CN=Orbix2000 Locator Se rvice*"]

Your choice of certificate constraints will depend on the naming scheme for

your subject names.

plugins:kdm

75

iiop_tls:port

Specifies the well known IP port on which the KDM server listens for

incoming calls.

checksums_optional

When equal to false , the secure information associated with a server must

include a checksum; when equal to true , the presence of a checksum is

optional. Default is false .

CHAPTER 4 | Artix Security

 76

plugins:kdm_adm
The plugins:kdm_adm namespace contains the following variable:

• cert_constraints

cert_constraints

Specifies the list of certificate constraints that are applied when the KDM

administration plug-in authenticates the KDM server. See “Applying

Constraints to Certificates” on page 53 for a description of the certificate

constraint syntax.

The KDM administration plug-in requires protection against attack from

applications that try to impersonate the KDM server. A security

administrator should, therefore, choose certificate constraints that restrict

access to trusted KDM servers only. For example, you might define

certificate constraints similar to the following:

plugins:kdm_adm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=IT_KDM*"];

Your choice of certificate constraints will depend on the naming scheme for

your subject names.

plugins:login_client

77

plugins:login_client
The plugins:login_client namespace contains the following variables:

• wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_client

plug-in. The value of this variable can either be a relative pathname or an

URL. The login_client requires access to the login service WSDL in order

to obtain details of the physical contract (for example, host and IP port).

CHAPTER 4 | Artix Security

 78

plugins:login_service
The plugins:login_service namespace contains the following variables:

• wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_service

plug-in. The value of this variable can either be a relative pathname or an

URL. The login_service requires access to the login service WSDL in order

to obtain details of the physical contract (for example, host and IP port).

plugins:schannel

79

plugins:schannel
The plugins:schannel namespace contains the following variable:

• prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the

plugins:iiop_tls:delay_credential_gathering_until_h andshake

variable to true on the client side allows the user to choose which

credentials to use for the server connection. The choice of credentials

offered to the user is based on the trusted CAs sent to the client in an

SSL/TLS handshake message.

If prompt_with_credential_choice is set to false , Artix chooses the first

certificate it finds in the certificate store that meets the applicable

constraints.

The certificate prompt can be replaced by implementing an IDL interface

and registering it with the ORB.

CHAPTER 4 | Artix Security

 80

plugins:security
The plugins:security namespace contains the following variable:

• share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when

you specify an own SSL/TLS credential (using the principal sponsor or the

principal authenticator), the credential is available only to the ORB that

created it. By setting the

plugins:security:share_credentials_across_orbs variable to true ,

however, the own SSL/TLS credentials created by one ORB are

automatically made available to any other ORBs that are configured to share

credentials.

See also principal_sponsor:csi:use_existing_credentials for details of

how to enable sharing of CSI credentials.

Default is false .

policies

81

policies
The policies namespace defines the default CORBA policies for an ORB.

Many of these policies can also be set programmatically from within an

application. SSL/TLS-specific variables in the policies namespace include:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• session_caching

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

(Deprecated in favor of

policies:iiop_tls:allow_unauthenticated_clients_pol icy and

policies:https:allow_unauthenticated_clients_policy .)

A generic variable that sets this policy both for iiop_tls and https . The

recommended alternative is to use the variables prefixed by

policies:iiop_tls and policies:https instead, which take precedence

over this generic variable.

CHAPTER 4 | Artix Security

 82

certificate_constraints_policy

(Deprecated in favor of

policies:iiop_tls:certificate_constraints_policy and

policies:https:certificate_constraints_policy .)

A generic variable that sets this policy both for iiop_tls and https . The

recommended alternative is to use the variables prefixed by

policies:iiop_tls and policies:https instead, which take precedence

over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of

policies:iiop_tls:client_secure_invocation_policy:r equires and

policies:https:client_secure_invocation_policy:requ ires .)

A generic variable that sets this policy both for iiop_tls and https . The

recommended alternative is to use the variables prefixed by

policies:iiop_tls and policies:https instead, which take precedence

over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of

policies:iiop_tls:client_secure_invocation_policy:s upports and

policies:https:client_secure_invocation_policy:supp orts .)

A generic variable that sets this policy both for iiop_tls and https . The

recommended alternative is to use the variables prefixed by

policies:iiop_tls and policies:https instead, which take precedence

over this generic variable.

policies

83

max_chain_length_policy

(Deprecated in favor of policies:iiop_tls:max_chain_length_policy and

policies:https:max_chain_length_policy .)

max_chain_length_policy specifies the maximum certificate chain length

that an ORB will accept. The policy can also be set programmatically using

the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:ciphersuites

(Deprecated in favor of

policies:iiop_tls:mechanism_policy:ciphersuites and

policies:https:mechanism_policy:ciphersuites .)

mechanism_policy:ciphersuites specifies a list of cipher suites for the

default mechanism policy. One or more of the cipher suites shown in

Table 4 can be specified in this list.

Note: The max_chain_length_policy is not currently supported on the
OS/390 platform.

Table 4: Mechanism Policy Cipher Suites

Null Encryption, Integrity

and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

CHAPTER 4 | Artix Security

 84

mechanism_policy:protocol_version

(Deprecated in favor of

policies:iiop_tls:mechanism_policy:protocol_version and

policies:https:mechanism_policy:protocol_version .)

mechanism_policy:protocol_version specifies the protocol version used by

a security capsule (ORB instance). It can be set to SSL_V3 or TLS_V1. For

example:

session_caching_policy

(Java only) session_caching_policy specifies whether a Java ORB caches

the session information for secure associations when acting in a client role,

a server role, or both. The purpose of session caching is to enable closed

connections to be re-established quickly. The following values are

supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the

IT_TLS_API::SessionCachingPolicy CORBA policy.

policies:mechanism_policy:protocol_version="TLS_V1"

policies

85

session_caching

(C++ only) session_caching specifies whether a C++ ORB caches the

session information for secure associations when acting in a client role, a

server role, or both. The purpose of session caching is to enable closed

connections to be re-established quickly. The following values are

supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the

IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

(Deprecated in favor of

policies:iiop_tls:target_secure_invocation_policy:r equires and

policies:https:target_secure_invocation_policy:requ ires .)

target_secure_invocation_policy:requires specifies the minimum level

of security required by a server. The value of this variable is specified as a

list of association options.

target_secure_invocation_policy:supports

(Deprecated in favor of

policies:iiop_tls:target_secure_invocation_policy:s upports and

policies:https:target_secure_invocation_policy:supp orts .)

supports specifies the maximum level of security supported by a server. The

value of this variable is specified as a list of association options. This policy

can be upgraded programmatically using either the QOP or the

EstablishTrust policies.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

CHAPTER 4 | Artix Security

 86

trusted_ca_list_policy

(Deprecated in favor of policies:iiop_tls:trusted_ca_list_policy and

policies:https:trusted_ca_list_policy .)

trusted_ca_list_policy specifies a list of filenames, each of which

contains a concatenated list of CA certificates in PEM format. The aggregate

of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for

administrative convenience. It enables you to group CAs into different lists

and to select a particular set of CAs for a security domain by choosing the

appropriate CA lists.

policies:trusted_ca_list_policy =
[" install_dir/asp/ version/etc/tls/x509/ca/ca_list1.pem",
" install_dir/asp/ version/etc/tls/x509/ca/ca_list_extra.pem"];

policies:asp

87

policies:asp
The policies:asp namespace contains the following variables:

• enable_authorization

• enable_sso

enable_authorization

A boolean variable that specifies whether Artix should enable authorization

using the Artix Security Framework. Default is false .

enable_sso

A boolean variable that specifies whether Artix enables single-sign on (SSO)

on the server-side. Default is false .

CHAPTER 4 | Artix Security

 88

policies:csi
The policies:csi namespace includes variables that specify settings for

Common Secure Interoperability version 2 (CSIv2):

• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies

the association options supported by the CSIv2 attribute service (principal

propagation). The only assocation option that can be specified is

IdentityAssertion . This policy is normally specified in an intermediate

server so that it propagates CSIv2 identity tokens to a target server. For

example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi

89

attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies

the association options supported by the CSIv2 attribute service (principal

propagation). The only assocation option that can be specified is

IdentityAssertion . For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the

IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication

service is implemented as a callback object that plugs into the CSIv2

framework on the server side. By replacing this class with a custom

implementation, you could potentially implement a new security technology

domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses

a default authentication object that always returns false when the

authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies

the association options supported by CSIv2 authorization over transport.

The only assocation option that can be specified is

EstablishTrustInClient . For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

CHAPTER 4 | Artix Security

 90

auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server

application belongs. The iSF security domains are administered within an

overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs

generated by the server. A CSIv2 client about to open a connection to this

server would check that the domain name in its own CSIv2 credentials

matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that

specifies the association options required for CSIv2 authorization over

transport. The only assocation option that can be specified is

EstablishTrustInClient . For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that

specifies the association options supported by CSIv2 authorization over

transport. The only assocation option that can be specified is

EstablishTrustInClient . For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

policies:iiop_tls

91

policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set

IIOP-related policies for a secure environment. These setting affect the

iiop_tls plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• max_chain_length_policy

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy

CHAPTER 4 | Artix Security

 92

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to

establish a secure connection without sending a certificate. Default is false .

This configuration variable is applicable only in the special case where the

target secure invocation policy is set to require NoProtection (a semi-secure

server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:buffer_sizes_policy:default_buffer_si ze

policy’s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial

size of the buffers allocated by IIOP. Defaults to 16000. This value must be

greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:buffer_sizes_policy:max_buffer_size

policy’s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size

permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates

unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of

certificate constraints in the Artix security guide for the syntax of the pattern

constraint language. If a peer certificate fails to match any of the

constraints, the certificate validation step will fail.

The policy can also be set programmatically using the

IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no

constraints.

policies:iiop_tls

93

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of

this variable is specified as a list of association options—see the Artix

Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded

programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The

value of this variable is specified as a list of association options—see the

Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the

EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A

client uses the version of IIOP specified by this variable, or the version

specified in the IOR profile, whichever is lower. Valid values for this variable

are: 1.0 , 1.1 , and 1.2 .

For example, the following file-based configuration entry sets the server IIOP

version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used

when creating a connected socket using a Java application. Defaults to 5.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy

CHAPTER 4 | Artix Security

 94

connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between

connection attempts when using a Java application. Defaults to 2.

max_chain_length_policy

This policy overides policies: max_chain_length_policy for the iiop_tls

plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the

IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the

iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or

more of the following cipher suites can be specified in this list:

Note: The max_chain_length_policy is not currently supported on the
OS/390 platform.

Table 5: Mechanism Policy Cipher Suites

Null Encryption, Integrity

and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

policies:iiop_tls

95

mechanism_policy:protocol_version

This policy overides policies:mechanism_policy:protocol_version for the

iiop_tls plugin.

Specifies the protocol version used by a security capsule (ORB instance).

Can be set to one of the following values:

TLS_V1
SSL_V3
SSL_V2V3

The SSL_V2V3 value is a special setting that facilitates interoperability with

an Artix application deployed on the OS/390 platform. Artix security on the

OS/390 platform is based on IBM’s System/SSL toolkit, which implements

SSL version 3, but does so by using SSL version 2 hellos as part of the

handshake. This form of handshake causes interoperability problems,

because applications on other platforms identify the handshake as an SSL

version 2 handshake. The misidentification of the SSL protocol version can

be avoided by setting the protocol version to be SSL_V2V3 in the non-OS/390

application (this bug also affects some old versions of Microsoft Internet

Explorer).

For example:

policies:mechanism_policy:protocol_version = "SSL_V 2V3";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s

value instead of the

policies:iiop:server_address_mode_policy:local_doma in policy’s value.

CHAPTER 4 | Artix Security

 96

server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s

value instead of the

policies:iiop:server_address_mode_policy:local_host name policy’s

value.

server_address_mode_policy:local_hostname specifies the hostname

advertised by the locator daemon, and listened on by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,

those using multiple DNS aliases or multiple network cards). These

machines are often termed multi-homed hosts. The local_hostname

variable supports these type of machines by enabling you to explicitly

specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses

(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to

either address:

By default, the local_hostname variable is unspecified. Servers use the

default hostname configured for the machine with the Orbix configuration

tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s

value instead of the

policies:iiop:server_address_mode_policy:port_range policy’s value.

server_address_mode_policy:port_range specifies the range of ports that

a server uses when there is no well-known addressing policy specified for

the port.

policies:iiop:server_address_mode_policy:local_host name =
"207.45.52.34";

policies:iiop_tls

97

server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the

policies:iiop:server_address_mode_policy:publish_ho stname policy’s

value.

server_address_mode-policy:publish_hostname specifes whether IIOP

exports hostnames or IP addresses in published profiles. Defaults to false

(exports IP addresses, and does not export hostnames). To use hostnames

in object references, set this variable to true , as in the following file-based

configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:server_version_policy policy’s value.

server_version_policy specifies the GIOP version published in IIOP

profiles. This variable takes a value of either 1.1 or 1.2 . Orbix servers do not

publish IIOP 1.0 profiles. The default value is 1.2 .

session_caching_policy

This policy overides policies: session_caching_policy (Java) and

policies: session_caching (C++) for the iiop_tls plugin.

policies:iiop:server_address_mode_policy:publish_ho stname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_ho stname

CHAPTER 4 | Artix Security

 98

target_secure_invocation_policy:requires

This policy overides

policies:target_secure_invocation_policy:requires for the iiop_tls

plugin.

Specifies the minimum level of security required by a server. The value of

this variable is specified as a list of association options—see the Artix

Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded

programmatically by the application.

target_secure_invocation_policy:supports

This policy overides

policies:target_secure_invocation_policy:supports for the iiop_tls

plugin.

Specifies the maximum level of security supported by a server. The value of

this variable is specified as a list of association options—see the Artix

Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the

EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:tcp_options_policy:no_delay policy’s

value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option

should be set on connections. Defaults to false .

policies:iiop_tls

99

tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:tcp_options_policy:recv_buffer_size

policy’s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP

receive buffer. This variable can only be set to 0, which coresponds to using

the default size defined by the operating system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value

instead of the policies:iiop:tcp_options_policy:send_buffer_size

policy’s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send

buffer. This variable can only be set to 0, which coresponds to using the

default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies: trusted_ca_list_policy for the

iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a

concatenated list of CA certificates in PEM format. The aggregate of the CAs

in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
[" ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
" ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for

administrative convenience. It enables you to group CAs into different lists

and to select a particular set of CAs for a security domain by choosing the

appropriate CA lists.

CHAPTER 4 | Artix Security

 100

principal_sponsor
The principal_sponsor namespace stores configuration information to be

used when obtaining credentials. the CORBA binding provides an

implementation of a principal sponsor that creates credentials for

applications automatically.

Use of the PrincipalSponsor is disabled by default and can only be enabled

through configuration.

The PrincipalSponsor represents an entry point into the secure system. It

must be activated and authenticate the user, before any application-specific

logic executes. This allows unmodified, security-unaware applications to

have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain

credentials automatically. Defaults to false . If set to true , the following

principal_sponsor variables must contain data in order for anything to

actually happen.

principal_sponsor

101

auth_method_id

auth_method_id specifies the authentication method to be used. The

following authentication methods are available:

For example, you can select the pkcs12_file authentication method as

follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted

by the authentication method represented by the auth_method_id .

For the pkcs12_file authentication method, the following authentication

data can be provided in auth_method_data :

pkcs12_file The authentication method uses a PKCS#12 file.

pkcs11 Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.

CHAPTER 4 | Artix Security

 102

For the pkcs11 (smart card) authentication method, the following

authentication data can be provided in auth_method_data :

For the security_label authentication method on Windows, the following

authentication data can be provided in auth_method_data :

For example, to configure an application on Windows to use a certificate,

bob.p12 , whose private key is encrypted with the bobpass password, set the

auth_method_data as follows:

The following points apply to Java implementations:

• If the file specified by filename= is not found, it is searched for on the

classpath.

• The file specified by filename= can be supplied with a URL instead of

an absolute file location.

• The mechanism for prompting for the password if the password is

supplied through password= can be replaced with a custom

mechanism, as demonstrated by the login demo.

provider A name that identifies the underlying PKCS #11
toolkit used by Orbix to communicate with the smart
card.

The toolkit currently used by Orbix has the provider
name dkck132.dll (from Baltimore).

slot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.

pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

label (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass "];

principal_sponsor

103

• There are two extra configuration variables available as part of the

principal_sponsor namespace, namely

principal_sponsor:callback_handler and

principal_sponsor:login_attempts . These are described below.

• These Java-specific features are available subject to change in future

releases; any changes that can arise probably come from customer

feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that

implements the interface com.iona.corba.tls.auth.CallbackHandler . This

variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for

authentication data (usually a password). It applies for both internal and

custom CallbackHandlers ; if a CallbackHandler is supplied, it is invoked

upon up to login_attempts times as long as the PrincipalAuthenticator

returns SecAuthFailure . This variable is only used by Java clients.

CHAPTER 4 | Artix Security

 104

principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to

be used when obtaining CSI (Common Secure Interoperability) credentials.

It includes the following:

• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also

share CSI credentials. If true , any CSI credentials loaded by one

credential-sharing ORB can be used by other credential-sharing ORBs

loaded after it; if false , CSI credentials are not shared.

This variable has no effect, unless the

plugins:security:share_credentials_across_orbs variable is also true .

Default is false .

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal

sponsor on or off.

If set to true , the CSI principal sponsor is enabled; if false , the CSI

principal sponsor is disabled and the remaining principal_sponsor:csi

variables are ignored. Defaults to false .

principal_sponsor:csi

105

auth_method_data

auth_method_data is a string array containing information to be interpreted

by the authentication method represented by the auth_method_id .

For the GSSUPMech authentication method, the following authentication

data can be provided in auth_method_data :

If any of the preceding data are omitted, the user is prompted to enter

authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in

the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service .

password The password associated with username. This is optional. It is

bad practice to supply the password from configuration for

deployed systems. If the password is not supplied, the user is

prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.

CHAPTER 4 | Artix Security

 106

When the application is started, the user is prompted for the administrator

password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to

be used by the CSI application. The following authentication method is

available:

For example, you can select the GSSUPMech authentication method as

follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

107

CHAPTER 5

CORBA Plug-ins
Artix is built on IONA’s Adaptive Runtime architecture (ART),
which enables users to configure services as plugins to the
core product.

Overview A plugin is a class or code library that can be loaded into an Artix

application at link-time or runtime. The plugins namespace contains child

namespaces for plugins, such as naming and iiop . Each child namespace

has information specific to each plugin. Child namespaces usually have a

C++ shlib_name variable, indicating the class or library in which the plugin

resides. The following examples show how the configuration specifies the

library for the iiop plugin:

Plugins also have their own specific configuration variables. For example,

the following variable sets the default timeout of a transaction in seconds:

Note: The variables described in this chapter only apply when Artix is
using the CORBA transport.

plugins:iiop:shlib_name = "it_iiop";

plugins:ots:default_transaction_timeout

CHAPTER 5 | CORBA Plug-ins

 108

In this chapter The following plugins are discussed in this chapter:

plugins:codeset page 111

plugins:egmiop page 114

plugins:giop page 116

plugins:giop_snoop page 117

plugins:iiop page 119

plugins:local_log_stream page 124

plugins:naming page 125

plugins:ots page 127

plugins:ots_lite page 130

plugins:ots_encina page 132

plugins:poa page 138

plugins:poa page 138

plugins:pss page 139

plugins:pss_db:envs:env-name page 140

plugins:pss_db:envs:env-name:dbs:storage-home-type-id page 147

plugins:shmiop page 150

plugins:atli2_shm

109

plugins:atli2_shm
The variables in this namespace control the behavior of the shared memory

ATLI2 plugin. This namespace includes the following:

• max_buffer_wait_time

• shared_memory_segment_basename

• shared_memory_size

• shared_memory_segment

max_buffer_wait_time

max_buffer_wait_time specifies the maximum wait time on a shared

memory buffer before raising a no resources exception. The default is 5

seconds.

shared_memory_segment_basename

shared_memory_segment_basename defines the prefix used when the shared

memory transport creates internal files (for example, in /var/tmp/SAMD and

/tmp on Solaris). The default is iona .

CHAPTER 5 | CORBA Plug-ins

 110

shared_memory_size

shared_memory_size specifies the size of the shared memory segment

created (for example, in the call to mmap on Solaris). The default value is

8*1024*1024 .

This size should be larger than the largest data payload passed between a

client and server. If the setting is too small, the shared memory transport

will run out of memory, and will be unable to marshal the data. If there is

danger of this occurring, add GIOP+IIOP to your client_binding_list

setting. This enables the ORB to use the normal network transport if a large

payload can not make it through shared memory.

shared_memory_segment

shared_memory_segment specifies the name of the already existing shared

memory segment to use in place of creating a new segment. There is no

default name. Artix creates a new segment by default.

plugins:codeset

111

plugins:codeset
The variables in this namespace specify the codesets used by the CORBA

portion of Artix. This is useful when internationalizing your environment.

The following variables are contained in this namespace:

• char:ncs

• char:ccs

• wchar:ncs

• wchar:ccs

• always_use_default

char:ncs

char:ncs specifies the native codeset to use for narrow characters. The

default setting is determined as follows:

Table 6: Defaults for the native narrow codeset

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ ISO-8859-1

MVS C++ EBCDIC

ISO-8859-1/Cp-1292/US-ASCII
locale

Java ISO-8859-1

Shift_JS locale Java UTF-8

EUC-JP locale Java UTF-8

other Java UTF-8

CHAPTER 5 | CORBA Plug-ins

 112

char:ccs

char:ccs specifies the list of conversion codesets supported for narrow

characters. The default setting is determined as follows:

wchar:ncs

wchar:ncs specifies the native codesets supported for wide characters. The

default setting is determined as follows:

Table 7: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++

MVS C++ IOS-8859-1

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UTF-8

Shift_JIS locale Java Shift_JIS, euc_JP,
ISO-8859-1

EUC-JP locale Java euc_JP, Shift_JIS,
ISO-8859-1

other Java file encoding,
ISO-8859-1

Table 8: Defaults for the wide native codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UCS-2, UCS-4

MVS C++ UCS-2, UCS-4

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UTF-16

Shift_JIS locale Java UTF-16

plugins:codeset

113

wchar:ccs

wchar:ccs specifies the list of conversion codesets supported for wide

characters. The default setting is determined as follows:

always_use_default

always_use_default specifies that hardcoded default values will be used

and any codeset variables will be ignored if they are in the same

configuration scope or higher.

EUC-JP locale Java UTF-16

other Java UTF-16

Table 8: Defaults for the wide native codesets

Platform/Locale Language Setting

Table 9: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UTF-16

MVS C++ UTF-16

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UCS-2

Shift_JIS locale Java UCS-2,
Shift_JIS,euc_JP

EUC-JP locale Java UCS-2, euc_JP,
Shift_JIS

other Java file encoding, UCS-2

CHAPTER 5 | CORBA Plug-ins

 114

plugins:egmiop
The variables in this namespace configure endpoint functionality for the

MIOP transport. This namespace contains the following variables:

• ip:send_buffer_size

• ip:receive_buffer_size

• pool:max_threads

• pool:max_threads

• pool:min_threads

• udp:packet_size

ip:send_buffer_size

ip:send_buffer_size specifies the SO_SNDBUF socket options to control how

the IP stack adjusts the size of the output buffer. Defaults to 0, meaning the

that buffer size is static.

ip:receive_buffer_size

ip:receive_buffer_size specifies the SO_RCVBUF socket options to control

how the IP stack adjusts the size of the input buffer. Defaults to 0, meaning

the buffer size is static.

pool:max_threads

pool:max_threads specifies the maximum number of threads reserved from

the WorkQueue to support tasks working on behalf of the ATLI transport.

Defaults to 5.

plugins:egmiop

115

pool:min_threads

pool:min_threads specifies the minimum number of threads reserved from

the WorkQueue to support tasks working on behalf of the ATLI transport.

Defaults to 1.

udp:packet_size

udp:packet_size specifies the maximum size for outgoing UDP packets. A

larger UDP packet size increases the probability of IP packet fragmentation

on the wire hence increasing the possibility of data loss. A smaller UDP

packet size increases the overhead per packet and decreases throughput.

Defaults to 120kb.

CHAPTER 5 | CORBA Plug-ins

 116

plugins:giop
This namespace contains the plugins:giop:message_server_binding_list

configuration variable, which is one of the variables used to configure

bidirectional GIOP. This feature allows callbacks to be made using a

connection opened by the client, instead of requiring the server to open a

new connection for the callback.

message_server_binding_list

plugins:giop:message_server_binding_list specifies a list message

inceptors that are used for bidirectional GIOP. On the client-side, the

plugins:giop:message_server_binding_list must be configured to

indicate that an existing outgoing message interceptor chain may be re-used

for an incoming server binding, similarly by including an entry for

BiDir_GIOP , for example:

plugins:giop:message_server_binding_list=["BiDir_GI OP","GIOP"];

Further information For information on other variables used to set bidirectional GIOP, see

“policies:giop” on page 148. For details of all the steps involved in setting

bidirectional GIOP, see the Orbix Administrator’s Guide.

plugins:giop_snoop

117

plugins:giop_snoop
The variables in this namespace configure settings for the GIOP Snoop tool.

This tool intercepts and displays GIOP message content. Its primary roles

are as a protocol-level monitor and a debug aid.

The GIOP Snoop plug-in implements message-level interceptors that can

participate in client and/or server side bindings over any GIOP-based

transport.

The variables in the giop_snoop namespace include the following:

• filename

• rolling_file

• shlib_name

• verbosity

filename

plugins:giop_snoop:filename specifies a file for GIOP Snoop output. By

default, output is directed to standard error (stderr). This variable has the

following format:

A month/day/year time stamp is included in the output filename with the

following general format:

rolling_file

plugins:giop_snoop:rolling_file prevents the GIOP Snoop output file

from growing indefinitely. This setting specifies to open and then close the

output file for each snoop message trace, instead of holding the output files

open. This enables administrators to control the size and content of output

files. This setting is enabled with:

plugins:giop_snoop:filename = " <some-file-path>";

<filename>. MMDDYYYY

plugins:giop_snoop:rolling_file = "true";

CHAPTER 5 | CORBA Plug-ins

 118

shlib_name

(C++ only) plugins:giop_snoop:shlib_name locates and loads the

giop_snoop plug-in. This is configured by default as follows:

verbosity

plugins:giop_snoop:verbosity is used to control the verbosity levels of the

GIOP Snoop output. For example:

GIOP Snoop verbosity levels are as follows:

plugins:giop_snoop:shlib_name = "it_giop_snoop";

Note: In addition, for both client or server configuration, the giop_snoop
plug-in must be included in your orb_plugins list.

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH

plugins:iiop

119

plugins:iiop
The variables in this namespace configure active connection management,

IIOP buffer management. For more information about active connection

management, see the Orbix Administrator’s Guide.

This namespace contains the following variables:

• connection:max_unsent_data

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• ip:send_buffer_size

• ip:receive_buffer_size

• ip:reuse_addr

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• pool:max_threads

• pool:max_threads

• pool:min_threads

• tcp_connection:keep_alive

• tcp_connection:no_delay

• tcp_connection:linger_on_close

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

connection:max_unsent_data

plugins:iiop:connection:max_unsent_data specifies the upper limit for

the amount of unsent data associated with an individual connection.

Defaults to 512k.

CHAPTER 5 | CORBA Plug-ins

 120

incoming_connections:hard_limit

plugins:iiop:incoming_connections:hard_limit specifies the maximum

number of incoming (server-side) connections permitted to IIOP. IIOP does

not accept new connections above this limit. Defaults to -1 (disabled).

incoming_connections:soft_limit

plugins:iiop:incoming_connections:soft_limit sets the number of

connections at which IIOP begins closing incoming (server-side)

connections. Defaults to -1 (disabled).

ip:send_buffer_size

plugins:iiop:ip:send_buffer_size specifies the SO_SNDBUF socket options

to control how the IP stack adjusts the size of the output buffer. Defaults to

0, meaning the that buffer size is static.

ip:receive_buffer_size

plugins:iiop:ip:receive_buffer_size specifies the SO_RCVBUF socket

options to control how the IP stack adjusts the size of the input buffer.

Defaults to 0, meaning the that buffer size is static.

ip:reuse_addr

plugins:iiop:ip:reuse_addr specifies whether a process can be launched

on an already used port. The default is true . Setting this to false switches

SO_REUSEADDR to false . This does not allow a process to listen on the same

port. An exception indicating that the address is already in use will be

thrown.

plugins:iiop

121

outgoing_connections:hard_limit

plugins:iiop:outgoing_connections:hard_limit sets the maximum

number of outgoing (client-side) connections permitted to IIOP. IIOP does

not allow new outgoing connections above this limit. Defaults to -1

(disabled).

outgoing_connections:soft_limit

plugins:iiop:outgoing_connections:soft_limit specifies the number of

connections at which IIOP begins closing outgoing (client-side) connections.

Defaults to -1 (disabled).

pool:max_threads

plugins:iiop:pool:max_threads specifies the maximum number of threads

reserved from the WorkQueue to support tasks working on behalf of the ATLI

transport. Defaults to 5.

pool:min_threads

plugins:iiop:pool:min_threads specifies the minimum number of threads

reserved from the WorkQueue to support tasks working on behalf of the ATLI

transport. Defualts to 1.

tcp_connection:keep_alive

plugins:iiop:tcp_connection:keep_alive specifies the setting of

SO_KEEPALIVE on sockets used to maintain IIOP connections. If set to TRUE,

the socket will send a ’keepalive probe’ to the remote host if the conneciton

has been idle for a preset period of time. The remote system, if it is still

running, will send an ACK response. Defaults to TRUE.

CHAPTER 5 | CORBA Plug-ins

 122

tcp_connection:no_delay

plugins:iiop:tcp_connection:no_deplay specifies if TCP_NODELAY is set

on the sockets used to maintain IIOP connections. If set to false, small data

packets are collected and sent as a group. The algorithm used allows for no

more than a 0.2 msec delay between collected packets. Defaults to TRUE.

tcp_connection:linger_on_close

plugins:iiop:tcp_connection:linger_on_close specifies the setting of

SO_LINGER on all tcp connections to ensure that tcp buffers get cleared once

a socket is closed. Defaults to TRUE.

tcp_listener:reincarnate_attempts

(C++/Windows only)

plugins:iiop:tcp_listener:reincarnate_attempts specifies the number

of attempts that are made to reincarnate a listener before giving up, logging

a fatal error, and shutting down the ORB. Datatype is long . Defaults to 0 (no

attempts).

Sometimes an network error may occur, which results in a listening socket

being closed. On Windows, you can configure the listener to attempt a

reincarnation. This enables new connections to be established.

tcp_listener:reincarnation_retry_backoff_ratio

(C++/Windows only)

plugins:iiop:tcp_listener:reincarnation_retry_delay specifies a delay

between reincarnation attempts. Data type is long . Defaults to 0 (no delay).

plugins:iiop

123

tcp_listener:reincarnation_retry_delay

(C++/Windows only)

plugins:iiop:tcp_listener:reincarnation_retry_backo ff_ratio specifie

s the degree to which delays between retries increase from one retry to the

next. Datatype is long . Defaults to 1.

CHAPTER 5 | CORBA Plug-ins

 124

plugins:local_log_stream
The variables in this namespace configure how Artix logs runtime

information. By default, Artix is configured to log messages to standard

error. You can change this behavior for an ORB by specifying a logstream

plugin.

This namespace contains the following variables:

• filename

• rolling_file

For full information about Artix logging, see Managing and Deploying Artix

Solutions.

filename

filename sets the output stream to the specified local file. For example:

rolling_file

rolling_file is a boolean which specifies that the logging plugin is to use a

rolling file to prevent the local log from growing indefinitely. In this model,

the stream appends the current date to the configured filename. This

produces a complete filename—for example:

A new file begins with the first event of the day and ends at 23:59:59 each

day.

The default behavior is true . To disable rolling file behavior, set this variable

to false. For example:

plugins:local_log_stream:filename = "/var/adm/myloc al.log";

/var/adm/art.log.02171999

plugins:local_log_stream:rolling_file = "false";

plugins:naming

125

plugins:naming
The variables in this namespace configure the naming service plugin. The

naming service allows you to associate abstract names with CORBA objects,

enabling clients to locate your objects.

This namespace contains the following variables:

• destructive_methods_allowed

• direct_persistence

• iiop:port

• lb_default_initial_load

• lb_default_load_timeout

• nt_service_dependencies

destructive_methods_allowed

destructive_methods_allowed specifies if users can make destructive calls,

such as destroy() , on naming service elements. The default value is true ,

meaning the destructive methods are allowed.

direct_persistence

direct_persistence specifies if the service runs using direct or indirect

persistence. The default value is false , meaning indirect persistence.

iiop:port

iiop:port specifies the port that the service listens on when running using

direct persistence.

CHAPTER 5 | CORBA Plug-ins

 126

lb_default_initial_load

lb_default_initial_load specifies the default initial load value for a

member of an active object group. The load value is valid for a period of

time specified by the timeout assigned to that member. Defaults to 0.0 . For

more information, see the Orbix Administrator’s Guide.

lb_default_load_timeout

lb_default_load_timeout specifies the default load timeout value for a

member of an active object group. The default value of -1 indicates no

timeout. This means that the load value does not expire. For more

information, see the Orbix Administrator’s Guide.

nt_service_dependencies

nt_service_dependencies specifies the naming service’s dependencies on

other NT services. The dependencies are listed in the following format:

This variable only has meaning if the naming service is installed as an NT

service.

IT ORB-name domain-name

plugins:ots

127

plugins:ots
The variables in this namespace configure the object transaction service

(OTS) generic plugin. The generic OTS plugin contains client and server side

transaction interceptors and the implementation of

CosTransactions::Current . For details of this plugin, refer to the CORBA

OTS Guide.

The plugins:ots namespace contains the following variables:

• default_ots_policy

• default_transaction_policy

• default_transaction_timeout

• interposition_style

• jit_transactions

• ots_v11_policy

• propagate_separate_tid_optimization

• rollback_only_on_system_ex

• support_ots_v11

• transaction_factory_name

default_ots_policy

default_ots_policy specifies the default OTSPolicy value used when

creating a POA. Set to one of the following values:

requires
forbids
adapts

If no value is specified, no OTSPolicy is set for new POAs.

default_transaction_policy

default_transaction_policy specifies the default TransactionPolicy

value used when creating a POA.

Set to one of the following values:

CHAPTER 5 | CORBA Plug-ins

 128

• requires corresponds to a TransactionPolicy value of

Requires_shared .

• allows corresponds to a TransactionPolicy value of Allows_shared .

If no value is specified, no TransactionPolicy is set for new POAs.

default_transaction_timeout

default_transaction_timeout specifies the default timeout, in seconds, of

a transaction created using CosTransactions::Current . A value of zero or

less specifies no timeout. Defaults to 30 seconds.

interposition_style

interposition_style specifies the style of interposition used when a

transaction first visits a server. Set to one of the following values:

• standard : A new subordinator transaction is created locally and a

resource is registered with the superior coordinator. This subordinate

transaction is then made available through the Current object.

• proxy : (default) A locally constrained proxy for the imported

transaction is created and made available though the Current object.

Proxy interposition is more efficient, but if you need to further propagate the

transaction explicitly (using the Control object), standard interposition must

be specified.

jit_transactions

jit_transactions is a boolean which determines whether to use

just-in-time transaction creation. If set to true , transactions created using

Current::begin() are not actually created until necessary. This can be

used in conjunction with an OTSPolicy value of SERVER_SIDE to delay

creation of a transaction until an invocation is received in a server. Defaults

to false .

plugins:ots

129

ots_v11_policy

ots_v11_policy specifies the effective OTSPolicy value applied to objects

determined to support CosTransactions::TransactionalObject , if

support_ots_v11 is set to true .

Set to one of the following values:

• adapts

• requires

propagate_separate_tid_optimization

propagate_separate_tid_optimization specifies whether an optimization

is applied to transaction propagation when using C++ applications. Must

be set for both the sender and receiver to take affect. Defaults to true .

rollback_only_on_system_ex

rollback_only_on_system_ex specifies whether to mark a transaction for

rollback if an invocation on a transactional object results in a system

exception being raised. Defaults to true .

support_ots_v11

support_ots_v11 specifies whether there is support for the OMG OTS v1.1

CosTransactions::TransactionalObject interface. This option can be used

in conjunction with ots_v11_policy . When this option is enabled, the OTS

interceptors might need to use remote _is_a() calls to determine the type of

an interface. Defaults to false .

transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction

factory. This option must match the corresponding entry in the configuration

scope of your transaction service implementation. Defaults to

TransactionFactory .

CHAPTER 5 | CORBA Plug-ins

 130

plugins:ots_lite
The variables in this namespace configure the Lite implementation of the

object transaction service. The ots_lite plugin contains an implementation

of CosTransacitons::TransactionFactory which is optimized for use in a

single resource system. For details, see the CORBA Programmer’s Guide.

This namespace contains the following variables:

• orb_name

• otid_format_id

• superior_ping_timeout

• transaction_factory_name

• transaction_timeout_period

• use_internal_orb

orb_name

orb_name specifies the ORB name used for the plugin’s internal ORB when

use_internal_orb is set to true . The ORB name determines where the

ORB obtains its configuration information and is useful when the application

ORB configuration needs to be different from that of the internal ORB.

Defaults to the ORB name of the application ORB.

otid_format_id

otid_format_id specifies the value of the formatID field of a transaction’s

identifier (CosTransactions::otid_t). Defaults to 0x494f4e41 .

superior_ping_timeout

superior_ping_timeout specifies, in seconds, the timeout between queries

of the transaction state, when standard interposition is being used to

recreate a foreign transaction. The interposed resource periodically queries

the recovery coordinator, to ensure that the transaction is still alive when the

timeout of the superior transaction has expired. Defaults to 30.

plugins:ots_lite

131

transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction

factory. This option must match the corresponding entry in the configuration

scope of your generic OTS plugin to allow it to successfully resolve a

transaction factory. Defaults to TransactionFactory .

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of which

all transaction timeouts are multiples. A low value increases accuracy of

transaction timeouts, but increases overhead. This value is added to all

transaction timeouts. To disable all timeouts, set to 0 or a negative value.

Defaults to 1000 .

use_internal_orb

use_internal_orb specifies whether the ots_lite plugin creates an internal

ORB for its own use. By default, ots_lite creates POAs in the application’s

ORB. This option is useful if you want to isolate the transaction service from

your application ORB. Defaults to false .

CHAPTER 5 | CORBA Plug-ins

 132

plugins:ots_encina
The plugins:ots_encina namespace stores configuration variables for the

Encina OTS plugin. The ots_encina plugin contains an implementation of

IDL interface CosTransactions::TransactionFactory that supports the

recoverable 2PC protocol. For details, see the CORBA OTS Guide.

This namespace contains the following variables:

• agent_ior_file

• allow_registration_after_rollback_only

• backup_restart_file

• direct_persistence

• direct_persistence

• global_namespace_poa

• iiop:port

• initial_disk

• initial_disk_size

• log_threshold

• log_check_interval

• max_resource_failures

• namespace_poa

• orb_name

• otid_format_id

• resource_retry_timeout

• restart_file

• trace_comp

• trace_file

• trace_on

• transaction_factory_name

• transaction_factory_ns_name

• transaction_timeout_period

• use_internal_orb

• use_raw_disk

plugins:ots_encina

133

agent_ior_file

agent_ior_file specifies the file path where the management agent

object’s IOR is written. Defaults to an empty string.

allow_registration_after_rollback_only

allow_registration_after_rollback_only (C++ only) specifies whether

registration of resource objects is permitted after a transaction is marked for

rollback.

• true specifies that resource objects can be registered after a

transaction is marked for rollback.

• false (default) specifies that resource objects cannot be registered

once a transaction is marked for rollback.

This has no effect on the outcome of the transaction.

backup_restart_file

backup_restart_file specifies the path for the backup restart file used by

the Encina OTS to locate its transaction logs. If unspecified, the backup

restart file is the name of the primary restart file—set with restart_file —

with a .bak suffix. Defaults to an empty string.

direct_persistence

direct_persistence specifies whether the transaction factory object can

use explicit addressing—for example, a fixed port. If set to true , the

addressing information is picked up from plugins:ots_encina . For

example, to use a fixed port, set plugins_ots_encina:iiop:port . Defaults

to false .

CHAPTER 5 | CORBA Plug-ins

 134

global_namespace_poa

global_namespace_poa specifies the top-level transient POA used as a

namespace for OTS implementations. Defaults to iOTS.

iiop:port

iiop:port specifies the port that the service listens on when using direct

persistence.

initial_disk

initial_disk specifies the path for the initial file used by the Encina OTS

for its transaction logs. Defaults to an empty string.

initial_disk_size

initial_disk_size specifies the size of the initial file used by the Encina

OTS for its transaction logs. Defaults to 2.

log_threshold

log_threshold specifies the percentage of transaction log space, which,

when exceeded, results in a management event. Must be between 0 and

100. Defaults to 90.

log_check_interval

log_check_interval specifies the time, in seconds, between checks for

transaction log growth. Defaults to 60.

plugins:ots_encina

135

max_resource_failures

max_resource_failures specifies the maximum number of failed

invocations on CosTransaction::Resource objects to record. Defaults to 5.

namespace_poa

namespace_poa specifies the transient POA used as a namespace. This is

useful when there are multiple instances of the plugin being used; each

instance must use a different namespace POA to distinguish itself. Defaults

to Encina .

orb_name

orb_name specifies the ORB name used for the plugin’s internal ORB when

use_internal_orb is set to true . The ORB name determines where the

ORB obtains its configuration information, and is useful when the

application ORB configuration needs to be different from that of the internal

ORB. Defaults to the ORB name of the application ORB.

otid_format_id

otis_format_id specifies the value of the formatID field of a transaction’s

identifier (CosTransactions::otid_t) . Defaults to 0x494f4e41 .

resource_retry_timeout

resource_retry_timeout specifies the time, in seconds, between retrying a

failed invocation on a resource object. A negative value means the default is

used. Defaults to 5.

restart_file

restart_file specifies the path for the restart file used by the Encina OTS

to locate its transaction logs. Defaults to an empty string.

CHAPTER 5 | CORBA Plug-ins

 136

trace_comp

trace_ comp sets the Encina trace levels for the component comp, where comp

is one of the following:

bde
log
restart
tran
tranLog_log
tranLog_tran
util
vol

Set this variable to a bracket-enclosed list that includes one or more of the

following string values:

• event : interesting events.

• entry : entry to a function.

• param : parameters to a function.

• internal_entry : entry to internal functions.

• internal_param : parameters to internal functions.

• global .

Defaults to [] .

trace_file

trace_file specifies the file to which Encina level tracing is written when

enabled via trace_on . If not set or set to an empty string, Encina level

transactions are written to standard error. Defaults to an empty string.

trace_on

trace_on specifies whether Encina level tracing is enabled. If set to true ,

the information that is output is determined from the trace levels (see

trace_comp). Defaults to false .

plugins:ots_encina

137

transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction

factory. This option must match the corresponding entry in the configuration

scope of your generic OTS plugin to allow it to successfully resolve a

transaction factory. Defaults to TransactionFactory .

transaction_factory_ns_name

transaction_factory_ns_name specifies the name used to publish the

transaction factory reference in the naming service. Defaults to an empty

string.

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of which

all transaction timeouts are multiples. A low value increases accuracy of

transaction timeouts, but increases overhead. This value multiplied to all

transaction timeouts. To disable all timeouts, set to 0 or a negative value.

Defaults to 1000 .

use_internal_orb

use_internal_orb specifies whether the ots_encina plugin creates an

internal ORB for its own use. By default the ots_encina plugin creates

POA’s in the application’s ORB. This option is useful if you want to isolate

the transaction service from your application ORB. Defaults to false .

use_raw_disk

use_raw_disk specifies whether the path specified by initial_disk is of a

raw disk (true) or a file (false). If set to false and the file does not exist,

the Encina OTS plugin tries to create the file with the size specified in

initial_disk_size . Defaults to false .

CHAPTER 5 | CORBA Plug-ins

 138

plugins:poa
This namespace contains variables to configure the CORBA POA plugin. It

contains the following variables:

• root_name

root_name

root_name specifies the name of the root POA, which is added to all

fully-qualified POA names generated by that POA. If this variable is not set,

the POA treats the root as an anonymous root, effectively acting as the root

of the location domain.

plugins:pss

139

plugins:pss
For C++ applications, the plugins:pss namespace stores configuration

variables for the persistent state service (PSS) plugin. PSS is a CORBA

service for building CORBA servers that access persistent data.

The following variables are contained in this namespace:

• disable_caching

For more details of this service, refer to the CORBA Programmer’s Guide.

disable_caching

disable_caching specifies whether caching is disabled. When set to true ,

PSS does not perform any caching. This is useful for testing, and causes

core dumps in code that does not manage PSS objects correctly. Defaults to

false .

CHAPTER 5 | CORBA Plug-ins

 140

plugins:pss_db:envs:env-name
For C++ applications, the plugins:pss_db:envs: env-name namespace

contains variables for the persistent state service (PSS) database plugin,

where env-name represents the environment name. For example,

it_locator represents persistent storage for the locator daemon. For details

on this service, refer to the CORBA Programmer’s Guide.

The following variables are contained in this namespace:

• checkpoint_period

• checkpoint_archives_old_logs

• checkpoint_deletes_old_logs

• checkpoint_min_size

• concurrent_users

• create_dirs

• data_dir

• db_home

• deadlock_detector_aborts

• init_txn

• lg_bsize

• lg_max

• lk_max

• log_dir

• old_log_dir

• private

• pull_period

• push_all_updates

• push_update_period

• replication_model

• recover_fatal

• run_deadlock_detector

• tmp_dir

• tx_max

plugins:pss_db:envs:env-name

141

• verb_all

• verb_chkpoint

• verb_deadlock

• verb_recovery

• verb_waitsfor

checkpoint_period

checkpoint_period is used in TX mode only, and specifies, in minutes, the

transaction-log checkpoint period. Defaults to 15.

checkpoint_archives_old_logs

checkpoint_archives_old_logs specifies whether PSS archives old log files

in the old_logs directory. To archive old log files, set this variable to true .

Defaults to false .

checkpoint_deletes_old_logs

checkpoint_deletes_old_logs is used in TX mode only, and specifies

whether PSS deletes old log files after each checkpoint. When false , PSS

moves old log files to the old_logs directory. Defaults to true .

checkpoint_min_size

checkpoint_min_size is used in TX mode only, and specifies the minimum

checkpoint size. If less than the checkpoint_min_size of data is written to

the log since the last checkpoint, do not checkpoint. Defaults to 0.

concurrent_users

concurrent_users specifies the number of threads expected to use this

environment at the same time. Defaults to 20.

CHAPTER 5 | CORBA Plug-ins

 142

create_dirs

create_dirs specifies whether the db_home, log and tmp directories are to

be created, if they do not exist. Defaults to false .

data_dir

data_dirs specifies the directory where the data files are stored; relative

paths are relative to db_home. The directory must be on a local file system.

Defaults to data .

db_home

db_home specifies the home directory of the Berkeley DB database. For

example, in Orbix, plugins:pss_db:envs:it_locator:db_home specifies the

home directory for the locator daemon.

deadlock_detector_aborts

deadlock_detector_aborts specifies when the deadlock detector aborts,

when the value of run_deadlock_detector is set to true . Set this variable

to:

• default

• youngest

• oldest

• random

init_txn

init_txn specifies whether to use transactions to access this database.

Defaults to false .

plugins:pss_db:envs:env-name

143

log_dir

log_dir specifies the directory where the log files are stored; relative paths

are relative to db_home. The directory must be on a local file system. For

maximum performance and reliability, place data files and log files on

separate disks, managed by different disk controllers. Defaults to logs .

lg_bsize

lg_bsize specifies the size of the in-memory log buffer for the env-name PSS

database environment in bytes. By default, or if the value is set to 0, a size

of 32 K is used. The size of the log file must be at least four times the size of

the the in-memory log buffer (see lg_max).

Log information is stored in-memory until the storage space fills up or until a

transaction commit forces the information to be flushed to stable storage. In

the presence of long-running transactions or transactions producing large

amounts of data, larger buffer sizes can increase throughput.

lg_max

lg_max specifies the maximum size of a transaction log file. This

configuration setting is measured in bytes.

By default, or if lg_max is set to 0, a size of 10 MB is used. The size of the

log file must be at least four times the size of the in-memory log buffer (see

lg_bsize).

lk_max

lq_max specifies the maximum number of locks available to the Berkeley DB

The default is 1000 .

For example, you may need to increase this value if you have loaded a large

number of IDL interfaces into the interface repository, and then try to

destroy the contents of the IFR, using itadmin ifr destroy_contents .

CHAPTER 5 | CORBA Plug-ins

 144

This example setting prevents the IFR from crashing with the following entry

in the IFR log file:

old_log_dir

old_log_dir is used in TX mode only, and specifies the directory where the

old logs are moved, when checkpoint_deletes_old_logs is false . Defaults

to old_logs .

private

private specifies whether only one process is permitted to use this

environment. Set to false when you want to obtain statistics on your

database with db_stat . Defaults to true .

pull_period

pull_period specifies the interval, in minutes, between pull attempts by a

replica. Defaults to 10.

push_all_updates

push_all_updates specifies if a master server will push all updates to its

registered push replicas as the changes occur. Defaults to false .

iona_services {
 ...
 ifr {
 ...
 plugins:pss_db:envs:ifr_store:lk_max = "10000 ";
 };
 };

ERROR: DB del failed; env is ifr_store, db is
IRObjectPSHomeImpl:1.0, errno is 12 (Not enough spa ce)

plugins:pss_db:envs:env-name

145

push_update_period

push_update_period specifies the interval, in seconds, between a master

pushing updates to its registered replicas.

replication_model

replication_model specifies how a replica receives updates from the

master server. The two models are push and pull . Defaults to pull .

recover_fatal

recover_fatal specifies whether to performa fatal recovery instead of a

normal recovery. Defaults to false .

run_deadlock_detector

run_deadlock_detector is used in TX mode only, and specifies whether the

deadlock detector checks if there is a deadlock, each time a lock conflict

occurs. Defaults to true .

tmp_dir

tmp_dir specifies the directory for temporary files. The directory must be on

a local file system. Defaults to tmp.

tx_max

tx_max is used in TX mode only, and specifies the maximum number of

concurrent transactions. Defaults to 20.

CHAPTER 5 | CORBA Plug-ins

 146

verb_all

verb_all specifies whether to send verbose diagnostics about any event to

the event log. Defaults to false .

verb_chkpoint

verb_checkpoint specifies whether verbose diagnostics about

checkpointing are sent to the event log. Defaults to false .

verb_deadlock

verb_deadlock specifies whether to send verbose diagnostics about

deadlock detection to the event log. Defaults to false .

verb_recovery

verb_recovery specifies whether to send verbose diagnostics about

recovery to the event log. Defaults to false .

verb_waitsfor

verb_waitsfor specifies whether to send verbose diagnostics about lock

waits to the event log. Defaults to false .

plugins:pss_db:envs:env-name:dbs:storage-home-type-id

147

plugins:pss_db:envs:env-name:dbs:storage-h
ome-type-id

Variables in plugins:pss_db:envs: env-name:dbs: storage-home-type-id

act on the specified storage home—for example, BankDemoStore/Bank:1.0 .

The following variables are contained in this namespace:

• file_name

• create_file

• truncate_file

• file_mode

• btree

• rdonly

• bt_minkey

• cachesize_bytes

• cachesize_gbytes

• h_factor

• h_nelem

• pagesize

file_name

file_name specifies a database file that can be shared by several storage

home families.

If not specified, the storage home family is stored in its own database file.

The name of this file is storage-home-type-id, with the following

characters replaced with an underscore (_): forward slash and backslash (/

\), colon (:), and period (.). If specified, the string value must not contain

any of the same characters.

CHAPTER 5 | CORBA Plug-ins

 148

create_file

create_file specifies whether to create the file for this storage home

family, if it does not already exist. Defaults to true .

truncate_file

truncate_file specifies whether to truncate this storage home family's file.

Defaults to false .

file_mode

file_mode specifies the file mode on UNIX platforms. Defaults to 0.

btree

btree specifies whether a binary tree or a hash map is used. Defaults to

true .

rdonly

rdonly specifies whether this storage home is family read-only. Defaults to

false .

bt_minkey

bt_minkey specifies the minimum number of keys per binary tree page.

cachesize_bytes

cachesize_bytes specifies the database cache size in bytes. Defaults to 0.

plugins:pss_db:envs:env-name:dbs:storage-home-type-id

149

cachesize_gbytes

cachesize_gbytes specifies the database cache size in gigabytes. Defaults

to 0.

h_factor

h_factor specifies the hash table density.

h_nelem

h_nelem specifies the maximum number of elements in the hash table.

pagesize

pagesize specifies the database page size. Defaults to 0.

CHAPTER 5 | CORBA Plug-ins

 150

plugins:shmiop
The variables in this namespace configure the behavior of the shared

memory plugin. It contains the following variables:

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

incoming_connections:hard_limit

incoming_connections:hard_limit specifies the maximum number of

incoming (server-side) connections permitted to SHMIOP. SHMIOP does not

accept new connections above this limit. Defaults to -1 (disabled).

incoming_connections:soft_limit

incoming_connections:soft_limit specifies the number of connections at

which SHMIOP begins closing incoming (server-side) connections. Defaults

to -1 (disabled).

outgoing_connections:hard_limit

outgoing_connections:hard_limit specifies the maximum number of

outgoing (client-side) connections permitted to the SHMIOP. SHMIOP does

not allow new outgoing connections above this limit. Defaults to -1

(disabled).

outgoing_connections:soft_limit

outgoing_connections:soft_limit specifies the number of connections at

which SHMIOP begins closing outgoing (client-side) connections. Defaults

to -1 (disabled).

plugins:shmiop

151

CHAPTER 5 | CORBA Plug-ins

 152

153

Index
A
active connection management

IIOP 120
SHMIOP 150

Adaptive Runtime architecture 2
agent_ior_file 133
allow_registration_after_rollback_only 133
Apache Log4J, configuration 31
ART 2
artix:endpoint 42
artix:endpoint:endpoint_list 42, 45
artix:endpoint:endpoint_name:port_name 43
artix:endpoint:endpoint_name:service_name 43
artix:endpoint:endpoint_name:service_namespace 4

3
artix:endpoint:endpoint_name:wsdl_location 42

B
backup_restart_file 133
Baltimore toolkit

selecting for C++ applications 55
binding

client_binding_list 15
server_binding_list 16

binding:artix:client_message_interceptor_list 17
binding:artix:client_request_interceptor_list 18
binding:artix:server_message_interceptor_list 18
binding:artix:server_request_interceptor_list 18
buffer 143
bus_response_monitor 13

C
canonical 47
CertConstraintsPolicy 53
CertConstraintsPolicy policy 53
certificate_constraints_policy variable 53
Certificates

constraints 53
certificates

CertConstraintsPolicy policy 53
constraint language 53

checkpoint_archives_old_logs 141

checkpoint_deletes_old_logs 141
checkpoint_interval 141
checkpoint_min_size 141
checkpoints

log for PSS 146
client_binding_list 110
client-id 30
client_version_policy

IIOP 93
concurrent_transaction_map_size 127
concurrent_users 141
configuration

data type 6
domain 2
namespace 5
scope 2
variables 5

connection_attempts 93
constraint language 53
Constraints

for certificates 53
constructed types 6
create_dirs 142
create_transaction_mbeans 133

D
data_dir 142
db_home 142
deadlock detector 145

abort 142
PSS log 146

deadlock_detector_aborts 142
default_ots_policy 127
default_transaction_policy 127
default_transaction_timeout 128
direct_persistence 133

naming service 125
OTS Encina 133

Dynamic 35
dynamic proxies 35

INDEX

 154

E
event_log:filters 19

F
filename 124

G
giop 11
global_namespace_poa 134

H
hard_limit

IIOP 120, 121
SHMIOP 150

high_water_mark 22
http:server_address_mode_policy:publish_hostname

14

I
iiop 11
IIOP plug-in configuration

hard connection limit
client 121
server 120

soft connection limit
client 121
server 120

IIOP plugin configuration 119
IIOP policies 91

client version 93
connection attempts 93
export hostnames 97
export IP addresses 97
GIOP version in profiles 97
server hostname 96
TCP options

delay connections 98
receive buffer size 99

IIOP policy
ports 96

iiop_profile 11
include statement 7
initial_disk 134
initial_disk_size 134
initial references

Encina transaction factory 137
OTS lite transaction factory 131

OTS transaction factory 129
initial_threads 20
init_txn 142
in-memory log buffer 143
interceptors 15

client request-level 15
interposition_style 128
ip:receive_buffer_size 114, 120
ip:send_buffer_size 114, 120
ipaddress 47
itadmin ifr destroy_contents 143
IT_Bus::init() 4

J
Java plug-ins

loading 10
java_plugins 11
JCE architecture

enabling 59
jit_transactions 128
JMS transport plug-in 10

L
lb_default_initial_load 126
lb_default_load_timeout 126
local_hostname 96
local_log_stream plugin configuration 124
lock waits, log for PSS 146
Log4J, configuration 31
log buffer 143
log_check_interval 134
log_dir

PSS 143
log file, size 143
logging configuration

set filters for subsystems 19
logstream configuration

output stream 124
output to local file 124
output to rolling file 124

log_threshold 134
lq_max 143

M
max_resource_failures 135
multi-homed hosts, configure support for 96

INDEX

155

N
namespace

event_log 19
plugins:atli2_shm 109
plugins:codeset 111
plugins:csi 60
plugins:egmiop 114
plugins:event 116
plugins:file_security_domain 123
plugins:gsp 61
plugins:http 119
plugins:https 119
plugins:iiop 119
plugins:ots_mgmt 138
plugins:poa 138
plugins:pss 139
plugins:shmiop 150
policies 81
policies:csi 88
policies:iiop_tls 90
principal_sponsor:csi 104
principle_sponsor 100

namespace_poa 135
naming service configuration 125

default initial load value 126
default load value timeout 126
NT service dependencies 126

no_delay 98
nt_service_dependencies 126

O
old_log_dir

PSS 144
orb_name

OTS Encina 135
OTS Lite 130

-ORBname parameter 4
orb_plugins 10
otid_format_id

OTS Encina 135
OTS Lite 130

OTS configuration 127
default timeout 128
hash table size 127
initial reference for factory 129
initial reference for transaction factory 129
interposition style 128
JIT transaction creation 128

optimize transaction propagation 129
OTSPolicy default value 127
roll back transactions 129
TransactionPolicy default 127
transaction timeout default 128

OTS Encina configuration 132
backup restart file 133
direct persistence 133
initial log file 134
internal ORB usage 137
log file growth checks 134
log file size 134
log file threshold 134
logging configuration 136
log resource failures 135
management agent IOR 133
ORB name 135
OTS management object creation 133
POA namespace 135
raw disk usage 137
registration after rollback 133
restart file 135
retry timeout 135
transaction factory initial reference 137
transaction factory name 137
transaction ID 135
transaction timeout 137

OTS Lite configuration 130
internal ORB 131
ORB name 130
transaction ID 130
transaction timeout 131

ots_v11_policy 129

P
plug-ins

specify in configuration 107
plugins

corba 12
fixed 12
fml 12
G2 12
http 11
it_response_time_collector

log_properties 31
java 12
locator_endpoint 13
mq 12
routing 13

INDEX

 156

service_locator 13
session_endpoint_manager 13
session_manager_service 13
sm_simple_policy 13
soap 12
tagged 12
tibrv 12
tunnel 11
tuxedo 11
wsdl_publish 13
ws_orb 12
xslt 13

plugins:asp:security_level 58
plugins:atli2_shm:max_buffer_wait_time 109
plugins:atli2_shm:shared_memory_segment 110
plugins:atli2_shm:shared_memory_segment_basena

me 109
plugins:atli2_shm:shared_memory_size 110
plugins:chain:endpoint_name:operation_list 45
plugins:chain:endpoint_name:operation_name:servic

e_chain 46
plugins:chain:servant_list 45
plugins:codeset:always_use_default 113
plugins:codeset:char:ccs 112
plugins:codeset:char:ncs 111
plugins:codeset:wchar:ncs 112
plugins:codesets:wchar:ccs 113
plugins:csi:ClassName 60
plugins:csi:shlib_name 60
plugins:file_security_domain 123
plugins:giop:message_server_binding_list 116
plugins:giop_snoop:filename 117
plugins:giop_snoop:rolling_file 117
plugins:giop_snoop:shlib_name 118
plugins:giop_snoop:verbosity 118
plugins:gsp:authorization_realm 62
plugins:gsp:ClassName 63
plugins:iiop:connection

max_unsent_data 119
plugins:iiop:incoming_connections:hard_limit 120
plugins:iiop:incoming_connections:soft_limit 120
plugins:iiop:ip:receive_buffer_size 120
plugins:iiop:ip:reuse_addr 120
plugins:iiop:ip:send_buffer_size 120
plugins:iiop:outgoing_connections:hard_limit 121
plugins:iiop:outgoing_connections:soft_limit 121
plugins:iiop:pool:max_threads 121
plugins:iiop:pool:min_threads 121
plugins:iiop:tcp_connection:keep_alive 121

plugins:iiop:tcp_connection:linger_on_close 122
plugins:iiop:tcp_connection:no_delay 122
plugins:iiop:tcp_connection:no_deplay 122
plugins:iiop:tcp_connection€ inger_on_close 122
plugins:iiop:tcp_listener:reincarnate_attempts 72,

122
plugins:iiop:tcp_listener:reincarnation_retry_backoff_

ratio 72, 122, 123
plugins:iiop:tcp_listener:reincarnation_retry_delay 7

2, 122, 123
plugins:iiop_tls:hfs_keyring_file_password 94
plugins:iiop_tls:tcp_listener:reincarnation_retry_back

off_ratio 72
plugins:iiop_tls:tcp_listener:reincarnation_retry_dela

y 72
plugins:it_response_time_collector:client-id 30
plugins:it_response_time_collector:filename 30
plugins:it_response_time_collector:period 31
plugins:it_response_time_collector:server-id 30, 31,

32
plugins:it_response_time_collector:syslog_appID 32
plugins:it_response_time_collector:system_logging_e

nabled 32
plugins:locator:peer_timeout 27, 28
plugins:locator:service_url 27
plugins:locator:wsdl_url 28
plugins:naming:destructive_methods_allowed 125
plugins:naming:direct_persitence 125
plugins:naming:iiop:port 125
plugins:notify_log 127
plugins:ots_encina:iiop:port 134
plugins:peer_manager:timeout_delta 29
plugins:peer_manager:wsdl_url 29
plugins:poa:ClassName 138
plugins:poa:root_name 138
plugins:pss:disable_caching 139
plugins:pss_db:envs:env-name:lg_bsize 143
plugins:pss_db:envs:env-name:lg_max 143
plugins:pss_db:envs:ifr_store:lk_max 144
plugins:routing:use_pass_through 34
plugins:routing:wsdl_url 33
plugins:service_lifecycle:max_cache_size 35
plugins:session_endpoint_manager:default_group 3

8
plugins:session_endpoint_manager:endpoint_manag

er_url 38
plugins:session_endpoint_manager:header_validatio

n 39
plugins:session_endpoint_manager:peer_timout 39

INDEX

157

plugins:session_endpoint_manager:wsdl_url 38
plugins:session_manager_service:peer_timeout 37
plugins:session_manager_service:service_url 37
plugins:shmiop:incoming_connections:hard_limit 1

50
plugins:shmiop:incoming_connections:soft_limit 15

0
plugins:shmiop:outgoing_connections:hard_limit 15

0
plugins:shmiop:outgoing_connections:soft_limit 15

0
plugins:sm_simple_policy:max_concurrent_sessions

40
plugins:sm_simple_policy:max_session_timeout 40
plugins:sm_simple_policy:min_session_timeout 40
plugins:soap:encoding 41
plugins:tuxedo:server 44
plugins:wsdl_publish:hostname 47
plugins:wsdl_publish:publish_port 47
plugins:xslt:endpoint_name:operation_map 43
plugins:xslt:servant_list 43
POA

plugin class name 138
root name 138

polices:max_chain_length_policy 83
policies

CertConstraintsPolicy 53
policies:allow_unauthenticated_clients_policy 81
policies:certificate_constraints_policy 82
policies:csi:attribute_service:client_supports 88
policies:csi:attribute_service:target_supports 89
policies:csi:auth_over_transpor:target_supports 90
policies:csi:auth_over_transport:client_supports 89
policies:csi:auth_over_transport:target_requires 90
policies:iiop_tls:allow_unauthenticated_clients_polic

y 92
policies:iiop_tls:certificate_constraints_policy 92
policies:iiop_tls:client_secure_invocation_policy:requ

ires 93
policies:iiop_tls:client_secure_invocation_policy:sup

ports 93
policies:iiop_tls:client_version_policy 93
policies:iiop_tls:connection_attempts 93
policies:iiop_tls:connection_retry_delay 94
policies:iiop_tls:max_chain_length_policy 94
policies:iiop_tls:mechanism_policy:ciphersuites 94
policies:iiop_tls:mechanism_policy:protocol_version

95
policies:iiop_tls:server_address_mode_policy:local_h

ostname 96
policies:iiop_tls:server_address_mode_policy:port_ra

nge 96
policies:iiop_tls:server_address_mode_policy:publish

_hostname 97
policies:iiop_tls:server_version_policy 97
policies:iiop_tls:session_caching_policy 97
policies:iiop_tls:target_secure_invocation_policy:req

uires 98
policies:iiop_tls:target_secure_invocation_policy:sup

ports 98
policies:iiop_tls:tcp_options:send_buffer_size 99
policies:iiop_tls:tcp_options_policy:no_delay 98
policies:iiop_tls:tcp_options_policy:recv_buffer_size

99
policies:iiop_tls:trusted_ca_list_policy 99
policies:mechanism_policy:ciphersuites 83
policies:mechanism_policy:protocol_version 84
policies:session_caching_policy 84, 85
policies:target_secure_invocation_policy:requires 85
policies:target_secure_invocation_policy:supports 8

5
policies:trusted_ca_list_policy 86
pool:java_max_threads 121
pool:java_min_threads 114
pool:max_threads 114, 121
pool:min_threads 115, 121
primitive types 6
principal_sponsor:csi:auth_method_data 105
principal_sponsor:csi:use_principal_sponsor 104
principal_sponsor Namespace Variables 100
principle_sponsor:auth_method_data 101
principle_sponsor:auth_method_id 101
principle_sponsor:callback_handler:ClassName 103
principle_sponsor:login_attempts 103
principle_sponsor:use_principle_sponsor 100
private

PSS 144
propagate_separate_tid_optimization 129
proxies 35
proxy interposition 128
PSS configuration 139

Berkeley DB database home directory 142
caching 139
checkpoint interval 141
checkpoint size minimum 141
database file name 147
data storage directory 142
deadlock detector 145

INDEX

 158

abort 142
directory creation 142
fatal recovery 145
logging

all events 146
archive old files 141
checkpoints 146
deadlock detection 146
delete old files 141
lock waits 146
log file directory 143
old log file directory 144
recovery 146

maximum concurrent PSS transactions 145
storage home configuration 147

See also storage home configuration
temporary files directory 145
thread usage 141
transaction usage 142
verbosity 146

publish_hostname 97

Q
QNames 17

R
recover_fatal 145
recovery

log for PSS 146
recv_buffer_size 99
resource_retry_timeout 135
restart_file 135
rollback_only_on_system_ex 129
rolling_file 124
router 35
run_deadlock_detector 145

S
Schannel toolkit

selecting for C++ applications 55
server ID, configuring 31
server_version_policy

IIOP 97
service_lifecycle 13
shared 110
SHMIOP plug-in configuration

hard connection limit
client 150

server 150
soft connection limit

client 150
server 150

SHMIOP plugin configuration 150
soap:server_address_mode_policy:publish_hostnam

e 14
soft_limit

IIOP 120, 121
SHMIOP 150

SO_REUSEADDR 120
SSL/TLS

selecting a toolkit, C++ 55
standard interposition 128
storage home configuration

binary tree keys 148
binary tree usage 148
cache size 148
database cache size 149
file creation 148
file mode 148
file name 147
hash table density 149
hash table size 149
page size 149
read only 148
truncate file 148

superior_ping_timeout 130
support_ots_v11 129

T
TCP policies

delay connections 98
receive buffer size 99

thread_pool:high_water_mark 22
thread_pool:initial_threads 20
thread pool policies 20

initial number of threads 20
maximum threads 22

throughput, increasing 143
tmp_dir

PSS 145
toolkit replaceability

enabling JCE architecture 59
selecting the toolkit, C++ 55

trace_file 136
trace_on 136
transaction factory, initial reference 129
transaction_factory_name

INDEX

159

OTS 129
OTS Encina 137
OTS Lite 131

transaction_factory_ns_name 137
TransactionPolicy, configure default value 127
transactions

checkpoint size minimum 141
log file archiving 141
log file deletion 141
maximum concurrent in PSS 145
usage against database 142

transaction_timeout_period
OTS Encina 137
OTS Lite 131

U
unqualified 47
use_internal_orb 131, 137
use_jsse_tk configuration variable 59
use_raw_disk 137

V
verb_all 146
verb_chkpoint 146
verb_deadlock 146
verb_recovery 146
verb_waitsfor 146

W
ws_chain 13

X
xmlfile_log_stream 13

INDEX

 160

	Preface
	Introduction
	Artix Configuration Concepts
	Configuration Data Types
	Artix Configuration Files

	Artix Runtime Configuration
	ORB Plug-ins
	Policies
	Binding Lists
	Binding Lists for Custom Interceptors
	Event Log
	Thread Pool Control
	Custom Plug-in Configuration

	Artix Plug-in Configuration
	Locator Service
	Locator Service Endpoint
	Peer Manager
	Response Time Collector
	Routing Plug-in
	Service Lifecycle
	Session Manager
	Session Manager Endpoint
	Session Manager Simple Policy
	SOAP Plug-in
	Transformer Service
	Tuxedo Plug-in
	Web Service Chain Service
	WSDL Publishing Service
	XML File Log Stream

	Artix Security
	Applying Constraints to Certificates
	initial_references
	plugins:asp
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:http
	plugins:iiop_tls
	plugins:is2_authorization
	plugins:kdm
	plugins:kdm_adm
	plugins:login_client
	plugins:login_service
	plugins:schannel
	plugins:security
	policies
	policies:asp
	policies:csi
	policies:iiop_tls
	principal_sponsor
	principal_sponsor:csi

	CORBA Plug-ins
	plugins:atli2_shm
	plugins:codeset
	plugins:egmiop
	plugins:giop
	plugins:giop_snoop
	plugins:iiop
	plugins:local_log_stream
	plugins:naming
	plugins:ots
	plugins:ots_lite
	plugins:ots_encina
	plugins:poa
	plugins:pss
	plugins:pss_db:envs:env-name
	plugins:pss_db:envs:env-name:dbs:storage-h ome-type-id
	plugins:shmiop

	Index

