IONA

>3 Artix™

Designing Artix Solutions
Version 2.1, July 2004

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

IONA Technologies PLC and/or its subsidiaries make no warranty of any kind to this material, including, but not
limited to, the implied warranties of merchantability, title, non-infringement and fitness for a particular purpose.
IONA Technologies PLC and/or its subsidiaries shall not be liable for errors contained herein, or for exemplary,
incidental, special, pecuniary or consequential damages (including, but not limited to, damages for business
interruption, loss of profits, or loss of data) in connection with the furnishing, performance or use of this mate-
rial.

COPYRIGHT NOTICE

No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 25-Mar-2005

M3208

Contents

List of Figures
List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
Finding Your Way Around the Library
Additional Resources for Help
Document Conventions

Part | Using Artix Designer

Chapter 1 Introduction to Artix
Overview
Using Artix for the first time
Working in Deployer Mode
Working in Editor Mode
Setting user preferences
WSDL Basics

Chapter 2 Creating an Artix Workspace
What is a Workspace?
Creating a Workspace using a Wizard
Creating a Workspace using a Template
Working with Custom Templates

Chapter 3 Working with Artix Collections
What is a Collection?
Creating a Collection

Xi

xvii

Xix
Xix
Xix
Xix
XXi

XXii

XXiii

CONTENTS

Editing a Collection 42
Generating Code for a Collection 45
Chapter 4 Working with Artix Resources 47
What are Resources? 48
Navigating Resources 49
What is a Contract? 53
What is a Schema? 56
Creating New Resources 57
Creating a Contract 58
Adding Types 60
Adding Messages 73
Adding Port Types 77
Adding Access Control Lists 83
Creating Resources from a File/URL 86
Creating Contracts from Data Sets 93
Creating an XSD Schema 105
Editing Resources 107
Editing Types 108
Editing Messages 110
Editing Port Types 112
Chapter 5 Adding Bindings 115
What is a Binding? 116
Adding a CORBA Binding 119
Adding a CORBA Binding, Service, and Port at the Same Time 122
Adding a Fixed Binding 123
Adding a SOAP Binding 126
Adding a SOAP Binding, Service, and Port at the Same Time 130
Adding an XML Binding 132
Adding a Tagged Binding 135
Editing Bindings 138
Chapter 6 Adding Services 139
Introduction 140
Adding a CORBA Port 143
Adding a CORBA Binding, Service, and Port at the Same Time 145

Adding an HTTP Port 146

Adding a WebSphere MQ Port
Adding a Tuxedo Port
Adding a Java Message Service Port
Adding an IIOP Tunnel Port
Adding a SOAP Port
Adding a SOAP Binding, Service, and Port at the Same Time
Editing Services

Chapter 7 Routing Messages
What is a Route?
Creating a Route
Editing a Route

Chapter 8 Deployment
Deployment Explained
Creating a Deployment Profile
Editing a Deployment Profile
Creating a Deployment Bundle
Editing a Deployment Bundle
Generating Code

Part Il Using Artix Command Line Tools

Chapter 9 Designing Artix Solutions from the Command Line

Artix and WSDL
Creating an Artix Contract
Beyond the Contract

Chapter 10 Defining Data Types
Specifying a Type System in a Contract
XMLSchema Simple Types
Defining Complex Data Types

Defining Data Structures
Defining Arrays

Defining Types by Restriction
Defining Enumerated Types

CONTENTS

149
151
154
156
159
163
165

167
168
169
175

177
178
179
183
185
190
192

197
198
200
201

203
205
206
208
209
212
214
216

CONTENTS

Chapter 11 Defining Messages 219
Chapter 12 Defining Your Interfaces 223
Chapter 13 Binding Interfaces to a Payload Format 227
Adding a SOAP Binding 229
Adding a Default SOAP Binding 230

Adding SOAP Headers to a SOAP Binding 233

Sending Data Using SOAP with Attachments 239

Adding a CORBA Binding 243
Adding an FML Binding 248
Adding a Fixed Binding 253
Adding a Tagged Binding 269
Adding a TibMsg Binding 280
Adding a Pure XML Binding 284
Adding a G2+ + Binding 289
Chapter 14 Adding Transports 297
Defining a Service 298
Creating an HTTP Service 300
Specifying the Service Address 301

Configuring HTTP Transport Attributes 303

Creating a CORBA Service 319
Configuring an Artix CORBA Port 320

Generating CORBA IDL 323

Creating an IIOP Service 324
Creating a WebSphere MQ Service 327
Creating a Java Messaging System Service 329
Adding a TIBCO Service 333
Creating a Tuxedo Service 335
Chapter 15 Creating Artix Contracts from Existing Applications 337
Creating Artix Contracts from CORBA IDL 338
Creating Contracts from Java Classes 345
Creating Contracts from COBOL Copybooks 354

Chapter 16 Adding Routing Instructions 357

vi

Artix Routing
Compatibility of Ports and Operations
Defining Routes in Artix Contracts
Using Port-Based Routing
Using Operation-Based Routing
Advanced Routing Features
Error Handling
Service Lifecycles
Routing References to Transient Servants

Chapter 17 Using the Artix Transformer to Solve Problems in Artix

Using the Artix Transformer as an Artix Server
Using Artix to Facilitate Interface Versioning
WSDL Messages and the Transformer
Writing XSLT Scripts

Elements of an XSLT Script

XSLT Templates

Common XSLT Functions

Part [Il Appendecies

Appendix A Use Case Examples
Create a Web Service Client Using a Template
Create a Web Service Server Using a Wizard
Expose a CORBA Server as a Web Service

Appendix B Command Line Use Case Examples
Create a C++ Web Service Client from a WSDL Contract
Creating a C++ SOAP/HTTP Web Service from IDL

Appendix C SOAP Binding Extensions
soap:binding element
soap:operation element
soap:body element
soap:header element
soap:fault element

CONTENTS

358
359
362
363
366
369
374
375
377

381
382
384
389
392
393
395
401

405
406
410
416

421
422
423

427
428
430
431
435
437

vii

CONTENTS

Appendix D CORBA Type Mapping

Appendix E WebSphere MQ Artix Extensions

viii

soap:address element

Primitive Type Mapping
Complex Type Mapping
Structures
Enumerations
Fixed
Unions
Type Renaming
Arrays
Multidimensional Arrays
Sequences
Exceptions
Recursive Type Mapping

Mapping XMLSchema Features that are not Native to IDL

Binary Types

Attributes

Nested Choices

Inheritance

Nillable

Optional Attributes
Artix References

QueueManager
QueueName
ReplyQueueName
ReplyQueueManager
Server_Client
ModelQueueName
AliasQueueName
ConnectionName
ConnectionReusable
ConnectionFastPath
UsageStyle
CorrelationStyle
AccessMode

439

441
443
446
447
449
450
452
455
456
458
459
461
463
465
466
467
469
471
474
476
478

485
488
489
490
491
492
493
494
496
497
498
499
500
502

CONTENTS

Timeout 504
MessageExpiry 505
MessagePriority 506
Delivery 507
Transactional 508
ReportOption 509
Format 511
Messageld 513
Correlationld 514
ApplicationData 515
AccountingToken 516
Convert 517
ApplicationldData 518
ApplicationOriginData 519
Userldentification 520
Appendix F Tibco Transport Extensions 521
Glossary 529

Index 535

CONTENTS

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Welcome dialog

New Workspace dialog

Resource Navigator displaying WSDL model

User Preferences dialog—Directory Preferences panel
Workspace Details panel

New Workspace dialog

New Workspace wizard—Shared Resources panel
Designer Tree Showing Collections and Shared Resources
New Workspace wizard—Collection panel

: New Workspace Wizard

: New Workspace wizard—Shared Resources panel

: New Workspace wizard—Collection panel

: New Workspace wizard—Summary panel.

: New Workspace dialog showing Template options

: Template Settings dialog

: Designer Tree showing Collections and Resources

: Collection Details panel

: Workspace Details panel

: New Collection wizard

: New Collection wizard—Add Collection Resources panel
: New Collection wizard—Summary panel

: Collection Details panel

: New Resource from File/URL dialog

: Artix Designer Invalid WSDL Indicator

: Resource Navigator—Diagram view

: Resource Navigator showing Types Expanded

11
13
20
21
22
23
24
26
27
28
29
30
33
36
37
38
39
40
41
42
43
44
49
50

Xi

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44.
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:

Xii

Resource Navigator—Text view

Error panel

Schema—diagram view

Schema—text view

New Resource dialog

New Contract dialog

New Types wizard

New Types wizard—Type Properties panel

New Types wizard—Define Type Data panel

New Types wizard—Define Type Attributes panel
New Types wizard—Type Data (simple) panel

New Type wizard—Summary panel for Simple Types
New Types wizard—Type Attributes (element) panel
New Types wizard—Define Inline Type panel (complex)
New Types wizard—Define Type Attributes panel
New Types wizard—Define Inline Type (simple) panel
New Message wizard

New Message wizard—Message Properties panel
New Message wizard—Message Parts panel

New Messages wizard—Summary panel

New Port Type wizard

New Port Type wizard—Port Type Properties panel
New Port Type wizard—Port Type Operations panel
New Port Type wizard—Operation Messages panel
New Port Type wizard—Port Operations Summary panel
New Port Type wizard—Port Type Summary panel
New Access Control List wizard

New ACL wizard—Define ACL Operations panel

New ACL Wizard—View ACL Summary panel

51
52
56
56
58
59
60
61
62
64
65
66
67
68
70
71
73
74
75
76
77
78
79
80
81
82
83
84
85

Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:

New Resource dialog

New Resource from File/URL dialog

New Resource dialog

New Resource from File/URL dialog

IDL Compiler Options dialog

New Resource dialog

New Contract from Data Set wizard

New Contract from Data Set wizard—Set Fixed Defaults panel
New Contract from Data Set wizard—Input Data panel (Fixed)
New Contract from Data Set—Summary panel

New Contract from Data Set wizard—Set Fixed Defaults (CCB)
New Contract from Data Set wizard—Input Data panel (CCB)
New Contract from Data Set—Set Tagged Defaults panel

New Contract from Data Set wizard—Input Data panel (Tagged)
New Contract from Data Set—Summary panel (Tagged)

New Resource dialog

New Schema dialog

XML Error Indicator

Edit Types dialog

Edit Type Attributes dialog

Edit Messages dialog

Edit Message Parts dialog

Edit Port Types dialog

Edit Type Attributes dialog

New Binding wizard

New Binding wizard—CORBA Binding Defaults panel

New Binding wizard—Edit CORBA Binding panel

New Binding wizard—CORBA Binding Summary panel
CORBA Enable dialog

LIST OF FIGURES

87
88
89
90
91
93
94
95
96
97
98
99
101
102
104
105
106
107
108
109
110
111
112
113
117
119
120
121
122

xiii

LIST OF FIGU

Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:

Xiv

RES

Binding wizard—Fixed Binding Defaults

New Binding wizard—Edit Fixed Binding panel

New Binding wizard—Fixed Binding Summary panel

New Binding wizard—SOAP Binding Defaults panel

New Binding wizard—Edit SOAP Binding panel

New Binding wizard—SOAP Binding Summary panel
SOAP Enable dialog

New Binding wizard—XML Binding Defaults panel

New Binding wizard—Edit XML Binding panel

Binding wizard—XML Binding Summary panel

Binding wizard—Tagged Binding Defaults

Binding wizard—Edit Tagged Binding panel

Binding wizard—Tagged Binding Summary panel

Edit Binding panel

New Service wizard

New Service wizard—Service Definition panel

New Service wizard—~Port Definition panel

New Service wizard—Define CORBA Extensor Properties
New Service wizard—Summary panel (CORBA)

CORBA Enable dialog

New Service wizard—Define HTTP Extensor Properties
New Service wizard—Summary panel (HTTP)

New Service Wizard—Define WebSphere MQ Port Properties
New Service wizard—Summary panel (MQ)

New Service wizard—Define Tuxedo Port Properties panel
New Service wizard—Summary panel (Tuxedo)

New Service Wizard—Define WebSphere MQ Port Properties
New Service wizard—Summary panel (JMS)

New Service wizard—Define IIOP Port Properties panel

123
124
125
126
127
129
130
132
133
134
135
136
137
138
140
141
142
143
144
145
146
147
149
150
152
153
154
155
157

Figure 114
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:

New Service wizard—Summary panel (1IOP)

New Service wizard—Define SOAP Properties panel
New Service wizard—Summary panel (SOAP)
SOAP Enable dialog

Edit Services panel

Edit Port Properties dialog

New Route wizard

New Route wizard—Source and Destination panel
New Route wizard—Operation Routing panel

New Route wizard—Transport Attributes panel
New Route wizard—Summary panel

Transport Attributes panel—Editing a Route
Summary panel—Editing a Route

Deployment Profile wizard

Deployment Profile wizard—Artix Location panel
Deployment Profile wizard—Summary panel
Deployment Profile Details

Edit Deployment Profile dialog

New Deployment Bundle wizard

Deployment Bundle wizard—Code Generation panel
Deployment Bundle wizard—Update Service panel
Deployment bundle wizard—Summary panel
Deployment Bundle Details

Edit Deployment Bundle dialog

Generate Code dialog

Welcome dialog

New Workspace dialog

Collection Details panel

Generate Code dialog

LIST OF FIGURES

158
159
161
163
165
166
170
171
172
173
174
175
176
180
181
182
183
184
185
186
188
189
190
191
192
406
407
408
409

Xv

LIST OF FIGURES

Figure 143:
Figure 144.
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:

Xvi

New Workspace dialog

New Workspace Wizard

New Workspace wizard—Shared Resources panel

New Workspace wizard—Define Collection panel

New Workspace wizard—Summary panel.

Welcome dialog

New Workspace dialog

Artix Designer with CORBA Server exposed as Web Service
Generate Code dialog

MQ Remote Queues

410
411
412
413
414
416
417
418
419
495

List of Tables

Table 1: complexType Descriptor Elements

Table 2: Part Data Type Attributes

Table 3: Operation Message Elements

Table 4: Attributes of the Input and Output Elements
Table 5: TibrvMsg Binding Attributes

Table 6: TIBCO to XSD Type Mapping

Table 7: HTTP Client Configuration Attributes

Table 8: HTTP Server Configuration Attributes

Table 9: Supported TIBCO Rendezvous Features
Table 10: Java to WSDL Mappings

Table 11: Context QNames

Table 12: Attributes for soap:binding

Table 13: Attributes for soap:operation

Table 14: Attributes for soap:body

Table 15: Attributes for soap:header

Table 16: soap:fault attributes

Table 17: Attribute for soap:address

Table 18: Primitive Type Mapping for CORBA Plug-in
Table 19: Complex Type Mapping for CORBA Plug-in
Table 20: Complex Content Identifiers in CORBA Typemap
Table 21: WebSphere MQ Port Attributes

Table 22: UsageStyle Settings

Table 23: MQGET and MQPUT Actions

Table 24: Artix WebSphere MQ Access Modes

Table 25: Transactional Attribute Settings

Table 26: ReportOption Attribute Settings

210
220
224
225
280
281
303
313
333
346
371
428
430
432
436
437
440
443
446
471
485
499
500
502
508
509

xvii

LIST OF TABLES

Table 27: FormatType Attribute Settings b1l
Table 28: TIB/RV Transport Properties 521
Table 29: TIB/RV Supported Payload formats h23

xviii

If you are new to Artix

Preface

What is Covered in this Book

Designing Artix Solutions outlines how to design, develop, and deploy
integration solutions with Artix using the graphical user interface (GUI), the
Artix command line tools, or both. It also guides you through producing Web
Services Description Language (WSDL), source code, and runtime
configuration files for your Artix integration solution.

Who Should Read this Book

This guide is intended for all users of Artix. This guide assumes that you
have a working knowledge of the middleware transports that are being used
to implement the Artix system. It also assumes that you are familiar with
basic software design concepts, and that you have a basic understanding of
WSDL.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Learning about Artix.

How to Use this Book

You may want to do one or more of the following:
® Learn about Artix - see “Introduction to Artix”
® Read a walkthrough of how to create a Web Service client, or server, or

both - see “Use Case Examples” and “Command Line Use Case
Examples”

If you find any terms you aren unfamiliar with, turn to the “Glossary” on
page 529 for a list of Artix terms and definitions.

Xix

PREFACE

If you've worked with Artix before

If you are migrating from Artix 2.0
to Artix 2.1

XX

You probably have a clear idea of what you want to use Artix to do. In this
case, one of the following suggestions may help.

Using the Artix designer is discussed in the section “Using Artix Designer”. It

includes chapters on the following:

® If you are creating a new workspace, see “Creating an Artix
Workspace”

® |f you're creating or editing a collection, see “Working with Artix
Collections”

® If you're creating or editing resources, see “Working with Artix
Resources”

® If you're creating or editing a binding, see “Adding Bindings”

® |f you're creating or editing a service, see “Adding Services”

® |f you're creating or editing a route, see “Routing Messages”

® |If you're ready to generate code, see “Deployment”

The second section in this guide, “Using Artix Command Line Tools”,

provides a detailed description of how to describe Artix endpoints using

WSDL and the WSDL extenstions used by WSDL. The chapters in this
section parallel the chapters in the first section of the guide.

In addition the following appendecies are included to provied reference
material on using some the Artix bindings:

® “SOAP Binding Extensions” on page 427

® “CORBA Type Mapping” on page 441

® “WebSphere MQ Artix Extensions” on page 485

® “Tibco Transport Extensions” on page 521

Between Artix 2.0 and Artix 2.1, we made several changes to the Artix user

interface, in an effort to make it more intuitive and easier to use. The

changes you will notice include:

® There is now an additional Editor mode of the interface in which you
can create and edit WSDL and Schema documents

® Schemas can now be created or imported into Artix as resources

® Support for two additional binding types - Fixed and Tagged - has been
added to the Binding wizard

If you're new to Artix

To design and develop Artix
solutions

PREFACE

The Resource Navigator diagram can now display relationships as well
as groupings

The Contract menu has been renamed the Resource menu

In Deployer mode, seven new fast track templates have been added
In Deployer mode, Deployment Bundles and Profiles are now listed on
the Tree

In Deployer mode, the Current View filter that was at the bottom of the
Tree has been removed and the functionality has been placed into a
new menu called View

In Deployer mode, Configuration functionality has been added to the
workspace details panel

Finding Your Way Around the Library

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

You may be interested in reading:

Release Notes - contain release-specific information about Artix.
Learning about Artix - this book describes basic Artix and WSDL
concepts. It also guides you through programming Artix applications
against all of the supported transports.

This book is a combination of two books from the Artix 2.0 library - the
Getting Started Guide and the Tutorial.

You should read one or more of the following:

Designing Artix Solutions - (this book) - provides detailed information
about designing Artix solutions, either from the command line or by
using the Artix Designer. Also includes use case examples for both.
Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the C++ API.
Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Java API.
Command Line Reference - this book contains reference information
about the Artix command line tools.

XXi

PREFACE

To manage and configure your
Artix solution

Have you got the latest version?

Artix online help

XXii

You should read one or more of the following:

® Deploying and Managing Artix Solutions - describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

® JONA Tivoli Integration Guide - explains how to integrate Artix with
IBM Tivoli.

® JONA BMC Patrol Integration Guide - explains how to integrate Artix
with BMC Patrol.

® Artix Security Guide - provides detailed information about using the
security features of Artix.

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (under the copyright notice).

While using the Artix Designer you can access contextual online help,

providing:

® Adescription of your current Artix Designer screen

® Detailed step-by-step instructions on how to perform tasks from this
screen

® A comprehensive index and glossary

® Afull search feature

There are two ways that you can access the Online Help:

® Click the Help button on the Artix Designer panel, or
® Select Contents from the Help menu

Additional Resources for Help

The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

Document Conventions
This book uses the following typographical and keying conventions

Typographical Convention

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA: :Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#finclude <stdio.h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

XXiii

mailto:support@iona.com

PREFACE

XXiv

Keying Conventions

No prompt

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Part |

Using Artix Designer

In this part This part contains the following chapters:

Introduction to Artix page 1
Creating an Artix Workspace page 19
Working with Artix Collections page 35
Working with Artix Resources page 47
Adding Bindings page 115
Adding Services page 139
Routing Messages page 167
Deployment page 177

In this chapter

CHAPTER 1

Introduction to Artix

You can use Artix to design, develop, and deploy integration
solutions that are middleware-neutral.

This chapter discusses the following topics:

Overview page 2
Using Artix for the first time page 6
WSDL Basics page 15

CHAPTER 1 | Introduction to Artix

Overview

Artix Designer - Deployer mode

Artix is a flexible and easy-to-use tool for integrating your existing
applications across a number of different middleware platforms. Artix also
makes it easy to expose your existing applications as Web services or as a
service for any number of applications using other middleware transports. In
addition, Artix provides a flexible programming model that allows you to
create new applications that can communicate using any of the protocols
that Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a
straightforward process which requires a minimum of coding.

The Artix user interface, the Artix Designer, has two modes of operation.
The first is a pure WSDL or schema creation and edit mode, and the second,
referred to as "deployer mode" provides the ability to create and deploy Artix
contracts. This isn’t to say that the two modes are mutually exclusive; the
only real functional difference is that the Editor mode contains no
deployment capability. Appearance-wise, they are identical other than that
the Editor mode does not contain the Designer tree.

The deployer mode of the Artix Designer provides a full suite of wizards to
guide you through the modeling of your systems, the generation of Artix
components, and the deployment of your system. Artix also ships with a
number of command line tools that can be used to generate Artix
components. For more information about working with the Artix command
line tools, see part two of this book.

When you start working with in workspace mode, you will see the following
components listed in the Designer Tree:

® Workspace

® Workspace Services

® Deployment Profiles

® Shared Resource

® Collection

® Deployment Bundles

® Resources

Overview

Each component is documented in detail throughout this book, but following
is a brief description of what they are and how they relate to each other.

Workspace

The Workspace defines your Artix solution. It contains collections and
resources, and all the required deployment information to build your
solution.

Workspace Services
to come

Deployment Profiles

The Deployment Profile defines machine level-information such as the Artix
save location, the compiler location, and the operating system being used.
This profile can be used multiple times as it is not specific to any particular
collection defined within the workspace.

Shared Resource

Shared Resources are WSDL contracts that are stored at a workspace level,
and are included, by default, in every collection in that workspace. When
creating a workspace, you are given the option of also creating shared
resources, or else you can add them to the workspace later.

Resources that are not shared, and that exist only in one collection, are
collection-specific. A collection-specific resource can be changed to a
shared resource, and therefore added to all existing collections, if required.

Collection

A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA based applications. A
collection can also be deployed as a switch process.

Deployment Bundles

The Deployment Bundle defines the deployment characteristics for a
collection, such as the deployment type (client, server, or switch), code
generation options, and configuration details. You can also modify the
service WSDL for each deployment bundle, if necessary.

Every deployment bundle is associated with one deployment profile. You
can have as many deployment bundles as you like for every collection in
your workspace, but you could quite easily get by with only one deployment
profile.

CHAPTER 1 | Introduction to Artix

Artix Designer - Editor mode

Resources

Can be either WSDL contracts or schema files - each is explained here.
WSDL contracts define the interaction of an endpoint with the Artix bus.
Contracts are written in WSDL. Following the procedure described by W3C,

IONA has extended WSDL to support the bus’ advanced functionality, and
to use transports and formats other than HTTP and SOAP.

In Artix, contracts can be created from a variety of resources including:
® Existing WSDL files

® Existing IDL files

® WSDL URLs

® Existing Data Sets, such as a COBOL Copybook

A contract consists of two parts:

® Logical - defines the namespaces, messages, and operations that the
collection exposes. This part of the contract is independent of the
underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the application
interface. It is made up of the WSDL tags <type>, <message>, and
<portType>.

® Physical - defines the transports, wire formats, and routing information
used to deliver messages to and from collections, over the bus. This
portion of the contract also defines which messages use each of the
defined transports and bindings. The physical portion of the contract is
made up of the standard WSDL tags <binding>, <service>, and
<route>. It is also the portion of the contract that may contain IONA
WSDL extensions.

For more information, see “What is a Contract?” on page 53.

Schemas define types. They can be standalone resources, or imported into
a WSDL contract to define the types for that contract.

For more information, see “What is a Schema?” on page 56.

The Editor mode of the Artix Designer is virtually the same as the Deployer

mode, but for two main differences:

® There is no Designer Tree visible on the left of the details panel.

® There is no access to the deployment functionality offered in Deployer
mode.

Switching between modes

5 easy steps

Overview

The Editor mode is a simplified version of the Designer. You do not need to
create the workspace/collection/resource structure to work on your files, and
there is therefore only a sub-set of the wizards and dialogs you would
normally see in Deployer mode. The Editor mode has been created for those
times when you simply want to work directly with WSDL or Schema files,
giving you a tool in which you can create and edit them as required.

You can switch from the Deployer mode to the Editor mode and vice versa,
as long as you have a resource selected in the deployer mode.

To make the switch, either click on the icon in the tool bar, or select the
mode you wish to switch to from the View menu.

When you switch from Editor mode to Deployer mode, a default workspace
is created for you.

When you switch from Deployer mode to Editor mode, the Designer Tree is
simply hidden to remove all references to workspaces, collections, and
deployment entities.

Regardless of the complexity of your Artix project or the tools you chose to
develop it, there are five basic steps in developing a solution using Artix:

1. Create an Artix workspace to define the structure your proposed
solution.

2. Create an Artix collection to manage the resources that define the Artix
contract.

3. Create an Artix contract to describe how you intend to integrate or
expose your systems.

Deploy the solution.

5. Develop any application level code needed to complete the solution.

Of course, if all you want to do in Artix is to work in Editor mode, then the
list is even simpler:

1. Create a WSDL or Schema file or import an existing one.

2. Add to or change the file as required using the wizards and dialogs
provided from the Resource menu.

3. Save your file.

CHAPTER 1 | Introduction to Artix

Using Artix for the first time

Welcome dialog The first time you start the Artix user interface, you will see the Welcome
dialog, as shown in Figure 1.

@ Welcome - Artix Designer ﬂ

Welcome to the Arix Desigher. Please select an option:

@ |Create a new warkspace|

] Open an existing workspace or resource
(0 Go straight to Designer

O RBun Interactive Demo

(] Don't show me this panel again I| il |] | Cancel

Figure 1: Welcome dialog

You have four options from this dialog:

Create a new workspace - takes you to the New Workspace dialog,
where you can select options for creating your Artix workspace.

Open an existing workspace or resource - takes you to a file chooser
dialog from where you can navigate to any previously created
workspaces or any resource files (WSDL or Schema) you have stored.
Note: Choosing a resource file will open the Designer in Editor mode.
Go straight to the Designer - opens Artix without loading a workspace.
Run interactive demo - launches an demo of the Designer (requires a
plug-in which is available for download if necessary).

Tip: Click the check box at the bottom of the panel (Don’t show me this
panel again) to stop this panel displaying every time you start Artix. Instead,
Artix will automatically load the last workspace accessed. To change it
back, go to the Start-up options in the User Preferences dialog (Edit menu).

Using Artix for the first time

Working in Deployer Mode

Overview

Creating a workspace

The biggest difference between the two modes of the Artix Designer is that
in the deployer mode you can deploy your Artix collections. The Editor
mode allows you only to create or edit WSDL or Schema documents - it has
no deployment functionality. If this is how you want to use the Designer,
turn to “Working in Editor Mode” on page 10.

To be able to use the Artix deployment feature, you need to structure your
Artix solution in a certain way - this is where workspaces come in.

The Artix workspace defines the structure of your proposed solution, and

determines what is contained in the Artix Designer Tree.

There are two ways to create a workspace:

® Follow the New Workspace wizard (from the New Workspace dialog,
as shown in Figure 2) to guide you through the process -
recommended for first-time users of Artix.

® Select one of the Workspace Templates provided in the New
Workspace dialog to create one of the common workspaces.

x
Fast Track Details
7! E &
e 35} #5] This template launches the MNew YWorkspace Wizard, where you
Mew workspace s client s Server can specify the details of your Workspace including Collections
Wizard and Resources.
i) & &
“ %])
G+ Client Java Client Java Server
and Server
o) & &
& 3} 35
Java Glient At Switch [DLtog0an
and Server
£

7]
HitpSampleTermplate

0K J| Cancel H Help I

Figure 2: New Workspace dialog

CHAPTER 1 | Introduction to Artix

Adding collections and resources

Tip: To access the New Workspace dialog, select File | New | Workspace
from the menu bar, or click the New Workspace icon in the toolbar.

Shared resources

When you have created your workspace, you have the option of adding
resources at the workspace level that can be applied to every collection
contained in your workspace. In Artix, these are called "Shared Resources".

For more information on workspaces and shared resources, see “Creating an
Artix Workspace” on page 19.

A collection is a group of resources that can be deployed one or more times
to meet your solution requirements. As such, it defines the Artix contract.
This contract models the services you want to integrate.

While you can only have one workspace at a time, you can have as many
collections as you like. They can comprise shared resources,
collection-specific resources, or a mix of both.

When you create a workspace using the New Workspace wizard you are
given the opportunity to create a collection, but you can also add collections
to workspaces by selecting File | New | Collection from the menu bar.

For more information about Artix collections, see “Working with Artix
Collections” on page 35.

Collection-specific resources

After you have created a collection you can add collection-specific
resources. Resources can be created from existing WSDL files, or from
WSDL generated from IDL files. They can also include contracts generated
from data sets such as COBOL Copybooks, or contracts created from scratch
using the wizards and dialogs provided by the Resource Editor.

Regardless of your mix of resources, the process of creating the Artix
contract involves creating logical descriptions of the data and the operations
you want the services to share, and mapping them to the physical payload
formats and transports used by the services to expose themselves to the
network. Artix uses the industry standard Web Services Description
Language (WSDL) to model services.

For more information about resources, see “Working with Artix Resources”
on page 47.

Generating code for your solution

Developing additional code

Using Artix for the first time

Generating code with the Artix Designer is a three-step process:

® Create the Deployment Profile to define machine-level information that
you can use for one or more of your solutions

® Create the Deployment Bundle to define the characteristics of the
collection you are deploying, including the type of deployment (client,
server, or switch), configuration information, and environment scripts

® Generate the code - once your deployment profile and bundle are in
place, actual deployment is performed using the Generate Code dialog

For more information, see “Deployment” on page 177.

For a detailed discussion of Artix configuration, see Deploying and

Managing Artix Solutions.

For a detailed description of generating Artix stubs and skeletons, see
Developing Artix Applications with C++.

Unless your services share identical interfaces, you will need to develop
some additional application code. Artix can only map between services that
share a common interface.

Typically, you can make the required changes to only one side of the
services you are integrating and you can write the application code using a
familiar programming paradigm. For example, if you are a CORBA developer
integrating a CORBA system with a Tuxedo application, Artix will generate
the IDL representing the interface used in the service integration. You can
then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the
application logic from scratch using the stubs and skeletons generated by
Artix. For a detailed discussion of developing applications using Artix, see
one of the following:

® Developing Artix Applications in C++

® Developing Artix Applications in Java

CHAPTER 1 | Introduction to Artix

Working in Editor Mode

Overview

Working with WSDL

10

The Artix Designer in Editor mode is a powerful XML editor. You can create
and edit WSDL documents, and you can also open and edit Schema.

The full graphic representation of the WSDL model provided by the Artix
Designer in Deployer mode is still available to you in Editor mode, but only
when you are working with valid WSDL. If the WSDL is invalid, it can't be
modeled graphically and can only be viewed as XML text, as is also the case
in Deployer mode.

All of the Resource Editing wizards and dialogs are available to you in Editor
mode, making it easy for you to create your WSDL or Schemas without
having to write them in XML from scratch.

If you've used the Artix Designer before, the first thing you'll notice about the
Editor view is that there is no Designer Tree on the left of the details panel.
Assuming you have valid WSDL however, the graphical view of the WSDL
file will be as you remember it from the Deployer view.

You can create new WSDL or XSD documents, or open existing ones, by
selecting using the File menu.

Working with Schemas

Using Artix for the first time

When you have a WSDL model displayed in the Resource Navigator, as
shown in Figure 3, you can add and edit the components via options from
either the Resource menu, or from the contextual menus accessed by
right-clicking on any of the component names.

s

Types (106)

Messages (54)

L, (el
D i Port Types(1)

multipart | 3
o L

Bindings

. 5

Services

&,

e Lk
Routes

Figure 3: Resource Navigator displaying WSDL model

For more information about working with WSDL, see “Creating New
Resources” on page 57.

Working with Schemas is similar to working with WSDL, except that it only
defines the types while WSDL defines all of the contract components. You
can create a schema to be a stand-alone resource or to be the type definition
of a larger piece of WSDL - an import statement in the WSDL will simply
refer to the external schema. In this way, WSDL and Schema resources can
together define Artix contracts.

You can open existing Schemas by selecting File | Open | Resource and
navigating to the file. For more information about adding Schemas, see
“Creating an XSD Schema” on page 105.

11

CHAPTER 1 | Introduction to Artix

Using this guide while in Editor If you are using the Designer only in Editor mode, only a subset of the

mode chapters in this book will be of interest to you. They are:
® “Working with Artix Resources” on page 47

® “Adding Bindings” on page 115

® “Adding Services” on page 139

® “Routing Messages” on page 167

12

Using Artix for the first time

Setting user preferences

Overview

The Artix User Preferences dialog enables you to
and behaves. For example, you can use this dial
® The look and feel of the interface

® Adefault location for workspaces and resou

define the way Artix looks
og to set:

What is displayed first every time you start Artix

rces

Setting your User Preferences To access the User Preferences dialog:

1. Select Edit | User Preferences to display th
as shown in Figure 4 .

@ User Preferences - Artix Designer

Directary Preferences [Start-up COptions] Loak and Feel] WEDL Options |

e User Preferences dialog,

I

I

Defaultvorkspace Directory |C:1Temp1amx | | Erowsa...

Default Resource Diractory |C:1Temmanix | | Browsa...

Default Template Directary |C:1Temp1ar1i>aTemplates | | Browse... ‘
| [o]"4 ‘ | Cancel ‘ | Apply ‘ | Help

Figure 4: User Preferences dialog—Directory Preferences panel

2. Use the Directory Preferences panel to:

+ Set a default workspace directory - the directory to open when

browsing for existing workspaces

13

CHAPTER 1 | Introduction to Artix

14

Set a default resource directory - the directory to open when
browsing for existing resources

Set a default templates directory - the directory where any custom
workspace templates are stored

Use the Start-up Options panel to define whether to:

L4

*

L4

*

L4

Set your default user interface mode to Editor

Display the Start-up dialog every time you open Artix

Include workspace history in your File menu

Nominate a number of history files to include in the File menu

Display the Diagram or Text view as your default

Use the Look and Feel panel to select an appearance for the Designer
from the list provided.

Use the WSDL Options panel to define a default namespace for your
WSDL contracts.

Click OK when you have finished making your changes to close this
dialog and return to the Artix Designer.

WSDL Basics

WSDL Basics

Elements of a WSDL document

Example WSDL file

Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C web site, www.w3.org.

A WSDL document is made up of the following elements, which you will see

represented throughout the Artix Designer. You can use the Designer to

create and edit these elements:

® <types> — the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema

® <message> — the abstract definition of the data being communicated

® <operation>— the abstract description of an action

® <portType> — the set of operations representing an absract endpoint

® <pinding> — the concrete data format specification for a port type

® <port>—the endpoint defined by a binding and a physical address

® <service> — a set of ports

On the following pages is an example of a WSDL file. It is the HelloWorld
WSDL used in many of the demos shipped with the Artix product

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello world soap http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/

configuration"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/hello world socap http"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

15

http://www.w3.org/TR/wsdl

CHAPTER 1 | Introduction to Artix

Note the types, messages, port types, and bindings defined in this section.

<types>
<schema
targetNamespace="http://www.iona.com/hello world soap http"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
</schema>
</types>
<message name="sayHiRequest"/>
<message name="sayHiResponse'">
<part element="tns:responseType" name="theResponse"/>
</message>
<message name="greetMeRequest">
<part element="tns:requestType" name="me"/>
</message>
<message name='"greetMeResponse">
<part element="tns:responseType" name="theResponse"/>
</message>
<portType name="Greeter">
<operation name="sayHi">
<input message="tns:sayHiRequest" name="sayHiRequest"/>
<output message="tns:sayHiResponse"
name="sayHiResponse" />
</operation>
<operation name="greetMe">
<input message="tns:greetMeRequest"
name="greetMeRequest" />
<output message="tns:greetMeResponse"
name="greetMeResponse" />
</operation>
</portType>
<binding name="Greeter SOAPBinding" type="tns:Greeter">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<input name="sayHiRequest">
<soap:body use="literal"/>
</input>
<output name="sayHiResponse">
<soap:body use="literal"/>
</output>
</operation>

16

WSDL Basics

Note the service defined in this section.

<operation name="greetMe">
<soap:operation soapAction="" style="document"/>
<input name="greetMeRequest'>
<soap:body use="literal"/>
</input>
<output name="greetMeResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="SOAPService">
<port binding="tns:Greeter SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000"/>
<http-conf:client/>
<http-conf:server/>
</port>
</service>
</definitions>

For more information For a more extensive WSDL discussion, see Learning About Artix.

17

CHAPTER 1 | Introduction to Artix

18

In this chapter

CHAPTER 2

Creating an Artix
Workspace

The Artix Designer provides a canvas within which you can
design Artix solutions. The packaging mechanism for these
solutions is the workspace.

This chapter discusses the following topics:

What is a Workspace? page 20
Creating a Workspace using a Wizard page 26
Creating a Workspace using a Template page 30

19

CHAPTER 2 | Creating an Artix Workspace

What is a Workspace?

Overview The Artix Workspace defines your Artix solution. It is the first thing you need
to create, and all of the solution’s components are included within it.

Workspaces contain collections and resources. While you can only have
one workspace open at a time, you can have as many collections and
resources within that workspace as you like.

A collection is a group of resources that can be deployed as one or more
systems, for example a client, a server, or a switch. A resource is a WSDL
file that, either by itself or with other resources, defines the Artix Contract.

Resources can be stored at the workspace level and applied to one or more
collections (shared resources), or can be stored at the collection level and
apply only to that collection. The Workspace Details panel shows you the

20

contents of your workspace, as shown in Figure 5.

/Tempy/artix/GuiTutorial /GuiTutoriaLiad - Artix Designer =10l |

File Edit View Resource Tools Help

ZooEs LB AR ERS 4

Eg GuiTutarial
ﬂj Workspace Services
U Deployment Profiles
[ex_profile
113 java_profile
'{J Shared Resources
L B HellowaridGuiTutarial
U Collections
"3, Client
U Deployment Bundle|
O oo_client
O java_client
HelioWorldGulTuto

Ba
U Deployment Bundle|
O oo_server
C java_senver
HelloWoridGuiT uiol

1 il] [»

Workspace Details

GuiTutarial
Workspace Services

Shared Resource Details

[] HelioWordGuiTutarial -~ C/TempiatiKGuiTutorialResources/HelloWorldGuiTutorial wsd|

New... | Delete
Collections
[client
[] Server

New... | Delete
Deployment Profile
[ce_profile
[java_profile

New... | Delete

Figure 5: Workspace Details panel

Creating a workspace

MNew Workspace - Artix Designer

What is a Workspace?

The Workspace Details panel provides another view of your workspace,
besides the Designer Tree view. |t lists the collections and resources
contained in your workspace, and also provides Add and Delete functions.

Deployment Profiles for the workspace are also listed on the Workspace
Details panel. A profile is needed for each different operating system that
will host your Artix deployment, such as Windows or Unix.

For more information about Artix Deployment, including Deployment

Profiles, see “Deployment Explained” on page 178.

There are two ways to create a new workspace:

® Select the New Workspace wizard (from the New Workspace dialog, as
shown in Figure 6) - recommended for first time users of Artix. - see
page 26 for more information.

® Select one of the Workspace Templates provided in the New
Workspace dialog to have Artix assume all of the necessary defaults to
get your workspace up and running quickly. See page 30 for details.

=L
5]

MNew Waorkspace
‘Wizard

[1
5]

C++ Client
and Server
Eh

5]

Java Client
and Server

£

93]

=1
s

C++ Clignt

[L
5]

Java Client

[

]
Artix Switch

HitpSampleTemplate

Fast Track Details
£

5] This temnlate launches the New Wotkspace YWizard, where you
4+ Setver can specify the details of your Warkspace including Collections
and Resources
[t
ol
Java Server
=
el
IDLtoS0ap

x|

Ok H Cancel H Help I

Figure 6: New Workspace dialog

21

CHAPTER 2 | Creating an Artix Workspace

Shared resources

22

@ e worepoce

Shared resources are resources that are stored at the workspace level, and
by default are included in every collection you create within the workspace.
All instances of this resource are linked, however - they are not individual
copies of the resource. Thus, if you edit a shared resource, you are actually
editing every instance of that resource.

When you create a new workspace, you are given the option of adding
shared resources via the Shared Resources panel, as shown in Figure 7.

Enter Service URL orWSDLDL file

| -]

Added ltlems

| Remaove ‘

[previous || e || mmen || camce || Hew |

Figure 7: New Workspace wizard—Shared Resources panel

You can also add shared resources at other times from the Workspace
Details panel by clicking the Add button under the Shared Resources Details
list.

A shared resource is represented in two ways in the Designer Tree. The
original version of the resource is listed under the Shared Resources folder,
and the reference to the Shared Resource in each Collection is shown with
the name of the resource italicized, and its icon having a dimmed shortcut

Collection-specific resources

What is a Workspace?

arrow, as shown in Figure 8. An X icon next to the resource name indicates
invalid WSDL. The error information provided in the WSDL Text view of the
contract will explain how to fix invalid WSDL.

T GuiTutarial
© U_J Workspace Semvices
@ J,J Deployment Prafiles
H co_profile
{1 java_profile
@ J,J Shared Resources
L B HellowarldGuiTutorial
@ J Collections
"8, Client
JP—LJ Deployment Bundles
0 co_client
i3 java_client
— HelfoWorigGuimuwornal
"8, Server
3?—[,:' Deployment Bundles
0 oo_server
3 java_serer
— HealloWoridGuimtoral

Figure 8: Designer Tree Showing Collections and Shared Resources

In contrast, you can also create resources that are collection-specific. That
is, they apply only to the collection within which they are created and are
not also included in other collections within the workspace. These are
indicated in Figure 8 by the resource names within collections that are not
italicized, and are created by selecting a the Collection name and selecting
File | New | Resource. See “Working with Artix Resources” on page 47.

23

CHAPTER 2 | Creating an Artix Workspace

Collections

24

A collection is a group of related resources within your workspace. It can be
deployed as one or more systems, such as a client, a server, a switch, or any
combination of all three.

When you create a workspace, you are given the opportunity to create a
collection via the Define Collection panel, as shown in Figure 9.

Otherwise you can add them to your workspace from the Workspace Details
panel by clicking on the Add button under the Collections list.

@ New Workspace x|

Mame [Newcallection |

Deseription |First collection in this workspace |

[/Add Collection-specific Resources

~Selected Shared Resource

Select All] [Deselect All

¥ filedCmemplantimu tipart wsdl

[Erewuus “ Mext H Finish H Cancel H Help

Figure 9: New Workspace wizard—Collection panel

Collections contain resources that together define the Artix contract. These
resources can be based on one or more items, including URLs, and WSDL
or IDL files. If an IDL file is added to a collection, it is converted to WSDL
and this WSDL is what is actually listed on the Designer Tree.

For more information see “Working with Artix Collections” on page 35.

What is a Workspace?

Deployment entities There are two deployment entities in Artix that you need to be aware of
when working in Workspace mode:

Deployment Profiles, which are stored at the workspace level and
apply to all collections in that workspace

Deployment Bundles, which are stored at the collection level and apply
to only that collection. A Deployment Bundle must also be associated
with a Deployment Profile, meaning that you cannot create a bundle
before creating a profile.

25

CHAPTER 2 | Creating an Artix Workspace

Creating a Workspace using a Wizard

To add a workspace using the New Workspace wizard:

1. From the New Workspace dialog, select the New Workspace wizard
icon to display the New Workspace wizard, as shown in Figure 10.

@ New Workspace x|

= Define Workspace

Mame [50aP_HTTP_ W |

Add Shared Resources

Define Collection

Save Location .
Show Summary ‘C\Temp\amx ‘ | Browse

Descripfion [S0ARHTTF warkspace |

[Add Shared Resources

[#] Add Collection

‘Erevinus ‘H Mest H‘ Finish H Cancel H Help

Figure 10: New Workspace Wizard

2. Enter a name for the workspace, or accept the default provided.

3. Select the location where you would like to save your workspace, or
accept the default provided.

Tip: To define a new default save location for all future workspaces, go
to the User Preferences dialog (under the Edit menu).

Add a description for this workspace in the field provided.

5. Select the Add Shared Resources check box if you want to add
resources to this workspace that will be shared between all the
collections in the workspace. This step is optional.

26

Creating a Workspace using a Wizard

Selecting this option will add an extra panel to the wizard for you to

enter the shared resource details.

6. Select the Add Collection check box if you want to add a collection to
this workspace now. Note that this is optional - you can always add a

collection later if you don’t want to add one now.

Selecting this option will add an extra panel to the wizard for you to

enter the collection details.

7. Click Next to display one of the following panels, depending on which

check boxes you selected on the first panel:

+ If you checked the Add Shared Resources option, the Shared
Resources panel is displayed, as shown in Figure 11. Continue

with step 8.

@ New Workspace x|

Enter Service URL or WSDLADL file

B

Added ems

| Refniove |

[previous || wea || mnen |[cenca

J[_tee |

Figure 11: New Workspace wizard—Shared Resources panel

27

CHAPTER 2 | Creating an Artix Workspace

+ If you did not check the Add Resources option but did check the
Add Collection option, the Define Collection panel is displayed, as
shown in Figure 12. Continue with step 10.

+ If you did not check either of the options on the first panel, the
Summary panel is displayed as shown in Figure 13 on page 29.
Continue with step 14.

8. Type the location of either a WSDL file or an IDL file in the Enter
Service URL or WSDL/IDL file field, or click Browse to navigate to the
file you would like to use.

When you have selected a file to use, click Add to list it in the Added

Items list.

9. Repeat step 8 as many times as you like to continue adding resources
to the list, then click Next to display Define Collection panel as shown
in Figure 12. If you did not choose to Add a Collection, go to step 14.

T

Name |NewCoIIecti0n |

Description [First collection in this workspace |

[add Callection-specific Resources

~Selected Shared Resource:

| selectan || Deselectan

[filecsCTemprantidmultipart wadl

| previows || mea || rwien || cameat][Hep

Figure 12: New Workspace wizard—Collection panel

28

Creating a Workspace using a Wizard

10. Enter a name for the new collection, or accept the default provided.

11. Enter a description for the new collection in the Description field.

12. By default, all shared resources you added to this workspace on the
previous panel are selected to be added to this collection. If there are
any resources you do not want added, click on their check box to
deselect them.

13. Click Next to display the Summary panel, as shown in Figure 13. This
panel lists everything you just specified in the wizard.

zl
Define Workspace Mewly Created Warkspace Infarmation

Add Shared Resources
‘Waorkspace Name
Define Collection SOAP_HTTP_WS
Add Collection Resources
Workspace Location
P~ Show Summary CiTermplartiz

WorkspaceDescription
SOAPHTTP workspace

Shared Resources
filediCyTemplartimultipatwsd|

Collection Mame
Collectiont
Collection Description
First collection in this warkspace

Shared Resources In Collection
fileiCiTempiartzmultipartwsdl

Collection Specific Resources In Collection
fileiC:TempiartizGoogleSearch wadl

| Previous | Emish || cancel || e

Figure 13: New Workspace wizard—Summary panel.

14. Click Finish to close the wizard and display the Artix Designer, where
the Designer Tree displays your newly created workspace.

29

CHAPTER 2 | Creating an Artix Workspace

Creating a Workspace using a Template

To add a workspace using a template:

1. From the New Workspace dialog, select one of the templates listed to
create a workspace for that type of Artix deployment. As shown in
Figure 14, the workspace templates provided are:

¢+ C++ Client

o C++ Server

¢+ C++ Server and Client
+ Java Client

+ Java Server

+ Java Client and Server
+ Artix Switch

+ IDL to SOAP

+ HttpSample Template (editable as a custom template) - for
specific instructions on using this custom template, see “Working
with Custom Templates” on page 32.

B
Fast Track Details
% @ @ This template automatically creates a C++ ClientWeh Services
Mew YWorkspace Covs Clignt G+ Server Workspace using defaultvalues
wiizard
Workspace
% @ @ MName Mewiorkspace
C:;“Em Java Client Java Serer
and getver Lacation |CiTempiartix | Browse.
Java Client At Switch IDLinS0ap Code Generation Resource
and Server
% Filename | | | rowse
HitpSampleTemplate
v P v Service | Iz”
Port | -]

[o]| cancel H Help

Figure 14: New Workspace dialog showing Template options

30

Creating a Workspace using a Template

2. Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a different save location
if you wish.

3. Enter the file name or URL for your WSDL file in the field provided, or
click Browse to navigate to a suitable file.

4. Enter the name of a WSDL file to use to build this workspace, or click
Browse to navigate to one.

5. Select a service to use for this workspace from the list of services that
have been loaded into the Service drop-down list. These are the
services contained in your WSDL file.

6. Select a port to use for this workspace from the list of ports that have
been loaded into the Port drop-down list. These are the ports
contained in your WSDL file.

7. Click OK to display the Artix Designer with your new workspace loaded
into the Designer Tree.

Behind the scenes

When creating your new template-based workspace, Artix has automatically

performed the following tasks:

® Created a workspace directory and file in the save location you
specified

® Imported your WSDL file and added it to the workspace file

® Depending on which system you decided to create, it has created a
local deployment profile including configuration options

® Created a deployment bundle containing all required code and a
makefile for your target service

You could now create code for the workspace by selecting Tools | Generate

Code, which would generate all files required.

Note than some hand editing of the implementation file will be required.
For help with this, see Developing Artix Applications in C++ or Developing
Artix Applications in Java, depending on which type of code you're working
with.

31

CHAPTER 2 | Creating an Artix Workspace

Working with Custom Templates

Overview

Procedure

32

Artix 2.1 contains a sample template, HttpSample Template, that you can
use in two ways:

® To gain a better understanding of how custom templates work

® Toenable you to create custom workspaces that by default contain the
same entities (profiles, bundles, resources)

Future versions of the Artix Designer will provide the capability for you to
create and edit custom templates via the GUI - currently there is no
capability for creating new templates, other than saving the sample as a
different name. All editing must be done within a text editor.

Storing custom templates

The sample template is stored in the \\artix\2.1\etc\xml\templates
installation directory. If you edit this template and save it as another name,
then this edited template will be listed on the Workspace dialog just as the
sample is now. Equally, if you saved various copies of this sample to that
location then all of those copies would also be listed in the Workspace
dialog.

If you want to change the directory that the Workspace dialog points to for
these templates, you can do so via the Default Template Directory setting in
the User Preferences dialog (under the Edit menu).

To create a workspace based on the HttpSample template, select it in the
Workspace dialog, and then:

1. Enter a name for the new workspace, or accept the default provided.
2. Enter a save location for the workspace, or accept the default provided.

Creating a Workspace using a Template

Click Template Settings to display a dialog where you can define the
settings for this workspace, as shown in Figure 15.

@Template Settings - Artix Designer: ﬂ

Shared Resources

hitp:iiwebserdces.imacination.comivalidatei/alidate jws Pwsdl

| Aga. || Delete

Collection Resources and Settings

Collection [Callectiont -]

hittp:/fapi.google.comiGoogleSearch wsdl

| aou. || Deste |

Code Generation Settings

Bundie [Bunclet -]

Resource |http:IMebservices.imacmation.comma\idateNaIidate.iws?w... IE”

Service |Va|idateSer\tice Iz”
Part [vatigate -]
| &pply Setings |

| QK I | Cancel I ‘ Help I

Figure 15: Template Settings dialog

4.

The first field contains Shared Resources that will be included in this
workspace. Click Add to locate other resources you want to add to the
workspace as shared.

If you edit the template file, you can have other resources listed in this
field, as well as the other fields on this dialog, by default.

The Collection Resources and Settings section defines the resources
that will be included in each Collection. In this template, two
collections have been created and each contains a different resource.
Again, you can click Add to locate other resources to add to the
collections.

33

CHAPTER 2 | Creating an Artix Workspace

34

The Code Generation Settings section defines the necessary
information for creating the deployment bundles for this workspace so
that you can generate the application code.

Two bundles have been created in this template and each uses
different resources, services, and ports. If you change any of the
pre-defined values in these fields, click Apply Settings to update the
bundle.

Click OK to close this dialog and return to the New Workspace dialog.
Click OK to close the Workspace dialog and return to the Artix
Designer, where your new workspace is loaded into the Designer Tree.

In this chapter

CHAPTER 3

Working with Artix
Collections

A Collection is a group of related WSDL contracts that can be
deployed as one or more physical entities such as Java, C++,
or CORBA based applications. [t can also be deployed as a
switch process.

This chapter discusses the following topics:

What is a Collection? page 36
Creating a Collection page 38
Editing a Collection page 42
Generating Code for a Collection page 45

35

CHAPTER 3 | Working with Artix Collections

What is a Collection?

Overview A collection is a group of related resources that create the Web Service
definition. Resources are WSDL contracts that can be created by importing
WSDL files or by importing IDL files which are automatically converted into
WSDL by Artix. A collection may contain one or more WSDL contracts.

At deployment time, a collection can be generated into physical entities
such as Java, C++, or CORBA based applications. Contracts can also be

based on data sets, such a COBOL Copybooks.

Collections are listed in the Designer Tree, as are the resources belonging to

that collection, as shown in Figure 16.

Figure 16: Designer Tree showing Collections and Resources

36

T GuiTutarial
O ILJ Workspace Services
@ '-L:] Deployment Profiles

13 eo_profile
{1 java_profile

@1 Shared Resources
L B HellowordGuiTutarial
@ '-LJ Collections

"8, Client

J?—LJ Deployment Bundles
5 ow_client
) java_client

— HelloWordGuimutorial

"8, Server

<l?—L:] Deployment Bundles
b cxe_server
b java_server

— HelioWordGuimutorial

What is a Collection?

If you select a collection in the Designer Tree, the details for that collection
are shown in the details panel on the right, as shown in Figure 17. In this
panel you can view information about the resources contained in that

collection, and about any Deployment Bundles that have been created for

that collection.

@ C:/Temp/artix/GuiTutorial /GuiTutorial.iad - Artix Designer ;IEIEI

File Edit View Resource Tools Help

D0E ¥ LE AEB BRESE A

75 GuiTutarial
) wiorkspace Serdces
) Deployment Profiles
1 cee_profile
[java_profile
‘J;l Shared Resources
L B HelloworldGuiTutorial
U Caollections
8, Client
J Deployment Bundles
O ox0e_client
3 java_client
HelioWoridGuiT utonial
"8, Semver
Lrl Deployment Bundles
3 vo_senver
O java_server
HelioWorldGuiTutorial

Collection Details

Client

Resource Details

[HelloworldGuiTutorial CiTemplarixGuiTutorial/ResourcesiHelloWorld GuiTutorialwsdl

MEW... | Delete
Deployment Bundles

[woc_client

[java_client

New...l Delete

Figure 17: Collection Details panel

CHAPTER 3 | Working with Artix Collections

Creating a Collection

Overview

38

When you create a workspace using the New Workspace wizard (see

page 26), you are given the option of creating a collection. Even though you
are only given the option of creating one collection in this wizard, you can
actually have as many collections in your workspace as you like.

Adding new collections is easy. You can click on the Add button under the
Collections list on the Workspace Details panel (Figure 18), or you can
select File | New | Collection from the menu bar.

@ C:/Temp/artix/GuiTutorial /GuiTutorial.iad - Artix Designer ;IQIEI

File Edit Yiew Resource Tools Help

De0E ¥ LE AEB RER @

75 GuiTutarial
) wiorkspace Serdces
() Deployment Profiles
1 ce_profile
[java_profile
'J;l Shared Resources
L Bl HelloworldGuiTutorial
U Caollections
"8, Client
) Deployment Bundle
O one_client
O java_client
HelioWorBuiT uto
"8, Semer
Lrl Deployment Bundle
3 vo_senver
O java_server
HelioWorldGuiTuto

4 I »

Workspace Details

GuiTutorial
Warkspace Semvices

Shared Resource Details

[] HelloWorldGuiTutarial CyTempianiwGuiTutorialiResource siHelloWorld GuiTutorial.wsdl

e, | Delete
Collections
[Client
[] Serer

New..l Delete
Deployment Profile
[oo_proiile
[java_profile

New..l Delete

Figure 18: Workspace Details panel

Procedure

Creating a Collection

Either way, you arrive at the New Collection wizard, as shown in Figure 19,
and you can proceed through the procedure outlined below.

@ New Collection

Name [collectionz |

Deschiption [uy second collection |

[l4dd Collection-specific Resources

~Selected Shared Resource

[Select Al H Deselect Al]

[multipart.idi

[Erevious “ Next ” Finish ” Cancel ” Help

Figure 19: New Collection wizard

Enter a name for your collection, or accept the default provided.

2. Enter a description of your collection. This description should explain
the purpose of the collection.

3. If you want to add resources to this collection that are
collection-specific, check the box provided. This will cause an extra
panel (Add Collection Resources) to be added to the wizard.

4. By default, the shared resources contained in your workspace will be
added to this collection. They are listed in the Shared Resources table.
If you do not want to add any or all of these resources to your
collection, click the check boxes to deselect them.

39

CHAPTER 3 | Working with Artix Collections

5. Click Next to display the Add Collection Resources panel, as shown in
Figure 20. If you did not choose to add resources to this collection,
the Summary panel will be displayed - see step 8 for details.

@ New Collection %

Enter Serice URL or W3DLADL file

| -
Added Iterms

i Previous H Mext H Finish ” Cancel ” Help]

Figure 20: New Collection wizard—Add Collection Resources panel

6. Enter the URL or name of an existing file you would like to import into
this collection as a resource. If you need to, click Browse to navigate
to the file's location.

7. Click Add to add the file to the Added Items list and repeat as many
times as necessary until you have added all the resources you want.

40

Creating a Collection

8. Click Next to display the Collection summary, as shown in Figure 21.

) New Collection x|

Mewly Created Collection Information

Caollection Name
MewCollection2

Shared Resources In Collection
multipartidl
GoogleSearch

Collection Specific Resources In Callection
file:dCTermplatixGoogleSearchawsdl

[Ereviuus H Mesdt ” Finish]" Cancel ”’ Help

Figure 21: New Collection wizard—Summary panel

9. Click Finish to close this wizard and return to the Artix Designer, where
you will see your new collection added to the Designer Tree.

41

CHAPTER 3 | Working with Artix Collections

Editing a Collection

Overview

42

You can make changes to your collection, or the resources within it, at any
time using the Collection Details panel, as shown in Figure 22.

@ C:/Temp/artir/GuiTutorial/GuiTutorialiad - Artix Designer =101 x|

File Edit View Resource Tools Help

RecE v LEsAmE REE @

75 GuiTutarial
) wiorkspace Senices
U Deployment Profiles
|:m ci_profile
13 java_profile
) shared Resources
L B HelloworlgGuiTutarial
U Caollections
"8, Client
>~ () Deplayment Bundles
2 vo_client
2 java_client
B HeliokoridGuTtonal
"3, Semver
P—U Deployment Bundles
0 ooe_sener
O java_serer
5] HetiowWorigGuTutonal

Collection Details

Client

Resource Details

[] HelloWorldGuiTutorial -~ CJTempiartiwGuiTutoriallResourcesHelloWorldGuiTutorial.wsdl

HEw... | Delete
Deployment Bundles

[e _client

[java_client

Mewy... I Delete

Figure 22: Collection Details panel

Editing a Collection

Adding and deleting resources To add a resource, click Add to display the New Resource from File/URL
dialog, as shown in Figure 23.

@ New Resource From File/URL - Artix Designer x|
* Enter WEDL/IDLKSD file or Service URL
([
Browse... ‘ | Add ‘
Added lterms
| Remove |
| ok || cancel || pew |

Figure 23: New Resource from File/URL dialog

For help with this dialog, and other information about adding resources, see
“Working with Artix Resources” on page 47.

To delete a resource you need to first select it on the Collection Details panel
using the check box provided, and then click Delete.

Adding and deleting Deployment To add a Deployment Bundle, click the Add button under the Deployment
Bundles Bundles list on the Collection Details panel to display the Deployment
Bundle wizard.

To delete a Deployment Bundle, you need to first select it using the check
box provided, and then click Delete.

43

CHAPTER 3 | Working with Artix Collections

Editing deployed collections

Invalid WSDL

ERRORS

If you make changes to any contract in a collection that has had code
generated, you should be aware that these changes could make the code for
that collection invalid. It is recommended, therefore, that you regenerate
the code any time that you change a previously deployed collection.

For more information, see “Generating Code” on page 192 for more
information.

Also, be aware that any changes you make to a resource could leave its
underlying WSDL document invalid - if this happens you will only be able to
view the contract by selecting the WSDL tab of the Resource Navigator, as
shown in Figure 25 on page 49. In this view, any problems with the WSDL
are listed, as shown in Figure 24, so that you can fix them and return the
WSDL to a valid state.

Line Numbher: 66
Column Humber: 13

<unknown-handler> :

Detailed Processor Message

W3DL parsing error in "C:/Temp/artix/GooglefSearch.wsdl™

attribute <http: /s schenas.<mnlsoap.org/soap/encodingsarrayType> has not been defined in the schema to be referenced

Converting resources to shared

44

Figure 24: Artix Designer Invalid WSDL Indicator

You can change a collection-specific resource within a collection to a shared
resources, and thus have the opportunity to add it to all of your collections.

To do this, select the resource name in the Designer Tree and select
Resource | Convert to Shared. This will invoke a dialog asking which other
collections you would also like to include this resource - by default, all
collections are selected.

Click OK to close this dialog and return to the Artix Designer. The resource
is now in the Shared Resources list, plus all collections that you specified.

Generating Code for a Collection

Generating Code for a Collection

As mentioned at the beginning of this chapter, collections can be generated
into physical entities such as Java, C++, or CORBA based applications.
Further, collections can be deployed as clients, servers, or switches,
depending on your solution requirements.

The Artix deployment process has three steps:

1.

Create a Deployment Profile - contains machine level information such
as the Artix save location, the compiler location, and the operating
system being used. A profile can be used multiple times as it is not
specific to any particular collection defined within the workspace.

To create a deployment profile, select File | New | Deployment Profile
from the menu bar.

Create a Deployment Bundle - defines specific information about the
deployment of a collection, such as the deployment type (client, server,
or switch), configuration details, and code generation options.

To create a deployment bundle, select a collection from the Designer
Tree, then select File | New | Deployment Bundle from the menu
bar.

Deploy the bundle - a very simple procedure once the profile and
bundle are in place. Artix deploys the solution based on the information
you provided in the bundle, and generates the code, environment
scripts, and configuration files as specified in the locations you
provided.

To deploy a bundle, select a collection from the Designer Tree, then
select Tools | Generate Code from the menu bar.

After generating the code, you need to perform some editing of the
implementation code, and then you can run and compile the code.

For more information and detailed procedures for each of the deployment
steps, see “Deployment” on page 177.

45

CHAPTER 3 | Working with Artix Collections

46

In this chapter

CHAPTER 4

Working with Artix
Resources

A resource is an XML document that defines an interface to a
collection.

This chapter discusses the following topics:

What are Resources? page 48
Navigating Resources page 49
What is a Contract? page 53
What is a Schema? page 56
Creating New Resources page 57

47

CHAPTER 4 | Working with Artix Resources

What are Resources?

Overview

How Artix helps you create a
contract

48

An Artix Resource is an XML document that can be used to define the
interface to a collection. In Artix 2.1 there are two resource types:

Contracts, which can comprise one or more of the following:

+ WSDL documents

+ WSDL created from IDL files

+ WSDL created from data sets, such as COBOL Copybooks

Schemas, which define types. Schemas can also be referenced from
within contracts, if desired, to define the types for that contract.

If a resource is added to a workspace, it can take one of two roles:

A "Shared" resource, which is automatically added to every collection
in that workspace.
A "collection-specific" resource, which only applies to the collection to
which it is added.

When building a WSDL contract, the Artix Designer guides you through the
process by making only relevant options available to you depending on the
current state of that contract.

For example, if you are building your contract from scratch you need to add
components to it in a certain order as there are dependencies between the
components. In short, the contents of the Resource menu, as shown below,
reflect the order in which components need to be added to the resource.

Types - the first item to be created. You may not have to create extra
ones though, as some primitive types exist by default.

Messages - cannot be created without a Type. The primitive types will
suffice if you don’t want to add new types.

Port Types - cannot be created without a Message.

Bindings - cannot be creating without a Port Type.

Services - cannot be creating without a Binding.

Routes - cannot be created without two compatible Services.

Contracts and Schemas are explained in more detail later in this chapter.

Navigating Resources

Navigating Resources

Overview

Diagram view

The Artix Designer provides an interface tool, called the Resource Navigator,
that gives you two views of a resource - diagram or text. These views are
accessed via tabs at the bottom of the Designer’s details panel.

Depending on how you want to work with your resource, you can use either
of the available views. If you aren’t very familiar with XML, you will find it
easier working in the diagram view, as shown in Figure 25.

s &

Types (106)

=

Messages (54)

.
D | Port Types(1)
multipart ;
[J%

Bindings

Services

L Lt
Routes

Figure 25: Resource Navigator—Diagram view

The WSDL model

The diagram view shows you the WSDL model. As seen in Figure 25, the
multi-part contract has 106 types, 54 messages, and 1 port type. It
currently contains no bindings, services, or routes.

49

CHAPTER 4 | Working with Artix Resources

If you right-click on one of the components, such as types, you are given the
option to create a new type, or to edit or view the existing types. You can
also expand and collapse the list of existing types.

The model expanded

When you expand the existing types, the Resource Navigator changes to
look more like Figure 26.

-
-
1]
=

o
| Test.MultiPart._...

ot

-
| TestMultiPart._...

ot

i »
Test.MultiPart._...

o

>
% Test.MultiPart.t...

Types (106)

o

.
Test.MultiPart.t...

o

L

a

multipart | Test.MultiPart.t...

.

Test.MultiPart.t...

Next (8-15)

Test.MultiPart.t...

o

Figure 26: Resource Navigator showing Types Expanded

50

Text view

Navigating Resources

Navigating the expanded model

Now you can scroll through the individual types and right-click on any of
them to edit or view the attributes for that type. The Resource Navigator
lists eight "child" components at any one time. To scroll to view the next or
the previous eight, you just need to click on the Next or Previous arrows.

If you want to see a list of all of the child components, right-click on the
parent node and click Go To, from where you can jump to any of the listed

types.

Viewing relationships between components

As you work down through each of the components in a WSDL contract, you
can expand them to a point that displays the relationships between them.
For example, for a contract that contains define services, bindings, port
types, messages, and types you can expand the each service right out to
view every related component, right out to its types.

If you prefer, you can work directly in the XML text for the resource by
selecting the Text tab, as shown in Figure 27.

Edit Search GoTo

<7xml version="1.0" encoding="TTF-3"z2>
<definitions name="multipart,idl™

targetNamespace="http: //schenas. iona. con/idl/multipart. idl™

xmlns="http://schemnas. xulsoap. org/wsdl/ "

®ulns:corba="http: //schenas. iona. con/bindings/corba™

®mlnsg:corbatm="http: //schenas. iona. con/bindings fcorba/ typenap™

xmlns: the="http: //schenas.iona. con/idl /uultipart. 141"

®ulns:xsd="http: /o, wi, org/ 2001 XML chena™

®xmlns:xsdl="http: //schewas. iona. con/idltypes /fmiltipart, 1dl™>

“typear

<schema targetNamespace="http://schemas.iona.com/idltypes/multipart.id1™

xmlns="http: /fwnr. w3, org 2001 ML Schena™
xmlns:wsdl="http: //schenas, snlsoap. org/wsdl/ M
<element name="Test.MultiFart. ¢get string attribute.return” type="xsd:string” />
Lelement name="Test.Multilart. get test id.return” type="wsd:float”/ =
<element name="Test.MultiFart._ set_test_id._arg” type="wsd:float”/»
<element name="Test.MultiPart.test short.x” type="xsd:short”/>
<element name="Test.MultiFart.test short.¥" type="xsd:short"s >
<element name="Test.MultiFart.test_short.z” type="wsd:short” />
Lelement name="Test.Multilart.test short.return” type="xsd:short”/ >
<element name="Test.MultiFart.test long.x” type="xsd:int”i/>
<element name="Test.MultiFart.test_long.y” type="xsd:int™/>
<element name="Test.Multilart.test long.z" type="xad:int”/ >
<element name="Test.MultiFart. test_long.return” type="wxsd:int”/»
<element name="Test.MultiPart.test longlong.x” Cype="xsd:long” />
<element name="Test.MultiFart.test longlong.¥" type="=sd: long” /=

salamant mama="Tasr Mnlrilart rast landlone =7 remes="wads Tane' i

Figure 27: Resource Navigator—Text view

51

CHAPTER 4 | Working with Artix Resources

Editing tools

In this view you can hand edit the resource. Tools under the Edit menu in
this view make the task easier. You can also use the Search and Go To
functions to locate segments or specific lines within the text.

Validating your changes

When you make changes to the text and click Apply Edits, Artix checks that
your changes have not compromised the XML for the resource. If your
changes have made the resource invalid, the errors are listed in the Errors
panel so that you can go to the relevant line and correct them. Figure 28
shows an example of the Error panel.

ERRORS

WSDL parsing error in “C:/Teuwp/arcix/Googlefearch. wadl™
Line Fumber: &6
Colunn Muumber: 13
Detailed Processor Message
<unknown-handler: @
attribute <http: //schenas.xunlsoap. org/soap/encoding/:arrayType> has not been defined in the schema to be referenced

Figure 28: Error panel

52

What is a Contract?

What is a Contract?

Overview

The Logical Section

Artix contracts describe Artix resources and their integration. They are

written in WSDL. Each mapping of a port type to a binding and port defines

an Artix collection. The contract also describes the routing between

collections. It has two sections:

® Logical - describes the abstract operations, messages, and data types
used by a collection.

® Physical - describes the concrete message formats and transports used
by a collection. The routing information defining how messages are
mapped between different collections is also specified here.

The logical section of an Artix Contract defines the abstract operations that
the collections offer. The logical view includes the <types>, <message>, and
<portType> tags in a WSDL document. This portion of the contract also
specifies the namespaces used in defining the contract.

Types

Applications typically use datatypes that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex datatypes using a combination of
schema types defined in referenced external XML schema documents and
complex types described in <type> elements.

For information about adding Types to your Artix contract, see “Adding
Types” on page 60.

Messages

WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <message> elements. Each
abstract message consists of one or more parts, defined in <part> elements,
that are the formal data elements of the abstract message. Each part is
identified by a name and an attribute specifying its data type.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <binding> elements.

53

CHAPTER 4 | Working with Artix Resources

54

For information about adding messages to your Artix contract, see “Adding
Messages” on page 73.

Port Types

A portType can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <portType> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

For information about adding Port Types to your Artix contract, see “Adding
Port Types” on page 77.

Operations

Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the name attribute. The name attribute is required to define an operation.
Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

For information about adding Operations to your Artix contract, see the
Operations section in “Adding Port Types” on page 77.

The Physical Section

For more information

What is a Contract?

The physical section of an Artix contract defines the bindings and transports
used by the collections. It includes the information specified in the
<binding> and <service> tags of a WSDL document. It also includes the
routing rules defining how the messages are routed between the endpoints
defined in the document.

Bindings

To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <binding> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

WSDL is intended to describe services offered over the Web and therefore
most bindings are specified using SOAP as the message format. WSDL can
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA,
SOAP, and XML. For specific information on using bindings see “Adding
Bindings” on page 115.

Services

The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ. For more information, see “Adding Services” on page 139.

Routing

To fully describe the integration of collections across an enterprise, Artix
contracts include routing rules for directing data between the collections.
Routing rules are described in “Routing Messages” on page 167.

For more detailed information about Artix contracts and their components,
see either the Artix Getting Started Guide, or Developing Artix Solutions
from the Command Line.

55

CHAPTER 4 | Working with Artix Resources

What is a Schema?

Overview An XML Schema is similar to a contract, except that it only defines types.
As such, it cannot really be called a contract. It is possible, however, to
create a contract containing a reference to a schema to define the contract’s
types. Figure 29 shows a Schema in the Resource Navigator diagram view.

s aa
|' newType
........... » complex I e

FirstSchema Types (2) %

newType2
simple Tvoe

Figure 29: Schema—diagram view

Figure 30 shows the same schema, this time in text view.

File Edit Search GoTo

<rxml wersion="1.0" encoding="TUTF-5"?>

®mlhg="http: /mm. w3, org /2001 XMLSchena™
xwlns: tns="http: //wr, iona. confartix /2, 1. 1L/Firstichena™
xnlns:iwsdl="http: //schenas. xnlsoap, org/wsdl /™
Hmlns:xed="http: v, w3l org /2001 MLEchena™s
<complexType name="tewType">

<allx

<fall>
</oomplexTyper
<simpleType nane="tnewTypez">
Lrestriction base="wxsd:string™>
<length walue="8"/%
<maxLength walue="12"/>
</restriction>
</zimpleType
< fachenar

Figure 30: Schema—text view

56

<achena targetNamespace="http://wmmr, iona.confartix/2. 1. 1/Firstichena™

<element maxOeocurs="3" minlccurs="0" name="new string” type="xsd:string”

Creating New Resources

Creating New Resources

Overview

Creating Artix resources from scratch takes a little time, but is still easy to
do using the Designer. Wizards guide you through the process.

As explained in “Creating a Collection” on page 38, a WSDL contract is
made up of a logical and a physical part. The logical part contains types,
messages, port types and operations. The physical part contains services
and bindings. A Schema is much simpler - it just defines types.

This section explains how to create schemas and how to create the logical
part of Artix contracts. The topics discussed are:

® “Creating a Contract” on page 58

® “Adding Types” on page 60

® “Adding Messages” on page 73

® “Adding Port Types” on page 77

® “Adding Access Control Lists” on page 83

® “Creating Resources from a File/URL" on page 86

® “Creating Contracts from Data Sets” on page 93

® “Creating an XSD Schema” on page 105

For information on adding bindings to your resource, see “Adding Bindings”
on page 115.

For information on adding services to your resource, see “Adding Services”
on page 139.

57

CHAPTER 4 | Working with Artix Resources

Creating a Contract

Overview The first thing you need to do is create a contract shell. Depending on

which mode of the Designer you are working in (Deployer or Editor), the
steps you follow to do this will be slightly different.

If you are working in Editor mode, select New | WSDL Contract to display
the New Contract dialog, as shown in Figure 32 on page 59.

If you are working in Deployer mode:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.

2. Select File | New | Resource from the File menu to display the New
Resource dialog, as shown in Figure 31.

B
Resource Details

@ @ @ This template enables you to create an empty WSDL confract,

ErnptyitiSDL Resaurce from WSDL Contract which you can add elements to using the resource editing
Contract Existing File or URL ~ from Data Set features.

Empty XS0

File

OK J | Cancel J | Help

Figure 31: New Resource dialog

58

Creating New Resources

3. Select the Empty WSDL Contract icon and click OK to display the
New Contract dialog, as shown in Figure 32.

@ Mew Contract - Artix Designer ﬂ

Mama [MewContract |

Target Namespace |ntp sy iona comiantiog2 1 1NewContract |

[]34]| Cancel H Help]

Figure 32: New Contract dialog

Enter a name in the Name field, or accept the default provided.

5. Enter a value in the Target Namespace field, or accept the default
provided.

6. Click OK to close this dialog and return to the Artix Designer. Your
new contract will be shown, and you can now add types, messages,
and port types to it using the procedures documented over the
following pages.

59

CHAPTER 4 | Working with Artix Resources

Adding Types

Procedure To add a Type to your resource:

1. Select Resource | New | Type from the menu bar to display the New
Type wizard, as shown in Figure 33.

x
P Select WSDL Select the WSDL file this nesw contract iter should be added to
Cefine Type Properties -
R BRI @ Add tonewWSDL [Defined_Types

Miew Summary

Mext

| Cancel | Help

Figure 33: New Types wizard

2. Select where to create the WSDL entry for the new type.
+ Add to existing WSDL adds the type information to the existing
contract.
+ Add to new WSDL creates a new WSDL document that contains
the type information.

If, like in this example, you have an instance where the first option on
this panel - Add to existing WSDL - is not able to be selected, it
indicates that your WSDL file is read-only. Thus, you only have the
option or creating a new WSDL file for the new type.

60

Creating New Resources

3. Click Next to display the Type Properties panel as displayed in

Figure 34.

Tvpe Properties

™ Mame

CKind
@ lcomplexType|
O simpleType

O element

|mewTvpe

Schema Target Namespace |hﬁp'tJWWW iona cormfouitutorial E]l

I Previous “

Mext ” Finish ” Cancel ” Help

Figure 34: New Types wizard—Type Properties panel

4. Enter a name for the new type, or accept the default provided.

5. You can specify a target namespace for this type if you like - if you
don't the default WSDL target namespace is applied.

6. Select the Kind value for the type - complex, simple, or element.

61

CHAPTER 4 | Working with Artix Resources

7. Click Next to display the Define Type Data panel, as shown in

Figure 35.
Elements in complexType - "newType"

Group Type [an =]

Conterit Base Type | -]

“Element Data
Type -] Oninavie
Name [|
Min Occutrence l:l Add

Maxoceumence [| [Unbounded

“Element List

Mame]| Type | MinQecurs | WaxOccurs | Nillable Remove

[Erevluus]I Mext I[Finich][Cancel H Help

Figure 35: New Types wizard—Define Type Data panel

8. Depending on the Kind of type you selected, different options are
displayed on the Type Attributes panel. The example shown in
Figure 35 shows the options for a complex type. Continue with step 8,
if this is the kind of type you are creating, otherwise go to one of the
following steps:
+ Step 19 for a simple type
+ Step 24 for an element

62

Complex type attributes

Creating New Resources

10.

11.

12.

13.

14.

15.

At the Define Type Data panel, as shown in Figure 35, select a Group

Type value from the list provided. This defines how the complex type

elements will be mapped to data structures.

If you select one of the content types (simplecontent or

complexcontent), the Content Base Type field is enabled. From this

field you can select the type you would like to use as a starting point

for your content type.

Provide values for each of the Element Data fields:

+ Type - the base type for this schema

+ Name - a unique string identifier for element

¢ Minimum Occurrence - the minimum times you want the element
to be present (not an option for content types)

. Maximum Occurrence - the maximum times you want the
element to be present (not an option for content types)

If this element is going to be a required field in your application, then

you should select the Required check box provided.

Select the Unbounded check box if there is no maximum occurrence

limit. Note: this is not an option for content types.

Select the Nillable check box if you want to indicate that this element

could potentially be omitted completely, or could pass an empty object

across the wire. Note: this is not an option for content types.

Click Add to move the details you have provided for this element into

the Element List table.

To edit an element in this table, select it and then make the changes in

the fields above the table. Click Update to refresh the values in the

table.

You can delete an element from this table by selecting it and clicking

Remove.

Repeat steps 9 - 14 until you have added all of your elements.

63

CHAPTER 4 | Working with Artix Resources

16. Click Next to display the Define Type Attributes panel, as shown in
Figure 36.

Elements in complexType - "newType"

~Aftribute Data

Tive | -] Add

Mame | | Clear

[1 Required
~Aftribute List
MNarne | Tupe] Use Remmoie
I Previous “ Mext I [Einish ” Cancel] I Help

Figure 36: New Types wizard—Define Type Attributes panel

17. Click Next to view the Summary panel.

18. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

64

Creating New Resources

Simple type attributes 19. At the Define Type Data panel, as shown in Figure 37, select a Base
Type from the list provided, for example, string or boolean.

X
Restrictions in simpleType - "newType"

Base Type ‘n51:\nF’arameter E]J
“Restriction Data

Facet " "-” Add

Valug | ‘ Clear
“Restriction List

Facet] Yalue Remove
[Previous] [Mext I | Finish | [Cancel] [Help

Figure 37: New Types wizard—Type Data (simple) panel

20. Provide values for each of the Restriction Data fields:

+ Facet - a characteristic of the base type, for example for a string,
the available facets would be enumeration, length, or

maxLength.

+ Value - the value for the facet, for example the value for /ength
would be a non-negative integer.
21. Click Add to move the details you have provided for this restriction into
the Restriction List table.
To edit a restriction in this table, select it and then make the changes
in the fields above the table. Click Update to refresh the values in the

table.

You can delete a restriction from this table by selecting it and clicking

Remove.

65

CHAPTER 4 | Working with Artix Resources

22. Repeat steps 16 - 18 until you have added all of your restrictions.
23. Click Next to view the Summary panel, as shown in Figure 38.

@ New Type - Artix Designer

Newly Craated Types Information

<7xul version="1.0" encoding="UTF-g"z
<contract name="HellolorldGuiTucorial™
<types>
<zimpleType name="newType">
<restriction base="tns: InFaraneter”>
<enumeration walue="900"/>
</restriction:
</zinpleTypes
</types»
</contract>

Check here to create another Type]

[prewous || mew [pmsn |[cancer [hew

Figure 38: New Type wizard—Summary panel for Simple Types

24. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

66

Element attributes

Creating New Resources

25. At the Define Type Data panel, as shown in Figure 39, select the
Nillable check box if you want to indicate that this element could
potentially be omitted completely, or could pass an empty object
across the wire.

@ New Type - Artix Designer x|

Attributes in element - "newType"

~General Definition
Cimilable

~Type Definition

O Pre-declared Type |n=lInParameter IE“

@ Inline complexType

O Inline simpleType

[Ereviuus ” Mext Il Finish H Cancel ” Help

Figure 39: New Types wizard—Type Attributes (element) panel

26. Select an Attribute Type Definition. Options available are:

*

Pre-declared type - any type that has been pre-defined or is one of
the standard primitive types

Inline complextype - an "anonymous" complex type that can be
used within this element only; is not available for use by other
elements or types

Inline simpletype - an "anonymous" simple type that can be used
within this element only; is not available for use by other
elements or types

27. Depending on what you select here, clicking Next will display one of
the following:

67

CHAPTER 4 | Working with Artix Resources

+ The Define Inline Type (complex) panel, as displayed in
Figure 40, - continue with the next step in this procedure

+ The Define Inline Type (simple) panel - jump to step 40 in this
procedure

¢+ The View Summary panel - jump to step 42 in this procedure.

o
Elements in complexType - "Anonymous ComplexType"
Group Type [an]
Content Base Type | -]
“Element Data
Type [=] Onmmase
Name [|
MinCeeurence [|
Max Qceurrence I:l] Unbounded
“Element List
Marme] Type | Min Occurs [Max Occurs | Nillable | ‘ FemaE
[Previous “ Mext ” FEinish |I Cancel H Heln

Figure 40: New Types wizard—Define Inline Type panel (complex)

Inline complextype 28. Select a Group Type value from the list provided. This defines how the
complex type elements will be mapped to data structures.

29. If you select one of the content types (simplecontent or
complexcontent), the Content Base Type field is enabled. From this
field you can select the type you would like to use as a starting point
for your content type.

30. Provide values for each of the Element Data fields:
+ Type - the base type for this schema
+ Name - a unique string identifier for element

68

31.

32.

33.

34.

Creating New Resources

¢ Minimum Occurrence - the minimum times you want the element
to be present (not an option for content types)

¢+ Maximum Occurrence - the maximum times you want the
element to be present (not an option for content types)

If this element is going to be a required field in your application, then

you should select the Required check box provided.

Select the Unbounded check box if there is no maximum occurrence

limit. Note: this is not an option for content types.

Select the Nillable check box if you want to indicate that this element

could potentially be omitted completely, or could pass an empty object

across the wire. Note: this is not an option for content types.

Click Add to move the details you have provided for this element into

the Element List table.

To edit an element in this table, select it and then make the changes in

the fields above the table. Click Update to refresh the values in the

table.

You can delete an element from this table by selecting it and clicking

Remove.

Repeat steps 28 - 33 until you have added all of your elements.

69

CHAPTER 4 | Working with Artix Resources

35. Click Next to display the Define Type Attributes panel, as shown in
Figure 41.

Elements in complexType - "newType"

~Aftribute Data

Tive | -] Add

Mame | | Clear

[1 Required
~Aftribute List
MNarne | Tupe] Use Remmoie
I Previous “ Mext I [Einish ” Cancel] I Help

Figure 41: New Types wizard—Define Type Attributes panel

36. Click Next to view the Summary panel.

37. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

70

Creating New Resources

Inline simpletype 38. At the Define Inline Type (simple) panel, as shown in Figure 42, select
a Base Type from the list provided, for example, string or boolean.

=
Restrictions in eimpleType - "Anonymous SimpleType”

Base Type |m31 InParameter E]I
~Restriction Data

Facet | E]I Add

Value | | Clear
~Restriction List

Facet J Walue Remove
[Frevious]l Mext] | Finish ‘ [Cancel] [Help

Figure 42: New Types wizard—Define Inline Type (simple) panel

39. Provide values for each of the Restriction Data fields:

+ Facet - a characteristic of the base type, for example for a string,
the available facets would be enumeration, length, or
maxLength.

+ Value - the value for the facet, for example the value for /ength
would be a non-negative integer.

40. Click Add to move the details you have provided for this restriction into
the Restriction List table.

To edit a restriction in this table, select it and then make the changes

in the fields above the table. Click Update to refresh the values in the

table.

You can delete a restriction from this table by selecting it and clicking
Remove.

71

CHAPTER 4 | Working with Artix Resources

41. Repeat steps 38 - 40 until you have added all of your restrictions.

42. Click Next to view the Summary panel.

43. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

72

Creating New Resources

Adding Messages

Procedure To add a Message to your resource:

1. Select Resource | New | Message from the menu bar to display the
New Message wizard, as shown in Figure 43.

zl
~Specify 1 Resource file
@ [Add to existing Resource| |Goog\eaearcn E]J
O Add to new Resource
~ Mame |Deﬂned7Messages ‘
* TargetMamespace [ona comiartio2 1 1iDefined_| J

~Selected Resource source fil

¥ GoogleSearch
O multipartid!
O gridt

Selectall Deselect Al

‘Ereviuus || Mext ” Finish |[Cancel][Help]

Figure 43: New Message wizard

2. Select where to create the WSDL entry for the new message.

¢ Add to existing WSDL adds the message information to an
existing contract.
+ Add to new WSDL creates a new WSDL document that contains
the message information.
3. Select the resources from this collection that you want to use as the
source for this new message. If you selected a resource before
invoking the New Message wizard, that resource is selected by default.

73

CHAPTER 4 | Working with Artix Resources

You can also select other resources to use as sources for this message

- this will give you more types to choose from when defining message
parts later in this wizard.

4. Click Next to display the Message Properties panel, as shown in
Figure 44.

@ New Message - Artix Designer

Message Properties

Name [newhessaged]

IEreviuus]I Mext ” Finish H Cancel H Help

Figure 44: New Message wizard—Message Properties panel

5. Enter a name for the message, or accept the default provided.

74

Creating New Resources

6. Click Next to display the Message Parts panel, as shown in Figure 45.

@ New Message - Artix Designer 5[

Parts for Message - "newblessagel"

Mame ‘

Type

“PartList

&
=
o

Mame

| Remove

[Erewaus]I Mext ” Finish H Cancel H Help

Figure 45: New Message wizard—Message Parts panel

7. Enter a name for the message part, and select a type from the list
provided.

8. Click Add to move the details you have provided for this part into the
Part List table.
To edit a part in this table, select it and then make the changes in the
fields above the table. Click Update to refresh the values in the table.
You can delete a part from this table by selecting it and clicking
Remove.

9. Repeat steps 6 and 7 until you have added all of your parts.

75

CHAPTER 4 | Working with Artix Resources

10. Click Next to view the Summary panel, as shown in Figure 46.

@ New Message - Artix Designer

Mewly Created Message Infarmation
<7xml wersion="1.0" encoding="UTF-&"z>
<contract name="Defined Hessages'>
<message name="rnevMessagel’>
<part name="First part” type="nsl:GoogleSearchResult” />
<part name="Second_part” cypes="xadistring e

«/uessage:
</contract»

Check here to create another Message []

[Erewous H IMest H Finish ||| Cancel ||I Help

Figure 46: New Messages wizard—Summary panel

11. If you would like to add another Message, click the check box provided
and click Next. This will return you to the Message Properties panel,
as displayed in Figure 44 on page 74.
Alternatively, click Finish to close this wizard and return to the Artix
Designer.

76

Creating New Resources

Adding Port Types

Procedure To add a Port Type to your resource:

1. Select Resource | New | Port Type from the menu bar to display the
New Port Type wizard, as shown in Figure 47.

E
~Specify destination Resource fil
@ Add 1o existing Resource| |GaagIeSearch E]I
O Add to new Resource
~ Name |Deﬂned7F’n|1Typas |
* TargetMamespace iona comiartiz 1.1/0efined_PortTypes|

~Selected Resource source file:

[¥] GongleSearch
O multipart il
[grid

Belectall Deselect All

|Erewnus “ Mext H Finish H Cancel ” Help]

Figure 47: New Port Type wizard

2. Select where to create the WSDL entry for the new port type.
+ Add to existing WSDL adds the port type information to the
existing contract.
+ Add to new WSDL creates a new WSDL document that contains
the port type information.

3. Select the resources from this collection that you want to use as the
source for this new port type. If you selected a resource before
invoking the New Port Type wizard, that resource is selected by

77

CHAPTER 4 | Working with Artix Resources

default. You can also select other resources to use as sources for this
port type - this will give you more messages to choose from when
defining the operations later in this wizard.

4. Click Next to display the Port Type Properties panel, as shown in

Figure 48.

Port Type Properties

Name |newPortTypel

[Erevmus “ Mexd I[Finish ” Cancel H Help

Figure 48: New Port Type wizard—Port Type Properties panel

5. Enter a name for the port type, or accept the default provided.

78

Creating New Resources

6. Click Next to display the Port Type Operations panel, as shown in

Figure 49.

Operations for Port Type - "newPorTypel"

Name |ﬂgwop |

S8 one-way [-]

IErEvinus “ Mend I[Finish H Cancel ” Help

Figure 49: New Port Type wizard—Port Type Operations panel

7. Enter a name for the new operation and select a style from the list
provided. Valid options are:

¢ One-way
e request-response

79

CHAPTER 4 | Working with Artix Resources

80

8. Click Next to display the Operation Messages panel, as shown in
Figure 50.

@ New Port Type - Artix Designer x|

Messages for Port Type Operation - "newOp"

Twe | [=]

Message‘ E]J [Add]
Mame ‘ ‘ Clear

~Operation

Type] Message J MNarne

Remove

[Eravinus “ Mext ” Finish H Cancel ” Help

Figure 50: New Port Type wizard—QOperation Messages panel

9. Select a Message Type from the list provided.
10. Select a Message from the list provided.
11. Enter a name for the message, or accept the one provided.

12. Click Add to move the details you have provided for this operation
message into the Message List table.
To edit a message in this table, select it and then make the changes in
the fields above the table. Click Update to refresh the values in the
table.

You can delete a message from this table by selecting it and clicking
Remove.

Creating New Resources

13. Click Next to display the Port Operations Summary panel, as shown in
Figure 51.

@ New Port Type - Artix Designer x|

Mewly Created Port Type Operations Information

<zxml version="1.0" encoding="UTF-&" 7>
<contract name="Defined PortTypes’s
<portType name="revPorcTypel™s
<operation name="newlp">
<input message="nsl:doSpellingSugrestion” name="newlpRequest” />
<output message="nsl:dospellingSuggestionResponse” name="newlpResponse"
</operations
< /portTypes
</contracts

Check here to create another Port Type Operation []

lErevmus]I Mext ” FEinish H Cancel H Help]

Figure 51: New Port Type wizard—Port Operations Summary panel

14. If you would like to add another Port Type Operation, click the check
box provided and click Next. This will return you to the Port Type
Operation panel, as displayed in Figure 49 on page 79.

81

CHAPTER 4 | Working with Artix Resources

Alternatively, click Next to display the Port Type Summary panel, as
shown in Figure 52.

@ New Port Type - Artix Designer

Mewdy Created Port Type Information

<oxml wersion="1.0" encoding="UTF-&"2>
<contract name="Defined FortTypes™s
<portType name="rtewPoreTypel™s
<operation name="newlp”>
<input message="nsl:doSpellingSugyestion” neme="newOpRequest™ />
<output message="nsl:doSpellinguggestionResponse” neme="nevpReaponse”
</operation>
</portTypes
</contract>

Check here to create another Port Type [

[Erevluus][Mext ” Finigh]H Cancel H[Help

Figure 52: New Port Type wizard—Port Type Summary panel

15. If you would like to add another Port Type, click the check box
provided and click Next. This will return you to the Port Type
Properties panel, as displayed in Figure 48 on page 78.
Alternatively, click Finish to close this wizard and return to the Artix
Designer.

82

Creating New Resources

Adding Access Control Lists

Procedure You can create access controls lists (ACL) to define roles for each operation
in a port type.
To create an access control list:
1. Select a resource in the Designer Tree and select Resource | New |

Access Control List to display the New Access Control List wizard, as
shown in Figure 53.

«
™ Select ACL Role Caontract Mame grid
View ACL Summary = Security Server ‘ |
Part Type ‘AH Iz”
Default Role [-]

ACL Save Location [caTemplartbaNewiorkspacelaCLigrid |%

‘ Cancel | Help

Figure 53: New Access Control List wizard

2. Type the name of your security server in the field provided.

In the Port Type drop-down, either accept the default of All to assign
the same role to all port types in this resource, or select a port type to
assign roles at the operation level.

Selecting a port type will insert another panel into this wizard for you to
use when specifying operation-specific roles.

83

CHAPTER 4 | Working with Artix Resources

4. Type arole name in the Default Role field, or select the one provided in
the drop-down list. If you do not specify a role name for an operation
on the next panel, the value you specify here will be assigned by
default.

5. Accept the default save location provided for this ACL list, or type a
new one in its place. You can click Browse to navigate to a different
save location, if you prefer.

6. Click Next to display the Define ACL Operations panel, as shown in
Figure 54.

x
Select ACL Role Contract Marme grid
™ Define ACL Operations Port Type Grid

Wiew ACL Summary

Operations and Raoles

Operation Marme Role

|_get_height
|_get_width
set

et

Create another Port Tyne Access Control List [

‘ Previous H Mext] | Cancel H Help

Figure 54: New ACL wizard—Define ACL Operations panel

7.

84

Click in a cell in the Role column to assign a role to that operation.
You can select roles from the drop-down with the cell, or type new
roles into the cell. You can add multiple roles to an operation as long
as you separate them with a comma.

Click the check box provided if you want to create another ACL - when
you click Next after clicking the check box the ACL you just created will
be saved and you will return to the first panel where you can repeat the
process.

Creating New Resources

9. Otherwise, click Next to display the View ACL Summary panel, as
shown in Figure 55.

@ New Access Control List - Artix Designer

Newly created Access Control Lists Information

*Gelectan Access Control List | grig_ Grid-acluml E]I

<7xnl wersion="1.0" encoding="UTF-5"7>
<IDOCTYPE secure-system SYSTEM "actionrolemapping. drd™s
<secure-systemr
<action-role-mappings
{EEYVEY-NANE>ESEIVEr_l</SRrVer-name>
<interfacer
<namerhttp: //achenas.iona. com/idl/C/Tenp/artix/grid. 1dl: Grid< /mame>
<action-role>
<action-name>_get_height</action-name:x
<role-name>T0NAUserRole</role-names
</action-rolex
<action-role:
<action-name>_get_vidth</action-namex
<role-name>T0NAUserRole</role-names
<role-namergrid_specific_role</role-namex
«/actien-rolex
<action-role>
<action-name»get</action-name:
<role-nane>I0NAUserRole<d /role-nane>
<role-name>grid_specific_role</role-name>
«/action-rolex
<action-role:

[Erevmua H Mext H Finish]H Cancel "[Help

Figure 55: New ACL Wizard—View ACL Summary panel

10. This panel displays a summary of the ACL you have just created. To
view an ACL created earlier, select it from the drop-down list provided.

11. Click Finish to close this wizard and return to the Artix Designer.

85

CHAPTER 4 | Working with Artix Resources

Creating Resources from a File/URL

Overview If you don’t want to create your resource from scratch, you might be able to

base it on an existing URL or File. You have four options:

® URL - you can use WSDL located at a URL address. For more
information, see “Using a File or a URL to create a Resource” on
page 87.

® WSDL - if you have some existing WSDL, you can import this into Artix
and use it as is, or edit it to change its components. For more
information, see “Using a File or a URL to create a Resource” on
page 87.

® XSD - You can create a resource based on an existing schema file. For
more information, see “Using a File or a URL to create a Resource” on
page 87.

® IDL - If you are starting from a CORBA server or client, Artix can
generate the logical portion of the WSDL contract from IDL,
automatically adding the required CORBA-specific entries and
namespaces. For more information, see “Using IDL to create a
Resource” on page 89.
The IDL compiler also generates the binding information required to
format the operations specified in the IDL. However, since port
information is specific to the deployment environment, the port
information is left blank, and you need to separately define a port using
the Services wizard - “Adding Services” on page 139 for help with this
task.

86

Procedure

Creating New Resources

Using a File or a URL to create a Resource

To use an existing WSDL or XSD file as the basis for your contract:

1. Select either the Shared Resources folder or a Collection from the

Designer Tree.

2. Select File | New | Resource from the menu bar to display the New
Resource dialog, as shown in Figure 58.

New Resource - Artixk Designer

&l = &

Ermpty WSDL Resource from WSDL Contract
Cantract Ewisting File or URL fram Data Set
Empty 5D
File

Resource Details
This template enables you to create an empty WSDL contract,
which you can add elements to using the resource editing
features

oK]| Cancel]| Help

Figure 56: New Resource dialog

87

CHAPTER 4 | Working with Artix Resources

88

Select the Resource from Existing File/lURL icon and click OK to
display the New Resource from File/URL dialog, as shown in
Figure 57.

@ New Resource From File/URL - Artix Designer x|
* Enter W3DLADLXSD file or Service URL
[B
Browse... ‘ | Add ‘
Added ltems
| Remove |
I 0]34 l | Cancel ‘ | Help ‘

Figure 57: New Resource from File/URL dialog

4.

Either type the URL address, or click Browse to locate the WSDL or
XSD file.

Click Add to move this resource to the Added Items list. Repeat steps
3 - 5 to add as many more WSDL or XSD resources as you like.

Click OK to close this dialog and return to the Artix Designer. One
contract will be listed under the selected collection for each resource
added or referenced.

Using IDL to create a Resource

Creating New Resources

Procedure

To use an IDL file as the basis for your resource:

1. Select either the Shared Resources folder or a Collection from the

Designer Tree.
2.

Select New Resource from the File menu to display the New Resource

selection panel, as shown in Figure 58.

New Resource - Artix Designer

&l &l &l

Empty WSDL Resource from WEDL Gontract
Contract Existing File or URL from Data Set
Ermpty 5D
File

Resource Details
This template enahles you to create an emply YWSDL contract,
which you can add elements to using the resource editing
features.

ok || cancel || Hemw

Figure 58: New Resource dialog

89

CHAPTER 4 | Working with Artix Resources

3. Select the Resource from Existing File/URL icon and click OK to
display the New Resource from File/URL dialog, as shown in

Figure 59.
@New Resource From File/URL - Artix Designer x|
* Enter WSDLUIDLASD file or Service LIRL
I]
Browse..] | Add]
Added ftems
| Eemave |
[QK] ‘ Cancel I | Help]

Figure 59: New Resource from File/URL dialog

4. Click Browse to locate the IDL file you want to use as the resource for
your Artix contract.

90

Creating New Resources

5. Click Add to move this file to the Added Items list and display the IDL
Compiler Options dialog, as shown in Figure 60.

@ DL Compiler Dptions - Artix Designer x|

IDL Cormpiler Include Option

Enter Directory {or Click ORICancel to accept defaulf)

| Browse...
Selected Directories
CriTermphartix
DL to WSDL Optiohs
WEDL Target Marnespace |:’
Scherma Target Namespace I:’

CORBA TypeMapping Target Mamespace I:’

[Jimport Logical Contract Only (Mo Binding or Service endpaint infarmation)

{ QK H Cancel H Help

Figure 60: /DL Compiler Options dialog

Enter the names of the directories to search for included IDL files.

Click Add to add a directory to the list. Selecting a directory and
clicking Remove will delete it from the list.

8. Add values to each of the namespace fields:

+ WSDL Target Namespace - the name the IDL Compiler will set for
the targetNamespace value in the WSDL

+ Schema Target Namespace - the name the IDL compiler will set
for the targetNamespace value in the Schema

+ CORBA TypeMapping Target Namespace - the name the IDL
compiler will set for the CORBA targetNamespace

If you do not set values for these fields, defaults will be assumed.

91

CHAPTER 4 | Working with Artix Resources

9. If you only wish to generate the logical portion of the contract select
the Logical Contract Only check box.

Note: If this option is selected the generated contracts will not
contain any binding, CORBA typemap, or transport information.

10. Click OK to close this dialog and return to the New Resource from
File/URL dialog

11. Repeat steps 4 - 10 until you have added all of the IDL resources to
import.

12. Click OK to close this dialog and return to the Artix Designer. One
resource will be listed under the selected collection for each IDL file
imported. The resources will include a CORBA binding (unless you
specified in Step 9 to create only the Logical Contract), a CORBA type
map, and a CORBA port description.

Deploying a service with the You need to add location information to the CORBA port before you can
CORBA port deploy a service using the CORBA port. For more information, see “Adding a
CORBA Port” on page 143.

For information about deploying Artix solutions, see “Deployment” on
page 177.

92

Creating New Resources

Creating Contracts from Data Sets

Overview

Procedure

The third way you can create new contracts is by basing them on a data set.
Examples of this include:

® Defining fixed data

® Using an existing COBOL Copybook to define the fixed data

® Defining tagged data

When you create a contract in this way, you're actually also creating the
associated binding at the same time. When creating contracts using the

other methods described in this chapter, the binding definition is a separate
step.

To create a contract from a data set:

1. Select New Resource from the File menu to display the New Resource
dialog, as shown in Figure 61.

|
Resource Details
@ This template enables you to create an empty WSDL
Ernpty WSOL Evisting Resource WSDL Contract contract, which you can add elernents to using the resource
Contract fram File ar URL fram Data Set editing features
Empty x50
File
Ok J | Cancel] | Help

Figure 61: New Resource dialog

93

CHAPTER 4 | Working with Artix Resources

94

2. Select the New Contract from Data Set icon, and click OK to display
the New Contract from Data Set wizard, as shown in Figure 62.

@ New Contract From Data Set - Artix Designer 5[

Selectthe WSDL file this new contract itern should be added to
® Add to existing WSDL “GoogleSearch”

O Add to new WSDL DefaultBindings

[erevous || mew || Enen || cancal || Hemw

Figure 62: New Contract from Data Set wizard

3. Enter a name for the WSDL that will contain the new binding, or
accept the default provided.

4. Click Next to display the Data Format panel.

Now you need to turn to the relevant page, depending on what type of
contract and binding you are creating. You can create:

® A contract containing a fixed binding - see page 95

® A contract containing a fixed binding from a CCB - see page 98
® A contract containing a tagged binding - see page 101

Overview

Procedure

Creating New Resources

Creating a Contract Containing a Fixed Binding

Many applications send data in fixed length records. For example, COBOL
applications often send fixed record data over WebSphere MQ. Artix
provides a binding that maps logical messages to concrete fixed record
length messages. The fixed binding allows you to specify attributes such as
encoding style, justification, and padding characters.

To add a contract containing a Fixed binding:
1. At the Data Format panel, select Fixed.
2. Click Next to display the Set Defaults panel, as shown in Figure 63.

x|
Binding Defaults
Select Save Lacation)
Binding Name |FixedBinding |
Select Data Format
Part Type Name i
™~ St Dafaults [Fredrormype |
Input Data Target Namespace |hnp iy iona.comiFizedBinding |
ViewWsDL Schema MNamespace |hrtp Tt iona.comiFixedBindingitypes |

Message Defaults

[#] Create Message Parts With Elements

Justification ‘ E“

Encading ‘ |

Padding ‘ |

*Justification, Encoding, and Padding may be overridden per message

| Pravious hext | cancet || Heip

Figure 63: New Contract from Data Set wizard—Set Fixed Defaults panel

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

95

CHAPTER 4 | Working with Artix Resources

5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, check the box provided if you want to
create your message parts as elements rather than types.

7. Select a justification value from the drop-down list. Options are Left
and Right.

8. Enter an encoding value. Valid options are UTF-8 and UTF-16.

9. Enter a value in the Padding field, if required. This is a character
string to be used to fill unused space in the message field. You can use
any character, or combination of characters, that you like.

10. Click Next to display the Input Data panel, as shown in Figure 64.

x
Operations
Select Save Lacation
Mame \ Style \ Discriminatar \
Select Data Format
Set Defaults
™ Input Data | Add
Wiew VWSDL
Messages
Narng I Type | Justification [Encoding | Padding |
Fields
Marne | Type | Siwe | Format | Value [Rendering| Occurs | Courder [Diserimin.
| Previous || mea |[pmsn || cance || Hew |

Figure 64: New Contract from Data Set wizard—Input Data panel (Fixed)

11. Click Add to create a new Operation.

12. Enter a name for the Operation, or accept the one provided.

96

13.
14.

15.

16.

17.

@ New Contract From Data Set - Artix Designer 5[

Creating New Resources

Change the Operation style by clicking on the default Style value.

You can add a discriminator to filter the operations by adding one to
the Discriminator cell for the new Operation.

Under Messages enter values for the attributes for the messages that
have been created for the Operation.

Click Add to add fields to your messages and select each of the
available cells to enter attributes for the fields as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types.

Message parts can be fields, enumerations, sequences, or choices.

When you have finished adding objects click Finish to create the
contract with the fixed record binding, as shown in Figure 65.

“WSDL Contract

<l wersion="1.0" encoding="UTF-57 7>
<wedl:definitions name="TefaultEindings"
targetNawespace="http: //mm. iona. con/FixedBinding™
xulns="http://schenas.xulsoap.org/wsdl/ "
xmlns:fixed="http: //schenas.iona.con/bindings/fixed”
smlns:soap="http: //schenas.xnlonap. org/wsdl fanap
¥ulns:tha="hrtp: / /o, iona. con/FixedBinding™
xulns:wsdl="http: //schenas.xnlsoap. crg/wsdl/ "
xulns:xsd="http: /S, w3, org/ 2001 2MLEchena™
xulna:xsdl="htrp: /. ioma. con/FixedBinding/ types™>
<wsdl:typess
«<schena targetNamespace="http://wmm.iona.con/Fixedbinding/types™
xmlnsg="http: /. w3, org/2001 /ML Schena>
<element hame="FieldlEL"™ type="xsd:string” />
<couplexType name="5SequencelType"s
<sequence’
<element name="Fieldl" type="wsd:string”/>
£ /3equences
</complexTypes-
<complexType name="SequencelType seq”>
<sequence’
<element maxlccurs="0" minlcours="0" name="SequencelType_se
type="xsdl: SequencelType" />
</sequence>
< /oomplexTypes
<element name="SequencelEl”
2x Ty I £

type="xsdl:dequencelType_seq” />

[Erewnus H Mext |” Finish ||[Cancel ” Help]

Figure 65: New Contract from Data Set—Summary panel

97

CHAPTER 4 | Working with Artix Resources

Overview

Procedure

98

Creating a Contract Containing a Fixed Binding from a COBOL Copybook

The other way to create a contract containing a fixed binding is to base the
messages in that binding on an existing COBOL Copybook. Your CCB can
contain one or more messages - at the time that you associate each fixed
message with a message from the CCB, you'll be asked to specify the
message to use.

To add a contract containing a Fixed binding from a COBOL Copybook:
1. At the Data Format panel, select Fixed.
2. Click Next to display the Set Defaults panel, as shown in Figure 66.

51
Binding Defaults
Select Save Location _
Binding Name [FixedBinding |
Select Data Format
Fort Type Narme
St Dafaults ¥R ‘leeanr‘tType ‘
Input Data Target Namespace ‘hﬂp.ﬂ\nf\/\mfiuna.cumfF\xedBindmg ‘
iew WEDL Schema Namespace [ty iona.comiFixedBindingiypes |

Message Defaults

[4] Create Message Parts With Elements

Justification | E”

Encoding | ‘

Padding | ‘

*Justification, Encoding, and Padding may be averridden per message

| Previous hlext ‘ Cancel ‘ Help

Figure 66: New Contract from Data Set wizard—Set Fixed Defaults (CCB)

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

Creating New Resources

5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, check the box provided if you want to
create your message parts as elements rather than types.

7. Select a justification value from the drop-down list. Values are Left
and Right.

8. Enter an encoding value. Valid options are UTF-8 and UTF-16.

9. Enter a value in the Padding field, if required. This is any character
string to be used to fill unused space in the message field.

10. Click Next to display the Input Data panel, as shown in Figure 64.

a
~Operation
Narme Style Discriminator]
Operationt REQUEST_RESPONSE [
MNarne | Type | Justification | Encoding | Padding
Messagel Input [
Message? |Output | | |
“Field
Mame J Type J Size J FurmatJ WValue JRenderingJ Qceurs J Counter JD\scnrmn
[rea_] [roroe |

[Erewuus “ Mext I[Einish H Cancel H Help I

Figure 67: New Contract from Data Set wizard—Input Data panel (CCB)

99

CHAPTER 4 | Working with Artix Resources

100

11.

12.
13.
14.

15.

16.

17.

18.

Click Add to create a new Operation. (In the example shown, this step
has already been performed so that the Browse button described in
step 15 could be enabled.)

Enter a name for the Operation, or accept the one provided.

Change the Operation style by clicking on the default Style value.

You can add a discriminator to filter the operations by adding one of

the Discriminator cell for the new Operation.

Under Messages enter values for the attributes for the messages that

have been created for the Operation. To use the details from your

COBOL Copybook, click the Browse button.

This will invoke a file chooser, from where you can navigate to your

COBOL Copybook. When you select one, and click OK, Artix will do

one of two things:

+ If the COBOL Copybook contains only one message, the
associated fields on the Input Data panel will be populated.

+ Ifthe COBOL Copybook contains more that one message, you will
see an intermediary dialog from where you can select which
message to associate with the fixed message in the Input Data
panel.

You can edit any of the fields that are populated for this message from

the COBOL Copybook by clicking on the relevant cell.

Click Add to add extra fields to your messages as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types.

Each message part can be either a field, an enumeration, a sequence,
or a choice.

When you have finished adding objects click Finish to create the
contract with the fixed record binding, as shown in Figure 65.

Creating a Contract Containing a Tagged Binding

Creating New Resources

Overview The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

Procedure To add a contract containing a Tagged binding:

1. At the Data Format panel, select Tagged.

2. Click Next to display the Set Defaults panel, as shown in Figure 68.

Select Save Location

Select Data Format
= Set Defaults

Input Data

Wiew WSDL

x
EBinding Defaults
Binding Mame |TaggedBinding |
Port Type Mame |Taggede1Type |
Target Narmespace |hﬂp'vaww iona.comiTaggedBinding |
8chema Namespace |ht|p.fMtww.iuna.cUmfl'aggedBindmg!types |
Message Defaults
Field Beparatar |neWHne E“
Field Mame Value Separator | E“
Scope Type |tab E“
Start Type | E“
End Type | E“
Attributes | [Selt-describing E“
*Message Atributes may be overridden per message.
‘ Previous Next | Cancel | Help

Figure 68: New Contract from Data Set—Set Tagged Defaults panel

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

101

CHAPTER 4 | Working with Artix Resources

102

5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, select a value for the Field Separator, or
accept the default provided.

7. Select a value for the Field Name Value Separator.

Select a value for the Scope Type, or accept the default provided.

9. Select a value for the Start Type.

10. Select a value for the End Type.

11. Select the Attributes you want to apply as defaults to your messages.
Note: See the online help for additional information on all the optional
settings.

12. Click Next to display the Input Data panel, as shown in Figure 69.

£
Select Save Location Operations
Hare I Style I Discriminatar
Select Data Format
Set Defaults
= Input Data | aao
Wiew YWEDL
Messages
Wame | Type |Field Sepa.JField Mam..]Scope Type| Start Twee | End Type | Attributes
Fields
Name | Alias \ Tvpe \F’rimmveT pe| Walue | Occurs |Discnmmatur
| Previous J { Mext]| Finish J ‘ Cancel || Help J

Figure 69: New Contract from Data Set wizard—Input Data panel (Tagged)

13.
14.
15.
1e.

17.

18.

19.

Creating New Resources

Click Add to create a new Operation.

Enter a name for the Operation, or accept the one provided.

Change the Operation style by clicking on the default Style value.
You can add a discriminator to filter the operations by adding one to
the Discriminator cell for the new Operation.

Under Messages enter values for the attributes for the messages that
have been created for the Operation. The values you specified on the
Defaults panel are displayed here, but can be over-written at the
individual message level if required.

Click Add to add fields to your messages and select each of the
available cells to enter attributes for the fields as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types. Messages can be a
field, an enumeration, a sequence, or a choice.

When you have finished adding objects click Finish to create the
contract with the tagged record binding, as shown in Figure 70.

103

CHAPTER 4 | Working with Artix Resources

New Contract From Data Set - Artix Designer

~WSDL Contract

<rxnl wersion="1.0" encoding="UTF-3" 7>
<definitions name="DefaultBindings™ targetNawespace="http: /v, iona. con/Tagge
¥mlng="http: //schenas.xmlsoap. org/wsdl /"
Xulns:soap="http: //schenas.xulsoap. org/wsdl/soap/"
®ulnsg:cagged="http: //achenas. iona. con/bindings fragyed™
xulns:tns="http: //www. iona. con/TaggedBinding”
xulns:wsdl="http: //schenas. xulsoap. org/wsdl/"
®ulna:xad="hrtp: /v, w3, 0rg /2001 /5MLEchena™
xmlns:xsdl="http: / /o, iona. con/TaggedBinding types >
<types>
<achema targetNamespace="http://wmm. iona. con/TaggedBinding/ cypes™
xmlns="http: //vuw.w3.o0ry/2001/2MLEchena™
xulns:wsdl="http: //schenas. xulsoap. org/wsdl/ ">
<element name="FieldlE1" type="wsd:hoolean”/>
<element name="FieldZE1l" type="xsd:string” />
<element name="Field3El" type="xsd:int"/>
<element name="
<fachens>
</ Typess
<measage name="Nessagel™s
<part element="xsdl:FiceldlEl" name="Fieldl"/>
<part element="xsdl:FieldZEl" name="FieldZ" >
<part element="xsdl:Field3E1l" name="Field3"/>
<part element="xsdl:Field9El" name="Fieldl"/>
< /uessages

ield4E1" type="xsd: string” />

<message name="Messagei™

[Ereviuus][Hext l" Finish H[Cancel][Help]

Figure 70: New Contract from Data Set—Summary panel (Tagged)

104

Creating New Resources

Creating an XSD Schema

Overview

The first thing you need to do is create an XSD contract shell. Depending on
which mode of the Designer you are working in (Deployer or Editor), the
steps you follow to do this will be slightly different.

If you are working in Editor mode, select New | XSD File to display the New
Contract dialog, as shown in Figure 72 on page 106.

If you are working in Deployer mode:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.
2. Select File | New | Resource from the File menu to display the New
Resource dialog, as shown in Figure 71.
x|
Resoutce Details
@ @ @ This template enables you to create an empty WSDL contract,
ErnptyitiSDL Resaurce from WSDL Contract which you can add elements to using the resource editing
Contract Existing File or URL ~ from Data Set features.
Empty ¥30
File
oK J| Cancel J| Help

Figure 71: New Resource dialog

105

CHAPTER 4 | Working with Artix Resources

3. Select the Empty XSD File icon and click OK to display the New
Schema dialog, as shown in Figure 72.

@ Mew Schema - Artix Designer 5[

* Name [NEwFile

* Target Namespace [t inha. comianis2 1.1 NewF il |

* Lacation |o;1,Temp1ar1ix

| Browse..

QK]| Cancel H Help]

Figure 72: New Schema dialog

Enter a name in the Name field, or accept the default provided.

5. Enter a value in the Target Namespace field, or accept the default
provided.

6. Enter a value in the Location field, or accept the default provided.
Click Browse to navigate to a different save location if you like.

7. Click OK to close this dialog and return to the Artix Designer. Your
new schema will be shown, and you can now add types to it using the
procedure documented in “Adding Types” on page 60.

106

Editing Resources

Editing Resources

Overview

Editing in the text view

ERRORS

The Artix Designer provides edit dialogs for all of the resource components,
from which you can edit most of the properties for your resource. This
section walks you through that process.

You can access the edit dialog for a resource component either through the
menu bar or through the Resource Navigator (diagram view).

To access the edit dialog for one of the components:

1. While in the diagram view of the Resource Navigator, select Resource
| Edit | <component>, where <component> is the name of the
element you want to work with.

The Edit dialog for that component is displayed.

2. Alternatively, you can right-click on the component name and select
Edit, which will also display the Edit dialog.

If you prefer, you can use the Text view of the resource to hand-edit the
XML. Be aware however, that any changes you make to the XML could
invalidate the contract. If this happens, you will only be able to view the
contract in the Text view - the diagram view will be disabled as the model
cannot be generated with invalid XML.

The Artix Designer provides you with tools to try to help you avoid
invalidating your XML, or to identify and rectify errors. Every time you make
a change and click Apply Edits, the Designer displays any errors in the error
bar at the bottom of the Text view, as shown in Figure 73.

W5DL parsing error in "C:/Temp/artix/GoogleSearch,wsdl™
Line Number: 66
Column Fumber: 13
Detailed Processor Message
<unknown-handler> ;:
attribute <http://schemas.xmlsoap.orgssoap/encodings/:arrayTyper has not been defined in the schema to be referenced

Figure 73: XML Error Indicator

107

CHAPTER 4 | Working with Artix Resources

Editing Types
This process is the same whether you're working with Types contained in a
contract or in a schema.

You can edit a type by selecting Resource | Edit | Types, to display the Edit
Types dialog as shown in Figure 74.

@ Edit Types - Artix Designer x|

 Types

ED GoogleSearchResult

[ResultElement

[ResultElementarray
) DirectoryCategorirray
[} DirectoryCategary

| Rename || Delete

Type Attributes
The following are the attributes defined in this Type:

Mame | Kind | Type | Min | Max | nilable
] GooonleSecomplexTy... all n

) docun xsd:hoolean 1 1 false

) searcl xsostring 1 1 false

) estim; s cint 1 1 false

) estim; xsc:hoolean 1 1 false

) resultl typens:Res. 1 1 false

) searcl wsd:string 1 1 false

) startin wsdint 1 1 false

™ andin, reint 1 1 fal [~]

| Edit.

| ok | cancel | Hem

Figure 74: Edit Types dialog

At the Edit Types dialog, all of your types and their associated attributes are
listed in the top half of the dialog. From here you can:

® Rename a type or an attribute by selecting it and clicking Rename
® Delete a type or an attribute by selecting it and clicking Delete.

® Add a new type by clicking Add to display the New Type wizard, as
described in “Adding Types” on page 60.

108

Editing attribute properties

Editing Resources

When you select a type in the top of this dialog, the type attributes are
displayed in the panel at the bottom of the dialog.

To edit any of the Type Attributes, click the Edit button to display the Edit
Type Attributes dialog, as shown in Figure 75.

I
Elements in complexType - "GoogleSearchResult”
Group Type |a|| lz“
Content Base Type | |T\|
Content Group Type | |T\|
Element Data
Tyne \ [=] Oininabie
Name ‘ |
Min Oceurrance I:I | add
Max Occurrence I:I] Unbounded | Clear
Element List
Marne | Type |_Min Cccurs | Max Occurs | Millable [Remowe
documentFiltering wsd:hoolean 1 1 false [«] —
searchComments xsi:sting 1 1 false
estimatedTotalResull... xsdint 1 1 false
estimatelsExact xsdboolean 1 1 false
resultElements typens:ResultE... 1 1 false
searchGuery xsd:string 1 1 false
startindex ¥sdint 1 1 false [~]
| ok | | cancel] [Aoy || Help

Figure 75: Edit Type Attributes dialog

To change values of attributes in this dialog, click on the item you want to
change in the Element List - its details will be populated into the Element
Data fields. Make your changes and click Update.

When you have finished making your changes, click Apply to update the
attribute, and OK to close the wizard and return to the Edit Types dialog,
where your changes are displayed in the Type Attributes panel.

Click OK to close this dialog and return to the Artix Designer.

109

CHAPTER 4 | Working with Artix Resources

Editing Messages

You can edit a type by selecting Resource | Edit | Messages, to display the
Edit Messages dialog as shown in Figure 76.

@ Edit Messages - Artiz Designer 5[

1 Messages
[doGetCachedPage
D doGetCachedPageResponse
) dogpellingSuggestion
) doSpellingSugyestionResponse
[doGoogleSearch
[) doGoogleSearchRespanse

| Rename ‘ Delete
Message Parts

The following are the pans defined in this Message:

Name [Type
9 doGetCachedPage
) key s:string
[un s string
| Edi.
| 0K | Cancel ‘ Help

Figure 76: Edit Messages dialog

At the Edit Messages dialog, all of your messages and their associated parts
are listed in the top half of the dialog. From here you can:

® Rename a message or a part by selecting it and clicking Rename
® Delete a message or a part by selecting it and clicking Delete.

® Add a new message by clicking Add to display the New Message
wizard, as described in “Adding Messages” on page 73.

110

Editing message parts

Editing Resources

When you select a message in the top of this dialog, the message parts are
displayed in the panel at the bottom of the dialog.

To edit any of the message parts, click the Edit button to display the Edit
Message Parts dialog, as shown in Figure 75.

x|
Parts for Message - "doGetCachedPage”
Nt | | [
Type ‘ |E” | Clear
PartList
Name | Type | [remove
key wsdstring —
url wsd:sting
| 0K H Cancel J| Apply H Help

Figure 77: Edit Message Parts dialog

To change values of parts in this dialog, click on the item you want to
change in the Part List - its details will be populated into the Parts fields.
Make your changes and click Update.

When you have finished making your changes, click Apply to update the
part, and OK to close the wizard and return to the Edit Messages dialog,
where your changes are displayed in the Message Parts panel.

Click OK to close this dialog and return to the Artix Designer.

111

CHAPTER 4 | Working with Artix Resources

Editing Port Types

You can edit a port type by selecting Resource | Edit | Port Types, to
display the Edit Port Types dialog as shown in Figure 78.

e Edit Port Types - Artix Designer x|

] PortTypes

&- 09 GoogleSearchPort
[[goGetCachedPage
[dospellingSuggestion
[doGoogleSearch

| Rename ‘ Delete

Operation Messages
The following are the messages defined in this Operation

Name [Style | Tupe [Message
09 doGetCachedPaiREQUEST_RESP...
[doGetcacher input doGetCachedPage
[doGetCached output doGetCachedPag..

| Ok ‘ Cancel ‘ Help
Figure 78: Edit Port Types dialog

At the Edit Port Types dialog, all of your port types and their associated

operation messages are listed in the top half of the dialog. From here you

can:

® Rename a port type or an operation message by selecting it and
clicking Rename

® Delete a port type or an operation message by selecting it and clicking
Delete.

® Add a new port type by clicking Add to display the New Port Type
wizard, as described in “Adding Port Types” on page 77.

112

Editing operation messages

Editing Resources

When you select a port type in the top of this dialog, the operation messages
are displayed in the panel at the bottom of the dialog.

To edit any of the operation messages, click the Edit button to display the
Edit Operation Messages dialog, as shown in Figure 79.

x|
Messages for Port Type Operation - "doGetCachedPage"
ww (-]
Message | |z“ | Add J
Mame | | | Clear J

Operation Messages

Type | Message I Narne |
input typens:doGetCachedPage |doGetCachedPage
output typens:doGetCachedPage... |doGetCachedPageRes...

| Ok ‘ Cancel | Help

Figure 79: Edit Type Attributes dialog

To change values of operation messages in this dialog, click on the item you
want to change in the Operation Messages list - its details will be populated
into the Messages fields. Make your changes and click Update.

When you have finished making your changes, click Apply to update the
operation message, and OK to close the wizard and return to the Edit Port
Types dialog, where your changes are displayed in the Operation Messages
panel.

Click OK to close this dialog and return to the Artix Designer.

113

CHAPTER 4 | Working with Artix Resources

114

CHAPTER 5

Adding Bindings

Bindings contain information used by Artix at runtime to
reformat data between endpoints, enabling it to be understood
by the target service.

In this chapter This chapter discusses the following topics:
What is a Binding? page 116
Adding a CORBA Binding page 119
Adding a Fixed Binding page 123
Adding a SOAP Binding page 126
Adding an XML Binding page 132
Adding a Tagged Binding page 135
Editing Bindings page 138

115

CHAPTER 5 | Adding Bindings

What is a Binding?

Overview

Artix binding types

116

If you are exposing an existing service using a new transport or payload
format, you need to add the mapping of the service’s data and operations to
the new payload format and transport. To do this, you add one or more
bindings to your services. The information you include in the binding is
used by Artix at runtime to reformat the data on the wire and thus make it
understandable by the target service.

The New Binding wizard walks you through the generation of a binding
based on your existing contract. It then adds the binding to the contract.

Artix provides support for several binding types. They are accessed via two
methods:

From the New Binding wizard, which enables you to create the
following binding types:

+ CORBA
+ Fixed

+ SOAP

+ XML

¢ Tagged

From the Contract From Data Set wizard, which enables you to create
a new contract that also includes a binding of one of the following
types:

. Fixed

+ Fixed, using data from an existing COBOL Copybook

+ Tagged

These last three bindings can be created with or without an existing
contract, and will create the binding and logical elements from input
data.

For more information about adding contracts with these bindings
included, “Creating Contracts from Data Sets” on page 93.

What is a Binding?

Adding bindings via New Binding To add a binding to an Artix contract using the New Binding wizard:
wizard 1. From the Designer Tree, select the contract to which you want to add
the binding.
2. Select Resource | New | Binding from the menu bar to display the
New Binding wizard, as shown in Figure 80.

Note that your WSDL needs to contain at least one message and a port
type before you can add a binding.

@ New Binding - Artix Designer X|

~Specify destination Resource file
®[dd 10 existing Resource| [GoogleSearch -]

O Add to new Resaurce

* Nams [petautBindings |

* Target MNamespace |v‘W inna.com/anio2 1.11D9fau\IE|nd|ng5‘

“Selected Resource source file:

[GoogleSearch
[rnuttipart i
[arig

Select All Deselect All

‘ Previous H et ” Einish H Cancel H Help]

Figure 80: New Binding wizard

3. Select where to create the WSDL entry for the new binding.
+ Add to existing WSDL adds the binding information to the
existing contract.

+ Add to new WSDL creates a new WSDL document that contains
the binding information plus an import statement in the logical
contract in which the binding is being created.

117

CHAPTER 5 | Adding Bindings

118

4. Select the resources from this collection that you want to use as the
source for this new binding. If you selected a resource before invoking
the New Binding wizard, that resource is selected by default. You can
also select other resources to use as sources for this binding - this will
give you more port types to choose from when setting the binding
defaults later in this wizard.

5. Click Next to display the Binding Type panel.

Now you need to turn to the appropriate page for the type of binding you are

creating:

® For a CORBA binding, see page 119

® For a Fixed binding, see page 123

® For a SOAP binding, see page 126

® For an XML binding, see page 132

® For a Tagged binding, see page 135

Adding a CORBA Binding

Adding a CORBA Binding

Overview To ensure that messages are converted into a format that a CORBA
application can understand, Artix contracts need to describe how data is
mapped to CORBA data types.

Procedure

To add a CORBA binding to an Artix contract from the Binding Type panel:

1. Select CORBA, and then click Next to display the Binding Defaults
panel, as shown in Figure 81.

@ New Binding - Artix Designer

x|

“Required Setting

Port Type

[sooglesearchPort -]

Binding Narne |Goog\eSearchPonﬁCOREAEinding ‘

“Optional Setting

Typemap Narnespace

lErevmus “ Mext ” Einish |[Cancel H Help

Figure 81: New Binding wizard—CORBA Binding Defaults panel

2. From the Port Type drop down list select the port type you want to

map to the CORBA binding.

119

CHAPTER 5 | Adding Bindings

Enter a name for the new binding, or accept the default provided.

Enter a value for the Typemap Namespace if required (optional).

Click Next to display the Edit Binding panel, as shown in Figure 82,

which displays the generated operations and CORBA types.

© New Binding - Artix Designer

x|

=9 Bindings

¢— 9 GoogleSearchPart_CORBABInding

=3 Operations

[doGetCachedPage
D doSpellingSuggestion
D doGoogleSearch

3 Type Mappings

I:D base4DinarySey
[GoogleSearchResult

~Binding Elerment
The fallowing is the translated CORBA Operation (ahysical element)
Marme hode Mode Type
=9 doGetCachedPage corba:operation
key corha param in corhastring

Choun corha param in corhastring

[return corhareturn nsl:bazef4Binarse
[doGetCachedPage input
D daoGetCachedPageResponse|output

[previous || met || mmsn || caner || Henm

Figure 82: New Binding wizard—Edit CORBA Binding panel

6.

120

Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

If you like, you can change the name of the Binding. The attribute

fields are read-only.

Click Next to display the Binding Summary panel, as shown in
Figure 83.

Adding a CORBA Binding

9. Click Finish to close this wizard and return to the Artix Designer.

@ New Binding - Artix Designer 5[

Newly Created Binding Infarmation

<fxml wersion="1.0" encoding="UTF-8"2>
<contract name="Googledearch™>
<binding name="GooglefearchPort CORBAEinding” type="typens:CGoogledearchPort”
«<corbarbinding repositoryID="TIDL:GoogleSearchPorc: 1. 0% >
<operation name="doGetCachedPage >
<corbaioperation nawe="doGetlachedPage™>
<corba:iparam idltype="corba:string” mode="in" name="key" />
<corba:param idltype="corba:=string” mode="in" name="url”/>
<corba:return idltype="nsl:baseddbinaryiedq” name="return’ />
L/ocorbaoperations
<input name="doGetCachedPage” />
<output name="doGetCachedPageResponse’ />
</operation>
<operation name="doSpellingiuggescion’>
<corba:operation name="dofpellingSuggestion
<corba:param idltype="corha:string” mode="in" name="key" />
<corba:param idltype="corba:string” mode="in" name="phrase"/>
<corba:ireturn idltype="corba:string” name="return” />
</corbaioperations
Linput name="doSpellingiuggescion’ 2
Loutput name="doSpellingiuggestionResponse’
< joperations-
<operation name="doGoogledearch™s
<corba:operation nawe="doGooglefearch™>
<corba:param idlcype="corba:string” mode="1in" name="key"/>
«<corbatparam idleype="corha:scring” mode="in" name="q" />

[Ereviuus H Mext ||| Finish ||| Cancel H Help]

Figure 83: New Binding wizard—CORBA Binding Summary panel

When you have created the new CORBA binding, the contract describing the
binding and the CORBA type map are added to the Designer Tree under the
selected service. Note however, that this new contract will not contain a
CORBA port description.

For details on adding a CORBA port description see “Adding a CORBA Port”
on page 143.

121

CHAPTER 5 | Adding Bindings

Adding a CORBA Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
CORBA binding, service, and port for a resource. It is called CORBA
enabling, and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a CORBA binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource |
CORBA Enable, to display the CORBA Enable dialog as shown in
Figure 84.

€ corBa Binding and Service Details -Arki x|

* PorType |GuiTuturiaIF’T E“

* Binding Name |GyiTutorialPT_GOREABinding

|
* Bervice Name |guiTutorialPT_CORBASeNice |
|

* Port Mame |GuiTutorialPT_newPort

| ok]| cancel || Hew |

Figure 84: CORBA Enable dialog

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. The next three fields, Binding Name, Service Name, and Port Name all
contain default names for these elements. Either accept these
defaults, or provide alternatives.

4. Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

122

Adding a Fixed Binding

Adding a Fixed Binding

Procedure

To add a Fixed binding to an Artix contract from the Binding Type panel:
1. Select Fixed, and then click Next to display the Binding Defaults panel,

as shown in Figure 85.

@ New Binding - Artix Designer

“Required Setting

* Port Type |sooplesearchPort -]

* Binding Mame [GoogleSearshPart_F keBinding |

~Optional Setting

Justification ‘ E]J

Encading ‘ ‘

Padding ‘ ‘

l Previous “ MNext I| Finish

H Cancel]I Help

Figure 85: Binding wizard—Fixed Binding Defaults

2. From the Port Type drop down list select the port type you want to

map to the Fixed binding.

3. Enter a name for the new binding, or accept the default provided.
4. Enter a value for the additional settings if required. They are:
+ Justification - the justification of the message data. Options are

left and right.

+ Encoding - the encoding style for the message data. Examples

are UTF-8 and UTF-16.

123

CHAPTER 5 | Adding Bindings

+ Padding - a character string to be used to fill unused space in the

message field.
5. Click Next to display the Edit Binding panel, as shown in Figure 82,
which displays the generated operations and Fixed types.

@ New Binding - Artix Designer x|

@ Bindings
&) orid_FixedBinding
&) Operations
@ _oet_height
&) Messages
[_get_height
D _get_heightResponse
J _get_width
&1 Wessages
D _oet_width
[_get_widthResponse
) set
~Binding Element. _get_height
The fallowing is the translated Fixed Operation {physical element)

Mame Type: Justi Encoding Padding
ILJ _uet_height operation
[_get_neignt input
) _aet_heightRes autaut
[prevous |[mea || cnen [cancer || Hem

Figure 86: New Binding wizard—Edit Fixed Binding panel

6. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

7. If you like, you can change the name of the Binding. The attribute
fields are read-only.

124

Adding a Fixed Binding

8. Click Next to display the Binding Summary panel, as shown in
Figure 83.

g - Artix Designer

Mewly Created Binding Information

<zxul version="1.0" encoding="UTF-5" 2
<contract names="grid”
<binding name="Grid_FixedBinding” types="tns:Grid™s
<fixed:binding/>
<operation name="_get_height">
<fixed:operation discriminator="discriminator” />
<input name="_get_height'>
<fixed:bodys
<fixed:field bindingOnly="rrue" fixedValue="_ger_heighc”
name="discrininator” />
</fixed:body>
<finput>
<output name="_get heightResponse™s
<fixed:body>
<fixed:field bindingOnly="true" fixedValue=" get height”
name="discriminator” />
<fixed:field format="####" name="return’ /s
</Eixed:body>
< foutputs
< /operation®
<operation name="_get_width">
<fixed:operation discriminator="discriminator” />
<input name="_get width">
<fixed:bodys

<fixed:field hindinginly="rru=" fixedValu get_width'™ @

[Erewnus H et ” Einish l" Cancel HI Help]

Figure 87: New Binding wizard—Fixed Binding Summary panel

9. Click Finish to close this wizard and return to the Artix Designer.

125

CHAPTER 5 | Adding Bindings

Adding a SOAP Binding

Overview SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

Procedure To add a SOAP binding to an Artix contract:
1. At the Binding Type panel, select SOAP.
2. Click Next to display the Binding Defaults panel, as shown in

Figure 88.
£
-Reguired Setting
Fort Type |Goog|eSearchPort E]J
Binding Name [GoagleSearchPort_SOAPBInding2 |
~Optional Setting
Ste [aocument -]
Use ‘Hteral E]J
[Previous]I Mext I | Finish | [Cancel] [Help

Figure 88: New Binding wizard—SOAP Binding Defaults panel

126

Adding a SOAP Binding

3. From the Port Type drop down list, select the port type that the
binding relates to.

Enter a name for the new binding, or accept the default provided.

5. From the Style drop down list, select either rpc or document, to
indicate whether message parts pertaining to each operation are to
consist of RPC-based parameters and return values or document-based
body entries by default. The value you choose is subsequently
populated in the soap:binding style attribute in your WSDL contract.

6. From the Use drop down list, select either encoded or literal, to
indicate whether message parts are to consist of abstract type
definitions or concrete schema definitions. The value you choose is
subsequently populated in the soap:body use attribute in your WSDL
contract.

7. Click Next to display the Edit Binding panel, as shown in Figure 89.

@ New Binding - Artix Designer 5[

Select Save Location = Bindings

@»Ij GoogleSearchPort_SOAPBinding2
Select Binding Type ¢_|j Operations

[doGetCachedPage

D doSpellingSuggestion

™ Edit Binding [} toGonglsSaarch

Set Binding Defaulis

Wiew WSDL Contract

Binding Element
The following is the translated SOAP Operation (physical element:

MName | Mode \EOAPACI | Style \ Use |Encndmg |Names
03 doGetCachedPage operation
D =50AF Operation= s0apiop. rpc
[dogetcachedPage input encoded hitpdisch... hitp:iftsoa...
[dogetcachedPageRespoloutput encoded hitpdisch... hitp:itsoa...
| Previous I I hlext l | Finish I | Cancel I | Help

Figure 89: New Binding wizard—Edit SOAP Binding panel

127

CHAPTER 5 | Adding Bindings

128

10.

11.

12.

Click on the name of an operation within your binding.

If you want to include a SOAPAction field in the HTTP header of a
SOAP message, use the SOAP Action cell in the Binding Elements
table to specify the URL that represents the resource being requested
by the operation.

Note: This step only relates to the use of SOAP over HTTP, but it is
not mandatory for the purposes of Artix. It is available in case some
third-party SOAP servers that do use a SOAPAction field in their
HTTP headers are to be contacted.

If you want to override the default setting for Style that you set in step
5, click on the Style cell and select another value.

If you want to override the default setting for Use that you set in step
6, click on the Use cell and select another value.

If you want to use other customized encoding styles, add the URL(s)
relating to each style to the relevant field(s) in the Encoding Style
column. (Note: Only possible where Use=Encoded).

Note: If you want this field to contain more than one URL, ensure
that they are separated by spaces, and ordered according to the most
restrictive set of rules first and least restrictive set of rules last.

Adding a SOAP Binding

13. Click Next to display the Binding Summary panel, as shown in
Figure 90.

ing - Artix Designer

Mewly Created Binding Information

.07 encoding="UTF-8"2> n
GoogleZearch™s>
<binding name="GoogleSearchPort S0APEindingZ” type="typens:GooglelearchPort”
<3oap:hinding style="rpc™ transport="htrn://schenas. mlaoap.ard/soap/hon
<operation name="doGetCachedPage>
<soap:operation soapdction=""
<input name="doGetCachedPage>
<zoap:body encodingStyle="hrrp://schenas. xulsoap. org/soap/encodiy
namespace="http: //soapinterop.org/" use="encodsd” />
< /inputs
<output nawe="doGetCachedPageResponse">
<zoap:body encodingStyle="hrrp://schenas. xulsoap. org/soap/encodiy
namespace="http: //soapinterop.org/" use="encodsd” />

<Lrxml wersions

<contract names

style="rpc"” />

<foutputs

</operation>

<operation name="dofpellingiuggestion’ >
<soapioperation soapaction="" style="rpc’ />

<input name="dofpellingduggestion’>
<soap:body encodingityle="http://schenas.:xmlsoap. org/soap/encodin
namespace="http: //soapinterop.org/” use="encoded” />
</finputs
<output name="do3pelling3uggestionResponse’ >
<soap:body encodingityle="http://schenas.:xmlsoap. org/soap/encodin
namespace="http: //soapinterop.org/” use="encoded” />
< /foutpuats
</operations n

| previous || mew | _mmen [cancer || Hew

Figure 90: New Binding wizard—SOAP Binding Summary panel

14. Click Finish to close this wizard and return to the Artix Designer.

129

CHAPTER 5 | Adding Bindings

Adding a SOAP Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
SOAP binding, service, and port for a resource. It is called SOAP enabling,
and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a SOAP binding, service, and port using the smart-menu option:

1.

Select a resource from the Designer Tree, and select Resource | SOAP
Enable, to display the SOAP Enable dialog as shown in Figure 91.

€ soaP Binding and Service Details -Arkix x|
* PortType [GuiTutorialPT [~]
* Binding Name [GuiTutrialFT_SOAPEinding3 |
* Style |dcu:ument E|

" Use [literal -]

* Bewice Name [GuiTutrialPT_SOAPService? |

* Port Mame |newP0r‘[|

|| Ok ||| Cancel H Help I

Figure 91: SOAP Enable dialog

2.

130

Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

Type a name for the new binding in the Binding Name field, or accept
the default provided.

Select the Style for this Binding from the drop-down list provided.
Valid values are rpc or document.

Select the Use for this Binding from the drop-down list provided. Valid
values are literal or encoded.

Adding a SOAP Binding

Type a name for the new service in the Service Name field, or accept
the default provided.

Type a name for the new port in the Port Name field, or accept the
default provided.

Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

131

CHAPTER 5 | Adding Bindings

Adding an XML Binding

Overview The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without needing the overhead of the SOAP envelope.

Procedure To add an XML binding to an Artix contract:

1. At the Binding Type panel, select XML and click Next to display the
Binding Defaults panel, as shown in Figure 92.

O New Binding - Artix Designer il

-Requirad Setting:

Fort Type |Guug\eSearchF‘Un E]I

Binding Name |GnngIeSearcthn_XMLEmdmg

~Optional Setting:

Encading | E]I

-Binding Root Node

MWamespace URI ‘ |

Local Part ‘ |

~Operation Root Mode

Input Message Namespace UR| |

Output Message Namespace URI |

|
Input Message Local Part [|
|
|

Qutput Message Local Part |

[previous || mex || mnen ([camce |[pem |

Figure 92: New Binding wizard—XML Binding Defaults panel

2. From the Port Type drop down list select the Port Type you want to
map to the XML binding.

3. Enter a name for the new binding, or accept the default provided.

132

9 New Binding - Artix Designer 1[

Select Save Location C Bindings

Select Binding Type @- 9 Operations

Set Binding Defaults

™ Edit Binding

View WSDL Contract

Adding an XML Binding

Under the Additional Settings, select an Encoding value.

Enter values in the Binding Route Node section. This is the Qname for
the binding. This is a unique identifier made up of two parts:

. Namespace URI - the location of the binding element
¢ Local Part - any name you wish to append to the binding element

Enter values in the Operation Root Node section. This is the Qname at
the operation level. This is a unique identifier, again made up of two

parts but this time there will be two parts for each message, i.e. input
and output, or just input for one-way messages:

. Namespace URI - the location of the binding element
¢ Local Part - any name you wish to append to the binding element

If you do not specify these values at the Operation level, the Binding
Route Node is used by default.

Click Next to display the Edit Binding panel, as shown in Figure 93.

& [GoogleSearchP ort XMLEInding

) dospelingSugaestion

E D doGetCachedPage
) doGooyleSearch

Binding Element

The following is the translated XML Operation {physical element)

Name [Mode [_Mamespace URI | Local Part
] doGetCachedPage operation
[doGetCachedPage input

) doGetCachedPageRespoioutput

| previous || heat]| Enish || cancel |[e

Figure 93: New Binding wizard—Edit XML Binding panel

133

CHAPTER 5 | Adding Bindings

134

8. Examine the different operations of the binding by selecting them from
the tree at the top of the dialog.

9. Edit the Namespace URI and Local Part values shown in the Binding
Element table, or accept the defaults provided.

10. Click Next to display the View Binding Summary panel, as shown in
Figure 94.

D New Binding - Artix Designer 5[

Mewly Created Binding Information

<?xkml wersion="1.0" encoding="TUTF-3" 7>
<contract name="Googlefearch™>
<hinding name="GoogleSearchPort XMLEinding” type="typens: GoogledearchPort™s
<xmlformat:binding/>
<operation name="doGetlachedPage >
<input name="doGetlachedPage”>
<xmlformat:body/>
</inputs
<gutput name="doGetCachedPageResponse’>
<xmlformat:body/>
</ outpatx
< foperations
<operation name="doSpellingiugoestion’ s
<input name="dofpellingiuggestion” />
<output name="dofpellingfuggestionResponse” />
< foperations
<gperation name="doGoogleiearch™s
<input name="dolboogledearch™/>
<output name="doGooglefearchResponse” />
< foperations
</binding-
<fcontract>

[Ereviuus]| Mext ||| Finish ”l Cancel ” Help

Figure 94: Binding wizard—XML Binding Summary panel

11. Click Finish to close this wizard and return to the Artix Designer.

Adding a Tagged Binding

Adding a Tagged Binding

Procedure To add a Tagged binding to an Artix contract from the Binding Type panel:

1. Select Tagged, and then click Next to display the Binding Defaults
panel, as shown in Figure 95.

X
~Binding Setting:
= Port Type |Gnd E]I
* Binding Name [Grid_TaggedBinding |
“Additional Setting:
Field Separatar |mew\me E]I
Field Name Value Separator | E]I
Scope Type |tab E]I
Start Tyne |nnne E]I
End Type |mune E]I
Aftributes |IZI Self-describing E]I
MOTE: These attributes may be overridden per message.
H Frevious || l Mext] | Finish ‘ [Cancel] [Help

Figure 95: Binding wizard—Tagged Binding Defaults

2. From the Port Type drop down list select the Port Type you want to
map to the XML binding.

3. Enter a name for the new binding, or accept the default provided.

4. Enter values for the additional (optional) settings if required. These
settings can also be over-written for each message. The settings are:

+ Field separator - valid values are newline, comma, pipe, or
semicolon.

. Field name value separator - valid values are equals, tab, or
colon.

135

CHAPTER 5 | Adding Bindings

+ Scope Type - valid values are tab, curlybrace, or none.

+ Start type - valid values are none or star.

+ End type - valid values are newline or percent.

+ Attributes - this field contains several settings you can enable by
clicking the check box. For more information about each of the
attributes, see the Artix online help.

5. Click Next to display the Edit Binding panel, as shown in Figure 96,
which displays the generated operations and elements.

@ New Binding - Artix Designer =l

i) Bindings
é%ﬂ Grid_TaggedBinding
& operations
J _get_height
é%ﬂ Messages
) _get_height
() _get_heightResponse
J _get_width
& Messages
0 _get widh
D _get_widthResponse
O et e

~Binding Element: _get_height

The following is the translated Tagoed Operation (physical element):

MName Type Field Separa..\Field Name .| Scope Type | Start Type End Type J Attributes
Q _oet_heighoperation
_get_input newline tab none none [Self-dest
D _oet_hioutput newling [tak none none [Seli-dese. .,

lErevinus]I Mext ” Finish H Cancel H Help

Figure 96: Binding wizard—Edit Tagged Binding panel

6. Examine the different operations of the binding by selecting them from
the tree at the top of the dialog. You can edit some of the elements in
the bottom pane by typing directly in the cells.

136

Adding a Tagged Binding

7. Click Next to display the View Binding Summary panel, as shown in
Figure 97.

Mewly Created Binding Infarmation

<exul version="1.0" encoding="UTF-3"z»
<Contract name="grid’x
<binding name="Grid TaggedSinding” type="tns:Grid"
<tagyed:binding fieldSeparator="nevline” flattened="false” ignoreCase="false"
ignorelnknovnElenents="false” nessageEnd="none" messagetart="nonz"
scopeType="tah” selfDescribing="true” unscopedArrayElenent="false"/>
<operation name="_get height™>
<tagyged: operation/>
<input name="_get_height™>
<tagged: body fieldSeparator="newline” flattened="false"
ignoreCase="false” ignoreUnknownElenents="false” messageEnd="none"
nessagedtart="none" scopeType="tab” selfDescribing="true"/>
</inputs
<output name="_get_heightResponse>
<tagged:body fieldSeparacor="newline” flattened="false”
imoreCase="false" imoreUnknownElements="false" messageEnd="none"
nessagestart="non=" scopeType="cab"” selfDescribing="true">
<tagyed: field name="return’/>
</ragged:body>
</output>
< /operation:
<operation name=" get width™>
<tagged: operation/>
<input name="_get width'>
<tagged:body fieldSeparator="newline” flattened="false”
iguoreCase="false” ignoreUnknownElenents="false” messageEnds="none”

lErewuus H Mext H Finish]" Cancel Hl Help

Figure 97: Binding wizard—Tagged Binding Summary panel

8. Click Finish to close this wizard and return to the Artix Designer.

137

CHAPTER 5 | Adding Bindings

Editing Bindings

You can edit a binding by selecting it in the Resource Navigator (Diagram
view) and selecting Resource | Edit | Binding, to display the Edit Binding
panel as shown in Figure 98.

x

=3 Bindings
& 9 GoogleSearchBinding
&- 9 operations
O
D doSpellingSuggestion
[doGoogleSearch

‘ Delete
Binding Element
The fallowing is the translated S0AP Operation (physical element):
Mame | Mode [soapac.] sSwie [Use [Encodin.[Namesp.
[doGetCachedPage operation
D =50AP Operation= S0apop.. urm:Goo.
[doGetCachedPage input encoded hitpifsc... um:Goo...
[doGetCachedPageReskoutput encoded hittdfsc... urnGoo...
[o ||| Cancel H sy || el

Figure 98: Edit Binding panel

At the Edit Binding panel, you can delete operations, by selecting them and
clicking the Delete button.

You can also change some of the Binding Element attributes by either
double-clicking the cell and typing a new value, or by clicking the cell and
selecting a new value from the drop-down list provided.

When you have finished making your changes, click Apply to update the
binding and OK to close the wizard and return to the Artix Designer.

138

CHAPTER 6

Adding Services

A service defines the ports supported by the Web Service.

In this chapter This chapter discusses the following topics:
Introduction page 140
Adding a CORBA Port page 143
Adding an HTTP Port page 146
Adding a WebSphere MQ Port page 149
Adding a Tuxedo Port page 151
Adding a Java Message Service Port page 154
Adding an [IOP Tunnel Port page 156
Adding a SOAP Port page 159
Editing Services page 165

139

CHAPTER 6 | Adding Services

Introduction

Procedure

140

The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

For each of the supported protocols, there is one <port> element. The
<service> element is a collection of these ports. A service can contain one
or many ports.

Typically, ports defined within a particular service are related in some way.
For example all of the ports might be bound to the same port type, but use
different network protocols, like HTTP and WebSphere MQ.

To add a Service to your Artix contract:

1. Select Resource | New | Service from the menu bar to display the
New Service wizard, as shown in Figure 99.

@ New Service - Artix Designer x|

~Specify destination Resource il
@ Add to existing Resourcs| [SongleSaarch -]

O Add to new Resource

= Name [Defined_senices |

* TargetNamespace |viona.comiariy2 1 1/Defined_Senices|

-Selected Resource source file

[GoogleSearch
[muttipart.icl
[grid

SelectAll Degelect All

‘Evevmus || Mext || Finish H Cancel H Help]

Figure 99: New Service wizard

@ New Service - Artix Designer 5[

Introduction

Select where to create the WSDL entry for the new service.

+ Add to existing WSDL adds the service information to the existing
contract.

+ Add to new WSDL creates a new WSDL document that contains
the service information.

Select the resources from this collection that you want to use as the

source for this new service. If you selected a resource before invoking

the New Service wizard, that resource is selected by default. You can

also select other resources to use as sources for this service - this will

give you more bindings to choose from when defining the ports later in

this wizard.

Click Next to display the Service Definition panel, as shown in

Figure 100.

Service Definition

Name |newService|

lErewnus “ Mext || Finish H Cancel H Help

Figure 100:New Service wizard—Service Definition panel

5.

Enter a name for the new service, or accept the default provided.

141

CHAPTER 6 | Adding Services

6. Click Next to display the Port Definition panel, as shown in
Figure 101.

) New Service - Artix Designer

Fort Definition in Service - "newService”

Hame [newPort |

Binding ltnans:GongleSearchBinding =]

[Erevinus]I Tlext ” Finish H Cancel H Help

Figure 101:New Service wizard—~Port Definition panel

7. Enter a name for the new port that is being created as part of this
service, or accept the default provided.

8. From the Binding drop down list, select the binding that the port is
going to expose.

9. Click Next to display the Extensor Properties panel.

Turn to the page that is relevant for the type of service you are creating:

® For a CORBA service, see page 143

® For a non-secure HTTP service, see page 146

® For a secure HTTP service, see page 147

® For a WebSphere MQ service, see page 149

® For a Tuxedo service, see page 151

® For a Java Message Service (JMS), see page 154

® For an IIOP Tunnel service, see page 156

® For a non-secure SOAP over HTTP service, see page 159

® For a secure SOAP over HTTP service, see page 162

142

Adding a CORBA Port

Adding a CORBA Port

CORBA ports are described using the IONA-specific WSDL elements
<corba:address> and <corba:policy> Within the WSDL <port> element, to
specify how a CORBA object is exposed.

Procedure 1. At the Extensor Properties panel, as shown in Figure 102, select
CORBA from the Transport Type drop down list.

I
Property Definitions in Port - "neswPort*
~Aftribute:
Address
Attribute J Walue J
location (REQUIRED) ‘
Policy
Altribute Yalue
poaname
serviceid
persistent
| previous || met || mnsn || came || dew |

Figure 102:New Service wizard—Define CORBA Extensor Properties

2. In the Address table, enter the CORBA address in the Location field.

3. If you want to set any of the supported Policy Attributes, enter a valid
value in the Policy table for any or all of the attributes listed.

143

CHAPTER 6 | Adding Services

4. Click Next to display the Summary panel, as shown in Figure 103.

@ New Service - Artix Designer x|

MNewly Created Port Information

<ml version="1.0" encoding="UTF-&" 2>
£COntract name="grid
<service name="newSerwices
<port binding="tns:GridBinding” name="newlort”s
<corba:address location="remote23d" />
“corba:policy/>
</porte
</servicer
<fCOntract:

Check here to create another Port []

[Erevmus H Mext H Finish]H Cancel H[Help

Figure 103:New Service wizard—Summary panel (CORBA)

5. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

6. Click Finish to close this wizard and return to the Designer.

Artix expects the I0OR for the CORBA object to be located in a file called

objref.ior, and creates a persistent POA with an object id of personalinfo

to connect the CORBA application.

144

Adding a CORBA Port

Adding a CORBA Binding, Service, and Port at the Same Time

Overview

Procedure

There is a smart-menu option you can use if you would like to create a
CORBA binding, service, and port for a resource. It is called CORBA
enabling, and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

To create a CORBA binding, service, and port using the smart-menu option:

1.

Select a resource from the Designer Tree, and select Resource |
CORBA Enable, to display the CORBA Enable dialog as shown in
Figure 104.

® corBa Binding and Service Details - Arti x|

* PorType [GuiTutorialPT [-]

* Binding Name | GyiTutarialPT_C OREABInding

|
* Service Name |GuiTutnriaIF‘T_CORBABewice |
|

* Part Name |GuiTutarialPT_newPort

| 0] 8 H Cancel H Help I

Figure 104:CORBA Enable dialog

2.

S

Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

Type a name for the binding in the Name field, or accept the default.
Type a name for the service in the Name field, or accept the default.
Type a name for the port in the Port Name field, or accept the default.

Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

145

CHAPTER 6 | Adding Services

Adding an HTTP Port

Non-Secure Connections

Procedure

146

When adding an HTTP port, you have the option of making it either secure
or non-secure. A secure port means that the connections with that port, and
information moving in and out of it, are secure.

This section describes how to add an HTTP port that does not enable secure
connections.

Before you begin
To add a port, you must have already created a binding within the

<binding> component of the contract. See “Adding Bindings” on page 115
for more information.

To add an HTTP port to your service contract:

1. At the Extensor Properties panel, as shown in Figure 105, select http
from the Transport Type drop-down list.

@ New Service - Artix Designer x|

Property Definitions in Port - "newPort!

Teanspor e fp 7]

~Attribute
Client

Attribute Yalue J
SendTimeout <4
ReceiveTimeout
AutoRedirect
UserMame
Pasgword x

Serer

Aftribute Value |
SendTimeout E
ReceiveTimeout
SuppressClientSendErrors
SuppressClientReceiveErrars
HaonarkeepAlive bt

[Erewnus]I Mext || Finish H Cancel ” Help

Figure 105:New Service wizard—Define HTTP Extensor Properties

Adding an HTTP Port

2. To specify a value for a one of the client or server attribute, type (or in
the case of certain true or false attributes select) the value you want.

3. Click Next to display the Summary panel, as shown in Figure 106.

x
SelectWsDL Mewly Created Part Information
Define Service <7xml wersion="1.0" encoding="UTF-5"7>

<contract name="GoogleSearch™s
<gervice name="newiervice>
Define Edensar Properties <port binding="typens:GoogleSearchBinding” name="newPort'>
<http-conf:client AutoRedirect="true’ />
<http-conf:server CacheControl="no-cache” HonorKeepAlives="true"”
SuppressClientReceiveErrors="rtrus" />

Define Port

™ Part Summary

</ports
</servicer
</GONCract:

Check here to create another Port []

| Previous | Finish H Cancel H Help
Figure 106:New Service wizard—Summary panel (HTTP)

4. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

5. Click Finish to close this wizard and return to the Artix Designer.

Secure Connections This section describes how to add an HTTP port that enables secure
connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on
page 115 for more information.

147

CHAPTER 6 | Adding Services

SSL-related attributes

Procedure

148

The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port

binding are as follows:

Client SSL Attributes Server SSL Attributes
UseSecureSockets UseSecureSockets
ClientCertificate ServerCertificate

ClientCertificateChain

ServerCertificateChain

ClientPrivateKey

ServerPrivateKey

ClientPrivateKeyPassword

ServerPrivateKeyPassword

TrustedRootCertificate

TrustedRootCertificate

Follow the steps described in “Procedure” on page 146, with the following

minor changes:

Specify https:// rather than nttp:// as the prefix for the value of the

URL attribute in the Client configuration table.
® Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” above for a

listing of these attributes.

Note: When you specify https:// as the prefix for the value of the URL
attribute in the Client configuration table, a secure HTTP connection is
automatically enabled, even if UseSecureSockets is not set to true.

Adding a WebSphere MQ Port

Adding a WebSphere MQ Port

The description for an Artix WebSphere MQ port is entered in a <port>

element of the Artix contract containing the interface to be exposed over

WebSphere MQ. Artix defines two elements to describe WebSphere MQ

ports and their attributes:

® <maq:client> describes the port Artix client applications use to connect
to an WebSphere MQ server application.

® <maq:server> describes the port WebSphere MQ client applications
use to connect to Artix.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

Procedure To add a WebSphere MQ port to an Artix contract:

1. At the Extensor Properties panel, as shown in Figure 107, select mq
from the Transport Type drop-down list.

x
Select WSDL Property Definitions in Part- "newPort
(i S Transport Type |W7‘E|
Define Port
Atributes
™ Defing Extensor Properties
Client
ot summary Aftribute Walue \
QueueName (REQUIRED) E
ClueleManager

ReplyQueueManager
ReplyQueueMame

Modeld L} b
Sener
Aftribute Walue \
QueueMNams (REQUIRED) E
Cueuehanager

ReplyQueueManager
ReplyQueueName
ModelQuaueName b

|Erewuus J" Mext Hl Finish H Cancel H Help]

Figure 107:New Service Wizard—Define WebSphere MQ Port Properties

149

CHAPTER 6 | Adding Services

2. Enter values for the desired attributes. You must supply QueueName
values at a minimum.

3. Click Next to display the Port Summary panel as shown in Figure 108.

@ New Service - Artix Designer x|

Mewly Created Port Infarrnation

<rxml version="1.0" encoding="UTF-39"2>
<econtract name="GoogleSearch™s
<service name="newService"»
<port binding="typens:Googleiearchbinding” name="neyPort">
<mg: client QueueName="client gueus"/>
<mif: aerver QueueName="serwver rens" />
< FPOres
<fservicer
</contract>

Check here to create another Port []

lEreviuus H Mext H Finish Hl Cancel ||[Help

Figure 108:New Service wizard—Summary panel (MQ)

4. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

5. Click Finish to close the wizard and return to the Artix Designer.

150

Adding a Tuxedo Port

Adding a Tuxedo Port

Procedure

Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the namespace:

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

This namespace will need to be included in your Artix contract’s
<definition> element.

As with other transports, the Tuxedo transport description is contained
within a <port> element. Artix uses <tuxedo:server> to describe the

attributes of a Tuxedo port. <tuxedo:server> takes a single mandatory
attribute, serviceName, which specifies the bulletin board name of the
Tuxedo port being exposed.

Before you begin

Note that your Artix contract must have an existing SOAP binding before you
can add a Tuxedo port. For more information, see “Adding a Fixed Binding”
on page 123.

To add a Tuxedo port to an Artix contract:

1. At the Define Port panel (as shown in Figure 101 on page 142), select
the SOAP binding which this port will expose to the network from the
Binding drop-down list.

2. Click Next to display the Extensor Properties panel.

151

CHAPTER 6 | Adding Services

3. Select Tuxedo from the Transport Type drop-down list to display the
Tuxedo attributes as shown in Figure 109.

@ New Service - Artix Designer x|

Praperty Definitions in Port - "newPort”

L TTR—

Senices

*Marme] Function]

(oo]

Inputs

*Operation J

Add ‘ ‘ Remove

Iﬂrewnus H Mext H Finish H Cancel ” Help]

Figure 109:New Service wizard—Define Tuxedo Port Properties panel

4. To add a Service, click the Add button. You can change the name of
the service or accept the one provided. You can also provide some
information about the function of this service in the field provided if
you like.

5. If you do add a service, you can also add an Input Operation for that
service. To do this, select the Service and then click the Add button
under the Input table.

You can add multiple operations for each service, and you can change
the operation name by selecting other available ones from the

drop-down provided. This list of available operations is populated by
your WSDL file.

152

Adding a Tuxedo Port

6. Click Next to display the Summary panel, as shown in Figure 110.

@ New Service - Artix Designer x|

MNewly Created Port Information

<7xml wersion="1.0" encoding="TTF-5"2>
<contract name="Googlefearch’>
<service name="newService:
<port binding="typens:GooglefearchPort S0APEinding™ name="neyPort'>»
<tuxedo: server serviceName="first_tux_server”/»
</port>
</fservicer
<feontract:

Check here to create another Port [

IErevmus H Iext H Finish]" Cancel ”I Help

Figure 110:New Service wizard—Summary panel (Tuxedo)

7. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

8. Click Finish to close this wizard and return to the Artix Designer.

153

CHAPTER 6 | Adding Services

Adding a Java Message Service Port

The Java Messaging System (JMS) provides a standardized means for Java
applications to send messages. Artix provides a transport plug-in that
enables systems to place and receive messages from JMS implementations.
One advantage of this is that Artix allows C++ applications to interact
directly with Java applications over JMS.

Procedure To add a Java Message Service (JMS) port to an Artix contract:

1. At the Extensor Properties panel, as shown in Figure 111, select jms
from the Transport Type drop-down list.

e
SelectWSDL Property Definitions in Port - "newPaort

Define Port

Aftributes

Adiress

(RO GAIIETE) Alribute Value
destinationStyle (REQUIRED)
indiProviderJRL (REQUIRED)
initialContextF actary (REQUIRED)
indiConnectionFactoryName (REQUIRED)
indiDestinationMame (REQUIRED)
messageType (REQUIRED)

™ Define Bxtansor Praperties

|Erevinus I” Ment ||| Finish H Cancel H Help J

Figure 111:New Service Wizard—Define WebSphere MQ Port Properties

2. Enter values for the desired attributes. All attributes are required.
+ destinationStyle - Specifies the type of jms messaging object
you're connecting to; options are topic (one-way only) or queue.

+ jndiProviderURL - Specifies the URL of the JNDI service where
the connection information for the JMS destination is stored.

154

3.

Adding a Java Message Service Port

+ initialContextFactory - Specifies the name of the

InitialContextFactory class or a list of package prefixes used to

construct URL context factory classnames.

+ jndiConnectionFactoryName - Specifies the JNDI name bound to

the JMS connection factory to use to connect to the JMS
destination.

+ jndiDestinationName - Specifies the JNDI name bound to the

JMS destination to which Artix connects.

+ messageType - Specifies how the message data will be packaged
as a JMS message. text specifies that the data will be packaged

as a TextMessage. binary specifies that the data will be
packaged as an objectMessage.

Click Next to display the Summary panel as shown in Figure 108.

@New Service - Artix Designer
SelectWsDL Mewly Created Port Information
Define Service <7xml version="1.0" encoding="UTF-5"7>
<contract mame="Googleiearch™s
Define Port i o iper
«<service name="newiervice™>
Define Extensor Properties <port binding="typens: GoogleSearchBinding” name="newport s

™ Port Surmmany

<jns:address destinationStyle="uene”
initialContextFactory="inirtialcontextfactory nane"
jndiConnectionFactoryName="connectionfactorynane”
jndiDestinationName="destinacionnans” jndiProviderURL="wumr. iona
messageType="rext” /5

</port>
<fservicer
</oontract:

1 | D

Check here to create anather Part [

|Erewnus | Finish ” Cancel H Help

Figure 112:New Service wizard—Summary panel (JMS)

4.

To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define

Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

Click Finish to close the wizard and return to the Artix Designer.

155

CHAPTER 6 | Adding Services

Adding an IIOP Tunnel Port

An IIOP tunnel provides a means for taking advantage of existing CORBA
services while transmitting messages using a payload format other than
CORBA. For example, you could use an IIOP tunnel to send fixed format

messages to an endpoint whose address is published in a CORBA naming
service.

Supported payload formats IIOP tunnels can transport messages using the following payload formats:
* SOAP
® Fixed format
® Fixed record length
* G2++
® Octet streams

156

Adding an IIOP Tunnel Port

Procedure To add an IIOP tunnel port to your service contract:

1. At Extensor Properties panel, as shown in Figure 113, select tunnel
from the Transport Type drop-down list.

@ New Service - Artix Designer x|

Froperty Definitions in Port- “newPort’

Address
Aftribute] Walug |
Incation (REQUIRED) [J
Palicy
Aftribute J Walue J
poaname | [=]
semviceid ‘
! ~
Payload
Attribute J Yalue J
hype \
I Previous] I Next I | Finish ‘ [Cancel] [Help]

Figure 113:New Service wizard—Define IIOP Port Properties panel

2. From the drop down list in the Transport box, select tunnel.
In the Address table, enter the address in the line for Location.

4. If you want to set any of the supported POA policies, place a check in
the Specified box on the appropriate line in the Policy table and enter
a valid value.

157

CHAPTER 6 | Adding Services

5. Click Next to display the Port Summary panel, as shown in
Figure 114.

@ New Gervice - Artix Designer x|

Wewdly Created Part Infarmation

<#xnl wersion="1.0" encoding="UTF-3" 2>
Zcontract name="Defined Serwvices™>
<gervice names="neyiervice™s
<port binding="nsl:Googleiearchbinding” nane="newPort >
<iiop:address location="default location” />
<iiop:policy/>
<liop:payload/>
£ /ports
<fservice>
</contract>

Check here to create ancther Port [

| Previous || mex || mmish || camcet || hew

Figure 114:New Service wizard—Summary panel (II0P)

6. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

7. Click Finish to close this wizard and return to the Artix Designer.

Artix expects the IOR for the IIOP tunnel to be located in a file called

objref.ior, and creates a persistent POA with an object id of personalinfo
to configure the 1IOP tunnel.

158

Adding a SOAP Port

Adding a SOAP Port

Non-Secure Connections This section describes how to add a port for SOAP over HTTP that does not
enable secure connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on
page 115 for more information.

Procedure To enable the use of SOAP over HTTP:

1. At the Extensor Properties panel, as shown in Figure 115, select SOAP
from the Transport Type drop-down list.

x
Property Definitions in Port - "newPort'
“Altribute
Address
Attribute I Valug
Iocation (REQLUIRED) Il
Client
Attributa | valug |
SendTimeout ‘ E
ReceiveTimeout ‘
! -
Server
Attributa | valug |
SendTimeout ‘ E
ReceiveTimeout ‘
! -
I Previous “ MNext I | Finish | [Cancel] I Help

Figure 115:New Service wizard—Define SOAP Properties panel

159

CHAPTER 6 | Adding Services

160

In the Value field corresponding to the location line of the Address
configuration table, type the URL that represents the resource being
requested.

Note: The Address configuration table relates to the soap:address
element within the port component of the WSDL contract. You must
specify a value for the location attribute.

To specify a value for another attribute, place a check in the Specified
box on the appropriate line in the appropriate configuration table, and
type or (in the case of certain true or false attributes) select the value
you want.

Note: All attributes are optional in the Client and Server
configuration tables. These relate to the http-conf:client and
http-conf:server elements that can be specified as peers of the
soap:address element under the same port binding. See “SSL-related
attributes” below for details of each attribute relating to
http-conf:client and http-conf:server.

Adding a SOAP Port

4. Click Next to display the Summary panel, as shown in Figure 116.

@ New Service - Artix Designer x|

Mewly Created Port Information

<rxml wersion="1.0" encoding="UTF-58">
<contract nawe="Defined Fervices™>
<service name="newService’»
<port binding="nsl:GoogleSearchBinding” name="newPort™s
«<goap:address location="default location’/ >
<http-conf:client/>
<http-conf:server/>
</ports
</servicex
</contracts:

Check here to create another Port [

[Erewuua H Mext H Finish]" Cancel ”[Help

Figure 116:New Service wizard—Summary panel (SOAP)

5. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

6. Click Finish to close this wizard and return to the Artix Designer.

161

CHAPTER 6 | Adding Services

Secure Connections

SSL-related attributes

Procedure

162

This section describes how to add a port for SOAP over HTTP that enables

secure connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on

page 115 for more information.

The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port

binding are as follows:

Client SSL Attributes Server SSL Attributes
UseSecureSockets UseSecureSockets
ClientCertificate ServerCertificate

ClientCertificateChain

ServerCertificateChain

ClientPrivateKey

ServerPrivateKey

ClientPrivateKeyPassword

ServerPrivateKeyPassword

TrustedRootCertificate

TrustedRootCertificate

Follow the steps in “Procedure” on page 159, with the following minor

changes:

® Specify https:// rather than nttp:// as the prefix for the value of the
location attribute in the Address configuration table.

® Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” above for a

listing of these attributes.

Note: When you specify https:// as the prefix for the value of the
location attribute in the Address configuration table, a secure HTTP
connection is automatically enabled, even if UseSecureSockets is not set

to true.

Adding a SOAP Port

Adding a SOAP Binding, Service, and Port at the Same Time

Overview

Procedure

There is a smart-menu option you can use if you would like to create a
SOAP binding, service, and port for a resource. It is called SOAP enabling,
and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

To create a SOAP binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource | SOAP
Enable, to display the SOAP Enable dialog as shown in Figure 117.

€ s0aP Binding and Service Details ~Artix |

* PorType |GuiTumriaIPT E'
* Binding Mame |GuiTut|:|ria|F'T_50AF'Elinding3 |
* Style |d|:u:umem E'

" Use llteral [~]

* Service Name |GuiTutorialFT_SOAPService? |

* Port Mame |newPDr‘t |

[oo | [_seb_|

Figure 117:SOAP Enable dialog

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. Type a name for the new binding in the Binding Name field, or accept
the default provided.

4. Select the Style for this Binding from the drop-down list provided.
Valid values are rpc or document.

163

CHAPTER 6 | Adding Services

164

Select the Use for this Binding from the drop-down list provided. Valid
values are literal or encoded.

Type a name for the new service in the Service Name field, or accept
the default provided.

Type a name for the new port in the Port Name field, or accept the
default provided.

Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

Editing Services

Editing Services

You can edit a service by selecting Resource | Edit | Services, to display
the Edit Services panel as shown in Figure 118.

@ Edit Services - Artix Designer

1 Services
zlﬂ GoogleSearchService

[} GoogleSearchPort
9 Zndsenice

= [hewPart

Tl || Rename H Delete

Port Properties

The following are the properties defined in this Port:

Mame | Binding | Yalue
3 newPort GoogleSearchPar_SOA.
1 address
L D location default_location
= client
[server
| Eit.
| Ok ‘ | Cancel ‘ | Bpply ‘ | Help ‘

Figure 118:£Edit Services panel

At the Edit Services panel, all of your services and their associated ports are
listed in the top half of the dialog. From here you can:

® Rename a service or a port by selecting it and clicking Rename
® Delete a service or a port by selecting it and clicking Delete.
L]

Add a new service by clicking Add to display the New Service wizard.

165

CHAPTER 6 | Adding Services

Editing port properties When you select a port in the top of this dialog, the port properties are
displayed in the Port Properties panel at the bottom of the dialog.

To change any of the Port Properties, click the Edit button to display the
Edit Port Properties dialog, as shown in Figure 119.

51
Property Definitions in Port - "GoogleSearchPort”
Attributes
Address
Attribute | Value
location (REQUIRED) hitpfapi.google.com/search/beta2
Client
Attribute Value |
SendTimeout [+]
ReceiveTimeout E
AutoRedirect
Liserhame B
Senver
Attribute Value |
SendTimeout
ReceiveTimeout
SuppressClientSendErrars
SuppressClientReceiveErrors
‘ oK J ‘ Cancel I | Apply | ‘ Help

Figure 119:£dit Port Properties dialog

To change values of attributes in this dialog, click on the value field to either
select or type the new value.

When you have finished making your changes, click Apply to update the
port, and OK to close the wizard and return to the Edit Services dialog,
where your changes are displayed in the Port Properties panel.

Click OK to close this dialog and return to the Artix Designer.

166

In this chapter

CHAPTER 7

Routing Messages

Artix provides messages routing based on operations, ports, or
message attributes.

This chapter discusses the following topics:

What is a Route? page 168
Creating a Route page 169
Editing a Route page 175

167

CHAPTER 7 | Routing Messages

What is a Route?

Overview

Port-based

Operation-based

168

Artix routing is implemented within Artix collections and is controlled by
rules specified in the collection’s contract. Artix collections that include
routing rules can be deployed into an Artix service.

Artix supports the following types of routing:
® “Port-based”
® “Operation-based”

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based routing acts on the port or transport-level identifier, specified by
a <port> element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <portType>, level or the finer grained operation
level.

Creating a Route

Creating a Route

Overview

Procedure

The Artix Designer includes a routing wizard that assists you in creating
routes from the services available in your contract. It walks you through the
steps of creating a route and provides you with the valid options for the
services available. It performs all of the compatibility testing for you and will
never allow you to create an invalid route.

To create a route:

1. From the Designer Tree, select a contract with multiple service
definitions that have operations that can be routed.

2. Select Contracts | New | Route from the menu bar to display the New
Route wizard, as shown in Figure 120.

Note: If the Route option is not available, your contract does not
have any compatible operations for routing. For a contract to be able
to be routed, it needs to contain two or more services with

compatible port types. See “Adding Services” on page 139 for more
information.

169

CHAPTER 7 | Routing Messages

@ Routing - Artix Designer x|

Selectthe WSDL file this new contractitem should be added to
(@ Add to existing WSDL "GoogleSearch”

O Add 10 new 'WSDL Defingd_Routes

[Erewuus “ Next ” Finish H Cancel ” Help

Figure 120:New Route wizard

3. Select where you want to add the routing information.

+ Add to existing WSDL adds the route information to the existing
contract.

+ Add to new WSDL creates a new WSDL document that contains
the route information.

170

Creating a Route

4. Click Next to display the Source and Destination panel, as shown in
Figure 121.

@ Routing - Artix Designer x|

Route Name [newRoute |

~Select Port Types and Source Endpoint:

Fort Types Iurn GoogleSearch:GoogleSearchPort E]]

Source Endpoints L8] ngservice newPart
5] GooglaSearch3anice : GoogleSearchPart

~Select Destination Endpaints and Multi-Route Fropertie

Destination Endpoints 7] GongleSearchSenice | GoogleSearchPart

|4 |

¥ |

Select an Endpoint to enable the Multi-Route options below.

@ single O Failover O Fanout

| Previous || wed || mesn | came || mew

Figure 121:New Route wizard—Source and Destination panel

5. Enter a name for the route, or accept the default provided

6. Select the source portType for the route from the PortType pull-down
list.

7. Select the source endpoint from the available options in the Source
Endpoints list.

8. Select the destination endpoint from the available options in the
Destination Endpoints list.

9. If you selected multiple destination endpoints on the previous screen,
select either Failover or Fanout under Multiple Route Destination
Preference.

171

CHAPTER 7 | Routing Messages

10. Click Next to display the Operation Routing panel, as shown in

Figure 122.

Specify Operations to be Routed

~Routed Operation
[¥] doSpellingSuggestion
[#] doGoogleSearch
[¥] doGetCachedPage

IErewuus “ Mext Il Finish H Cancel H Help

Figure 122:New Route wizard—Operation Routing panel

11. Select the operations you want to route from the list provided. By
default, all operations are pre-selected.

172

Creating a Route

12. Click Next to display the Transport Attributes panel, as shown in

Figure 123.
5!
“Transport Attribute Rule Set
[=] [Add Rule Set | [Removerueser |
- Transpaort Atribute Rule:
Marme | | [A atibue

walue | ‘

~Transpott Atribute

Name J Relation J value J Case Sensitive

[Remove sttioute |

[Previous “ hlext H Finish H Cancel][Help]

Figure 123:New Route wizard—Transport Attributes panel

13. Click Add Rule Set to add transport attribute based routing rules. The
counter will automatically start at 0.

14. Enter the name of the transport attribute.
15. Enter the value to be used for the attribute.

16. Click Add Attribute to add the attribute to the Transport Attribute
table. When the attribute is in the table you can edit it to determine
how matching attributes are compared to the value.

17. Repeat steps 13-16 for all the attributes you want to use in your route.

Note: The editor has no knowledge of the valid attribute names and
will allow you to enter any names and values.

173

CHAPTER 7 | Routing Messages

18. Click Next to display the Summary panel, as shown in Figure 124.

@ Routing - Artix Designer x|

Route Summary

~Route Endpoint:

Source & Zndservice : newPort

Destination(s) |37 GoogleSearchService : GoogleSearchPort

SWSDL wiew of the updated Route

Route: |ym:GoogleSearch:newRoute - |

<rxml version="1.0" encoding="UTF-3"7> E
="GongleSearch™s

<definitions nam

<route name="newRoute’
<nsl:source port="nevPort” service="typens:Zindservice”/ >
<nsl: transporthttributes:
<nsl:equals name="first rule” wvalue="first value"/>
"default_value™ />

<nsl:equals name="second_rule” walues
</n9l:transporthttributes>

<nsl:destination port="GoogleiearchPort” service="rtypens: Googledear
</routex
<fdefinitions>

R e T

Figure 124:New Route wizard—Summary panel

19. Click Finish to close this wizard and return to the Artix Designer.

174

Editing a Route

Editing a Route

The only things you can edit in a route are the transport attributes. When
you choose to edit a route, the Transport Attributes panel for the New Route
wizard is displayed for that route, enabling you to change any transport
attributes that you previously created, or to add new transport attributes.

Procedure To edit a route:

1. Select the Route in the Resource Navigator (diagram view) and select
Resource | Edit | Route to display the Transport Attributes panel, as
shown in Figure 125.

&
~Transport Attribute Rule Set
1 [-] [asurueset | | RemoveRueset |

“Transport Attribute Rule:

Narne [| | aadatiowe |

Value | |

“Transport Attribute

Marng Relation Walug Case Sensitive
First_attribute eguals Walue_of_first_aftribute false
Secand_attribute equals Value_second_attribute false
Rermove Attribute
| previous || mex || Fosn | camel || Hew |

Figure 125:Transport Attributes panel—Editing a Route

2. You can change the values for any of the existing transport attributes,
or add new transport attributes.

175

CHAPTER 7 | Routing Messages

3. When you have finished your changes, click OK to display the
Summary panel, as shown in Figure 126. This panel will display the
route with your changes included.

@ Routing - Artix Designer

Route Summary

~Route Endpoint:

Source W Zndsenvice : newPort

Destination(s) |5 GoogleSearchSenice : GoogleSearchPort

WEDL wiew of the updated Route

Route: |y GoogleSearch:newRoute nl

<7xml wersion="1.0" encoding="UTF-G"2> n
<definitions name="Googledearch™>
<route name="nevRoute”>
<nsl:source port="negPort” serwice="typens:Zndservice” >
<nslitransportaccributess

<nsl:equals nape="first_rule” wvalue="first_valus"/»
<nsliequals name="second rule” wvalue="default wvalue' />
</nsl: transporthttributess>
<nslidestination port="GooglefearchPort” service="typens:Googledean
</routex

</definitions>

[Erevinus ” Mext]" Finish H Cancel ” Help

J

Figure 126:Summary panel—Editing a Route

176

In this chapter

CHAPTER 8

Deployment

You can generate code for your Artix collections as often as
you like using different configurations to satisfy your solution
requirements.

This chapter discusses the following topics:

Deployment Explained page 178
Creating a Deployment Profile page 179
Creating a Deployment Bundle page 185
Generating Code page 192

177

CHAPTER 8 | Deployment

Deployment Explained

Overview

178

Deployment is only available in the Artix Designer when it is in Deployer
mode. If you are working with the Designer in Editor mode, there is no way
to access the deployment functionality described in this chapter other than
switching to Deployer mode.

Artix Collections can be deployed as Java, C++, or CORBA-based
applications. As part of the deployment process, you can use a collection to
create a client, a server, or a switch, or any combination of all three options.
Deployment involves three steps:

1. Creating a Deployment Profile - see page 179

2. Creating the Deployment Bundle - see page 183

3. Generating the Code - see page 192

You do not have to perform all the steps in one go - you can perform one or

more and then complete the rest later. You must, however, perform them in

the order shown here. That is, you need to create a Deployment Profile

before you can create a Deployment Bundle, and you cannot generate the

code until you have created a bundle.

One other thing you need to consider is that you can't create a deployment

bundle for a collection if it doesn’t contain a contract that has had a service

defined. For more information on adding services to a contract, see

page 139.

As part of the code generation process, Artix generates four directories in

your specified save location:

® src - contains the generated source code in the language you
specified (C++, Java, or IDL)

® etc - contains the configuration information required for the
application to run successfully

® wsdl - contains the locally defined WSDL contracts

® bin - contains the environment scripts and the start and stop (UNIX
only) scripts

Creating a Deployment Profile

Creating a Deployment Profile

Overview

The Deployment Profile defines machine level-information such as the Artix
save location, the compiler location, and the operating system being used.
This profile can be used multiple times as it is not specific to any particular
collection defined within the workspace.

If you create your workspace using one of the workspace templates, Artix
creates a default local profile for you automatically, which you can use for
deploying to your local machine. The details of this profile are displayed on
the Workspace Details panel. For deploying to other machines, you need to
create your own profiles.

The next step after creating a Deployment Profile, is to create a Deployment
Bundle to capture specific information about the deployment of a collection.
Deployment Bundles are explained further in the next section of this
chapter.

You can have as many Deployment Profiles as you like within your
workspace, but each Deployment Bundle can reference only one
Deployment Profile.

179

CHAPTER 8 | Deployment

Procedure To create a Deployment Profile:
1. Select File | New | Deployment Profile from the menu bar to display
the Deployment Profile wizard, as shown in Figure 127.

x
Narme [
Description | ‘
Operating Systerm
‘ Previous || Mext I ‘ Finish ‘ [Cancel] [Help

Figure 127:Deployment Profile wizard

2. Enter a name for this profile.
Enter a description for this profile to help distinguish it from other
profiles you may create.

4. Select the operating system for this profile from the list provided. Artix
currently supports Windows or UNIX.

180

Creating a Deployment Profile

5. Click Next to display the Artix Location panel, as shown in Figure 128.

Artiz Installation Directory ‘Z.\temp ‘ Erawse. .
Envitonment File ‘Z'\temp\artmz Obimartiz_env bat ‘
Development Language
4 guag @ e
O Java
Ol
[Previous “ Mext ” Finish H Cancel H Help

Figure 128:Deployment Profile wizard—Artix Location panel

6. Enter values for each of the fields provided on the panel, or accept the
defaults provided. Changes you make to the Location field will be
reflected in the Environment File field.

7. Select a Development Language for this profile from the options
provided (C++, Java, IDL).

181

CHAPTER 8 | Deployment

8. Click Next to display the Summary panel, as shown in Figure 129.

@ New Deployment Profile - Artix Designer |

Deploytment Profile Surnmary

Deployment Profile Zettings
Neme: DefaultProfilel
Description:

Dperating System: Windows

Artix Setrings
drtix Installation Directory: Z:3
Enviromment Jcript: Z:hartixiZ.0\bin\artix_env.bat

Code Settings
Lanquage: G+

[Ereviuus H Hext H Finish]H Cancel ||l Help

Figure 129:Deployment Profile wizard—Summary panel

9. Click Finish to close this wizard and return to the Artix Designer. Your
new Deployment Profile is listed in the Designer Tree as well as on the
Workspace Details panel.

182

Creating a Deployment Profile

Editing a Deployment Profile

After you have created a deployment profile, you can view its details by
selecting it in the Designer Tree to display the Deployment Profile Details
panel, as shown in Figure 130.

Deployment Profile Details

Hame Windows C++ profile
Description
Operating System ‘\Nindows

Artix Settings

Installation Directory 7
Environment Script Ziartix2 1hinfaris_env bat

Code Profile Settings

Language C++

Edit..| Delete

Figure 130:Deployment Profile Details

This panel displays, in read-only format, the settings you defined for the
profile during the New Profile wizard.

183

CHAPTER 8 | Deployment

184

To edit a profile click on the Edit button to display the Edit Deployment

Profile dialog, as shown in Figure 131.

'@ Edit Deployment Profile - Artix Designer 1[
Attributes
Deployment Profile Settings
Mame [Diescription | operating System |
DefaultPrafile | Windows

Artix Settings

llation Directory

| Environment Script

1

Flartia2 Mbimarti:_enyv.hat

Code Profile Settings

Language

C++

| [o]34 ” Cancel H Apply || Help ‘

Figure 131:£dit Deployment Profile dialog

This dialog enables you to change the settings for your Deployment Profile.
To change the values for any of the settings, either:

® Type a new value in the cell, or

® Select a valid option from the drop-down within the cell

Click Apply to apply your changes, and OK to close this dialog.

Note that if you make changes to a Deployment Profile for a Bundle that has
already had code generated, you will need to regenerate the code as it will
most likely be rendered invalid. This is indicated by a warning icon to the
left of the bundle name in the Designer Tree.

To regenerate the code for a bundle, select it in the Designer Tree and select
Tools | Generate Code. See page 192 for more information.

Creating a Deployment Bundle

Creating a Deployment Bundle

Overview The Deployment Bundle defines the deployment characteristics for a
collection, such as the deployment type (client, server, or switch), code
generation options, and configuration details. You can also modify the
service WSDL for each deployment bundle, if necessary.

You can have as many Deployment Bundles per collection as you like, but
you must have at least one Deployment Profile created before you can
create a Bundle. Typically you would create a new profile for each different
operating system you intended using for deployment.

Procedure To create a Deployment Bundle:

1. Select the Collection for which you want to create a bundle in the
Designer Tree.

2. Select File | New | Deployment Bundle from the menu bar to display
the New Deployment Bundle wizard, as shown in Figure 132.

@ New Deployment Bundle - Artix Designer 1[
™ Bundle Details Narme [petautBunde |
Code Generatioh Deseription | ‘
Edit Services
Location [ewmorkspacemewsollectioniDetauttBundle| \ Browse
Surmary =
Deployment Profile | pefaultprafile]

Deployment Type
@ Client

O Server
O Client And Server

O 8witch

Management Options

[Enable Managemant (Server [Switch anly)

| mevoue [[wea || Enisn || cancel][e

Figure 132:New Deployment Bundle wizard

185

CHAPTER 8 | Deployment

186

Enter a name for this bundle, or accept the default provided.

Enter a description for this bundle to help distinguish it from other
bundles you may create.

Enter a save location for this bundle, or accept the default provided.
Select a Deployment Profile to reference for this bundle. If there are
no profiles listed, you need to create one before you can continue. See
“Creating a Deployment Profile” on page 179 for more information.
Select the Deployment Type from the list provided - options are client,
server, client and server, or switch.

Click Next to display the Code Generation panel, as shown in

Figure 133.

@ New Deployment Bundle - Artix Designer 5[

~Generate Code Based On

@ Services / Ports

Senices iPorts | W3DL | Generate Code | Sample | Plugin
HellaworldServi... HelloWorldGuiT... | =] | [[[m]
GuiTutarialPT_5.. | HelloworldGuiT .. | m] | [m] | O

~Select Service

[Locatar [Management

[Session Manager [Security

[J Configurs Language Options (optional)

l Previous II Nest || Finish H Cancel H Help

Figure 133:Deployment Bundle wizard—Code Generation panel

Select how you'd like to display the items for which you can generate
code. The available options are:

+ Services/ports
+ Bindings
¢+ Port Types

10.

11.

12.

Creating a Deployment Bundle

Select the check boxes to indicate what type of code you wish to
generate. Options are:

+ Code - generates proxy and stub code that is not user-editable -
doesn’t contain any starting point code.

+ Sample - generates starting point code with sample data that you
can edit or add processing logic to. (Only available if Code is also
checked.)

. Plug-in - generates the code so that it compiles as an Artix
plug-in. (Only available if Code is also checked.)

Select the Services you would like to enable for this deployment bundle
from the list provided:

¢ Locator - clients use the location service to detect other deployed
Artix applications. Typically deployed into a standalone switch.

+ Session Manager - provides control over the number of clients
that can connect to a service, and the duration of their
connection. Typically deployed into a standalone switch.

+ Management - generates scripts required to manage your
deloyment through a management console. (Only valid for server
or switch deployments.)

+ Security - enables secure communication between the client and
the web service using SSL.

Note: These services are only available for selection if they have been

enabled at the workspace level on the Workspace Services Details

panel.

Click the Configure Language Options check box if you want to specify

settings for the code generation in the language you have selected.

This will add an extra panel to the wizard where you can specify these

options.

Depending on which code you are working with, the options displayed

will differ. Possible options are:

. Namespace (C++) - The namespace you want to use in the
C++ code.

187

CHAPTER 8 | Deployment

+ Declaration Specification (C++) - If this collection is being built
as a DLL on Windows, this specifier is required for the symbols
exported from the library.

+ Package Name (Java) - The name you want to use for the Java
package. Enter a name or accept the default provided.

13. Click Next to display the Edit Services panel, as shown in Figure 134.

@ New Deployment Bundle - Artix Designer 5[
Bundie Details Click the Service link to update the YWSDL farthat Service. Mote that any changes you make to the Service will
. he applied to this deployrnent only, theywill not update the original WSDL docurnent.
Code Generation
Service List
™ Edit Sewvices

GoogleSearchSenvice fileCiTemplativGoogleSearchwsdl

Summary .
2ndsernvice fileJCuTemplatikGoogleSearch wsdl
GridService Ffagric wsd]

| Previous Mext ‘ Cancel | Help

Figure 134:Deployment Bundle wizard—Update Service panel

14. Click any of the Services links to update them for this deployment.

Note that any changes made to the Service details from within this
wizard will only apply to that bundle; they will not be applied to the
WSDL document itself.

188

Creating a Deployment Bundle

15. Click Next to display the Summary panel, as shown in Figure 135.

@ New Deployment Bundle - Artix Designer x|
Bundle Details Summary Panel
Code Generation Deploywent Bundle Settings
Name: DefaultBundle
Edit Services Descriprtion:
Bundle Location: C:yTewphartixi\NewWorkspace\NewCollectioniDefaultBundle
= Summany

Eundle Profile: DefaultProfile
Deployment Type: Client

Code Generation Settings
Code Location: C:\Tewphartix\Mewllorkspace\NewCollectioniDefaultBundlelsroloxx
Generate Environment Script: false
service: GoogleSearchiervice
Port: GoogleSearchPort
C++ Mapping: Minimal Changes

Configuration Settings

|Erewuu5 | Finish || Cancel H Help

Figure 135:Deployment bundle wizard—Summary panel

16. Click Finish to close this wizard and return to the Artix Designer. The
new Deployment Bundle is listed in the Designer Tree as well as on the
Collection Details panel.

Deployment bundle status The status of your deployment bundle can change over its lifetime. After
you have generated code for your bundle, its status is indicated on the
Collection and Deployment Bundle Details panels. The date and time that
the code was generated is stated.

If you subsequently make changes to any of the collection entitites, such as
the Deployment Profile, or the Bundle, or even the resources, the code will
most likely no longer be valid. You will need to regenerate it. This is
indicated on the Details panels, as before, and also by a warning icon next
to the bundle name in the Designer Tree.

189

CHAPTER 8 | Deployment

Editing a Deployment Bundle

After you have created a deployment bundle, you can view its details by
selecting it in the Designer Tree to display the Deployment Bundle Details
panel, as shown in Figure 130.

Deployment Bundle Details

Deployment Bundle Settings

Name Java Server

Description

Location CiTemplatizTest_0616MewCollectioniJava Server
Profile Windows Java Profile

Type Serer

Code Generation Settings

Location CiuTempiativTest_0616MewCollectioniJava Serverisroljava
Generate Env Script false

Senice GoogleSearchService

Port GoogleSearchPort

Java Package

Configuration Settings

Management Disabled

Edit..| Delete
Figure 136:Deployment Bundle Details

This panel displays, in read-only format, the settings you defined for the
profile during the New Bundle wizard.

190

@ Edit Deployment Bundle - Artix Designer |

Attributes

Deployment Bundle Settings

Creating a Deployment Bundle

To edit the bundle by clicking on the Edit button to display the Edit
Deployment Bundle dialog, as shown in Figure 131.

Mame

| Description | Location | Profile | Type |

C++ Client (Code gener... |CoTemplatid... Windows Jav... |Client

Code Generation Settings

Lacation

|Generate Env...| Service | Fort | Java Package |

CiuTemplartix.. [false GoogleSearc... |GoogleSearc...

Configuration Settings

hanagement

Disahled

| Ok H Cancel H Apply || Help ‘

Figure 137:£dit Deployment Bundle dialog

To change the values for any of the settings, either:

® Type a new value in the cell, or

® Select a valid option from the drop-down within the cell
Click Apply to apply your changes, and OK to close this dialog.

Note that if you make changes to a Deployment Bundle that has already had
code generated, you will need to regenerate the code as it will most likely be
rendered invalid. This is indicated by a warning icon to the left of the
bundle name in the Designer Tree.

To regenerate the code for a bundle, select it in the Designer Tree and select
Tools | Generate Code. See the next section for more information.

191

CHAPTER 8 | Deployment

Generating Code

Overview

Procedure

192

Once you have created your Deployment Bundle, code generation for the
collection is very simple and quick. Artix generates the code based on the
information you provided in the bundle, and creates the code, environment

scripts, and configuration files in the locations you provided.

Note that if you make any changes to any of the contents of a collection
after code generation, it could invalidate that code. For this reason, it is
recommended that you regenerate the code for any collection that has been
modified. Bundles requiring their code to be regenerated are indicated in
the Designer Tree by a small warning icon next to the Bundle name.

To generate code for a collection:

1. Select the collection in the Designer Tree.

2. Select Tools | Generate Code from the menu bar to display the

Generate Code dialog, as shown in Figure 138.

9 Generate Code - Artix Designer

Collection Mame Client
Deployment Bundle ||c>o<_c|ient ||Z||
Component | Generate
Stub Code
User Code]
Ervironment Scripts =]
Code Generation Progress
|| Ok H | Cancel ‘ | Help ‘

Figure 138:Generate Code dialog

Testing the solution

Generating Code

3. Select a Deployment Bundle from the Deployment Bundle drop-down

list.

4. There are several components already pre-selected in the Generate
column - if you want to change any of these settings you can do so by
selecting and deselecting check boxes. The options provided are:

*

Stub Code - code that marshals and de-marshals the request.
This is Required, and is always pre-selected.

User Code - generates a template for the implementation code.
You will need to complete this code by hand.

Environment Scripts - scripts required to set up the Artix
development and runtime on the deployment machine.
Start/Stop Scripts - scripts to start and stop the server. Only valid
for server and switch implementations. For Windows operating
systems there will be no stop scripts, as Artix is unable to
determine which process to stop from the command line API.
Management Scripts - scripts required for integration into the
BMC console. Only valid for server and switch implementations.

5. Click OK to generate the code for this bundle.
You will see a progress indicator, and messages stating things like
"Generating Code", "Generating Configuration File". When the process
is complete (usually only 3-4 seconds), you will receive a message
stating that it is "Finished".

Now that you have generated the code necessary for your application, you
need to do some hand coding before you can test the solution.

For help with editing your code, see either:

® Developing Artix Solutions with C++; or

® Developing Artix Solutions with Java

These books will guide you through the steps required to get your code to a
state where it is ready to run.

193

CHAPTER 8 | Deployment

194

Part |l

Using Artix Command Line
Tools

In this part This part contains the following chapters:
Designing Artix Solutions from the Command Line page 197
Defining Data Types page 203
Defining Messages page 219
Defining Your Interfaces page 223
Binding Interfaces to a Payload Format page 227
Adding Transports page 297
Creating Artix Contracts from Existing Applications page 337
Adding Routing Instructions page 357
Using the Artix Transformer to Solve Problems in Artix page 381

In this chapter

CHAPTER 9

Designing Artix
Solutions from the
Command Line

Using a combination of Artix command line utilities and a text
editor you can create complex Artix solutions.

This chapter discusses the following topics:

Artix and WSDL page 198
Creating an Artix Contract page 200
Beyond the Contract page 201

197

CHAPTER 9 | Designing Artix Solutions from the Command Line

Artix and WSDL

Overview

Structure of a WSDL document

WSDL elements

198

When designing Artix solutions from the command line, you will be working
directly with the WSDL and XMLSchema that makes up the Artix contract.
In many instances the Artix designer automates many of the details of
creating a well-formed and valid WSDL document. When hand-editing Artix
contracts you will need to ensure that the contract is valid, as well as
correct. To do that you must have some familiarity with WSDL. You can find
the standard on the W3C website, www.w3.org.

A WSDL document is, at its simplest, a collection of elements contained
within the root <definition> element. These elements describe a service
and how that service can is accessed.

The <types>, <message>, and <portType> elements describe the service's
interface and make up the /ogical section of a contract. Within the <types>
element, XMLSchema is used to define complex data types. A number of
<message> elements are used to define the structure of the messages used
by the service. The <portType> element contains one or more <operation>
elements that define the operations provided by the service.

The <binding> and <service> elements describe how the service connects
to the outside world and make up the physical section of the contract.
<binding> elements describe how the data defined in the <message>
elements are mapped into a concrete on-the-wire data format, such as
SOAP. <service> elements contain one or more <port> elements which
define the network interface for the service.

A WSDL document is made up of the following elements:

® <definitions> - the root element of a WSDL document. The attributes
of this element specfiy the name of the WSDL document, the
document’s target namespace, and the shorthand definitions for the
namespaces referenced by the WSDL.

® <types> — the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an
XMLSchema document (XSD).

http://www.w3.org/TR/wsdl

Artix extensions

Artix and WSDL

® <message> — the abstract definition of the data being communicated.

® <portType> — a collection of <operation> elements representing an
abstract endpoint.

® <operation> the abstract description of an action.

® <pbinding> — the concrete data format specification for a port type.

® <service> — a collection of <port> elements.

® <port>—the endpoint defined by a binding and a physical address.

Artix extends the original concept of WSDL by expanding it to describe
services that use transports and bindings beyond SOAP over HTTP. Artix
also extends WSDL to allow it to describe complex systems of services and
how they are integrated. To do this IONA has extended WSDL according to
the procedures outlined by W3C.

The majority of the IONA WSDL extension elements are used in the physical
section of the contract because they relate to how data is mapped into an on
the wire format and how different transports are configured. In addition,
Artix defines extensions for creating routes between services, CORBA data
type mapping, and working with service references.

Each extension is defined in a separate namespace and IONA provides the
XMLSchema definitions for each extension so that any XML editor can
validate an Artix contract.

199

CHAPTER 9 | Designing Artix Solutions from the Command Line

Creating an Artix Contract

Overview

Design process

Using composite contracts

200

The process of designing an Artix solution using command line tools is
similar to the process of designing an Artix solution using Artix Designer.
You still need to define all of the information that defines the logical and
physical characteristics of the services in your system and how they interact.

To design an Artix solution from the command line you must perform the
following steps:

1. Define the data types used in your solution.

2. Define the messages used in your solution.

3. Define the interfaces for each of the services in your solution.
4

Define the bindings between the messages used by each interface and
the concrete representation of the data on the wire.

o

Define the transport details for each of the services in your solution.
Define any routing rules used in your solution.

7. Define any Artix services used to provide added functionality to your
solution.

When using the command line tools you can choose to design your project
using a single contract that contains all of the type definitions, interface
definitions, bindings, ports, and other Artix-specific information defining
your solution. You can also choose to work with a number of smaller
contracts that you import into a composite contract that represents the
solution.

This approach allows you to reuse parts of your contract, such as the data
type definitions, in multiple projects. It can also make working with large
contracts more manageable.

Beyond the Contract

Beyond the Contract

Overview

Develop application code

Configure the Artix components

After you have created the contract defining your Artix solution, you still
have work to do before your solution is ready to go. There are two remaining
steps in developing a solution using Artix:

1. Develop any application-level code needed to complete the solution.
2. Configure the Artix components.

Often, you will need to develop new application logic as a part of your
solution. Artix provides tools that allow you to develop this new functionality
using familiar programming paradigms. For example, if you are a CORBA
developer integrating a CORBA system with a Tuxedo application, Artix will
generate the IDL representing the interface used in the service integration.
You can then implement the interface using CORBA.

Artix also provides code generators to create stub and skeleton code in C+ +
and Java. The APIs used by Artix make it easy to develop
transport-independent, Web services-based applications using standard
programming techniques. For more information on developing Artix
applications, see Developing Artix Applications in C++ or Developing Artix
Applications in Java.

Before deploying your Artix solution you need to configure the run time
environment for your Artix components and services. For a detailed
discussion of Artix configuration, see the Deploying and Managing Artix
Solutions.

201

CHAPTER 9 | Designing Artix Solutions from the Command Line

202

Overview

CHAPTER 10

Defining Data
Types

In Artix, complex data types are defined using XMLSchema.

When defining an interface in an Artix contract, the first thing you need to
consider is the types of data that are used by the operation parameters of
the interface. Artix uses XMLSchema as its native type system. XMLSchema
supports a number of simple types that do not require you to describe them
in the contract. XMLSchema also supports the definition of complex data
types that are either a collection of typed elements or a derivative of a
simple type. In an Artix contract, complex type definitions are entered in the
<type> element.

Defining the types used in an Artix contract involves seven steps:

1. Determine all of the data types used in the interface described by the
contract.

2. Create a <type> element in your contract.
Create a <schema> element, as a child of the <type> element, that
specifies the type system used in the contract. See “Specifying a Type
System in a Contract” on page 205.

4. For each complex type that is a collection of elements, define the data
type using a <complexType> element. See “Defining Data Structures”
on page 209.

203

CHAPTER 10 | Defining Data Types

5. For each array, define the data type using a <complexType> element.
See “Defining Arrays” on page 212.

6. For each complex type that is derived from a simple type, define the
data type using a <simpleType> element. See “Defining Types by
Restriction” on page 214.

7. For each enumerated type, define the data type using a <simpleType>
element. See “Defining Enumerated Types” on page 216.

In this chapter This chapter discusses the following topics:
Specifying a Type System in a Contract page 205
XMLSchema Simple Types page 206
Defining Complex Data Types page 208

204

Specifying a Type System in a Contract

Specifying a Type System in a Contract

Overview

Specifying the type system

General guidelines

According to the WSDL specification, you can use any type system you like
to define data types in WSDL. However, the W3C specification states
XMLSchema (XSD) is the preferred canonical type system for a WSDL
document. Therefore, XSD is the intrinsic type system in Artix.

The first child element of the <types> element in a contract is the <schema>
element. This element specifies the namespace for the types defined by the
WSDL. It also defines the type system used to define the new types and any
namespaces that are referenced in the type definitions.

Example 1 shows the standard <schema> element for an Artix contract. The
attribute targetNamespace is where you specify the namespace under which
your new data types are defined. The remaining entries are required. The
first specifies that the types are defined using XMLSchema. The second
references a few special XMLSchema types defined specifically for WSDL.

Example 1: Artix Schema Element

<schema
targetNamespace="http://schemas.iona.com/idltypes/bank.idl"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

The W3C also provides guidelines on using XMLSchema to represent data
types in WSDL documents:

® Use elements, not attributes.
® Do not use protocol-specific types as base types.
® Define arrays using the SOAP 1.1 array encoding format.

205

CHAPTER 10 | Defining Data Types

XMLSchema Simple Types

Overview If a message part is going to be of a simple type you do not need to create a
type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types XSD simple types are mainly placed in the type attribute of <element>
elements used in defining sequences in the types section of your contract.
They are also used in the base attribute of <restriction> elements and
<extension> elements.

Simple types are always entered using the xsd prefix. For example, to
specify that an element is of type int, you would enter xsd:int in its type
attribute.

Supported XSD simple types Artix supports the following XMLSchema simple types:

® xsd:anyType

® xsd:base64Binary

® xsd:boolean

® xsd:byte
xsd:dateTime
xsd:decimal
xsd:double
xsd:float
xsd:hexBinary
xsd:int
xsd:integer
xsd:long
xsd:QName
xsd:short
xsd:string
xsd:unsignedByte
xsd:unsignedInt

xsd:unsignedLong

206

xsd:

xsd

xsd:
xsd:
xsd:
xsd:
xsd:
xsd:
xsd:
xsd:
xsd:
xsd:

xsd:

unsignedShort

:integer

positiveInteger
negativeInteger
nonPositivelInteger

nonNegativelnteger

ID

anyURI
gbay
gMonth
gYear
gMonthDay

gYearMonth

XMLSchema Simple Types

207

CHAPTER 10 | Defining Data Types

Defining Complex Data Types

Overview XMLSchema provides a flexible and powerful mechanism for building
complex data types from its simple data types. You can create data
structures by creating a sequence of elements and attributes. You can also
extend your defined types to create even more complex types.

In addition to allowing you to build complex data structures, you can also
describe specialized types such as enumerated types, data types that have a
specific range of values, or data types that need to follow certain patterns by
either extending or restricting the primitive types.

In this section This section discusses the following topics:
Defining Data Structures page 209
Defining Arrays page 212
Defining Types by Restriction page 214
Defining Enumerated Types page 216

208

Defining Complex Data Types

Defining Data Structures

Overview

In XMLSchema data structures that are a collection of data fields are defined

using <complexType> elements. The definition of a <complexType> has three

parts:

1. The name of the defined type is specified in the name attribute of the
<complexType> element.

2. The first child element of the <complexType> describes the behavior of
the structure’s fields when it is put on the wire. See “complexType
varieties” on page 210.

3. Each of the fields of the defined structure are defined in <element>
elements that are grandchildren of the <complexType>. See “Defining
the parts of a structure” on page 210.

For example the structure shown in Example 2 would be defined in
XMLSchema as a <complexType> with two elements.

Example 2: Simple Structure

struct personalInfo
{

string name;

int age;

}i
Example 3 shows one possible XMLSchema mapping for personalinfo.
Example 3: A Complex Type

<complexType name="personalInfo>
<sequence>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />
</sequence>
</complexType>

209

CHAPTER 10 | Defining Data Types

complexType varieties

Defining the parts of a structure

210

XMLSchema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and when passed on
the wire. The first child element of the <complexType> determines which
variety of complex type is being used. Table 1 shows the elements used to
define complex type behavior.

Table 1: complexType Descriptor Elements

Element complexType Behavior

<sequence> | All the complex type’s fields must be present and in the
exact order they are specified in the type definition.

<all> All the complex type’s fields must be present but can be in
any order.

<choice> Only one of the elements in the structure is placed in the
message.

If neither <sequence>, <all>, nor <choice> is specified, the default is

<sequence>

For example, the structure defined in Example 3 would generate a message
containing two elements: name and age. If the structure was defined as a
<choice>, as shown in Example 4, it would generate a message with either
a name element or an age element.

Example 4: Simple Complex Choice Type

<complexType name="personalInfo>
<choice>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />
</choice>
</complexType>

You define the data fields that make up a structure using <element>
elements. Every <complexType> should have at least one <element> defined
inside of it. Each <element> in the <complexType> represents a field in the
defined data structure.

Defining Complex Data Types

To fully describe a field in a data structure, <element> elements have two
required attributes:

® name specifies the name of the data field and must be unique within
the defined complex type.

® type specifies the type of the data stored in the field. The type can be
either one of the XMLSchema simple types or any named complex type
that is defined in the contract.

In addition to name and type, <element> elements have two other commonly
used optional attributes: minocurrs and maxoccurs. These attributes place
bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you could define a field, previousdobs, that must occur at least
three times and no more than seven times as shown in Example 5.

Example 5: Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />
<element name="previousJobs" type="xsd:string"
minOccurs="3" maxOccurs="7" />
</all>
</complexType>

You could also use minoccurs to make a date field optional by setting it to
zero as shown in Example 6. In this case age can be omitted and the data
will still be valid.

Example 6: Simple Complex Type with minOccurs

<complexType name="personalInfo>
<choice>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" minOccurs="0" />
</choice>
</complexType>

211

CHAPTER 10 | Defining Data Types

Defining Arrays

Overview

Complex type arrays

SOAP arrays

212

Artix supports two methods for defining arrays in a contract. The first is
define a complex type with a single element with occurrence constraint
placed on it. The second is to use SOAP arrays. SOAP arrays provide added
functionality such as the ability to easily define multi-dimensional arrays
and transmit sparsely populated arrays.

Complex type arrays are nothing more than a special case of a <sequence>
complex type. You simply define a complex type with a single element and
specify a value for the maxoccurs attribute. For example to define an array of
twenty floats you would use a complex type similar to the one shown in
Example 7.

Example 7: Complex Type Array
<complexType name="personalInfo>
<element name="averages" type="xsd:float" maxOccurs="20" />

</complexType>

You could also specify a value for minoccurs.

SOAP arrays are defined by deriving from the soap-ENC:Array base type
using the wsdl:arrayType. The syntax for this is shown in Example 8.

Example 8: Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="ElementType<ArrayBounds>"/>
</restriction>
</complexContent>
</complexType>

Defining Complex Data Types

Using this syntax, Typename specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
<ArrayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [1[] or [, 1.

For example, the SOAP Array, soapstrings, shown in Example 9, defines a
one-dimensional array of strings. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:string, and the number of dimensions, []
implying one dimension.

Example 9: Definition of a SOAP Array

<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array'">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[]"/>
</restriction>
</complexContent>
</complexType>

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 10.

Example 10: Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array'">
<sequence>
<element name="ElementName" type="ElementType"
maxOccurs="unbounded" />
</sequence>
</restriction>
</complexContent>
</complexType>

When using this syntax, the element's maxoccurs attribute must always be
set to unbounded.

213

CHAPTER 10 | Defining Data Types

Defining Types by Restriction

Overview XMLSchema allows you to create new types by restricting the possible
values of an XMLSchema simple type. For example, you could define a
simple type, ssn, which is a string of exactly nine characters. New types
defined by restricting simple types are defined using a <simpleType>
element.

The definition of a <simpleType> has three parts:

1. The name of the new type is specified by the name attribute of the
<simpleType> element.

2. The simple type from which the new type is derived, called the base
type, is specified in the <restriction> element. See “Specifying the
base type” on page 214.

3. The rules, called facets, defining the restrictions placed on the base
type are defined as children of the <restriction> element. See
“Defining the restrictions” on page 215.

Specifying the base type The base type is the type that is being restricted to define the new type. It is
specified using a <restriction> element. The <restriction> element is
the only child of a <simpleType> element and has one attribute, base, that
specifies the base type. The base type can be any of the XMLSchema simple
types.

For example, to define a new type by restricting the values of an xsd:int
you would use a definition like Example 11.

Example 11:/nt as Base Type

<simpleType name="restrictedInt">
<restriction base="xsd:int">

</restriction>
</simpleType>

214

Defining the restrictions

Example

Defining Complex Data Types

The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is
enforced. The available facets and their valid value settings depend on the
base type. For example, xsd:string supports six facets including:

length
minLength
maxLength
pattern

whitespace

enumeration

Each facet element is a child of the <restriction> element.

Example 12 shows an example of a simple type, ssn, which represents a
social security number. The resulting type will be a string of the form
XXX-XX—-XxXxX. <SSN>032-43-9876<SSN> is a valid value for an element of this
type, but <ssn>032439876</5SN> is not.

Example 12: SSN Simple Type Description

<simpleType name="SSN">

<restriction base="xsd:string">

<pattern value="\d{3}-\d{2}-\d{4}" />

</restriction>

</simpleType>

215

CHAPTER 10 | Defining Data Types

Defining Enumerated Types

Overview

Defining an enumeration

216

Enumerated types in XMLSchema are a special case of definition by
restriction. They are described by using the enumeration facet which is
supported by all XMLSchema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

The syntax for defining an enumeration is shown in Example 13.
Example 13: Syntax for an Enumeration

<simpleType name="EnumName">
<restriction base="EnumType">
<enumeration value="CaselValue" />
<enumeration value="CaseZValue" />

<enumeration value="CaseNValue" />
</restriction>
</simpleType>

EnumName Specifies the name of the enumeration type. EnumType specifies
the type of the case values. casenvalue, where nis any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Defining Complex Data Types

Example For example, an XML document with an element defined by the
enumeration widgetsize, shown in Example 14, would be valid if it
contained <widgetSize>big</widgetSize>, but not if it contained
<widgetSize>big, mungo</widgetSize>

Example 14:widgetSize Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
</restriction>
</simpleType>

217

CHAPTER 10 | Defining Data Types

218

Overview

Messages and parameter lists

CHAPTER 11

Defining Messages

You can define complex messages to pass between your
services.

WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <message> elements. Each
abstract message consists of one or more parts, defined in <part> elements.
These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <binding> elements.

For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation. In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part> elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

219

CHAPTER 11 | Defining Messages

Example

Message naming

Message parts

220

For example, imagine a server that stored personal information and provided
a method that returned an employee’s data based on an employee 1D
number. The method signature for looking up the data would look similar to
Example 15.

Example 15: personalinfo lookup Method
personalInfo lookup (long empIld)

This method signature could be mapped to the WSDL fragment shown in
Example 16.

Example 16: WSDL Message Definitions

<message name="personallLookupRequest">
<part name="empId" type="xsd:int" />
<message />
<message name="personallookupResponse>
<part name="return" element="xsdl:personalInfo" />
<message />

Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages that represent a service request
or output messages that represent a response.

Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 2

Table 2: Part Data Type Attributes

Attribute Description

type="type name" The datatype of the part is defined by a
simpleType Of complexType Called type name

element="elem name" | The datatype of the part is defined by an
element called elem name.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in

Example 17.

Example 17: Reused Part

<message name="fooRequest'">

<part name="foo" type="xsd:int" />
<message>
<message name="fooReply">

<part name="foo" type="xsd:int" />
<message>

221

CHAPTER 11 | Defining Messages

222

Overview

CHAPTER 12

Defining Your
Interfaces

In WSDL documents interfaces are defined using the
<portType> element.

Interfaces are defined using the WSDL <portType> element. Like an
interface, the <portType> is a collection of operations that define the input,
output, and fault messages used by the service implementing the interface
to complete the transaction the operation describes. The difference is that
the operations in a port type are built up using messages that are defined
outside of the port type instead of parameter lists defined as part of the
operation itself.

To define an interface, port type, in an Artix contract do the following:

1. Create a <portType> element to contain the interface definition and
give it a unigue name. See “Port types” on page 224.

2. Create an <operation> element for each operation defined in the
interface. See “Operations” on page 224.

3. For each operation, specify the messages used represent the
operation’s parameter list, return type, and exceptions. See “Operation
messages” on page 224.

223

CHAPTER 12 | Defining Your Interfaces

Port types

Operations

Operation messages

224

A <portType> element is the root element in an interface definition and
many Web service implementations, including Artix, map port types directly
to generated implementation objects. In addition, the <portType> element is
the abstract unit of a WSDL document that is mapped into a concrete
binding to form the complete description of what is offered over a port.

Each <portType> element in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation defined within a <portType> element must have a unique
name, specified using the name attribute. The name attribute is required to
define an operation.

Operations are made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3.

Table 3: Operation Message Elements

Element Description

<input> Specifies the message the client endpoint sends to the
service provider when a request is made. The parts of this
message correspond to the input parameters of the
operation.

<output> Specifies the message that the service provider sends to
the client endpoint in response to a request. The parts of
this message correspond to any operation parameters that
can be changed by the service provider, such as values
passed by reference. This includes the return value of the
operation.

Return values

Table 3: Operation Message Elements

Element Description

<fault> Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element.
An operation can have both input and output elements, but it can only
have one of each. Operations are not required to have any fault messages,
but can have any number of fault messages needed.

The elements are defined by two attributes listed inTable 4.

Table 4: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Because the <operation> element is an abstract definition of the data
passed during in operation, WSDL does not provide for return values to be
specified for an operation. If a method returns a value it will be mapped into
the output message as the last <part> of that message. The concrete
details of how the message parts are mapped into a physical representation
are described in “Binding Interfaces to a Payload Format” on page 227.

225

CHAPTER 12 | Defining Your Interfaces

Example For example, you might have an interface similar to the one shown in
Example 18.

Example 18: personallnfo lookup interface

interface personalInfolookup

{
personallnfo lookup (in int empID)
raises (idNotFound) ;

This interface could be mapped to the port type in Example 19.
Example 19: personalinfo lookup port type

<message name="personallookupRequest'">
<part name="empId" type="xsd:int" />
<message />
<message name="personallLookupResponse">
<part name="return" element="xsdl:personalInfo" />
<message />
<message name="idNotFoundException">
<part name="exception" element="xsdl:idNotFound" />
<message />
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personallookupRequest" />
<output name="return" message="personallookupResponse" />
<fault name="exception" message="idNotFoundException" />
</ operation>
</ portType>

Note that the return value of 1ookup () is mapped to the message used in
the <output> element of the WSDL definition. Because the operation does
not have any other parameters that can be returned, such as out or inout
parameters in CORBA, the return parameter is the only part of the message
used for the <output> element.

226

Overview

In this Chapter

CHAPTER 13

Binding Interfaces
to a Payload
Format

You can bind your interfaces to a number of payload formats
in Artix.

To define an endpoint that corresponds to a running service, port types are
mapped to bindings that describe how the abstract messages used by the
interface’s operations map to the data format used on the wire. These
bindings are described in <binding> elements. A binding can map to only
one port type, but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

This chapter discusses the following topics:

Adding a SOAP Binding page 229

Adding a CORBA Binding page 243

227

CHAPTER 13 | Binding Interfaces to a Payload Format

228

Adding an FML Binding page 248
Adding a Fixed Binding page 253
Adding a Tagged Binding page 269
Adding a TibMsg Binding page 280
Adding a Pure XML Binding page 284
Adding a G2+ + Binding page 289

Adding a SOAP Binding

Adding a SOAP Binding

Overview Artix provides a tool to generate a default SOAP binding which does not use
any SOAP headers. However, you can add SOAP header s to your binding
using any text or XML editor. In addition, you can define a SOAP binding
that uses MIME multipart attachments.

For more information For more detailed information on the SOAP binding and the specifics of the
elements used in defining it see “SOAP Binding Extensions” on page 427.

In this section This section discusses the following topics:
Adding a Default SOAP Binding page 230
Adding SOAP Headers to a SOAP Binding page 233
Sending Data Using SOAP with Attachments page 239

229

CHAPTER 13 | Binding Interfaces to a Payload Format

Adding a Default SOAP Binding

Overview

Using the tool

230

Artix provides a command line tool, wsdltosoap, that will generate a default
SOAP binding for an interface defined in a WSDL <portType>. The tool will
generate a new contract which includes the generated SOAP binding.

To generate a SOAP binding using wsdltosoap use the following command:

wsdltosoap -i portType -n namespace wsdl file

[-b binding] [-d dir] [-o file]
[-style {document|rpc}][-use {literal|encoded}]

The command has the following options:

-1 portType

- namespace

-b binding

-d dir

-o file

-style

—use

Specifies the name of the port type being mapped to a
SOAP binding.

Specifies the namespace to use for the SOAP binding.

Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

Specifies the directory into which the new WSDL file is
written.

Specifies the name of the generated WSDL file. Defaults
to wsdl file-soap.wsdl.

Specifies the encoding style to use in the SOAP binding.
Defaults to document.

Specifies how the data is encoded. Default is 1iteral.

wsdltosoap does not support the the generatoin of document/encoded SOAP

bindings.

Adding a SOAP Binding

Example If your system had an interface that took orders and offered a single
operation to process the orders it would be defined in an Artix contract
similar to the one shown in Example 20.

Example 20: Ordering System Interface

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int" />
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

</definitions>

231

CHAPTER 13 | Binding Interfaces to a Payload Format

The SOAP binding generated for orderWidgets is shown in Example 21.
Example 21: SOAP Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="rpc"/>
<input name="order'">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
</input>
<output name="bill">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
</output>
<fault name="sizeFault">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
</fault>
</operation>
</binding>

This binding specifies that messages are sent using the rpc/encoded
message style. The value of the namespace attribute is, in this example, the
same as the contract’s target namespace.

232

Adding a SOAP Binding

Adding SOAP Headers to a SOAP Binding

Overview

Syntax

<binding name="headwig">

SOAP headers are defined by adding <socap:header> elements into your
default SOAP binding. The <soap:header> element is an optional child of
the <input>, <output>, and <fault> elements of the binding. The SOAP
header becomes part of the parent message. A SOAP header is defined by
specifying a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many SOAP headers as
needed.

The syntax for defining a SOAP header is shown in Example 22. The
message attribute of <soap:header> is the qualified name of the message
from which the part being inserted into the header is taken. The part
attribute is the name of the message part inserted into the SOAP header.
Because SOAP headers are always doc style, the WSDL message part
inserted into the SOAP header must be defined using an element. Together
the message and the part attributes fully describe the data to insert into the
SOAP header.

Example 22: SOAP Header Syntax

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="weave">

<soap:operation soapAction="" style="rpc"/>

<input name="grain">
<soap:body ...

<soap:header message="QName" part="partName" />

</input>

</binding>

In addition to the mandatory message and part attributes, <soap:header>
also supports the namespace, the use, and the encodingstyle attributes.
These optional attributes function the same for <soap:header> as they do
for <soap:body>

233

CHAPTER 13 | Binding Interfaces to a Payload Format

Development considerations When you are using SOAP headers in your Artix applications, you are

responsible for creating and populating the SOAP headers in your
application logic. For details on Artix application development, see either
Developing Artix Applications in C++ or Developing Artix Applications in
Java.

Splitting messages between body The message part inserted into the SOAP header can be any valid message

and header

Example

part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The <soap:body> element has an optional attribute, parts, that takes a
space delimited list of part names. When parts is defined, only the message
parts listed are inserted into the SOAP body. You can then insert the
remaining parts into the SOAP header.

Note: When you define a SOAP headers using parts of the parent
message, Artix automatically fills in the SOAP headers for you.

Example 23 shows a modified version of the orderWidgets service shown in
Example 20. This version has been modified so that each order has an
xsd:base64binary value placed in the SOAP header of the request and
response. The SOAP header is defined as being the keyval part from the
widgetKey message. In this case you would be responsible for adding the
SOAP header in your application logic because it is not part of the input or
output message.

Example 23: SOAP Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"

234

xmlns:
xmlns:
xmlns:
xmlns:
xmlns:

soap="http://schemas.xmlsoap.org/wsdl/soap/"
tns="http://widgetVendor.com/widgetOrderForm"
xsd="http://www.w3.0rg/2001/XMLSchema"
xsdl="http://widgetVendor.com/types/widgetTypes"
SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

Adding a SOAP Binding

Example 23: SOAP Binding for orderWidgets with a SOAP Header

<types>

<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary" />
</schema>
</types>
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int" />
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int" />
</message>
<message name="widgetKey">
<part name="keyVal" element="xsdl:keyElem" />
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

235

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 23: SOAP Binding for orderWidgets with a SOAP Header

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="rpc"/>
<input name="order">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
<soap:header message="tns:widgetKey" part="keyval" />
</input>
<output name="bill">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
<soap:header message="tns:widgetKey" part="keyval" />
</output>
<fault name="sizeFault">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
</fault>
</operation>
</binding>

</definitions>

You could modify Example 23 so that the header value was a part of the
input and output messages as shown in Example 24. In this case keyval is
a part of the input and output messages. In the <soap:body> elements the
parts attribute specifies that keyval is not to be inserted into the body.
However, it is inserted into the SOAP header.

Example 24: SOAP Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

236

Adding a SOAP Binding

Example 24: SOAP Binding for orderWidgets with a SOAP Header

<types>

<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary" />
</schema>
</types>
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int" />
<part name="keyVal" element="xsdl:keyElem" />
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsdl:keyElem" />
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

237

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 24: SOAP Binding for orderWidgets with a SOAP Header

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="rpc"/>
<input name="order">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
parts="numOrdered" />
<soap:header message="tns:widgetOrder" part="keyvVal" />
</input>
<output name="bill">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
parts="bill" />
<soap:header message="tns:widgetOrderBill" part="keyVal" />
</output>
<fault name="sizeFault">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
</fault>
</operation>
</binding>

</definitions>

238

Adding a SOAP Binding

Sending Data Using SOAP with Attachments

Overview

Namespace

Changing the message binding

SOAP messages generally do not carry binary data. However, the W3C
SOAP specification allows for using MIME multipart/related messages to
send binary data in SOAP messages. This technique is called using SOAP
with attachments. SOAP attachments are defined in the W3C’s SOAP
Messages with Attachments Note
(http://www.w3.0rg/TR/SOAP-attachments).

The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL <defintion> element to set this up is
shown in Example 25.

Example 25: MIM Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

In a default SOAP binding the first child element of the <input>, <output>,
and <fault> elements is a <soap:body> element describing the body of the
SOAP message representing the data. When using SOAP with attachments,
the <soap:body> element is replaced with a <mime:multipartRelated>
element.

Note: WSDL does not support using <mime :multipartRelated> for
<fault> Messages.

The <mime:multipartReleated> element tells Artix that the message body is
going to be a multipart message that potentially contains binary data. The
contents of the element define the parts of the message and their contents.
<mime:multipartReleated> elements in Artix contain one or more
<mime:part> elements that describe the individual parts of the message.

239

http://www.w3.org/TR/SOAP-attachments

CHAPTER 13 | Binding Interfaces to a Payload Format

Describing a MIME multipart
message

240

The first <mime:part> element must contain the <soap:body> element that
would normally appear in a default SOAP binding. The remaining
<mime:part> elements define the attachments that are being sent in the
message.

MIME multipart messages are described using a <mime :multipartRelated>
element that contains a number of <mime:part> elements. To fully describe
a MIME multipart message in an Artix contract do the following:

1.

part

Inside the <input> or <output> message you want to send as a MIME
multipart message, add a <mime:mulipartRelated> element as the
first child element of the enclosing message.

Add a <mime:part> child element to the <mime:multipartRelated>
element and set its name attribute to a unique string.

Add a <soap:body> element as the child of the <mime:part> element
and set its attributes appropriately.

If the contract had a default SOAP binding, you can copy the
<soap:body> element from the corresponding message from the default
binding into the MIME multipart message.

Add another <mime:part> child element to the
<mime:multipartReleated> element and set its name attribute to a
unique string.

Add a <mime:content> child element to the <mime:part> element to
describe the contents of this part of the message.

To fully describe the contents of a MIME message part the
<mime:content> element has the following attributes:

Specifies the name of the WSDL message part, from the
parent message definition, that is used as the content of
this part of the MIME multipart message being placed on
the wire.

Example

type

6.

Adding a SOAP Binding

The MIME type of the data in this message part. MIME
types are defined as a type and a subtype using the
syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in detail in
Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies
(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Types
(ftp://ftp.isi.edu/in-notes/rfc2046.txt).

For each additional MIME part, repeat steps 4 and 5.

Example 26 shows an Artix contract for a service that stores X-rays in JPEG

format. The image data, xRay, is stored as an xsd:base64binary and is

packed into the MIME multipart message’s second part, imageData. The
remaining two parts of the input message, patientName and patientNumber,

are sent in the first part of the MIME multipart image as part of the SOAP

body.

Example 26: Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"72>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<message name="storRequest">

<part name="patientName" type="xsd:string" />
<part name="patientNumber" type="xsd:int" />
<part name="xRay" type="xsd:base64Binary"/>

</message>
<message name="storResponse">

<part name="success" type="xsd:boolean"/>

</message>

241

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 26: Contract using SOAP with Attachments

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>
</operation>
</portType>
<binding name="xRayStorageBinding" type="tns:xRayStorage'">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="rpc"/>
<input name="storRequest">
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://mediStor.org/x-rays" use="encoded"/>
</mime:part>
<mime:part name="imageData">
<mime:content part="xRay" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>
<output name="storResponse">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:AttachmentService" use="encoded" />
</output>
</operation>
</binding>
<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding" name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>
</port>
</service>
</definitions>

242

Adding a CORBA Binding

Adding a CORBA Binding

Overview

Options

Command line tool

CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, specifies the repository ID of the IDL interface
represented by the port type, resolves parameter order and mode ambiguity
in the operations’ messages, and maps the XMLSchema data types to
CORBA data types.

In addition to the binding information, Artix also uses a <corba: typemap>
extension to unambiguously describe how data is mapped to CORBA data
types. For primitive types, the mapping is straightforward. However,
complex types such as structures, arrays, and exceptions require more
detailed descriptions. For a detailed description of the CORBA type
mappings see “CORBA Type Mapping” on page 441.

To add a CORBA binding to an Artix contract you can choose one of two
methods. The first option is to use the wsdiltocorba command line tool. The
command line tool automatically generates the binding and type map
information for a specified port type.

The second option is to enter the binding and typemap information by hand
using a text editor or XML editor. This option provides you the flexibility to
customize the binding. However, hand editing Artix contracts can be a time
consuming process and provides no error checking mechanisms. For
information on the WSDL extensions used to specify a CORBA binding see
“Mapping to the binding” on page 244.

The wsdltocorba tool adds CORBA binding information to an existing Artix
contract. To generate a CORBA binding using wsdltocorba use the following
command:

wsdltocorba -corba -i portType [-d dir] [-b binding][-o file]
[-n namespace] wsdl file

243

CHAPTER 13 | Binding Interfaces to a Payload Format

WSDL Namespace

Mapping to the binding

244

The command has the following options:

—-corba

-1 portType

-d dir

-b binding

-o file

- namespace

Instructs the tool to generate a CORBA binding for the
specified port type.

Specifies the name of the port type being mapped to a
CORBA binding.

Specifies the directory into which the new WSDL file is
written.

Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

Specifies the name of the generated WSDL file. Defaults
to wsdl file-corba.wsdl.

Specifies the namespace to use for the generated CORBA
typemap

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use

the Artix Designer.

The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace
http://schemas.iona.com/bindings/corba. To use the CORBA extensions
you will need to include the following in the <definitions> tag of your

contract:

xmlns:corba="http://schemas.iona.com/bindings/corba"

The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: repositoryID. repositoryID specifies the full
type ID of the interface. The type ID is embedded in the object’s IOR and
therefore must conform to the IDs that are generated from an IDL compiler.
These are of the form:

IDL:module/interface:1.0

Adding a CORBA Binding

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

//IDL
interface clash{};
interface bad : clash{};

would produce the following corba:binding:

<corba:binding repositoryID="IDL:bad:1.0"
bases="IDL:clash:1.0"/>

corba:operation is an IONA-specific element of <operation> and describes
the parts of the operation’s messages. <corba:operation> takes a single
attribute, name, which duplicates the name given in <operation>.

corba:param is a member of <corba:operation>. Each <part> of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding
<corba:param>. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation. <corba:param> has the
following required attributes:

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

245

CHAPTER 13 | Binding Interfaces to a Payload Format

Example

246

corba:return is a member of <corba:operation> and specifies the return
type, if any, of the operation. It only has two attributes:

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.

corba:raises is a member of <corba:operation> and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding <corba:raises> element. <corba:raises> has one
required attribute, exception, which specifies the type of data returned in
the exception.

In addition to operations specified in <corba:operation> tags, within the
<operation> block, each <operation> in the binding must also specify
empty <input> and <output> elements as required by the WSDL
specification. The CORBA binding specification, however, does not use
them.

For each fault message defined in the logical description of the operation, a
corresponding <fault> element must be provided in the <operation>, as
required by the WSDL specification. The name attribute of the <fault>
element specifies the name of the schema type representing the data passed
in the fault message.

For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, Shown in
Example 27.

Example 27: personalinfo lookup port type

<message name="personallookupRequest'">
<part name="empId" type="xsd:int" />
<message />
<message name="personallLookupResponse">
<part name="return" element="xsdl:personalInfo" />
<message />

Adding a CORBA Binding

Example 27: personalinfo lookup port type

<message name="idNotFoundException">
<part name="exception" element="xsdl:idNotFound" />
<message />
<portType name="personalInfolookup">
<operation name="lookup">
<input name="empID" message="personallookupRequest" />
<output name="return" message="personallLookupResponse" />
<fault name="exception" message="idNotFoundException" />
</ operation>
</ portType>

The CORBA binding for personalInfoLookup is shown in Example 28.
Example 28: personallnfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personallnfoLookup">
<corba:binding repositoryID="IDL:personallInfoLookup:1.0"/>
<operation name="lookup">
<corba:operation name="lookup">
<corba:param name="empId" mode="in" idltype="corba:long"/>
<corba:return name="return" idltype="corbatm:personalInfo"/>
<corba:raises exception="corbatm:idNotFound"/>
</corba:operation>
<input/>
<output/>
<fault name="personalInfoLookup.idNotFound"/>
</operation>
</binding>

247

CHAPTER 13 | Binding Interfaces to a Payload Format

Adding an FML Binding

Overview

Mapping from a field table to an
Artix contract

Mapping to logical type
descriptions

248

FML buffers used by Tuxedo applications are described in one of two ways:
® Afield table file that is loaded at run time.
® A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field’s name, id number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable f1dids at run time.

The C header file description of an FML buffer simply maps field names to
their f1did. The f1did is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field.

Creating an Artix contract to represent an FML buffer is a two-step process.
First, you must create the logical data representation of the FML buffer in
the Artix contract as described in “Mapping to logical type descriptions” on
page 248. Then, you must enter the FML binding information using Artix
WSDL extensions as described in “Mapping to the physical FML binding” on
page 250.

To create a logical data type to represent data in an FML buffer do the

following:

1. If the C header file for the FML buffer does not exist, generate it from
the field table using the Tuxedo mkfldhdr Or mkfldhdr32 utility
program.

2. Inthe <types> section of your Artix contract, create a <complexType>
to represent the FML buffer.

3. Specify that all of the elements must be present and in the order
specified by adding a <sequence> child element to the <complexType>
element. See “Defining Data Structures” on page 209.

4. For each field in the FML buffer, create an <element> with the
following attribute settings:
¢ name is set to the name specified in the field table.

Adding an FML Binding

type is set to the appropriate XMLSchema type for the type
specified in the field table. See “XMLSchema Simple Types” on
page 206.

maxOccurs IS Set 10 unbounded.

minOccurs is set to 0.

Note: The elements of the <complexType> must be ordered in increasing
order by the f1did specified in the C header.

For example, the personalInfo structure, defined in Example 27 on
page 246, could be described by the field table file shown in Example 29.

Example 29: personallnfo Field Table File

personalInfo Field Table
type flags

name number
name 100
age 102

hairColor 103

/% fname

/* _____
#define name
#define age
#define hairColor

string -
short -
string =

comment

Person’s name
Person’s age
Person’s hair color

The C++ header file generated by the Tuxedo mkf1dhdr tool to represent
the person1info FML buffer is shown in Example 30. Even if you are not
planning to access the FML buffer using the compile time method, you will
need to generate the header file when using Artix because this will give you
the f1did values for the fields in the buffer.

Example 30: personallnfo C++ header

((FLDID) 41060)
((FLDID)102)
((FLDID) 41063)

*/
*/
/*
/*
/*

number: 100 type: string */
number: 102 type: short */
number: 103 type: string */

The order of the elements in the sequence used to logically describe the
FML buffer are ordered in increasing order by f1did value. For the
personalInfo FML buffer age must be listed first in the Artix contract

249

CHAPTER 13 | Binding Interfaces to a Payload Format

despite the fact that it is the second element listed in the field table. The
corresponding logical description of the FML buffer in an Artix contract is
shown in Example 31.

Example 31: Logical description of personalinfo FML buffer

<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="personalInfoFML16">
<sequence>

<element name="age" type="xsd:short" minOccurs="0" maxOccurs="unbounded"/>

<element name="name" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

<element name="hairColor" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>
</schema>
</types>
Mapping to the physical FML To add the binding that maps the logical description of the FML buffer to a
binding physical FML binding do the following:

1. Add the following line in the <definition> element at the beginning of
the contract.

xmlns:fml="http://www.iona.com/bus/fml"

2. Create a new <binding> element in your contract to define the FML
buffer's binding.

3. Add an <fml:binding> element to identify that this binding defines an
FML buffer.
The <fml:binding> element has two required attributes:

¢+ style specifies the encoding style used for the data. The valid
encoding styles are doc and rpc.

¢ transport sepcifies the transport this data will be sent over. This
attribute can take the URI for any of the valid Artix transport
definitions. You must be sure that the transport specified in the
<service> element of the contract matched the transport
specified here. See “Adding Transports” on page 297.

250

Adding an FML Binding

Add an <fml:idNameMapping> element to the binding to describe how
the element names defined in the logical portion of the contract map to
the f1did values for the corresponding fields in the FML buffer.

The <fml:idNameMapping> has a mandatory type attribute. type can

be either fm116 for specifying that the application uses FML16 buffers

or £m132 for specifying that the application uses FML32 buffers.

For each element in the logical data type, add an <fml:element>

element to the <fml: idNameMapping> element.

<fml:element> defines how the logical data elements map to the

physical FML buffer. It has two mandatory attributes:

¢+ fieldName specifies the name of the logical type describing the
field.

¢+ field1d specifies the f1did value for the field in the FML buffer.

Note: The field elements must be listed in increasing order of their f1did

values.

6. For each operation in the interface, create a standard WSDL
<operation> element to define the operation being bound.

7. For each operation, add a standard WSDL <input> and <output>
elements to the <operation> element to define the messages used by
the operation.

8. For each operation, add an <fml:operation> element to the

<operation> element.

<fml:operation> informs Artix that the operation’s messages are to be
packed into an FML buffer. <fm1:operation> takes a single attribute,
name, Whose value must be identical to the name attribute of the
<operation> element.

For example, the binding for the personalinfo FML buffer, defined in
Example 29 on page 249, will be similar to the binding shown in
Example 32.

251

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 32: personallnfo FML binding

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="personallnfoService" targetNamespace="http://info.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://socapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:fml="http://www.iona.com/bus/fml">

<message name="requestInfo'>

<part name="request" type="xsdl:personalInfoFML16"/>
</message>
<message name="infoReply">

<part name="reply" type="xsdl:personalInfoFML16"/>
</message>

<portType name="personalInfoPort">
<operation name="infoRequest'">
<input message="tns:requestInfo" name="requestInfo" />
<output message="tns:infoReply" name="infoReply" />
</operation>
</portType>

<binding name="personalInfoBinding" type="tns:personalInfoPort">
<fml:binding style="rpc" transport="http://schemas.iona.com/transports/tuxedo"/>
<fml:idNameMapping type="fmll6">
<fml:element fieldName="age" fieldId="102" />
<fml:element fieldName="name" fieldId="41060" />
<fml:element fieldName="hairColor" fieldId="41063" />
</fml:idNameMapping>

<operation name="infoRequest'">
<fml:operation name="infoRequest"/>
<input name="requestInfo" />
<output name="infoReply" />
</operation>
</binding>

</definitions>

252

Adding a Fixed Binding

Adding a Fixed Binding

Overview

The Artix fixed binding is used to represent fixed record length data.
Common uses for this type of payload format are communicating with
back-end services on mainframes and applications written in COBOL. Artix
provides two means for creating a contract containing a fixed binding. If you
are integrating with an application written in COBOL and have the COBOL
copybook defining the data to be used, you can use the coboltowsdl tool
documented in “Creating Contracts from COBOL Copybooks” on page 354.
Alternatively, if you do not have access to the COBOL copybook or have a
logical interface you want to map to a fixed binding you can enter the
binding information using any text editor or XML editor. To map a logical
interface to a fixed binding do the following:
1. Add the proper namespace reference to the <definition> element of
your contract. See “Fixed binding namespace” on page 254.

2. Add a standard WSDL <binding> element to your contract to hold the
fixed binding, give the binding a unique name, and specify the port type
that represents the interface being bound.

3. Add a <fixed:binding> element as a child of the new <binding>
element to identify this as a fixed binding and set the element’s
attributes to properly configure the binding. See “<fixed:binding>" on
page 254.

4. For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

5. For each operation added to the binding, add a <fixed:operation>
child element to the <operation> element. See “<fixed:operation>"
on page 254.

6. For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.

253

CHAPTER 13 | Binding Interfaces to a Payload Format

Fixed binding namespace

<fixed:binding>

<fixed:operation>

254

7. Foreach <input>, <output>, and <fault> element in the binding, add
a <fixed:body> child element to define how the message parts are
mapped into the concrete fixed record length payload. See
“<fixed:body>" on page 255.

The IONA extensions used to describe fixed record length bindings are
defined in the namespace http://schemas. iona.com/bindings/fixed. Artix
tools use the prefix fixed to represent the fixed record length extensions.
Add the following line to your contract:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

<fixed:binding> specifies that the binding is for fixed record length data. It
has three optional attributes:

justification Specifies the default justification of the data contained in
the messages. Valid values are 1eft and right. Default is
left.

encoding Specifies the codeset used to encode the text data. Valid

values are any valid ISO locale or IANA codeset name.
Default is uTr-s.

padHexCode Specifies the hex value of the character used to pad the
record.

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message-by-message basis.

<fixed:operation> is a child element of the WSDL <operation> element
and specifies that the operation’s messages are being mapped to fixed
record length data.

<fixed:operation> has one attribute, discriminator, that assigns a unique
identifier to the operation. If your service only defines a single operation, you
do not need to provide a discriminator. However, if your service has more
than one service, you must define a unique discriminator for each operation
in the service. Not doing so will result in unpredictable behavior when the
service is deployed.

<fixed:body >

Adding a Fixed Binding

<fixed:body> is a child element of the <input>, <output>, and <fault>

messages being mapped to fixed record length data. It specifies that the

message body is mapped to fixed record length data on the wire and

describes the exact mapping for the message’s parts.

To fully describe how a message is mapped into the fixed message do the

following:

1. If the default justification, padding, or encoding settings for the
attribute are not correct for this particular message, override them by
setting the optional attributes of <fixed:body>:

justification Specifies how the data in the messages are justified.
Valid values are left and right.

encoding Specifies the codeset used to encode text data. Valid
values are any valid 1SO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

2. Foreach part in the message the <fixed:body> element is binding,
add the appropriate child element to define the part’s concrete format
on the wire.

Three child elements are used in defining how logical data is mapped
to a concrete fixed format message. These are:

<fixed:field> Maps message parts defined using a simple type. See
“XMLSchema Simple Types” on page 206.

<fixed:sequence> Maps message parts defined using a sequence complex
type. Complex types defined using <a11> are not
supported by the fixed format binding. See “Defining
Data Structures” on page 209.

<fixed:choice> Maps message parts defined using a choice complex
type. See “Defining Data Structures” on page 209.

3. If you need to add any fields that are specific to the binding and that
will not be passed to the applications, define them using a
<fixed:field> element with its bindingonly attribute set to true.
When bindingOnly is set to true, the field described by the

<fixed:field> element is not propagated beyond the binding. For
input messages, this means that the field is read in and then

255

CHAPTER 13 | Binding Interfaces to a Payload Format

<fixed:field>

256

discarded. For output messages, you must also use the fixedvalue
attribute.

The order in which the message parts are listed in the <fixed:body>
element represent the order in which they are placed on the wire. It does not
need to correspond to the order in which they are specified in the <message>
element defining the logical message.

<fixed:field> is used to map simple data types to a fixed length record. To

define how the logical data is mapped to a fixed field do the following:

1. Create a <fixed:field> child element to the <fixed:body> element
representing the message.

2. Set the <fixed:field> element’'s name attribute to the name of the
message part defined in the logical message description that this
element is mapping.

3. If the data being mapped is of type xsd:string, a simple type that has
xsd:string as its base type, or an enumerated type set the size
attribute of the <fixed:field> element.

Note: If the message part is going to hold a date you can opt to use
the format attribute described in step 4 instead of the size attribute.

size specifies the length of the string record in the concrete fixed
message. For example, the logical message part, raver1n, described in
Example 33 would be mapped to a <fixed:field> similar to
Example 34.

Example 33: Fixed String Message
<message name="fixedStringMessage">

<part name="raverID" type="xsd:string" />
</message>

Adding a Fixed Binding

In order to complete the mapping, you must know the length of the
record field and supply it. In this case, the field, raverID, can contain
no more than twenty characters.

Example 34: Fixed String Mapping

<fixed:field name="raverID" size="20" />

4,

If the data being mapped is of a numerical type, like xsd:int, or a
simple type that has a numerical type as its base type, set the
<fixed:field> element’s format attribute.

format specifies how non-string data is formatted. For example, if a
field contains a 2-digit numeric value with one decimal place, it would
be described in the logical part of the contract as an xsd:float, as
shown in Example 35.

Example 35: Fixed Record Numeric Message

<message name="fixedNumberMessage">

<part name="rageLevel" type="xsd:float" />

</message>

From the logical description of the message, Artix has no way of
determining that the value of ragerevel is a 2-digit number with one
decimal place because the fixed record length binding treats all data as
characters. When mapping ragelLevel in the fixed binding you would
specify its format with ##.#, as shown in Example 36. This provides
Artix with the meta-data needed to properly handle the data.

Example 36: Mapping Numerical Data to a Fixed Binding

<fixed:flield name="ragelevel" format="##.#" />

Dates are specified in a similar fashion. For example, the format of the
date 12/02/72 is mv/pp/YY. When using the fixed binding it is
recommended that dates are described in the logical part of the
contract using xsd:string. For example, a message containing a date

257

CHAPTER 13 | Binding Interfaces to a Payload Format

258

would be described in the logical part of the contract as shown in
Example 37.

Example 37: Fixed Date Message

<message name="fixedDateMessage">

<part name="goDate" type="xsd:string" />

</message>

If goDate is entered using the standard short date format for US
English locales, mm/dd/yyyy, you would map it to a fixed record field as
shown in Example 38.

Example 38: Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy" />

5.

If you want the message part to have a fixed value no matter what data
is set in the message part by the application, set the <fixed:field>
element’s fixedvalue attribute instead of the size or the format
attribute.

fixedvalue Specifies a static value to be passed on the wire. When
used without bindingonly="true", the value specified by fixedvalue
replaces any data that is stored in the message part passed to the fixed
record binding. For example, if gobate, shown in Example 37 on
page 258, were mapped to the fixed field shown in Example 39, the
actual message returned from the binding would always have the date
11/11/2112.

Example 39: fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112" />

6.

If the data being mapped is of an enumerated type, see “Defining
Enumerated Types” on page 216, add a <fixed:enumeration> child
element to the <fixed: field> element for each possible value of the
enumerated type.

<fixed:enumeration> takes two required attributes, value and
fixedvalue. value corresponds to the enumeration value as specified
in the logical description of the enumerated type. fixedvalue specifies

Adding a Fixed Binding

the concrete value that will be used to represent the logical value on
the wire.

For example, if you had an enumerated type with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical
description of the type would be similar to Example 40.

Example 40: /ce Cream Enumeration

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>
</xs:restriction>
</xs:simpleType>

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
representations can be identical to the logical or some other value. The
enumerated type in Example 40 could be mapped to the fixed field
shown in Example 41. Using this mapping Artix will write OT to the
wire for this field if the enumerations value is set to orangeTango.

Example 41: Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
<fixed:enumeration value="FruityTooty" fixedValue="FT" />
<fixed:enumeration value="Rainbow" fixedValue="RB" />
<fixed:enumeration value="BerryBomb" fixedValue="BB" />
<fixed:enumeration value="OrangeTango" fixedValue="OT" />
</fixed:field>

Note that the parent <fixed:field> element uses the size attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the size attribute will always be used to
represent the size of the concrete representation.

259

CHAPTER 13 | Binding Interfaces to a Payload Format

<fixed:choice>

<fixed:case>

260

<fixed:choice> is used to map choice complex types into fixed record
length messages. To map a choice complex type to a <fixed:choice> do
the following:

1. Add a <fixed:choice> child element to the <fixed:body> element.

2. Set the <fixed:choice> element’s name attribute to the name of the
logical message part being mapped.

3. Set the <fixed:choice> element’s optional discriminatorName
attribute to the name of the field used as the discriminator for the
union.

The value for discriminatorName corresponds to the name of a
bindingOnly <fixed:field> that describes the type used for the
union’s discriminator as shown in Example 42. The only restriction in
describing the discriminator is that it must be able to handle the values
used to determine the case of the union. Therefore the values used in
the union mapped in Example 42 must be two-digit integers.

Example 42: Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">

</fixed:choice>

4. For each element in the logical definition of the message part, add a
<fixed:case> child element to the <fixed:choice>.

<fixed:case> elements describe the complete mapping of a choice complex

type element to a fixed record length message. To map a choice complex

type element to a <fixed:case> do the following:

1. Set the <fixed:case> element’s name attribute to the name of the
logical definition’s element.

2. Set the <fixed:case> element’s fixedvalue attribute to the value of
the discriminator that selects this element. The value of fixedvalue
must correspond to the format specified by the discriminatorName
attribute of the parent <fixed:choice> element.

Adding a Fixed Binding

3. Add a child element to define how the element’s data is mapped into a
fixed record.

The child elements used to map the part’s type to the fixed message
are the same as the possible child elements of a <fixed:body>
element. As with a <fixed:body> element, a <fixed:sequence> iS
made up of <fixed:field> elements to describe simple types,
<fixed:choice> elements to describe choice complex types, and
<fixed:sequence> elements to describe sequence complex types.

Example 43 shows an Artix contract fragment mapping a choice complex
type to a fixed record length message.

Example 43: Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="fixedMappingsample"
targetNamespace="http://www.iona.com/FixedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema targetNamespace="http://www.iona.com/FixedService"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="unionStationType">
<xsd:choice>
<xsd:element name="train" type="xsd:string"/>
<xsd:element name="bus" type="xsd:int"/>
<xsd:element name="cab" type="xsd:int"/>
<xsd:element name="subway" type="xsd:string" />
</xsd:choice>
</xsd:complexType>
</types>
<message name="fixedSequence">
<part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="fixedSequencePortType">

</portType>
<binding name="fixedSequenceBinding"

type="tns: fixedSequencePortType">
<fixed:binding />

261

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 43: Mapping a Union to a Fixed Record Length Message

<fixed:field name="disc" format="##" bindingOnly="true" />
<fixed:choice name="stationPart"
descriminatorName="disc">
<fixed:case name="train" fixedvalue="01">
<fixed:field name="name" size="20" />
</fixed:case>
<fixed:case name="bus" fixedValue="02">
<fixed:field name="number" format="###" />
</fixed:case>
<fixed:case name="cab" fixedValue="03">
<fixed:field name="number" format="###" />
</fixed:case>
<fixed:case name="subway" fixedValue="04">
<fixed:field name="name" format="10" />
</fixed:case>
</fixed:choice>

</binding>

</definition>

<fixed:sequence> <fixed:sequence> Maps sequence complext types to a fixed record length
message. To map a sequence complex type to a <fixed:sequence> do the
following:
1. Add a <fixed:sequnce> child element to the <fixed:body> element.

2. Set the <fixed:sequence> element’s name attribute to the name of the
logical message part being mapped.

3. For each element in the logical definition of the message part, add a
child element to define the mapping for the part’s type to the physical
fixed message.

The child elements used to map the part’s type to the fixed message
are the same as the possible child elements of a <fixed:body>
element. As with a <fixed:body> element, a <fixed:sequence> IS
made up of <fixed:field> elements to describe simple types,
<fixed:choice> elements to describe choice complex types, and
<fixed:sequence> elements to describe sequence complex types.

262

Adding a Fixed Binding

If any elements of the logical data definition have occurrence
constraints, see “Defining Data Structures” on page 209, map the
element into a <fixed:sequence> element with its occurs and
counterName attributes set.

The occurs attribute specifies the number of times this sequence
occurs in the message buffer. counterName specifies the name of the
field used for specifying the number of sequence elements that are
actually being sent in the message. The value of counterName
corresponds to a binding only <fixed: field> with at least enough
digits to count to the value specified in occurs as shown in

Example 44. The value passed to the counter field can be any number
up to the value specified by occurs and allows operations to use less
than the specified number of sequence elements. Artix will pad out the
sequence to the number of elements specified by occurs when the data
is transmitted to the receiver so that the receiver will get the data in
the promised fixed format.

Example 44: Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">

</fixed:sequence>

For example, a structure containing a name, a date, and an ID number
would contain three <fixed:field> elements to fully describe the mapping
of the data to the fixed record message. Example 45 shows an Artix contract
fragment for such a mapping.

Example 45: Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

263

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 45: Mapping a Sequence to a Fixed Record Length Message

<types>
<schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="person'">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</types>
<message name="fixedSequence">
<part name="personPart" type="tns:person" />

</message>
<portType name="fixedSequencePortType">

</portType>
<binding name="fixedSequenceBinding"
type="tns: fixedSequencePortType">

<fixed:binding />

<fixed:sequence name="personPart">
<fixed:field name="name" size="20" />
<fixed:field name="date" format="MM/DD/YY" />
<fixed:field name="ID" format="#####" />

</fixed:sequence>
</binding>

</definition>

Example 46 shows an example of an Artix contract containing a fixed record

Example
length message binding.

Example 46: Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>

264

Example 46: Fixed Record Length Message Binding

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http: //widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:fixed="http://schemas.iona.com/binings/fixed"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes">
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:simpleType name="widgetSize">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="big"/>
<xsd:enumeration value="large"/>
<xsd:enumeration value="mungo"/>
<xsd:enumeration value="gargantuan"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="streetl" type="xsd:string"/>
<xsd:element name="street2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order date" type="xsd:string"/>
<xsd:element name="type" type="xsdl:widgetSize"/>
<xsd:element name="shippingAddress" type="xsdl:Address"/>
</xsd:sequence>
</xsd:complexType>

Adding a Fixed Binding

265

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 46: Fixed Record Length Message Binding

<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order date" type="xsd:string"/>
<xsd:element name="type" type="xsdl:widgetSize"/>
<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber" type="xsd:string"/>
<xsd:element name="shippingAddress" type="xsdl:Address"/>
</xsd:sequence>
</xsd:complexType>
</schema>
</types>
<message name="widgetOrder">
<part name="widgetOrderForm" type="xsdl:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation" type="xsdl:widgetOrderBillInfo"/>
</message>
<portType name="orderWidgets'">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
</operation>
</portType>

266

Example 46: Fixed Record Length Message Binding

<binding name="orderWidgetsBinding" type="tns:orderWidgets">

<fixed:binding/>

<operation name="placeWidgetOrder">
<fixed:operation discriminator="widgetDisc"/>

<input name="widgetOrder">
<fixed:body>

<fixed:sequence name="widgetOrderForm">
<fixed:field name="amount" format="###" />
<fixed:field name="order date" format="MM/DD/YYYY" />
<fixed:field name="type" size="2">

<fixed:enumeration
<fixed:enumeration
<fixed:enumeration
<fixed:enumeration
</fixed:field>

value="big" fixedValue="bg" />
value="large" fixedvValue="1g" />
value="mungo" fixedValue="mg" />
value="gargantuan" fixedvalue="gg" />

<fixed:sequence name="shippingAddress'">

<fixed:field name="
<fixed:field name="
<fixed:field name="
<fixed:field name="
<fixed:field name="
<fixed:field name="
</fixed:sequence>
</fixed:sequence>
</fixed:body>
</input>

name" size="30" />
streetl" size="100" />
street2" size="100" />
city" size="20" />
state" size="2" />
zip" size="5" />

Adding a Fixed Binding

267

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 46: Fixed Record Length Message Binding

<output name="widgetOrderBill">
<fixed:body>
<fixed:sequence name="widgetOrderConformation">
<fixed:field name="amount" format="###" />
<fixed:field name="order date" format="MM/DD/YYYY" />
<fixed:field name="type" size="2">
<fixed:enumeration value="big" fixedValue="bg" />
<fixed:enumeration value="large" fixedvalue="1lg" />
<fixed:enumeration value="mungo" fixedValue="mg" />
<fixed:enumeration value="gargantuan" fixedvalue="gg" />
</fixed:field>
<fixed:field name="amtDue" format="####. 44" />
<fixed:field name="orderNumber" size="20" />
<fixed:sequence name="shippingAddress">
<fixed:field name="name" size="30" />
<fixed:field name="streetl" size="100" />
<fixed:field name="street2" size="100" />
<fixed:field name="city" size="20" />
<fixed:field name="state" size="2" />
<fixed:field name="zip" size="5" />
</fixed:sequence>
</fixed:sequence>
</fixed:body>
</output>
</operation>
</binding>
<service name="orderWidgetsService">
<port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>
</port>
</service>
</definitions>

268

Adding a Tagged Binding

Adding a Tagged Binding

Overview

The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

To map a logical interface to a tagged data format do the following:

1. Add the proper namespace reference to the <definition> element of
your contract. See “Tagged binding namespace” on page 270.

2. Add a standard WSDL <binding> element to your contract to hold the
tagged binding, give the binding a unique name, and specify the port
type that represents the interface being bound.

3. Add a <tagged:binding> element as a child of the new <binding>
element to identify this as a tagged binding and set the element’s
attributes to properly configure the binding. See “<tagged:binding>"
on page 270.

4. For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

5. For each operation added to the binding, add a <tagged:operation>
child element to the <operation> element. See “<tagged:operation>"
on page 271.

6. For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.

7. Foreach <input>, <output>, and <fault> element in the binding, add
a <tagged:body> child element to define how the message parts are
mapped into the concrete tagged data payload. See “<tagged:body>"
on page 271.

269

CHAPTER 13 | Binding Interfaces to a Payload Format

Tagged binding namespace The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools
use the prefix tagged to represent the tagged data extensions. Add the
following line to the <definitions> element of your contract:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

<tagged:binding> <tagged:binding> specifies that the binding is for tagged data format
messages. It has ten attributes:

selfDescribing Required attribute specifying if the message data
on the wire includes the field names. Valid
values are true Or false. If this attribute is set to
false, the setting for fieldNamevalueSeparator
is ignored.

fieldSeparator Required attribute that specifies the delimiter the
message uses to separate fields. Supported
values are newline(\n), comma(,), semicolon(;),
and pipe(]).

fieldNameValueSeparator Specifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equals(=),
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set to
true.

messageStart Specifies a special token at the start of a
message. It is used when messages that require
a special character at the start of a the data
sequence. Currently the only supported value is
star(*).

messageEnd Specifies a special token at the end of a
message. Supported values are newline(\n) and
percent(%).

270

<tagged:operation>

<tagged:body>

Adding a Tagged Binding

unscopedArrayElement Specifies if array elements need to be scoped as
children of the array. If set to true arrays take
the form
echoArray{myArray=2; item=abc; item=def}. If
set to false arrays take the form
echoArray{myArray=2; {0=abc;1l=def; }}. Default
is false.

ignoreUnknownElements Specifies if Artix ignores undefined element in the
message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with element
names in the message payload. Default is false.

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

<tagged:operation> is a child element of the WSDL <operation> element
and specifies that the operation’s messages are being mapped to a tagged
data format. It takes two optional attributes:

discriminator Specifies a name to the operation for identifying the
operation as it is sent down the wire by the Artix
runtime.

discriminatorStyle Specifies how the discriminator will identify data as it
is sent down the wire by the Artix runtime. Supported
values are msgname, partlist, and fieldname.

<tagged:body> is a child element of the <input>, <output>, and <fault>
messages being mapped to a tagged data format. It specifies that the
message body is mapped to tagged data on the wire and describes the exact
mapping for the message’s parts.

<tagged:body> Will have one or more of the following child elements:
®* <tagged:field>

® <tagged:sequence>

® <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

271

CHAPTER 13 | Binding Interfaces to a Payload Format

<tagged:field> <tagged:field> is used to map simple types and enumerations to a tagged
data format. It has two attributes:

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.

When describing enumerated types <tagged:field> will have a number of
<tagged:enumeration> child elements.

<tagged:enumeration> <tagged:enumeration> is a child element of <taggeded: field> and is used
to map enumerated types to a tagged data format. It takes one required
attribute, value, that corresponds to the enumeration value as specified in
the logical description of the enumerated type.

For example, if you had an enumerated type, flavorType, with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description
of the type would be similar to Example 47.

Example 47:/ce Cream Enumeration

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>
</xs:restriction>
</xs:simpleType>

flavorType Would be mapped to the tagged data format shown in
Example 48.

Example 48: Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
<tagged:enumeration value="FruityTooty" />
<tagged:enumeration value="Rainbow" />
<tagged:enumeration value="BerryBomb" />
<tagged:enumeration value="OrangeTango" />
</tagged:field>

272

Adding a Tagged Binding

<tagged:sequence> <taggeded:sequence> Maps arrays and sequences to a tagged data format.
It has three attributes:

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data sequence.

alias An optional attribute specifying an alias for the sequence
that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times the
sequence appears. This attribute is used to map arrays.

A <tagged:sequence> can contain any number of <tagged:field>,
<tagged:sequence>, or <tagged:choice> child elements to describe the
data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<tagged:field> elements to fully describe the mapping of the data to the
fixed record message. Example 49 shows an Artix contract fragment for
such a mapping.

Example 49: Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="taggedDataMappingsample"
targetNamespace="http://www.iona.com/taggedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/taggedService"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema targetNamespace="http://www.iona.com/taggedService"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="person">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

</types>

273

CHAPTER 13 | Binding Interfaces to a Payload Format

<tagged:choice>

<tagged:case>

274

Example 49: Mapping a Sequence to a Tagged Data Format

<message name="taggedSequence">

<part name="personPart" type="tns:person" />
</message>
<portType name="taggedSequencePortType">

</portType>
<binding name="taggedSequenceBinding"
type="tns:taggedSequencePortType">
<tagged:binding selfDescribing="false" fieldSeparator="pipe"/>

<tagged:sequence name="personPart">
<tagged:field name="name"/>
<tagged:field name="date" />
<tagged:field name="ID" />
</tagged: sequence>

</binding>

</definition>

<tagged:choice> maps unions to a tagged data format. It takes three
attributes:

name A required attribute that must correspond to the name
of the logical message part that is being mapped to the
tagged data union.

discriminatorName Specifies the message part used as the discriminator for
the union.

alias An optional attribute specifying an alias for the union
that can be used to identify it on the wire.

A <tagged:choice> may contain one or more <tagged:case> child
elements to map the cases for the union to a tagged data format.

<tagged:case> is a child element of <tagged:choice> and describes the
complete mapping of a union’s individual cases to a tagged data format. It
takes one required attribute, name, that corresponds to the name of the case
element in the union’s logical description.

Adding a Tagged Binding

<tagged:case> must contain one child element to describe the mapping of
the case’s data to a tagged data format. Valid child elements are

<tagged:field>, <tagged:sequence>, and <tagged:choice>. Example 50
shows an Artix contract fragment mapping a union to a tagged data format.

Example 50: Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="fixedMappingsample"
targetNamespace="http://www.iona.com/tagService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns: fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/tagService"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema targetNamespace="http://www.iona.com/tagService"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="unionStationType">
<xsd:choice>
<xsd:element name="train" type="xsd:string"/>
<xsd:element name="bus" type="xsd:int"/>
<xsd:element name="cab" type="xsd:int"/>
<xsd:element name="subway" type="xsd:string" />
</xsd:choice>
</xsd:complexType>
</types>
<message name="tagUnion">
<part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="tagUnionPortType">

</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">

<tagged:binding selfDescribing="false"
fieldSeparator="comma"/>

275

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 50: Mapping a Union to a Tagged Data Format

<tagged:choice name="stationPart" descriminatorName="disc">
<tagged:case name="train">
<tagged:field name="name" />
</tagged:case>
<tagged:case name="bus">
<tagged:field name="number" />
</tagged:case>
<tagged:case name="cab">
<tagged:field name="number" />
</tagged:case>
<tagged:case name="subway">
<tagged:field name="name"/>
</tagged:case>
</tagged:choice>

</binding>

</definition>

Example Example 51 shows an example of an Artix contract containing a tagged data
format binding.

Example 51: Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:fixed="http://schames.iona.com/binings/tagged"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes">
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

276

Example 51: Tagged Data Format Binding

<xsd:simpleType name="widgetSize">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="big"/>
<xsd:enumeration value="large"/>

<xsd:enumeration value="mungo"/>
<xsd:enumeration value="gargantuan"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType
<xsd:sequence>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
</xsd:sequence>

element
element
element
element
element
element

name="Address">

name="name" type="xsd:string"/>
name="streetl" type="xsd:string"/>
name="street2" type="xsd:string"/>
name="city" type="xsd:string"/>
name="state" type="xsd:string"/>
name="zipCode" type="xsd:string"/>

</xsd:complexType>
<xsd:complexType
<xsd:sequence>

<xsd:
<xsd:
<xsd:
<xsd:
</xsd:sequence>

element
element
element
element

name="widgetOrderInfo">

name="amount" type="xsd:int"/>

name="order date" type="xsd:string"/>
name="type" type="xsdl:widgetSize"/>
name="shippingAddress" type="xsdl:Address"/>

</xsd:complexType>
<xsd:complexType
<xsd:sequence>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
</xsd:sequence>

element
element
element
element
element
element

name="widgetOrderBillInfo">

name="amount" type="xsd:int"/>

name="order date" type="xsd:string"/>
name="type" type="xsdl:widgetSize"/>
name="amtDue" type="xsd:float"/>
name="orderNumber" type="xsd:string"/>
name="shippingAddress" type="xsdl:Address"/>

</xsd:complexType>

</schema>
</types>

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsdl:widgetOrderInfo"/>

</message>

<message name="widgetOrderBill">

<part name="widgetOrderConformation" type="xsdl:widgetOrderBillInfo"/>

</message>

Adding a Tagged Binding

277

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 51: Tagged Data Format Binding

<portType name="orderWidgets'">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
</operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<tagged:binding selfDescribing="false" fieldSeparator="pipe" />
<operation name="placeWidgetOrder">
<tagged:operation discriminator="widgetDisc"/>
<input name="widgetOrder">
<tagged:body>
<tagged:sequence name="widgetOrderForm">
<tagged:field name="amount" />
<tagged:field name="order date" />
<tagged:field name="type" >
<tagged:enumeration value="big" />
<tagged:enumeration value="large" />
<tagged:enumeration value="mungo" />
<tagged:enumeration value="gargantuan" />
</tagged:field>
<tagged:sequence name="shippingAddress">
<tagged:field name="name" />
<tagged:field name="streetl" />
<tagged:field name="street2" />
<tagged:field name="city" />
<tagged:field name="state" />
<tagged:field name="zip" />
</tagged: sequence>
</tagged: sequence>
</tagged:body>
</input>

278

Example 51: Tagged Data Format Binding

<output name="widgetOrderBill">
<tagged:body>
<tagged:sequence name="widgetOrderConformation">
<tagged:field name="amount" />
<tagged:field name="order date" />
<tagged:field name="type">

<tagged:enumeration
<tagged:enumeration
<tagged:enumeration
<tagged:enumeration

value="big" />
value="large" />
value="mungo" />
value="gargantuan" />

</tagged:field>
<tagged:field name="amtDue" />
<tagged:field name="orderNumber" />
<tagged:sequence name="shippingAddress">
<tagged:field name="name"/>
<tagged:field name="streetl"/>
<tagged:field name="street2" />
<tagged:field name="city" />
<tagged:field name="state" />
<tagged:field name="zip" />
</tagged: sequence>
</tagged: sequence>
</tagged:body>
</output>
</operation>
</binding>
<service name="orderWidgetsService">
<port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>
</port>
</service>
</definitions>

Adding a Tagged Binding

279

CHAPTER 13 | Binding Interfaces to a Payload Format

Adding a TibMsg Binding

Overview Artix supports the use of the TibrvMsg format when using the TIBCO
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the
interface you are exposing and the TibrvMsg format. The binding description
is placed inside the standard <binding> tag and uses the tags listed in
Table 5.

Table 5: TibrvMsg Binding Attributes

Attribute Description
tibrv:binding Specifies that the interface is exposed using TibrvMsgs.
tibrv:binding@stringEncoding Specifies the charset used to encode TIBRVMSG STRING data. Use

IANA preferred MIME charset names
(http://www.iana.org/assignments/character-sets). This parameter
must be the same for both client and server.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.
tibrv:input Specifies that the input message is mapped to a TibrvMsg.
tibrv:input@sortFields Specifies whether the server will sort the input message parts when

they are unmarshalled.

tibrv:input@messageNameFieldPath Specifies the field path that includes the input message name.

tibrv:input@messageNameFieldValue Specifies the field value that corresponds to the input message

name.
tibrv:output Specifies that the output message is mapped to a TibrvMsg.
tibrv:output@sortFields Specifies whether the client will sort the output message parts

when they are unmarshalled.

tibrv:output@messageNameFieldPath | Specifies the field path that includes the output message name.

280

http://www.iana.org/assignments/character-sets

Adding a TibMsg Binding

Table 5: TibrvMsg Binding Attributes

Attribute

Description

tibrv:output@messageNameFieldvValue

name.

Specifies the field value that corresponds to the output message

TIBRVMSG type mapping

Table 6 shows how TibrvMsg data types are mapped to XSD types in Artix
contracts and C+ + data types in Artix application code.

Table 6: T/BCO to XSD Type Mapping

TIBRVMSG XSD
TIBRVMSGisTRINGl xsd:string
TIBRVMSG_BOOL xsd:boolean
TIBRVMSG I8 xsd:byte
TIBRVMSG I16 xsd:short
TIBRVMSG I32 xsd:int
TIBRVMSG I64 xsd:long
TIBRVMSG U8 xsd:unsignedByte
TIBRVMSG Ul6 xsd:unsignedshort
TIBRVMSG U32 xsd:unsignedInt
TIBRVMSG U64 xsd:unsignedLong
TIBRVMSG F32 xsd: float
TIBRVMSG F64 xsd:double
TIBRVMSG STRING xsd:decimal
TIBRVMSGADATETIMEZ xsd:dateTime
TIBRVMSG OPAQUE xsd:base64Binary
TIBRVMSG OPAQUE xsd:hexBinary
TIBRVMSG MSG3 xsd: complexType/sequence

281

CHAPTER 13 | Binding Interfaces to a Payload Format

282

Table 6: T7/BCO to XSD Type Mapping

TIBRVMSG

XSD

TIBRVMSG MSG4

xsd:complexType/all

TIBRVMSG MSG5

xsd:complexType/choice

TIBRVMSG *ARRAY/MSG6

xsd:complexType/sequence with element
MaxOccurs > 1

TIBRVMSG *ARRAY/MSG6

SOAP-ENC:Array/

TIBRVMSG MSG3

SOAP-ENV:Fault8

TIB/RV does not provide any mechanism to indicate the encoding of
strings in a TibrvMsg. The TIBCO plug-in port definition includes a
property, stringEncoding, for specifying the string encoding. However,
neither TIB/RV nor Artix look at this attribute; they merely pass the
data along. It is up to the application developer to handle the encoding
details if desired.

TIBRVMSG DATATIME has microsecond precision. However,
xsd:dateTime has only millisecond precision. Therefore, when using
Artix sub-millisecond percision will be lost.

Sequences are mapped to nested messages where each element is a
separate field. These fields are placed in the same order as they appear
in the original sequence with field IDs beginning at 1. The fields are
accessed by their field ID.

Alls are mapped to nested messages where each element is mapped
to a separate field. The fields representing the elements of the all are
given the same field name as element name and field IDs beginning
from 1. They can be accessed by field name beginning from field ID 1.
That means that the order of fields can be changed.

Choices are mapped to nested messages where each element is a
separate field. Each field is enclosed with the same field name/type as
element name/type of active member, and accessed by field name with
field ID 1.

Arrays having integer Or float elements are mapped to appropriate
TIB/RV array types; otherwise they are mapped to nested messages.

Adding a TibMsg Binding

SOAP RPC-encoded multi-dimensional arrays will be treated as
one-dimensional: e.g. a 3x5 array will be serialized as a
one-dimensional array having 15 elements. To keep dimensional
information, use nested sequences with maxoccurs > 1 instead.
When a server response message has a fault, it includes a field of type
TIBRVMSG MSG With the field name fault and field ID 1. This
submessage has two fields of T1BRVMSG STRING. One is hamed
faultcode and has field ID 1, and the other is named faultstring
and has field ID 2.

283

CHAPTER 13 | Binding Interfaces to a Payload Format

Adding a Pure XML Binding

Overview

284

The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without the overhead of a SOAP envelope.

To bind an interface to a pure XML payload format do the following:

1.

Add the namespace declaration to include the IONA extensions
defining the XML binding. See “XML binding namespace” on

page 285.

Add a standard WSDL <binding> element to your contract to hold the
XML binding, give the binding a unique name, and specify the name of
the WSDL <portType> element that represents the interface being
bound.

Add an <xformat :binding> child element to the <binding> element to
identify that the messages are being handled as pure XML documents
without SOAP envelopes.

Optionally, set the <xformat:binding> element’s rootNode attribute to
a valid QName. For more information on the effect of the rootNode
attribute see “XML messages on the wire” on page 285.

For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
interface definition of the logical operation.

XML binding namespace

XML messages on the wire

Adding a Pure XML Binding

7. Optionally add an <xformat :body> element with a valid rootNode
attribute to the added <input>, <output>, and <falut> elements to
override the value of rootNode set at the binding level.

Note: If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the rootNode
attribute for the message to ensure that the message written on the wire is
a valid, but empty, XML document.

The IONA extensions used to describe XML format bindings are defined in
the namespace http://schemas.iona.com/bindings/xmlformat. Artix tools
use the prefix xformat to represent the XML binding extensions. Add the
following line to your contracts:

xmlns:xformat="http://schemas.iona.com/bindings/xmlformat

When you specify that an interface’s message are to be passed as XML
documents, without a SOAP envelope, you must take care to ensure that
your messages form valid XML documents when they are written on the
wire. You also need to ensure that non-Artix participants that receive the
XML documents understand the messages generated by Artix.

A simple way to solve both problems is to use the optional rootNode
attribute on either the global <xformat:binding> element or on the
individual message’s <xformat :body> elements. The rootNode attribute
specifies the QName for the element that serves as the root node for the
XML document generated by Artix. When the rootNode attribute is not set,
Artix uses the root element of the message part as the root element when
using doc style messages or an element using the message part name as the
root element when using rpc style messages.

285

CHAPTER 13 | Binding Interfaces to a Payload Format

286

For example, without the rootNode attribute set the message defined in
Example 52 would generate an XML document with the root element

<lineNumer>.
Example 52: Valid XML Binding Message

<type ...>
<element name="operatorID" type="xsd:int" />

</types>

<message name="operator">

<part name="lineNumber" element="nsl:operatorID" />
</message>

For messages with one part, Artix will always generate a valid XML
document even without the rootNode attribute set. However, the message in
Example 53 would generate an invalid XML document.

Example 53: /nvalid XML Binding Message
<types>

<element name="pairName" type="xsd:string"/>
<element name="entryNum" type="xsd:int"/>

</types>
<message name="matildas">
<part name="dancing" element="nsl:pairName" />
<part name="number" element="nsl:entryNum" />
</message>

Without the rootNode attribute specified in the XML binding, Artix will
generate an XML document similar to Example 54 for the message defined
in Example 53. The Artix generated XML document is invalid because it has
two root elements: <pairName> and <entryNum>.

Example 54:/nvalid XML Document

<pairName>
Fred&Linda
</pairName>
<entryNum>
123
</entryNum>

Adding a Pure XML Binding

If you set the rootNode attribute, as shown in Example 55 Artix will wrap
the elements in the specified root element. In this example, the rootNode
attribute is defined for the entire binding and specifies that the root element
will be named entrants.

Example 55: XML Format Binding with rootNode set

<portType name="danceParty">
<operation name="register">
<input message="tns:matildas" name="contestant"/>
<output message="tns:space" name="entered"/>
</operation>
</portType>
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant" />
<output name="entered" />
</operation>
</binding>

A an XML document generated from the input message would be similar to
Example 56. Notice that the XML document now only has one root element.

Example 56: XML Document generated using the rootNode attribute

<entrants>
<pairName>
Fred&Linda
</pairName>
<entryNum>
123
</entryNum>
</entrants>

Overriding the binding’s rootNode You can also set the rootNode attribute for each individual message, or
attribute setting override the global setting for a particular message by using the
<xformat :body> element inside of the message binding. For example, if you
wanted the output message defined in Example 55 to have a different root
element from the input message, you could override the binding’s root
element as shown in Example 57.

287

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 57:

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant" />
<output name="entered" />
<xformat:body rootNode="entryStatus"/>
</operation>
</binding>

288

Adding a G2+ + Binding

Adding a G2+ + Binding

Overview

Simple G2+ + mapping example

<types>

G2+ + is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2+ + messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2+ + is an alternative to “raw” structures (such as C or C+ + structs),
which rely on common data representation characteristics that may not be
present in a heterogeneous distributed system.

Consider the following instance of a G2+ + message:

Note: Because tabs are significant in G2+ + files (that is, tabs indicate
scoping levels and are not simply treated as “white space”), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
seven spaces.

Example 58: ERecord G2+ + Message

ERecord

~ XYZ_Part
~ ~ XYZ Code”
password” someValue2

serviceFieldName” someValue3

someValuel

A A
A A
newPart
~ ~ someValue4d
someValueb

someValueb

newActionCode”
newServiceClassName”
oldServiceClassName”

S A

S A

This G2+ + message can be mapped to the following logical description,
expressed in WSDL:

Example 59: WSDL Logical Description of ERecord Message

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

289

CHAPTER 13 | Binding Interfaces to a Payload Format

Example 59: WSDL Logical Description of ERecord Message

<complexType name="XYZ Part">
<all>
<element name="XYZ Code" type="xsd:string"/>
<element name="password" type="xsd:string"/>
<element name="serviceFieldName" type="xsd:string"/>
</all>
</complexType>
<complexType name="newPart">
<all>
<element name="newActionCode" type="xsd:string"/>
<element name="newServiceClassName" type="xsd:string"/>
<element name="oldServiceClassName" type="xsd:string"/>
</all>
<complexType name="PRequest'">
<all>
<element name="newPart" type="xsdl:newPart"/>
<element name="XYZ Part" type="xsdl:XYZ Part"/>
</all>
</complexType>

Note that each of the message sub-structures (newpart and xyz_part) are
initially described separately in terms of their elements, then the two
sub-structure are aggregated together to form the enclosing record
(PRequest)

290

Adding a G2+ + Binding

This logical description is mapped to a physical representation of the G2+ +
message, also expressed in WSDL:

Example 60: WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<artix:binding transport="tuxedo" format="g2++">
<G2Definitions>
<G2MessageDescription name="creation" type="msg">
<G2MessageComponent name="ERecord" type="struct">
<G2MessageComponent name="XYZ Part" type="struct">
<element name="XYZ Code" type="element"/>
<element name="password" type="element"/>
<element name="serviceFieldName" type="element"/>
</G2MessageComponent>
<G2MessageComponent name="newPart" type="struct">
<element name="newActionCode" type="element"/>
<element name="newServiceClassName" type="element"/>
<element name="oldServiceClassName" type="element"/>
</G2MessageComponent>
</G2MessageComponent>
</G2MessageDescription>
</G2Definitions>
</artix:binding>

Note that all G2+ + definitions are contained within the scope of the
<G2Definitions> </G2Definitions> tags. Each of the messages are
defined with the scope of a <G2MessageDescription>
</G2MessageDescription> construct. The type attribute for message
descriptions must be "msg" while the name attribute simply has to be
unique.

Each record is described within the scope of a <G2MessageComponent>
</G2MessageComponent> construct. Within this, the name attribute must
reflect the G2+ + record name and the type attribute must be "struct".

Nested within the records are the element definitions, however if required a
record could be nested here by inclusion of a nested <G2MessageComponent >
scope (newPart and xyz_Part are nested records of parent Erecord).
Element “name” attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defined in-place.

291

CHAPTER 13 | Binding Interfaces to a Payload Format

The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2+ + array mappings. The array definition is

shown below:

IMS MetaData” 2

~ 0

~ ~ columnName” SERVICENAME

~ ~ columnValue” someValuel

~ 1

~ ~ columnName” SERVICEACTION
~ ~ columnValue” someValue2

This represents an array with two elements. When placed in a G2+ +
message, the result is as follows:

Example 61: Extended ERecord G2++ Message

ERecord

~ XYZ Part

~ ~ XYZ Code” someValuel

~ ~ password” someValue?2

~ " serviceFieldName” someValue3

~ XYZ Metadata” 1

~ " 0

~ ~ ~ columnName” pushToTalk
~ ~ ” columnValue” PTO1

~ newPart

~ ~ newActionCode” someValue4d

~ ~ newServiceClassName” someValueb
~ ” oldServiceClassName” someValueb6

In this version of the ERecord record, xyz_part contains an array called
XYZ MetaData, Whose size is one. The single entry can be thought of as a
name/value pair: pushToTalk/PT01, Which allows us to ignore columnName
and columnvalue.

292

Adding a G2+ + Binding

Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 62: WSDL Logical Description of Extended ERecord Message

<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<complexType name="XYZ Part">
<all>
<element name="XYZ Code" type="xsd:string"/>
<element name="password" type="xsd:string"/>
<element name="serviceFieldName" type="xsd:string"/>
<element name="pushToTalk" type="xsd:string"/>
</all>
</complexType>

<complexType name="newPart">
<all>
<element name="newActionCode" type="xsd:string"/>
<element name="newServiceClassName" type="xsd:string"/>
<element name="oldServiceClassName" type="xsd:string"/>
</all>

<complexType name="PRequest'>
<all>
<element name="newPart" type="xsdl:newPart"/>
<element name="XYZ Part" type="xsdl:XYZ Part"/>
</all>
</complexType>

293

CHAPTER 13 | Binding Interfaces to a Payload Format

Thus the array elements columnName and columnvalue are “promoted” to a
name/Value pair in the logical mapping. This physical G2+ + representation
can now be mapped as follows:

Example 63: WSDL Physical Representation of Extended ERecord
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<artix:binding transport="tuxedo" format="g2++">
<G2Definitions>
<G2MessageDescription name="creating" type="msg">
<G2MessageComponent name="ERecord" type="struct'">
<G2MessageComponent name="XYZ Part" type="struct">
<element name="XYZ Code" type="element"/>
<element name="password" type="element"/>
<element name="serviceFieldName" type="element"/>
<G2MessageComponent name="XYZ7 MetaData" type="array" size="1">
<element name="pushToTalk" type="element"/>
</G2MessageComponent>
</G2MessageComponent>
<G2MessageComponent name="newPart" type="struct">
<element name="newActionCode" type="element"/>
<element name="newServiceClassName" type="element"/>
<element name="oldServiceClassName" type="element"/>
</G2MessageComponent>
</G2MessageComponent>
</G2MessageDescription>
</G2Definitions>
</artix:binding>

This physical mapping of the extended ERecord message now contains an
array, described with its xyz_MetaData name (as per the G2+ + record
definition). Its type is "array" and its size is one. This
G2MessageComponent contains a single element called "pushToTalk".

294

Adding a G2+ + Binding

Ignoring unknown elements

It is possible to create a G2pefinitions scope that begins with a G2-specific

configuration scope. This configuration scope is called G2config in the
following example:

<G2Definitions>

S

S

<G2Config>

~

</G2Config>

<IgnoreUnknownElements value="true"/>

In this scope, the only variable used is IgnoreUnknownElements, which can
have a value of “true” or “false”. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if IgnoreUnknownElements
is set to true.

Example 64: Valid G2+ + Record With Ignored Fields

ERecord

S

S

A

S

XYZ Part

XYZ Code” someValuel

AnElement” foo

password” someValue?2

serviceFieldName” someValue3

XYZ MetaData” 2

~ 0

~ ~ columnName” pushToTalk
~ ~ columnValue” PTO1

n 1

~ ” columnName” AnArrayElement
~ ~ columnValue” bar
newPart

” newActionCode” someValue4d

~ newServiceClassName” someValueb
~ oldServiceClassName” someValue6

When parsed, the above ERecord would not include the elements
"AnElement" Or"AnArrayElement".|fIgnoreUnknownElementsiS set to
false, the above record would be rejected as invalid.

295

CHAPTER 13 | Binding Interfaces to a Payload Format

296

Overview

In this chapter

CHAPTER 14

Adding Transports

To fully define a service you need to add a transport.

The final piece of information needed to describe a service are the transport
details defining how it connects to a network. This information is defined
inside a <port> element. Each port specifies the address and configuration
information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.

This chapter discusses the following topics:

Defining a Service page 298
Creating an HTTP Service page 300
Creating a CORBA Service page 319
Creating an IIOP Service page 324
Creating a WebSphere MQ Service page 327
Creating a Java Messaging System Service page 329
Adding a TIBCO Service page 333
Creating a Tuxedo Service page 335

297

CHAPTER 14 | Adding Transports

Defining a Service

Overview

The <service> element

The <port> element

298

All of the transport details for an endpoint are defined in <service>
elements. A <service> element defines a collection of <port> elements. The
<port> elements defines the relationship between a particular <binding>
element and the transport on which the messages are to be sent. The
<port> element contains all of the information defining the endpoints
connection to a network including what type of transport to use, the
address, and any other transport details.

The <service> element contains a group of one or more ports that have
some relationship. How the ports are related is up to you. For example you
could build a contract where every port is contained in its own <service>, or
you could decide to group all of the ports that are bound to a particular
interface into <service> elements.

A <service> element has one required attribute, name, that identifies the
service. The identifier must be unique among all of the services defined in
the contract. Example 65 shows an example of a service named

riotService.
Example 65: Sample Service

<service name="riotService">
<port>
</port>

</service>

The <port> element defines how a binding is tied to a specific network
transport. You specify the binding from which messages will be sent over
the network using the <port> element’s binding attribute. The value of the
binding attribute must correspond to a binding defined with in the same
contract, or a contract imported into the same contract, in which the port is
defined.

Defining a Service

The port element also has an attribute, name, that identifies the port. The
identifier must be unique among the ports describe within the containing
<service> element. shows a <port> element, riotport, that defines a port
bound to riotBinding.

Example 66: Sample Port

<service name="riotService">
<port name="riotPort" binding="riotBinding">

</port>
</service>
Contained within the <port> element are the elements used to define the
details of the transport that is used to send messages. In a standard WSDL
contract the transport details would be represented using a <soap:address>
element. However, Artix provides a number of transports and the elements

to define them. The following sections describe the details of adding the
details for these transports.

299

CHAPTER 14 | Adding Transports

Creating an HTTP Service

Overview

In this section

300

HTTP is the standard TCP/IP-based protocol used for client-server
communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

In addition to the standard <soap:address> element, Artix provides a
number of proprietary HTTP extensions. The Artix extensions allow you to
specify a number of the HTTP port’s configuration in the contract.

This section discusses the following topics:

Specifying the Service Address page 301

Configuring HTTP Transport Attributes page 303

Creating an HTTP Service

Specifying the Service Address

Overview Artix provides two ways of specifying an HTTP service's address depending
on the payload format you are using. SOAP has a standardized
<soap:address> element. All other payload formats use Artix’s
<http:address> element.

Using <soap:address> When you are sending SOAP over HTTP you must use the <soap:address>
element to specify the service's address. It has one attribute, location, that
specifies the service's address as a URL. Example 67 shows a port used to
send SOAP over HTTP.

Example 67: SOAP Port

<service name="artieSOAPService">
<port binding="artieSOAPBinding" name="artieSOAPPort">
<soap:address location="http://artie.com/index.xml">
</port>
</service>

Using <http:address> When your messages are formatted using any other payload format than
SOAP, such as fixed, you must use Artix's <http:address> element to
specify the service’s address.

Example 68 shows the namespace entries you need to add to the
<definitions> element of your contract to use the HTTP extensions.

Example 68: Artix HTTP Extension Namespaces
<definitions

xmlns:http="http://schemas.iona.com/transports/http"
. >

The <nhttp:address> element is similar to the <soap:address> element. It
has one attribute, 1ocation, that specifies the service’'s address as a URL.
Example 69 shows a port used to send fixed data over HTTP.

301

CHAPTER 14 | Adding Transports

Example 69: Generic HTTP Port

<service name="artieFixedService">
<port binding="artieFixedBinding" name="artieFixedPort">
<http:address location="http://artie.com/index.xml">
</port>
</service>

302

Creating an HTTP Service

Configuring HTTP Transport Attributes

Overview

<definitions

To allow you more flexibility in configuring an HTTP port, Artix has its own
set of WSDL extensions that can be used to define an HTTP port. All of the
configuration elements are optional. An HTTP port is fully defined by the
address element.

Example 70 shows the namespace entries you need to add to the
<definitions> element of your contract to use the HTTP extensions.

Example 70: Artix HTTP Extension Namespaces

xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"

o =

HTTP client configuration

Because HTTP client ports and HTTP server ports have slightly different
configuration options, Artix uses two elements to configure an HTTP port.
<http-conf:client> defines a client port. <nttp-conf:server> defines a
server port.

Table 7 describes the client-side configuration attributes for the HTTP
transport that are defined within the nhttp-conf:client element.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

SendTimeout This specifies the length of time, in milliseconds, that the client can
continue to try to send a request to the server before the connection is
timed out. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the client can

continue to try to receive a response from the server before the
connection is timed out. The default is 30000.

303

CHAPTER 14 | Adding Transports

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

AutoRedirect

This specifies whether a client request should be automatically
redirected on behalf of the client when the server issues a redirection
reply via the rRedirectURL server-side configuration attribute.

Valid values are true and false. The default is false, to let the client
redirect the request itself.

UserName

Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the user name that is to be used
for authentication.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Password

Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the password that is to be used
for authentication.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

AuthorizationType

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user's responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Authorization

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

304

Creating an HTTP Service

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Accept This specifies what media types the client is prepared to handle. These
are also known as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See http://www.iana.org/assignments/media-types/ for more
details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html Or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif Or image/jpeg.

An asterisk (that is, *) can be used as a wildcard to specify a group of
related types. For example, if you specify image/*, this means that the
client can accept any image, regardless of whether it is a GIF or a JPEG,
and so on. A value of */* indicates that the client is prepared to handle
any type.

Examples of typical types that might be set are text/xml, text/htmi,
text/text, image/gif, image/jpeqg, application/jpeg,
application/msword, application/xbitmap, audio/au, audio/wav,
video/avi, video/mpeg. A full list of MIME types is available at
http://www.iana.org/assignments/media-types/.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Acceptlanguage This specifies what language (for example, American English) the client
prefers for the purposes of receiving a response. Language tags are
regulated by the International Organization for Standards (ISO) and are
typically formed by combining a language code (determined by the
ISO-639 standard) and country code (determined by the ISO-3166
standard) separated by a hyphen. For example, en-Us represents
American English. A full list of language codes is available at
http://www.w3.0rg/WAI/ER/IG/ert/is0639.htm. A full list of country
codes is available at http://www.iso.ch/iso/en/prods-services/
iso3166ma/02iso-3166-code-lists/list-enl.html.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

305

CHAPTER 14 | Adding Transports

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

AcceptEncoding

This specifies what content codings the client is prepared to handle. The
primary use of content codings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Content codings
are regulated by the Internet Assigned Numbers Authority (IANA). See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details of content codings.

Possible content coding values include zip, gzip, compress, deflate,
and identity. Artix performs no validation on content codings. It is the
user's responsibility to ensure that a specified content coding is
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ContentType

This is relevant if the client request specifies the posT method, to send
data to the server for processing. This specifies the media type of the
data being sent in the body of the client request.

For web services, this should be set to text/xm1. If the client is sending
HTML form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP posT request is
bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Host

This specifies the internet host and port number of the resource on
which the client request is being invoked. This is sent by default based
upon the URL specified in the urw attribute. It indicates what host the
client prefers for clusters (that is, for virtual servers mapping to the same
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

306

Creating an HTTP Service

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Connection

This specifies whether a particular connection is to be kept open or
closed after each request/response dialog.

Valid values are close and Keep-alive. The default is close, to close
the connection to the server after each request/response dialog.

If keep-alive is specified, and the server honors it, the connection is
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ConnectionAttempts

This specifies the number of times a client will transparently attempt to
connect to server.

307

CHAPTER 14 | Adding Transports

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a request from a client to a
server.

Valid values are:

® no-cache prevents a cache from using a particular response to
satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® no-store indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® max-age indicates that the client can accept a response whose age
is no greater than the specified time in seconds.

® nmax-stale indicates that the client can accept a response that has
exceeded its expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the expiration time of a
response up to which the client can still accept that response. If no
value is assigned, it means the client can accept a stale response of
any age.

® nin-fresh indicates that the client wants a response that will be
still be fresh for at least the specified number of seconds indicated
by the value set for min-fresh.

® no-transform indicates that a cache must not modify media type
or location of the content in a response between a server and a
client.

® only-if-cached indicates that a cache should return only
responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

308

Creating an HTTP Service

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation

® cache-extension indicates additional extensions to the other cache
directives. Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard directive,
so that applications not understanding the extended directive can at
least adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cookie This specifies a static cookie to be sent to the server. Some session
designs that maintain state use cookies to identify sessions.

Note: If the cookie is dynamic, it must be set by the server when the
server is first accessed, and is then handled automatically by the
application runtime.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

BrowserType This specifies information about the browser from which the client
request originates. In the standard HTTP specification from the World
Wide Web consortium (W3C) this is also known as the user-agent.
Some servers optimize based upon the client that is sending the request.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Referer If a client request is as a result of the browser user clicking on a
hyperlink rather than typing a URL, this specifies the URL of the
resource that provided the hyperlink.

This is sent automatically if AutoRedirect is set to true. This can allow
the server to optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of logging,
optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

309

CHAPTER 14 | Adding Transports

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

ProxyServer

This specifies the URL of the proxy server, if one exists along the
message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

Note: Artix does not support the existence of more than one proxy
server along the message path.

ProxyUserName

This is only relevant if a proxy server exists along the message path.

This specifies the username to use for authentication on the proxy server
if it requires separate authorization.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct.

ProxyPassword

This is only relevant if a proxy server exists along the message path.

This specifies the password to use for authentication on the proxy server
if it requires separate authorization.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct.

ProxyAuthorizationType

This is only relevant if a proxy server exists along the message path.

If basic username and password-based authentication is not in use by
the proxy server, this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user's responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

310

Creating an HTTP Service

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

ProxyAuthorization

This is only relevant if proxy servers are in use along the
request-response chain.

If basic username and password-based authentication is not in used by
the proxy server, this specifies the actual data that the proxy server
should use to authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

UseSecureSockets This indicates whether the client wants to open a secure connection. A
secure HTTP connection is commonly referred to as HTTPS.
Valid values are true and false. The default is false, to indicate that
the client does not want to open a secure connection.
Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ClientCertificate This is only relevant if usesecuresockets is set to true.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the client.

ClientCertificateChain

This is only relevant if UseSecureSockets is set to true.

This specifies the full path to the file that contains all the certificates in
the chain.

ClientPrivateKey

This is only relevant if usesecuresockets is set to true.

This is used in conjunction with clientCertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by clientCertificate.

This is required only if clientcertificate has been specified.

311

CHAPTER 14 | Adding Transports

Table 7: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

ClientPrivateKeyPassword

This is only relevant if usesecuresockets is set to true.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

TrustedRootCertificate

This is only relevant if useSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority.

HTTP server configuration

Table 8 describes the server-side configuration attributes for the HTTP
transport that are defined within the http-conf:server element.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

SendTimeout This specifies the length of time, in milliseconds, that the server can
continue to try to send a response to the client before the connection is
timed out. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the server can

continue to try to receive a request from the client before the connection
is timed out. The default is 30000.

SuppressClientSendErrors

This specifies whether exceptions are to be thrown when an error is
encountered on receiving a client request.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.

SuppressClientReceiveErrors

This specifies whether exceptions are to be thrown when an error is
encountered on sending a response to a client.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.

312

Creating an HTTP Service

Table 8: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

HonorKeepAlive

This specifies whether the server should honor client requests for a
connection to remain open after a server response has been sent to a
client. Servers can achieve higher concurrency per thread by honoring
requests to keep connections alive.

Valid values are true and false. The default is false, to close the
connection after a server response is sent.

If set to true, the request socket is kept open provided the client is using
at least version 1.1 of HTTP and has requested that the connection is
kept alive. Otherwise, the connection is closed.

If set to false, the socket is automatically closed after a server response
is sent, even if the client has requested the server to keep the connection
alive.

RedirectURL

This specifies the URL to which the client request should be redirected if
the URL specified in the client request is no longer appropriate for the
requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code is set to 302 and the status description
is set to object Moved.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

313

CHAPTER 14 | Adding Transports

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a response from a server to a
client.

Valid values are:

® no-cache prevents a cache from using a particular response to
satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® public indicates that a response can be cached by any cache.

® private indicates that a response is intended only for a single user
and cannot be cached by a public (shared) cache. If specific
response header fields are specified with this value, the restriction
applies only to those header fields within the response. If no
response header fields are specified, the restriction applies to the
entire response.

® no-store indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® no-transform indicates that a cache must not modify the media
type or location of the content in a response between a server and a
client.

® must-revalidate indicates that if a cache entry relates to a server
response that has exceeded its expiration time, the cache must
revalidate that cache entry with the server before it can be used in
a subsequent response.

® proxy-revalidate indicates the same as must-revalidate, except
that it can only be enforced on shared caches and is ignored by
private unshared caches. If using this directive, the pub1ic cache
directive must also be used.

314

Creating an HTTP Service

Table 8: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

® max-age indicates that the client can accept a response whose age
is no greater than the specified time in seconds.

® s-maxage indicates the same as max-age, except that it can only be
enforced on shared caches and is ignored by private unshared
caches. The age specified by s-maxage overrides the age specified
by max-age. If using this directive, the proxy-revalidate directive
must also be used.

® cache-extension indicates additional extensions to the other cache
directives. Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard directive,
so that applications not understanding the extended directive can at
least adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentLocation This specifies the URL where the resource being sent in a server
response is located.
If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentType This specifies the media type of the information being sent in a server

response (for example, text/html, image/gif, and so on). This is also
known as the multipurpose internet mail extensions (MIME) type. MIME
types are regulated by the Internet Assigned Numbers Authority (IANA).
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html Or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif Or image/jpeg.

The default type is text/xml. Other specifically supported types include:
application/jpeg, application/msword, application/xbitmap,
audio/au, audio/wav, text/html, text/text, image/gif, image/jpeq,
video/avi, video/mpeg. Any content that does not fit into any type in the
preceding list should be specified as application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

315

CHAPTER 14 | Adding Transports

Table 8: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

ContentEncoding

This can be used in conjunction with contentType. It specifies what
additional content codings have been applied to the information being
sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

The primary use of contentEncoding is to allow a document to be
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ServerType

This specifies what type of server is sending the response to the client.

Values in this case take the form program-name/version. For example,
Apache/1.2.5.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

UseSecureSockets

This indicates whether the server wants a secure HTTP connection
running over SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that
the server does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ServerCertificate

This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the server.

A server must present such a certificate, so that the client can
authenticate the server.

316

Creating an HTTP Service

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation

ServerCertificateChain This is only relevant if the HTTP connection is running securely over SSL
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use serverCertificateChain to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the client for
verification.

This specifies the full path to the file that contains all the certificates in
the chain.

ServerPrivateKey This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This is used in conjunction with servercertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by servercertificate.

This is required if, and only if, servercertificate has been specified.

ServerPrivateKeyPassword This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

TrustedRootCertificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. This is used to validate the certificate presented by
the client.

317

CHAPTER 14 | Adding Transports

Creating a CORBA Service

Overview Generally, when you are creating a CORBA service with Artix, you need to
do two things. First, you must configure the Artix port information in the
Artix contract so that Artix can instantiate the appropriate port. Second, you
must generate the IDL describing your service so that a native CORBA
application can understand the interfaces of the new Artix service.

In this section This section discusses the following topics:
Configuring an Artix CORBA Port page 320
Generating CORBA IDL page 323

318

Creating a CORBA Service

Configuring an Artix CORBA Port

Overview CORBA ports are described using the IONA-specific WSDL elements
<corba:address> and <corba:policy> Within the WSDL <port> element, to
specify how a CORBA object is exposed.

Namespace Example 71 shows the namespace entries you need to add to the
<definitions> element of your contract to use the CORBA extensions.

Example 71: Artix CORBA Extension Namespaces
<definitions

xmlns:iiop="http://schemas.iona.com/bindings/corba"
. >

Address specification The IOR of the CORBA object is specified using the <corba:address>
element. You have four options for specifying IORs in Artix contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

IOR:22342....
® Specify a file location for the IOR, using the following syntax:

file:///file name
Note: The file specification requires three backslashes (///).

® Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the corbaname format:

corbaname:rir/NameService#object name

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

319

CHAPTER 14 | Adding Transports

Specifying POA policies

320

® Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

corbaloc:iiop:host:port/service name

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Using the optional <corba:policy> element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

® POA Name

® Persistence

® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA'’s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

Artix POAs are created with the default name of ws_org. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

<corba:policy poaname="poa name" />

Persistence
By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

<corba:policy persistent="true" />

ID Assignment

By default Artix POAs are created with a sysTem 1D policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

<corba:policy serviceid="POAid" />

Creating a CORBA Service

This creates a POA with a user 1D policy and an object id of poaid.

Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 74:

Example 72: CORBA personallnfoLookup Port

<service name="personalInfolLookupService">
<port name="personalInfoLookupPort"
binding="tns:personalInfolookupBinding">
<corba:address location="file:///objref.ior" />
<corba:policy persistent="true" />
<corba:policy serviceid="personalInfoLookup" />
</ port>
</ service>

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to connect the CORBA application.

321

CHAPTER 14 | Adding Transports

Generating CORBA IDL

Overview

From the command line

322

Artix clients that use a CORBA transport require that the IDL defining the
interface exist and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each <portType> in the contract generates an
IDL module.

The wsdltocorba tool compiles Artix contracts and generates IDL for the
specified CORBA binding and port type. To generate IDL using wsdltocorba
use the following command:

wsdltocorba -idl -b binding [-corbal [-1 portType] [-d dir]
[-o file] wsdl file

The command has the following options:

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults

to wsdl file.idl.

By combining the -id1 and -corba flags with wsdltocorba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
portType flag to specify the port type from which to generate the binding
and the -b binding flag to specify the name of the binding from which to
generate the IDL.

Creating an IIOP Service

Creating an IIOP Service

Overview Artix allows you to use IIOP as a generic transport for send data using any of
the payload formats. When using IIOP as a generic transport, you define
your service's address using <iiop:address>. The benefit of using the
generic [IOP transport is that it allows you to use CORBA services without
requiring your applications to be CORBA applications. For example, you
could use an IIOP tunnel to send fixed format messages to an endpoint
whose address is published in a CORBA naming service.

Note: Generic IIOP is unavailable in some editions of Artix. Please check
the conditions of your Artix license to see whether your installation
supports [IOP.

Namespace Example 73 shows the namespace entries you need to add to the
<definitions> element of your contract to use the [IOP extensions.

Example 73: Artix IIOP Extension Namespaces
<definitions

xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel”
. >

Address specification The IOR, or address, of the [IOP port is specified using the <iiop:address>
element. You have four options for specifying IORs in Artix contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

TOR:22342....
® Specify a file location for the IOR, using the following syntax:

file:///file name

Note: The file specification requires three backslashes (///).

323

CHAPTER 14 | Adding Transports

® Specify that the IOR is published to a CORBA name service, by
entering the object’'s name using the corbaname format:

corbaname:rir/NameService#object name

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

® Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

corbaloc:iiop:host:port/service name

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Specifying type of payload The IIOP transport can perform codeset negotiation on the encoded

encoding messages passed through it if your CORBA system supports it. By default,
this feature is turned off so that the agents sending the message maintain
complete control over codeset conversion. If you wish to turn automatic
codeset negotiation on use the following:

<iiop:payload type="string" />

Specifying POA policies Using the optional <iiop:policy> element, you can describe a number of
POA polices the Artix service will use when creating the [IOP port. These
policies include:
® POA Name
® Persistence
® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA'’s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project using the I10OP transport. For
information on using these advanced CORBA features, see the Orbix
documentation.

324

Example

Creating an IIOP Service

POA Name

Artix POAs are created with the default name of ws_ore. To specify a name
of the POA that Artix creates for the I10P port, you use the following:

<iiop:policy poaname="poa name" />

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

<iiop:policy persistent="true" />

ID Assignment

By default Artix POAs are created with a system 1D policy, meaning that
their ID is assigned by Artix. To specify that the IIOP port’'s POA should use
a user-assigned 1D, use the following:

<corba:policy serviceid="POAid" />

This creates a POA with a user 1D policy and an object id of poaid.

For example, an [IOP port for the personalInfoLookup binding would look
similar to Example 74:

Example 74: CORBA personallnfolLookup Port

<service name="personalInfolLookupService">
<port name="personalInfoLookupPort"
binding="tns:personalInfolookupBinding">
<iiop:address location="file:///objref.ior" />
<iiop:policy persistent="true" />
<iiop:policy serviceid="personalInfoLookup" />
</ port>
</ service>

Artix expects the IOR for the [IOP port to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to configure the 110OP port.

325

CHAPTER 14 | Adding Transports

Creating a WebSphere MQ Service

Overview The description for an Artix WebSphere MQ port is entered in a <port>
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

<maq:client> defines a port for a WebSphere MQ client application.

<maq:server> defines a port a WebSphere MQ server application.
You can use one or both of the WebSphere MQ elements to describe the

Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace http://schemas.iona.com/bindings/mq.
To use the WebSphere MQ extensions you will need to include the following
in the <definitions> tag of your contract:

xmlns:mg="http://schemas.iona.com/bindings/mq"

Required attributes When you define a WebSphere MQ service you need to provide at least
enough information for the service to connect to its message queues. For
any WebSphere application that means setting the gueueManager and
oueueName attributes of the port. In addition, if you are configuring a client
that expects to receive replies from the server, you need to set the
ReplyQueueManager and ReplyQueueName attributes of the <mg:client>
element defining it.

In addition, if you are deploying applications on a machine that only has an
MQ client installation, you need to set the server Client attribute to
client. This setting intructs Artix to load 1ibmgic instead of 1ibmam.

326

Creating a WebSphere MQ Service

Example An Artix contract exposing an interface, monsterBash, bound to a SOAP
payload format, rRaydon, on an WebSphere MQ queue, UltraMan would
contain a service element similar to Example 75.

Example 75: Sample WebSphere MQ Port

<service name="Mothra">
<port name="X" binding="tns:Raydon">
<mq:server QueueManager="UMA"
QueueName="UltraMan"
ReplyQueueManager="WINR"
ReplyQueueName="Elek"
AccessMode="receive"
CorrelationStyle="messageld copy"/>
</port>
</service>

More information For a detailed description of the WebSphere MQ transport configuration
attributes see “WebSphere MQ Artix Extensions” on page 485.

327

CHAPTER 14 | Adding Transports

Creating a Java Messaging System Service

Overview

Message formatting

Port configuration

328

Artix provides a transport plug-in that enables systems to place and receive
messages from Java Messaging System (JMS) queues and topics. One large
advantage of this is that Artix allows C++ applications to interact directly
with Java applications over JMS.

Artix's JMS transport plug-in uses JNDI to locate and obtain references to
the JMS provider that brokers for the JMS destination with which it wants to
connect. Once Artix has established a connection to a JMS provider, Artix
supports the passing of messages packaged as either a JMS objectMessage
or a JMS TextMessage.

The JMS transport takes the payload formatting and packages it into either a
JMS objectMessage Or a TextMessage. When a message is packaged as an
ObjectMessage the message information, including any format-specific
information, is serialized into a byte[] and placed into the JMS message
body. When a message is packaged as a TextMessage, the message
information, including any format-specific information, is converted into a
string and placed into the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS
application is responsible for understanding how to interpret the message
and the formatting information. For example, if the Artix contract specifies
that the binding used for a JMS port is SOAP, and the messages are
packaged as TextMessage, the receiving JMS application will get a text
message containing all of the SOAP envelope information. For a message
encoded using the fixed binding, the message will contain no formatting
information, simply a string of characters, numbers, and spaces.

The JMS port configuration is done by using a <jms:address> element in
your service's <port> description. <jms:address> uses six attributes to
configure the JMS connection:

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

Using correlation IDs

Optional JNDI settings

Creating a Java Messaging System Service

jndiProviderURL Specifies the URL of the JNDI service where
the connection information for the JMS
destination is stored.

initialContextFactory Specifies the name of the

InitialContextFactory class or a list of
package prefixes used to construct URL
context factory classnames. For more details
on specifying a JNDI InitialContextFactory,
see “JNDI InitialContextFactory settings” on
page 331.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS

connection factory to use when connecting to
the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the JMS

messageType

destination to which Artix connects.

Specifies how the message data will be
packaged as a JMS message. text specifies
that the data will be packaged as a
TextMessage. binary Specifies that the data
will be packaged as an objectMessage.

If you want to configure Artix to use JMS message IDs as the correlation IDs
you can set the optional useMessageIDAsCorrelationID attribute to true.
The default for this attribute is false.

To increase interoperability with JMS and JNDI providers, the
<jms:address> element has a number of optional attributes to faciltate
configuring a JNDI connection. These optional attributes are:

java.
java.

Jjava.

java.
java.
Jjava.
java.
java.

Jjava.

naming.

naming

naming.
naming.
naming.
naming.

naming.

naming

naming.

factory.initial

.provider.url

factory.object
factory.state
factory.url.pkgs
dns.url

authoritative

.batchsize

referral

329

CHAPTER 14 | Adding Transports

Example

java.naming.security.protocol
java.naming.security.authentication
java.naming.security.principal
java.naming.security.credentials

hd java.naming.language

® Jjava.naming.applet

For more details on what information to using these attributes, check your
JNDI provider's documentation and consult the Java API reference material.

Example 76 shows an example of an Artix JMS port specification.

Example 76: Artix JMS Port

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
<jms:address destinationStyle="queue"
jndiProviderURL="tcp://localhost:2506"
initialContextFactory="com.sonicsw.jndi.mfcontext.MFContextFactory"
jndiConnectionFactoryName="QCF"
jndiDestinationName="testQueue"
messageType="text" />

</port>
</service>

JNDI InitialContextFactory
settings

330

The usual method of specifying the JNDI is to enter the class name provided
by your JNDI provider. In Example 76, the JMS port is using the JNDI
provided with SonicMQ and the class specified,

com. sonicsw.jndi.mfcontext.MFContextFactory, iS the class used by
Sonic’s JNDI server to create a JNDI context.

Alternatively, you can specify a colon-separated list of package prefixes to
use when loading URL context factories. The JNDI service takes each
package prefix and appends the URL schema name to form a sub-package.
It then prepends the URL schema name to URLContextFactory to form a
class name within the sub-package. Once the new class name is formed,
the JNDI service then tries to instantiate the class using the newly formed
name. For example, if your Artix contract described the JMS port shown in

Creating a Java Messaging System Service

Example 77, the JNDI service would instantiate a context factory with the
class name com. iona.jbus.jms.naming.sonic.sonicURLContextFactory t0
perform lookups.

Example 77:JMS Port with Alternate InitialContextFactory Specification

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
<jms:address destinationStyle="queue"

</port>
</service>

jndiProviderURL="tcp://localhost:2506"
initialContextFactory="com.iona.jbus.jms.naming"
jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
jndiDestinationName="sonic:jms/queue/helloWorldQueue"
messageType="text" />

The URLContextFactory then uses the URL specified in the
jndiConnectionFactoryName and the jndibDestinationFactoryName
attributes to obtain references to the desired JMS connectionFactory and
the desired JMS pestination. The JNDI service is completely bypassed
using this method and allows you to connect to JMS implementations that
do not use JNDI or to connect to JMS pestination that are not registered
with the JNDI service.

So instead of looking up the JMS connectionFactory using the JNDI name
bound to it, Artix will get a reference directly to connectionFactory using
the name given to it when it was created. Using the contract in Example 77,
Artix would use the URL sonic:jms/queue/helloWorldQueue to get a
reference to the desired queue. Artix would be handed a reference to a
queue named helloWorldoueue if the JMS broker has such a queue.

Note: Due to a known bug in the SonicMQ JNDI service, it is
recommended that you use this method of specifying the
InitialContextFactory When using SonicMQ.

331

CHAPTER 14 | Adding Transports

Adding a TIBCO Service

Overview The TIBCO Rendezvous transport lets you use Artix to integrate systems
based on TIBCO Rendezvous (TIB/RV) software.

Note: TIBCO Rendezvous integration is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether your
installation supports TIBCO Rendezvous integration.

Supported Features Table 9 shows the matrix of TIBCO Rendezvous features Artix supports.

Table 9: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks X

Certified Message Delivery X

Fault Tolerance (TibrvFtMember/Monitor) X
Virtual Connections (TibrvvcTransport) X
Secure Daemon (rvsd/TibrvSDContext) X
TIBRVMSG TPADDR32 X
TIBRVMSG TPPORT16 X

Namespace To use the TIB/RV transport, you need to describe the port using TIB/RV in

the physical part of an Artix contract. The extensions used to describe a
TIB/RV port are defined in the namespace:

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

This namespace will need to be included in your Artix contract’s
<definition> element.

332

Adding a TIBCO Service

Describing the port As with other transports, the TIB/RV transport description is contained
within a <port> element. Artix uses <tibrv:port> to describe the attributes
of a TIB/RV port. The only required attribute for a <tibrv:port> is
serverSubject Which specifies the subject to which the server listens.

Example Example 78 shows an Artix description for a TIB/RV port.

Example 78: TIB/RV Port Description

<service name="BaseService">
<port binding="tns:BasePortBinding" name="BasePort">
<tibrv:port serverSubject="Artix.BaseService.BasePort"
/>
</port>
</service>

More information For a complete listing of the attribute used in configuring a TIB/RV service
see “Tibco Transport Extensions” on page 521.

333

CHAPTER 14 | Adding Transports

Creating a Tuxedo Service

Overview

Tuxedo namespaces

Defining the Tuxedo services

Mapping operations to a Tuxedo
service

334

Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the following namespace:

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

This namespace will need to be included in your Artix contract’s
<definition> element.

As with other transports, the Tuxedo transport description is contained
within a <port> element. Artix uses <tuxedo:server> to describe the
attributes of a Tuxedo port. <tuxedo:server> has a child element,
<tuxedo:service>, that gives the bulletin board name of a Tuxedo port. The
bulletin board name for the service is specified in the element’s name
attribute. You can define more than one Tuxedo service to act as an
endpoint.

For each of the Tuxedo services that are endpoints, you must specify which
of the operations bound to the port being defined are handled by the Tuxedo
service. This is done using one or more <tuxedo:input> child elements.
<tuxedo: input> takes one required attribute, operation, that specifies the
WSDL operation that is handled by this Tuxedo service endpoint.

Creating a Tuxedo Service

Example An Artix contract exposing the personalinfoService, defined in
Example 32 on page 252, as a Tuxedo service would contain a <service>
element similar to Example 79 on page 336.

Example 79: Tuxedo Port Description

<service name="personalInfoService">
<port binding="tns:personalInfoBinding" name="tuxInfoPort">
<tuxedo:server>
<tuxedo:service name="personallnfoService">
<tuxedo:input operation="infoRequest" />
</tuxedo:service>
</tuxedo:server>
</port>
</service>

335

CHAPTER 14 | Adding Transports

336

In this chapter

CHAPTER 15

Creating Artix
Contracts from

Existl

ng

Appl

cations

Artix provides a number of command line tools to help you
create contracts from applications that you have already

developed.

This chapter discusses the following topics:

Creating Artix Contracts from CORBA IDL page 338
Creating Contracts from Java Classes page 345
Creating Contracts from COBOL Copybooks page 354

337

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Creating Artix Contracts from CORBA IDL

Overview

CORBA WSDL namespaces

Unsupported type handling

338

If you are starting from a CORBA server or client, Artix can build the logical
portion of the Artix contract from IDL. Contracts generated from IDL have
CORBA-specific entries and namespaces added.

The IDL to WSDL compiler also generates the binding information required
to format the operations specified in the IDL. However, since port
information is specific to the deployment environment, the port information
is left blank.

Contracts generated from IDL include two additional name spaces:

xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap"

Be aware that the IDL to WSDL compiler ignores any definitions that use
unsupported CORBA types. The IDL to WSDL compiler also ignores any
definition that uses a previously ignored definition. For example, assume you
have the following IDL definitions in file.id1:

interface A

{

struct S

{
A member;
}i

S get _op();
bi

The IDL to WSDL compiler does not generate any corresponding contract
information for the structure s because it contains a member that uses an
object reference. Similarly, the IDL to WSDL compiler does not generate any
contract information for the operation get_op () because it references
structure s.

Creating Artix Contracts from CORBA IDL

Using the command line IONA's IDL to WSDL compiler supports several command line flags that
specify how to create a WSDL file from an IDL file. The default behavior of
the tool is to create WSDL file that uses wrapped doc/literal style messages.
Wraped doc/literal style messages have a single part, defined using an
element, that wraps all of the elements in the message. See Example 81 on
page 341 for a sample.

The IDL to WSDL compiler is run using the following command:

idltowsdl [-useypes][-unwrap][-a address][-f filel[-o dir][-s typel [-r file] [-L file] [-P file]
[-w namespace] [-x namespace] [-t namespace] [-T file] [-n file] [-b] idlfile

The command has the following options:

—usetypes

-unwrap

-a address

-f file

-o dir

-s type

-r file

Generate rpc style messages. rpc style messages have
parts defined using XMLSchema types instead of XML
elements.

Generate unwrapped doc/literal messages. Unwrapped
messages have parts that represent individual elements.
Unlike wrapped messages, unwrapped messages can
have multiple parts and are not allowed by the WS-I.

Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

Specifies a file containing a string representation of an
object reference. The object reference is placed in the
<corba:address> element in the <port> definition of the
generated service. The £ile must exist when you run the
IDL compiler.

Specifies the directory into which the WSDL file is
written.

Specifies the XMLSchema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.

Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfaq.

339

CHAPTER 15 | Creating Artix Contracts from Existing Applications

340

-wW

file

file

namespace

namespace

namespace

file

file

Specifies that the logical portion of the generated WSDL
specification into is written to file. fileis then imported
into the default generated file.

Specifies that the physical portion of the generated WSDL
specification into is written to file. fileis then imported
into the default generated file.

Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/idl name.

Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/idl name.

Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/idl name.

Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the -n option.

Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This option
cannot be used with the -T option.

Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

To combine multiple flags in the same command, use a colon-delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbaname URL are interpreted as part of the
URL syntax and not as delimiters.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

Creating Artix Contracts from CORBA IDL

Example Imagine you needed to generate an Artix contract for a CORBA server that
exposes the interface shown in Example 80.

Example 80: personallnfoService Interface

interface personalInfoService

{

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
string name;
long age;
hairColorType hairColor;

bi

exception idNotFound
{

short id;
}i

personalInfo lookup(in long empId)
raises (idNotFound) ;

}i

To generate the contract, you run it through the IDL compiler using either
the GUI or the command line. The resulting contract is similar to that shown
in Example 81.

Example 81: personallnfoService Contract

<?xml version="1.0" encoding="UTF-8"72>
<definitions name="personalInfo.idl"
targetNamespace="http://schemas.iona.com/idl/personalInfo.idl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://schemas.iona.com/idl/personalInfo.idl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/idltypes/personalInfo.idl"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/personalInfo.idl"
xmlns:references="http://schemas.iona.com/references">
<types>
<schema targetNamespace="http://schemas.iona.com/idltypes/personalInfo.idl"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

341

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Example 81: personalinfoService Contract

<xsd:simpleType name="personalInfoService.hairColorType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="red"/>
<xsd:enumeration value="brunette"/>
<xsd:enumeration value="blonde"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="personallnfoService.personallnfo">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="age" type="xsd:int"/>
<xsd:element name="hairColor" type="xsdl:personalInfoService.hairColorType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="personalInfoService.idNotFound">
<xsd:sequence>
<xsd:element name="id" type="xsd:short"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="personalInfoService.lookup">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="empId" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="personalInfoService.lookupResult">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="return" type="xsdl:personallnfoService.personalInfo"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="personalInfoService.idNotFound"
type="xsdl:personalInfoService.idNotFound" />
</schema>
</types>
<message name="personalInfoService.lookup">
<part name="parameters" element="xsdl:personalInfoService.lookup"/>
</message>
<message name="personalInfoService.lookupResponse">
<part name="parameters" element="xsdl:personalInfoService.lookupResult"/>
</message>

342

Creating Artix Contracts from CORBA IDL

Example 81: personalinfoService Contract

<message name="personalInfoService.idNotFound">
<part name="exception" element="xsdl:personalInfoService.idNotFound"/>
</message>
<portType name="personalInfoService">
<operation name="lookup">
<input message="tns:personallnfoService.lookup" name="lookup"/>
<output message="tns:personalInfoService.lookupResponse" name="lookupResponse" />
<fault message="tns:personallnfoService.idNotFound" name="personalInfoService.idNotFound"/>
</operation>
</portType>
<binding name="personalInfoServiceBinding" type="tns:personalInfoService">
<corba:binding repositoryID="IDL:personalInfoService:1.0"/>
<operation name="lookup">
<corba:operation name="lookup">
<corba:param name="empId" mode="in" idltype="corba:long"/>
<corba:return name="return" idltype="corbatm:personalInfoService.personalInfo"/>
<corba:raises exception="corbatm:personalInfoService.idNotFound" />
</corba:operation>
<input/>
<output/>
<fault name="personallInfoService.idNotFound"/>
</operation>
</binding>
<service name="personalInfoServiceService">
<port name="personalInfoServicePort" binding="tns:personalInfoServiceBinding">
<corba:address location="..."/>
</port>
</service>
<corba:typeMapping targetNamespace="http://schemas.iona.com/typemap/corba/personalInfo.idl">
<corba:enum name="personalInfoService.hairColorType"
type="xsdl :personalInfoService.hairColorType"
repositoryID="IDL:personalInfoService/hairColorType:1.0">
<corba:enumerator value="red"/>
<corba:enumerator value="brunette"/>
<corba:enumerator value="blonde"/>
</corba:enum>
<corba:struct name="personalInfoService.personalInfo"
type="xsdl:personalInfoService.personalInfo"
repositoryID="IDL:personalInfoService/personalInfo:1.0">
<corba:member name="name" idltype="corba:string"/>
<corba:member name="age" idltype="corba:long"/>
<corba:member name="hairColor" idltype="corbatm:personalInfoService.hairColorType"/>
</corba:struct>

343

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Example 81: personalinfoService Contract

<corba:exception name="personalInfoService.idNotFound"
type="xsdl:personalInfoService.idNotFound"
repositoryID="IDL:personalInfoService/idNotFound:1.0">
<corba:member name="id" idltype="corba:short"/>
</corba:exception>
</corba:typeMapping>
</definitions>

344

Creating Contracts from Java Classes

Creating Contracts from Java Classes

Overview

javatowsdl tool

Many applications have been developed using Java to take advantage of
Java’s platform independence among other things. Java’'s platform
independence is a perfect complement to Artix’s transport independence. To
facilitate the integration of Java applications with Artix, Artix provides tools
for generating the logical portion of an Artix contract from existing Java
classes. These tools use the mapping rules described in Sun’s JAX-RPC 1.1
specification.

Artix supplies a command line tool, javatowsdi, that generates the logical
portion of an Artix contract for existing Java class files. To generate the
logical portion of an Artix contract using the javatowsdl tool use the
following command:

javatowsdl [-t namespace] [-x namespacel [-1 porttype]
[-o file] [-useTypes] [-v] [-?] ClassName

The command has the following options:

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XMLSchema
information generated to represent the data types inside
the WSDL document. By default, the generated target
namespace of the XMLSchema will be
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated <portType> in the
WSDL document. By default, the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

345

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Supported types

346

-useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold method

parameters.

-v Prints out the version of the tool.

-2 Prints out a help message explaining the command line
flags.

The generated WSDL will not contain any physical details concerning the
payload formats or network transports that will be used when exposing the
service. You will need to add this information manually.

Note: When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.

Table 10 shows the Java types Artix can map to an Artix contract.

Table 10: Java to WSDL Mappings

Java Artix Contract
boolean xsd:boolean
byte xsd:byte
short xsd:short
int xsd:int
long xsd:long
float xsd:float
double xsd:double
bytel] xsd:baseb4binary
java.lang.String xsd:string
java.math.BigInteger xsd:integer
java.math.BigDecimal xsd:decimal

Exceptions

Creating Contracts from Java Classes

Table 10: Java to WSDL Mappings

Java Artix Contract
java.util.Calendar xsd:dateTime
java.util.Date xsd:dateTime
java.xml.namespace .QName xsd:QName
java.net.URI xsd:anyURT

In the case of helper classes for a Java primitive, such as
java.lang.Integer, the instance is mapped to an element with the nillable
attribute set to true and the type set to the corresponding Java primitive
type. Example 82 shows the mapping for a java.lang.Float.

Example 82: Mapping of java.lang.Float to XMLSchema

<element name="floatie" nillable="true" type="xsd:float" />

Artix will map user-defined exceptions to the logical Artix contract according
to the rules laid out in the JAX-RPC specification. The exception will be
mapped to a <fault> within the operation representing the corresponding
Java method. The generated <fau1t> will reference a generated <message>
describing the Java exception class. The name attribute of the <message>
will be taken from the name of the Java exception class.

Because SOAP only supports <fault> messages with a single <part>, the
generated <message> is mapped to have only one <part>. When the Java
exception only has one field, it is used as the <part> and its name and type
attributes are mapped from the exception’s field. When the Java exception
contains more than one field, Artix generates a <complexType> to describe
the exception’s data. The generated <complexType> will have one element
for each field of the exception. The name and type attributes of the generated
element will be taken from the corresponding field in the exception.

Note: Standard Java exceptions are not mapped into the generated Artix
contract.

347

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Example For example, if you had a Java interface similar to that shown in
Example 83, you could generate an Artix contract on it by compiling the
interface into a .class file and running the command javatowsdl Base.

Example 83: Base Java Class

//Java

public interface Base

{
public

public

public

public

public

public

byte[] echoBaseb64 (byte[] inputBase64);

boolean echoBoolean (boolean inputBoolean) ;

float echoFloat (float inputFloat);

float[] echoFloatArray(float[] inputFloatArray);
int echoInteger (int inputInteger);

int[] echoIntegerArray(int[] inputlIntegerArray);

The resulting Artix contract will be similar to Example 84.

Example 84: Base Artix Contract

<?xml version="1.0" encoding="UTF-8"7?>

<wsdl:definitions name="Base" targetNamespace="http://www.iona.com/Base"
xmlns:nsl="http://www.iona.com/Base" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://www.iona.com/Base/xsd">

<wsdl:types>

<schema targetNamespace="http://www.iona.com/Base/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema">

<element name="echoBoolean">
<complexType>
<sequence>

<element name="booleanParam0" type="xsd:boolean"/>

</sequence>
</complexType>
</element>

348

Creating Contracts from Java Classes

Example 84: Base Artix Contract

<element name="echoBooleanResponse">
<complexType>
<sequence>
<element name="return" type="xsd:boolean"/>
</sequence>
</complexType>
</element>
<element name="echoBase64">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="_ bParam0"
type="xsd:byte" />
</sequence>
</complexType>
</element>
<element name="echoBase64Response'">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="return"
type="xsd:byte"/>
</sequence>
</complexType>
</element>
<element name="echoHexBinary">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="_bParam0O"
type="xsd:byte"/>
</sequence>
</complexType>
</element>
<element name="echoHexBinaryResponse">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="return"
type="xsd:byte" />
</sequence>
</complexType>
</element>

349

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Example 84: Base Artix Contract

<element name="echoFloat">
<complexType>
<sequence>
<element name="floatParam0" type="xsd:float"/>
</sequence>
</complexType>
</element>
<element name="echoFloatResponse'>
<complexType>
<sequence>
<element name="return" type="xsd:float"/>
</sequence>
</complexType>
</element>
<element name="echoFloatArray">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="_fParam0"
type="xsd:float"/>
</sequence>
</complexType>
</element>
<element name="echoFloatArrayResponse">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="return"
type="xsd: float"/>
</sequence>
</complexType>
</element>
<element name="echolnteger">
<complexType>
<sequence>
<element name="intParam0" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="echolIntegerResponse">
<complexType>
<sequence>
<element name="return" type="xsd:int"/>
</sequence>
</complexType>
</element>

350

Creating Contracts from Java Classes

Example 84: Base Artix Contract

<element name="echolntegerArray">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="_ iParam0"
type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="echolntegerArrayResponse">
<complexType>
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="return"
type="xsd:int"/>
</sequence>
</complexType>
</element>
</wsdl:types>
<wsdl :message name="echoBoolean">
<wsdl:part element="xsdl:echoBoolean" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoBooleanResponse'">
<wsdl:part element="xsdl:echoBooleanResponse" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoBase64">
<wsdl:part element="xsdl:echoBase64" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoBase64Response'>
<wsdl:part element="xsdl:echoBase64Response" name="parameters"/>
</wsdl:message>

351

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Example 84: Base Artix Contract

<wsdl:message name="echoHexBinary">
<wsdl:part element="xsdl:echoHexBinary" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoHexBinaryResponse">
<wsdl:part element="xsdl:echoHexBinaryResponse" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoFloat">
<wsdl:part element="xsdl:echoFloat" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoFloatResponse">
<wsdl:part element="xsdl:echoFloatResponse" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoFloatArray">
<wsdl:part element="xsdl:echoFloatArray" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoFloatArrayResponse'>
<wsdl:part element="xsdl:echoFloatArrayResponse" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoInteger">
<wsdl:part element="xsdl:echoInteger" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoIntegerResponse'">
<wsdl:part element="xsdl:echoIntegerResponse" name="parameters"/>
</wsdl:message>
<wsdl:message name="echoIntegerArray">
<wsdl:part element="xsdl:echoIntegerArray" name="parameters"/>
</wsdl :message>
<wsdl:message name="echoIntegerArrayResponse">
<wsdl:part element="xsdl:echoIntegerArrayResponse" name="parameters"/>
</wsdl :message>
<wsdl:portType name="Base'">
<wsdl:operation name="echoBoolean">
<wsdl:input message="nsl:echoBoolean" name="echoBoolean"/>
<wsdl:output message="nsl:echoBooleanResponse" name="echoBoolean"/>
</wsdl:operation>
<wsdl:operation name="echoBase6t4">
<wsdl:input message="nsl:echoBase64" name="echoBase64"/>
<wsdl:output message="nsl:echoBase64Response" name="echoBase6t4"/>
</wsdl:operation>

352

Creating Contracts from Java Classes

Example 84: Base Artix Contract

<wsdl:operation name="echoHexBinary">
<wsdl:input message="nsl:echoHexBinary" name="echoHexBinary"/>
<wsdl:output message="nsl:echoHexBinaryResponse" name="echoHexBinary"/>
</wsdl:operation>
<wsdl:operation name="echoFloat'">
<wsdl:input message="nsl:echoFloat" name="echoFloat"/>
<wsdl:output message="nsl:echoFloatResponse" name="echoFloat"/>
</wsdl:operation>
<wsdl:operation name="echoFloatArray">
<wsdl:input message="nsl:echoFloatArray" name="echoFloatArray"/>
<wsdl:output message="nsl:echoFloatArrayResponse" name="echoFloatArray"/>
</wsdl:operation>
<wsdl:operation name="echoInteger">
<wsdl:input message="nsl:echoInteger" name="echoInteger"/>
<wsdl:output message="nsl:echoIntegerResponse" name="echoInteger"/>
</wsdl:operation>
<wsdl:operation name="echoIntegerArray">
<wsdl:input message="nsl:echolntegerArray" name="echoIntegerArray"/>
<wsdl:output message='"nsl:echoIntegerArrayResponse" name="echolntegerArray"/>
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

353

CHAPTER 15 | Creating Artix Contracts from Existing Applications

Creating Contracts from COBOL Copybooks

Overview

Using the tool

354

To facilitate the mapping of COBOL operations to Artix contracts, Artix
provides a command line tool, coboltowsdl, that will import COBOL
copybook data and generate an Artix contract containing a fixed binding to
define the COBOL interface for Artix applications.

To generate an Artix contract from COBOL copybook data use the following

command:

coboltowsdl -b binding -op operation -im [inmessage:]incopybook
[-om [outmessage:] outcopybook]
[-fm [faultmessage:] faultbook]
[-1 portTypel [-t target]
[-x schema name] [-useTypes] [-o0 file]

The command has the following options:

-b binding

-op operation

-im
[inmessage:] incopybook

-om
[outmessage:] outcopybook

Specifies the name for the generated binding.

Specifies the name for the generated
operation.

Specifies the name of the input message and
the copybook file from which the data
defining the message is taken. The input
message name, inmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

Specifies the name of the output message
and the copybook file from which the data
defining the message is taken. The output
message name, outmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.

—-fm
[faultmessage:] faultbook

-i portType

-t target

-x schema name

-useTypes

-o file

Creating Contracts from COBOL Copybooks

Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, faultmessage, iS optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortType.a

Specifies the target namespace for the
generated WSDL. Defaults to

http://www.iona.com/binding.

Specifies the namespace for the schema in
the generated WSDL. Defaults to
http://www.iona.com/binding/types.
Specifies that the generated WSDL will use
<types>. Default is to generate <element> for
schema types.

Specifies the name of the generated WSDL
file. Defaults to binding.wsdl.

a. If bindingends in Binding or binding, it is stripped off before being used

in any of the default names.

Once the new contract is generated, you will still need to add the port
information before you can use the contract to develop an Artix solution.

355

CHAPTER 15 | Creating Artix Contracts from Existing Applications

356

CHAPTER 16

Adding Routing
Instructions

Artix provides messages routing based on operations, ports, or
message attributes.

In this chapter This chapter discusses the following topics:
Artix Routing page 358
Compatibility of Ports and Operations page 359
Defining Routes in Artix Contracts page 362
Error Handling page 374
Service Lifecycles page 375
Routing References to Transient Servants page 377

357

CHAPTER 16 | Adding Routing Instructions

Artix Routing

Overview

Port-based

Operation-based

358

Artix routing is implemented within Artix service access points and is
controlled by rules specified in the SAP’s contract. Artix SAPs that include
routing rules can be deployed either in standalone mode or embedded into
an Artix service.

Artix supports the following types of routing:
¢ Port-based

® Operation-based

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based routing acts on the port or transport-level identifier, specified by
a <port> element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <portType>, level or the finer grained operation
level.

Compatibility of Ports and Operations

Compatibility of Ports and Operations

Overview

Port-based routing

Artix can route messages between services that expect similar messages.
The services can use different message transports and different payload
formats, but the messages must be logically identical. For example, if you
have a baseball scoring service that transmits data using SOAP over HTTP,
Artix can route the score data to a reporting service that consumes data
using CORBA. The only requirement for operation-based routing is that the
two services have an operation that uses messages with the same logical
description in the Artix contract defining their integration. For port-based
routing, the destination service must have a matching operation defined for
each of the operations defined for the source service.

Port-based routing is rough grained in that the routing rules are defined on
the <port> elements of an Artix contract and do not look at the individual
operations defined in the logical interface, or <portType>, to which the port
is bound. Therefore, port-based routing requires that the services between
which messages are being routed must have compatible logical interface
descriptions.

For two ports to have compatible logical interfaces the following conditions

must be met:

® The destination’s logical interface must contain a matching operation
for each operation in the source’s logical interface. Matching
operations must have the same name.

® Each of the matching operations must have the same number of input,
output, and fault messages.

® Each of the matching operations’ messages must have the same
sequence of port types.

For example, given the two logical interfaces defined in Example 85 you
could construct a route from a port bound to baseballScorePortType t0 a
port bound to baseballGamePortType. However, you could not create a

359

CHAPTER 16 | Adding Routing Instructions

route from a port bound to finalScorePortType to a port bound to
baseballGamePortType because the message types used for the getScore
operation do not match.

Example 85: Logical interface compatibility example

<message name="scoreRequest>
<part name="gameNumber" type="xsd:int" />
</message>
<message name="baseballScore">
<part name="homeTeam" type="xsd:int" />
<part name="awayTeam" type="xsd:int" />
<part name="final" type="xsd:boolean" />
</message>
<message name="finalScore">
<part name="home" type="xsd:int" />
<part name="away" type="xsd:int" />
<part name="winningTeam" type="xsd:string" />
</message>
<message name="winner">
<part name="winningTeam" type="xsd:string" />
</message>
<portType name="baseballGamePortType">
<operation name="getScore">
<input message="tns:scoreRequest" name="scoreRequest"/>
<output message="tns:basballScore" name="baseballScore"/>
</operation>
<operation name="getWinner">
<input message="tns:scoreRequest" name="winnerRequest"/>
<output message="tns:winner" name="winner"/>
</operation>
</portType>
<portType name="baseballScorePortType">
<operation name="getScore">
<input message="tns:scoreRequest" name="scoreRequest"/>
<output message="tns:basballScore" name="baseballScore"/>
</operation>
</portType>
<portType name="finalScorePortType">
<operation name="getScore">
<input message="tns:scoreRequest" name="scoreRequest"/>
<output message="tns:finalScore" name="finalScore"/>
</operation>
</portType>

360

Operation-based routing

Compatibility of Ports and Operations

Operation-based routing provides a finer grained level of control over how
messages can be routed. Operation-based routing rules check for
compatibility on the <operation> level of the logical interface description.
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

® The operations must have the same number of input, output, and fault
messages.
® The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 86 to the
interfaces in Example 85 on page 360, you could specify a route from
getFinalScore defined in fullScorePortType 10 getScore defined in
finalScorePortType. You could also define a route from getscore defined
in fullScorePortType 10 getScore defined in baseballScorePortType.

Example 86: Operation-based routing interface

<portType name="fullScorePortType">
<operation name="getScore">
<input message="tns:scoreRequest" name="scoreRequest"/>
<output message="tns:basballScore" name="baseballScore"/>
</operation>
<operation name="getFinalScore">
<input message="tns:scoreRequest" name="scoreRequest"/>
<output message="tns:finalScore" name="finalScore"/>
</operation>
</portType>

361

CHAPTER 16 | Adding Routing Instructions

Defining Routes in Artix Contracts

Overview

In this section

362

Artix port-based and operation-based routing are fully implemented in the
contract defining the integration of your systems. Routes are defined using
WSDL extensions that are defined in the namespace
http://schemas.iona.com/routing. The most commonly used of these
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

This section discusses the following topics:

Using Port-Based Routing page 363
Using Operation-Based Routing page 366
Advanced Routing Features page 369

Defining Routes in Artix Contracts

Using Port-Based Routing

Overview

Describing routes in an Artix
contract

Port-based routing is the highest performance type of routing Artix performs.
It is also the easiest to implement. All of the rules are specified in the Artix
contract describing how your systems are integrated. The routes specify the
source port for the messages and the destination port to which messages
are routed.

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing routes in
an Artix contract you must add the following to your contract’s definition
element:

<definition ...
xmlns:routing="http://schemas.iona.com/routing"
L

To describe a port-based route you use three elements:

<routing:route>

<routing:route> is the root element of each route you describe in your
contract. It takes on required attribute, name, that specifies a unique
identifier for the route. route also has an optional attribute, multiRroute,
which is discussed in “Advanced Routing Features” on page 369.

<routing:source>

<routing:source> specifies the port from which the route will redirect
messages. A route can have several source elements as long as they all
meet the compatibility rules for port-based routing discussed in “Port-based
routing” on page 359.

<routing:source> requires two attributes, service and port. service
specifies the service element in which the source port is defined. port
specifies the name of the port element from which messages are being
received.

363

CHAPTER 16 | Adding Routing Instructions

<routing:destination>

<routing:destination> specifies the port to which the source messages
are directed. The destination must be compatible with all of the source
elements. For a discussion of the compatibility rules for port-based routing
see “Port-based routing” on page 359.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the route element’s muliRoute
attribute that is discussed in “Advanced Routing Features” on page 369.

<routing:destination> requires two attributes, service and port. service
specifies the service element in which the destination port is defined. port
specifies the name of the port element to which messages are being sent.

Example For example, to define a route from baseballScorePortType t0
baseballGamePortType, defined in Example 85 on page 360, your Artix
contract would contain the elements in Example 87.

Example 87: Port-based routing example

1 <service name="baseballScoreService">
<port binding="tns:baseballScoreBinding"
name="baseballScorePort">
<soap:address location="http://localhost:8991"/>
</port>
</service>
<service name="baseballGameService">
<port binding="tns:baseballGameBinding"
name="baseballGamePort">
<corba:address location="file://baseball.ref"/>
</port>
</service>
2 <routing:route name="baseballRoute">
<routing:source service="tns:baseballScoreService"
port="tns:baseballScorePort" />
<routing:destination service="tns:baseballGameService"
port="tns:baseballGamePort" />
</routing:route>

364

Defining Routes in Artix Contracts

There are two sections to the contract fragment shown in Example 87:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and
port attributes.

365

CHAPTER 16 | Adding Routing Instructions

Using Operation-Based Routing

Overview

Describing routes in an Artix
contract

How operation-based rules are
applied

366

Operation-based routing is a refinement of port-based routing. With
operation-based routing you can specify specific operations within a logical
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by
adding routing rules to Artix contracts.

The contract elements for defining operation-based routes are defined in the
same namespace as the elements for port-based routing and you will need

to include in your contract’s namespace declarations to use operation based
routing.

To specify an operation-based route you need to specify one additional
element in your route description: <routing:operation>.
<routing:operation> specifies an operation defined in the source port's
logical interface and an optional target operation in the destination port's
logical interface. You can specify any number of operation elements in a
route. The operation elements must be specified after all of the source
elements and before any destination elements.

operation takes one required attribute, name, that specifies the name of the
operation in the source port’s logical interface that is to be used in the route.

operation also has an optional attribute, target, that specifies the name
operation in the destination port’s logical interface to which the message is
to be sent. If a target is specified, messages are routed between the two
operations. If no target is specified, the source operation’s name is used as
the name of the target operation. The source and target operations must
meet the compatibility requirements discussed in “Operation-based routing”
on page 361.

Operation-based routing rules apply to all of the source elements listed in

the route. Therefore, if an operation-based routing rule is specified, a

message will be routed if all of the following are true:

® The message is received from one of the ports specified in a source
element.

Defining Routes in Artix Contracts

® The operation name associated with the received message is specified
in one of the <operation> elements.

If there are multiple operation-based rules in the route, the message will be

routed to the destination specified in the matching operation’s target

attribute.

Example For example to route messages from getFinalScore defined in
fullScorePortType, Shown in Example 86 on page 361, to getScore
defined in finalScorePortType, shown in Example 85 on page 360, your
Artix contract would contain the elements in Example 88.

Example 88: Operation to Operation Routing

1 <service name="fullScoreService">
<port binding="tns:fullScoreBinding"
name="fullScorePort">
<corba:address="file://score.ref" />
</port>
</service>
<service name="finalScoreSerice">
<port binding="tns:finalScoreBinding"
name="finalScorePort">
<tuxedo:address serviceName="finalScoreServer" />
</port>
</service>
2 <routing:route name="scoreRoute">
<routing:source service="tns:fullScoreService"
port="tns:fullScorePort"/>
<routing:operation name="getFinalScore" target="getScore"/>
<routing:destination service="tns:finalScoreService"
port="tns:finalScorePort"/>
</routing:route>

There are two sections to the contract fragment shown in Example 88:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, scoreRoute, is defined using the <route:operation>
element.

367

CHAPTER 16 | Adding Routing Instructions

You could also create a route between getScore in baseballGamePortType
to a port bound to baseballScorePortType; see Example 85 on

page 360.The resulting contract would include the fragment shown in
Example 89.

Example 89: Operation to Port Routing Example

<service name="baseballGameService">
<port binding="tns:baseballGameBinding"
name="baseballGamePort">
<soap:address location="http://localhost:8991"/>
</port>
</service>
<service name="baseballScoreService">
<port binding="tns:baseballScoreBinding"
name="baseballScorePort">
<iiop:address location="file:\\score.ref"/>
</port>
</service>
<routing:route name="scoreRoute">
<routing:source service="tns:baseballGameService"
port="tns:baseballGamePort" />
<routing:operation name="getScore"/>
<routing:destination service="tns:baseballScoreService"

port="tns:baseballScorePort"/>
</routing:route>

Note that the <routing:operation> element only uses the name attribute.
In this case the logical interface bound to baseballScorePort,
baseballScorePortType, Must contain an operation getscore that has
matching messages as discussed in “Port-based routing” on page 359.

368

Defining Routes in Artix Contracts

Advanced Routing Features

Overview

Message broadcasting

Artix routing also supports the following advanced routing capabilities:

® Broadcasting a message to a number of destinations.

® Specifying a failover service to route messages to provide a level of
high-availability.

® Routing messages based on transport attributes in the received
message’s header.

Broadcasting a message with Artix is controlled by the routing rules in an
Artix contract. Setting the multiroute attribute to the <routing:route>
element to fanout in your route definition allows you to specify multiple
destinations in your route definition to which the source messages are
broadcast.

There are three restrictions to using the fanout method of message

broadcasting:

® All of the sources and destinations must be oneways. In other words,
they cannot have any output messages.

® The sources and destinations cannot have any fault messages.

® The input messages of the sources and destinations must meet the
compatibility requirements as described in “Compatibility of Ports and
Operations” on page 359.

Example 90 shows an Artix contract fragment describing a route for
broadcasting a message to a number of ports.

Example 90: Fanout Broadcasting

<message name="statusAlert">
<part name="alertType" type="xsd:int"/>
<part name="alertText" type="xsd:string"/>
</message>
<portType name="statusGenerator">
<operation name="eventHappens">
<input message="tns:statusAlert" name="statusAlert"/>
</operation>
</portType>

369

CHAPTER 16 | Adding Routing Instructions

Example 90: Fanout Broadcasting

<portType name="statusChecker">
<operation name="eventChecker">
<input message="tns:statusAlert" name="statusAlert"/>
</operation>
</portType>
<service name="statusGeneratorService">
<port binding="tns:statusGeneratorBinding"
name="statusGeneratorbPort">
<soap:address location="http:\\localhost:8081"/>
</port>
</service>
<service name="statusCheckerService">
<port binding="tns:statusCheckerBinding"
name="statusCheckerbPortl">
<corba:address location="file:\\statusl.ref"/>
</port>
<port binding="tns:statusCheckerBinding"
name="statusCheckerPort2">
<tuxedo:address serviceName="statusService"/>
</port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
<routing:source service="tns:statusGeneratorService"
port="tns:statusGeneratorPort"/>
<routing:operation name="eventHappens" target="eventChecker"/>
<routing:destination service="tns:statusCheckerService"
port="tns:statusCheckerPortl"/>
<routing:destination service="tns:statusCheckerService"
port="tns:statusCheckerPort2"/>
</routing:route>

Failover routing Artix failover routing is also specified using the <routing:route>'s
multiRoute attribute. To define a failover route you set multiRoute to equal
failover. When you designate a route as failover, the routed message’s
target is selected in the order that the destinations are listed in the route. If
the first target in the list is unable to receive the message, it is routed to the
second target. The route will traverse the destination list until either one of
the target services can receive the message or the end of the list is reached.

370

Routing based on transport
attributes

Defining Routes in Artix Contracts

Given the route shown in Example 91, the message will first be routed to
destinationPortA. If service on destinationPorta cannot receive the
message, it is routed t0 destinationPortB.

Example 91: Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
<routing:source service="tns:sourceService"
port="tns:sourcePort"/>
<routing:destination service="tns:destinationServiceA"
port="tns:destinationPortA"/>
<routing:destination service="tns:destinationServiceB"
port="tns:destinationPortB"/>
</routing:route>

Artix allows you to specify routing rules based on the transport attributes set
in a message’s header when using HTTP or WebSphere MQ. Rules based on
message header transport attributes are defined in
<routing:transportAttribute> elements in the route definition. Transport
attribute rules are defined after all of the operation-based routing rules and
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule
are specified in sub-elements to the <routing:tranportattribute>. A
message passes the rule if it meets each criterion specified in the listed
sub-element.

Each sub-element has a contextName attribute to specify the context in
which the attribute is defined and contextattributeName attribute to
specify the name of the attribute to be evaluated. The contextName attribute
is specified using the QName of the context in which the attribute is defined.
The two contexts shipped with Artix are described in Table 11.The
contextAttributeName iS also a QName and is relative to the context
specified. For example, UserName is a valid attribute name for any of the
HTTP contexts, but not for the MQ contexts.

Table 11: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts | Contains the attributes for
HTTP messages being
received by a server.

371

CHAPTER 16 | Adding Routing Instructions

Table 11: Context QNames

Context QName Details

http-conf:HTTPServerOutgoingContexts Contains the attributes for
HTTP messages being sent
by a server.

http-conf:HTTPClientIncomingContexts Contains the attributes for
HTTP messages being
received by a client.

http-conf:HTTPClientOutgoingContexts | Contains the attributes for
HTTP messages being sent
by a client.

mg:MQConnectionAttributes Contains the attributes
defining a connection to
WebSphere MQ.

mg:MQIncomingMessageAttributes Contains the attributes of
WebSphere MQ messages
being received by an Artix
server.

mq:MQOutoingMessageAttributes Contains the attributes of
WebSphere MQ messages
being sent by an Artix sent.

Most sub-elements have a value attribute that can be tested. Attributes
dealing with string comparisons have an optional ignorecase attribute that
can have the values yes or no (no is the default). Each of the sub-elements
can occur zero or more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

<routing:greater> applies only to numeric attributes and tests whether the
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the
attribute is less than the value.

372

Defining Routes in Artix Contracts

<routing:startswith> applies to string attributes and tests whether the
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. contains accepts an optional ignorecase attribute
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if
the list is not empty. For strings, it passes if the string is not empty.

For information on the transport attributes for HTTP see “Configuring HTTP
Transport Attributes” on page 303. For information on the transport
attributes for WebSphere MQ see “WebSphere MQ Artix Extensions” on
page 485.

Example 92 shows a route using transport attribute rules based on HTTP
header attributes. Only messages sent to the server whose UserName is equal
to Johng will be passed through to the destination port.

Example 92: Transport Attribute Rules

<routing:route name="httpTransportRoute">
<routing:source service="tns:httpService"
port="tns:httpPort"/>
<routing:trasnportAttributes>
<rotuing:equals
contextName="http-conf:HTTPServerIncomingContexts"
contextAttributeName="UserName"
value="JohnQ"/>
</routing:transportAttributes>
<routing:destination service="tns:httpDest"
port="tns:httpDestPort" />
</routing:route>

373

CHAPTER 16 | Adding Routing Instructions

Error Handling

Initialization errors

Runtime errors

374

Errors that can be detected during initialization while parsing the WSDL,
such as routing between incompatible logical interfaces and some kinds of
route ambiguity, are logged and an exception is raised. This exception aborts
the initialization and shuts down the server.

Errors that are detected at runtime are reported as exceptions and returned
to the client; for example “no route” or “ambiguous routes”.

Service Lifecycles

Service Lifecycles

Overview

Configuring service lifecycle

When the Artix router uses dynamic proxy services, you can configure
garbage collection of old proxies. Dynamic proxies are used when the router
bridges services that have patterns such as callback, factory, or any
interaction that passes references to other services. When the router
encounters a reference in a message, it proxifies the reference into one that
a receiving application can use. For example, an IOR from a CORBA server
cannot be used by a SOAP client, so the router dynamically creates a new
route for the SOAP client.

However, dynamic proxies persist in the router memory and can have a
negative effect on performance. To overcome this, Artix provides service
lifecycle garbage collection, which cleans up old proxy services that are no
longer used. This garbage collection service cleans up unused proxies when
a threshold has been reached on a least recently used basis.

To configure service garbage collection for the Artix router, perform the
following steps:

1. Add the service lifecycle plug-in to the orb plugins list:

orb plugins = ["xmlfile log stream", "service lifecycle",
"routing"];

2. Configure the service lifecycle cache size:

plugins:service lifecycle:max cache size = "30";

375

CHAPTER 16 | Adding Routing Instructions

Writing client applications

376

When writing client applications, you must also make allowances for the

garbage collection service; in particular, ensure that exceptions are handled

appropriately.

For example, a client may attempt to proxify to a service that has already

been garbage collected. To prevent this, do either of the following:

® Handle the exception, get a new reference, and continue. However, in
some cases, this may not be possible if the service has state.

® Setmax cache size to areasonable limit to ensure that all your clients
can be accommodated. For example, if you always expect to support
20 concurrent clients, each with a transient service session, you might
wish to configure the max_cache size to 30.

You do not want to impact any clients, and must ensure that a service is no
longer needed when it is garbage collected. However, if you set
max_cache_size t0o high, this may use up too much router memory and
have a negative impact on performance. For example, a suggested range for
this setting is 30-100.

Routing References to Transient Servants

Routing References to Transient Servants

Overview

Compatibility of services

Applications create transient servants by cloning a service defined in your
contract. The cloned service uses the same interface, binding, and transport
as the service defined in the contract. However, it has a unique QName and
a unique address. So, when a transient servant’s service definition only
exists in the memory of the application that created it and possesses no link
back to the service from which it was cloned.

Because a transient servant does not have a service definition in the
physical contract and no link to one, the router, when it receives a reference
to a transient servant, has no concrete information about how to create a
proxy for the referenced servant. The router must make a best guess about
which service in its contract to use as the template for the proxy to the
transient servant. To do this, the router chooses the first compatible service
definition in its contract.

A service is considered compatible with a transient servant if it uses the
same interface, binding, and transport as the transient servant. For example,
if transient servant was created using the templatevendor service defined in
Example 93 it would be compatible with 110Pvendor. However, it would not
be compatible with soapvendor because soapvendor uses a different
transport than template. Also, if 110Pvendor was defined using different
transport properties, such as having a defined POA name, transient servants
created from templatevendor would not be compatible.

Example 93: Contract with a Service Template
<definitions ...>

<message name="mangoRequest">

<part name="num" type="xsd:int" />
</message>
<message name="mangoPrice">

<part name="cost" type="xsd:float" />
</message>

377

CHAPTER 16 | Adding Routing Instructions

Example 93: Contract with a Service Template

<portType name="fruitVendor">
<operation name="sellMangos">
<input name="num" message="tns:mangoRequest" />
<output name="price" message="tns:mangoPrice" />
</operation>
</portType>
<binding name="fruitVendorBinding" type="tns:fruitVendor">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sellMangos'">
<soap:operation soapAction="" style="rpc"/>
<input name="num">
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://fruitVendor.com" use="encoded" />
</input>
<output name="cost">
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://fruitVendor.com" use="encoded"/>
</output>
</operation>
</binding>
<service name="templateVendor">
<port binding="tns:fruitVendorBinding"
name="transientVendor">
<iiop:address location="ior:" />
</port>
</service>
<service name="SOAPVendor">
<port binding="tns:fruitVendorBinding"
name="SOAPVendorPort'">
<soap:address location="lcoalhost:5150" />
</port>
</service>
<service name="IIOPVendor">
<port binding="tns:fruitVendorBinding"
name="IIOPVendorPort'">
<iiop:address location="file:///objref.ior" />
</port>
</service>
</definitions>

378

Contract design issues

Routing References to Transient Servants

The router's means of selecting a compatible service to create proxies for
transient servants can result in odd behavior if you use the same interface to
create both static servants and transient servants. When passing references
to these services through the router, the potential exists for the router to
select the static service to create proxies for the transient servants. WHen
this happens, the router will silently redirect all of the messages to the
servant defined by the static service definition.

To avoid this situation be sure to place the service templates used to create
transient servants before the service definitions that will be used to create
static servants. This will ensure that the router will find the service
templates first when it proxifies a reference to a transient servant.

379

CHAPTER 16 | Adding Routing Instructions

380

In this chapter

CHAPTER 17

Using the Artix
Transformer to

Solve Problems in
Artix

The Artix Transformer allows you to perform message
transformations, data validation, and interface versioning
without having to write additional code.

This chapter discusses the following topics:

Using the Artix Transformer as an Artix Server page 382
Using Artix to Facilitate Interface Versioning page 384
WSDL Messages and the Transformer page 389
Writing XSLT Scripts page 392

381

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Using the Artix Transformer as an Artix Server

Overview Using the Artix transformer, you can create a Web service that does simple
tasks such as converting dates into the proper format or generating HTML
output without writing any code. You can also develop services to validate
the format of requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer which uses an
XSLT script to determine how to process the data.

Procedure To use the Artix transformer as an Artix server you do the following:

1. Define the data, interface, binding, and transport details for the server
in an Artix contract.

2. Write the XSLT script that defines the data processing you want the
transformer to perform.

3. Configure the server with the transformer’s configuration details.

Defining the server The contract for a service that is implemented by the Artix Transformer is
the same as the Artix contract for any other service in Artix. You need to
define the complex types, if any, that the service uses. Then you need to
define the messages used by the service to receive and respond to requests.

Once the data types and messages are defined, you then define the service’s
interface. The only limitation for a service that is implemented by the Artix
Transformer is that it cannot have any fault messages. The interface can
define multiple operations. Each operation will be processed using different
XSLT scripts.

After defining the logical details of the service, you need to define the
binding and network details for the service. The transformer can use any of
the bindings and transports supported by Artix. For information on adding a
binding for the transformer read “Binding Interfaces to a Payload Format” on
page 227. For information on adding network details for the transformer
read “Adding Transports” on page 297.

382

Writing the scripts

Configure the transformer

Using the Artix Transformer as an Artix Server

The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read “Writing
XSLT Scripts” on page 392.

The Artix Transformer is an Artix plug-in and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. There are two common deployment patterns for
deploying the Artix Transformer as an Artix server. The first is to configure
the transformer to load in its own process using the Artix Standalone
Service. The second is to configure the transformer to load directly into the
client process which is making requests against it.

For a detailed discussion of how to configure and deploy the Artix
Transformer see Deploying and Managing Artix Solutions.

383

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Using Artix to Facilitate Interface Versioning

Overview

Procedure

384

One of the most common and difficult problems faced in large scale client
server deployments is upgrading systems. For example, if you change the
interface for your server to add new functionality or streamline
communications, you then need to change all of the clients that access the
server. This can mean upgrading thousands of clients that may be scattered
across the globe.

The Artix Transformer provides a solution to this problem that allows you to
slowly upgrade the clients without disrupting their ability to function. Using
the transformer you can develop an XSLT script that converts messages
between the different interfaces. Then you can place the transformer
between the old clients and the new server. This solution eliminates the
need for operating two versions of the same server, or trying to do a massive
client and server upgrade. It also does this without requiring you to do any
custom programing.

To use the Artix Transformer for interface versioning do the following:

1. Create a composite Artix contract defining both versions of the
interfaces that need to be supported.

2. Define an interface for the transformer that defines operations for
mapping the interfaces.

3. Add a SOAP binding to the contract for the transformer’s interface.

Add an HTTP port to the contract to define how the transformer can be
contacted.

Write the XSLT scripts that define the message transformations.
Configure the transformer.

Configure the Artix Chain Builder to create a chain containing the
transformer and the server on which clients will make requests.

Creating a composite contract

Using Artix to Facilitate Interface Versioning

While the server and the client applications can be run without knowledge
of the other’s interface, the transformer responsible for translating the
messages between to the two interface versions must know about all of the
interface versions used. This includes all data type definitions and message
definitions used by both versions of the interface.

You can create this composite contract in several ways. The most
straightforward way is to create a new contract which imports both the new
interface’s contract and the old interface’s contract. To import the contracts
you place an <import> element for each contract just after the
<definitions> element in the new contract and before any other elements
in the new contract. The <import> element has two attributes. 1ocation
specifies the relative pathname of the file containing the contract that is
being imported. namespace defines the XML namespace under which the
imported contract can be referenced.

For example, if you were creating a composite contract for interface
versioning you would have two contracts; one for the server with the
updated interface and one for the client using the legacy interface. The file
name for the server's contract is r2e2.wsd1 and the contract for the client is
r2el.wsdl. For simplicity, they are located in the same directory as the
composite contract. The composite contract importing both versions of the
interface is shown in Example 94.

Example 94: Composite WSDL

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="transformer"
targetNamespace="http://www.widgets.com/transformer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:rl="http://www.widgets.com/r2e2Server"
xmlns:r2="http://www.widgets.com/r2elClient"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.widgets.com/transformer"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<import location="r2e2.wsdl"
namespace="http://www.widgets.com/r2e2Server/>
<import location="r2el.wsdl"
namespace="http://www.widgets.com/r2elClient" />
</definitions>

385

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Define the transformer’s interface

386

Note that in the <definitions> element of the contract, XML namespace
shortcuts are defined for the imported contracts namespace. This makes
using items defined in the imported contracts much easier.

Once you have imported all versions of the interface that you need to
support into the transformer’'s composite contract, you need to define the
transformer’s interface. The transformer must have one operation defined for
each transformation that is required to support all of the interface versions.
For example, if you only changed the structure of the request message in
when upgrading the server's interface, the transformer only needs one
operation because the transformation is only one way. If you changed both
the request and response messages, the transformer’s interface will need
two operations; one for the request message and one for the response.

The operation to transform a request from the client to the proper format for
the server takes the client’'s message as its <input> element and the server's
message as its <output> message. The operation to transform a response
from the server to the proper format for a client takes the server's outgoing
message as its <input> element and the client’s incoming message as its
<output> element.

Note: Fault messages are not supported.

When adding the operations, be sure to use the proper namespaces when
referencing the messages for the different versions of the interface. Using
the wrong namespaces could result in an invalid contract at the very least. If
the contract is valid, and the namespaces are incorrect, your system will
behave erratically.

For example, if the interface in Example 94 on page 385 was updated so

that both the client’s request and the server's response need to be
transformed the transformer’s interface would need two operations. In this

Defining the physical details for
the transformer

Writing the XSLT scripts

Using Artix to Facilitate Interface Versioning

example the name of the request message is widgetRequest and the name
of the response message is widgetResponse. The interface for the
transformer, versionTransform, is shown in Example 95.

Example 95: Versioning Interface

<portType name="versionTransform">
<operation name="requestTransform">
<input name="oldRequest" message="rl:widgetRequest" />
<output name="newRequest" message="r2:widgetRequest" />
</operaiton>
<operation name="responseTransform">
<input name="newResponse" message="r2:widgetResponse" />
<output name="oldReponse" message="rl:widgetResponse" />
</operation>
</portType>

In the operation transforming the request, requestTransform, the input
message is taken from the namespace r1 which is the namespace under
which the client’s contract is imported. The output message is taken from r2
which is the namespace under which the server's contract is imported. For
the response message transformation, responseTransform, the order is
reversed. The input message is from r2 and the output message is from r1.

After defining the operations used in transforming between the different
version of the interface, you need to define the binding and network details
for the transformer. The transformer can use any of the bindings and
transports supported by Artix. For information on adding a binding for the
transformer read “Binding Interfaces to a Payload Format” on page 227. For
information on adding network details for the transformer read “Adding
Transports” on page 297.

The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read “Writing
XSLT Scripts” on page 392.

387

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Configuring the transformer

Configuring a chain

388

The Artix Transformer is an Artix plugin and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. For a detailed discussion of how to configure and deploy
the Artix Transformer see Deploying and Managing Artix Solutions.

When using the transformer to do interface versioning, you need to deploy it
as part of a service chain. To build a service chain in Artix you deploy the
Artix Chain Builder. Like the transformer, the chain builder is an Artix plugin
and provides a number of deployment options. One way of deploying the
chain builder along with the transformer is to deploy it alongside of the
transformer in an instance of the Artix Standalone service.

For a detailed discussion of how to configure and deploy the Artix Chain
Builder see Deploying and Managing Artix Solutions.

WSDL Messages and the Transformer

WSDL Messages and the Transformer

Overview

The incoming message

Because the Artix Transformer works on messages that can originate from
any of the payload formats supported by Artix, the transformer changes the
messages into an XML document based on the Artix contract describing the
message before processing the data using the XSLT script. When the
transformer is finished processing, it then takes the resulting XML document
and changes it back into the appropriate payload format.

Because the transformer works on XML representations of the data relieves
you of the burden of understanding how the data on the wire is represented.
However, this fact also means that you must rely on the message
descriptions in the Artix contract to guide how you write your XSLT scripts.
In addition, it also requires that you are careful about producing valid
results.

The XML document that the transformer processes is created by reading the
message off the wire and using the Artix contract to reconstruct the XML
document that the data represents. The reconstruction is done by looking at
the <input> message from the appropriate <operation> in the <portType>
that defines the invoked service. For example, if you had a service defined
by the WSDL fragment in Example 96 and the transformer implemented the
operation configure the XML document would be constructed using the
<input>rﬂessageforconfigure,oldClientInput

Example 96: WSDL Fragment for Transformer

<message name="original">
<part name="vehicle" type="xsd:string" />
<part name="name" type="xsd:string" />
</message>
<message name="transformed">
<part name="vehicle" type="xsd:string" />
<part name="firstName" type="xsd:string" />
<part name="lastName" type="xsd:string" />
</message>

389

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Output message

390

Example 96: WSDL Fragment for Transformer

<portType name="parkingLotMeter">
<operation name="configure">
<input name="oldClientInput" message="original" />
<output name="updatedInput" message="transformed" />
</operation>

</portType>

When the message is reconstructed, the transformer uses the input message
name, given in the <input> element, as the name of the root element of the
XML document. It then uses the message definition and the schema types to
recreate the data as an XML message. So if the transformer was using the
contract defined in Example 96 on page 389 and received data where
vehicle equaled Prius and name equaled 01d MacDonald the input message
processed by the transformer will look like Example 97.

Example 97: Transformer Input Message

<oldClientInput>
<vehicle>
Prius
</vehicle>
<name>
0ld MacDonald
</name>
</oldClientInput>

The results from the transformer goes through the reverse of the process that
turns the input message into an XML document. The transformer attempts

to use the <output> message definition from the Artix contract to place the
result message back onto the wire in the proper payload format. If the result
message is not properly formed this attempt will fail, so you must be careful
when writing your XSLT script to ensure that the results match the expected
format.

When the result message is deconstructed, the transformer expects that the
root element of the result has the name of the output message, as defined in
the <output> element in the Artix contract. It then reads the message
definition and associated type definitions from the contract to ensure that

WSDL Messages and the Transformer

the message is properly formed. For example, a result message for the
configure operation defined in Example 96 on page 389 would look like
Example 98.

Example 98: Transformer Output Message

<updatedInput>
<vehicle>
Prius
</vehicle>
<firstName>
0old
</firstName>
<lastName>
MacDonald
</lastName>
</updatedInput>

391

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Writing XSLT Scripts

Overview

Procedure

In this section

392

XML Stylesheet Language Transformations(XSLT) is a language used to
describe the transformation of XML documents. The current W3C standard
for XSLT is 1.0 and can be read at the W3C web site
(http://www.w3.0rg/TR/xslt). XSLT documents, called scripts, are
well-formed XML documents that describe how a source XML document is
transformed into a resulting XML document. It can be used to perform tasks
as simple as splitting a name entry into first and last name entries and as
complex as validating that a complex XML document matches the
expectations of an interface described in a WSDL document.

Writing an XSLT script can be done in a number of ways and using a

number of tools. The steps given here assume that you are writing fairly

simple scripts using a text editor.

To write a XSLT script you do the following:

1. Create an XML stylesheet with the required <xs1:transform> element.

2. Determine which elements in your source message need to be
processed and create <xsd:template> elements for each of them.

3. For each element that has a matching template element, define how
you want the element processed to produce a new output document.

4. If child elements need to be processed as part of processing a parent
element, define a template for the child element and apply it as part of
the parent element’s template using <xsd:apply-templates>.

This section discusses the following topics:

Elements of an XSLT Script page 393
XSLT Templates page 395
Common XSLT Functions page 401

http://www.w3.org/TR/xslt

Writing XSLT Scripts

Elements of an XSLT Script

Overview

The transform element

Top level elements

An XSLT script is essentially an XML stylesheet containing a special set of
elements that instruct an XSLT engine in the processing of other XML
documents. An XSLT script must be defined in an <xs1:transform> element
or an <xsl:stylesheet> element. In addition, it needs at least one valid
top-level element to define the transformation.

The <xs1:transform> element denotes that the document is an XML
stylesheet. The <xs1:stylesheet> element can be used in place of the
<xsl:transform> element. They are equivalent.

When creating an XSLT script you must set the version attribute to 1.0 to
inform the transformer what version of XSLT you are using. In addition, you
must provide an XML namespace shortcut for the XSLT namespace in the
<xsl:transform> element. Example 99 shows a valid <xs1:transform>
element for an XSLT script.

Example 99: XSLT Script Stylesheet Element

<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

</stylesheet>

While all that is needed to make an XML document a valid XSLT script is
the <xsl:transform> element, the <xs1:transform> element does not
provide any instructions for processing data. The data processing
instructions in an XSLT script are provided by a number of top-level XSLT
elements. These element’s include:

® xsl:import
® xsl:include
® xsl:strip-space
xsl:preserve-space
xsl:output

xsl:key

xsl:decimal-format

393

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

xsl:namespace-alias
xsl:attribute-set
xsl:variable

® xsl:param

® xsl:template

An XSLT script can have any number and combination of top-level elements.
Other than xs1:import, which must occur before any other elements, the
top-level elements can be used in any order. However, be aware that the
order determines the order in which processing steps happen.

Example Example 100 shows a simple XSLT script that transforms <ssn> elements
into <acctNum> elements.

Example 100:Simple XSLT Script

<xsl:transform version = '1.0"'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="SSN">
<acctNum>
<xsl:value-of select="."/>
</acctNum>
</xsl:template>
</xsl:stylesheet>

Using this XSLT script the transformer would change a message that
contained <ssn>012457890</ssN> into a message that contained
<acctNum>012457890</acctNum>.

394

Writing XSLT Scripts

XSLT Templates

Overview

<xsl:template> elements

Specifying source elements

XSLT processors use templates to determine the elements on which to apply
a set of transformations. Documents are processed from the top element
through their structure to determine if elements match a defined template. If
a match is found, the rules specified by the template are applied.

To write a template in XSLT, do the following:

1. Create an <xsl:template> element.

2. Provide the path to the source element it processes.
3. Write the processing rules.

Templates are defined using <xs1:template> elements. These elements
take one required attribute, match, which specifies the source element that
triggers the rules. In addition, you can use the name attribute to give the
template a unique identifier for referencing it elsewhere in the contract.

You specify the elements of the source document to which template rules
are matched using the match attribute of the <xs1:template> element. The
source elements are specified using the syntax specified by the XPath
specification (http://www.w3.org/TR/xpath). The source element address
looks very similar to a file path where slash(/) specifies the root element and
child elements are listed in top down order separated by a slash(/). For
example to specify the <surname> element of the XML document shown in
Example 101, you would specify it as /name/surname.

Example 101:Sample XML Document

<name>
<firstname>
Joe
</firstname>
<surname>
Friday
</surname>
<name>

395

http://www.w3.org/TR/xpath

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Template matching order

Template rules

396

XSLT processors start processing with the <xsl1:template match="/">
element if it is present. All of the processing directives for this template act
on the top-level elements of the source document. For example, given the
XML document shown in Example 101 on page 395 any processing rules
specified in <xsl:template match="/">would apply to the <name> element.
In addition, specifying a template for the root element(/) forces you to make
all your source element paths explicit from the root element. The XSLT script
shown in Example 102 generates the string Friday when run on

Example 101 on page 395.

Example 102:XSLT Script with Root Element Template

<xsl:transform version = '1.0'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="/">
<xsl:value-of select="/name/surname"/>
</xsl:template>
</xsl:transform>

You do not need to specify a template for the root element of the source
document in an XSLT script. When you omit the root element’s template the
processor treats all template paths as though they originated from the
source documents top level element. The XSLT script in Example 103
generates the same output as the script in Example 102.

Example 103:XSLT Script without Root Element Template

<xsl:transform version = '1.0'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="surname">
<xsl:value-of select="."/>
</xsl:template>
</xsl:transform>

The contents of an <xsl:template> element define how the source
document is processed to produce an output document. You can use a
combination of XSLT elements, HTML, and text to define the processing
rules. Any plain text and HTML that are used in the processing rules are
placed directly into the output document. For example, if you wanted to
generate an HTML document from an XML document you would use an
XSLT script that included HTML tags as part of its processing rules. The

Writing XSLT Scripts

script in Example 104 takes an XML document with a <title>element and
a <subTitle> element and produces an HTML document where the
contents of <title> are displayed using the <h1> style and the contents of
<subTitle> are displayed using the <nh2> style.

Example 104:XSLT Template with HTML

<xsl:transform version = '1.0'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="/">
<hl>
<xsl:value-of select="//title"/>
</hl>
<h2>
<xsl:value-of select="//subTitle"/>
</h2>
</xsl:template>
</xsl:transform>

Applying templates to child You can instruct the XSLT processor to apply any templates defined in the

elements script to the children of the element being processed using an
<xsl:apply-templates> element as one of the rules in a template.
<xsl:apply-templates> instructs the XSLT processor to treat the current
element as a root element and run the templates in the script against it.

For example you could rewrite Example 104 as shown in Example 105
using <xsl:apply-templates> and defining a template for the <titie> and
<subTitle> elements.

Example 105:XSLT Template Using apply-templates

<xsl:transform version = '1.0"'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>
<xsl"template match="title">
<hl>
<xsl:value-of select="."/>
</h1>
</xsl:template>

397

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

Example 105:XSLT Template Using apply-templates

<xsl"template match="subTitle">
<h2>
<xsl:value-of select="."/>
</h2>
</x%sl:template>
</xsl:transform>

You can use the optional select attribute to limit the child elements to
which the templates are applied. select takes an XPath value and operates
in the same manner as the match attribute of <xsl:template>.

Example For example, if your ordering system produced bills that looked similar to
the XML document in Example 106, you could use an XSLT script to
reformat the bill for a system that required the customer's name in a single
element, name, and the city and state to be in a comma-separated field,
city.

Example 106:Bi/l XML Document

<widgetBill>
<customer>
<firstName>
Joe
</firstName>
<lastName>
Cool
</lastName>
</customer>
<address>
<street>
123 Main Street
</street>
<city>
Hot Coffee
</city>
<state>
MS
</state>
<zipCode>
3942
</zipCode>
</address>

398

Writing XSLT Scripts

Example 106:Bi/l XML Document

<amtDue>
123.50
</amtDue>
</widgetBill>

The XSLT script shown in Example 107 would result in the desired
transformation.

Example 107:XSLT Script for widgetBill

<xsl:transform version = '1.0"'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:template match="widgetBill">
<xsl:element name="widgetBill">
<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match="customer">
<xsl:element name="name">
<xsl:value-of select="concat (//firstName,’ ’,//lastName)"/>
</xsl:element>
</xsl:template>
<xsl:template match="address">
<xsl:element name="address">
<xsl:copy-of select="//street"/>
<xsl:element name="city">
<xsl:value-of select="concat(//city,’, ’,//state)"/>
</xsl:element>
<xsl:copy-of select="//zipCode"/>
</xsl:element>
</xsl:template>
<xsl:template match="amtDue">
<xsl:copy-of select="."/>
</xsl:template>
</xsl:transform>

The script does the following:
1. Creates an element, <widgetBill>, in the output document and places
the results of the other templates as its children.

2. Creates an element, <name>, and sets its value to the result of the
concatenation.

399

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

3. Creates an element, <address>, and sets its value to the results of the
rules. <address> will contain a copy of the <street> element from the
source document, a new element, <city>, that is a concatenation, and
a copy of the <zipcode> element from the source document.

4. Copy the <amtDue> element from the source document into the output
document.

Processing the document in Example 106 on page 398 with this XSLT
script would result in the XML document shown in Example 108.

Example 108:Processed Bill XML Document

<widgetBill>
<customer>
Joe Cool
</customer>
<address>
<street>
123 Main Street
</street>
<city>
Hot Coffee, MS
</city>
<zipCode>
3942
</zipCode>
</address>
<amtDue>
123.50
</amtDue>
</widgetBill>

400

Writing XSLT Scripts

Common XSLT Functions

Overview

xsl:value-of

xsl:copy-of

xsl:element

XSLT provides a range of capabilities in processing XML documents. These
include conditional statements, looping, creating variables, and sorting.
However, there are a few common functions that are used to generate
output documents. These include:

® xsl:value-of
® xsl:copy-of
® xsl:element

<xsl:value-of> creates a text node in the ouput document. It has a
required select attribute that specifies the text to be inserted into the
output document.

The value of select is evaluated as an expression describing the data to
insert. It can contain any of the XSLT string functions, such as concat (), or
an XSLT axis describing an element in the source document.

Once the select expression is evaluated the result is placed in the output
document.

<xsl:copy-of> copies data from the source document into the output
document. It has a required select. The value of select is an expression
describing the elements to be copied.

When the result of evaluating the expression is a tree fragment, the
complete fragment is copied into the output document. When the result is
an element, the element, its attributes, its namespaces , and its children are
copied into the output document. When the result is neither an element nor
a result tree fragment, the result is converted to a string and then inserted
into the output document.

<xsl:element> creates an element in the output document. It takes a
required name attribute that specifies the name of the element that is
created. In addtion, you can specify a namespace for the element using the
optional namespace attribute.

401

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix

402

Part IlI

Appendecies

In this part This part contains the following apendecies:
Use Case Examples page 405
Command Line Use Case Examples page 421
SOAP Binding Extensions page 427
CORBA Type Mapping page 441
WebSphere MQ Artix Extensions page 485
Tibco Transport Extensions page 521

In this appendix

APPENDIX A

Use Case Examples

Two use cases have been provided to walk you through the
Artix Designer, and give you an introduction to the different

ways you can perform common tasks.

This appendix discusses the following topics:

Create a Web Service Client Using a Template

page 406

Create a Web Service Server Using a Wizard

page 410

Expose a CORBA Server as a Web Service

page 416

405

APPENDIX A | Use Case Examples

Create a Web Service Client Using a Template

Overview This use case walks you through the procedure for creating a Web Service
Client using a template-based method. Artix applies defaults for almost
every variable, thus making this the quickest way to get your Web Service
Client up and running with almost no input from you.

Before you begin Before starting this procedure, you need:
® Artix installed on your local machine
® A WSDL document (or a URL address) that describes the target service
® A target SOAP/HTTP service to test your client against

Procedure 1. Start Artix from either the icon on your desktop or the Start menu, to
display the Welcome dialog, as shown in Figure 139.

@ Welcome - Artix Designer ﬂ

Welcame to the Aix Designer. Please select an optian:

@ |Create a new warkspace|

@ Open an existing workspace or resource
O o straight to Designer

) Run Interactive Dema

[] Don't show me this panel again [| Ok |] | Cancel

Figure 139:Welcome dialog

406

Create a Web Service Client Using a Template

2. Select Create a New Workspace and click OK to display the New
Workspace dialog, as shown in Figure 140.
x
FastTrack Details
=t E &
) 5] 5] This template autamatically creates a G++ ClientWah Services
New\l\l.orkspace Gt (;\iem Gt S:arver ‘Wiorkspace using defaultvalues.
Wizard
Warkspace

& & &
G Client Java Client Java Server
and Server Lacation |CaTempartix ‘ Browse...

&R = &

o el 5=

Java Client At Switch IDLtoSoap Code Generation Resource
and Server

l_:_«f‘ Filename | | | Browse

Hitp&: leTi lat
pSampleTemplate . | E|
Port [-]
Ok J | Cancel] ‘ Help

Figure 140:New Workspace dialog

Select the C+ + Client template icon.

Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a specific location if you
like.

Enter the file name or URL for your WSDL file in the field provided, or
click Browse to navigate to a suitable file.

Click OK to display the Artix Designer with your Web Service Client
contained in the Designer Tree.

Behind the scenes

Behind the scenes, Artix has performed the following tasks:

Created a project directory and project file in the save location you
specified

Imported your WSDL file and added it to the project file

Created a deployment profile configured for C++ deployment of your
client

407

408

APPENDIX A | Use Case Examples

Your Web Service Client is ready for code generation.

Deploying the client Now that Artix has automatically created the required deployment profile
information, deploying your Web Service Client involves two tasks:
® Create a deployment bundle

® Generate the client code

To create a deployment bundle:

1. Select the collection name (C++ Client) in the Designer Tree to

display the Collection Details panel, as shown in Figure 141.

Collection Details

MewCallection {Code generated on June 18 2004 11:12 AM) = Code needs to be regenerated. =

Resource Details
[GoogleSearch CiuTempfartisGoogleSearch.wsdl
[multipart.idl CiuTemplariwmultipart.wsdl

[arid CiuTemplartiTest_0616/Resourcesigrid wsdl

MNew... | Delete
Deployment Bundles
[] C++ Client

(Code generated on June 18 2004 11:12 AM) = Code needs to he regenerated.
[Java Server
[DefaultBundle

Mew... | Delete
Figure 141:Collection Details panel

2. Click the Add button under the Deployment Bundles section to display

the New Deployment Bundle wizard.

Create a Web Service Client Using a Template

3. Move through the wizard, clicking Next on every panel to accept the
system defaults. For more information about this process, see “Editing
a Deployment Profile” on page 183.

4. Click Finish to exit the last panel and return to the Collection Details
panel, where your new bundle is now listed.

To generate your client code:

1. Select the collection name (C++ Client) in the Designer Tree, and
select Tools | Generate Code from the menu bar to display the
Generate Code dialog, as shown in Figure 142.

a Generate Code - Artix Designer 5[

Collection Mame Client

Deployment Bundle ||c>o<_c|ient |E||
Component | Generate

Stub Code

Usger Code O

Erviranrrent Scripts =]

Code Generation Progress

" [0]54 |]| Cancel H Help ‘

Figure 142:Generate Code dialog

2. Click OK to generate the client code.
You will receive a confirmation when the process is complete (usually
3-4 seconds).

409

APPENDIX A | Use Case Examples

Create a Web Service Server Using a Wizard

Overview This use case walks you through the procedure for creating a Web Service
server. Unlike the template method described in the previous use case
(“Create a Web Service Client Using a Template” on page 406), this use
case walks you through the process of providing the required input for the
server via the New Workspace wizard.

Before you begin Before starting this procedure, you need:
® Artix installed on your local machine
® A WSDL document (or a URL address) that describes the target service
® A target SOAP/HTTP service to test your client against

Creating the WS Server 1. From the Welcome dialog, select Create a new Workspace and click
OK to display the New Workspace dialog, as shown in “New
Workspace dialog” on page 410.

New Workspace - Artix Designer ﬂ
Fast Track Details
[[a L@ [@ This ternplate launches the New Warkspace Wizard, where you
New Workspace Gos Olient s Server can specify the details of your Workspace including Collections
Wizard and Resources.
G Client Jawa Client Java Serer
and Server
Java Client Artx; Switch IDLtoSoap
and Server
et
HitpSampleTemplate
ok | [cancel |[hew

Figure 143:New Workspace dialog

410

Create a Web Service Server Using a Wizard

2. Select the New Workspace Wizard icon, to display the New
Workspace wizard, as shown in Figure 144

x
= Define Workspace
Mame
Add Shared Resources |50AP—HWP—W5‘ |
Define Collection
Save Location X i
Sl S RE [caTempartix | ‘ Browse...

Description [S0APIHTTF workspace |

[#] #0d Shared Resources

[#] Add Collection

| Previous || nex || Finish H Cancel H Help

Figure 144:New Workspace Wizard

3. Enter a name for the workspace, or accept the default provided.

4. Select the location where you would like to save your workspace, or
accept the default provided.
Tip: To define a new default save location for all future workspaces, go
to the User Preferences dialog (under the Edit menu).
Add a description for this workspace in the field provided.
Select the Add Shared Resources check box if you want to add
resources to this workspace that will be shared between all the
collections in the workspace.
Selecting this option will add an extra panel to the wizard for you to
enter the shared resource details.

411

APPENDIX A | Use Case Examples

7. Select the Add Collection check box if you want to add a collection to
this workspace now. Note that this is optional - you can always add a
collection later if you don’t want to add one now.

Selecting this option will add an extra panel to the wizard for you to
enter the collection details.

8. Click Next to display one of the following panels, depending on which
check boxes you selected on the first panel:

+ If you checked the Add Shared Resources option, the Shared
Resources panel is displayed, as shown in Figure 145. Continue
with step 8.

@ New Workspace x|

Enter Service URL orWSDLADL file

\ [-]

Added tems

| Rernove |

[Previous H Mext || Finish H Cancel H Help]

Figure 145:New Workspace wizard—Shared Resources panel

+ If you did not check the Add Resources option but did check the
Add Collection option, the Define Collection panel is displayed, as
shown in Figure 146. Continue with step 10.

412

Create a Web Service Server Using a Wizard

+ If you did not check either of the options on the first panel, the
Summary panel is displayed as shown in Figure 147 on
page 414. Continue with step 14.

9. Type the location of either a WSDL file or an IDL file in the Enter
Service URL or WSDL/IDL file field, or click Browse to navigate to the
file you would like to use.

When you have selected a file to use, click Add to list it in the Added
Items list.

10. Repeat step 8 as many times as you like to continue adding resources
to the list, then click Next to display Define Collection panel as shown
in Figure 146. If you did not choose to Add a Collection, go to step
14.

@ New Workspace x|

Narme ‘NEWCDHEC“DH |

Description [First collection in his workspace |

ElAdd Collection-specific Resources

~Selected Shared Resource

| selestan || Desetectan

[filefCiTemplartidmultipart wsdl

[Previous “ Mesd H Finish H Cancel H Help

Figure 146:New Workspace wizard—Define Collection panel

11. Enter a name for the new collection, or accept the default provided.
12. Enter a description for the new collection in the Description field.

413

APPENDIX A | Use Case Examples

13. By default, all shared resources you added to this workspace on the
previous panel are selected to be added to this collection. If there are
any resources you do not want added, click on their check box to
deselect them.

14. Click Next to display the display the Summary panel, as shown in
Figure 147. This panel lists everything you just specified in the
wizard.

@ New workspace

Newly Created Workspace Information

‘Warkspace Mame
SOAP_HTTP_WS

‘Warkspace Location
CiTernplarti

‘WarkspaceDescription
SOAPHTTR workspace

Shared Resources
file/CuTempiartidmultipart wsdl

Collection Narme
MewCaollection
Collection Description
First collection in this workspace

Shared Resources In Collection
file/CuTempiartidmultipart wsdl

Caollection-specific Resources In Collection
TileCuTempiartiGoogleSearch.wsd|

[Erewous H Next H Finish]" Cancel ”l Heln

Figure 147:New Workspace wizard—Summary panel.

15. Click Finish to close the wizard and display the Artix Designer, where
the Designer Tree displays your newly created workspace.

414

Create a Web Service Server Using a Wizard

Deploying the server Now that you have created your workspace, deploying your Web Service
Server involves three tasks:

Create a deployment profile - this contains machine-specific
information that you can use multiple times to deploy as many
collections as you have in your workspace. For each machine
operating system, however, you would need a separate deployment
profile. Turn to “Creating a Deployment Profile” on page 179 for help
with this task.

Create a deployment bundle - this defines the type of deployment you
want to perform, such as a client, server, or switch. Thus, you can
create a deployment profile, then deploy the same collection as a client
and/or a server, and/or a switch just by creating separate deployment
bundles. Turn to “Editing a Deployment Profile” on page 183 for help
with this task.

Generate the code - a very simple (one-dialog) task once the profile
and bundle have been created. Turn to “Generating Code” on

page 192 for help with this task.

415

APPENDIX A | Use Case Examples

Expose a CORBA Server as a Web Service

Overview This use case walks you through the procedure for exposing a CORBA Server
as a Web Service using a template-based method. Artix applies defaults for
almost every variable, thus making this virtually a one-click process.

Before you begin Before starting this procedure, you need:
® Artix installed on your local machine
® AnIDL and an IOR file for the CORBA server
® A SOAP address to where you want to expose the CORBA server

Procedure 1. Start Artix from either the icon on your desktop or the Start menu, to
display the Welcome dialog, as shown in Figure 139.

@ Welcome - Artix Designer 5[

Welcome to the Artix Desioner. Please select an option:

@ |Create a new workspace|

() Open an existing workspace of resource
(0 Go straight to Designer

O Run Interactive Demo

[[] Dont show me this panel again [| [8]34 |]| Cancel

Figure 148:Welcome dialog

416

Expose a CORBA Server as a Web Service

2. Select Create a New Workspace and click OK to display the New
Workspace dialog, as shown in Figure 140.
x
Fast Track Details
b, & &
S i‘] This ternplate automatically creates an IDLto SOAP YWeb Services
Mew Workspace G+ Client Cott Sarver Waorkspace using defaultvalues
Wizard
Waorkspace
B E (=
o o5 Narne
s Cliant Java Clint Java Seter —_—
and Server Location |CATempiartix | Browsa...
LJ-A [t [
- ¥ 57 '
Java Client At Switch IDLtnS0ap Code Generation Resource
and Server
Filename | | Browse
Lf 10R ‘ Browse...
HitpSampleTemplate
Transpor Location

| Cancel | Help

Figure 149:New Workspace dialog

Select the IDLtoSOAP template icon.

Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a specific location if you
like.

Enter the file name of an IDL file in the field provided, or click Browse
to navigate to a suitable file.

Enter the file name of an I0OR file in the field provided, or click Browse
to navigate to a suitable file. The IOR file defines the address of the
CORBA server.

Click Generate to create a WSDL file based on the IDL and IOR.
Select a Port Type from the drop-down list provided. The port types
list is populated as a result of the WSDL generation process.

Lastly, specify a SOAP address in the Transport Location field. This is
the address from which you will access your Web Service.

417

APPENDIX A | Use Case Examples

Behind the scenes

418

10. Click OK to display the Artix Designer with your Web Service contained
in the Designer Tree, as shown in Figure 150.

T Mewtiorkspace
o= 1 Workspace Services
@ 9 Deplayment Profiles

] IDLtoBs0APProfile

L coProfile
®- 1 Shared Resources

L @ grid

®- [Collections

"8, IDLtoS0OAPCallection
(J'P- [Deplayment Bundles

L 3 IDLtos0APBUNdle

— g
"8, cCCollection
(J'P- 9 Ceployment Bundles
L & coBundle

— [rlyle)

Figure 150:Artix Designer with CORBA Server exposed as Web Service

Behind the scenes, Artix has performed the following tasks:

® Created a workspace directory and file in the save location you
specified

® Generated a WSDL file based on your IDL and IOR files and added it to
the workspace file

® Created two deployment profiles configured for C++ deployment of
your client

® Created a deployment bundle configured for C++ deployment of your
client

Your Web Service Client is ready for code generation.

Expose a CORBA Server as a Web Service

Now that Artix has automatically created the required deployment profile

and bundle information, generating the code for your Web Service is very

simple:

1. Select the collection name (C++ Client) in the Designer Tree, and
select Tools | Generate Code from the menu bar to display the
Generate Code dialog, as shown in Figure 142.

Generating the client code

@ Generate Code - Artix Designer x|

Collection Mame Client

Deployment Bundle ||cx)c_c|ient |E|
Component | Generate

Stub Code

Uger Code |

Erwironment Scripts [

Code Generation Progress

| ok || cancel || Hew |

Figure 151:Generate Code dialog

2. Click OK to generate the client code.
You will receive a confirmation when the process is complete (usually

3-4 seconds).

419

APPENDIX A | Use Case Examples

420

In this appendix

APPENDIX B

Command Line Use
Case Examples

Two use cases have been provided to walk you through using
the Artix command line tools.

This appendix discusses the following topics:

Create a C++ Web Service Client from a WSDL Contract page 422

Creating a C++ SOAP/HTTP Web Service from IDL page 423

421

APPENDIX B | Command Line Use Case Examples

Create a C++ Web Service Client from a
WSDL Contract

Overview

Before you begin

Procedure

422

This use case walks you through the procedure for creating a C++ Web
service client from an existing WSDL contract. Artix will generate all of the
code needed to develop you Web service client and deploy it using the
default Artix configuration.

Before starting this procedure, you need:

® Artix installed on your local machine

® Asupported C++ compiler

® A WSDL contract that describes the target service

® A target SOAP/HTTP service to test your client against

To create a C++ Web service client from a WSDL contract do the following:

1. From a command line prompt, change to your Artix installation’s bin
directory.

install dir/artix/2.1/bin

Run artix _env.

Change to the directory where the WSDL document describing the
target service is located.

4. Run the Artix C++ code generator on you WSDL file and provide the
flag to generate a sample client.

wsdltocpp -client wsdlfile

5. Build the generated code.
6. Run the client.

Creating a C++ SOAP/HTTP Web Service from IDL

Creating a C++ SOAP/HTTP Web Service

from IDL

Overview

Before you begin

Procedure

This use case walks you through the procedure for building a Web service
from a CORBA IDL interface using Artix command line tools. These steps
can be automated using a number of scripting languages and integrated into
your build system. For more detailed information about the command line
tools used and a complete listing of their options, see the Artix Command
Line Tools Reference.

Before starting this procedure, you need:

® Artix installed on your local machine

® An IDL file describing the service

® A CORBA client to test your server against

To create a Web service from an IDL file using Artix do the following:

1. From a command line prompt, change to your Artix installation’s bin
directory.

install dir/artix/2.1/bin

2. Runartix env.
Change to the directory where the target IDL file is located.
4. To generate a WSDL contract containing the logical details of the

service described by the IDL and a CORBA binding, run the IDL file
through iditowsdl using the command shown below:

idltowsdl idlfile

This will generate a WSDL contract with a default target namespace
and a default schema namespace determined from the name of the
IDL file name. To set the target namespace use the -w flag and to set
the schema namespace use the -x flag. For more details read “Creating
Artix Contracts from CORBA IDL” on page 338.

423

APPENDIX B | Command Line Use Case Examples

424

To add a SOAP binding to the newly generated WSDL contract run the
wsdltosoap tool as shown below:

wsdltosoap wsdlfile

This will generate a new WSDL contract, wsdlfile-soap.wsdl, that
contains the original contract plus a default doc/1iteral SOAP binding
for the logical interface. You can change the style of the SOAP binding
using the -style flag and you can change the encoding of the SOAP
binding using the -use flag. For more details see “Adding a Default
SOAP Binding” on page 230.

To add an HTTP port to the contract with the SOAP binding, open it in
your favorite text or XML editor.

After the SOAP binding in the contract, add a <service> element and
give it a unique name.

Add a <port> element to the new <service> element and give the
<port> element a unique name.

Add a <soap:address> element to the <port> element and enter the
URL address where your Web service will be deployed in the 1ocation
attribute.

Example 109 shows a completed <service> element for the new Web
service. You can also add a number of optional HTTP property
elements to the port specification to define the behavior of the HTTP
port. For more details see “Configuring HTTP Transport Attributes” on
page 303.

Example 109:Port

10.

<service name="newHTTPservice">
<port name="newHTTPport">
<soap:address location="http:\\localhost:9000" />
</port>
</service>

To generate the C++ stub and skeleton code for the Web service, run
the new contract through wsd1tocpp as shown below.

wsdltocpp wsdlfile-soap.wsdl

11.

12.
13.

Creating a C++ SOAP/HTTP Web Service from IDL

wsdltoccp has a number of flags that allow you to specify the C+ +
namespaces of used in the generated code among other options. For a
detailed discussion of all of the options offered by wsditocpp see
Developing Artix Applications in C++.

Develop your application logic for the service and its clients in your
favorite C++ development environment.

Build your application using your favorite C++ complier.

Run the applications.

Most Artix applications will run using the default configuration supplied
with Artix. For information on modifying your Artix configuration see
Deploying and Managing Artix Solutions.

425

APPENDIX B | Command Line Use Case Examples

426

APPENDIX C

SOAP Binding
Extensions

SOAP is an XML-based message specification by the W3C and
is widely accepted as the