
Designing Artix Solutions
Version 2.1, July 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
IONA Technologies PLC and/or its subsidiaries make no warranty of any kind to this material, including, but not
limited to, the implied warranties of merchantability, title, non-infringement and fitness for a particular purpose.
IONA Technologies PLC and/or its subsidiaries shall not be liable for errors contained herein, or for exemplary,
incidental, special, pecuniary or consequential damages (including, but not limited to, damages for business
interruption, loss of profits, or loss of data) in connection with the furnishing, performance or use of this mate-
rial.

COPYRIGHT NOTICE
No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 25-Mar-2005

M 3 2 0 8

Contents

List of Figures xi

List of Tables xvii

Preface xix
What is Covered in this Book xix
Who Should Read this Book xix
How to Use this Book xix
Finding Your Way Around the Library xxi
Additional Resources for Help xxii
Document Conventions xxiii

Part I Using Artix Designer

Chapter 1 Introduction to Artix 1
Overview 2
Using Artix for the first time 6

Working in Deployer Mode 7
Working in Editor Mode 10
Setting user preferences 13

WSDL Basics 15

Chapter 2 Creating an Artix Workspace 19
What is a Workspace? 20
Creating a Workspace using a Wizard 26
Creating a Workspace using a Template 30

Working with Custom Templates 32

Chapter 3 Working with Artix Collections 35
What is a Collection? 36
Creating a Collection 38
iii

CONTENTS
Editing a Collection 42
Generating Code for a Collection 45

Chapter 4 Working with Artix Resources 47
What are Resources? 48
Navigating Resources 49
What is a Contract? 53
What is a Schema? 56
Creating New Resources 57

Creating a Contract 58
Adding Types 60
Adding Messages 73
Adding Port Types 77
Adding Access Control Lists 83
Creating Resources from a File/URL 86
Creating Contracts from Data Sets 93
Creating an XSD Schema 105

Editing Resources 107
Editing Types 108
Editing Messages 110
Editing Port Types 112

Chapter 5 Adding Bindings 115
What is a Binding? 116
Adding a CORBA Binding 119

Adding a CORBA Binding, Service, and Port at the Same Time 122
Adding a Fixed Binding 123
Adding a SOAP Binding 126

Adding a SOAP Binding, Service, and Port at the Same Time 130
Adding an XML Binding 132
Adding a Tagged Binding 135
Editing Bindings 138

Chapter 6 Adding Services 139
Introduction 140
Adding a CORBA Port 143

Adding a CORBA Binding, Service, and Port at the Same Time 145
Adding an HTTP Port 146
 iv

CONTENTS
Adding a WebSphere MQ Port 149
Adding a Tuxedo Port 151
Adding a Java Message Service Port 154
Adding an IIOP Tunnel Port 156
Adding a SOAP Port 159

Adding a SOAP Binding, Service, and Port at the Same Time 163
Editing Services 165

Chapter 7 Routing Messages 167
What is a Route? 168
Creating a Route 169
Editing a Route 175

Chapter 8 Deployment 177
Deployment Explained 178
Creating a Deployment Profile 179

Editing a Deployment Profile 183
Creating a Deployment Bundle 185

Editing a Deployment Bundle 190
Generating Code 192

Part II Using Artix Command Line Tools

Chapter 9 Designing Artix Solutions from the Command Line 197
Artix and WSDL 198
Creating an Artix Contract 200
Beyond the Contract 201

Chapter 10 Defining Data Types 203
Specifying a Type System in a Contract 205
XMLSchema Simple Types 206
Defining Complex Data Types 208

Defining Data Structures 209
Defining Arrays 212
Defining Types by Restriction 214
Defining Enumerated Types 216
v

CONTENTS
Chapter 11 Defining Messages 219

Chapter 12 Defining Your Interfaces 223

Chapter 13 Binding Interfaces to a Payload Format 227
Adding a SOAP Binding 229

Adding a Default SOAP Binding 230
Adding SOAP Headers to a SOAP Binding 233
Sending Data Using SOAP with Attachments 239

Adding a CORBA Binding 243
Adding an FML Binding 248
Adding a Fixed Binding 253
Adding a Tagged Binding 269
Adding a TibMsg Binding 280
Adding a Pure XML Binding 284
Adding a G2++ Binding 289

Chapter 14 Adding Transports 297
Defining a Service 298
Creating an HTTP Service 300

Specifying the Service Address 301
Configuring HTTP Transport Attributes 303

Creating a CORBA Service 319
Configuring an Artix CORBA Port 320
Generating CORBA IDL 323

Creating an IIOP Service 324
Creating a WebSphere MQ Service 327
Creating a Java Messaging System Service 329
Adding a TIBCO Service 333
Creating a Tuxedo Service 335

Chapter 15 Creating Artix Contracts from Existing Applications 337
Creating Artix Contracts from CORBA IDL 338
Creating Contracts from Java Classes 345
Creating Contracts from COBOL Copybooks 354

Chapter 16 Adding Routing Instructions 357
 vi

CONTENTS
Artix Routing 358
Compatibility of Ports and Operations 359
Defining Routes in Artix Contracts 362

Using Port-Based Routing 363
Using Operation-Based Routing 366
Advanced Routing Features 369

Error Handling 374
Service Lifecycles 375
Routing References to Transient Servants 377

Chapter 17 Using the Artix Transformer to Solve Problems in Artix 381
Using the Artix Transformer as an Artix Server 382
Using Artix to Facilitate Interface Versioning 384
WSDL Messages and the Transformer 389
Writing XSLT Scripts 392

Elements of an XSLT Script 393
XSLT Templates 395
Common XSLT Functions 401

Part III Appendecies

Appendix A Use Case Examples 405
Create a Web Service Client Using a Template 406
Create a Web Service Server Using a Wizard 410
Expose a CORBA Server as a Web Service 416

Appendix B Command Line Use Case Examples 421
Create a C++ Web Service Client from a WSDL Contract 422
Creating a C++ SOAP/HTTP Web Service from IDL 423

Appendix C SOAP Binding Extensions 427
soap:binding element 428
soap:operation element 430
soap:body element 431
soap:header element 435
soap:fault element 437
vii

CONTENTS
soap:address element 439

Appendix D CORBA Type Mapping 441
Primitive Type Mapping 443
Complex Type Mapping 446

Structures 447
Enumerations 449
Fixed 450
Unions 452
Type Renaming 455
Arrays 456
Multidimensional Arrays 458
Sequences 459
Exceptions 461

Recursive Type Mapping 463
Mapping XMLSchema Features that are not Native to IDL 465

Binary Types 466
Attributes 467
Nested Choices 469
Inheritance 471
Nillable 474
Optional Attributes 476

Artix References 478

Appendix E WebSphere MQ Artix Extensions 485
QueueManager 488
QueueName 489
ReplyQueueName 490
ReplyQueueManager 491
Server_Client 492
ModelQueueName 493
AliasQueueName 494
ConnectionName 496
ConnectionReusable 497
ConnectionFastPath 498
UsageStyle 499
CorrelationStyle 500
AccessMode 502
 viii

CONTENTS
Timeout 504
MessageExpiry 505
MessagePriority 506
Delivery 507
Transactional 508
ReportOption 509
Format 511
MessageId 513
CorrelationId 514
ApplicationData 515
AccountingToken 516
Convert 517
ApplicationIdData 518
ApplicationOriginData 519
UserIdentification 520

Appendix F Tibco Transport Extensions 521

Glossary 529

Index 535
ix

CONTENTS
 x

List of Figures

Figure 1: Welcome dialog 6

Figure 2: New Workspace dialog 7

Figure 3: Resource Navigator displaying WSDL model 11

Figure 4: User Preferences dialog—Directory Preferences panel 13

Figure 5: Workspace Details panel 20

Figure 6: New Workspace dialog 21

Figure 7: New Workspace wizard—Shared Resources panel 22

Figure 8: Designer Tree Showing Collections and Shared Resources 23

Figure 9: New Workspace wizard—Collection panel 24

Figure 10: New Workspace Wizard 26

Figure 11: New Workspace wizard—Shared Resources panel 27

Figure 12: New Workspace wizard—Collection panel 28

Figure 13: New Workspace wizard—Summary panel. 29

Figure 14: New Workspace dialog showing Template options 30

Figure 15: Template Settings dialog 33

Figure 16: Designer Tree showing Collections and Resources 36

Figure 17: Collection Details panel 37

Figure 18: Workspace Details panel 38

Figure 19: New Collection wizard 39

Figure 20: New Collection wizard—Add Collection Resources panel 40

Figure 21: New Collection wizard—Summary panel 41

Figure 22: Collection Details panel 42

Figure 23: New Resource from File/URL dialog 43

Figure 24: Artix Designer Invalid WSDL Indicator 44

Figure 25: Resource Navigator—Diagram view 49

Figure 26: Resource Navigator showing Types Expanded 50
xi

LIST OF FIGURES
Figure 27: Resource Navigator—Text view 51

Figure 28: Error panel 52

Figure 29: Schema—diagram view 56

Figure 30: Schema—text view 56

Figure 31: New Resource dialog 58

Figure 32: New Contract dialog 59

Figure 33: New Types wizard 60

Figure 34: New Types wizard—Type Properties panel 61

Figure 35: New Types wizard—Define Type Data panel 62

Figure 36: New Types wizard—Define Type Attributes panel 64

Figure 37: New Types wizard—Type Data (simple) panel 65

Figure 38: New Type wizard—Summary panel for Simple Types 66

Figure 39: New Types wizard—Type Attributes (element) panel 67

Figure 40: New Types wizard—Define Inline Type panel (complex) 68

Figure 41: New Types wizard—Define Type Attributes panel 70

Figure 42: New Types wizard—Define Inline Type (simple) panel 71

Figure 43: New Message wizard 73

Figure 44: New Message wizard—Message Properties panel 74

Figure 45: New Message wizard—Message Parts panel 75

Figure 46: New Messages wizard—Summary panel 76

Figure 47: New Port Type wizard 77

Figure 48: New Port Type wizard—Port Type Properties panel 78

Figure 49: New Port Type wizard—Port Type Operations panel 79

Figure 50: New Port Type wizard—Operation Messages panel 80

Figure 51: New Port Type wizard—Port Operations Summary panel 81

Figure 52: New Port Type wizard—Port Type Summary panel 82

Figure 53: New Access Control List wizard 83

Figure 54: New ACL wizard—Define ACL Operations panel 84

Figure 55: New ACL Wizard—View ACL Summary panel 85
 xii

LIST OF FIGURES
Figure 56: New Resource dialog 87

Figure 57: New Resource from File/URL dialog 88

Figure 58: New Resource dialog 89

Figure 59: New Resource from File/URL dialog 90

Figure 60: IDL Compiler Options dialog 91

Figure 61: New Resource dialog 93

Figure 62: New Contract from Data Set wizard 94

Figure 63: New Contract from Data Set wizard—Set Fixed Defaults panel 95

Figure 64: New Contract from Data Set wizard—Input Data panel (Fixed) 96

Figure 65: New Contract from Data Set—Summary panel 97

Figure 66: New Contract from Data Set wizard—Set Fixed Defaults (CCB) 98

Figure 67: New Contract from Data Set wizard—Input Data panel (CCB) 99

Figure 68: New Contract from Data Set—Set Tagged Defaults panel 101

Figure 69: New Contract from Data Set wizard—Input Data panel (Tagged) 102

Figure 70: New Contract from Data Set—Summary panel (Tagged) 104

Figure 71: New Resource dialog 105

Figure 72: New Schema dialog 106

Figure 73: XML Error Indicator 107

Figure 74: Edit Types dialog 108

Figure 75: Edit Type Attributes dialog 109

Figure 76: Edit Messages dialog 110

Figure 77: Edit Message Parts dialog 111

Figure 78: Edit Port Types dialog 112

Figure 79: Edit Type Attributes dialog 113

Figure 80: New Binding wizard 117

Figure 81: New Binding wizard—CORBA Binding Defaults panel 119

Figure 82: New Binding wizard—Edit CORBA Binding panel 120

Figure 83: New Binding wizard—CORBA Binding Summary panel 121

Figure 84: CORBA Enable dialog 122
xiii

LIST OF FIGURES
Figure 85: Binding wizard—Fixed Binding Defaults 123

Figure 86: New Binding wizard—Edit Fixed Binding panel 124

Figure 87: New Binding wizard—Fixed Binding Summary panel 125

Figure 88: New Binding wizard—SOAP Binding Defaults panel 126

Figure 89: New Binding wizard—Edit SOAP Binding panel 127

Figure 90: New Binding wizard—SOAP Binding Summary panel 129

Figure 91: SOAP Enable dialog 130

Figure 92: New Binding wizard—XML Binding Defaults panel 132

Figure 93: New Binding wizard—Edit XML Binding panel 133

Figure 94: Binding wizard—XML Binding Summary panel 134

Figure 95: Binding wizard—Tagged Binding Defaults 135

Figure 96: Binding wizard—Edit Tagged Binding panel 136

Figure 97: Binding wizard—Tagged Binding Summary panel 137

Figure 98: Edit Binding panel 138

Figure 99: New Service wizard 140

Figure 100: New Service wizard—Service Definition panel 141

Figure 101: New Service wizard—Port Definition panel 142

Figure 102: New Service wizard—Define CORBA Extensor Properties 143

Figure 103: New Service wizard—Summary panel (CORBA) 144

Figure 104: CORBA Enable dialog 145

Figure 105: New Service wizard—Define HTTP Extensor Properties 146

Figure 106: New Service wizard—Summary panel (HTTP) 147

Figure 107: New Service Wizard—Define WebSphere MQ Port Properties 149

Figure 108: New Service wizard—Summary panel (MQ) 150

Figure 109: New Service wizard—Define Tuxedo Port Properties panel 152

Figure 110: New Service wizard—Summary panel (Tuxedo) 153

Figure 111: New Service Wizard—Define WebSphere MQ Port Properties 154

Figure 112: New Service wizard—Summary panel (JMS) 155

Figure 113: New Service wizard—Define IIOP Port Properties panel 157
 xiv

LIST OF FIGURES
Figure 114: New Service wizard—Summary panel (IIOP) 158

Figure 115: New Service wizard—Define SOAP Properties panel 159

Figure 116: New Service wizard—Summary panel (SOAP) 161

Figure 117: SOAP Enable dialog 163

Figure 118: Edit Services panel 165

Figure 119: Edit Port Properties dialog 166

Figure 120: New Route wizard 170

Figure 121: New Route wizard—Source and Destination panel 171

Figure 122: New Route wizard—Operation Routing panel 172

Figure 123: New Route wizard—Transport Attributes panel 173

Figure 124: New Route wizard—Summary panel 174

Figure 125: Transport Attributes panel—Editing a Route 175

Figure 126: Summary panel—Editing a Route 176

Figure 127: Deployment Profile wizard 180

Figure 128: Deployment Profile wizard—Artix Location panel 181

Figure 129: Deployment Profile wizard—Summary panel 182

Figure 130: Deployment Profile Details 183

Figure 131: Edit Deployment Profile dialog 184

Figure 132: New Deployment Bundle wizard 185

Figure 133: Deployment Bundle wizard—Code Generation panel 186

Figure 134: Deployment Bundle wizard—Update Service panel 188

Figure 135: Deployment bundle wizard—Summary panel 189

Figure 136: Deployment Bundle Details 190

Figure 137: Edit Deployment Bundle dialog 191

Figure 138: Generate Code dialog 192

Figure 139: Welcome dialog 406

Figure 140: New Workspace dialog 407

Figure 141: Collection Details panel 408

Figure 142: Generate Code dialog 409
xv

LIST OF FIGURES
Figure 143: New Workspace dialog 410

Figure 144: New Workspace Wizard 411

Figure 145: New Workspace wizard—Shared Resources panel 412

Figure 146: New Workspace wizard—Define Collection panel 413

Figure 147: New Workspace wizard—Summary panel. 414

Figure 148: Welcome dialog 416

Figure 149: New Workspace dialog 417

Figure 150: Artix Designer with CORBA Server exposed as Web Service 418

Figure 151: Generate Code dialog 419

Figure 152: MQ Remote Queues 495
 xvi

List of Tables

Table 1: complexType Descriptor Elements 210

Table 2: Part Data Type Attributes 220

Table 3: Operation Message Elements 224

Table 4: Attributes of the Input and Output Elements 225

Table 5: TibrvMsg Binding Attributes 280

Table 6: TIBCO to XSD Type Mapping 281

Table 7: HTTP Client Configuration Attributes 303

Table 8: HTTP Server Configuration Attributes 313

Table 9: Supported TIBCO Rendezvous Features 333

Table 10: Java to WSDL Mappings 346

Table 11: Context QNames 371

Table 12: Attributes for soap:binding 428

Table 13: Attributes for soap:operation 430

Table 14: Attributes for soap:body 432

Table 15: Attributes for soap:header 436

Table 16: soap:fault attributes 437

Table 17: Attribute for soap:address 440

Table 18: Primitive Type Mapping for CORBA Plug-in 443

Table 19: Complex Type Mapping for CORBA Plug-in 446

Table 20: Complex Content Identifiers in CORBA Typemap 471

Table 21: WebSphere MQ Port Attributes 485

Table 22: UsageStyle Settings 499

Table 23: MQGET and MQPUT Actions 500

Table 24: Artix WebSphere MQ Access Modes 502

Table 25: Transactional Attribute Settings 508

Table 26: ReportOption Attribute Settings 509
xvii

LIST OF TABLES
Table 27: FormatType Attribute Settings 511

Table 28: TIB/RV Transport Properties 521

Table 29: TIB/RV Supported Payload formats 523
 xviii

Preface
What is Covered in this Book
Designing Artix Solutions outlines how to design, develop, and deploy
integration solutions with Artix using the graphical user interface (GUI), the
Artix command line tools, or both. It also guides you through producing Web
Services Description Language (WSDL), source code, and runtime
configuration files for your Artix integration solution.

Who Should Read this Book
This guide is intended for all users of Artix. This guide assumes that you
have a working knowledge of the middleware transports that are being used
to implement the Artix system. It also assumes that you are familiar with
basic software design concepts, and that you have a basic understanding of
WSDL.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Learning about Artix.

How to Use this Book

If you are new to Artix You may want to do one or more of the following:

• Learn about Artix - see “Introduction to Artix”

• Read a walkthrough of how to create a Web Service client, or server, or
both - see “Use Case Examples” and “Command Line Use Case
Examples”

If you find any terms you aren unfamiliar with, turn to the “Glossary” on
page 529 for a list of Artix terms and definitions.
xix

PREFACE
If you’ve worked with Artix before You probably have a clear idea of what you want to use Artix to do. In this
case, one of the following suggestions may help.

Using the Artix designer is discussed in the section “Using Artix Designer”. It
includes chapters on the following:

• If you are creating a new workspace, see “Creating an Artix
Workspace”

• If you're creating or editing a collection, see “Working with Artix
Collections”

• If you're creating or editing resources, see “Working with Artix
Resources”

• If you're creating or editing a binding, see “Adding Bindings”

• If you're creating or editing a service, see “Adding Services”

• If you're creating or editing a route, see “Routing Messages”

• If you're ready to generate code, see “Deployment”

The second section in this guide, “Using Artix Command Line Tools”,
provides a detailed description of how to describe Artix endpoints using
WSDL and the WSDL extenstions used by WSDL. The chapters in this
section parallel the chapters in the first section of the guide.

In addition the following appendecies are included to provied reference
material on using some the Artix bindings:

• “SOAP Binding Extensions” on page 427

• “CORBA Type Mapping” on page 441

• “WebSphere MQ Artix Extensions” on page 485

• “Tibco Transport Extensions” on page 521

If you are migrating from Artix 2.0
to Artix 2.1

Between Artix 2.0 and Artix 2.1, we made several changes to the Artix user
interface, in an effort to make it more intuitive and easier to use. The
changes you will notice include:

• There is now an additional Editor mode of the interface in which you
can create and edit WSDL and Schema documents

• Schemas can now be created or imported into Artix as resources

• Support for two additional binding types - Fixed and Tagged - has been
added to the Binding wizard
 xx

PREFACE
• The Resource Navigator diagram can now display relationships as well
as groupings

• The Contract menu has been renamed the Resource menu

• In Deployer mode, seven new fast track templates have been added

• In Deployer mode, Deployment Bundles and Profiles are now listed on
the Tree

• In Deployer mode, the Current View filter that was at the bottom of the
Tree has been removed and the functionality has been placed into a
new menu called View

• In Deployer mode, Configuration functionality has been added to the
workspace details panel

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you’re new to Artix You may be interested in reading:

• Release Notes - contain release-specific information about Artix.

• Learning about Artix - this book describes basic Artix and WSDL
concepts. It also guides you through programming Artix applications
against all of the supported transports.

This book is a combination of two books from the Artix 2.0 library - the
Getting Started Guide and the Tutorial.

To design and develop Artix
solutions

You should read one or more of the following:

• Designing Artix Solutions - (this book) - provides detailed information
about designing Artix solutions, either from the command line or by
using the Artix Designer. Also includes use case examples for both.

• Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the C++ API.

• Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Java API.

• Command Line Reference - this book contains reference information
about the Artix command line tools.
xxi

PREFACE
To manage and configure your
Artix solution

You should read one or more of the following:

• Deploying and Managing Artix Solutions - describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

• IONA Tivoli Integration Guide - explains how to integrate Artix with
IBM Tivoli.

• IONA BMC Patrol Integration Guide - explains how to integrate Artix
with BMC Patrol.

• Artix Security Guide - provides detailed information about using the
security features of Artix.

Have you got the latest version? The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (under the copyright notice).

Artix online help While using the Artix Designer you can access contextual online help,
providing:

• A description of your current Artix Designer screen

• Detailed step-by-step instructions on how to perform tasks from this
screen

• A comprehensive index and glossary

• A full search feature

There are two ways that you can access the Online Help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu

Additional Resources for Help
The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:
 xxii

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Document Conventions
This book uses the following typographical and keying conventions

Typographical Convention

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xxiii

mailto:support@iona.com

PREFACE
Keying Conventions

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xxiv

Part I
Using Artix Designer

In this part This part contains the following chapters:

Introduction to Artix page 1

Creating an Artix Workspace page 19

Working with Artix Collections page 35

Working with Artix Resources page 47

Adding Bindings page 115

Adding Services page 139

Routing Messages page 167

Deployment page 177

CHAPTER 1

Introduction to Artix
You can use Artix to design, develop, and deploy integration
solutions that are middleware-neutral.

In this chapter This chapter discusses the following topics:

Overview page 2

Using Artix for the first time page 6

WSDL Basics page 15
1

CHAPTER 1 | Introduction to Artix
Overview
Artix is a flexible and easy-to-use tool for integrating your existing
applications across a number of different middleware platforms. Artix also
makes it easy to expose your existing applications as Web services or as a
service for any number of applications using other middleware transports. In
addition, Artix provides a flexible programming model that allows you to
create new applications that can communicate using any of the protocols
that Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a
straightforward process which requires a minimum of coding.

The Artix user interface, the Artix Designer, has two modes of operation.
The first is a pure WSDL or schema creation and edit mode, and the second,
referred to as "deployer mode" provides the ability to create and deploy Artix
contracts. This isn’t to say that the two modes are mutually exclusive; the
only real functional difference is that the Editor mode contains no
deployment capability. Appearance-wise, they are identical other than that
the Editor mode does not contain the Designer tree.

Artix Designer - Deployer mode The deployer mode of the Artix Designer provides a full suite of wizards to
guide you through the modeling of your systems, the generation of Artix
components, and the deployment of your system. Artix also ships with a
number of command line tools that can be used to generate Artix
components. For more information about working with the Artix command
line tools, see part two of this book.

When you start working with in workspace mode, you will see the following
components listed in the Designer Tree:

• Workspace

• Workspace Services

• Deployment Profiles

• Shared Resource

• Collection

• Deployment Bundles

• Resources
 2

Overview
Each component is documented in detail throughout this book, but following
is a brief description of what they are and how they relate to each other.

Workspace

The Workspace defines your Artix solution. It contains collections and
resources, and all the required deployment information to build your
solution.

Workspace Services

to come

Deployment Profiles

The Deployment Profile defines machine level-information such as the Artix
save location, the compiler location, and the operating system being used.
This profile can be used multiple times as it is not specific to any particular
collection defined within the workspace.

Shared Resource

Shared Resources are WSDL contracts that are stored at a workspace level,
and are included, by default, in every collection in that workspace. When
creating a workspace, you are given the option of also creating shared
resources, or else you can add them to the workspace later.

Resources that are not shared, and that exist only in one collection, are
collection-specific. A collection-specific resource can be changed to a
shared resource, and therefore added to all existing collections, if required.

Collection

A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA based applications. A
collection can also be deployed as a switch process.

Deployment Bundles

The Deployment Bundle defines the deployment characteristics for a
collection, such as the deployment type (client, server, or switch), code
generation options, and configuration details. You can also modify the
service WSDL for each deployment bundle, if necessary.

Every deployment bundle is associated with one deployment profile. You
can have as many deployment bundles as you like for every collection in
your workspace, but you could quite easily get by with only one deployment
profile.
3

CHAPTER 1 | Introduction to Artix
Resources

Can be either WSDL contracts or schema files - each is explained here.

WSDL contracts define the interaction of an endpoint with the Artix bus.
Contracts are written in WSDL. Following the procedure described by W3C,
IONA has extended WSDL to support the bus’ advanced functionality, and
to use transports and formats other than HTTP and SOAP.

In Artix, contracts can be created from a variety of resources including:

• Existing WSDL files

• Existing IDL files

• WSDL URLs

• Existing Data Sets, such as a COBOL Copybook

A contract consists of two parts:

• Logical - defines the namespaces, messages, and operations that the
collection exposes. This part of the contract is independent of the
underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the application
interface. It is made up of the WSDL tags <type>, <message>, and
<portType>.

• Physical - defines the transports, wire formats, and routing information
used to deliver messages to and from collections, over the bus. This
portion of the contract also defines which messages use each of the
defined transports and bindings. The physical portion of the contract is
made up of the standard WSDL tags <binding>, <service>, and
<route>. It is also the portion of the contract that may contain IONA
WSDL extensions.

For more information, see “What is a Contract?” on page 53.

Schemas define types. They can be standalone resources, or imported into
a WSDL contract to define the types for that contract.

For more information, see “What is a Schema?” on page 56.

Artix Designer - Editor mode The Editor mode of the Artix Designer is virtually the same as the Deployer
mode, but for two main differences:

• There is no Designer Tree visible on the left of the details panel.

• There is no access to the deployment functionality offered in Deployer
mode.
 4

Overview
The Editor mode is a simplified version of the Designer. You do not need to
create the workspace/collection/resource structure to work on your files, and
there is therefore only a sub-set of the wizards and dialogs you would
normally see in Deployer mode. The Editor mode has been created for those
times when you simply want to work directly with WSDL or Schema files,
giving you a tool in which you can create and edit them as required.

Switching between modes You can switch from the Deployer mode to the Editor mode and vice versa,
as long as you have a resource selected in the deployer mode.

To make the switch, either click on the icon in the tool bar, or select the
mode you wish to switch to from the View menu.

When you switch from Editor mode to Deployer mode, a default workspace
is created for you.

When you switch from Deployer mode to Editor mode, the Designer Tree is
simply hidden to remove all references to workspaces, collections, and
deployment entities.

5 easy steps Regardless of the complexity of your Artix project or the tools you chose to
develop it, there are five basic steps in developing a solution using Artix:

1. Create an Artix workspace to define the structure your proposed
solution.

2. Create an Artix collection to manage the resources that define the Artix
contract.

3. Create an Artix contract to describe how you intend to integrate or
expose your systems.

4. Deploy the solution.

5. Develop any application level code needed to complete the solution.

Of course, if all you want to do in Artix is to work in Editor mode, then the
list is even simpler:

1. Create a WSDL or Schema file or import an existing one.

2. Add to or change the file as required using the wizards and dialogs
provided from the Resource menu.

3. Save your file.
5

CHAPTER 1 | Introduction to Artix
Using Artix for the first time

Welcome dialog The first time you start the Artix user interface, you will see the Welcome
dialog, as shown in Figure 1.

You have four options from this dialog:

• Create a new workspace - takes you to the New Workspace dialog,
where you can select options for creating your Artix workspace.

• Open an existing workspace or resource - takes you to a file chooser
dialog from where you can navigate to any previously created
workspaces or any resource files (WSDL or Schema) you have stored.
Note: Choosing a resource file will open the Designer in Editor mode.

• Go straight to the Designer - opens Artix without loading a workspace.

• Run interactive demo - launches an demo of the Designer (requires a
plug-in which is available for download if necessary).

Tip: Click the check box at the bottom of the panel (Don’t show me this
panel again) to stop this panel displaying every time you start Artix. Instead,
Artix will automatically load the last workspace accessed. To change it
back, go to the Start-up options in the User Preferences dialog (Edit menu).

Figure 1: Welcome dialog
 6

Using Artix for the first time
Working in Deployer Mode

Overview The biggest difference between the two modes of the Artix Designer is that
in the deployer mode you can deploy your Artix collections. The Editor
mode allows you only to create or edit WSDL or Schema documents - it has
no deployment functionality. If this is how you want to use the Designer,
turn to “Working in Editor Mode” on page 10.

To be able to use the Artix deployment feature, you need to structure your
Artix solution in a certain way - this is where workspaces come in.

Creating a workspace The Artix workspace defines the structure of your proposed solution, and
determines what is contained in the Artix Designer Tree.

There are two ways to create a workspace:

• Follow the New Workspace wizard (from the New Workspace dialog,
as shown in Figure 2) to guide you through the process -
recommended for first-time users of Artix.

• Select one of the Workspace Templates provided in the New
Workspace dialog to create one of the common workspaces.

Figure 2: New Workspace dialog
7

CHAPTER 1 | Introduction to Artix
Tip: To access the New Workspace dialog, select File | New | Workspace
from the menu bar, or click the New Workspace icon in the toolbar.

Shared resources

When you have created your workspace, you have the option of adding
resources at the workspace level that can be applied to every collection
contained in your workspace. In Artix, these are called "Shared Resources".

For more information on workspaces and shared resources, see “Creating an
Artix Workspace” on page 19.

Adding collections and resources A collection is a group of resources that can be deployed one or more times
to meet your solution requirements. As such, it defines the Artix contract.
This contract models the services you want to integrate.

While you can only have one workspace at a time, you can have as many
collections as you like. They can comprise shared resources,
collection-specific resources, or a mix of both.

When you create a workspace using the New Workspace wizard you are
given the opportunity to create a collection, but you can also add collections
to workspaces by selecting File | New | Collection from the menu bar.

For more information about Artix collections, see “Working with Artix
Collections” on page 35.

Collection-specific resources

After you have created a collection you can add collection-specific
resources. Resources can be created from existing WSDL files, or from
WSDL generated from IDL files. They can also include contracts generated
from data sets such as COBOL Copybooks, or contracts created from scratch
using the wizards and dialogs provided by the Resource Editor.

Regardless of your mix of resources, the process of creating the Artix
contract involves creating logical descriptions of the data and the operations
you want the services to share, and mapping them to the physical payload
formats and transports used by the services to expose themselves to the
network. Artix uses the industry standard Web Services Description
Language (WSDL) to model services.

For more information about resources, see “Working with Artix Resources”
on page 47.
 8

Using Artix for the first time
Generating code for your solution Generating code with the Artix Designer is a three-step process:

• Create the Deployment Profile to define machine-level information that
you can use for one or more of your solutions

• Create the Deployment Bundle to define the characteristics of the
collection you are deploying, including the type of deployment (client,
server, or switch), configuration information, and environment scripts

• Generate the code - once your deployment profile and bundle are in
place, actual deployment is performed using the Generate Code dialog

For more information, see “Deployment” on page 177.

For a detailed discussion of Artix configuration, see Deploying and
Managing Artix Solutions.

For a detailed description of generating Artix stubs and skeletons, see
Developing Artix Applications with C++.

Developing additional code Unless your services share identical interfaces, you will need to develop
some additional application code. Artix can only map between services that
share a common interface.

Typically, you can make the required changes to only one side of the
services you are integrating and you can write the application code using a
familiar programming paradigm. For example, if you are a CORBA developer
integrating a CORBA system with a Tuxedo application, Artix will generate
the IDL representing the interface used in the service integration. You can
then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the
application logic from scratch using the stubs and skeletons generated by
Artix. For a detailed discussion of developing applications using Artix, see
one of the following:

• Developing Artix Applications in C++

• Developing Artix Applications in Java
9

CHAPTER 1 | Introduction to Artix
Working in Editor Mode

Overview The Artix Designer in Editor mode is a powerful XML editor. You can create
and edit WSDL documents, and you can also open and edit Schema.

The full graphic representation of the WSDL model provided by the Artix
Designer in Deployer mode is still available to you in Editor mode, but only
when you are working with valid WSDL. If the WSDL is invalid, it can’t be
modeled graphically and can only be viewed as XML text, as is also the case
in Deployer mode.

All of the Resource Editing wizards and dialogs are available to you in Editor
mode, making it easy for you to create your WSDL or Schemas without
having to write them in XML from scratch.

Working with WSDL If you’ve used the Artix Designer before, the first thing you’ll notice about the
Editor view is that there is no Designer Tree on the left of the details panel.
Assuming you have valid WSDL however, the graphical view of the WSDL
file will be as you remember it from the Deployer view.

You can create new WSDL or XSD documents, or open existing ones, by
selecting using the File menu.
 10

Using Artix for the first time
When you have a WSDL model displayed in the Resource Navigator, as
shown in Figure 3, you can add and edit the components via options from
either the Resource menu, or from the contextual menus accessed by
right-clicking on any of the component names.

For more information about working with WSDL, see “Creating New
Resources” on page 57.

Working with Schemas Working with Schemas is similar to working with WSDL, except that it only
defines the types while WSDL defines all of the contract components. You
can create a schema to be a stand-alone resource or to be the type definition
of a larger piece of WSDL - an import statement in the WSDL will simply
refer to the external schema. In this way, WSDL and Schema resources can
together define Artix contracts.

You can open existing Schemas by selecting File | Open | Resource and
navigating to the file. For more information about adding Schemas, see
“Creating an XSD Schema” on page 105.

Figure 3: Resource Navigator displaying WSDL model
11

CHAPTER 1 | Introduction to Artix
Using this guide while in Editor
mode

If you are using the Designer only in Editor mode, only a subset of the
chapters in this book will be of interest to you. They are:

• “Working with Artix Resources” on page 47

• “Adding Bindings” on page 115

• “Adding Services” on page 139

• “Routing Messages” on page 167
 12

Using Artix for the first time
Setting user preferences

Overview The Artix User Preferences dialog enables you to define the way Artix looks
and behaves. For example, you can use this dialog to set:

• The look and feel of the interface

• What is displayed first every time you start Artix

• A default location for workspaces and resources

Setting your User Preferences To access the User Preferences dialog:

1. Select Edit | User Preferences to display the User Preferences dialog,
as shown in Figure 4 .

2. Use the Directory Preferences panel to:

♦ Set a default workspace directory - the directory to open when
browsing for existing workspaces

Figure 4: User Preferences dialog—Directory Preferences panel
13

CHAPTER 1 | Introduction to Artix
♦ Set a default resource directory - the directory to open when
browsing for existing resources

♦ Set a default templates directory - the directory where any custom
workspace templates are stored

3. Use the Start-up Options panel to define whether to:

♦ Set your default user interface mode to Editor

♦ Display the Start-up dialog every time you open Artix

♦ Include workspace history in your File menu

♦ Nominate a number of history files to include in the File menu

♦ Display the Diagram or Text view as your default

4. Use the Look and Feel panel to select an appearance for the Designer
from the list provided.

5. Use the WSDL Options panel to define a default namespace for your
WSDL contracts.

6. Click OK when you have finished making your changes to close this
dialog and return to the Artix Designer.
 14

WSDL Basics
WSDL Basics
Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C web site, www.w3.org.

Elements of a WSDL document A WSDL document is made up of the following elements, which you will see
represented throughout the Artix Designer. You can use the Designer to
create and edit these elements:

• <types> – the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema

• <message> – the abstract definition of the data being communicated

• <operation>– the abstract description of an action

• <portType> – the set of operations representing an absract endpoint

• <binding> – the concrete data format specification for a port type

• <port> – the endpoint defined by a binding and a physical address

• <service> – a set of ports

Example WSDL file On the following pages is an example of a WSDL file. It is the HelloWorld
WSDL used in many of the demos shipped with the Artix product

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld"
 targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/

 configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
15

http://www.w3.org/TR/wsdl

CHAPTER 1 | Introduction to Artix
Note the types, messages, port types, and bindings defined in this section.

<types>
 <schema

targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </types>
 <message name="sayHiRequest"/>
 <message name="sayHiResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>
 <message name="greetMeRequest">
 <part element="tns:requestType" name="me"/>
 </message>
 <message name="greetMeResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>
 <portType name="Greeter">
 <operation name="sayHi">
 <input message="tns:sayHiRequest" name="sayHiRequest"/>
 <output message="tns:sayHiResponse"

 name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <input message="tns:greetMeRequest"

 name="greetMeRequest"/>
 <output message="tns:greetMeResponse"

 name="greetMeResponse"/>
 </operation>
 </portType>
 <binding name="Greeter_SOAPBinding" type="tns:Greeter">
 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 16

WSDL Basics
Note the service defined in this section.

For more information For a more extensive WSDL discussion, see Learning About Artix.

 <operation name="greetMe">
 <soap:operation soapAction="" style="document"/>
 <input name="greetMeRequest">
 <soap:body use="literal"/>
 </input>
 <output name="greetMeResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SOAPService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>
17

CHAPTER 1 | Introduction to Artix
 18

CHAPTER 2

Creating an Artix
Workspace
The Artix Designer provides a canvas within which you can
design Artix solutions. The packaging mechanism for these
solutions is the workspace.

In this chapter This chapter discusses the following topics:

What is a Workspace? page 20

Creating a Workspace using a Wizard page 26

Creating a Workspace using a Template page 30
19

CHAPTER 2 | Creating an Artix Workspace
What is a Workspace?

Overview The Artix Workspace defines your Artix solution. It is the first thing you need
to create, and all of the solution’s components are included within it.

Workspaces contain collections and resources. While you can only have
one workspace open at a time, you can have as many collections and
resources within that workspace as you like.

A collection is a group of resources that can be deployed as one or more
systems, for example a client, a server, or a switch. A resource is a WSDL
file that, either by itself or with other resources, defines the Artix Contract.

Resources can be stored at the workspace level and applied to one or more
collections (shared resources), or can be stored at the collection level and
apply only to that collection. The Workspace Details panel shows you the
contents of your workspace, as shown in Figure 5.

Figure 5: Workspace Details panel
 20

What is a Workspace?
The Workspace Details panel provides another view of your workspace,
besides the Designer Tree view. It lists the collections and resources
contained in your workspace, and also provides Add and Delete functions.

Deployment Profiles for the workspace are also listed on the Workspace
Details panel. A profile is needed for each different operating system that
will host your Artix deployment, such as Windows or Unix.

For more information about Artix Deployment, including Deployment
Profiles, see “Deployment Explained” on page 178.

Creating a workspace There are two ways to create a new workspace:

• Select the New Workspace wizard (from the New Workspace dialog, as
shown in Figure 6) - recommended for first time users of Artix. - see
page 26 for more information.

• Select one of the Workspace Templates provided in the New
Workspace dialog to have Artix assume all of the necessary defaults to
get your workspace up and running quickly. See page 30 for details.

Figure 6: New Workspace dialog
21

CHAPTER 2 | Creating an Artix Workspace
Shared resources Shared resources are resources that are stored at the workspace level, and
by default are included in every collection you create within the workspace.
All instances of this resource are linked, however - they are not individual
copies of the resource. Thus, if you edit a shared resource, you are actually
editing every instance of that resource.

When you create a new workspace, you are given the option of adding
shared resources via the Shared Resources panel, as shown in Figure 7.

You can also add shared resources at other times from the Workspace
Details panel by clicking the Add button under the Shared Resources Details
list.

A shared resource is represented in two ways in the Designer Tree. The
original version of the resource is listed under the Shared Resources folder,
and the reference to the Shared Resource in each Collection is shown with
the name of the resource italicized, and its icon having a dimmed shortcut

Figure 7: New Workspace wizard—Shared Resources panel
 22

What is a Workspace?
arrow, as shown in Figure 8. An X icon next to the resource name indicates
invalid WSDL. The error information provided in the WSDL Text view of the
contract will explain how to fix invalid WSDL.

Collection-specific resources In contrast, you can also create resources that are collection-specific. That
is, they apply only to the collection within which they are created and are
not also included in other collections within the workspace. These are
indicated in Figure 8 by the resource names within collections that are not
italicized, and are created by selecting a the Collection name and selecting
File | New | Resource. See “Working with Artix Resources” on page 47.

Figure 8: Designer Tree Showing Collections and Shared Resources
23

CHAPTER 2 | Creating an Artix Workspace
Collections A collection is a group of related resources within your workspace. It can be
deployed as one or more systems, such as a client, a server, a switch, or any
combination of all three.

When you create a workspace, you are given the opportunity to create a
collection via the Define Collection panel, as shown in Figure 9.

Otherwise you can add them to your workspace from the Workspace Details
panel by clicking on the Add button under the Collections list.

Collections contain resources that together define the Artix contract. These
resources can be based on one or more items, including URLs, and WSDL
or IDL files. If an IDL file is added to a collection, it is converted to WSDL
and this WSDL is what is actually listed on the Designer Tree.

For more information see “Working with Artix Collections” on page 35.

Figure 9: New Workspace wizard—Collection panel
 24

What is a Workspace?
Deployment entities There are two deployment entities in Artix that you need to be aware of
when working in Workspace mode:

• Deployment Profiles, which are stored at the workspace level and
apply to all collections in that workspace

• Deployment Bundles, which are stored at the collection level and apply
to only that collection. A Deployment Bundle must also be associated
with a Deployment Profile, meaning that you cannot create a bundle
before creating a profile.
25

CHAPTER 2 | Creating an Artix Workspace
Creating a Workspace using a Wizard
To add a workspace using the New Workspace wizard:

1. From the New Workspace dialog, select the New Workspace wizard
icon to display the New Workspace wizard, as shown in Figure 10.

2. Enter a name for the workspace, or accept the default provided.

3. Select the location where you would like to save your workspace, or
accept the default provided.

Tip: To define a new default save location for all future workspaces, go
to the User Preferences dialog (under the Edit menu).

4. Add a description for this workspace in the field provided.

5. Select the Add Shared Resources check box if you want to add
resources to this workspace that will be shared between all the
collections in the workspace. This step is optional.

Figure 10: New Workspace Wizard
 26

Creating a Workspace using a Wizard
Selecting this option will add an extra panel to the wizard for you to
enter the shared resource details.

6. Select the Add Collection check box if you want to add a collection to
this workspace now. Note that this is optional - you can always add a
collection later if you don’t want to add one now.

Selecting this option will add an extra panel to the wizard for you to
enter the collection details.

7. Click Next to display one of the following panels, depending on which
check boxes you selected on the first panel:

♦ If you checked the Add Shared Resources option, the Shared
Resources panel is displayed, as shown in Figure 11. Continue
with step 8.

Figure 11: New Workspace wizard—Shared Resources panel
27

CHAPTER 2 | Creating an Artix Workspace
♦ If you did not check the Add Resources option but did check the
Add Collection option, the Define Collection panel is displayed, as
shown in Figure 12. Continue with step 10.

♦ If you did not check either of the options on the first panel, the
Summary panel is displayed as shown in Figure 13 on page 29.
Continue with step 14.

8. Type the location of either a WSDL file or an IDL file in the Enter
Service URL or WSDL/IDL file field, or click Browse to navigate to the
file you would like to use.

When you have selected a file to use, click Add to list it in the Added
Items list.

9. Repeat step 8 as many times as you like to continue adding resources
to the list, then click Next to display Define Collection panel as shown
in Figure 12. If you did not choose to Add a Collection, go to step 14.

Figure 12: New Workspace wizard—Collection panel
 28

Creating a Workspace using a Wizard
10. Enter a name for the new collection, or accept the default provided.

11. Enter a description for the new collection in the Description field.

12. By default, all shared resources you added to this workspace on the
previous panel are selected to be added to this collection. If there are
any resources you do not want added, click on their check box to
deselect them.

13. Click Next to display the Summary panel, as shown in Figure 13. This
panel lists everything you just specified in the wizard.

14. Click Finish to close the wizard and display the Artix Designer, where
the Designer Tree displays your newly created workspace.

Figure 13: New Workspace wizard—Summary panel.
29

CHAPTER 2 | Creating an Artix Workspace
Creating a Workspace using a Template
To add a workspace using a template:

1. From the New Workspace dialog, select one of the templates listed to
create a workspace for that type of Artix deployment. As shown in
Figure 14, the workspace templates provided are:

♦ C++ Client

♦ C++ Server

♦ C++ Server and Client

♦ Java Client

♦ Java Server

♦ Java Client and Server

♦ Artix Switch

♦ IDL to SOAP

♦ HttpSample Template (editable as a custom template) - for
specific instructions on using this custom template, see “Working
with Custom Templates” on page 32.

Figure 14: New Workspace dialog showing Template options
 30

Creating a Workspace using a Template
2. Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a different save location
if you wish.

3. Enter the file name or URL for your WSDL file in the field provided, or
click Browse to navigate to a suitable file.

4. Enter the name of a WSDL file to use to build this workspace, or click
Browse to navigate to one.

5. Select a service to use for this workspace from the list of services that
have been loaded into the Service drop-down list. These are the
services contained in your WSDL file.

6. Select a port to use for this workspace from the list of ports that have
been loaded into the Port drop-down list. These are the ports
contained in your WSDL file.

7. Click OK to display the Artix Designer with your new workspace loaded
into the Designer Tree.

Behind the scenes

When creating your new template-based workspace, Artix has automatically
performed the following tasks:

• Created a workspace directory and file in the save location you
specified

• Imported your WSDL file and added it to the workspace file

• Depending on which system you decided to create, it has created a
local deployment profile including configuration options

• Created a deployment bundle containing all required code and a
makefile for your target service

You could now create code for the workspace by selecting Tools | Generate
Code, which would generate all files required.

Note than some hand editing of the implementation file will be required.
For help with this, see Developing Artix Applications in C++ or Developing
Artix Applications in Java, depending on which type of code you’re working
with.
31

CHAPTER 2 | Creating an Artix Workspace
Working with Custom Templates

Overview Artix 2.1 contains a sample template, HttpSample Template, that you can
use in two ways:

• To gain a better understanding of how custom templates work

• To enable you to create custom workspaces that by default contain the
same entities (profiles, bundles, resources)

Future versions of the Artix Designer will provide the capability for you to
create and edit custom templates via the GUI - currently there is no
capability for creating new templates, other than saving the sample as a
different name. All editing must be done within a text editor.

Storing custom templates

The sample template is stored in the \\artix\2.1\etc\xml\templates
installation directory. If you edit this template and save it as another name,
then this edited template will be listed on the Workspace dialog just as the
sample is now. Equally, if you saved various copies of this sample to that
location then all of those copies would also be listed in the Workspace
dialog.

If you want to change the directory that the Workspace dialog points to for
these templates, you can do so via the Default Template Directory setting in
the User Preferences dialog (under the Edit menu).

Procedure To create a workspace based on the HttpSample template, select it in the
Workspace dialog, and then:

1. Enter a name for the new workspace, or accept the default provided.

2. Enter a save location for the workspace, or accept the default provided.
 32

Creating a Workspace using a Template
3. Click Template Settings to display a dialog where you can define the
settings for this workspace, as shown in Figure 15.

4. The first field contains Shared Resources that will be included in this
workspace. Click Add to locate other resources you want to add to the
workspace as shared.

If you edit the template file, you can have other resources listed in this
field, as well as the other fields on this dialog, by default.

5. The Collection Resources and Settings section defines the resources
that will be included in each Collection. In this template, two
collections have been created and each contains a different resource.

Again, you can click Add to locate other resources to add to the
collections.

Figure 15: Template Settings dialog
33

CHAPTER 2 | Creating an Artix Workspace
6. The Code Generation Settings section defines the necessary
information for creating the deployment bundles for this workspace so
that you can generate the application code.

Two bundles have been created in this template and each uses
different resources, services, and ports. If you change any of the
pre-defined values in these fields, click Apply Settings to update the
bundle.

7. Click OK to close this dialog and return to the New Workspace dialog.

8. Click OK to close the Workspace dialog and return to the Artix
Designer, where your new workspace is loaded into the Designer Tree.
 34

CHAPTER 3

Working with Artix
Collections
A Collection is a group of related WSDL contracts that can be
deployed as one or more physical entities such as Java, C++,
or CORBA based applications. It can also be deployed as a
switch process.

In this chapter This chapter discusses the following topics:

What is a Collection? page 36

Creating a Collection page 38

Editing a Collection page 42

Generating Code for a Collection page 45
35

CHAPTER 3 | Working with Artix Collections
What is a Collection?

Overview A collection is a group of related resources that create the Web Service
definition. Resources are WSDL contracts that can be created by importing
WSDL files or by importing IDL files which are automatically converted into
WSDL by Artix. A collection may contain one or more WSDL contracts.

At deployment time, a collection can be generated into physical entities
such as Java, C++, or CORBA based applications. Contracts can also be
based on data sets, such a COBOL Copybooks.

Collections are listed in the Designer Tree, as are the resources belonging to
that collection, as shown in Figure 16.

Figure 16: Designer Tree showing Collections and Resources
 36

What is a Collection?
If you select a collection in the Designer Tree, the details for that collection
are shown in the details panel on the right, as shown in Figure 17. In this
panel you can view information about the resources contained in that
collection, and about any Deployment Bundles that have been created for
that collection.

Figure 17: Collection Details panel
37

CHAPTER 3 | Working with Artix Collections
Creating a Collection

Overview When you create a workspace using the New Workspace wizard (see
page 26), you are given the option of creating a collection. Even though you
are only given the option of creating one collection in this wizard, you can
actually have as many collections in your workspace as you like.

Adding new collections is easy. You can click on the Add button under the
Collections list on the Workspace Details panel (Figure 18), or you can
select File | New | Collection from the menu bar.

Figure 18: Workspace Details panel
 38

Creating a Collection
Either way, you arrive at the New Collection wizard, as shown in Figure 19,
and you can proceed through the procedure outlined below.

Procedure 1. Enter a name for your collection, or accept the default provided.

2. Enter a description of your collection. This description should explain
the purpose of the collection.

3. If you want to add resources to this collection that are
collection-specific, check the box provided. This will cause an extra
panel (Add Collection Resources) to be added to the wizard.

4. By default, the shared resources contained in your workspace will be
added to this collection. They are listed in the Shared Resources table.
If you do not want to add any or all of these resources to your
collection, click the check boxes to deselect them.

Figure 19: New Collection wizard
39

CHAPTER 3 | Working with Artix Collections
5. Click Next to display the Add Collection Resources panel, as shown in
Figure 20. If you did not choose to add resources to this collection,
the Summary panel will be displayed - see step 8 for details.

6. Enter the URL or name of an existing file you would like to import into
this collection as a resource. If you need to, click Browse to navigate
to the file’s location.

7. Click Add to add the file to the Added Items list and repeat as many
times as necessary until you have added all the resources you want.

Figure 20: New Collection wizard—Add Collection Resources panel
 40

Creating a Collection
8. Click Next to display the Collection summary, as shown in Figure 21.

9. Click Finish to close this wizard and return to the Artix Designer, where
you will see your new collection added to the Designer Tree.

Figure 21: New Collection wizard—Summary panel
41

CHAPTER 3 | Working with Artix Collections
Editing a Collection

Overview You can make changes to your collection, or the resources within it, at any
time using the Collection Details panel, as shown in Figure 22.

Figure 22: Collection Details panel
 42

Editing a Collection
Adding and deleting resources To add a resource, click Add to display the New Resource from File/URL
dialog, as shown in Figure 23.

For help with this dialog, and other information about adding resources, see
“Working with Artix Resources” on page 47.

To delete a resource you need to first select it on the Collection Details panel
using the check box provided, and then click Delete.

Adding and deleting Deployment
Bundles

To add a Deployment Bundle, click the Add button under the Deployment
Bundles list on the Collection Details panel to display the Deployment
Bundle wizard.

To delete a Deployment Bundle, you need to first select it using the check
box provided, and then click Delete.

Figure 23: New Resource from File/URL dialog
43

CHAPTER 3 | Working with Artix Collections
Editing deployed collections If you make changes to any contract in a collection that has had code
generated, you should be aware that these changes could make the code for
that collection invalid. It is recommended, therefore, that you regenerate
the code any time that you change a previously deployed collection.

For more information, see “Generating Code” on page 192 for more
information.

Invalid WSDL Also, be aware that any changes you make to a resource could leave its
underlying WSDL document invalid - if this happens you will only be able to
view the contract by selecting the WSDL tab of the Resource Navigator, as
shown in Figure 25 on page 49. In this view, any problems with the WSDL
are listed, as shown in Figure 24, so that you can fix them and return the
WSDL to a valid state.

Converting resources to shared You can change a collection-specific resource within a collection to a shared
resources, and thus have the opportunity to add it to all of your collections.

To do this, select the resource name in the Designer Tree and select
Resource | Convert to Shared. This will invoke a dialog asking which other
collections you would also like to include this resource - by default, all
collections are selected.

Click OK to close this dialog and return to the Artix Designer. The resource
is now in the Shared Resources list, plus all collections that you specified.

Figure 24: Artix Designer Invalid WSDL Indicator
 44

Generating Code for a Collection
Generating Code for a Collection
As mentioned at the beginning of this chapter, collections can be generated
into physical entities such as Java, C++, or CORBA based applications.
Further, collections can be deployed as clients, servers, or switches,
depending on your solution requirements.

The Artix deployment process has three steps:

1. Create a Deployment Profile - contains machine level information such
as the Artix save location, the compiler location, and the operating
system being used. A profile can be used multiple times as it is not
specific to any particular collection defined within the workspace.

To create a deployment profile, select File | New | Deployment Profile
from the menu bar.

2. Create a Deployment Bundle - defines specific information about the
deployment of a collection, such as the deployment type (client, server,
or switch), configuration details, and code generation options.

To create a deployment bundle, select a collection from the Designer
Tree, then select File | New | Deployment Bundle from the menu
bar.

3. Deploy the bundle - a very simple procedure once the profile and
bundle are in place. Artix deploys the solution based on the information
you provided in the bundle, and generates the code, environment
scripts, and configuration files as specified in the locations you
provided.

To deploy a bundle, select a collection from the Designer Tree, then
select Tools | Generate Code from the menu bar.

After generating the code, you need to perform some editing of the
implementation code, and then you can run and compile the code.

For more information and detailed procedures for each of the deployment
steps, see “Deployment” on page 177.
45

CHAPTER 3 | Working with Artix Collections
 46

CHAPTER 4

Working with Artix
Resources
A resource is an XML document that defines an interface to a
collection.

In this chapter This chapter discusses the following topics:

What are Resources? page 48

Navigating Resources page 49

What is a Contract? page 53

What is a Schema? page 56

Creating New Resources page 57
47

CHAPTER 4 | Working with Artix Resources
What are Resources?

Overview An Artix Resource is an XML document that can be used to define the
interface to a collection. In Artix 2.1 there are two resource types:

• Contracts, which can comprise one or more of the following:

♦ WSDL documents

♦ WSDL created from IDL files

♦ WSDL created from data sets, such as COBOL Copybooks

• Schemas, which define types. Schemas can also be referenced from
within contracts, if desired, to define the types for that contract.

If a resource is added to a workspace, it can take one of two roles:

• A "Shared" resource, which is automatically added to every collection
in that workspace.

• A "collection-specific" resource, which only applies to the collection to
which it is added.

How Artix helps you create a
contract

When building a WSDL contract, the Artix Designer guides you through the
process by making only relevant options available to you depending on the
current state of that contract.

For example, if you are building your contract from scratch you need to add
components to it in a certain order as there are dependencies between the
components. In short, the contents of the Resource menu, as shown below,
reflect the order in which components need to be added to the resource.

• Types - the first item to be created. You may not have to create extra
ones though, as some primitive types exist by default.

• Messages - cannot be created without a Type. The primitive types will
suffice if you don’t want to add new types.

• Port Types - cannot be created without a Message.

• Bindings - cannot be creating without a Port Type.

• Services - cannot be creating without a Binding.

• Routes - cannot be created without two compatible Services.

Contracts and Schemas are explained in more detail later in this chapter.
 48

Navigating Resources
Navigating Resources

Overview The Artix Designer provides an interface tool, called the Resource Navigator,
that gives you two views of a resource - diagram or text. These views are
accessed via tabs at the bottom of the Designer’s details panel.

Diagram view Depending on how you want to work with your resource, you can use either
of the available views. If you aren’t very familiar with XML, you will find it
easier working in the diagram view, as shown in Figure 25.

The WSDL model

The diagram view shows you the WSDL model. As seen in Figure 25, the
multi-part contract has 106 types, 54 messages, and 1 port type. It
currently contains no bindings, services, or routes.

Figure 25: Resource Navigator—Diagram view
49

CHAPTER 4 | Working with Artix Resources
If you right-click on one of the components, such as types, you are given the
option to create a new type, or to edit or view the existing types. You can
also expand and collapse the list of existing types.

The model expanded

When you expand the existing types, the Resource Navigator changes to
look more like Figure 26.

Figure 26: Resource Navigator showing Types Expanded
 50

Navigating Resources
Navigating the expanded model

Now you can scroll through the individual types and right-click on any of
them to edit or view the attributes for that type. The Resource Navigator
lists eight "child" components at any one time. To scroll to view the next or
the previous eight, you just need to click on the Next or Previous arrows.

If you want to see a list of all of the child components, right-click on the
parent node and click Go To, from where you can jump to any of the listed
types.

Viewing relationships between components

As you work down through each of the components in a WSDL contract, you
can expand them to a point that displays the relationships between them.
For example, for a contract that contains define services, bindings, port
types, messages, and types you can expand the each service right out to
view every related component, right out to its types.

Text view If you prefer, you can work directly in the XML text for the resource by
selecting the Text tab, as shown in Figure 27.

Figure 27: Resource Navigator—Text view
51

CHAPTER 4 | Working with Artix Resources
Editing tools

In this view you can hand edit the resource. Tools under the Edit menu in
this view make the task easier. You can also use the Search and Go To
functions to locate segments or specific lines within the text.

Validating your changes

When you make changes to the text and click Apply Edits, Artix checks that
your changes have not compromised the XML for the resource. If your
changes have made the resource invalid, the errors are listed in the Errors
panel so that you can go to the relevant line and correct them. Figure 28
shows an example of the Error panel.

Figure 28: Error panel
 52

What is a Contract?
What is a Contract?

Overview Artix contracts describe Artix resources and their integration. They are
written in WSDL. Each mapping of a port type to a binding and port defines
an Artix collection. The contract also describes the routing between
collections. It has two sections:

• Logical - describes the abstract operations, messages, and data types
used by a collection.

• Physical - describes the concrete message formats and transports used
by a collection. The routing information defining how messages are
mapped between different collections is also specified here.

The Logical Section The logical section of an Artix Contract defines the abstract operations that
the collections offer. The logical view includes the <types>, <message>, and
<portType> tags in a WSDL document. This portion of the contract also
specifies the namespaces used in defining the contract.

Types

Applications typically use datatypes that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex datatypes using a combination of
schema types defined in referenced external XML schema documents and
complex types described in <type> elements.

For information about adding Types to your Artix contract, see “Adding
Types” on page 60.

Messages

WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <message> elements. Each
abstract message consists of one or more parts, defined in <part> elements,
that are the formal data elements of the abstract message. Each part is
identified by a name and an attribute specifying its data type.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <binding> elements.
53

CHAPTER 4 | Working with Artix Resources
For information about adding messages to your Artix contract, see “Adding
Messages” on page 73.

Port Types

A portType can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <portType> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

For information about adding Port Types to your Artix contract, see “Adding
Port Types” on page 77.

Operations

Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the name attribute. The name attribute is required to define an operation.

Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

For information about adding Operations to your Artix contract, see the
Operations section in “Adding Port Types” on page 77.
 54

What is a Contract?
The Physical Section The physical section of an Artix contract defines the bindings and transports
used by the collections. It includes the information specified in the
<binding> and <service> tags of a WSDL document. It also includes the
routing rules defining how the messages are routed between the endpoints
defined in the document.

Bindings

To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <binding> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

WSDL is intended to describe services offered over the Web and therefore
most bindings are specified using SOAP as the message format. WSDL can
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA,
SOAP, and XML. For specific information on using bindings see “Adding
Bindings” on page 115.

Services

The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ. For more information, see “Adding Services” on page 139.

Routing

To fully describe the integration of collections across an enterprise, Artix
contracts include routing rules for directing data between the collections.
Routing rules are described in “Routing Messages” on page 167.

For more information For more detailed information about Artix contracts and their components,
see either the Artix Getting Started Guide, or Developing Artix Solutions
from the Command Line.
55

CHAPTER 4 | Working with Artix Resources
What is a Schema?

Overview An XML Schema is similar to a contract, except that it only defines types.
As such, it cannot really be called a contract. It is possible, however, to
create a contract containing a reference to a schema to define the contract’s
types. Figure 29 shows a Schema in the Resource Navigator diagram view.

Figure 30 shows the same schema, this time in text view.

Figure 29: Schema—diagram view

Figure 30: Schema—text view
 56

Creating New Resources
Creating New Resources

Overview Creating Artix resources from scratch takes a little time, but is still easy to
do using the Designer. Wizards guide you through the process.

As explained in “Creating a Collection” on page 38, a WSDL contract is
made up of a logical and a physical part. The logical part contains types,
messages, port types and operations. The physical part contains services
and bindings. A Schema is much simpler - it just defines types.

This section explains how to create schemas and how to create the logical
part of Artix contracts. The topics discussed are:

• “Creating a Contract” on page 58

• “Adding Types” on page 60

• “Adding Messages” on page 73

• “Adding Port Types” on page 77

• “Adding Access Control Lists” on page 83

• “Creating Resources from a File/URL” on page 86

• “Creating Contracts from Data Sets” on page 93

• “Creating an XSD Schema” on page 105

For information on adding bindings to your resource, see “Adding Bindings”
on page 115.

For information on adding services to your resource, see “Adding Services”
on page 139.
57

CHAPTER 4 | Working with Artix Resources
Creating a Contract

Overview The first thing you need to do is create a contract shell. Depending on
which mode of the Designer you are working in (Deployer or Editor), the
steps you follow to do this will be slightly different.

If you are working in Editor mode, select New | WSDL Contract to display
the New Contract dialog, as shown in Figure 32 on page 59.

If you are working in Deployer mode:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.

2. Select File | New | Resource from the File menu to display the New
Resource dialog, as shown in Figure 31.

Figure 31: New Resource dialog
 58

Creating New Resources
3. Select the Empty WSDL Contract icon and click OK to display the
New Contract dialog, as shown in Figure 32.

4. Enter a name in the Name field, or accept the default provided.

5. Enter a value in the Target Namespace field, or accept the default
provided.

6. Click OK to close this dialog and return to the Artix Designer. Your
new contract will be shown, and you can now add types, messages,
and port types to it using the procedures documented over the
following pages.

Figure 32: New Contract dialog
59

CHAPTER 4 | Working with Artix Resources
Adding Types

Procedure To add a Type to your resource:

1. Select Resource | New | Type from the menu bar to display the New
Type wizard, as shown in Figure 33.

2. Select where to create the WSDL entry for the new type.

♦ Add to existing WSDL adds the type information to the existing
contract.

♦ Add to new WSDL creates a new WSDL document that contains
the type information.

If, like in this example, you have an instance where the first option on
this panel - Add to existing WSDL - is not able to be selected, it
indicates that your WSDL file is read-only. Thus, you only have the
option or creating a new WSDL file for the new type.

Figure 33: New Types wizard
 60

Creating New Resources
3. Click Next to display the Type Properties panel as displayed in
Figure 34.

4. Enter a name for the new type, or accept the default provided.

5. You can specify a target namespace for this type if you like - if you
don’t the default WSDL target namespace is applied.

6. Select the Kind value for the type - complex, simple, or element.

Figure 34: New Types wizard—Type Properties panel
61

CHAPTER 4 | Working with Artix Resources
7. Click Next to display the Define Type Data panel, as shown in
Figure 35.

8. Depending on the Kind of type you selected, different options are
displayed on the Type Attributes panel. The example shown in
Figure 35 shows the options for a complex type. Continue with step 8,
if this is the kind of type you are creating, otherwise go to one of the
following steps:

♦ Step 19 for a simple type

♦ Step 24 for an element

Figure 35: New Types wizard—Define Type Data panel
 62

Creating New Resources
Complex type attributes 9. At the Define Type Data panel, as shown in Figure 35, select a Group
Type value from the list provided. This defines how the complex type
elements will be mapped to data structures.

10. If you select one of the content types (simplecontent or
complexcontent), the Content Base Type field is enabled. From this
field you can select the type you would like to use as a starting point
for your content type.

11. Provide values for each of the Element Data fields:

♦ Type - the base type for this schema

♦ Name - a unique string identifier for element

♦ Minimum Occurrence - the minimum times you want the element
to be present (not an option for content types)

♦ Maximum Occurrence - the maximum times you want the
element to be present (not an option for content types)

If this element is going to be a required field in your application, then
you should select the Required check box provided.

12. Select the Unbounded check box if there is no maximum occurrence
limit. Note: this is not an option for content types.

13. Select the Nillable check box if you want to indicate that this element
could potentially be omitted completely, or could pass an empty object
across the wire. Note: this is not an option for content types.

14. Click Add to move the details you have provided for this element into
the Element List table.

To edit an element in this table, select it and then make the changes in
the fields above the table. Click Update to refresh the values in the
table.

You can delete an element from this table by selecting it and clicking
Remove.

15. Repeat steps 9 - 14 until you have added all of your elements.
63

CHAPTER 4 | Working with Artix Resources
16. Click Next to display the Define Type Attributes panel, as shown in
Figure 36.

17. Click Next to view the Summary panel.

18. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

Figure 36: New Types wizard—Define Type Attributes panel
 64

Creating New Resources
Simple type attributes 19. At the Define Type Data panel, as shown in Figure 37, select a Base
Type from the list provided, for example, string or boolean.

20. Provide values for each of the Restriction Data fields:

♦ Facet - a characteristic of the base type, for example for a string,
the available facets would be enumeration, length, or
maxLength.

♦ Value - the value for the facet, for example the value for length
would be a non-negative integer.

21. Click Add to move the details you have provided for this restriction into
the Restriction List table.

To edit a restriction in this table, select it and then make the changes
in the fields above the table. Click Update to refresh the values in the
table.

You can delete a restriction from this table by selecting it and clicking
Remove.

Figure 37: New Types wizard—Type Data (simple) panel
65

CHAPTER 4 | Working with Artix Resources
22. Repeat steps 16 - 18 until you have added all of your restrictions.

23. Click Next to view the Summary panel, as shown in Figure 38.

24. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

Figure 38: New Type wizard—Summary panel for Simple Types
 66

Creating New Resources
Element attributes 25. At the Define Type Data panel, as shown in Figure 39, select the
Nillable check box if you want to indicate that this element could
potentially be omitted completely, or could pass an empty object
across the wire.

26. Select an Attribute Type Definition. Options available are:

♦ Pre-declared type - any type that has been pre-defined or is one of
the standard primitive types

♦ Inline complextype - an "anonymous" complex type that can be
used within this element only; is not available for use by other
elements or types

♦ Inline simpletype - an "anonymous" simple type that can be used
within this element only; is not available for use by other
elements or types

27. Depending on what you select here, clicking Next will display one of
the following:

Figure 39: New Types wizard—Type Attributes (element) panel
67

CHAPTER 4 | Working with Artix Resources
♦ The Define Inline Type (complex) panel, as displayed in
Figure 40, - continue with the next step in this procedure

♦ The Define Inline Type (simple) panel - jump to step 40 in this
procedure

♦ The View Summary panel - jump to step 42 in this procedure.

Inline complextype 28. Select a Group Type value from the list provided. This defines how the
complex type elements will be mapped to data structures.

29. If you select one of the content types (simplecontent or
complexcontent), the Content Base Type field is enabled. From this
field you can select the type you would like to use as a starting point
for your content type.

30. Provide values for each of the Element Data fields:

♦ Type - the base type for this schema

♦ Name - a unique string identifier for element

Figure 40: New Types wizard—Define Inline Type panel (complex)
 68

Creating New Resources
♦ Minimum Occurrence - the minimum times you want the element
to be present (not an option for content types)

♦ Maximum Occurrence - the maximum times you want the
element to be present (not an option for content types)

If this element is going to be a required field in your application, then
you should select the Required check box provided.

31. Select the Unbounded check box if there is no maximum occurrence
limit. Note: this is not an option for content types.

32. Select the Nillable check box if you want to indicate that this element
could potentially be omitted completely, or could pass an empty object
across the wire. Note: this is not an option for content types.

33. Click Add to move the details you have provided for this element into
the Element List table.

To edit an element in this table, select it and then make the changes in
the fields above the table. Click Update to refresh the values in the
table.

You can delete an element from this table by selecting it and clicking
Remove.

34. Repeat steps 28 - 33 until you have added all of your elements.
69

CHAPTER 4 | Working with Artix Resources
35. Click Next to display the Define Type Attributes panel, as shown in
Figure 41.

36. Click Next to view the Summary panel.

37. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

Figure 41: New Types wizard—Define Type Attributes panel
 70

Creating New Resources
Inline simpletype 38. At the Define Inline Type (simple) panel, as shown in Figure 42, select
a Base Type from the list provided, for example, string or boolean.

39. Provide values for each of the Restriction Data fields:

♦ Facet - a characteristic of the base type, for example for a string,
the available facets would be enumeration, length, or
maxLength.

♦ Value - the value for the facet, for example the value for length
would be a non-negative integer.

40. Click Add to move the details you have provided for this restriction into
the Restriction List table.

To edit a restriction in this table, select it and then make the changes
in the fields above the table. Click Update to refresh the values in the
table.

You can delete a restriction from this table by selecting it and clicking
Remove.

Figure 42: New Types wizard—Define Inline Type (simple) panel
71

CHAPTER 4 | Working with Artix Resources
41. Repeat steps 38 - 40 until you have added all of your restrictions.

42. Click Next to view the Summary panel.

43. If you would like to add another Type, click the check box provided and
click Next. This will return you to the Type Properties panel, as
displayed in Figure 34 on page 61.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.
 72

Creating New Resources
Adding Messages

Procedure To add a Message to your resource:

1. Select Resource | New | Message from the menu bar to display the
New Message wizard, as shown in Figure 43.

2. Select where to create the WSDL entry for the new message.

♦ Add to existing WSDL adds the message information to an
existing contract.

♦ Add to new WSDL creates a new WSDL document that contains
the message information.

3. Select the resources from this collection that you want to use as the
source for this new message. If you selected a resource before
invoking the New Message wizard, that resource is selected by default.

Figure 43: New Message wizard
73

CHAPTER 4 | Working with Artix Resources
You can also select other resources to use as sources for this message
- this will give you more types to choose from when defining message
parts later in this wizard.

4. Click Next to display the Message Properties panel, as shown in
Figure 44.

5. Enter a name for the message, or accept the default provided.

Figure 44: New Message wizard—Message Properties panel
 74

Creating New Resources
6. Click Next to display the Message Parts panel, as shown in Figure 45.

7. Enter a name for the message part, and select a type from the list
provided.

8. Click Add to move the details you have provided for this part into the
Part List table.

To edit a part in this table, select it and then make the changes in the
fields above the table. Click Update to refresh the values in the table.

You can delete a part from this table by selecting it and clicking
Remove.

9. Repeat steps 6 and 7 until you have added all of your parts.

Figure 45: New Message wizard—Message Parts panel
75

CHAPTER 4 | Working with Artix Resources
10. Click Next to view the Summary panel, as shown in Figure 46.

11. If you would like to add another Message, click the check box provided
and click Next. This will return you to the Message Properties panel,
as displayed in Figure 44 on page 74.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

Figure 46: New Messages wizard—Summary panel
 76

Creating New Resources
Adding Port Types

Procedure To add a Port Type to your resource:

1. Select Resource | New | Port Type from the menu bar to display the
New Port Type wizard, as shown in Figure 47.

2. Select where to create the WSDL entry for the new port type.

♦ Add to existing WSDL adds the port type information to the
existing contract.

♦ Add to new WSDL creates a new WSDL document that contains
the port type information.

3. Select the resources from this collection that you want to use as the
source for this new port type. If you selected a resource before
invoking the New Port Type wizard, that resource is selected by

Figure 47: New Port Type wizard
77

CHAPTER 4 | Working with Artix Resources
default. You can also select other resources to use as sources for this
port type - this will give you more messages to choose from when
defining the operations later in this wizard.

4. Click Next to display the Port Type Properties panel, as shown in
Figure 48.

5. Enter a name for the port type, or accept the default provided.

Figure 48: New Port Type wizard—Port Type Properties panel
 78

Creating New Resources
6. Click Next to display the Port Type Operations panel, as shown in
Figure 49.

7. Enter a name for the new operation and select a style from the list
provided. Valid options are:

♦ one-way

♦ request-response

Figure 49: New Port Type wizard—Port Type Operations panel
79

CHAPTER 4 | Working with Artix Resources
8. Click Next to display the Operation Messages panel, as shown in
Figure 50.

9. Select a Message Type from the list provided.

10. Select a Message from the list provided.

11. Enter a name for the message, or accept the one provided.

12. Click Add to move the details you have provided for this operation
message into the Message List table.

To edit a message in this table, select it and then make the changes in
the fields above the table. Click Update to refresh the values in the
table.

You can delete a message from this table by selecting it and clicking
Remove.

Figure 50: New Port Type wizard—Operation Messages panel
 80

Creating New Resources
13. Click Next to display the Port Operations Summary panel, as shown in
Figure 51.

14. If you would like to add another Port Type Operation, click the check
box provided and click Next. This will return you to the Port Type
Operation panel, as displayed in Figure 49 on page 79.

Figure 51: New Port Type wizard—Port Operations Summary panel
81

CHAPTER 4 | Working with Artix Resources
Alternatively, click Next to display the Port Type Summary panel, as
shown in Figure 52.

15. If you would like to add another Port Type, click the check box
provided and click Next. This will return you to the Port Type
Properties panel, as displayed in Figure 48 on page 78.

Alternatively, click Finish to close this wizard and return to the Artix
Designer.

Figure 52: New Port Type wizard—Port Type Summary panel
 82

Creating New Resources
Adding Access Control Lists

Procedure You can create access controls lists (ACL) to define roles for each operation
in a port type.

To create an access control list:

1. Select a resource in the Designer Tree and select Resource | New |
Access Control List to display the New Access Control List wizard, as
shown in Figure 53.

2. Type the name of your security server in the field provided.

3. In the Port Type drop-down, either accept the default of All to assign
the same role to all port types in this resource, or select a port type to
assign roles at the operation level.

Selecting a port type will insert another panel into this wizard for you to
use when specifying operation-specific roles.

Figure 53: New Access Control List wizard
83

CHAPTER 4 | Working with Artix Resources
4. Type a role name in the Default Role field, or select the one provided in
the drop-down list. If you do not specify a role name for an operation
on the next panel, the value you specify here will be assigned by
default.

5. Accept the default save location provided for this ACL list, or type a
new one in its place. You can click Browse to navigate to a different
save location, if you prefer.

6. Click Next to display the Define ACL Operations panel, as shown in
Figure 54.

7. Click in a cell in the Role column to assign a role to that operation.
You can select roles from the drop-down with the cell, or type new
roles into the cell. You can add multiple roles to an operation as long
as you separate them with a comma.

8. Click the check box provided if you want to create another ACL - when
you click Next after clicking the check box the ACL you just created will
be saved and you will return to the first panel where you can repeat the
process.

Figure 54: New ACL wizard—Define ACL Operations panel
 84

Creating New Resources
9. Otherwise, click Next to display the View ACL Summary panel, as
shown in Figure 55.

10. This panel displays a summary of the ACL you have just created. To
view an ACL created earlier, select it from the drop-down list provided.

11. Click Finish to close this wizard and return to the Artix Designer.

Figure 55: New ACL Wizard—View ACL Summary panel
85

CHAPTER 4 | Working with Artix Resources
Creating Resources from a File/URL

Overview If you don’t want to create your resource from scratch, you might be able to
base it on an existing URL or File. You have four options:

• URL - you can use WSDL located at a URL address. For more
information, see “Using a File or a URL to create a Resource” on
page 87.

• WSDL - if you have some existing WSDL, you can import this into Artix
and use it as is, or edit it to change its components. For more
information, see “Using a File or a URL to create a Resource” on
page 87.

• XSD - You can create a resource based on an existing schema file. For
more information, see “Using a File or a URL to create a Resource” on
page 87.

• IDL - If you are starting from a CORBA server or client, Artix can
generate the logical portion of the WSDL contract from IDL,
automatically adding the required CORBA-specific entries and
namespaces. For more information, see “Using IDL to create a
Resource” on page 89.

The IDL compiler also generates the binding information required to
format the operations specified in the IDL. However, since port
information is specific to the deployment environment, the port
information is left blank, and you need to separately define a port using
the Services wizard - “Adding Services” on page 139 for help with this
task.
 86

Creating New Resources
Using a File or a URL to create a Resource

Procedure To use an existing WSDL or XSD file as the basis for your contract:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.

2. Select File | New | Resource from the menu bar to display the New
Resource dialog, as shown in Figure 58.

Figure 56: New Resource dialog
87

CHAPTER 4 | Working with Artix Resources
3. Select the Resource from Existing File/URL icon and click OK to
display the New Resource from File/URL dialog, as shown in
Figure 57.

4. Either type the URL address, or click Browse to locate the WSDL or
XSD file.

5. Click Add to move this resource to the Added Items list. Repeat steps
3 - 5 to add as many more WSDL or XSD resources as you like.

6. Click OK to close this dialog and return to the Artix Designer. One
contract will be listed under the selected collection for each resource
added or referenced.

Figure 57: New Resource from File/URL dialog
 88

Creating New Resources
Using IDL to create a Resource

Procedure To use an IDL file as the basis for your resource:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.

2. Select New Resource from the File menu to display the New Resource
selection panel, as shown in Figure 58.

Figure 58: New Resource dialog
89

CHAPTER 4 | Working with Artix Resources
3. Select the Resource from Existing File/URL icon and click OK to
display the New Resource from File/URL dialog, as shown in
Figure 59.

4. Click Browse to locate the IDL file you want to use as the resource for
your Artix contract.

Figure 59: New Resource from File/URL dialog
 90

Creating New Resources
5. Click Add to move this file to the Added Items list and display the IDL
Compiler Options dialog, as shown in Figure 60.

6. Enter the names of the directories to search for included IDL files.

7. Click Add to add a directory to the list. Selecting a directory and
clicking Remove will delete it from the list.

8. Add values to each of the namespace fields:

♦ WSDL Target Namespace - the name the IDL Compiler will set for
the targetNamespace value in the WSDL

♦ Schema Target Namespace - the name the IDL compiler will set
for the targetNamespace value in the Schema

♦ CORBA TypeMapping Target Namespace - the name the IDL
compiler will set for the CORBA targetNamespace

If you do not set values for these fields, defaults will be assumed.

Figure 60: IDL Compiler Options dialog
91

CHAPTER 4 | Working with Artix Resources
9. If you only wish to generate the logical portion of the contract select
the Logical Contract Only check box.

10. Click OK to close this dialog and return to the New Resource from
File/URL dialog

11. Repeat steps 4 - 10 until you have added all of the IDL resources to
import.

12. Click OK to close this dialog and return to the Artix Designer. One
resource will be listed under the selected collection for each IDL file
imported. The resources will include a CORBA binding (unless you
specified in Step 9 to create only the Logical Contract), a CORBA type
map, and a CORBA port description.

Deploying a service with the
CORBA port

You need to add location information to the CORBA port before you can
deploy a service using the CORBA port. For more information, see “Adding a
CORBA Port” on page 143.

For information about deploying Artix solutions, see “Deployment” on
page 177.

Note: If this option is selected the generated contracts will not
contain any binding, CORBA typemap, or transport information.
 92

Creating New Resources
Creating Contracts from Data Sets

Overview The third way you can create new contracts is by basing them on a data set.
Examples of this include:

• Defining fixed data

• Using an existing COBOL Copybook to define the fixed data

• Defining tagged data

When you create a contract in this way, you’re actually also creating the
associated binding at the same time. When creating contracts using the
other methods described in this chapter, the binding definition is a separate
step.

Procedure To create a contract from a data set:

1. Select New Resource from the File menu to display the New Resource
dialog, as shown in Figure 61.

Figure 61: New Resource dialog
93

CHAPTER 4 | Working with Artix Resources
2. Select the New Contract from Data Set icon, and click OK to display
the New Contract from Data Set wizard, as shown in Figure 62.

3. Enter a name for the WSDL that will contain the new binding, or
accept the default provided.

4. Click Next to display the Data Format panel.

Now you need to turn to the relevant page, depending on what type of
contract and binding you are creating. You can create:

• A contract containing a fixed binding - see page 95

• A contract containing a fixed binding from a CCB - see page 98

• A contract containing a tagged binding - see page 101

Figure 62: New Contract from Data Set wizard
 94

Creating New Resources
Creating a Contract Containing a Fixed Binding

Overview Many applications send data in fixed length records. For example, COBOL
applications often send fixed record data over WebSphere MQ. Artix
provides a binding that maps logical messages to concrete fixed record
length messages. The fixed binding allows you to specify attributes such as
encoding style, justification, and padding characters.

Procedure To add a contract containing a Fixed binding:

1. At the Data Format panel, select Fixed.

2. Click Next to display the Set Defaults panel, as shown in Figure 63.

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

Figure 63: New Contract from Data Set wizard—Set Fixed Defaults panel
95

CHAPTER 4 | Working with Artix Resources
5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, check the box provided if you want to
create your message parts as elements rather than types.

7. Select a justification value from the drop-down list. Options are Left
and Right.

8. Enter an encoding value. Valid options are UTF-8 and UTF-16.

9. Enter a value in the Padding field, if required. This is a character
string to be used to fill unused space in the message field. You can use
any character, or combination of characters, that you like.

10. Click Next to display the Input Data panel, as shown in Figure 64.

11. Click Add to create a new Operation.

12. Enter a name for the Operation, or accept the one provided.

Figure 64: New Contract from Data Set wizard—Input Data panel (Fixed)
 96

Creating New Resources
13. Change the Operation style by clicking on the default Style value.

14. You can add a discriminator to filter the operations by adding one to
the Discriminator cell for the new Operation.

15. Under Messages enter values for the attributes for the messages that
have been created for the Operation.

16. Click Add to add fields to your messages and select each of the
available cells to enter attributes for the fields as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types.

Message parts can be fields, enumerations, sequences, or choices.

17. When you have finished adding objects click Finish to create the
contract with the fixed record binding, as shown in Figure 65.

Figure 65: New Contract from Data Set—Summary panel
97

CHAPTER 4 | Working with Artix Resources
Creating a Contract Containing a Fixed Binding from a COBOL Copybook

Overview The other way to create a contract containing a fixed binding is to base the
messages in that binding on an existing COBOL Copybook. Your CCB can
contain one or more messages - at the time that you associate each fixed
message with a message from the CCB, you’ll be asked to specify the
message to use.

Procedure To add a contract containing a Fixed binding from a COBOL Copybook:

1. At the Data Format panel, select Fixed.

2. Click Next to display the Set Defaults panel, as shown in Figure 66.

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

Figure 66: New Contract from Data Set wizard—Set Fixed Defaults (CCB)
 98

Creating New Resources
5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, check the box provided if you want to
create your message parts as elements rather than types.

7. Select a justification value from the drop-down list. Values are Left
and Right.

8. Enter an encoding value. Valid options are UTF-8 and UTF-16.

9. Enter a value in the Padding field, if required. This is any character
string to be used to fill unused space in the message field.

10. Click Next to display the Input Data panel, as shown in Figure 64.

Figure 67: New Contract from Data Set wizard—Input Data panel (CCB)
99

CHAPTER 4 | Working with Artix Resources
11. Click Add to create a new Operation. (In the example shown, this step
has already been performed so that the Browse button described in
step 15 could be enabled.)

12. Enter a name for the Operation, or accept the one provided.

13. Change the Operation style by clicking on the default Style value.

14. You can add a discriminator to filter the operations by adding one of
the Discriminator cell for the new Operation.

15. Under Messages enter values for the attributes for the messages that
have been created for the Operation. To use the details from your
COBOL Copybook, click the Browse button.

This will invoke a file chooser, from where you can navigate to your
COBOL Copybook. When you select one, and click OK, Artix will do
one of two things:

♦ If the COBOL Copybook contains only one message, the
associated fields on the Input Data panel will be populated.

♦ If the COBOL Copybook contains more that one message, you will
see an intermediary dialog from where you can select which
message to associate with the fixed message in the Input Data
panel.

16. You can edit any of the fields that are populated for this message from
the COBOL Copybook by clicking on the relevant cell.

17. Click Add to add extra fields to your messages as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types.

Each message part can be either a field, an enumeration, a sequence,
or a choice.

18. When you have finished adding objects click Finish to create the
contract with the fixed record binding, as shown in Figure 65.
 100

Creating New Resources
Creating a Contract Containing a Tagged Binding

Overview The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

Procedure To add a contract containing a Tagged binding:

1. At the Data Format panel, select Tagged.

2. Click Next to display the Set Defaults panel, as shown in Figure 68.

3. Under the Binding Defaults, enter a name for the binding being
created in this new contract, or accept the default provided.

4. Enter a name for the new port type, or accept the default provided.

Figure 68: New Contract from Data Set—Set Tagged Defaults panel
101

CHAPTER 4 | Working with Artix Resources
5. The Target Namespace and Schema Namespace values default to
whatever is specified by the platform. Unless absolutely necessary, it
is recommended that you do not change these.

6. Under the Message Defaults, select a value for the Field Separator, or
accept the default provided.

7. Select a value for the Field Name Value Separator.

8. Select a value for the Scope Type, or accept the default provided.

9. Select a value for the Start Type.

10. Select a value for the End Type.

11. Select the Attributes you want to apply as defaults to your messages.

Note: See the online help for additional information on all the optional
settings.

12. Click Next to display the Input Data panel, as shown in Figure 69.

Figure 69: New Contract from Data Set wizard—Input Data panel (Tagged)
 102

Creating New Resources
13. Click Add to create a new Operation.

14. Enter a name for the Operation, or accept the one provided.

15. Change the Operation style by clicking on the default Style value.

16. You can add a discriminator to filter the operations by adding one to
the Discriminator cell for the new Operation.

17. Under Messages enter values for the attributes for the messages that
have been created for the Operation. The values you specified on the
Defaults panel are displayed here, but can be over-written at the
individual message level if required.

18. Click Add to add fields to your messages and select each of the
available cells to enter attributes for the fields as required.

Click on the Type cell to change the field type. You can then add
subsequent fields to the each of the field types. Messages can be a
field, an enumeration, a sequence, or a choice.

19. When you have finished adding objects click Finish to create the
contract with the tagged record binding, as shown in Figure 70.
103

CHAPTER 4 | Working with Artix Resources
Figure 70: New Contract from Data Set—Summary panel (Tagged)
 104

Creating New Resources
Creating an XSD Schema

Overview The first thing you need to do is create an XSD contract shell. Depending on
which mode of the Designer you are working in (Deployer or Editor), the
steps you follow to do this will be slightly different.

If you are working in Editor mode, select New | XSD File to display the New
Contract dialog, as shown in Figure 72 on page 106.

If you are working in Deployer mode:

1. Select either the Shared Resources folder or a Collection from the
Designer Tree.

2. Select File | New | Resource from the File menu to display the New
Resource dialog, as shown in Figure 71.

Figure 71: New Resource dialog
105

CHAPTER 4 | Working with Artix Resources
3. Select the Empty XSD File icon and click OK to display the New
Schema dialog, as shown in Figure 72.

4. Enter a name in the Name field, or accept the default provided.

5. Enter a value in the Target Namespace field, or accept the default
provided.

6. Enter a value in the Location field, or accept the default provided.
Click Browse to navigate to a different save location if you like.

7. Click OK to close this dialog and return to the Artix Designer. Your
new schema will be shown, and you can now add types to it using the
procedure documented in “Adding Types” on page 60.

Figure 72: New Schema dialog
 106

Editing Resources
Editing Resources

Overview The Artix Designer provides edit dialogs for all of the resource components,
from which you can edit most of the properties for your resource. This
section walks you through that process.

You can access the edit dialog for a resource component either through the
menu bar or through the Resource Navigator (diagram view).

To access the edit dialog for one of the components:

1. While in the diagram view of the Resource Navigator, select Resource
| Edit | <component>, where <component> is the name of the
element you want to work with.

The Edit dialog for that component is displayed.

2. Alternatively, you can right-click on the component name and select
Edit, which will also display the Edit dialog.

Editing in the text view If you prefer, you can use the Text view of the resource to hand-edit the
XML. Be aware however, that any changes you make to the XML could
invalidate the contract. If this happens, you will only be able to view the
contract in the Text view - the diagram view will be disabled as the model
cannot be generated with invalid XML.

The Artix Designer provides you with tools to try to help you avoid
invalidating your XML, or to identify and rectify errors. Every time you make
a change and click Apply Edits, the Designer displays any errors in the error
bar at the bottom of the Text view, as shown in Figure 73.

Figure 73: XML Error Indicator
107

CHAPTER 4 | Working with Artix Resources
Editing Types
This process is the same whether you’re working with Types contained in a
contract or in a schema.

You can edit a type by selecting Resource | Edit | Types, to display the Edit
Types dialog as shown in Figure 74.

At the Edit Types dialog, all of your types and their associated attributes are
listed in the top half of the dialog. From here you can:

• Rename a type or an attribute by selecting it and clicking Rename

• Delete a type or an attribute by selecting it and clicking Delete.

• Add a new type by clicking Add to display the New Type wizard, as
described in “Adding Types” on page 60.

Figure 74: Edit Types dialog
 108

Editing Resources
Editing attribute properties When you select a type in the top of this dialog, the type attributes are
displayed in the panel at the bottom of the dialog.

To edit any of the Type Attributes, click the Edit button to display the Edit
Type Attributes dialog, as shown in Figure 75.

To change values of attributes in this dialog, click on the item you want to
change in the Element List - its details will be populated into the Element
Data fields. Make your changes and click Update.

When you have finished making your changes, click Apply to update the
attribute, and OK to close the wizard and return to the Edit Types dialog,
where your changes are displayed in the Type Attributes panel.

Click OK to close this dialog and return to the Artix Designer.

Figure 75: Edit Type Attributes dialog
109

CHAPTER 4 | Working with Artix Resources
Editing Messages
You can edit a type by selecting Resource | Edit | Messages, to display the
Edit Messages dialog as shown in Figure 76.

At the Edit Messages dialog, all of your messages and their associated parts
are listed in the top half of the dialog. From here you can:

• Rename a message or a part by selecting it and clicking Rename

• Delete a message or a part by selecting it and clicking Delete.

• Add a new message by clicking Add to display the New Message
wizard, as described in “Adding Messages” on page 73.

Figure 76: Edit Messages dialog
 110

Editing Resources
Editing message parts When you select a message in the top of this dialog, the message parts are
displayed in the panel at the bottom of the dialog.

To edit any of the message parts, click the Edit button to display the Edit
Message Parts dialog, as shown in Figure 75.

To change values of parts in this dialog, click on the item you want to
change in the Part List - its details will be populated into the Parts fields.
Make your changes and click Update.

When you have finished making your changes, click Apply to update the
part, and OK to close the wizard and return to the Edit Messages dialog,
where your changes are displayed in the Message Parts panel.

Click OK to close this dialog and return to the Artix Designer.

Figure 77: Edit Message Parts dialog
111

CHAPTER 4 | Working with Artix Resources
Editing Port Types
You can edit a port type by selecting Resource | Edit | Port Types, to
display the Edit Port Types dialog as shown in Figure 78.

At the Edit Port Types dialog, all of your port types and their associated
operation messages are listed in the top half of the dialog. From here you
can:

• Rename a port type or an operation message by selecting it and
clicking Rename

• Delete a port type or an operation message by selecting it and clicking
Delete.

• Add a new port type by clicking Add to display the New Port Type
wizard, as described in “Adding Port Types” on page 77.

Figure 78: Edit Port Types dialog
 112

Editing Resources
Editing operation messages When you select a port type in the top of this dialog, the operation messages
are displayed in the panel at the bottom of the dialog.

To edit any of the operation messages, click the Edit button to display the
Edit Operation Messages dialog, as shown in Figure 79.

To change values of operation messages in this dialog, click on the item you
want to change in the Operation Messages list - its details will be populated
into the Messages fields. Make your changes and click Update.

When you have finished making your changes, click Apply to update the
operation message, and OK to close the wizard and return to the Edit Port
Types dialog, where your changes are displayed in the Operation Messages
panel.

Click OK to close this dialog and return to the Artix Designer.

Figure 79: Edit Type Attributes dialog
113

CHAPTER 4 | Working with Artix Resources
 114

CHAPTER 5

Adding Bindings
Bindings contain information used by Artix at runtime to
reformat data between endpoints, enabling it to be understood
by the target service.

In this chapter This chapter discusses the following topics:

What is a Binding? page 116

Adding a CORBA Binding page 119

Adding a Fixed Binding page 123

Adding a SOAP Binding page 126

Adding an XML Binding page 132

Adding a Tagged Binding page 135

Editing Bindings page 138
115

CHAPTER 5 | Adding Bindings
What is a Binding?

Overview If you are exposing an existing service using a new transport or payload
format, you need to add the mapping of the service’s data and operations to
the new payload format and transport. To do this, you add one or more
bindings to your services. The information you include in the binding is
used by Artix at runtime to reformat the data on the wire and thus make it
understandable by the target service.

The New Binding wizard walks you through the generation of a binding
based on your existing contract. It then adds the binding to the contract.

Artix binding types Artix provides support for several binding types. They are accessed via two
methods:

• From the New Binding wizard, which enables you to create the
following binding types:

♦ CORBA

♦ Fixed

♦ SOAP

♦ XML

♦ Tagged

• From the Contract From Data Set wizard, which enables you to create
a new contract that also includes a binding of one of the following
types:

♦ Fixed

♦ Fixed, using data from an existing COBOL Copybook

♦ Tagged

These last three bindings can be created with or without an existing
contract, and will create the binding and logical elements from input
data.

For more information about adding contracts with these bindings
included, “Creating Contracts from Data Sets” on page 93.
 116

What is a Binding?
Adding bindings via New Binding
wizard

To add a binding to an Artix contract using the New Binding wizard:

1. From the Designer Tree, select the contract to which you want to add
the binding.

2. Select Resource | New | Binding from the menu bar to display the
New Binding wizard, as shown in Figure 80.

Note that your WSDL needs to contain at least one message and a port
type before you can add a binding.

3. Select where to create the WSDL entry for the new binding.

♦ Add to existing WSDL adds the binding information to the
existing contract.

♦ Add to new WSDL creates a new WSDL document that contains
the binding information plus an import statement in the logical
contract in which the binding is being created.

Figure 80: New Binding wizard
117

CHAPTER 5 | Adding Bindings
4. Select the resources from this collection that you want to use as the
source for this new binding. If you selected a resource before invoking
the New Binding wizard, that resource is selected by default. You can
also select other resources to use as sources for this binding - this will
give you more port types to choose from when setting the binding
defaults later in this wizard.

5. Click Next to display the Binding Type panel.

Now you need to turn to the appropriate page for the type of binding you are
creating:

• For a CORBA binding, see page 119

• For a Fixed binding, see page 123

• For a SOAP binding, see page 126

• For an XML binding, see page 132

• For a Tagged binding, see page 135
 118

Adding a CORBA Binding
Adding a CORBA Binding

Overview To ensure that messages are converted into a format that a CORBA
application can understand, Artix contracts need to describe how data is
mapped to CORBA data types.

Procedure To add a CORBA binding to an Artix contract from the Binding Type panel:

1. Select CORBA, and then click Next to display the Binding Defaults
panel, as shown in Figure 81.

2. From the Port Type drop down list select the port type you want to
map to the CORBA binding.

Figure 81: New Binding wizard—CORBA Binding Defaults panel
119

CHAPTER 5 | Adding Bindings
3. Enter a name for the new binding, or accept the default provided.

4. Enter a value for the Typemap Namespace if required (optional).

5. Click Next to display the Edit Binding panel, as shown in Figure 82,
which displays the generated operations and CORBA types.

6. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

7. If you like, you can change the name of the Binding. The attribute
fields are read-only.

8. Click Next to display the Binding Summary panel, as shown in
Figure 83.

Figure 82: New Binding wizard—Edit CORBA Binding panel
 120

Adding a CORBA Binding
9. Click Finish to close this wizard and return to the Artix Designer.

When you have created the new CORBA binding, the contract describing the
binding and the CORBA type map are added to the Designer Tree under the
selected service. Note however, that this new contract will not contain a
CORBA port description.

For details on adding a CORBA port description see “Adding a CORBA Port”
on page 143.

Figure 83: New Binding wizard—CORBA Binding Summary panel
121

CHAPTER 5 | Adding Bindings
Adding a CORBA Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
CORBA binding, service, and port for a resource. It is called CORBA
enabling, and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a CORBA binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource |
CORBA Enable, to display the CORBA Enable dialog as shown in
Figure 84.

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. The next three fields, Binding Name, Service Name, and Port Name all
contain default names for these elements. Either accept these
defaults, or provide alternatives.

4. Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

Figure 84: CORBA Enable dialog
 122

Adding a Fixed Binding
Adding a Fixed Binding

Procedure To add a Fixed binding to an Artix contract from the Binding Type panel:

1. Select Fixed, and then click Next to display the Binding Defaults panel,
as shown in Figure 85.

2. From the Port Type drop down list select the port type you want to
map to the Fixed binding.

3. Enter a name for the new binding, or accept the default provided.

4. Enter a value for the additional settings if required. They are:

♦ Justification - the justification of the message data. Options are
left and right.

♦ Encoding - the encoding style for the message data. Examples
are UTF-8 and UTF-16.

Figure 85: Binding wizard—Fixed Binding Defaults
123

CHAPTER 5 | Adding Bindings
♦ Padding - a character string to be used to fill unused space in the
message field.

5. Click Next to display the Edit Binding panel, as shown in Figure 82,
which displays the generated operations and Fixed types.

6. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

7. If you like, you can change the name of the Binding. The attribute
fields are read-only.

Figure 86: New Binding wizard—Edit Fixed Binding panel
 124

Adding a Fixed Binding
8. Click Next to display the Binding Summary panel, as shown in
Figure 83.

9. Click Finish to close this wizard and return to the Artix Designer.

Figure 87: New Binding wizard—Fixed Binding Summary panel
125

CHAPTER 5 | Adding Bindings
Adding a SOAP Binding

Overview SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

Procedure To add a SOAP binding to an Artix contract:

1. At the Binding Type panel, select SOAP.

2. Click Next to display the Binding Defaults panel, as shown in
Figure 88.

Figure 88: New Binding wizard—SOAP Binding Defaults panel
 126

Adding a SOAP Binding
3. From the Port Type drop down list, select the port type that the
binding relates to.

4. Enter a name for the new binding, or accept the default provided.

5. From the Style drop down list, select either rpc or document, to
indicate whether message parts pertaining to each operation are to
consist of RPC-based parameters and return values or document-based
body entries by default. The value you choose is subsequently
populated in the soap:binding style attribute in your WSDL contract.

6. From the Use drop down list, select either encoded or literal, to
indicate whether message parts are to consist of abstract type
definitions or concrete schema definitions. The value you choose is
subsequently populated in the soap:body use attribute in your WSDL
contract.

7. Click Next to display the Edit Binding panel, as shown in Figure 89.

Figure 89: New Binding wizard—Edit SOAP Binding panel
127

CHAPTER 5 | Adding Bindings
8. Click on the name of an operation within your binding.

9. If you want to include a SOAPAction field in the HTTP header of a
SOAP message, use the SOAP Action cell in the Binding Elements
table to specify the URL that represents the resource being requested
by the operation.

10. If you want to override the default setting for Style that you set in step
5, click on the Style cell and select another value.

11. If you want to override the default setting for Use that you set in step
6, click on the Use cell and select another value.

12. If you want to use other customized encoding styles, add the URL(s)
relating to each style to the relevant field(s) in the Encoding Style
column. (Note: Only possible where Use=Encoded).

Note: This step only relates to the use of SOAP over HTTP, but it is
not mandatory for the purposes of Artix. It is available in case some
third-party SOAP servers that do use a SOAPAction field in their
HTTP headers are to be contacted.

Note: If you want this field to contain more than one URL, ensure
that they are separated by spaces, and ordered according to the most
restrictive set of rules first and least restrictive set of rules last.
 128

Adding a SOAP Binding
13. Click Next to display the Binding Summary panel, as shown in
Figure 90.

14. Click Finish to close this wizard and return to the Artix Designer.

Figure 90: New Binding wizard—SOAP Binding Summary panel
129

CHAPTER 5 | Adding Bindings
Adding a SOAP Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
SOAP binding, service, and port for a resource. It is called SOAP enabling,
and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a SOAP binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource | SOAP
Enable, to display the SOAP Enable dialog as shown in Figure 91.

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. Type a name for the new binding in the Binding Name field, or accept
the default provided.

4. Select the Style for this Binding from the drop-down list provided.
Valid values are rpc or document.

5. Select the Use for this Binding from the drop-down list provided. Valid
values are literal or encoded.

Figure 91: SOAP Enable dialog
 130

Adding a SOAP Binding
6. Type a name for the new service in the Service Name field, or accept
the default provided.

7. Type a name for the new port in the Port Name field, or accept the
default provided.

8. Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.
131

CHAPTER 5 | Adding Bindings
Adding an XML Binding

Overview The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without needing the overhead of the SOAP envelope.

Procedure To add an XML binding to an Artix contract:

1. At the Binding Type panel, select XML and click Next to display the
Binding Defaults panel, as shown in Figure 92.

2. From the Port Type drop down list select the Port Type you want to
map to the XML binding.

3. Enter a name for the new binding, or accept the default provided.

Figure 92: New Binding wizard—XML Binding Defaults panel
 132

Adding an XML Binding
4. Under the Additional Settings, select an Encoding value.

5. Enter values in the Binding Route Node section. This is the Qname for
the binding. This is a unique identifier made up of two parts:

♦ Namespace URI - the location of the binding element

♦ Local Part - any name you wish to append to the binding element

6. Enter values in the Operation Root Node section. This is the Qname at
the operation level. This is a unique identifier, again made up of two
parts but this time there will be two parts for each message, i.e. input
and output, or just input for one-way messages:

♦ Namespace URI - the location of the binding element

♦ Local Part - any name you wish to append to the binding element

If you do not specify these values at the Operation level, the Binding
Route Node is used by default.

7. Click Next to display the Edit Binding panel, as shown in Figure 93.

Figure 93: New Binding wizard—Edit XML Binding panel
133

CHAPTER 5 | Adding Bindings
8. Examine the different operations of the binding by selecting them from
the tree at the top of the dialog.

9. Edit the Namespace URI and Local Part values shown in the Binding
Element table, or accept the defaults provided.

10. Click Next to display the View Binding Summary panel, as shown in
Figure 94.

11. Click Finish to close this wizard and return to the Artix Designer.

Figure 94: Binding wizard—XML Binding Summary panel
 134

Adding a Tagged Binding
Adding a Tagged Binding

Procedure To add a Tagged binding to an Artix contract from the Binding Type panel:

1. Select Tagged, and then click Next to display the Binding Defaults
panel, as shown in Figure 95.

2. From the Port Type drop down list select the Port Type you want to
map to the XML binding.

3. Enter a name for the new binding, or accept the default provided.

4. Enter values for the additional (optional) settings if required. These
settings can also be over-written for each message. The settings are:

♦ Field separator - valid values are newline, comma, pipe, or
semicolon.

♦ Field name value separator - valid values are equals, tab, or
colon.

Figure 95: Binding wizard—Tagged Binding Defaults
135

CHAPTER 5 | Adding Bindings
♦ Scope Type - valid values are tab, curlybrace, or none.

♦ Start type - valid values are none or star.

♦ End type - valid values are newline or percent.

♦ Attributes - this field contains several settings you can enable by
clicking the check box. For more information about each of the
attributes, see the Artix online help.

5. Click Next to display the Edit Binding panel, as shown in Figure 96,
which displays the generated operations and elements.

6. Examine the different operations of the binding by selecting them from
the tree at the top of the dialog. You can edit some of the elements in
the bottom pane by typing directly in the cells.

Figure 96: Binding wizard—Edit Tagged Binding panel
 136

Adding a Tagged Binding
7. Click Next to display the View Binding Summary panel, as shown in
Figure 97.

8. Click Finish to close this wizard and return to the Artix Designer.

Figure 97: Binding wizard—Tagged Binding Summary panel
137

CHAPTER 5 | Adding Bindings
Editing Bindings
You can edit a binding by selecting it in the Resource Navigator (Diagram
view) and selecting Resource | Edit | Binding, to display the Edit Binding
panel as shown in Figure 98.

At the Edit Binding panel, you can delete operations, by selecting them and
clicking the Delete button.

You can also change some of the Binding Element attributes by either
double-clicking the cell and typing a new value, or by clicking the cell and
selecting a new value from the drop-down list provided.

When you have finished making your changes, click Apply to update the
binding and OK to close the wizard and return to the Artix Designer.

Figure 98: Edit Binding panel
 138

CHAPTER 6

Adding Services
A service defines the ports supported by the Web Service.

In this chapter This chapter discusses the following topics:

Introduction page 140

Adding a CORBA Port page 143

Adding an HTTP Port page 146

Adding a WebSphere MQ Port page 149

Adding a Tuxedo Port page 151

Adding a Java Message Service Port page 154

Adding an IIOP Tunnel Port page 156

Adding a SOAP Port page 159

Editing Services page 165
139

CHAPTER 6 | Adding Services
Introduction
The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

For each of the supported protocols, there is one <port> element. The
<service> element is a collection of these ports. A service can contain one
or many ports.

Typically, ports defined within a particular service are related in some way.
For example all of the ports might be bound to the same port type, but use
different network protocols, like HTTP and WebSphere MQ.

Procedure To add a Service to your Artix contract:

1. Select Resource | New | Service from the menu bar to display the
New Service wizard, as shown in Figure 99.

Figure 99: New Service wizard
 140

Introduction
2. Select where to create the WSDL entry for the new service.

♦ Add to existing WSDL adds the service information to the existing
contract.

♦ Add to new WSDL creates a new WSDL document that contains
the service information.

3. Select the resources from this collection that you want to use as the
source for this new service. If you selected a resource before invoking
the New Service wizard, that resource is selected by default. You can
also select other resources to use as sources for this service - this will
give you more bindings to choose from when defining the ports later in
this wizard.

4. Click Next to display the Service Definition panel, as shown in
Figure 100.

5. Enter a name for the new service, or accept the default provided.

Figure 100:New Service wizard—Service Definition panel
141

CHAPTER 6 | Adding Services
6. Click Next to display the Port Definition panel, as shown in
Figure 101.

7. Enter a name for the new port that is being created as part of this
service, or accept the default provided.

8. From the Binding drop down list, select the binding that the port is
going to expose.

9. Click Next to display the Extensor Properties panel.

Turn to the page that is relevant for the type of service you are creating:

• For a CORBA service, see page 143

• For a non-secure HTTP service, see page 146

• For a secure HTTP service, see page 147

• For a WebSphere MQ service, see page 149

• For a Tuxedo service, see page 151

• For a Java Message Service (JMS), see page 154

• For an IIOP Tunnel service, see page 156

• For a non-secure SOAP over HTTP service, see page 159

• For a secure SOAP over HTTP service, see page 162

Figure 101:New Service wizard—Port Definition panel
 142

Adding a CORBA Port
Adding a CORBA Port
CORBA ports are described using the IONA-specific WSDL elements
<corba:address> and <corba:policy> within the WSDL <port> element, to
specify how a CORBA object is exposed.

Procedure 1. At the Extensor Properties panel, as shown in Figure 102, select
CORBA from the Transport Type drop down list.

2. In the Address table, enter the CORBA address in the Location field.

3. If you want to set any of the supported Policy Attributes, enter a valid
value in the Policy table for any or all of the attributes listed.

Figure 102:New Service wizard—Define CORBA Extensor Properties
143

CHAPTER 6 | Adding Services
4. Click Next to display the Summary panel, as shown in Figure 103.

5. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

6. Click Finish to close this wizard and return to the Designer.

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to connect the CORBA application.

Figure 103:New Service wizard—Summary panel (CORBA)
 144

Adding a CORBA Port
Adding a CORBA Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
CORBA binding, service, and port for a resource. It is called CORBA
enabling, and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a CORBA binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource |
CORBA Enable, to display the CORBA Enable dialog as shown in
Figure 104.

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. Type a name for the binding in the Name field, or accept the default.

4. Type a name for the service in the Name field, or accept the default.

5. Type a name for the port in the Port Name field, or accept the default.

6. Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.

Figure 104:CORBA Enable dialog
145

CHAPTER 6 | Adding Services
Adding an HTTP Port
When adding an HTTP port, you have the option of making it either secure
or non-secure. A secure port means that the connections with that port, and
information moving in and out of it, are secure.

Non-Secure Connections This section describes how to add an HTTP port that does not enable secure
connections.

Before you begin

To add a port, you must have already created a binding within the
<binding> component of the contract. See “Adding Bindings” on page 115
for more information.

Procedure To add an HTTP port to your service contract:

1. At the Extensor Properties panel, as shown in Figure 105, select http
from the Transport Type drop-down list.

Figure 105:New Service wizard—Define HTTP Extensor Properties
 146

Adding an HTTP Port
2. To specify a value for a one of the client or server attribute, type (or in
the case of certain true or false attributes select) the value you want.

3. Click Next to display the Summary panel, as shown in Figure 106.

4. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

5. Click Finish to close this wizard and return to the Artix Designer.

Secure Connections This section describes how to add an HTTP port that enables secure
connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on
page 115 for more information.

Figure 106:New Service wizard—Summary panel (HTTP)
147

CHAPTER 6 | Adding Services
SSL-related attributes The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port
binding are as follows:

Procedure Follow the steps described in “Procedure” on page 146, with the following
minor changes:

• Specify https:// rather than http:// as the prefix for the value of the
URL attribute in the Client configuration table.

• Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” above for a
listing of these attributes.

Client SSL Attributes Server SSL Attributes

UseSecureSockets UseSecureSockets

ClientCertificate ServerCertificate

ClientCertificateChain ServerCertificateChain

ClientPrivateKey ServerPrivateKey

ClientPrivateKeyPassword ServerPrivateKeyPassword

TrustedRootCertificate TrustedRootCertificate

Note: When you specify https:// as the prefix for the value of the URL
attribute in the Client configuration table, a secure HTTP connection is
automatically enabled, even if UseSecureSockets is not set to true.
 148

Adding a WebSphere MQ Port
Adding a WebSphere MQ Port
The description for an Artix WebSphere MQ port is entered in a <port>
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

• <mq:client> describes the port Artix client applications use to connect
to an WebSphere MQ server application.

• <mq:server> describes the port WebSphere MQ client applications
use to connect to Artix.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

Procedure To add a WebSphere MQ port to an Artix contract:

1. At the Extensor Properties panel, as shown in Figure 107, select mq
from the Transport Type drop-down list.

Figure 107:New Service Wizard—Define WebSphere MQ Port Properties
149

CHAPTER 6 | Adding Services
2. Enter values for the desired attributes. You must supply QueueName
values at a minimum.

3. Click Next to display the Port Summary panel as shown in Figure 108.

4. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

5. Click Finish to close the wizard and return to the Artix Designer.

Figure 108:New Service wizard—Summary panel (MQ)
 150

Adding a Tuxedo Port
Adding a Tuxedo Port
Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the namespace:

This namespace will need to be included in your Artix contract’s
<definition> element.

As with other transports, the Tuxedo transport description is contained
within a <port> element. Artix uses <tuxedo:server> to describe the
attributes of a Tuxedo port. <tuxedo:server> takes a single mandatory
attribute, serviceName, which specifies the bulletin board name of the
Tuxedo port being exposed.

Before you begin

Note that your Artix contract must have an existing SOAP binding before you
can add a Tuxedo port. For more information, see “Adding a Fixed Binding”
on page 123.

Procedure To add a Tuxedo port to an Artix contract:

1. At the Define Port panel (as shown in Figure 101 on page 142), select
the SOAP binding which this port will expose to the network from the
Binding drop-down list.

2. Click Next to display the Extensor Properties panel.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
151

CHAPTER 6 | Adding Services
3. Select Tuxedo from the Transport Type drop-down list to display the
Tuxedo attributes as shown in Figure 109.

4. To add a Service, click the Add button. You can change the name of
the service or accept the one provided. You can also provide some
information about the function of this service in the field provided if
you like.

5. If you do add a service, you can also add an Input Operation for that
service. To do this, select the Service and then click the Add button
under the Input table.

You can add multiple operations for each service, and you can change
the operation name by selecting other available ones from the
drop-down provided. This list of available operations is populated by
your WSDL file.

Figure 109:New Service wizard—Define Tuxedo Port Properties panel
 152

Adding a Tuxedo Port
6. Click Next to display the Summary panel, as shown in Figure 110.

7. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

8. Click Finish to close this wizard and return to the Artix Designer.

Figure 110:New Service wizard—Summary panel (Tuxedo)
153

CHAPTER 6 | Adding Services
Adding a Java Message Service Port
The Java Messaging System (JMS) provides a standardized means for Java
applications to send messages. Artix provides a transport plug-in that
enables systems to place and receive messages from JMS implementations.
One advantage of this is that Artix allows C++ applications to interact
directly with Java applications over JMS.

Procedure To add a Java Message Service (JMS) port to an Artix contract:

1. At the Extensor Properties panel, as shown in Figure 111, select jms
from the Transport Type drop-down list.

2. Enter values for the desired attributes. All attributes are required.

♦ destinationStyle - Specifies the type of jms messaging object
you’re connecting to; options are topic (one-way only) or queue.

♦ jndiProviderURL - Specifies the URL of the JNDI service where
the connection information for the JMS destination is stored.

Figure 111:New Service Wizard—Define WebSphere MQ Port Properties
 154

Adding a Java Message Service Port
♦ initialContextFactory - Specifies the name of the
InitialContextFactory class or a list of package prefixes used to
construct URL context factory classnames.

♦ jndiConnectionFactoryName - Specifies the JNDI name bound to
the JMS connection factory to use to connect to the JMS
destination.

♦ jndiDestinationName - Specifies the JNDI name bound to the
JMS destination to which Artix connects.

♦ messageType - Specifies how the message data will be packaged
as a JMS message. text specifies that the data will be packaged
as a TextMessage. binary specifies that the data will be
packaged as an ObjectMessage.

3. Click Next to display the Summary panel as shown in Figure 108.

4. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

5. Click Finish to close the wizard and return to the Artix Designer.

Figure 112:New Service wizard—Summary panel (JMS)
155

CHAPTER 6 | Adding Services
Adding an IIOP Tunnel Port
An IIOP tunnel provides a means for taking advantage of existing CORBA
services while transmitting messages using a payload format other than
CORBA. For example, you could use an IIOP tunnel to send fixed format
messages to an endpoint whose address is published in a CORBA naming
service.

Supported payload formats IIOP tunnels can transport messages using the following payload formats:

• SOAP

• Fixed format

• Fixed record length

• G2++

• Octet streams
 156

Adding an IIOP Tunnel Port
Procedure To add an IIOP tunnel port to your service contract:

1. At Extensor Properties panel, as shown in Figure 113, select tunnel
from the Transport Type drop-down list.

2. From the drop down list in the Transport box, select tunnel.

3. In the Address table, enter the address in the line for Location.

4. If you want to set any of the supported POA policies, place a check in
the Specified box on the appropriate line in the Policy table and enter
a valid value.

Figure 113:New Service wizard—Define IIOP Port Properties panel
157

CHAPTER 6 | Adding Services
5. Click Next to display the Port Summary panel, as shown in
Figure 114.

6. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

7. Click Finish to close this wizard and return to the Artix Designer.

Artix expects the IOR for the IIOP tunnel to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to configure the IIOP tunnel.

Figure 114:New Service wizard—Summary panel (IIOP)
 158

Adding a SOAP Port
Adding a SOAP Port

Non-Secure Connections This section describes how to add a port for SOAP over HTTP that does not
enable secure connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on
page 115 for more information.

Procedure To enable the use of SOAP over HTTP:

1. At the Extensor Properties panel, as shown in Figure 115, select SOAP
from the Transport Type drop-down list.

Figure 115:New Service wizard—Define SOAP Properties panel
159

CHAPTER 6 | Adding Services
2. In the Value field corresponding to the location line of the Address
configuration table, type the URL that represents the resource being
requested.

3. To specify a value for another attribute, place a check in the Specified
box on the appropriate line in the appropriate configuration table, and
type or (in the case of certain true or false attributes) select the value
you want.

Note: The Address configuration table relates to the soap:address
element within the port component of the WSDL contract. You must
specify a value for the location attribute.

Note: All attributes are optional in the Client and Server
configuration tables. These relate to the http-conf:client and
http-conf:server elements that can be specified as peers of the
soap:address element under the same port binding. See “SSL-related
attributes” below for details of each attribute relating to
http-conf:client and http-conf:server.
 160

Adding a SOAP Port
4. Click Next to display the Summary panel, as shown in Figure 116.

5. To add another port to this service, check the box provided under the
summary panel and click Next. This will take you back to the Define
Port panel (as shown in Figure 101 on page 142), where you can
enter details for the new port.

6. Click Finish to close this wizard and return to the Artix Designer.

Figure 116:New Service wizard—Summary panel (SOAP)
161

CHAPTER 6 | Adding Services
Secure Connections This section describes how to add a port for SOAP over HTTP that enables
secure connections.

Before you begin

To add a port, you must have already created a payload format binding
within the <binding> component of the contract. See “Adding Bindings” on
page 115 for more information.

SSL-related attributes The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port
binding are as follows:

Procedure Follow the steps in “Procedure” on page 159, with the following minor
changes:

• Specify https:// rather than http:// as the prefix for the value of the
location attribute in the Address configuration table.

• Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” above for a
listing of these attributes.

Client SSL Attributes Server SSL Attributes

UseSecureSockets UseSecureSockets

ClientCertificate ServerCertificate

ClientCertificateChain ServerCertificateChain

ClientPrivateKey ServerPrivateKey

ClientPrivateKeyPassword ServerPrivateKeyPassword

TrustedRootCertificate TrustedRootCertificate

Note: When you specify https:// as the prefix for the value of the
location attribute in the Address configuration table, a secure HTTP
connection is automatically enabled, even if UseSecureSockets is not set
to true.
 162

Adding a SOAP Port
Adding a SOAP Binding, Service, and Port at the Same Time

Overview There is a smart-menu option you can use if you would like to create a
SOAP binding, service, and port for a resource. It is called SOAP enabling,
and you can access it either through the Resource menu or via the
contextual menu after first selecting a resource in the Designer Tree.

Procedure To create a SOAP binding, service, and port using the smart-menu option:

1. Select a resource from the Designer Tree, and select Resource | SOAP
Enable, to display the SOAP Enable dialog as shown in Figure 117.

2. Select the Port Type to use from the drop-down list provided. This list
contains all port types that have been defined for this resource.

3. Type a name for the new binding in the Binding Name field, or accept
the default provided.

4. Select the Style for this Binding from the drop-down list provided.
Valid values are rpc or document.

Figure 117:SOAP Enable dialog
163

CHAPTER 6 | Adding Services
5. Select the Use for this Binding from the drop-down list provided. Valid
values are literal or encoded.

6. Type a name for the new service in the Service Name field, or accept
the default provided.

7. Type a name for the new port in the Port Name field, or accept the
default provided.

8. Click OK to close this dialog and return to the Artix Designer. The new
binding, service, and port will be displayed in the relevant sections
within the WSDL model diagram.
 164

Editing Services
Editing Services
You can edit a service by selecting Resource | Edit | Services, to display
the Edit Services panel as shown in Figure 118.

At the Edit Services panel, all of your services and their associated ports are
listed in the top half of the dialog. From here you can:

• Rename a service or a port by selecting it and clicking Rename

• Delete a service or a port by selecting it and clicking Delete.

• Add a new service by clicking Add to display the New Service wizard.

Figure 118:Edit Services panel
165

CHAPTER 6 | Adding Services
Editing port properties When you select a port in the top of this dialog, the port properties are
displayed in the Port Properties panel at the bottom of the dialog.

To change any of the Port Properties, click the Edit button to display the
Edit Port Properties dialog, as shown in Figure 119.

To change values of attributes in this dialog, click on the value field to either
select or type the new value.

When you have finished making your changes, click Apply to update the
port, and OK to close the wizard and return to the Edit Services dialog,
where your changes are displayed in the Port Properties panel.

Click OK to close this dialog and return to the Artix Designer.

Figure 119:Edit Port Properties dialog
 166

CHAPTER 7

Routing Messages
Artix provides messages routing based on operations, ports, or
message attributes.

In this chapter This chapter discusses the following topics:

What is a Route? page 168

Creating a Route page 169

Editing a Route page 175
167

CHAPTER 7 | Routing Messages
What is a Route?

Overview Artix routing is implemented within Artix collections and is controlled by
rules specified in the collection’s contract. Artix collections that include
routing rules can be deployed into an Artix service.

Artix supports the following types of routing:

• “Port-based”

• “Operation-based”

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based Port-based routing acts on the port or transport-level identifier, specified by
a <port> element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <portType>, level or the finer grained operation
level.
 168

Creating a Route
Creating a Route

Overview The Artix Designer includes a routing wizard that assists you in creating
routes from the services available in your contract. It walks you through the
steps of creating a route and provides you with the valid options for the
services available. It performs all of the compatibility testing for you and will
never allow you to create an invalid route.

Procedure To create a route:

1. From the Designer Tree, select a contract with multiple service
definitions that have operations that can be routed.

2. Select Contracts | New | Route from the menu bar to display the New
Route wizard, as shown in Figure 120.

Note: If the Route option is not available, your contract does not
have any compatible operations for routing. For a contract to be able
to be routed, it needs to contain two or more services with
compatible port types. See “Adding Services” on page 139 for more
information.
169

CHAPTER 7 | Routing Messages
3. Select where you want to add the routing information.

♦ Add to existing WSDL adds the route information to the existing
contract.

♦ Add to new WSDL creates a new WSDL document that contains
the route information.

Figure 120:New Route wizard
 170

Creating a Route
4. Click Next to display the Source and Destination panel, as shown in
Figure 121.

5. Enter a name for the route, or accept the default provided

6. Select the source portType for the route from the PortType pull-down
list.

7. Select the source endpoint from the available options in the Source
Endpoints list.

8. Select the destination endpoint from the available options in the
Destination Endpoints list.

9. If you selected multiple destination endpoints on the previous screen,
select either Failover or Fanout under Multiple Route Destination
Preference.

Figure 121:New Route wizard—Source and Destination panel
171

CHAPTER 7 | Routing Messages
10. Click Next to display the Operation Routing panel, as shown in
Figure 122.

11. Select the operations you want to route from the list provided. By
default, all operations are pre-selected.

Figure 122:New Route wizard—Operation Routing panel
 172

Creating a Route
12. Click Next to display the Transport Attributes panel, as shown in
Figure 123.

13. Click Add Rule Set to add transport attribute based routing rules. The
counter will automatically start at 0.

14. Enter the name of the transport attribute.

15. Enter the value to be used for the attribute.

16. Click Add Attribute to add the attribute to the Transport Attribute
table. When the attribute is in the table you can edit it to determine
how matching attributes are compared to the value.

17. Repeat steps 13-16 for all the attributes you want to use in your route.

Figure 123:New Route wizard—Transport Attributes panel

Note: The editor has no knowledge of the valid attribute names and
will allow you to enter any names and values.
173

CHAPTER 7 | Routing Messages
18. Click Next to display the Summary panel, as shown in Figure 124.

19. Click Finish to close this wizard and return to the Artix Designer.

Figure 124:New Route wizard—Summary panel
 174

Editing a Route
Editing a Route
The only things you can edit in a route are the transport attributes. When
you choose to edit a route, the Transport Attributes panel for the New Route
wizard is displayed for that route, enabling you to change any transport
attributes that you previously created, or to add new transport attributes.

Procedure To edit a route:

1. Select the Route in the Resource Navigator (diagram view) and select
Resource | Edit | Route to display the Transport Attributes panel, as
shown in Figure 125.

2. You can change the values for any of the existing transport attributes,
or add new transport attributes.

Figure 125:Transport Attributes panel—Editing a Route
175

CHAPTER 7 | Routing Messages
3. When you have finished your changes, click OK to display the
Summary panel, as shown in Figure 126. This panel will display the
route with your changes included.

Figure 126:Summary panel—Editing a Route
 176

CHAPTER 8

Deployment
You can generate code for your Artix collections as often as
you like using different configurations to satisfy your solution
requirements.

In this chapter This chapter discusses the following topics:

Deployment Explained page 178

Creating a Deployment Profile page 179

Creating a Deployment Bundle page 185

Generating Code page 192
177

CHAPTER 8 | Deployment
Deployment Explained

Overview Deployment is only available in the Artix Designer when it is in Deployer
mode. If you are working with the Designer in Editor mode, there is no way
to access the deployment functionality described in this chapter other than
switching to Deployer mode.

Artix Collections can be deployed as Java, C++, or CORBA-based
applications. As part of the deployment process, you can use a collection to
create a client, a server, or a switch, or any combination of all three options.

Deployment involves three steps:

1. Creating a Deployment Profile - see page 179

2. Creating the Deployment Bundle - see page 183

3. Generating the Code - see page 192

You do not have to perform all the steps in one go - you can perform one or
more and then complete the rest later. You must, however, perform them in
the order shown here. That is, you need to create a Deployment Profile
before you can create a Deployment Bundle, and you cannot generate the
code until you have created a bundle.

One other thing you need to consider is that you can’t create a deployment
bundle for a collection if it doesn’t contain a contract that has had a service
defined. For more information on adding services to a contract, see
page 139.

As part of the code generation process, Artix generates four directories in
your specified save location:

• src - contains the generated source code in the language you
specified (C++, Java, or IDL)

• etc - contains the configuration information required for the
application to run successfully

• wsdl - contains the locally defined WSDL contracts

• bin - contains the environment scripts and the start and stop (UNIX
only) scripts
 178

Creating a Deployment Profile
Creating a Deployment Profile

Overview The Deployment Profile defines machine level-information such as the Artix
save location, the compiler location, and the operating system being used.
This profile can be used multiple times as it is not specific to any particular
collection defined within the workspace.

If you create your workspace using one of the workspace templates, Artix
creates a default local profile for you automatically, which you can use for
deploying to your local machine. The details of this profile are displayed on
the Workspace Details panel. For deploying to other machines, you need to
create your own profiles.

The next step after creating a Deployment Profile, is to create a Deployment
Bundle to capture specific information about the deployment of a collection.
Deployment Bundles are explained further in the next section of this
chapter.

You can have as many Deployment Profiles as you like within your
workspace, but each Deployment Bundle can reference only one
Deployment Profile.
179

CHAPTER 8 | Deployment
Procedure To create a Deployment Profile:

1. Select File | New | Deployment Profile from the menu bar to display
the Deployment Profile wizard, as shown in Figure 127.

2. Enter a name for this profile.

3. Enter a description for this profile to help distinguish it from other
profiles you may create.

4. Select the operating system for this profile from the list provided. Artix
currently supports Windows or UNIX.

Figure 127:Deployment Profile wizard
 180

Creating a Deployment Profile
5. Click Next to display the Artix Location panel, as shown in Figure 128.

6. Enter values for each of the fields provided on the panel, or accept the
defaults provided. Changes you make to the Location field will be
reflected in the Environment File field.

7. Select a Development Language for this profile from the options
provided (C++, Java, IDL).

Figure 128:Deployment Profile wizard—Artix Location panel
181

CHAPTER 8 | Deployment
8. Click Next to display the Summary panel, as shown in Figure 129.

9. Click Finish to close this wizard and return to the Artix Designer. Your
new Deployment Profile is listed in the Designer Tree as well as on the
Workspace Details panel.

Figure 129:Deployment Profile wizard—Summary panel
 182

Creating a Deployment Profile
Editing a Deployment Profile
After you have created a deployment profile, you can view its details by
selecting it in the Designer Tree to display the Deployment Profile Details
panel, as shown in Figure 130.

This panel displays, in read-only format, the settings you defined for the
profile during the New Profile wizard.

Figure 130:Deployment Profile Details
183

CHAPTER 8 | Deployment
To edit a profile click on the Edit button to display the Edit Deployment
Profile dialog, as shown in Figure 131.

This dialog enables you to change the settings for your Deployment Profile.

To change the values for any of the settings, either:

• Type a new value in the cell, or

• Select a valid option from the drop-down within the cell

Click Apply to apply your changes, and OK to close this dialog.

Note that if you make changes to a Deployment Profile for a Bundle that has
already had code generated, you will need to regenerate the code as it will
most likely be rendered invalid. This is indicated by a warning icon to the
left of the bundle name in the Designer Tree.

To regenerate the code for a bundle, select it in the Designer Tree and select
Tools | Generate Code. See page 192 for more information.

Figure 131:Edit Deployment Profile dialog
 184

Creating a Deployment Bundle
Creating a Deployment Bundle

Overview The Deployment Bundle defines the deployment characteristics for a
collection, such as the deployment type (client, server, or switch), code
generation options, and configuration details. You can also modify the
service WSDL for each deployment bundle, if necessary.

You can have as many Deployment Bundles per collection as you like, but
you must have at least one Deployment Profile created before you can
create a Bundle. Typically you would create a new profile for each different
operating system you intended using for deployment.

Procedure To create a Deployment Bundle:

1. Select the Collection for which you want to create a bundle in the
Designer Tree.

2. Select File | New | Deployment Bundle from the menu bar to display
the New Deployment Bundle wizard, as shown in Figure 132.

Figure 132:New Deployment Bundle wizard
185

CHAPTER 8 | Deployment
3. Enter a name for this bundle, or accept the default provided.

4. Enter a description for this bundle to help distinguish it from other
bundles you may create.

5. Enter a save location for this bundle, or accept the default provided.

6. Select a Deployment Profile to reference for this bundle. If there are
no profiles listed, you need to create one before you can continue. See
“Creating a Deployment Profile” on page 179 for more information.

7. Select the Deployment Type from the list provided - options are client,
server, client and server, or switch.

8. Click Next to display the Code Generation panel, as shown in
Figure 133.

9. Select how you’d like to display the items for which you can generate
code. The available options are:

♦ Services/ports

♦ Bindings

♦ Port Types

Figure 133:Deployment Bundle wizard—Code Generation panel
 186

Creating a Deployment Bundle
10. Select the check boxes to indicate what type of code you wish to
generate. Options are:

♦ Code - generates proxy and stub code that is not user-editable -
doesn’t contain any starting point code.

♦ Sample - generates starting point code with sample data that you
can edit or add processing logic to. (Only available if Code is also
checked.)

♦ Plug-in - generates the code so that it compiles as an Artix
plug-in. (Only available if Code is also checked.)

11. Select the Services you would like to enable for this deployment bundle
from the list provided:

♦ Locator - clients use the location service to detect other deployed
Artix applications. Typically deployed into a standalone switch.

♦ Session Manager - provides control over the number of clients
that can connect to a service, and the duration of their
connection. Typically deployed into a standalone switch.

♦ Management - generates scripts required to manage your
deloyment through a management console. (Only valid for server
or switch deployments.)

♦ Security - enables secure communication between the client and
the web service using SSL.

Note: These services are only available for selection if they have been
enabled at the workspace level on the Workspace Services Details
panel.

12. Click the Configure Language Options check box if you want to specify
settings for the code generation in the language you have selected.
This will add an extra panel to the wizard where you can specify these
options.

Depending on which code you are working with, the options displayed
will differ. Possible options are:

♦ Namespace (C++) - The namespace you want to use in the
C++ code.
187

CHAPTER 8 | Deployment
♦ Declaration Specification (C++) - If this collection is being built
as a DLL on Windows, this specifier is required for the symbols
exported from the library.

♦ Package Name (Java) - The name you want to use for the Java
package. Enter a name or accept the default provided.

13. Click Next to display the Edit Services panel, as shown in Figure 134.

14. Click any of the Services links to update them for this deployment.

Note that any changes made to the Service details from within this
wizard will only apply to that bundle; they will not be applied to the
WSDL document itself.

Figure 134:Deployment Bundle wizard—Update Service panel
 188

Creating a Deployment Bundle
15. Click Next to display the Summary panel, as shown in Figure 135.

16. Click Finish to close this wizard and return to the Artix Designer. The
new Deployment Bundle is listed in the Designer Tree as well as on the
Collection Details panel.

Deployment bundle status The status of your deployment bundle can change over its lifetime. After
you have generated code for your bundle, its status is indicated on the
Collection and Deployment Bundle Details panels. The date and time that
the code was generated is stated.

If you subsequently make changes to any of the collection entitites, such as
the Deployment Profile, or the Bundle, or even the resources, the code will
most likely no longer be valid. You will need to regenerate it. This is
indicated on the Details panels, as before, and also by a warning icon next
to the bundle name in the Designer Tree.

Figure 135:Deployment bundle wizard—Summary panel
189

CHAPTER 8 | Deployment
Editing a Deployment Bundle
After you have created a deployment bundle, you can view its details by
selecting it in the Designer Tree to display the Deployment Bundle Details
panel, as shown in Figure 130.

This panel displays, in read-only format, the settings you defined for the
profile during the New Bundle wizard.

Figure 136:Deployment Bundle Details
 190

Creating a Deployment Bundle
To edit the bundle by clicking on the Edit button to display the Edit
Deployment Bundle dialog, as shown in Figure 131.

To change the values for any of the settings, either:

• Type a new value in the cell, or

• Select a valid option from the drop-down within the cell

Click Apply to apply your changes, and OK to close this dialog.

Note that if you make changes to a Deployment Bundle that has already had
code generated, you will need to regenerate the code as it will most likely be
rendered invalid. This is indicated by a warning icon to the left of the
bundle name in the Designer Tree.

To regenerate the code for a bundle, select it in the Designer Tree and select
Tools | Generate Code. See the next section for more information.

Figure 137:Edit Deployment Bundle dialog
191

CHAPTER 8 | Deployment
Generating Code

Overview Once you have created your Deployment Bundle, code generation for the
collection is very simple and quick. Artix generates the code based on the
information you provided in the bundle, and creates the code, environment
scripts, and configuration files in the locations you provided.

Note that if you make any changes to any of the contents of a collection
after code generation, it could invalidate that code. For this reason, it is
recommended that you regenerate the code for any collection that has been
modified. Bundles requiring their code to be regenerated are indicated in
the Designer Tree by a small warning icon next to the Bundle name.

Procedure To generate code for a collection:

1. Select the collection in the Designer Tree.

2. Select Tools | Generate Code from the menu bar to display the
Generate Code dialog, as shown in Figure 138.

Figure 138:Generate Code dialog
 192

Generating Code
3. Select a Deployment Bundle from the Deployment Bundle drop-down
list.

4. There are several components already pre-selected in the Generate
column - if you want to change any of these settings you can do so by
selecting and deselecting check boxes. The options provided are:

♦ Stub Code - code that marshals and de-marshals the request.
This is Required, and is always pre-selected.

♦ User Code - generates a template for the implementation code.
You will need to complete this code by hand.

♦ Environment Scripts - scripts required to set up the Artix
development and runtime on the deployment machine.

♦ Start/Stop Scripts - scripts to start and stop the server. Only valid
for server and switch implementations. For Windows operating
systems there will be no stop scripts, as Artix is unable to
determine which process to stop from the command line API.

♦ Management Scripts - scripts required for integration into the
BMC console. Only valid for server and switch implementations.

5. Click OK to generate the code for this bundle.

You will see a progress indicator, and messages stating things like
"Generating Code", "Generating Configuration File". When the process
is complete (usually only 3-4 seconds), you will receive a message
stating that it is "Finished".

Testing the solution Now that you have generated the code necessary for your application, you
need to do some hand coding before you can test the solution.

For help with editing your code, see either:

• Developing Artix Solutions with C++; or

• Developing Artix Solutions with Java

These books will guide you through the steps required to get your code to a
state where it is ready to run.
193

CHAPTER 8 | Deployment
 194

Part II
Using Artix Command Line

Tools

In this part This part contains the following chapters:

Designing Artix Solutions from the Command Line page 197

Defining Data Types page 203

Defining Messages page 219

Defining Your Interfaces page 223

Binding Interfaces to a Payload Format page 227

Adding Transports page 297

Creating Artix Contracts from Existing Applications page 337

Adding Routing Instructions page 357

Using the Artix Transformer to Solve Problems in Artix page 381

CHAPTER 9

Designing Artix
Solutions from the
Command Line
Using a combination of Artix command line utilities and a text
editor you can create complex Artix solutions.

In this chapter This chapter discusses the following topics:

Artix and WSDL page 198

Creating an Artix Contract page 200

Beyond the Contract page 201
197

CHAPTER 9 | Designing Artix Solutions from the Command Line
Artix and WSDL

Overview When designing Artix solutions from the command line, you will be working
directly with the WSDL and XMLSchema that makes up the Artix contract.
In many instances the Artix designer automates many of the details of
creating a well-formed and valid WSDL document. When hand-editing Artix
contracts you will need to ensure that the contract is valid, as well as
correct. To do that you must have some familiarity with WSDL. You can find
the standard on the W3C website, www.w3.org.

Structure of a WSDL document A WSDL document is, at its simplest, a collection of elements contained
within the root <definition> element. These elements describe a service
and how that service can is accessed.

The <types>, <message>, and <portType> elements describe the service’s
interface and make up the logical section of a contract. Within the <types>
element, XMLSchema is used to define complex data types. A number of
<message> elements are used to define the structure of the messages used
by the service. The <portType> element contains one or more <operation>
elements that define the operations provided by the service.

The <binding> and <service> elements describe how the service connects
to the outside world and make up the physical section of the contract.
<binding> elements describe how the data defined in the <message>
elements are mapped into a concrete on-the-wire data format, such as
SOAP. <service> elements contain one or more <port> elements which
define the network interface for the service.

WSDL elements A WSDL document is made up of the following elements:

• <definitions> - the root element of a WSDL document. The attributes
of this element specfiy the name of the WSDL document, the
document’s target namespace, and the shorthand definitions for the
namespaces referenced by the WSDL.

• <types> – the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an
XMLSchema document (XSD).
 198

http://www.w3.org/TR/wsdl

Artix and WSDL
• <message> – the abstract definition of the data being communicated.

• <portType> – a collection of <operation> elements representing an
abstract endpoint.

• <operation>– the abstract description of an action.

• <binding> – the concrete data format specification for a port type.

• <service> – a collection of <port> elements.

• <port> – the endpoint defined by a binding and a physical address.

Artix extensions Artix extends the original concept of WSDL by expanding it to describe
services that use transports and bindings beyond SOAP over HTTP. Artix
also extends WSDL to allow it to describe complex systems of services and
how they are integrated. To do this IONA has extended WSDL according to
the procedures outlined by W3C.

The majority of the IONA WSDL extension elements are used in the physical
section of the contract because they relate to how data is mapped into an on
the wire format and how different transports are configured. In addition,
Artix defines extensions for creating routes between services, CORBA data
type mapping, and working with service references.

Each extension is defined in a separate namespace and IONA provides the
XMLSchema definitions for each extension so that any XML editor can
validate an Artix contract.
199

CHAPTER 9 | Designing Artix Solutions from the Command Line
Creating an Artix Contract

Overview The process of designing an Artix solution using command line tools is
similar to the process of designing an Artix solution using Artix Designer.
You still need to define all of the information that defines the logical and
physical characteristics of the services in your system and how they interact.

Design process To design an Artix solution from the command line you must perform the
following steps:

1. Define the data types used in your solution.

2. Define the messages used in your solution.

3. Define the interfaces for each of the services in your solution.

4. Define the bindings between the messages used by each interface and
the concrete representation of the data on the wire.

5. Define the transport details for each of the services in your solution.

6. Define any routing rules used in your solution.

7. Define any Artix services used to provide added functionality to your
solution.

Using composite contracts When using the command line tools you can choose to design your project
using a single contract that contains all of the type definitions, interface
definitions, bindings, ports, and other Artix-specific information defining
your solution. You can also choose to work with a number of smaller
contracts that you import into a composite contract that represents the
solution.

This approach allows you to reuse parts of your contract, such as the data
type definitions, in multiple projects. It can also make working with large
contracts more manageable.
 200

Beyond the Contract
Beyond the Contract

Overview After you have created the contract defining your Artix solution, you still
have work to do before your solution is ready to go. There are two remaining
steps in developing a solution using Artix:

1. Develop any application-level code needed to complete the solution.

2. Configure the Artix components.

Develop application code Often, you will need to develop new application logic as a part of your
solution. Artix provides tools that allow you to develop this new functionality
using familiar programming paradigms. For example, if you are a CORBA
developer integrating a CORBA system with a Tuxedo application, Artix will
generate the IDL representing the interface used in the service integration.
You can then implement the interface using CORBA.

Artix also provides code generators to create stub and skeleton code in C++
and Java. The APIs used by Artix make it easy to develop
transport-independent, Web services-based applications using standard
programming techniques. For more information on developing Artix
applications, see Developing Artix Applications in C++ or Developing Artix
Applications in Java.

Configure the Artix components Before deploying your Artix solution you need to configure the run time
environment for your Artix components and services. For a detailed
discussion of Artix configuration, see the Deploying and Managing Artix
Solutions.
201

CHAPTER 9 | Designing Artix Solutions from the Command Line
 202

CHAPTER 10

Defining Data
Types
In Artix, complex data types are defined using XMLSchema.

Overview When defining an interface in an Artix contract, the first thing you need to
consider is the types of data that are used by the operation parameters of
the interface. Artix uses XMLSchema as its native type system. XMLSchema
supports a number of simple types that do not require you to describe them
in the contract. XMLSchema also supports the definition of complex data
types that are either a collection of typed elements or a derivative of a
simple type. In an Artix contract, complex type definitions are entered in the
<type> element.

Defining the types used in an Artix contract involves seven steps:

1. Determine all of the data types used in the interface described by the
contract.

2. Create a <type> element in your contract.

3. Create a <schema> element, as a child of the <type> element, that
specifies the type system used in the contract. See “Specifying a Type
System in a Contract” on page 205.

4. For each complex type that is a collection of elements, define the data
type using a <complexType> element. See “Defining Data Structures”
on page 209.
203

CHAPTER 10 | Defining Data Types
5. For each array, define the data type using a <complexType> element.
See “Defining Arrays” on page 212.

6. For each complex type that is derived from a simple type, define the
data type using a <simpleType> element. See “Defining Types by
Restriction” on page 214.

7. For each enumerated type, define the data type using a <simpleType>
element. See “Defining Enumerated Types” on page 216.

In this chapter This chapter discusses the following topics:

Specifying a Type System in a Contract page 205

XMLSchema Simple Types page 206

Defining Complex Data Types page 208
 204

Specifying a Type System in a Contract
Specifying a Type System in a Contract

Overview According to the WSDL specification, you can use any type system you like
to define data types in WSDL. However, the W3C specification states
XMLSchema (XSD) is the preferred canonical type system for a WSDL
document. Therefore, XSD is the intrinsic type system in Artix.

Specifying the type system The first child element of the <types> element in a contract is the <schema>
element. This element specifies the namespace for the types defined by the
WSDL. It also defines the type system used to define the new types and any
namespaces that are referenced in the type definitions.

Example 1 shows the standard <schema> element for an Artix contract. The
attribute targetNamespace is where you specify the namespace under which
your new data types are defined. The remaining entries are required. The
first specifies that the types are defined using XMLSchema. The second
references a few special XMLSchema types defined specifically for WSDL.

General guidelines The W3C also provides guidelines on using XMLSchema to represent data
types in WSDL documents:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

Example 1: Artix Schema Element

<schema
 targetNamespace="http://schemas.iona.com/idltypes/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
205

CHAPTER 10 | Defining Data Types
XMLSchema Simple Types

Overview If a message part is going to be of a simple type you do not need to create a
type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types XSD simple types are mainly placed in the type attribute of <element>
elements used in defining sequences in the types section of your contract.
They are also used in the base attribute of <restriction> elements and
<extension> elements.

Simple types are always entered using the xsd prefix. For example, to
specify that an element is of type int, you would enter xsd:int in its type
attribute.

Supported XSD simple types Artix supports the following XMLSchema simple types:

• xsd:anyType

• xsd:base64Binary

• xsd:boolean

• xsd:byte

• xsd:dateTime

• xsd:decimal

• xsd:double

• xsd:float

• xsd:hexBinary

• xsd:int

• xsd:integer

• xsd:long

• xsd:QName

• xsd:short

• xsd:string

• xsd:unsignedByte

• xsd:unsignedInt

• xsd:unsignedLong
 206

XMLSchema Simple Types
• xsd:unsignedShort

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger

• xsd:ID

• xsd:anyURI

• xsd:gDay

• xsd:gMonth

• xsd:gYear

• xsd:gMonthDay

• xsd:gYearMonth
207

CHAPTER 10 | Defining Data Types
Defining Complex Data Types

Overview XMLSchema provides a flexible and powerful mechanism for building
complex data types from its simple data types. You can create data
structures by creating a sequence of elements and attributes. You can also
extend your defined types to create even more complex types.

In addition to allowing you to build complex data structures, you can also
describe specialized types such as enumerated types, data types that have a
specific range of values, or data types that need to follow certain patterns by
either extending or restricting the primitive types.

In this section This section discusses the following topics:

Defining Data Structures page 209

Defining Arrays page 212

Defining Types by Restriction page 214

Defining Enumerated Types page 216
 208

Defining Complex Data Types
Defining Data Structures

Overview In XMLSchema data structures that are a collection of data fields are defined
using <complexType> elements. The definition of a <complexType> has three
parts:

1. The name of the defined type is specified in the name attribute of the
<complexType> element.

2. The first child element of the <complexType> describes the behavior of
the structure’s fields when it is put on the wire. See “complexType
varieties” on page 210.

3. Each of the fields of the defined structure are defined in <element>
elements that are grandchildren of the <complexType>. See “Defining
the parts of a structure” on page 210.

For example the structure shown in Example 2 would be defined in
XMLSchema as a <complexType> with two elements.

Example 3 shows one possible XMLSchema mapping for personalInfo.

Example 2: Simple Structure

struct personalInfo
{
 string name;
 int age;
};

Example 3: A Complex Type

<complexType name="personalInfo>
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>
209

CHAPTER 10 | Defining Data Types
complexType varieties XMLSchema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and when passed on
the wire. The first child element of the <complexType> determines which
variety of complex type is being used. Table 1 shows the elements used to
define complex type behavior.

If neither <sequence>, <all>, nor <choice> is specified, the default is
<sequence>.

For example, the structure defined in Example 3 would generate a message
containing two elements: name and age. If the structure was defined as a
<choice>, as shown in Example 4, it would generate a message with either
a name element or an age element.

Defining the parts of a structure You define the data fields that make up a structure using <element>
elements. Every <complexType> should have at least one <element> defined
inside of it. Each <element> in the <complexType> represents a field in the
defined data structure.

Table 1: complexType Descriptor Elements

Element complexType Behavior

<sequence> All the complex type’s fields must be present and in the
exact order they are specified in the type definition.

<all> All the complex type’s fields must be present but can be in
any order.

<choice> Only one of the elements in the structure is placed in the
message.

Example 4: Simple Complex Choice Type

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </choice>
</complexType>
 210

Defining Complex Data Types
To fully describe a field in a data structure, <element> elements have two
required attributes:

• name specifies the name of the data field and must be unique within
the defined complex type.

• type specifies the type of the data stored in the field. The type can be
either one of the XMLSchema simple types or any named complex type
that is defined in the contract.

In addition to name and type, <element> elements have two other commonly
used optional attributes: minOcurrs and maxOccurs. These attributes place
bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you could define a field, previousJobs, that must occur at least
three times and no more than seven times as shown in Example 5.

You could also use minOccurs to make a date field optional by setting it to
zero as shown in Example 6. In this case age can be omitted and the data
will still be valid.

Example 5: Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7" />
 </all>
</complexType>

Example 6: Simple Complex Type with minOccurs

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" minOccurs="0" />
 </choice>
</complexType>
211

CHAPTER 10 | Defining Data Types
Defining Arrays

Overview Artix supports two methods for defining arrays in a contract. The first is
define a complex type with a single element with occurrence constraint
placed on it. The second is to use SOAP arrays. SOAP arrays provide added
functionality such as the ability to easily define multi-dimensional arrays
and transmit sparsely populated arrays.

Complex type arrays Complex type arrays are nothing more than a special case of a <sequence>
complex type. You simply define a complex type with a single element and
specify a value for the maxOccurs attribute. For example to define an array of
twenty floats you would use a complex type similar to the one shown in
Example 7.

You could also specify a value for minOccurs.

SOAP arrays SOAP arrays are defined by deriving from the SOAP-ENC:Array base type
using the wsdl:arrayType. The syntax for this is shown in Example 8.

Example 7: Complex Type Array

<complexType name="personalInfo>
 <element name="averages" type="xsd:float" maxOccurs="20" />
</complexType>

Example 8: Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>
 212

Defining Complex Data Types
Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
<ArrayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 9, defines a
one-dimensional array of strings. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:string, and the number of dimensions, []
implying one dimension.

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 10.

When using this syntax, the element's maxOccurs attribute must always be
set to unbounded.

Example 9: Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 10:Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
213

CHAPTER 10 | Defining Data Types
Defining Types by Restriction

Overview XMLSchema allows you to create new types by restricting the possible
values of an XMLSchema simple type. For example, you could define a
simple type, SSN, which is a string of exactly nine characters. New types
defined by restricting simple types are defined using a <simpleType>
element.

The definition of a <simpleType> has three parts:

1. The name of the new type is specified by the name attribute of the
<simpleType> element.

2. The simple type from which the new type is derived, called the base
type, is specified in the <restriction> element. See “Specifying the
base type” on page 214.

3. The rules, called facets, defining the restrictions placed on the base
type are defined as children of the <restriction> element. See
“Defining the restrictions” on page 215.

Specifying the base type The base type is the type that is being restricted to define the new type. It is
specified using a <restriction> element. The <restriction> element is
the only child of a <simpleType> element and has one attribute, base, that
specifies the base type. The base type can be any of the XMLSchema simple
types.

For example, to define a new type by restricting the values of an xsd:int
you would use a definition like Example 11.

Example 11: int as Base Type

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>
 214

Defining Complex Data Types
Defining the restrictions The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is
enforced. The available facets and their valid value settings depend on the
base type. For example, xsd:string supports six facets including:

• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the <restriction> element.

Example Example 12 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element of this
type, but <SSN>032439876</SSN> is not.

Example 12:SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}" />
 </restriction>
</simpleType>
215

CHAPTER 10 | Defining Data Types
Defining Enumerated Types

Overview Enumerated types in XMLSchema are a special case of definition by
restriction. They are described by using the enumeration facet which is
supported by all XMLSchema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration The syntax for defining an enumeration is shown in Example 13.

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Example 13:Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value" />
 <enumeration value="Case2Value" />
 ...
 <enumeration value="CaseNValue" />
 </restriction>
</simpleType>
 216

Defining Complex Data Types
Example For example, an XML document with an element defined by the
enumeration widgetSize, shown in Example 14, would be valid if it
contained <widgetSize>big</widgetSize>, but not if it contained
<widgetSize>big,mungo</widgetSize>.

Example 14:widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>
217

CHAPTER 10 | Defining Data Types
 218

CHAPTER 11

Defining Messages
You can define complex messages to pass between your
services.

Overview WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <message> elements. Each
abstract message consists of one or more parts, defined in <part> elements.
These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <binding> elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation. In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part> elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.
219

CHAPTER 11 | Defining Messages
Example For example, imagine a server that stored personal information and provided
a method that returned an employee’s data based on an employee ID
number. The method signature for looking up the data would look similar to
Example 15.

This method signature could be mapped to the WSDL fragment shown in
Example 16.

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages that represent a service request
or output messages that represent a response.

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 2

Example 15:personalInfo lookup Method

personalInfo lookup(long empId)

Example 16:WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
<message />

Table 2: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an
element called elem_name.
 220

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in
Example 17.

Example 17:Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int" />
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int" />
<message>
221

CHAPTER 11 | Defining Messages
 222

CHAPTER 12

Defining Your
Interfaces
In WSDL documents interfaces are defined using the
<portType> element.

Overview Interfaces are defined using the WSDL <portType> element. Like an
interface, the <portType> is a collection of operations that define the input,
output, and fault messages used by the service implementing the interface
to complete the transaction the operation describes. The difference is that
the operations in a port type are built up using messages that are defined
outside of the port type instead of parameter lists defined as part of the
operation itself.

To define an interface, port type, in an Artix contract do the following:

1. Create a <portType> element to contain the interface definition and
give it a unique name. See “Port types” on page 224.

2. Create an <operation> element for each operation defined in the
interface. See “Operations” on page 224.

3. For each operation, specify the messages used represent the
operation’s parameter list, return type, and exceptions. See “Operation
messages” on page 224.
223

CHAPTER 12 | Defining Your Interfaces
Port types A <portType> element is the root element in an interface definition and
many Web service implementations, including Artix, map port types directly
to generated implementation objects. In addition, the <portType> element is
the abstract unit of a WSDL document that is mapped into a concrete
binding to form the complete description of what is offered over a port.

Each <portType> element in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

Operations Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation defined within a <portType> element must have a unique
name, specified using the name attribute. The name attribute is required to
define an operation.

Operation messages Operations are made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3.

Table 3: Operation Message Elements

Element Description

<input> Specifies the message the client endpoint sends to the
service provider when a request is made. The parts of this
message correspond to the input parameters of the
operation.

<output> Specifies the message that the service provider sends to
the client endpoint in response to a request. The parts of
this message correspond to any operation parameters that
can be changed by the service provider, such as values
passed by reference. This includes the return value of the
operation.
 224

An operation is required to have at least one input or one output element.
An operation can have both input and output elements, but it can only
have one of each. Operations are not required to have any fault messages,
but can have any number of fault messages needed.

The elements are defined by two attributes listed inTable 4.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values Because the <operation> element is an abstract definition of the data
passed during in operation, WSDL does not provide for return values to be
specified for an operation. If a method returns a value it will be mapped into
the output message as the last <part> of that message. The concrete
details of how the message parts are mapped into a physical representation
are described in “Binding Interfaces to a Payload Format” on page 227.

<fault> Specifies a message used to communicate an error
condition between the endpoints.

Table 3: Operation Message Elements

Element Description

Table 4: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
225

CHAPTER 12 | Defining Your Interfaces
Example For example, you might have an interface similar to the one shown in
Example 18.

This interface could be mapped to the port type in Example 19.

Note that the return value of lookup() is mapped to the message used in
the <output> element of the WSDL definition. Because the operation does
not have any other parameters that can be returned, such as out or inout
parameters in CORBA, the return parameter is the only part of the message
used for the <output> element.

Example 18:personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 19:personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>
 226

CHAPTER 13

Binding Interfaces
to a Payload
Format
You can bind your interfaces to a number of payload formats
in Artix.

Overview To define an endpoint that corresponds to a running service, port types are
mapped to bindings that describe how the abstract messages used by the
interface’s operations map to the data format used on the wire. These
bindings are described in <binding> elements. A binding can map to only
one port type, but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

In this Chapter This chapter discusses the following topics:

Adding a SOAP Binding page 229

Adding a CORBA Binding page 243
227

CHAPTER 13 | Binding Interfaces to a Payload Format
Adding an FML Binding page 248

Adding a Fixed Binding page 253

Adding a Tagged Binding page 269

Adding a TibMsg Binding page 280

Adding a Pure XML Binding page 284

Adding a G2++ Binding page 289
 228

Adding a SOAP Binding
Adding a SOAP Binding

Overview Artix provides a tool to generate a default SOAP binding which does not use
any SOAP headers. However, you can add SOAP header s to your binding
using any text or XML editor. In addition, you can define a SOAP binding
that uses MIME multipart attachments.

For more information For more detailed information on the SOAP binding and the specifics of the
elements used in defining it see “SOAP Binding Extensions” on page 427.

In this section This section discusses the following topics:

Adding a Default SOAP Binding page 230

Adding SOAP Headers to a SOAP Binding page 233

Sending Data Using SOAP with Attachments page 239
229

CHAPTER 13 | Binding Interfaces to a Payload Format
Adding a Default SOAP Binding

Overview Artix provides a command line tool, wsdltosoap, that will generate a default
SOAP binding for an interface defined in a WSDL <portType>. The tool will
generate a new contract which includes the generated SOAP binding.

Using the tool To generate a SOAP binding using wsdltosoap use the following command:

The command has the following options:

wsdltosoap does not support the the generatoin of document/encoded SOAP
bindings.

wsdltosoap -i portType -n namespace wsdl_file
 [-b binding][-d dir][-o file]
 [-style {document|rpc}][-use {literal|encoded}]

-i portType Specifies the name of the port type being mapped to a
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.
 230

Adding a SOAP Binding
Example If your system had an interface that took orders and offered a single
operation to process the orders it would be defined in an Artix contract
similar to the one shown in Example 20.

Example 20:Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int" />
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>
231

CHAPTER 13 | Binding Interfaces to a Payload Format
The SOAP binding generated for orderWidgets is shown in Example 21.

This binding specifies that messages are sent using the rpc/encoded
message style. The value of the namespace attribute is, in this example, the
same as the contract’s target namespace.

Example 21:SOAP Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
 232

Adding a SOAP Binding
Adding SOAP Headers to a SOAP Binding

Overview SOAP headers are defined by adding <soap:header> elements into your
default SOAP binding. The <soap:header> element is an optional child of
the <input>, <output>, and <fault> elements of the binding. The SOAP
header becomes part of the parent message. A SOAP header is defined by
specifying a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many SOAP headers as
needed.

Syntax The syntax for defining a SOAP header is shown in Example 22. The
message attribute of <soap:header> is the qualified name of the message
from which the part being inserted into the header is taken. The part
attribute is the name of the message part inserted into the SOAP header.
Because SOAP headers are always doc style, the WSDL message part
inserted into the SOAP header must be defined using an element. Together
the message and the part attributes fully describe the data to insert into the
SOAP header.

In addition to the mandatory message and part attributes, <soap:header>
also supports the namespace, the use, and the encodingStyle attributes.
These optional attributes function the same for <soap:header> as they do
for <soap:body>.

Example 22:SOAP Header Syntax

<binding name="headwig">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">
 <soap:operation soapAction="" style="rpc"/>
 <input name="grain">
 <soap:body ... />
 <soap:header message="QName" part="partName" />
 </input>
...
</binding>
233

CHAPTER 13 | Binding Interfaces to a Payload Format
Development considerations When you are using SOAP headers in your Artix applications, you are
responsible for creating and populating the SOAP headers in your
application logic. For details on Artix application development, see either
Developing Artix Applications in C++ or Developing Artix Applications in
Java.

Splitting messages between body
and header

The message part inserted into the SOAP header can be any valid message
part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The <soap:body> element has an optional attribute, parts, that takes a
space delimited list of part names. When parts is defined, only the message
parts listed are inserted into the SOAP body. You can then insert the
remaining parts into the SOAP header.

Example Example 23 shows a modified version of the orderWidgets service shown in
Example 20. This version has been modified so that each order has an
xsd:base64binary value placed in the SOAP header of the request and
response. The SOAP header is defined as being the keyVal part from the
widgetKey message. In this case you would be responsible for adding the
SOAP header in your application logic because it is not part of the input or
output message.

Note: When you define a SOAP headers using parts of the parent
message, Artix automatically fills in the SOAP headers for you.

Example 23:SOAP Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 234

Adding a SOAP Binding
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary" />
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int" />
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int" />
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

Example 23:SOAP Binding for orderWidgets with a SOAP Header
235

CHAPTER 13 | Binding Interfaces to a Payload Format
You could modify Example 23 so that the header value was a part of the
input and output messages as shown in Example 24. In this case keyVal is
a part of the input and output messages. In the <soap:body> elements the
parts attribute specifies that keyVal is not to be inserted into the body.
However, it is inserted into the SOAP header.

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal" />
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal" />
 </output>
 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 23:SOAP Binding for orderWidgets with a SOAP Header

Example 24:SOAP Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 236

Adding a SOAP Binding
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary" />
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int" />
 <part name="keyVal" element="xsd1:keyElem" />
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem" />
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

Example 24:SOAP Binding for orderWidgets with a SOAP Header
237

CHAPTER 13 | Binding Interfaces to a Payload Format
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
 parts="numOrdered" />
 <soap:header message="tns:widgetOrder" part="keyVal" />
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
 parts="bill" />
 <soap:header message="tns:widgetOrderBill" part="keyVal" />
 </output>
 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 24:SOAP Binding for orderWidgets with a SOAP Header
 238

Adding a SOAP Binding
Sending Data Using SOAP with Attachments

Overview SOAP messages generally do not carry binary data. However, the W3C
SOAP specification allows for using MIME multipart/related messages to
send binary data in SOAP messages. This technique is called using SOAP
with attachments. SOAP attachments are defined in the W3C’s SOAP
Messages with Attachments Note
(http://www.w3.org/TR/SOAP-attachments).

Namespace The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL <defintion> element to set this up is
shown in Example 25.

Changing the message binding In a default SOAP binding the first child element of the <input>, <output>,
and <fault> elements is a <soap:body> element describing the body of the
SOAP message representing the data. When using SOAP with attachments,
the <soap:body> element is replaced with a <mime:multipartRelated>
element.

The <mime:multipartReleated> element tells Artix that the message body is
going to be a multipart message that potentially contains binary data. The
contents of the element define the parts of the message and their contents.
<mime:multipartReleated> elements in Artix contain one or more
<mime:part> elements that describe the individual parts of the message.

Example 25:MIM Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Note: WSDL does not support using <mime:multipartRelated> for
<fault> messages.
239

http://www.w3.org/TR/SOAP-attachments

CHAPTER 13 | Binding Interfaces to a Payload Format
The first <mime:part> element must contain the <soap:body> element that
would normally appear in a default SOAP binding. The remaining
<mime:part> elements define the attachments that are being sent in the
message.

Describing a MIME multipart
message

MIME multipart messages are described using a <mime:multipartRelated>
element that contains a number of <mime:part> elements. To fully describe
a MIME multipart message in an Artix contract do the following:

1. Inside the <input> or <output> message you want to send as a MIME
multipart message, add a <mime:mulipartRelated> element as the
first child element of the enclosing message.

2. Add a <mime:part> child element to the <mime:multipartRelated>
element and set its name attribute to a unique string.

3. Add a <soap:body> element as the child of the <mime:part> element
and set its attributes appropriately.

If the contract had a default SOAP binding, you can copy the
<soap:body> element from the corresponding message from the default
binding into the MIME multipart message.

4. Add another <mime:part> child element to the
<mime:multipartReleated> element and set its name attribute to a
unique string.

5. Add a <mime:content> child element to the <mime:part> element to
describe the contents of this part of the message.

To fully describe the contents of a MIME message part the
<mime:content> element has the following attributes:

part Specifies the name of the WSDL message part, from the
parent message definition, that is used as the content of
this part of the MIME multipart message being placed on
the wire.
 240

Adding a SOAP Binding
6. For each additional MIME part, repeat steps 4 and 5.

Example Example 26 shows an Artix contract for a service that stores X-rays in JPEG
format. The image data, xRay, is stored as an xsd:base64binary and is
packed into the MIME multipart message’s second part, imageData. The
remaining two parts of the input message, patientName and patientNumber,
are sent in the first part of the MIME multipart image as part of the SOAP
body.

type The MIME type of the data in this message part. MIME
types are defined as a type and a subtype using the
syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in detail in
Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies
(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Types
(ftp://ftp.isi.edu/in-notes/rfc2046.txt).

Example 26:Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="storRequest">
 <part name="patientName" type="xsd:string" />
 <part name="patientNumber" type="xsd:int" />
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>
241

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 13 | Binding Interfaces to a Payload Format
 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>
 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="rpc"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://mediStor.org/x-rays" use="encoded"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:AttachmentService" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 26:Contract using SOAP with Attachments
 242

Adding a CORBA Binding
Adding a CORBA Binding

Overview CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, specifies the repository ID of the IDL interface
represented by the port type, resolves parameter order and mode ambiguity
in the operations’ messages, and maps the XMLSchema data types to
CORBA data types.

In addition to the binding information, Artix also uses a <corba:typemap>
extension to unambiguously describe how data is mapped to CORBA data
types. For primitive types, the mapping is straightforward. However,
complex types such as structures, arrays, and exceptions require more
detailed descriptions. For a detailed description of the CORBA type
mappings see “CORBA Type Mapping” on page 441.

Options To add a CORBA binding to an Artix contract you can choose one of two
methods. The first option is to use the wsdltocorba command line tool. The
command line tool automatically generates the binding and type map
information for a specified port type.

The second option is to enter the binding and typemap information by hand
using a text editor or XML editor. This option provides you the flexibility to
customize the binding. However, hand editing Artix contracts can be a time
consuming process and provides no error checking mechanisms. For
information on the WSDL extensions used to specify a CORBA binding see
“Mapping to the binding” on page 244.

Command line tool The wsdltocorba tool adds CORBA binding information to an existing Artix
contract. To generate a CORBA binding using wsdltocorba use the following
command:

wsdltocorba -corba -i portType [-d dir][-b binding][-o file]
 [-n namespace] wsdl_file
243

CHAPTER 13 | Binding Interfaces to a Payload Format
The command has the following options:

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use
the Artix Designer.

WSDL Namespace The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace
http://schemas.iona.com/bindings/corba. To use the CORBA extensions
you will need to include the following in the <definitions> tag of your
contract:

Mapping to the binding The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: repositoryID. repositoryID specifies the full
type ID of the interface. The type ID is embedded in the object’s IOR and
therefore must conform to the IDs that are generated from an IDL compiler.
These are of the form:

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-n namespace Specifies the namespace to use for the generated CORBA
typemap

xmlns:corba="http://schemas.iona.com/bindings/corba"

IDL:module/interface:1.0
 244

Adding a CORBA Binding
The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation is an IONA-specific element of <operation> and describes
the parts of the operation’s messages. <corba:operation> takes a single
attribute, name, which duplicates the name given in <operation>.

corba:param is a member of <corba:operation>. Each <part> of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding
<corba:param>. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation. <corba:param> has the
following required attributes:

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.
245

CHAPTER 13 | Binding Interfaces to a Payload Format
corba:return is a member of <corba:operation> and specifies the return
type, if any, of the operation. It only has two attributes:

corba:raises is a member of <corba:operation> and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding <corba:raises> element. <corba:raises> has one
required attribute, exception, which specifies the type of data returned in
the exception.

In addition to operations specified in <corba:operation> tags, within the
<operation> block, each <operation> in the binding must also specify
empty <input> and <output> elements as required by the WSDL
specification. The CORBA binding specification, however, does not use
them.

For each fault message defined in the logical description of the operation, a
corresponding <fault> element must be provided in the <operation>, as
required by the WSDL specification. The name attribute of the <fault>
element specifies the name of the schema type representing the data passed
in the fault message.

Example For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, shown in
Example 27.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.

Example 27:personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
 246

Adding a CORBA Binding
The CORBA binding for personalInfoLookup is shown in Example 28.

<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>

Example 27:personalInfo lookup port type

Example 28:personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
247

CHAPTER 13 | Binding Interfaces to a Payload Format
Adding an FML Binding

Overview FML buffers used by Tuxedo applications are described in one of two ways:

• A field table file that is loaded at run time.

• A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field’s name, id number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable fldids at run time.

The C header file description of an FML buffer simply maps field names to
their fldid. The fldid is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field.

Mapping from a field table to an
Artix contract

Creating an Artix contract to represent an FML buffer is a two-step process.
First, you must create the logical data representation of the FML buffer in
the Artix contract as described in “Mapping to logical type descriptions” on
page 248. Then, you must enter the FML binding information using Artix
WSDL extensions as described in “Mapping to the physical FML binding” on
page 250.

Mapping to logical type
descriptions

To create a logical data type to represent data in an FML buffer do the
following:

1. If the C header file for the FML buffer does not exist, generate it from
the field table using the Tuxedo mkfldhdr or mkfldhdr32 utility
program.

2. In the <types> section of your Artix contract, create a <complexType>
to represent the FML buffer.

3. Specify that all of the elements must be present and in the order
specified by adding a <sequence> child element to the <complexType>
element. See “Defining Data Structures” on page 209.

4. For each field in the FML buffer, create an <element> with the
following attribute settings:

♦ name is set to the name specified in the field table.
 248

Adding an FML Binding
♦ type is set to the appropriate XMLSchema type for the type
specified in the field table. See “XMLSchema Simple Types” on
page 206.

♦ maxOccurs is set to unbounded.

♦ minOccurs is set to 0.

For example, the personalInfo structure, defined in Example 27 on
page 246, could be described by the field table file shown in Example 29.

The C++ header file generated by the Tuxedo mkfldhdr tool to represent
the personlInfo FML buffer is shown in Example 30. Even if you are not
planning to access the FML buffer using the compile time method, you will
need to generate the header file when using Artix because this will give you
the fldid values for the fields in the buffer.

The order of the elements in the sequence used to logically describe the
FML buffer are ordered in increasing order by fldid value. For the
personalInfo FML buffer age must be listed first in the Artix contract

Note: The elements of the <complexType> must be ordered in increasing
order by the fldid specified in the C header.

Example 29:personalInfo Field Table File

personalInfo Field Table
name number type flags comment
name 100 string - Person’s name
age 102 short - Person’s age
hairColor 103 string - Person’s hair color

Example 30:personalInfo C++ header

/* fname fldid */
/* ----- ----- */
#define name ((FLDID)41060) /* number: 100 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define hairColor ((FLDID)41063) /* number: 103 type: string */
249

CHAPTER 13 | Binding Interfaces to a Payload Format
despite the fact that it is the second element listed in the field table. The
corresponding logical description of the FML buffer in an Artix contract is
shown in Example 31.

Mapping to the physical FML
binding

To add the binding that maps the logical description of the FML buffer to a
physical FML binding do the following:

1. Add the following line in the <definition> element at the beginning of
the contract.

2. Create a new <binding> element in your contract to define the FML
buffer’s binding.

3. Add an <fml:binding> element to identify that this binding defines an
FML buffer.

The <fml:binding> element has two required attributes:

♦ style specifies the encoding style used for the data. The valid
encoding styles are doc and rpc.

♦ transport sepcifies the transport this data will be sent over. This
attribute can take the URI for any of the valid Artix transport
definitions. You must be sure that the transport specified in the
<service> element of the contract matched the transport
specified here. See “Adding Transports” on page 297.

Example 31:Logical description of personalInfo FML buffer

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="personalInfoFML16">
 <sequence>
 <element name="age" type="xsd:short" minOccurs="0" maxOccurs="unbounded"/>
 <element name="name" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 <element name="hairColor" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </schema>
</types>

xmlns:fml="http://www.iona.com/bus/fml"
 250

Adding an FML Binding
4. Add an <fml:idNameMapping> element to the binding to describe how
the element names defined in the logical portion of the contract map to
the fldid values for the corresponding fields in the FML buffer.

The <fml:idNameMapping> has a mandatory type attribute. type can
be either fml16 for specifying that the application uses FML16 buffers
or fml32 for specifying that the application uses FML32 buffers.

5. For each element in the logical data type, add an <fml:element>
element to the <fml:idNameMapping> element.

<fml:element> defines how the logical data elements map to the
physical FML buffer. It has two mandatory attributes:

♦ fieldName specifies the name of the logical type describing the
field.

♦ fieldId specifies the fldid value for the field in the FML buffer.

6. For each operation in the interface, create a standard WSDL
<operation> element to define the operation being bound.

7. For each operation, add a standard WSDL <input> and <output>
elements to the <operation> element to define the messages used by
the operation.

8. For each operation, add an <fml:operation> element to the
<operation> element.

<fml:operation> informs Artix that the operation’s messages are to be
packed into an FML buffer. <fml:operation> takes a single attribute,
name, whose value must be identical to the name attribute of the
<operation> element.

For example, the binding for the personalInfo FML buffer, defined in
Example 29 on page 249, will be similar to the binding shown in
Example 32.

Note: The field elements must be listed in increasing order of their fldid
values.
251

CHAPTER 13 | Binding Interfaces to a Payload Format
Example 32:personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="http://info.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:fml="http://www.iona.com/bus/fml">
...
 <message name="requestInfo">
 <part name="request" type="xsd1:personalInfoFML16"/>
 </message>
 <message name="infoReply">
 <part name="reply" type="xsd1:personalInfoFML16"/>
 </message>

 <portType name="personalInfoPort">
 <operation name="infoRequest">
 <input message="tns:requestInfo" name="requestInfo" />
 <output message="tns:infoReply" name="infoReply" />
 </operation>
 </portType>

 <binding name="personalInfoBinding" type="tns:personalInfoPort">
 <fml:binding style="rpc" transport="http://schemas.iona.com/transports/tuxedo"/>
 <fml:idNameMapping type="fml16">
 <fml:element fieldName="age" fieldId="102" />
 <fml:element fieldName="name" fieldId="41060" />
 <fml:element fieldName="hairColor" fieldId="41063" />
 </fml:idNameMapping>

 <operation name="infoRequest">
 <fml:operation name="infoRequest"/>
 <input name="requestInfo" />
 <output name="infoReply" />
 </operation>
 </binding>

...
</definitions>
 252

Adding a Fixed Binding
Adding a Fixed Binding

Overview The Artix fixed binding is used to represent fixed record length data.
Common uses for this type of payload format are communicating with
back-end services on mainframes and applications written in COBOL. Artix
provides two means for creating a contract containing a fixed binding. If you
are integrating with an application written in COBOL and have the COBOL
copybook defining the data to be used, you can use the coboltowsdl tool
documented in “Creating Contracts from COBOL Copybooks” on page 354.

Alternatively, if you do not have access to the COBOL copybook or have a
logical interface you want to map to a fixed binding you can enter the
binding information using any text editor or XML editor. To map a logical
interface to a fixed binding do the following:

1. Add the proper namespace reference to the <definition> element of
your contract. See “Fixed binding namespace” on page 254.

2. Add a standard WSDL <binding> element to your contract to hold the
fixed binding, give the binding a unique name, and specify the port type
that represents the interface being bound.

3. Add a <fixed:binding> element as a child of the new <binding>
element to identify this as a fixed binding and set the element’s
attributes to properly configure the binding. See “<fixed:binding>” on
page 254.

4. For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

5. For each operation added to the binding, add a <fixed:operation>
child element to the <operation> element. See “<fixed:operation>”
on page 254.

6. For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.
253

CHAPTER 13 | Binding Interfaces to a Payload Format
7. For each <input>, <output>, and <fault> element in the binding, add
a <fixed:body> child element to define how the message parts are
mapped into the concrete fixed record length payload. See
“<fixed:body>” on page 255.

Fixed binding namespace The IONA extensions used to describe fixed record length bindings are
defined in the namespace http://schemas.iona.com/bindings/fixed. Artix
tools use the prefix fixed to represent the fixed record length extensions.
Add the following line to your contract:

<fixed:binding> <fixed:binding> specifies that the binding is for fixed record length data. It
has three optional attributes:

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message-by-message basis.

<fixed:operation> <fixed:operation> is a child element of the WSDL <operation> element
and specifies that the operation’s messages are being mapped to fixed
record length data.

<fixed:operation> has one attribute, discriminator, that assigns a unique
identifier to the operation. If your service only defines a single operation, you
do not need to provide a discriminator. However, if your service has more
than one service, you must define a unique discriminator for each operation
in the service. Not doing so will result in unpredictable behavior when the
service is deployed.

xmlns:fixed="http://schemas.iona.com/bindings/fixed

justification Specifies the default justification of the data contained in
the messages. Valid values are left and right. Default is
left.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad the
record.
 254

Adding a Fixed Binding
<fixed:body> <fixed:body> is a child element of the <input>, <output>, and <fault>
messages being mapped to fixed record length data. It specifies that the
message body is mapped to fixed record length data on the wire and
describes the exact mapping for the message’s parts.

To fully describe how a message is mapped into the fixed message do the
following:

1. If the default justification, padding, or encoding settings for the
attribute are not correct for this particular message, override them by
setting the optional attributes of <fixed:body>:

2. For each part in the message the <fixed:body> element is binding,
add the appropriate child element to define the part’s concrete format
on the wire.

Three child elements are used in defining how logical data is mapped
to a concrete fixed format message. These are:

3. If you need to add any fields that are specific to the binding and that
will not be passed to the applications, define them using a
<fixed:field> element with its bindingOnly attribute set to true.

 When bindingOnly is set to true, the field described by the
<fixed:field> element is not propagated beyond the binding. For
input messages, this means that the field is read in and then

justification Specifies how the data in the messages are justified.
Valid values are left and right.

encoding Specifies the codeset used to encode text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

<fixed:field> Maps message parts defined using a simple type. See
“XMLSchema Simple Types” on page 206.

<fixed:sequence> Maps message parts defined using a sequence complex
type. Complex types defined using <all> are not
supported by the fixed format binding. See “Defining
Data Structures” on page 209.

<fixed:choice> Maps message parts defined using a choice complex
type. See “Defining Data Structures” on page 209.
255

CHAPTER 13 | Binding Interfaces to a Payload Format
discarded. For output messages, you must also use the fixedValue
attribute.

The order in which the message parts are listed in the <fixed:body>
element represent the order in which they are placed on the wire. It does not
need to correspond to the order in which they are specified in the <message>
element defining the logical message.

<fixed:field> <fixed:field> is used to map simple data types to a fixed length record. To
define how the logical data is mapped to a fixed field do the following:

1. Create a <fixed:field> child element to the <fixed:body> element
representing the message.

2. Set the <fixed:field> element’s name attribute to the name of the
message part defined in the logical message description that this
element is mapping.

3. If the data being mapped is of type xsd:string, a simple type that has
xsd:string as its base type, or an enumerated type set the size
attribute of the <fixed:field> element.

size specifies the length of the string record in the concrete fixed
message. For example, the logical message part, raverID, described in
Example 33 would be mapped to a <fixed:field> similar to
Example 34.

Note: If the message part is going to hold a date you can opt to use
the format attribute described in step 4 instead of the size attribute.

Example 33:Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string" />
</message>
 256

Adding a Fixed Binding
In order to complete the mapping, you must know the length of the
record field and supply it. In this case, the field, raverID, can contain
no more than twenty characters.

4. If the data being mapped is of a numerical type, like xsd:int, or a
simple type that has a numerical type as its base type, set the
<fixed:field> element’s format attribute.

format specifies how non-string data is formatted. For example, if a
field contains a 2-digit numeric value with one decimal place, it would
be described in the logical part of the contract as an xsd:float, as
shown in Example 35.

From the logical description of the message, Artix has no way of
determining that the value of rageLevel is a 2-digit number with one
decimal place because the fixed record length binding treats all data as
characters. When mapping rageLevel in the fixed binding you would
specify its format with ##.#, as shown in Example 36. This provides
Artix with the meta-data needed to properly handle the data.

Dates are specified in a similar fashion. For example, the format of the
date 12/02/72 is MM/DD/YY. When using the fixed binding it is
recommended that dates are described in the logical part of the
contract using xsd:string. For example, a message containing a date

Example 34:Fixed String Mapping

<fixed:field name="raverID" size="20" />

Example 35:Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float" />
</message>

Example 36:Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#" />
257

CHAPTER 13 | Binding Interfaces to a Payload Format
would be described in the logical part of the contract as shown in
Example 37.

If goDate is entered using the standard short date format for US
English locales, mm/dd/yyyy, you would map it to a fixed record field as
shown in Example 38.

5. If you want the message part to have a fixed value no matter what data
is set in the message part by the application, set the <fixed:field>
element’s fixedValue attribute instead of the size or the format
attribute.

fixedValue specifies a static value to be passed on the wire. When
used without bindingOnly="true", the value specified by fixedValue
replaces any data that is stored in the message part passed to the fixed
record binding. For example, if goDate, shown in Example 37 on
page 258, were mapped to the fixed field shown in Example 39, the
actual message returned from the binding would always have the date
11/11/2112.

6. If the data being mapped is of an enumerated type, see “Defining
Enumerated Types” on page 216, add a <fixed:enumeration> child
element to the <fixed:field> element for each possible value of the
enumerated type.

<fixed:enumeration> takes two required attributes, value and
fixedValue. value corresponds to the enumeration value as specified
in the logical description of the enumerated type. fixedValue specifies

Example 37:Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string" />
</message>

Example 38:Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy" />

Example 39: fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112" />
 258

Adding a Fixed Binding
the concrete value that will be used to represent the logical value on
the wire.

For example, if you had an enumerated type with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical
description of the type would be similar to Example 40.

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
representations can be identical to the logical or some other value. The
enumerated type in Example 40 could be mapped to the fixed field
shown in Example 41. Using this mapping Artix will write OT to the
wire for this field if the enumerations value is set to OrangeTango.

Note that the parent <fixed:field> element uses the size attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the size attribute will always be used to
represent the size of the concrete representation.

Example 40: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 41:Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT" />
 <fixed:enumeration value="Rainbow" fixedValue="RB" />
 <fixed:enumeration value="BerryBomb" fixedValue="BB" />
 <fixed:enumeration value="OrangeTango" fixedValue="OT" />
</fixed:field>
259

CHAPTER 13 | Binding Interfaces to a Payload Format
<fixed:choice> <fixed:choice> is used to map choice complex types into fixed record
length messages. To map a choice complex type to a <fixed:choice> do
the following:

1. Add a <fixed:choice> child element to the <fixed:body> element.

2. Set the <fixed:choice> element’s name attribute to the name of the
logical message part being mapped.

3. Set the <fixed:choice> element’s optional discriminatorName
attribute to the name of the field used as the discriminator for the
union.

The value for discriminatorName corresponds to the name of a
bindingOnly <fixed:field> that describes the type used for the
union’s discriminator as shown in Example 42. The only restriction in
describing the discriminator is that it must be able to handle the values
used to determine the case of the union. Therefore the values used in
the union mapped in Example 42 must be two-digit integers.

4. For each element in the logical definition of the message part, add a
<fixed:case> child element to the <fixed:choice>.

<fixed:case> <fixed:case> elements describe the complete mapping of a choice complex
type element to a fixed record length message. To map a choice complex
type element to a <fixed:case> do the following:

1. Set the <fixed:case> element’s name attribute to the name of the
logical definition’s element.

2. Set the <fixed:case> element’s fixedValue attribute to the value of
the discriminator that selects this element. The value of fixedValue
must correspond to the format specified by the discriminatorName
attribute of the parent <fixed:choice> element.

Example 42:Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">
...
</fixed:choice>
 260

Adding a Fixed Binding
3. Add a child element to define how the element’s data is mapped into a
fixed record.

The child elements used to map the part’s type to the fixed message
are the same as the possible child elements of a <fixed:body>
element. As with a <fixed:body> element, a <fixed:sequence> is
made up of <fixed:field> elements to describe simple types,
<fixed:choice> elements to describe choice complex types, and
<fixed:sequence> elements to describe sequence complex types.

Example 43 shows an Artix contract fragment mapping a choice complex
type to a fixed record length message.

Example 43:Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding />
...
261

CHAPTER 13 | Binding Interfaces to a Payload Format
<fixed:sequence> <fixed:sequence> maps sequence complext types to a fixed record length
message. To map a sequence complex type to a <fixed:sequence> do the
following:

1. Add a <fixed:sequnce> child element to the <fixed:body> element.

2. Set the <fixed:sequence> element’s name attribute to the name of the
logical message part being mapped.

3. For each element in the logical definition of the message part, add a
child element to define the mapping for the part’s type to the physical
fixed message.

The child elements used to map the part’s type to the fixed message
are the same as the possible child elements of a <fixed:body>
element. As with a <fixed:body> element, a <fixed:sequence> is
made up of <fixed:field> elements to describe simple types,
<fixed:choice> elements to describe choice complex types, and
<fixed:sequence> elements to describe sequence complex types.

 <fixed:field name="disc" format="##" bindingOnly="true" />
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20" />
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###" />
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###" />
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10" />
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 43:Mapping a Union to a Fixed Record Length Message
 262

Adding a Fixed Binding
4. If any elements of the logical data definition have occurrence
constraints, see “Defining Data Structures” on page 209, map the
element into a <fixed:sequence> element with its occurs and
counterName attributes set.

The occurs attribute specifies the number of times this sequence
occurs in the message buffer. counterName specifies the name of the
field used for specifying the number of sequence elements that are
actually being sent in the message. The value of counterName
corresponds to a binding only <fixed:field> with at least enough
digits to count to the value specified in occurs as shown in
Example 44. The value passed to the counter field can be any number
up to the value specified by occurs and allows operations to use less
than the specified number of sequence elements. Artix will pad out the
sequence to the number of elements specified by occurs when the data
is transmitted to the receiver so that the receiver will get the data in
the promised fixed format.

For example, a structure containing a name, a date, and an ID number
would contain three <fixed:field> elements to fully describe the mapping
of the data to the fixed record message. Example 45 shows an Artix contract
fragment for such a mapping.

Example 44:Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

Example 45:Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
263

CHAPTER 13 | Binding Interfaces to a Payload Format
Example Example 46 shows an example of an Artix contract containing a fixed record
length message binding.

<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person" />
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding />
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20" />
 <fixed:field name="date" format="MM/DD/YY" />
 <fixed:field name="ID" format="#####" />
 </fixed:sequence>
...
</binding>
...
</definition>

Example 45:Mapping a Sequence to a Fixed Record Length Message

Example 46:Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
 264

Adding a Fixed Binding
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schemas.iona.com/binings/fixed"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>

Example 46:Fixed Record Length Message Binding
265

CHAPTER 13 | Binding Interfaces to a Payload Format
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 46:Fixed Record Length Message Binding
 266

Adding a Fixed Binding
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <fixed:binding/>
 <operation name="placeWidgetOrder">
 <fixed:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <fixed:body>
 <fixed:sequence name="widgetOrderForm">
 <fixed:field name="amount" format="###" />
 <fixed:field name="order_date" format="MM/DD/YYYY" />
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg" />
 <fixed:enumeration value="large" fixedValue="lg" />
 <fixed:enumeration value="mungo" fixedValue="mg" />
 <fixed:enumeration value="gargantuan" fixedValue="gg" />
 </fixed:field>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30" />
 <fixed:field name="street1" size="100" />
 <fixed:field name="street2" size="100" />
 <fixed:field name="city" size="20" />
 <fixed:field name="state" size="2" />
 <fixed:field name="zip" size="5" />
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </input>

Example 46:Fixed Record Length Message Binding
267

CHAPTER 13 | Binding Interfaces to a Payload Format
 <output name="widgetOrderBill">
 <fixed:body>
 <fixed:sequence name="widgetOrderConformation">
 <fixed:field name="amount" format="###" />
 <fixed:field name="order_date" format="MM/DD/YYYY" />
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg" />
 <fixed:enumeration value="large" fixedValue="lg" />
 <fixed:enumeration value="mungo" fixedValue="mg" />
 <fixed:enumeration value="gargantuan" fixedValue="gg" />
 </fixed:field>
 <fixed:field name="amtDue" format="####.##" />
 <fixed:field name="orderNumber" size="20" />
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30" />
 <fixed:field name="street1" size="100" />
 <fixed:field name="street2" size="100" />
 <fixed:field name="city" size="20" />
 <fixed:field name="state" size="2" />
 <fixed:field name="zip" size="5" />
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 46:Fixed Record Length Message Binding
 268

Adding a Tagged Binding
Adding a Tagged Binding

Overview The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

To map a logical interface to a tagged data format do the following:

1. Add the proper namespace reference to the <definition> element of
your contract. See “Tagged binding namespace” on page 270.

2. Add a standard WSDL <binding> element to your contract to hold the
tagged binding, give the binding a unique name, and specify the port
type that represents the interface being bound.

3. Add a <tagged:binding> element as a child of the new <binding>
element to identify this as a tagged binding and set the element’s
attributes to properly configure the binding. See “<tagged:binding>”
on page 270.

4. For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

5. For each operation added to the binding, add a <tagged:operation>
child element to the <operation> element. See “<tagged:operation>”
on page 271.

6. For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.

7. For each <input>, <output>, and <fault> element in the binding, add
a <tagged:body> child element to define how the message parts are
mapped into the concrete tagged data payload. See “<tagged:body>”
on page 271.
269

CHAPTER 13 | Binding Interfaces to a Payload Format
Tagged binding namespace The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools
use the prefix tagged to represent the tagged data extensions. Add the
following line to the <definitions> element of your contract:

<tagged:binding> <tagged:binding> specifies that the binding is for tagged data format
messages. It has ten attributes:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

selfDescribing Required attribute specifying if the message data
on the wire includes the field names. Valid
values are true or false. If this attribute is set to
false, the setting for fieldNameValueSeparator
is ignored.

fieldSeparator Required attribute that specifies the delimiter the
message uses to separate fields. Supported
values are newline(\n), comma(,), semicolon(;),
and pipe(|).

fieldNameValueSeparatorSpecifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equals(=),
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set to
true.

messageStart Specifies a special token at the start of a
message. It is used when messages that require
a special character at the start of a the data
sequence. Currently the only supported value is
star(*).

messageEnd Specifies a special token at the end of a
message. Supported values are newline(\n) and
percent(%).
 270

Adding a Tagged Binding
The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

<tagged:operation> <tagged:operation> is a child element of the WSDL <operation> element
and specifies that the operation’s messages are being mapped to a tagged
data format. It takes two optional attributes:

<tagged:body> <tagged:body> is a child element of the <input>, <output>, and <fault>
messages being mapped to a tagged data format. It specifies that the
message body is mapped to tagged data on the wire and describes the exact
mapping for the message’s parts.

<tagged:body> will have one or more of the following child elements:

• <tagged:field>

• <tagged:sequence>

• <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

unscopedArrayElement Specifies if array elements need to be scoped as
children of the array. If set to true arrays take
the form
echoArray{myArray=2;item=abc;item=def}. If
set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}. Default
is false.

ignoreUnknownElements Specifies if Artix ignores undefined element in the
message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with element
names in the message payload. Default is false.

discriminator Specifies a name to the operation for identifying the
operation as it is sent down the wire by the Artix
runtime.

discriminatorStyle Specifies how the discriminator will identify data as it
is sent down the wire by the Artix runtime. Supported
values are msgname, partlist, and fieldname.
271

CHAPTER 13 | Binding Interfaces to a Payload Format
<tagged:field> <tagged:field> is used to map simple types and enumerations to a tagged
data format. It has two attributes:

When describing enumerated types <tagged:field> will have a number of
<tagged:enumeration> child elements.

<tagged:enumeration> <tagged:enumeration> is a child element of <taggeded:field> and is used
to map enumerated types to a tagged data format. It takes one required
attribute, value, that corresponds to the enumeration value as specified in
the logical description of the enumerated type.

For example, if you had an enumerated type, flavorType, with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description
of the type would be similar to Example 47.

flavorType would be mapped to the tagged data format shown in
Example 48.

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.

Example 47: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 48:Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty" />
 <tagged:enumeration value="Rainbow" />
 <tagged:enumeration value="BerryBomb" />
 <tagged:enumeration value="OrangeTango" />
</tagged:field>
 272

Adding a Tagged Binding
<tagged:sequence> <taggeded:sequence> maps arrays and sequences to a tagged data format.
It has three attributes:

A <tagged:sequence> can contain any number of <tagged:field>,
<tagged:sequence>, or <tagged:choice> child elements to describe the
data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<tagged:field> elements to fully describe the mapping of the data to the
fixed record message. Example 49 shows an Artix contract fragment for
such a mapping.

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data sequence.

alias An optional attribute specifying an alias for the sequence
that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times the
sequence appears. This attribute is used to map arrays.

Example 49:Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
273

CHAPTER 13 | Binding Interfaces to a Payload Format
<tagged:choice> <tagged:choice> maps unions to a tagged data format. It takes three
attributes:

A <tagged:choice> may contain one or more <tagged:case> child
elements to map the cases for the union to a tagged data format.

<tagged:case> <tagged:case> is a child element of <tagged:choice> and describes the
complete mapping of a union’s individual cases to a tagged data format. It
takes one required attribute, name, that corresponds to the name of the case
element in the union’s logical description.

<message name="taggedSequence">
 <part name="personPart" type="tns:person" />
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date" />
 <tagged:field name="ID" />
 </tagged:sequence>
...
</binding>
...
</definition>

Example 49:Mapping a Sequence to a Tagged Data Format

name A required attribute that must correspond to the name
of the logical message part that is being mapped to the
tagged data union.

discriminatorNameSpecifies the message part used as the discriminator for
the union.

alias An optional attribute specifying an alias for the union
that can be used to identify it on the wire.
 274

Adding a Tagged Binding
<tagged:case> must contain one child element to describe the mapping of
the case’s data to a tagged data format. Valid child elements are
<tagged:field>, <tagged:sequence>, and <tagged:choice>. Example 50
shows an Artix contract fragment mapping a union to a tagged data format.

Example 50:Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
275

CHAPTER 13 | Binding Interfaces to a Payload Format
Example Example 51 shows an example of an Artix contract containing a tagged data
format binding.

 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name" />
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number" />
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number" />
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 50:Mapping a Union to a Tagged Data Format

Example 51:Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schames.iona.com/binings/tagged"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 276

Adding a Tagged Binding
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>

Example 51:Tagged Data Format Binding
277

CHAPTER 13 | Binding Interfaces to a Payload Format
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe" />
 <operation name="placeWidgetOrder">
 <tagged:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <tagged:body>
 <tagged:sequence name="widgetOrderForm">
 <tagged:field name="amount" />
 <tagged:field name="order_date" />
 <tagged:field name="type" >
 <tagged:enumeration value="big" />
 <tagged:enumeration value="large" />
 <tagged:enumeration value="mungo" />
 <tagged:enumeration value="gargantuan" />
 </tagged:field>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name" />
 <tagged:field name="street1" />
 <tagged:field name="street2" />
 <tagged:field name="city" />
 <tagged:field name="state" />
 <tagged:field name="zip" />
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </input>

Example 51:Tagged Data Format Binding
 278

Adding a Tagged Binding
 <output name="widgetOrderBill">
 <tagged:body>
 <tagged:sequence name="widgetOrderConformation">
 <tagged:field name="amount" />
 <tagged:field name="order_date" />
 <tagged:field name="type">
 <tagged:enumeration value="big" />
 <tagged:enumeration value="large" />
 <tagged:enumeration value="mungo" />
 <tagged:enumeration value="gargantuan" />
 </tagged:field>
 <tagged:field name="amtDue" />
 <tagged:field name="orderNumber" />
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2" />
 <tagged:field name="city" />
 <tagged:field name="state" />
 <tagged:field name="zip" />
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 51:Tagged Data Format Binding
279

CHAPTER 13 | Binding Interfaces to a Payload Format
Adding a TibMsg Binding

Overview Artix supports the use of the TibrvMsg format when using the TIBCO
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the
interface you are exposing and the TibrvMsg format. The binding description
is placed inside the standard <binding> tag and uses the tags listed in
Table 5.

Table 5: TibrvMsg Binding Attributes

Attribute Description

tibrv:binding Specifies that the interface is exposed using TibrvMsgs.

tibrv:binding@stringEncoding Specifies the charset used to encode TIBRVMSG_STRING data. Use
IANA preferred MIME charset names
(http://www.iana.org/assignments/character-sets). This parameter
must be the same for both client and server.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.

tibrv:input Specifies that the input message is mapped to a TibrvMsg.

tibrv:input@sortFields Specifies whether the server will sort the input message parts when
they are unmarshalled.

tibrv:input@messageNameFieldPath Specifies the field path that includes the input message name.

tibrv:input@messageNameFieldValue Specifies the field value that corresponds to the input message
name.

tibrv:output Specifies that the output message is mapped to a TibrvMsg.

tibrv:output@sortFields Specifies whether the client will sort the output message parts
when they are unmarshalled.

tibrv:output@messageNameFieldPath Specifies the field path that includes the output message name.
 280

http://www.iana.org/assignments/character-sets

Adding a TibMsg Binding
TIBRVMSG type mapping Table 6 shows how TibrvMsg data types are mapped to XSD types in Artix
contracts and C++ data types in Artix application code.

tibrv:output@messageNameFieldValue Specifies the field value that corresponds to the output message
name.

Table 5: TibrvMsg Binding Attributes

Attribute Description

Table 6: TIBCO to XSD Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING1 xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte

TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort

TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIME2 xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_MSG3 xsd:complexType/sequence
281

CHAPTER 13 | Binding Interfaces to a Payload Format
1. TIB/RV does not provide any mechanism to indicate the encoding of
strings in a TibrvMsg. The TIBCO plug-in port definition includes a
property, stringEncoding, for specifying the string encoding. However,
neither TIB/RV nor Artix look at this attribute; they merely pass the
data along. It is up to the application developer to handle the encoding
details if desired.

2. TIBRVMSG_DATATIME has microsecond precision. However,
xsd:dateTime has only millisecond precision. Therefore, when using
Artix sub-millisecond percision will be lost.

3. Sequences are mapped to nested messages where each element is a
separate field. These fields are placed in the same order as they appear
in the original sequence with field IDs beginning at 1. The fields are
accessed by their field ID.

4. Alls are mapped to nested messages where each element is mapped
to a separate field. The fields representing the elements of the all are
given the same field name as element name and field IDs beginning
from 1. They can be accessed by field name beginning from field ID 1.
That means that the order of fields can be changed.

5. Choices are mapped to nested messages where each element is a
separate field. Each field is enclosed with the same field name/type as
element name/type of active member, and accessed by field name with
field ID 1.

6. Arrays having integer or float elements are mapped to appropriate
TIB/RV array types; otherwise they are mapped to nested messages.

TIBRVMSG_MSG4 xsd:complexType/all

TIBRVMSG_MSG5 xsd:complexType/choice

TIBRVMSG_*ARRAY/MSG6 xsd:complexType/sequence with element
MaxOccurs > 1

TIBRVMSG_*ARRAY/MSG6 SOAP-ENC:Array7

TIBRVMSG_MSG3 SOAP-ENV:Fault8

Table 6: TIBCO to XSD Type Mapping

TIBRVMSG XSD
 282

Adding a TibMsg Binding
7. SOAP RPC-encoded multi-dimensional arrays will be treated as
one-dimensional: e.g. a 3x5 array will be serialized as a
one-dimensional array having 15 elements. To keep dimensional
information, use nested sequences with maxOccurs > 1 instead.

8. When a server response message has a fault, it includes a field of type
TIBRVMSG_MSG with the field name fault and field ID 1. This
submessage has two fields of TIBRVMSG_STRING. One is named
faultcode and has field ID 1, and the other is named faultstring
and has field ID 2.
283

CHAPTER 13 | Binding Interfaces to a Payload Format
Adding a Pure XML Binding

Overview The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without the overhead of a SOAP envelope.

To bind an interface to a pure XML payload format do the following:

1. Add the namespace declaration to include the IONA extensions
defining the XML binding. See “XML binding namespace” on
page 285.

2. Add a standard WSDL <binding> element to your contract to hold the
XML binding, give the binding a unique name, and specify the name of
the WSDL <portType> element that represents the interface being
bound.

3. Add an <xformat:binding> child element to the <binding> element to
identify that the messages are being handled as pure XML documents
without SOAP envelopes.

4. Optionally, set the <xformat:binding> element’s rootNode attribute to
a valid QName. For more information on the effect of the rootNode
attribute see “XML messages on the wire” on page 285.

5. For each operation defined in the bound interface, add a standard
WSDL <operation> element to hold the binding information for the
operation’s messages.

6. For each operation added to the binding, add the <input>, <output>,
and <fault> children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
interface definition of the logical operation.
 284

Adding a Pure XML Binding
7. Optionally add an <xformat:body> element with a valid rootNode
attribute to the added <input>, <output>, and <falut> elements to
override the value of rootNode set at the binding level.

XML binding namespace The IONA extensions used to describe XML format bindings are defined in
the namespace http://schemas.iona.com/bindings/xmlformat. Artix tools
use the prefix xformat to represent the XML binding extensions. Add the
following line to your contracts:

XML messages on the wire When you specify that an interface’s message are to be passed as XML
documents, without a SOAP envelope, you must take care to ensure that
your messages form valid XML documents when they are written on the
wire. You also need to ensure that non-Artix participants that receive the
XML documents understand the messages generated by Artix.

A simple way to solve both problems is to use the optional rootNode
attribute on either the global <xformat:binding> element or on the
individual message’s <xformat:body> elements. The rootNode attribute
specifies the QName for the element that serves as the root node for the
XML document generated by Artix. When the rootNode attribute is not set,
Artix uses the root element of the message part as the root element when
using doc style messages or an element using the message part name as the
root element when using rpc style messages.

Note: If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the rootNode
attribute for the message to ensure that the message written on the wire is
a valid, but empty, XML document.

xmlns:xformat="http://schemas.iona.com/bindings/xmlformat
285

CHAPTER 13 | Binding Interfaces to a Payload Format
For example, without the rootNode attribute set the message defined in
Example 52 would generate an XML document with the root element
<lineNumer>.

For messages with one part, Artix will always generate a valid XML
document even without the rootNode attribute set. However, the message in
Example 53 would generate an invalid XML document.

Without the rootNode attribute specified in the XML binding, Artix will
generate an XML document similar to Example 54 for the message defined
in Example 53. The Artix generated XML document is invalid because it has
two root elements: <pairName> and <entryNum>.

Example 52:Valid XML Binding Message

<type ...>
 ...
 <element name="operatorID" type="xsd:int" />
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID" />
</message>

Example 53: Invalid XML Binding Message

<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>
<message name="matildas">
 <part name="dancing" element="ns1:pairName" />
 <part name="number" element="ns1:entryNum" />
</message>

Example 54: Invalid XML Document

<pairName>
 Fred&Linda
</pairName>
<entryNum>
 123
</entryNum>
 286

Adding a Pure XML Binding
If you set the rootNode attribute, as shown in Example 55 Artix will wrap
the elements in the specified root element. In this example, the rootNode
attribute is defined for the entire binding and specifies that the root element
will be named entrants.

A an XML document generated from the input message would be similar to
Example 56. Notice that the XML document now only has one root element.

Overriding the binding’s rootNode
attribute setting

You can also set the rootNode attribute for each individual message, or
override the global setting for a particular message by using the
<xformat:body> element inside of the message binding. For example, if you
wanted the output message defined in Example 55 to have a different root
element from the input message, you could override the binding’s root
element as shown in Example 57.

Example 55:XML Format Binding with rootNode set

<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 <output message="tns:space" name="entered"/>
 </operation>
</portType>
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant" />
 <output name="entered" />
 </operation>
</binding>

Example 56:XML Document generated using the rootNode attribute

<entrants>
 <pairName>
 Fred&Linda
 </pairName>
 <entryNum>
 123
 </entryNum>
</entrants>
287

CHAPTER 13 | Binding Interfaces to a Payload Format
Example 57:

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant" />
 <output name="entered" />
 <xformat:body rootNode="entryStatus"/>
 </operation>
</binding>
 288

Adding a G2++ Binding
Adding a G2++ Binding

Overview G2++ is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2++ messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2++ is an alternative to “raw” structures (such as C or C++ structs),
which rely on common data representation characteristics that may not be
present in a heterogeneous distributed system.

Simple G2++ mapping example Consider the following instance of a G2++ message:

This G2++ message can be mapped to the following logical description,
expressed in WSDL:

Note: Because tabs are significant in G2++ files (that is, tabs indicate
scoping levels and are not simply treated as “white space”), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
seven spaces.

Example 58:ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6

Example 59:WSDL Logical Description of ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
289

CHAPTER 13 | Binding Interfaces to a Payload Format
Note that each of the message sub-structures (newPart and XYZ_Part) are
initially described separately in terms of their elements, then the two
sub-structure are aggregated together to form the enclosing record
(PRequest).

 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>

Example 59:WSDL Logical Description of ERecord Message
 290

Adding a G2++ Binding
This logical description is mapped to a physical representation of the G2++
message, also expressed in WSDL:

Note that all G2++ definitions are contained within the scope of the
<G2Definitions> </G2Definitions> tags. Each of the messages are
defined with the scope of a <G2MessageDescription>
</G2MessageDescription> construct. The type attribute for message
descriptions must be "msg" while the name attribute simply has to be
unique.

Each record is described within the scope of a <G2MessageComponent>
</G2MessageComponent> construct. Within this, the name attribute must
reflect the G2++ record name and the type attribute must be "struct".

Nested within the records are the element definitions, however if required a
record could be nested here by inclusion of a nested <G2MessageComponent>
scope (newPart and XYZ_Part are nested records of parent ERecord).
Element “name” attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defined in-place.

Example 60:WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creation" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
291

CHAPTER 13 | Binding Interfaces to a Payload Format
The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2++ array mappings. The array definition is
shown below:

This represents an array with two elements. When placed in a G2++
message, the result is as follows:

In this version of the ERecord record, XYZ_Part contains an array called
XYZ_MetaData, whose size is one. The single entry can be thought of as a
name/value pair: pushToTalk/PT01, which allows us to ignore columnName
and columnValue.

IMS_MetaData^ 2
^ 0
^ ^ columnName^ SERVICENAME
^ ^ columnValue^ someValue1
^ 1
^ ^ columnName^ SERVICEACTION
^ ^ columnValue^ someValue2

Example 61:Extended ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ XYZ_Metadata^ 1
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
 292

Adding a G2++ Binding
Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 62:WSDL Logical Description of Extended ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 <element name="pushToTalk" type="xsd:string"/>
 </all>
 </complexType>

 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>

 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>
293

CHAPTER 13 | Binding Interfaces to a Payload Format
Thus the array elements columnName and columnValue are “promoted” to a
name/Value pair in the logical mapping. This physical G2++ representation
can now be mapped as follows:

This physical mapping of the extended ERecord message now contains an
array, described with its XYZ_MetaData name (as per the G2++ record
definition). Its type is "array" and its size is one. This
G2MessageComponent contains a single element called "pushToTalk".

Example 63:WSDL Physical Representation of Extended ERecord
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creating" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 <G2MessageComponent name="XYZ_MetaData" type="array" size="1">
 <element name="pushToTalk" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
 294

Adding a G2++ Binding
Ignoring unknown elements It is possible to create a G2Definitions scope that begins with a G2-specific
configuration scope. This configuration scope is called G2Config in the
following example:

In this scope, the only variable used is IgnoreUnknownElements, which can
have a value of “true” or “false”. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if IgnoreUnknownElements
is set to true.

When parsed, the above ERecord would not include the elements
"AnElement" or "AnArrayElement". If IgnoreUnknownElements is set to
false, the above record would be rejected as invalid.

<G2Definitions>
^ <G2Config>
^ ^ <IgnoreUnknownElements value="true"/>
</G2Config>
 .
 .
 .

Example 64:Valid G2++ Record With Ignored Fields

ERecord
^ XYZ_Part
^ XYZ_Code^ someValue1
^ AnElement^ foo
^ password^ someValue2
^ serviceFieldName^ someValue3
^ XYZ_MetaData^ 2
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ ^ 1
^ ^ ^ columnName^ AnArrayElement
^ ^ ^ columnValue^ bar
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
295

CHAPTER 13 | Binding Interfaces to a Payload Format
 296

CHAPTER 14

Adding Transports
To fully define a service you need to add a transport.

Overview The final piece of information needed to describe a service are the transport
details defining how it connects to a network. This information is defined
inside a <port> element. Each port specifies the address and configuration
information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.

In this chapter This chapter discusses the following topics:

Defining a Service page 298

Creating an HTTP Service page 300

Creating a CORBA Service page 319

Creating an IIOP Service page 324

Creating a WebSphere MQ Service page 327

Creating a Java Messaging System Service page 329

Adding a TIBCO Service page 333

Creating a Tuxedo Service page 335
297

CHAPTER 14 | Adding Transports
Defining a Service

Overview All of the transport details for an endpoint are defined in <service>
elements. A <service> element defines a collection of <port> elements. The
<port> elements defines the relationship between a particular <binding>
element and the transport on which the messages are to be sent. The
<port> element contains all of the information defining the endpoints
connection to a network including what type of transport to use, the
address, and any other transport details.

The <service> element The <service> element contains a group of one or more ports that have
some relationship. How the ports are related is up to you. For example you
could build a contract where every port is contained in its own <service>, or
you could decide to group all of the ports that are bound to a particular
interface into <service> elements.

A <service> element has one required attribute, name, that identifies the
service. The identifier must be unique among all of the services defined in
the contract. Example 65 shows an example of a service named
riotService.

The <port> element The <port> element defines how a binding is tied to a specific network
transport. You specify the binding from which messages will be sent over
the network using the <port> element’s binding attribute. The value of the
binding attribute must correspond to a binding defined with in the same
contract, or a contract imported into the same contract, in which the port is
defined.

Example 65:Sample Service

<service name="riotService">
 <port>
 ...
 </port>
</service>
 298

Defining a Service
The port element also has an attribute, name, that identifies the port. The
identifier must be unique among the ports describe within the containing
<service> element. shows a <port> element, riotPort, that defines a port
bound to riotBinding.

Contained within the <port> element are the elements used to define the
details of the transport that is used to send messages. In a standard WSDL
contract the transport details would be represented using a <soap:address>
element. However, Artix provides a number of transports and the elements
to define them. The following sections describe the details of adding the
details for these transports.

Example 66:Sample Port

<service name="riotService">
 <port name="riotPort" binding="riotBinding">
 ...
 </port>
</service>
299

CHAPTER 14 | Adding Transports
Creating an HTTP Service

Overview HTTP is the standard TCP/IP-based protocol used for client-server
communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

In addition to the standard <soap:address> element, Artix provides a
number of proprietary HTTP extensions. The Artix extensions allow you to
specify a number of the HTTP port’s configuration in the contract.

In this section This section discusses the following topics:

Specifying the Service Address page 301

Configuring HTTP Transport Attributes page 303
 300

Creating an HTTP Service
Specifying the Service Address

Overview Artix provides two ways of specifying an HTTP service’s address depending
on the payload format you are using. SOAP has a standardized
<soap:address> element. All other payload formats use Artix’s
<http:address> element.

Using <soap:address> When you are sending SOAP over HTTP you must use the <soap:address>
element to specify the service’s address. It has one attribute, location, that
specifies the service’s address as a URL. Example 67 shows a port used to
send SOAP over HTTP.

Using <http:address> When your messages are formatted using any other payload format than
SOAP, such as fixed, you must use Artix’s <http:address> element to
specify the service’s address.

Example 68 shows the namespace entries you need to add to the
<definitions> element of your contract to use the HTTP extensions.

The <http:address> element is similar to the <soap:address> element. It
has one attribute, location, that specifies the service’s address as a URL.
Example 69 shows a port used to send fixed data over HTTP.

Example 67:SOAP Port

<service name="artieSOAPService">
 <port binding="artieSOAPBinding" name="artieSOAPPort">
 <soap:address location="http://artie.com/index.xml">
 </port>
</service>

Example 68:Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http="http://schemas.iona.com/transports/http"
 ... >
301

CHAPTER 14 | Adding Transports
Example 69:Generic HTTP Port

<service name="artieFixedService">
 <port binding="artieFixedBinding" name="artieFixedPort">
 <http:address location="http://artie.com/index.xml">
 </port>
</service>
 302

Creating an HTTP Service
Configuring HTTP Transport Attributes

Overview To allow you more flexibility in configuring an HTTP port, Artix has its own
set of WSDL extensions that can be used to define an HTTP port. All of the
configuration elements are optional. An HTTP port is fully defined by the
address element.

Example 70 shows the namespace entries you need to add to the
<definitions> element of your contract to use the HTTP extensions.

Because HTTP client ports and HTTP server ports have slightly different
configuration options, Artix uses two elements to configure an HTTP port.
<http-conf:client> defines a client port. <http-conf:server> defines a
server port.

HTTP client configuration Table 7 describes the client-side configuration attributes for the HTTP
transport that are defined within the http-conf:client element.

Example 70:Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifies the length of time, in milliseconds, that the client can
continue to try to send a request to the server before the connection is
timed out. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the client can
continue to try to receive a response from the server before the
connection is timed out. The default is 30000.
303

CHAPTER 14 | Adding Transports
AutoRedirect This specifies whether a client request should be automatically
redirected on behalf of the client when the server issues a redirection
reply via the RedirectURL server-side configuration attribute.

Valid values are true and false. The default is false, to let the client
redirect the request itself.

UserName Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the user name that is to be used
for authentication.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Password Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the password that is to be used
for authentication.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

AuthorizationType This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Authorization This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user’s
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 304

Creating an HTTP Service
Accept This specifies what media types the client is prepared to handle. These
are also known as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See http://www.iana.org/assignments/media-types/ for more
details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif or image/jpeg.

An asterisk (that is, *) can be used as a wildcard to specify a group of
related types. For example, if you specify image/*, this means that the
client can accept any image, regardless of whether it is a GIF or a JPEG,
and so on. A value of */* indicates that the client is prepared to handle
any type.

Examples of typical types that might be set are text/xml, text/html,
text/text, image/gif, image/jpeg, application/jpeg,
application/msword, application/xbitmap, audio/au, audio/wav,
video/avi, video/mpeg. A full list of MIME types is available at
http://www.iana.org/assignments/media-types/.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

AcceptLanguage This specifies what language (for example, American English) the client
prefers for the purposes of receiving a response. Language tags are
regulated by the International Organization for Standards (ISO) and are
typically formed by combining a language code (determined by the
ISO-639 standard) and country code (determined by the ISO-3166
standard) separated by a hyphen. For example, en-US represents
American English. A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm. A full list of country
codes is available at http://www.iso.ch/iso/en/prods-services/
iso3166ma/02iso-3166-code-lists/list-en1.html.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
305

CHAPTER 14 | Adding Transports
AcceptEncoding This specifies what content codings the client is prepared to handle. The
primary use of content codings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Content codings
are regulated by the Internet Assigned Numbers Authority (IANA). See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details of content codings.

Possible content coding values include zip, gzip, compress, deflate,
and identity. Artix performs no validation on content codings. It is the
user’s responsibility to ensure that a specified content coding is
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ContentType This is relevant if the client request specifies the POST method, to send
data to the server for processing. This specifies the media type of the
data being sent in the body of the client request.

For web services, this should be set to text/xml. If the client is sending
HTML form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Host This specifies the internet host and port number of the resource on
which the client request is being invoked. This is sent by default based
upon the URL specified in the URL attribute. It indicates what host the
client prefers for clusters (that is, for virtual servers mapping to the same
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 306

Creating an HTTP Service
Connection This specifies whether a particular connection is to be kept open or
closed after each request/response dialog.

Valid values are close and Keep-Alive. The default is close, to close
the connection to the server after each request/response dialog.

If Keep-Alive is specified, and the server honors it, the connection is
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ConnectionAttempts This specifies the number of times a client will transparently attempt to
connect to server.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
307

CHAPTER 14 | Adding Transports
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a request from a client to a
server.

Valid values are:

• no-cache prevents a cache from using a particular response to
satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

• no-store indicates that a cache must not store any part of a
response or any part of the request that evoked it.

• max-age indicates that the client can accept a response whose age
is no greater than the specified time in seconds.

• max-stale indicates that the client can accept a response that has
exceeded its expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the expiration time of a
response up to which the client can still accept that response. If no
value is assigned, it means the client can accept a stale response of
any age.

• min-fresh indicates that the client wants a response that will be
still be fresh for at least the specified number of seconds indicated
by the value set for min-fresh.

• no-transform indicates that a cache must not modify media type
or location of the content in a response between a server and a
client.

• only-if-cached indicates that a cache should return only
responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 308

Creating an HTTP Service
• cache-extension indicates additional extensions to the other cache
directives. Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard directive,
so that applications not understanding the extended directive can at
least adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cookie This specifies a static cookie to be sent to the server. Some session
designs that maintain state use cookies to identify sessions.

Note: If the cookie is dynamic, it must be set by the server when the
server is first accessed, and is then handled automatically by the
application runtime.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

BrowserType This specifies information about the browser from which the client
request originates. In the standard HTTP specification from the World
Wide Web consortium (W3C) this is also known as the user-agent.
Some servers optimize based upon the client that is sending the request.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Referer If a client request is as a result of the browser user clicking on a
hyperlink rather than typing a URL, this specifies the URL of the
resource that provided the hyperlink.

This is sent automatically if AutoRedirect is set to true. This can allow
the server to optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of logging,
optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
309

CHAPTER 14 | Adding Transports
ProxyServer This specifies the URL of the proxy server, if one exists along the
message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

Note: Artix does not support the existence of more than one proxy
server along the message path.

ProxyUserName This is only relevant if a proxy server exists along the message path.

This specifies the username to use for authentication on the proxy server
if it requires separate authorization.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct.

ProxyPassword This is only relevant if a proxy server exists along the message path.

This specifies the password to use for authentication on the proxy server
if it requires separate authorization.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct.

ProxyAuthorizationType This is only relevant if a proxy server exists along the message path.

If basic username and password-based authentication is not in use by
the proxy server, this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 310

Creating an HTTP Service
ProxyAuthorization This is only relevant if proxy servers are in use along the
request-response chain.

If basic username and password-based authentication is not in used by
the proxy server, this specifies the actual data that the proxy server
should use to authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user’s
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

UseSecureSockets This indicates whether the client wants to open a secure connection. A
secure HTTP connection is commonly referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that
the client does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ClientCertificate This is only relevant if UseSecureSockets is set to true.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the client.

ClientCertificateChain This is only relevant if UseSecureSockets is set to true.

This specifies the full path to the file that contains all the certificates in
the chain.

ClientPrivateKey This is only relevant if UseSecureSockets is set to true.

This is used in conjunction with ClientCertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by ClientCertificate.

This is required only if ClientCertificate has been specified.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation
311

CHAPTER 14 | Adding Transports
HTTP server configuration Table 8 describes the server-side configuration attributes for the HTTP
transport that are defined within the http-conf:server element.

ClientPrivateKeyPassword This is only relevant if UseSecureSockets is set to true.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

TrustedRootCertificate This is only relevant if UseSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority.

Table 7: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifies the length of time, in milliseconds, that the server can
continue to try to send a response to the client before the connection is
timed out. The default is 30000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the server can
continue to try to receive a request from the client before the connection
is timed out. The default is 30000.

SuppressClientSendErrors This specifies whether exceptions are to be thrown when an error is
encountered on receiving a client request.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.

SuppressClientReceiveErrors This specifies whether exceptions are to be thrown when an error is
encountered on sending a response to a client.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.
 312

Creating an HTTP Service
HonorKeepAlive This specifies whether the server should honor client requests for a
connection to remain open after a server response has been sent to a
client. Servers can achieve higher concurrency per thread by honoring
requests to keep connections alive.

Valid values are true and false. The default is false, to close the
connection after a server response is sent.

If set to true, the request socket is kept open provided the client is using
at least version 1.1 of HTTP and has requested that the connection is
kept alive. Otherwise, the connection is closed.

If set to false, the socket is automatically closed after a server response
is sent, even if the client has requested the server to keep the connection
alive.

RedirectURL This specifies the URL to which the client request should be redirected if
the URL specified in the client request is no longer appropriate for the
requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code is set to 302 and the status description
is set to Object Moved.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
313

CHAPTER 14 | Adding Transports
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a response from a server to a
client.

Valid values are:

• no-cache prevents a cache from using a particular response to
satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

• public indicates that a response can be cached by any cache.

• private indicates that a response is intended only for a single user
and cannot be cached by a public (shared) cache. If specific
response header fields are specified with this value, the restriction
applies only to those header fields within the response. If no
response header fields are specified, the restriction applies to the
entire response.

• no-store indicates that a cache must not store any part of a
response or any part of the request that evoked it.

• no-transform indicates that a cache must not modify the media
type or location of the content in a response between a server and a
client.

• must-revalidate indicates that if a cache entry relates to a server
response that has exceeded its expiration time, the cache must
revalidate that cache entry with the server before it can be used in
a subsequent response.

• proxy-revalidate indicates the same as must-revalidate, except
that it can only be enforced on shared caches and is ignored by
private unshared caches. If using this directive, the public cache
directive must also be used.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 314

Creating an HTTP Service
• max-age indicates that the client can accept a response whose age
is no greater than the specified time in seconds.

• s-maxage indicates the same as max-age, except that it can only be
enforced on shared caches and is ignored by private unshared
caches. The age specified by s-maxage overrides the age specified
by max-age. If using this directive, the proxy-revalidate directive
must also be used.

• cache-extension indicates additional extensions to the other cache
directives. Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard directive,
so that applications not understanding the extended directive can at
least adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentLocation This specifies the URL where the resource being sent in a server
response is located.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentType This specifies the media type of the information being sent in a server
response (for example, text/html, image/gif, and so on). This is also
known as the multipurpose internet mail extensions (MIME) type. MIME
types are regulated by the Internet Assigned Numbers Authority (IANA).
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:
application/jpeg, application/msword, application/xbitmap,
audio/au, audio/wav, text/html, text/text, image/gif, image/jpeg,
video/avi, video/mpeg. Any content that does not fit into any type in the
preceding list should be specified as application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
315

CHAPTER 14 | Adding Transports
ContentEncoding This can be used in conjunction with ContentType. It specifies what
additional content codings have been applied to the information being
sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

The primary use of ContentEncoding is to allow a document to be
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ServerType This specifies what type of server is sending the response to the client.

Values in this case take the form program-name/version. For example,
Apache/1.2.5.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

UseSecureSockets This indicates whether the server wants a secure HTTP connection
running over SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that
the server does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ServerCertificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the server.

A server must present such a certificate, so that the client can
authenticate the server.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 316

Creating an HTTP Service
ServerCertificateChain This is only relevant if the HTTP connection is running securely over SSL
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use ServerCertificateChain to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the client for
verification.

This specifies the full path to the file that contains all the certificates in
the chain.

ServerPrivateKey This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This is used in conjunction with ServerCertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by ServerCertificate.

This is required if, and only if, ServerCertificate has been specified.

ServerPrivateKeyPassword This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

TrustedRootCertificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. This is used to validate the certificate presented by
the client.

Table 8: HTTP Server Configuration Attributes

Configuration Attribute Explanation
317

CHAPTER 14 | Adding Transports
Creating a CORBA Service

Overview Generally, when you are creating a CORBA service with Artix, you need to
do two things. First, you must configure the Artix port information in the
Artix contract so that Artix can instantiate the appropriate port. Second, you
must generate the IDL describing your service so that a native CORBA
application can understand the interfaces of the new Artix service.

In this section This section discusses the following topics:

Configuring an Artix CORBA Port page 320

Generating CORBA IDL page 323
 318

Creating a CORBA Service
Configuring an Artix CORBA Port

Overview CORBA ports are described using the IONA-specific WSDL elements
<corba:address> and <corba:policy> within the WSDL <port> element, to
specify how a CORBA object is exposed.

Namespace Example 71 shows the namespace entries you need to add to the
<definitions> element of your contract to use the CORBA extensions.

Address specification The IOR of the CORBA object is specified using the <corba:address>
element. You have four options for specifying IORs in Artix contracts:

• Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

• Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the corbaname format:

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

Example 71:Artix CORBA Extension Namespaces

<definitions
 ...
 xmlns:iiop="http://schemas.iona.com/bindings/corba"
 ... >

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name
319

CHAPTER 14 | Adding Transports
• Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Specifying POA policies Using the optional <corba:policy> element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

• POA Name

• Persistence

• ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

corbaloc:iiop:host:port/service_name

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

<corba:policy serviceid="POAid" />
 320

Creating a CORBA Service
This creates a POA with a USER_ID policy and an object id of POAid.

Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 74:

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to connect the CORBA application.

Example 72:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior" />
 <corba:policy persistent="true" />
 <corba:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
321

CHAPTER 14 | Adding Transports
Generating CORBA IDL

Overview Artix clients that use a CORBA transport require that the IDL defining the
interface exist and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each <portType> in the contract generates an
IDL module.

From the command line The wsdltocorba tool compiles Artix contracts and generates IDL for the
specified CORBA binding and port type. To generate IDL using wsdltocorba
use the following command:

The command has the following options:

By combining the -idl and -corba flags with wsdltocorba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
portType flag to specify the port type from which to generate the binding
and the -b binding flag to specify the name of the binding from which to
generate the IDL.

wsdltocorba -idl -b binding [-corba][-i portType][-d dir]
 [-o file] wsdl_file

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.
 322

Creating an IIOP Service
Creating an IIOP Service

Overview Artix allows you to use IIOP as a generic transport for send data using any of
the payload formats. When using IIOP as a generic transport, you define
your service’s address using <iiop:address>. The benefit of using the
generic IIOP transport is that it allows you to use CORBA services without
requiring your applications to be CORBA applications. For example, you
could use an IIOP tunnel to send fixed format messages to an endpoint
whose address is published in a CORBA naming service.

Namespace Example 73 shows the namespace entries you need to add to the
<definitions> element of your contract to use the IIOP extensions.

Address specification The IOR, or address, of the IIOP port is specified using the <iiop:address>
element. You have four options for specifying IORs in Artix contracts:

• Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

Note: Generic IIOP is unavailable in some editions of Artix. Please check
the conditions of your Artix license to see whether your installation
supports IIOP.

Example 73:Artix IIOP Extension Namespaces

<definitions
 ...
 xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
 ... >

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes (///).
323

CHAPTER 14 | Adding Transports
• Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the corbaname format:

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

• Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Specifying type of payload
encoding

The IIOP transport can perform codeset negotiation on the encoded
messages passed through it if your CORBA system supports it. By default,
this feature is turned off so that the agents sending the message maintain
complete control over codeset conversion. If you wish to turn automatic
codeset negotiation on use the following:

Specifying POA policies Using the optional <iiop:policy> element, you can describe a number of
POA polices the Artix service will use when creating the IIOP port. These
policies include:

• POA Name

• Persistence

• ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project using the IIOP transport. For
information on using these advanced CORBA features, see the Orbix
documentation.

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

<iiop:payload type="string" />
 324

Creating an IIOP Service
POA Name

Artix POAs are created with the default name of WS_ORB. To specify a name
of the POA that Artix creates for the IIOP port, you use the following:

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by Artix. To specify that the IIOP port’s POA should use
a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Example For example, an IIOP port for the personalInfoLookup binding would look
similar to Example 74:

Artix expects the IOR for the IIOP port to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to configure the IIOP port.

<iiop:policy poaname="poa_name" />

<iiop:policy persistent="true" />

<corba:policy serviceid="POAid" />

Example 74:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <iiop:address location="file:///objref.ior" />
 <iiop:policy persistent="true" />
 <iiop:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
325

CHAPTER 14 | Adding Transports
Creating a WebSphere MQ Service

Overview The description for an Artix WebSphere MQ port is entered in a <port>
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

<mq:client> defines a port for a WebSphere MQ client application.

<mq:server> defines a port a WebSphere MQ server application.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace http://schemas.iona.com/bindings/mq.
To use the WebSphere MQ extensions you will need to include the following
in the <definitions> tag of your contract:

Required attributes When you define a WebSphere MQ service you need to provide at least
enough information for the service to connect to its message queues. For
any WebSphere application that means setting the QueueManager and
QueueName attributes of the port. In addition, if you are configuring a client
that expects to receive replies from the server, you need to set the
ReplyQueueManager and ReplyQueueName attributes of the <mq:client>
element defining it.

In addition, if you are deploying applications on a machine that only has an
MQ client installation, you need to set the Server_Client attribute to
client. This setting intructs Artix to load libmqic instead of libmqm.

xmlns:mq="http://schemas.iona.com/bindings/mq"
 326

Creating a WebSphere MQ Service
Example An Artix contract exposing an interface, monsterBash, bound to a SOAP
payload format, Raydon, on an WebSphere MQ queue, UltraMan would
contain a service element similar to Example 75.

More information For a detailed description of the WebSphere MQ transport configuration
attributes see “WebSphere MQ Artix Extensions” on page 485.

Example 75:Sample WebSphere MQ Port

<service name="Mothra">
 <port name="X" binding="tns:Raydon">
 <mq:server QueueManager="UMA"
 QueueName="UltraMan"
 ReplyQueueManager="WINR"
 ReplyQueueName="Elek"
 AccessMode="receive"
 CorrelationStyle="messageId copy"/>
 </port>
</service>
327

CHAPTER 14 | Adding Transports
Creating a Java Messaging System Service

Overview Artix provides a transport plug-in that enables systems to place and receive
messages from Java Messaging System (JMS) queues and topics. One large
advantage of this is that Artix allows C++ applications to interact directly
with Java applications over JMS.

Artix’s JMS transport plug-in uses JNDI to locate and obtain references to
the JMS provider that brokers for the JMS destination with which it wants to
connect. Once Artix has established a connection to a JMS provider, Artix
supports the passing of messages packaged as either a JMS ObjectMessage
or a JMS TextMessage.

Message formatting The JMS transport takes the payload formatting and packages it into either a
JMS ObjectMessage or a TextMessage. When a message is packaged as an
ObjectMessage the message information, including any format-specific
information, is serialized into a byte[] and placed into the JMS message
body. When a message is packaged as a TextMessage, the message
information, including any format-specific information, is converted into a
string and placed into the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS
application is responsible for understanding how to interpret the message
and the formatting information. For example, if the Artix contract specifies
that the binding used for a JMS port is SOAP, and the messages are
packaged as TextMessage, the receiving JMS application will get a text
message containing all of the SOAP envelope information. For a message
encoded using the fixed binding, the message will contain no formatting
information, simply a string of characters, numbers, and spaces.

Port configuration The JMS port configuration is done by using a <jms:address> element in
your service’s <port> description. <jms:address> uses six attributes to
configure the JMS connection:

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.
 328

Creating a Java Messaging System Service
Using correlation IDs If you want to configure Artix to use JMS message IDs as the correlation IDs
you can set the optional useMessageIDAsCorrelationID attribute to true.
The default for this attribute is false.

Optional JNDI settings To increase interoperability with JMS and JNDI providers, the
<jms:address> element has a number of optional attributes to faciltate
configuring a JNDI connection. These optional attributes are:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

jndiProviderURL Specifies the URL of the JNDI service where
the connection information for the JMS
destination is stored.

initialContextFactory Specifies the name of the
InitialContextFactory class or a list of
package prefixes used to construct URL
context factory classnames. For more details
on specifying a JNDI InitialContextFactory,
see “JNDI InitialContextFactory settings” on
page 331.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to
the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which Artix connects.

messageType Specifies how the message data will be
packaged as a JMS message. text specifies
that the data will be packaged as a
TextMessage. binary specifies that the data
will be packaged as an ObjectMessage.
329

CHAPTER 14 | Adding Transports
• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to using these attributes, check your
JNDI provider’s documentation and consult the Java API reference material.

Example Example 76 shows an example of an Artix JMS port specification.

JNDI InitialContextFactory
settings

The usual method of specifying the JNDI is to enter the class name provided
by your JNDI provider. In Example 76, the JMS port is using the JNDI
provided with SonicMQ and the class specified,
com.sonicsw.jndi.mfcontext.MFContextFactory, is the class used by
Sonic’s JNDI server to create a JNDI context.

Alternatively, you can specify a colon-separated list of package prefixes to
use when loading URL context factories. The JNDI service takes each
package prefix and appends the URL schema name to form a sub-package.
It then prepends the URL schema name to URLContextFactory to form a
class name within the sub-package. Once the new class name is formed,
the JNDI service then tries to instantiate the class using the newly formed
name. For example, if your Artix contract described the JMS port shown in

Example 76:Artix JMS Port

<service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
 <jms:address destinationStyle="queue"
 jndiProviderURL="tcp://localhost:2506"
 initialContextFactory="com.sonicsw.jndi.mfcontext.MFContextFactory"
 jndiConnectionFactoryName="QCF"
 jndiDestinationName="testQueue"
 messageType="text" />
 </port>
</service>
 330

Creating a Java Messaging System Service
Example 77, the JNDI service would instantiate a context factory with the
class name com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to
perform lookups.

The URLContextFactory then uses the URL specified in the
jndiConnectionFactoryName and the jndiDestinationFactoryName
attributes to obtain references to the desired JMS ConnectionFactory and
the desired JMS Destination. The JNDI service is completely bypassed
using this method and allows you to connect to JMS implementations that
do not use JNDI or to connect to JMS Destination that are not registered
with the JNDI service.

So instead of looking up the JMS ConnectionFactory using the JNDI name
bound to it, Artix will get a reference directly to ConnectionFactory using
the name given to it when it was created. Using the contract in Example 77,
Artix would use the URL sonic:jms/queue/helloWorldQueue to get a
reference to the desired queue. Artix would be handed a reference to a
queue named helloWorldQueue if the JMS broker has such a queue.

Example 77: JMS Port with Alternate InitialContextFactory Specification

<service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
 <jms:address destinationStyle="queue"
 jndiProviderURL="tcp://localhost:2506"
 initialContextFactory="com.iona.jbus.jms.naming"
 jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
 jndiDestinationName="sonic:jms/queue/helloWorldQueue"
 messageType="text" />
 </port>
</service>

Note: Due to a known bug in the SonicMQ JNDI service, it is
recommended that you use this method of specifying the
InitialContextFactory when using SonicMQ.
331

CHAPTER 14 | Adding Transports
Adding a TIBCO Service

Overview The TIBCO Rendezvous transport lets you use Artix to integrate systems
based on TIBCO Rendezvous (TIB/RV) software.

Supported Features Table 9 shows the matrix of TIBCO Rendezvous features Artix supports.

Namespace To use the TIB/RV transport, you need to describe the port using TIB/RV in
the physical part of an Artix contract. The extensions used to describe a
TIB/RV port are defined in the namespace:

This namespace will need to be included in your Artix contract’s
<definition> element.

Note: TIBCO Rendezvous integration is unavailable in some editions of
Artix. Please check the conditions of your Artix license to see whether your
installation supports TIBCO Rendezvous integration.

Table 9: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks x

Certified Message Delivery x

Fault Tolerance (TibrvFtMember/Monitor) x

Virtual Connections (TibrvVcTransport) x

Secure Daemon (rvsd/TibrvSDContext) x

TIBRVMSG_IPADDR32 x

TIBRVMSG_IPPORT16 x

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 332

Adding a TIBCO Service
Describing the port As with other transports, the TIB/RV transport description is contained
within a <port> element. Artix uses <tibrv:port> to describe the attributes
of a TIB/RV port. The only required attribute for a <tibrv:port> is
serverSubject which specifies the subject to which the server listens.

Example Example 78 shows an Artix description for a TIB/RV port.

More information For a complete listing of the attribute used in configuring a TIB/RV service
see “Tibco Transport Extensions” on page 521.

Example 78:TIB/RV Port Description

 <service name="BaseService">
 <port binding="tns:BasePortBinding" name="BasePort">
 <tibrv:port serverSubject="Artix.BaseService.BasePort"
 />
 </port>
 </service>
333

CHAPTER 14 | Adding Transports
Creating a Tuxedo Service

Overview Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

Tuxedo namespaces To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the following namespace:

This namespace will need to be included in your Artix contract’s
<definition> element.

Defining the Tuxedo services As with other transports, the Tuxedo transport description is contained
within a <port> element. Artix uses <tuxedo:server> to describe the
attributes of a Tuxedo port. <tuxedo:server> has a child element,
<tuxedo:service>, that gives the bulletin board name of a Tuxedo port. The
bulletin board name for the service is specified in the element’s name
attribute. You can define more than one Tuxedo service to act as an
endpoint.

Mapping operations to a Tuxedo
service

For each of the Tuxedo services that are endpoints, you must specify which
of the operations bound to the port being defined are handled by the Tuxedo
service. This is done using one or more <tuxedo:input> child elements.
<tuxedo:input> takes one required attribute, operation, that specifies the
WSDL operation that is handled by this Tuxedo service endpoint.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 334

Creating a Tuxedo Service
Example An Artix contract exposing the personalInfoService, defined in
Example 32 on page 252, as a Tuxedo service would contain a <service>
element similar to Example 79 on page 336.

Example 79:Tuxedo Port Description

<service name="personalInfoService">
 <port binding="tns:personalInfoBinding" name="tuxInfoPort">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest" />
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
335

CHAPTER 14 | Adding Transports
 336

CHAPTER 15

Creating Artix
Contracts from
Existing
Applications
Artix provides a number of command line tools to help you
create contracts from applications that you have already
developed.

In this chapter This chapter discusses the following topics:

Creating Artix Contracts from CORBA IDL page 338

Creating Contracts from Java Classes page 345

Creating Contracts from COBOL Copybooks page 354
337

CHAPTER 15 | Creating Artix Contracts from Existing Applications
Creating Artix Contracts from CORBA IDL

Overview If you are starting from a CORBA server or client, Artix can build the logical
portion of the Artix contract from IDL. Contracts generated from IDL have
CORBA-specific entries and namespaces added.

The IDL to WSDL compiler also generates the binding information required
to format the operations specified in the IDL. However, since port
information is specific to the deployment environment, the port information
is left blank.

CORBA WSDL namespaces Contracts generated from IDL include two additional name spaces:

Unsupported type handling Be aware that the IDL to WSDL compiler ignores any definitions that use
unsupported CORBA types. The IDL to WSDL compiler also ignores any
definition that uses a previously ignored definition. For example, assume you
have the following IDL definitions in file.idl:

The IDL to WSDL compiler does not generate any corresponding contract
information for the structure S because it contains a member that uses an
object reference. Similarly, the IDL to WSDL compiler does not generate any
contract information for the operation get_op() because it references
structure S.

xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap"

interface A
{
 struct S
 {
 A member;
 };

 S get_op();
};
 338

Creating Artix Contracts from CORBA IDL
Using the command line IONA’s IDL to WSDL compiler supports several command line flags that
specify how to create a WSDL file from an IDL file. The default behavior of
the tool is to create WSDL file that uses wrapped doc/literal style messages.
Wraped doc/literal style messages have a single part, defined using an
element, that wraps all of the elements in the message. See Example 81 on
page 341 for a sample.

The IDL to WSDL compiler is run using the following command:

The command has the following options:

idltowsdl [-useypes][-unwrap][-a address][-f file][-o dir][-s type][-r file][-L file][-P file]
 [-w namespace][-x namespace][-t namespace][-T file][-n file][-b] idlfile

-usetypes Generate rpc style messages. rpc style messages have
parts defined using XMLSchema types instead of XML
elements.

-unwrap Generate unwrapped doc/literal messages. Unwrapped
messages have parts that represent individual elements.
Unlike wrapped messages, unwrapped messages can
have multiple parts and are not allowed by the WS-I.

-a address Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

-f file Specifies a file containing a string representation of an
object reference. The object reference is placed in the
<corba:address> element in the <port> definition of the
generated service. The file must exist when you run the
IDL compiler.

-o dir Specifies the directory into which the WSDL file is
written.

-s type Specifies the XMLSchema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.

-r file Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.
339

CHAPTER 15 | Creating Artix Contracts from Existing Applications
To combine multiple flags in the same command, use a colon-delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbaname URL are interpreted as part of the
URL syntax and not as delimiters.

-L file Specifies that the logical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-P file Specifies that the physical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-w namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/idl_name.

-x namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/idl_name.

-t namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/idl_name.

-T file Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the -n option.

-n file Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This option
cannot be used with the -T option.

-b Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.
 340

Creating Artix Contracts from CORBA IDL
Example Imagine you needed to generate an Artix contract for a CORBA server that
exposes the interface shown in Example 80.

To generate the contract, you run it through the IDL compiler using either
the GUI or the command line. The resulting contract is similar to that shown
in Example 81.

Example 80:personalInfoService Interface

interface personalInfoService
{
 enum hairColorType {red, brunette, blonde};

 struct personalInfo
 {
 string name;
 long age;
 hairColorType hairColor;
 };

 exception idNotFound
 {
 short id;
 };

 personalInfo lookup(in long empId)
 raises (idNotFound);
};

Example 81:personalInfoService Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfo.idl"
 targetNamespace="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/personalInfo.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema targetNamespace="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
341

CHAPTER 15 | Creating Artix Contracts from Existing Applications
 <xsd:simpleType name="personalInfoService.hairColorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="red"/>
 <xsd:enumeration value="brunette"/>
 <xsd:enumeration value="blonde"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="personalInfoService.personalInfo">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="age" type="xsd:int"/>
 <xsd:element name="hairColor" type="xsd1:personalInfoService.hairColorType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="personalInfoService.idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="personalInfoService.lookup">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="empId" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="personalInfoService.lookupResult">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="return" type="xsd1:personalInfoService.personalInfo"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="personalInfoService.idNotFound"
 type="xsd1:personalInfoService.idNotFound"/>
 </schema>
 </types>
 <message name="personalInfoService.lookup">
 <part name="parameters" element="xsd1:personalInfoService.lookup"/>
 </message>
 <message name="personalInfoService.lookupResponse">
 <part name="parameters" element="xsd1:personalInfoService.lookupResult"/>
 </message>

Example 81:personalInfoService Contract
 342

Creating Artix Contracts from CORBA IDL
 <message name="personalInfoService.idNotFound">
 <part name="exception" element="xsd1:personalInfoService.idNotFound"/>
 </message>
 <portType name="personalInfoService">
 <operation name="lookup">
 <input message="tns:personalInfoService.lookup" name="lookup"/>
 <output message="tns:personalInfoService.lookupResponse" name="lookupResponse"/>
 <fault message="tns:personalInfoService.idNotFound" name="personalInfoService.idNotFound"/>
 </operation>
 </portType>
 <binding name="personalInfoServiceBinding" type="tns:personalInfoService">
 <corba:binding repositoryID="IDL:personalInfoService:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfoService.personalInfo"/>
 <corba:raises exception="corbatm:personalInfoService.idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoService.idNotFound"/>
 </operation>
 </binding>
 <service name="personalInfoServiceService">
 <port name="personalInfoServicePort" binding="tns:personalInfoServiceBinding">
 <corba:address location="..."/>
 </port>
 </service>
 <corba:typeMapping targetNamespace="http://schemas.iona.com/typemap/corba/personalInfo.idl">
 <corba:enum name="personalInfoService.hairColorType"
 type="xsd1:personalInfoService.hairColorType"
 repositoryID="IDL:personalInfoService/hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
 <corba:struct name="personalInfoService.personalInfo"
 type="xsd1:personalInfoService.personalInfo"
 repositoryID="IDL:personalInfoService/personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:personalInfoService.hairColorType"/>
 </corba:struct>

Example 81:personalInfoService Contract
343

CHAPTER 15 | Creating Artix Contracts from Existing Applications
 <corba:exception name="personalInfoService.idNotFound"
 type="xsd1:personalInfoService.idNotFound"
 repositoryID="IDL:personalInfoService/idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
 </corba:typeMapping>
</definitions>

Example 81:personalInfoService Contract
 344

Creating Contracts from Java Classes
Creating Contracts from Java Classes

Overview Many applications have been developed using Java to take advantage of
Java’s platform independence among other things. Java’s platform
independence is a perfect complement to Artix’s transport independence. To
facilitate the integration of Java applications with Artix, Artix provides tools
for generating the logical portion of an Artix contract from existing Java
classes. These tools use the mapping rules described in Sun’s JAX-RPC 1.1
specification.

javatowsdl tool Artix supplies a command line tool, javatowsdl, that generates the logical
portion of an Artix contract for existing Java class files. To generate the
logical portion of an Artix contract using the javatowsdl tool use the
following command:

The command has the following options:

javatowsdl [-t namespace][-x namespace][-i porttype]
 [-o file][-useTypes][-v][-?] ClassName

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XMLSchema
information generated to represent the data types inside
the WSDL document. By default, the generated target
namespace of the XMLSchema will be
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated <portType> in the
WSDL document. By default, the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.
345

CHAPTER 15 | Creating Artix Contracts from Existing Applications
The generated WSDL will not contain any physical details concerning the
payload formats or network transports that will be used when exposing the
service. You will need to add this information manually.

Supported types Table 10 shows the Java types Artix can map to an Artix contract.

-useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold method
parameters.

-v Prints out the version of the tool.

-? Prints out a help message explaining the command line
flags.

Note: When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.

Table 10: Java to WSDL Mappings

Java Artix Contract

boolean xsd:boolean

byte xsd:byte

short xsd:short

int xsd:int

long xsd:long

float xsd:float

double xsd:double

byte[] xsd:base64binary

java.lang.String xsd:string

java.math.BigInteger xsd:integer

java.math.BigDecimal xsd:decimal
 346

Creating Contracts from Java Classes
In the case of helper classes for a Java primitive, such as
java.lang.Integer, the instance is mapped to an element with the nillable
attribute set to true and the type set to the corresponding Java primitive
type. Example 82 shows the mapping for a java.lang.Float.

Exceptions Artix will map user-defined exceptions to the logical Artix contract according
to the rules laid out in the JAX-RPC specification. The exception will be
mapped to a <fault> within the operation representing the corresponding
Java method. The generated <fault> will reference a generated <message>
describing the Java exception class. The name attribute of the <message>
will be taken from the name of the Java exception class.

Because SOAP only supports <fault> messages with a single <part>, the
generated <message> is mapped to have only one <part>. When the Java
exception only has one field, it is used as the <part> and its name and type
attributes are mapped from the exception’s field. When the Java exception
contains more than one field, Artix generates a <complexType> to describe
the exception’s data. The generated <complexType> will have one element
for each field of the exception. The name and type attributes of the generated
element will be taken from the corresponding field in the exception.

java.util.Calendar xsd:dateTime

java.util.Date xsd:dateTime

java.xml.namespace.QName xsd:QName

java.net.URI xsd:anyURI

Table 10: Java to WSDL Mappings

Java Artix Contract

Example 82:Mapping of java.lang.Float to XMLSchema

<element name="floatie" nillable="true" type="xsd:float" />

Note: Standard Java exceptions are not mapped into the generated Artix
contract.
347

CHAPTER 15 | Creating Artix Contracts from Existing Applications
Example For example, if you had a Java interface similar to that shown in
Example 83, you could generate an Artix contract on it by compiling the
interface into a .class file and running the command javatowsdl Base.

The resulting Artix contract will be similar to Example 84.

Example 83:Base Java Class

//Java
public interface Base
{
 public byte[] echoBase64(byte[] inputBase64);

 public boolean echoBoolean(boolean inputBoolean);

 public float echoFloat(float inputFloat);

 public float[] echoFloatArray(float[] inputFloatArray);

 public int echoInteger(int inputInteger);

 public int[] echoIntegerArray(int[] inputIntegerArray);
}

Example 84:Base Artix Contract

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="Base" targetNamespace="http://www.iona.com/Base"
 xmlns:ns1="http://www.iona.com/Base" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.iona.com/Base/xsd">
 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/Base/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="echoBoolean">
 <complexType>
 <sequence>
 <element name="booleanParam0" type="xsd:boolean"/>
 </sequence>
 </complexType>
 </element>
 348

Creating Contracts from Java Classes
 <element name="echoBooleanResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:boolean"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoBase64">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_bParam0"
 type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoBase64Response">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return"
 type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoHexBinary">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_bParam0"
 type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoHexBinaryResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return"
 type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>

Example 84:Base Artix Contract
349

CHAPTER 15 | Creating Artix Contracts from Existing Applications
 <element name="echoFloat">
 <complexType>
 <sequence>
 <element name="floatParam0" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloatResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloatArray">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_fParam0"
 type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloatArrayResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return"
 type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoInteger">
 <complexType>
 <sequence>
 <element name="intParam0" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoIntegerResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>

Example 84:Base Artix Contract
 350

Creating Contracts from Java Classes
 <element name="echoIntegerArray">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_iParam0"
 type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoIntegerArrayResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return"
 type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </wsdl:types>
 <wsdl:message name="echoBoolean">
 <wsdl:part element="xsd1:echoBoolean" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBooleanResponse">
 <wsdl:part element="xsd1:echoBooleanResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBase64">
 <wsdl:part element="xsd1:echoBase64" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBase64Response">
 <wsdl:part element="xsd1:echoBase64Response" name="parameters"/>
 </wsdl:message>

Example 84:Base Artix Contract
351

CHAPTER 15 | Creating Artix Contracts from Existing Applications
 <wsdl:message name="echoHexBinary">
 <wsdl:part element="xsd1:echoHexBinary" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoHexBinaryResponse">
 <wsdl:part element="xsd1:echoHexBinaryResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloat">
 <wsdl:part element="xsd1:echoFloat" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatResponse">
 <wsdl:part element="xsd1:echoFloatResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatArray">
 <wsdl:part element="xsd1:echoFloatArray" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatArrayResponse">
 <wsdl:part element="xsd1:echoFloatArrayResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoInteger">
 <wsdl:part element="xsd1:echoInteger" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoIntegerResponse">
 <wsdl:part element="xsd1:echoIntegerResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoIntegerArray">
 <wsdl:part element="xsd1:echoIntegerArray" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoIntegerArrayResponse">
 <wsdl:part element="xsd1:echoIntegerArrayResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="Base">
 <wsdl:operation name="echoBoolean">
 <wsdl:input message="ns1:echoBoolean" name="echoBoolean"/>
 <wsdl:output message="ns1:echoBooleanResponse" name="echoBoolean"/>
 </wsdl:operation>
 <wsdl:operation name="echoBase64">
 <wsdl:input message="ns1:echoBase64" name="echoBase64"/>
 <wsdl:output message="ns1:echoBase64Response" name="echoBase64"/>
 </wsdl:operation>

Example 84:Base Artix Contract
 352

Creating Contracts from Java Classes
 <wsdl:operation name="echoHexBinary">
 <wsdl:input message="ns1:echoHexBinary" name="echoHexBinary"/>
 <wsdl:output message="ns1:echoHexBinaryResponse" name="echoHexBinary"/>
 </wsdl:operation>
 <wsdl:operation name="echoFloat">
 <wsdl:input message="ns1:echoFloat" name="echoFloat"/>
 <wsdl:output message="ns1:echoFloatResponse" name="echoFloat"/>
 </wsdl:operation>
 <wsdl:operation name="echoFloatArray">
 <wsdl:input message="ns1:echoFloatArray" name="echoFloatArray"/>
 <wsdl:output message="ns1:echoFloatArrayResponse" name="echoFloatArray"/>
 </wsdl:operation>
 <wsdl:operation name="echoInteger">
 <wsdl:input message="ns1:echoInteger" name="echoInteger"/>
 <wsdl:output message="ns1:echoIntegerResponse" name="echoInteger"/>
 </wsdl:operation>
 <wsdl:operation name="echoIntegerArray">
 <wsdl:input message="ns1:echoIntegerArray" name="echoIntegerArray"/>
 <wsdl:output message="ns1:echoIntegerArrayResponse" name="echoIntegerArray"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Example 84:Base Artix Contract
353

CHAPTER 15 | Creating Artix Contracts from Existing Applications
Creating Contracts from COBOL Copybooks

Overview To facilitate the mapping of COBOL operations to Artix contracts, Artix
provides a command line tool, coboltowsdl, that will import COBOL
copybook data and generate an Artix contract containing a fixed binding to
define the COBOL interface for Artix applications.

Using the tool To generate an Artix contract from COBOL copybook data use the following
command:

The command has the following options:

coboltowsdl -b binding -op operation -im [inmessage:]incopybook
 [-om [outmessage:]outcopybook]
 [-fm [faultmessage:]faultbook]
 [-i portType][-t target]
 [-x schema_name][-useTypes][-o file]

-b binding Specifies the name for the generated binding.

-op operation Specifies the name for the generated
operation.

-im
 [inmessage:]incopybook

Specifies the name of the input message and
the copybook file from which the data
defining the message is taken. The input
message name, inmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

-om
 [outmessage:]outcopybook

Specifies the name of the output message
and the copybook file from which the data
defining the message is taken. The output
message name, outmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.
 354

Creating Contracts from COBOL Copybooks
Once the new contract is generated, you will still need to add the port
information before you can use the contract to develop an Artix solution.

-fm
[faultmessage:]faultbook

Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, faultmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

-i portType Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortType.a

-t target Specifies the target namespace for the
generated WSDL. Defaults to
http://www.iona.com/binding.

-x schema_name Specifies the namespace for the schema in
the generated WSDL. Defaults to
http://www.iona.com/binding/types.

-useTypes Specifies that the generated WSDL will use
<types>. Default is to generate <element> for
schema types.

-o file Specifies the name of the generated WSDL
file. Defaults to binding.wsdl.

a. If binding ends in Binding or binding, it is stripped off before being used
in any of the default names.
355

CHAPTER 15 | Creating Artix Contracts from Existing Applications
 356

CHAPTER 16

Adding Routing
Instructions
Artix provides messages routing based on operations, ports, or
message attributes.

In this chapter This chapter discusses the following topics:

Artix Routing page 358

Compatibility of Ports and Operations page 359

Defining Routes in Artix Contracts page 362

Error Handling page 374

Service Lifecycles page 375

Routing References to Transient Servants page 377
357

CHAPTER 16 | Adding Routing Instructions
Artix Routing

Overview Artix routing is implemented within Artix service access points and is
controlled by rules specified in the SAP’s contract. Artix SAPs that include
routing rules can be deployed either in standalone mode or embedded into
an Artix service.

Artix supports the following types of routing:

• Port-based

• Operation-based

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based Port-based routing acts on the port or transport-level identifier, specified by
a <port> element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <portType>, level or the finer grained operation
level.
 358

Compatibility of Ports and Operations
Compatibility of Ports and Operations

Overview Artix can route messages between services that expect similar messages.
The services can use different message transports and different payload
formats, but the messages must be logically identical. For example, if you
have a baseball scoring service that transmits data using SOAP over HTTP,
Artix can route the score data to a reporting service that consumes data
using CORBA. The only requirement for operation-based routing is that the
two services have an operation that uses messages with the same logical
description in the Artix contract defining their integration. For port-based
routing, the destination service must have a matching operation defined for
each of the operations defined for the source service.

Port-based routing Port-based routing is rough grained in that the routing rules are defined on
the <port> elements of an Artix contract and do not look at the individual
operations defined in the logical interface, or <portType>, to which the port
is bound. Therefore, port-based routing requires that the services between
which messages are being routed must have compatible logical interface
descriptions.

For two ports to have compatible logical interfaces the following conditions
must be met:

• The destination’s logical interface must contain a matching operation
for each operation in the source’s logical interface. Matching
operations must have the same name.

• Each of the matching operations must have the same number of input,
output, and fault messages.

• Each of the matching operations’ messages must have the same
sequence of port types.

For example, given the two logical interfaces defined in Example 85 you
could construct a route from a port bound to baseballScorePortType to a
port bound to baseballGamePortType. However, you could not create a
359

CHAPTER 16 | Adding Routing Instructions
route from a port bound to finalScorePortType to a port bound to
baseballGamePortType because the message types used for the getScore
operation do not match.

Example 85:Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int" />
</message>
<message name="baseballScore">
 <part name="homeTeam" type="xsd:int" />
 <part name="awayTeam" type="xsd:int" />
 <part name="final" type="xsd:boolean" />
</message>
<message name="finalScore">
 <part name="home" type="xsd:int" />
 <part name="away" type="xsd:int" />
 <part name="winningTeam" type="xsd:string" />
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string" />
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest" name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
 360

Compatibility of Ports and Operations
Operation-based routing Operation-based routing provides a finer grained level of control over how
messages can be routed. Operation-based routing rules check for
compatibility on the <operation> level of the logical interface description.
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

• The operations must have the same number of input, output, and fault
messages.

• The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 86 to the
interfaces in Example 85 on page 360, you could specify a route from
getFinalScore defined in fullScorePortType to getScore defined in
finalScorePortType. You could also define a route from getScore defined
in fullScorePortType to getScore defined in baseballScorePortType.

Example 86:Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
361

CHAPTER 16 | Adding Routing Instructions
Defining Routes in Artix Contracts

Overview Artix port-based and operation-based routing are fully implemented in the
contract defining the integration of your systems. Routes are defined using
WSDL extensions that are defined in the namespace
http://schemas.iona.com/routing. The most commonly used of these
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

In this section This section discusses the following topics:

Using Port-Based Routing page 363

Using Operation-Based Routing page 366

Advanced Routing Features page 369
 362

Defining Routes in Artix Contracts
Using Port-Based Routing

Overview Port-based routing is the highest performance type of routing Artix performs.
It is also the easiest to implement. All of the rules are specified in the Artix
contract describing how your systems are integrated. The routes specify the
source port for the messages and the destination port to which messages
are routed.

Describing routes in an Artix
contract

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing routes in
an Artix contract you must add the following to your contract’s definition
element:

To describe a port-based route you use three elements:

<routing:route>

<routing:route> is the root element of each route you describe in your
contract. It takes on required attribute, name, that specifies a unique
identifier for the route. route also has an optional attribute, multiRoute,
which is discussed in “Advanced Routing Features” on page 369.

<routing:source>

<routing:source> specifies the port from which the route will redirect
messages. A route can have several source elements as long as they all
meet the compatibility rules for port-based routing discussed in “Port-based
routing” on page 359.

<routing:source> requires two attributes, service and port. service
specifies the service element in which the source port is defined. port
specifies the name of the port element from which messages are being
received.

<definition ...
 xmlns:routing="http://schemas.iona.com/routing"
 ...>
363

CHAPTER 16 | Adding Routing Instructions
<routing:destination>

<routing:destination> specifies the port to which the source messages
are directed. The destination must be compatible with all of the source
elements. For a discussion of the compatibility rules for port-based routing
see “Port-based routing” on page 359.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the route element’s muliRoute
attribute that is discussed in “Advanced Routing Features” on page 369.

<routing:destination> requires two attributes, service and port. service
specifies the service element in which the destination port is defined. port
specifies the name of the port element to which messages are being sent.

Example For example, to define a route from baseballScorePortType to
baseballGamePortType, defined in Example 85 on page 360, your Artix
contract would contain the elements in Example 87.

Example 87:Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <corba:address location="file://baseball.ref"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort" />
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort" />
</routing:route>
 364

Defining Routes in Artix Contracts
There are two sections to the contract fragment shown in Example 87:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and
port attributes.
365

CHAPTER 16 | Adding Routing Instructions
Using Operation-Based Routing

Overview Operation-based routing is a refinement of port-based routing. With
operation-based routing you can specify specific operations within a logical
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by
adding routing rules to Artix contracts.

Describing routes in an Artix
contract

The contract elements for defining operation-based routes are defined in the
same namespace as the elements for port-based routing and you will need
to include in your contract’s namespace declarations to use operation based
routing.

To specify an operation-based route you need to specify one additional
element in your route description: <routing:operation>.
<routing:operation> specifies an operation defined in the source port’s
logical interface and an optional target operation in the destination port’s
logical interface. You can specify any number of operation elements in a
route. The operation elements must be specified after all of the source
elements and before any destination elements.

operation takes one required attribute, name, that specifies the name of the
operation in the source port’s logical interface that is to be used in the route.

operation also has an optional attribute, target, that specifies the name
operation in the destination port’s logical interface to which the message is
to be sent. If a target is specified, messages are routed between the two
operations. If no target is specified, the source operation’s name is used as
the name of the target operation. The source and target operations must
meet the compatibility requirements discussed in “Operation-based routing”
on page 361.

How operation-based rules are
applied

Operation-based routing rules apply to all of the source elements listed in
the route. Therefore, if an operation-based routing rule is specified, a
message will be routed if all of the following are true:

• The message is received from one of the ports specified in a source
element.
 366

Defining Routes in Artix Contracts
• The operation name associated with the received message is specified
in one of the <operation> elements.

If there are multiple operation-based rules in the route, the message will be
routed to the destination specified in the matching operation’s target
attribute.

Example For example to route messages from getFinalScore defined in
fullScorePortType, shown in Example 86 on page 361, to getScore
defined in finalScorePortType, shown in Example 85 on page 360, your
Artix contract would contain the elements in Example 88.

There are two sections to the contract fragment shown in Example 88:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, scoreRoute, is defined using the <route:operation>
element.

Example 88:Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <corba:address="file://score.ref" />
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <tuxedo:address serviceName="finalScoreServer" />
 </port>
</service>

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore" target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>
367

CHAPTER 16 | Adding Routing Instructions
You could also create a route between getScore in baseballGamePortType
to a port bound to baseballScorePortType; see Example 85 on
page 360.The resulting contract would include the fragment shown in
Example 89.

Note that the <routing:operation> element only uses the name attribute.
In this case the logical interface bound to baseballScorePort,
baseballScorePortType, must contain an operation getScore that has
matching messages as discussed in “Port-based routing” on page 359.

Example 89:Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
 368

Defining Routes in Artix Contracts
Advanced Routing Features

Overview Artix routing also supports the following advanced routing capabilities:

• Broadcasting a message to a number of destinations.

• Specifying a failover service to route messages to provide a level of
high-availability.

• Routing messages based on transport attributes in the received
message’s header.

Message broadcasting Broadcasting a message with Artix is controlled by the routing rules in an
Artix contract. Setting the multiRoute attribute to the <routing:route>
element to fanout in your route definition allows you to specify multiple
destinations in your route definition to which the source messages are
broadcast.

There are three restrictions to using the fanout method of message
broadcasting:

• All of the sources and destinations must be oneways. In other words,
they cannot have any output messages.

• The sources and destinations cannot have any fault messages.

• The input messages of the sources and destinations must meet the
compatibility requirements as described in “Compatibility of Ports and
Operations” on page 359.

Example 90 shows an Artix contract fragment describing a route for
broadcasting a message to a number of ports.

Example 90:Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
369

CHAPTER 16 | Adding Routing Instructions
Failover routing Artix failover routing is also specified using the <routing:route>’s
multiRoute attribute. To define a failover route you set multiRoute to equal
failover. When you designate a route as failover, the routed message’s
target is selected in the order that the destinations are listed in the route. If
the first target in the list is unable to receive the message, it is routed to the
second target. The route will traverse the destination list until either one of
the target services can receive the message or the end of the list is reached.

<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:address serviceName="statusService"/>
 </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens" target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>

Example 90:Fanout Broadcasting
 370

Defining Routes in Artix Contracts
Given the route shown in Example 91, the message will first be routed to
destinationPortA. If service on destinationPortA cannot receive the
message, it is routed to destinationPortB.

Routing based on transport
attributes

Artix allows you to specify routing rules based on the transport attributes set
in a message’s header when using HTTP or WebSphere MQ. Rules based on
message header transport attributes are defined in
<routing:transportAttribute> elements in the route definition. Transport
attribute rules are defined after all of the operation-based routing rules and
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule
are specified in sub-elements to the <routing:tranportAttribute>. A
message passes the rule if it meets each criterion specified in the listed
sub-element.

Each sub-element has a contextName attribute to specify the context in
which the attribute is defined and contextAttributeName attribute to
specify the name of the attribute to be evaluated. The contextName attribute
is specified using the QName of the context in which the attribute is defined.
The two contexts shipped with Artix are described in Table 11.The
contextAttributeName is also a QName and is relative to the context
specified. For example, UserName is a valid attribute name for any of the
HTTP contexts, but not for the MQ contexts.

Example 91:Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
</routing:route>

Table 11: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a server.
371

CHAPTER 16 | Adding Routing Instructions
Most sub-elements have a value attribute that can be tested. Attributes
dealing with string comparisons have an optional ignorecase attribute that
can have the values yes or no (no is the default). Each of the sub-elements
can occur zero or more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

<routing:greater> applies only to numeric attributes and tests whether the
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the
attribute is less than the value.

http-conf:HTTPServerOutgoingContexts Contains the attributes for
HTTP messages being sent
by a server.

http-conf:HTTPClientIncomingContexts Contains the attributes for
HTTP messages being
received by a client.

http-conf:HTTPClientOutgoingContexts Contains the attributes for
HTTP messages being sent
by a client.

mq:MQConnectionAttributes Contains the attributes
defining a connection to
WebSphere MQ.

mq:MQIncomingMessageAttributes Contains the attributes of
WebSphere MQ messages
being received by an Artix
server.

mq:MQOutoingMessageAttributes Contains the attributes of
WebSphere MQ messages
being sent by an Artix sent.

Table 11: Context QNames

Context QName Details
 372

Defining Routes in Artix Contracts
<routing:startswith> applies to string attributes and tests whether the
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. contains accepts an optional ignorecase attribute
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if
the list is not empty. For strings, it passes if the string is not empty.

For information on the transport attributes for HTTP see “Configuring HTTP
Transport Attributes” on page 303. For information on the transport
attributes for WebSphere MQ see “WebSphere MQ Artix Extensions” on
page 485.

Example 92 shows a route using transport attribute rules based on HTTP
header attributes. Only messages sent to the server whose UserName is equal
to JohnQ will be passed through to the destination port.

Example 92:Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
373

CHAPTER 16 | Adding Routing Instructions
Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL,
such as routing between incompatible logical interfaces and some kinds of
route ambiguity, are logged and an exception is raised. This exception aborts
the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned
to the client; for example “no route” or “ambiguous routes”.
 374

Service Lifecycles
Service Lifecycles

Overview When the Artix router uses dynamic proxy services, you can configure
garbage collection of old proxies. Dynamic proxies are used when the router
bridges services that have patterns such as callback, factory, or any
interaction that passes references to other services. When the router
encounters a reference in a message, it proxifies the reference into one that
a receiving application can use. For example, an IOR from a CORBA server
cannot be used by a SOAP client, so the router dynamically creates a new
route for the SOAP client.

However, dynamic proxies persist in the router memory and can have a
negative effect on performance. To overcome this, Artix provides service
lifecycle garbage collection, which cleans up old proxy services that are no
longer used. This garbage collection service cleans up unused proxies when
a threshold has been reached on a least recently used basis.

Configuring service lifecycle To configure service garbage collection for the Artix router, perform the
following steps:

1. Add the service_lifecycle plug-in to the orb_plugins list:

2. Configure the service lifecycle cache size:

orb_plugins = ["xmlfile_log_stream", "service_lifecycle",
"routing"];

plugins:service_lifecycle:max_cache_size = "30";
375

CHAPTER 16 | Adding Routing Instructions
Writing client applications When writing client applications, you must also make allowances for the
garbage collection service; in particular, ensure that exceptions are handled
appropriately.

For example, a client may attempt to proxify to a service that has already
been garbage collected. To prevent this, do either of the following:

• Handle the exception, get a new reference, and continue. However, in
some cases, this may not be possible if the service has state.

• Set max_cache_size to a reasonable limit to ensure that all your clients
can be accommodated. For example, if you always expect to support
20 concurrent clients, each with a transient service session, you might
wish to configure the max_cache_size to 30.

You do not want to impact any clients, and must ensure that a service is no
longer needed when it is garbage collected. However, if you set
max_cache_size too high, this may use up too much router memory and
have a negative impact on performance. For example, a suggested range for
this setting is 30-100.
 376

Routing References to Transient Servants
Routing References to Transient Servants

Overview Applications create transient servants by cloning a service defined in your
contract. The cloned service uses the same interface, binding, and transport
as the service defined in the contract. However, it has a unique QName and
a unique address. So, when a transient servant’s service definition only
exists in the memory of the application that created it and possesses no link
back to the service from which it was cloned.

Because a transient servant does not have a service definition in the
physical contract and no link to one, the router, when it receives a reference
to a transient servant, has no concrete information about how to create a
proxy for the referenced servant. The router must make a best guess about
which service in its contract to use as the template for the proxy to the
transient servant. To do this, the router chooses the first compatible service
definition in its contract.

Compatibility of services A service is considered compatible with a transient servant if it uses the
same interface, binding, and transport as the transient servant. For example,
if transient servant was created using the templateVendor service defined in
Example 93 it would be compatible with IIOPVendor. However, it would not
be compatible with SOAPVendor because SOAPVendor uses a different
transport than template. Also, if IIOPVendor was defined using different
transport properties, such as having a defined POA name, transient servants
created from templateVendor would not be compatible.

Example 93:Contract with a Service Template

<definitions ...>
 ...
 <message name="mangoRequest">
 <part name="num" type="xsd:int" />
 </message>
 <message name="mangoPrice">
 <part name="cost" type="xsd:float" />
 </message>
377

CHAPTER 16 | Adding Routing Instructions
 <portType name="fruitVendor">
 <operation name="sellMangos">
 <input name="num" message="tns:mangoRequest" />
 <output name="price" message="tns:mangoPrice" />
 </operation>
 </portType>
 <binding name="fruitVendorBinding" type="tns:fruitVendor">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sellMangos">
 <soap:operation soapAction="" style="rpc"/>
 <input name="num">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </input>
 <output name="cost">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="templateVendor">
 <port binding="tns:fruitVendorBinding"
 name="transientVendor">
 <iiop:address location="ior:" />
 </port>
 </service>
 <service name="SOAPVendor">
 <port binding="tns:fruitVendorBinding"
 name="SOAPVendorPort">
 <soap:address location="lcoalhost:5150" />
 </port>
 </service>
 <service name="IIOPVendor">
 <port binding="tns:fruitVendorBinding"
 name="IIOPVendorPort">
 <iiop:address location="file:///objref.ior" />
 </port>
 </service>
</definitions>

Example 93:Contract with a Service Template
 378

Routing References to Transient Servants
Contract design issues The router’s means of selecting a compatible service to create proxies for
transient servants can result in odd behavior if you use the same interface to
create both static servants and transient servants. When passing references
to these services through the router, the potential exists for the router to
select the static service to create proxies for the transient servants. WHen
this happens, the router will silently redirect all of the messages to the
servant defined by the static service definition.

To avoid this situation be sure to place the service templates used to create
transient servants before the service definitions that will be used to create
static servants. This will ensure that the router will find the service
templates first when it proxifies a reference to a transient servant.
379

CHAPTER 16 | Adding Routing Instructions
 380

CHAPTER 17

Using the Artix
Transformer to
Solve Problems in
Artix
The Artix Transformer allows you to perform message
transformations, data validation, and interface versioning
without having to write additional code.

In this chapter This chapter discusses the following topics:

Using the Artix Transformer as an Artix Server page 382

Using Artix to Facilitate Interface Versioning page 384

WSDL Messages and the Transformer page 389

Writing XSLT Scripts page 392
381

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Using the Artix Transformer as an Artix Server

Overview Using the Artix transformer, you can create a Web service that does simple
tasks such as converting dates into the proper format or generating HTML
output without writing any code. You can also develop services to validate
the format of requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer which uses an
XSLT script to determine how to process the data.

Procedure To use the Artix transformer as an Artix server you do the following:

1. Define the data, interface, binding, and transport details for the server
in an Artix contract.

2. Write the XSLT script that defines the data processing you want the
transformer to perform.

3. Configure the server with the transformer’s configuration details.

Defining the server The contract for a service that is implemented by the Artix Transformer is
the same as the Artix contract for any other service in Artix. You need to
define the complex types, if any, that the service uses. Then you need to
define the messages used by the service to receive and respond to requests.

Once the data types and messages are defined, you then define the service’s
interface. The only limitation for a service that is implemented by the Artix
Transformer is that it cannot have any fault messages. The interface can
define multiple operations. Each operation will be processed using different
XSLT scripts.

After defining the logical details of the service, you need to define the
binding and network details for the service. The transformer can use any of
the bindings and transports supported by Artix. For information on adding a
binding for the transformer read “Binding Interfaces to a Payload Format” on
page 227. For information on adding network details for the transformer
read “Adding Transports” on page 297.
 382

Using the Artix Transformer as an Artix Server
Writing the scripts The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read “Writing
XSLT Scripts” on page 392.

Configure the transformer The Artix Transformer is an Artix plug-in and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. There are two common deployment patterns for
deploying the Artix Transformer as an Artix server. The first is to configure
the transformer to load in its own process using the Artix Standalone
Service. The second is to configure the transformer to load directly into the
client process which is making requests against it.

For a detailed discussion of how to configure and deploy the Artix
Transformer see Deploying and Managing Artix Solutions.
383

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Using Artix to Facilitate Interface Versioning

Overview One of the most common and difficult problems faced in large scale client
server deployments is upgrading systems. For example, if you change the
interface for your server to add new functionality or streamline
communications, you then need to change all of the clients that access the
server. This can mean upgrading thousands of clients that may be scattered
across the globe.

The Artix Transformer provides a solution to this problem that allows you to
slowly upgrade the clients without disrupting their ability to function. Using
the transformer you can develop an XSLT script that converts messages
between the different interfaces. Then you can place the transformer
between the old clients and the new server. This solution eliminates the
need for operating two versions of the same server, or trying to do a massive
client and server upgrade. It also does this without requiring you to do any
custom programing.

Procedure To use the Artix Transformer for interface versioning do the following:

1. Create a composite Artix contract defining both versions of the
interfaces that need to be supported.

2. Define an interface for the transformer that defines operations for
mapping the interfaces.

3. Add a SOAP binding to the contract for the transformer’s interface.

4. Add an HTTP port to the contract to define how the transformer can be
contacted.

5. Write the XSLT scripts that define the message transformations.

6. Configure the transformer.

7. Configure the Artix Chain Builder to create a chain containing the
transformer and the server on which clients will make requests.
 384

Using Artix to Facilitate Interface Versioning
Creating a composite contract While the server and the client applications can be run without knowledge
of the other’s interface, the transformer responsible for translating the
messages between to the two interface versions must know about all of the
interface versions used. This includes all data type definitions and message
definitions used by both versions of the interface.

You can create this composite contract in several ways. The most
straightforward way is to create a new contract which imports both the new
interface’s contract and the old interface’s contract. To import the contracts
you place an <import> element for each contract just after the
<definitions> element in the new contract and before any other elements
in the new contract. The <import> element has two attributes. location
specifies the relative pathname of the file containing the contract that is
being imported. namespace defines the XML namespace under which the
imported contract can be referenced.

For example, if you were creating a composite contract for interface
versioning you would have two contracts; one for the server with the
updated interface and one for the client using the legacy interface. The file
name for the server’s contract is r2e2.wsdl and the contract for the client is
r2e1.wsdl. For simplicity, they are located in the same directory as the
composite contract. The composite contract importing both versions of the
interface is shown in Example 94.

Example 94:Composite WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="transformer"
 targetNamespace="http://www.widgets.com/transformer"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:r1="http://www.widgets.com/r2e2Server"
 xmlns:r2="http://www.widgets.com/r2e1Client"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.widgets.com/transformer"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <import location="r2e2.wsdl"
 namespace="http://www.widgets.com/r2e2Server/>
 <import location="r2e1.wsdl"
 namespace="http://www.widgets.com/r2e1Client"/>
</definitions>
385

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Note that in the <definitions> element of the contract, XML namespace
shortcuts are defined for the imported contracts namespace. This makes
using items defined in the imported contracts much easier.

Define the transformer’s interface Once you have imported all versions of the interface that you need to
support into the transformer’s composite contract, you need to define the
transformer’s interface. The transformer must have one operation defined for
each transformation that is required to support all of the interface versions.
For example, if you only changed the structure of the request message in
when upgrading the server’s interface, the transformer only needs one
operation because the transformation is only one way. If you changed both
the request and response messages, the transformer’s interface will need
two operations; one for the request message and one for the response.

The operation to transform a request from the client to the proper format for
the server takes the client’s message as its <input> element and the server’s
message as its <output> message. The operation to transform a response
from the server to the proper format for a client takes the server’s outgoing
message as its <input> element and the client’s incoming message as its
<output> element.

When adding the operations, be sure to use the proper namespaces when
referencing the messages for the different versions of the interface. Using
the wrong namespaces could result in an invalid contract at the very least. If
the contract is valid, and the namespaces are incorrect, your system will
behave erratically.

For example, if the interface in Example 94 on page 385 was updated so
that both the client’s request and the server’s response need to be
transformed the transformer’s interface would need two operations. In this

Note: Fault messages are not supported.
 386

Using Artix to Facilitate Interface Versioning
example the name of the request message is widgetRequest and the name
of the response message is widgetResponse. The interface for the
transformer, versionTransform, is shown in Example 95.

In the operation transforming the request, requestTransform, the input
message is taken from the namespace r1 which is the namespace under
which the client’s contract is imported. The output message is taken from r2
which is the namespace under which the server’s contract is imported. For
the response message transformation, responseTransform, the order is
reversed. The input message is from r2 and the output message is from r1.

Defining the physical details for
the transformer

After defining the operations used in transforming between the different
version of the interface, you need to define the binding and network details
for the transformer. The transformer can use any of the bindings and
transports supported by Artix. For information on adding a binding for the
transformer read “Binding Interfaces to a Payload Format” on page 227. For
information on adding network details for the transformer read “Adding
Transports” on page 297.

Writing the XSLT scripts The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read “Writing
XSLT Scripts” on page 392.

Example 95:Versioning Interface

<portType name="versionTransform">
 <operation name="requestTransform">
 <input name="oldRequest" message="r1:widgetRequest" />
 <output name="newRequest" message="r2:widgetRequest" />
 </operaiton>
 <operation name="responseTransform">
 <input name="newResponse" message="r2:widgetResponse" />
 <output name="oldReponse" message="r1:widgetResponse" />
 </operation>
</portType>
387

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Configuring the transformer The Artix Transformer is an Artix plugin and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. For a detailed discussion of how to configure and deploy
the Artix Transformer see Deploying and Managing Artix Solutions.

Configuring a chain When using the transformer to do interface versioning, you need to deploy it
as part of a service chain. To build a service chain in Artix you deploy the
Artix Chain Builder. Like the transformer, the chain builder is an Artix plugin
and provides a number of deployment options. One way of deploying the
chain builder along with the transformer is to deploy it alongside of the
transformer in an instance of the Artix Standalone service.

For a detailed discussion of how to configure and deploy the Artix Chain
Builder see Deploying and Managing Artix Solutions.
 388

WSDL Messages and the Transformer
WSDL Messages and the Transformer

Overview Because the Artix Transformer works on messages that can originate from
any of the payload formats supported by Artix, the transformer changes the
messages into an XML document based on the Artix contract describing the
message before processing the data using the XSLT script. When the
transformer is finished processing, it then takes the resulting XML document
and changes it back into the appropriate payload format.

Because the transformer works on XML representations of the data relieves
you of the burden of understanding how the data on the wire is represented.
However, this fact also means that you must rely on the message
descriptions in the Artix contract to guide how you write your XSLT scripts.
In addition, it also requires that you are careful about producing valid
results.

The incoming message The XML document that the transformer processes is created by reading the
message off the wire and using the Artix contract to reconstruct the XML
document that the data represents. The reconstruction is done by looking at
the <input> message from the appropriate <operation> in the <portType>
that defines the invoked service. For example, if you had a service defined
by the WSDL fragment in Example 96 and the transformer implemented the
operation configure the XML document would be constructed using the
<input> message for configure, oldClientInput.

Example 96:WSDL Fragment for Transformer

...
<message name="original">
 <part name="vehicle" type="xsd:string" />
 <part name="name" type="xsd:string" />
</message>
<message name="transformed">
 <part name="vehicle" type="xsd:string" />
 <part name="firstName" type="xsd:string" />
 <part name="lastName" type="xsd:string" />
</message>
...
389

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
When the message is reconstructed, the transformer uses the input message
name, given in the <input> element, as the name of the root element of the
XML document. It then uses the message definition and the schema types to
recreate the data as an XML message. So if the transformer was using the
contract defined in Example 96 on page 389 and received data where
vehicle equaled Prius and name equaled Old MacDonald the input message
processed by the transformer will look like Example 97.

Output message The results from the transformer goes through the reverse of the process that
turns the input message into an XML document. The transformer attempts
to use the <output> message definition from the Artix contract to place the
result message back onto the wire in the proper payload format. If the result
message is not properly formed this attempt will fail, so you must be careful
when writing your XSLT script to ensure that the results match the expected
format.

When the result message is deconstructed, the transformer expects that the
root element of the result has the name of the output message, as defined in
the <output> element in the Artix contract. It then reads the message
definition and associated type definitions from the contract to ensure that

<portType name="parkingLotMeter">
 <operation name="configure">
 <input name="oldClientInput" message="original" />
 <output name="updatedInput" message="transformed" />
 </operation>
...
</portType>
...

Example 96:WSDL Fragment for Transformer

Example 97:Transformer Input Message

<oldClientInput>
 <vehicle>
 Prius
 </vehicle>
 <name>
 Old MacDonald
 </name>
</oldClientInput>
 390

WSDL Messages and the Transformer
the message is properly formed. For example, a result message for the
configure operation defined in Example 96 on page 389 would look like
Example 98.

Example 98:Transformer Output Message

<updatedInput>
 <vehicle>
 Prius
 </vehicle>
 <firstName>
 Old
 </firstName>
 <lastName>
 MacDonald
 </lastName>
</updatedInput>
391

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Writing XSLT Scripts

Overview XML Stylesheet Language Transformations(XSLT) is a language used to
describe the transformation of XML documents. The current W3C standard
for XSLT is 1.0 and can be read at the W3C web site
(http://www.w3.org/TR/xslt). XSLT documents, called scripts, are
well-formed XML documents that describe how a source XML document is
transformed into a resulting XML document. It can be used to perform tasks
as simple as splitting a name entry into first and last name entries and as
complex as validating that a complex XML document matches the
expectations of an interface described in a WSDL document.

Procedure Writing an XSLT script can be done in a number of ways and using a
number of tools. The steps given here assume that you are writing fairly
simple scripts using a text editor.

To write a XSLT script you do the following:

1. Create an XML stylesheet with the required <xsl:transform> element.

2. Determine which elements in your source message need to be
processed and create <xsd:template> elements for each of them.

3. For each element that has a matching template element, define how
you want the element processed to produce a new output document.

4. If child elements need to be processed as part of processing a parent
element, define a template for the child element and apply it as part of
the parent element’s template using <xsd:apply-templates>.

In this section This section discusses the following topics:

Elements of an XSLT Script page 393

XSLT Templates page 395

Common XSLT Functions page 401
 392

http://www.w3.org/TR/xslt

Writing XSLT Scripts
Elements of an XSLT Script

Overview An XSLT script is essentially an XML stylesheet containing a special set of
elements that instruct an XSLT engine in the processing of other XML
documents. An XSLT script must be defined in an <xsl:transform> element
or an <xsl:stylesheet> element. In addition, it needs at least one valid
top-level element to define the transformation.

The transform element The <xsl:transform> element denotes that the document is an XML
stylesheet. The <xsl:stylesheet> element can be used in place of the
<xsl:transform> element. They are equivalent.

When creating an XSLT script you must set the version attribute to 1.0 to
inform the transformer what version of XSLT you are using. In addition, you
must provide an XML namespace shortcut for the XSLT namespace in the
<xsl:transform> element. Example 99 shows a valid <xsl:transform>
element for an XSLT script.

Top level elements While all that is needed to make an XML document a valid XSLT script is
the <xsl:transform> element, the <xsl:transform> element does not
provide any instructions for processing data. The data processing
instructions in an XSLT script are provided by a number of top-level XSLT
elements. These element’s include:

• xsl:import

• xsl:include

• xsl:strip-space

• xsl:preserve-space

• xsl:output

• xsl:key

• xsl:decimal-format

Example 99:XSLT Script Stylesheet Element

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
</stylesheet>
393

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
• xsl:namespace-alias

• xsl:attribute-set

• xsl:variable

• xsl:param

• xsl:template

An XSLT script can have any number and combination of top-level elements.
Other than xsl:import, which must occur before any other elements, the
top-level elements can be used in any order. However, be aware that the
order determines the order in which processing steps happen.

Example Example 100 shows a simple XSLT script that transforms <SSN> elements
into <acctNum> elements.

Using this XSLT script the transformer would change a message that
contained <SSN>012457890</SSN> into a message that contained
<acctNum>012457890</acctNum>.

Example 100:Simple XSLT Script

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="SSN">
 <acctNum>
 <xsl:value-of select="."/>
 </acctNum>
 </xsl:template>
</xsl:stylesheet>
 394

Writing XSLT Scripts
XSLT Templates

Overview XSLT processors use templates to determine the elements on which to apply
a set of transformations. Documents are processed from the top element
through their structure to determine if elements match a defined template. If
a match is found, the rules specified by the template are applied.

To write a template in XSLT, do the following:

1. Create an <xsl:template> element.

2. Provide the path to the source element it processes.

3. Write the processing rules.

<xsl:template> elements Templates are defined using <xsl:template> elements. These elements
take one required attribute, match, which specifies the source element that
triggers the rules. In addition, you can use the name attribute to give the
template a unique identifier for referencing it elsewhere in the contract.

Specifying source elements You specify the elements of the source document to which template rules
are matched using the match attribute of the <xsl:template> element. The
source elements are specified using the syntax specified by the XPath
specification (http://www.w3.org/TR/xpath). The source element address
looks very similar to a file path where slash(/) specifies the root element and
child elements are listed in top down order separated by a slash(/). For
example to specify the <surname> element of the XML document shown in
Example 101, you would specify it as /name/surname.

Example 101:Sample XML Document

<name>
 <firstname>
 Joe
 </firstname>
 <surname>
 Friday
 </surname>
<name>
395

http://www.w3.org/TR/xpath

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
Template matching order XSLT processors start processing with the <xsl:template match="/">
element if it is present. All of the processing directives for this template act
on the top-level elements of the source document. For example, given the
XML document shown in Example 101 on page 395 any processing rules
specified in <xsl:template match="/"> would apply to the <name> element.
In addition, specifying a template for the root element(/) forces you to make
all your source element paths explicit from the root element. The XSLT script
shown in Example 102 generates the string Friday when run on
Example 101 on page 395.

You do not need to specify a template for the root element of the source
document in an XSLT script. When you omit the root element’s template the
processor treats all template paths as though they originated from the
source documents top level element. The XSLT script in Example 103
generates the same output as the script in Example 102.

Template rules The contents of an <xsl:template> element define how the source
document is processed to produce an output document. You can use a
combination of XSLT elements, HTML, and text to define the processing
rules. Any plain text and HTML that are used in the processing rules are
placed directly into the output document. For example, if you wanted to
generate an HTML document from an XML document you would use an
XSLT script that included HTML tags as part of its processing rules. The

Example 102:XSLT Script with Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:value-of select="/name/surname"/>
 </xsl:template>
</xsl:transform>

Example 103:XSLT Script without Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="surname">
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:transform>
 396

Writing XSLT Scripts
script in Example 104 takes an XML document with a <title> element and
a <subTitle> element and produces an HTML document where the
contents of <title> are displayed using the <h1> style and the contents of
<subTitle> are displayed using the <h2> style.

Applying templates to child
elements

You can instruct the XSLT processor to apply any templates defined in the
script to the children of the element being processed using an
<xsl:apply-templates> element as one of the rules in a template.
<xsl:apply-templates> instructs the XSLT processor to treat the current
element as a root element and run the templates in the script against it.

For example you could rewrite Example 104 as shown in Example 105
using <xsl:apply-templates> and defining a template for the <title> and
<subTitle> elements.

Example 104:XSLT Template with HTML

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <h1>
 <xsl:value-of select="//title"/>
 </h1>
 <h2>
 <xsl:value-of select="//subTitle"/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 105:XSLT Template Using apply-templates

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl"template match="title">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>
397

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
You can use the optional select attribute to limit the child elements to
which the templates are applied. select takes an XPath value and operates
in the same manner as the match attribute of <xsl:template>.

Example For example, if your ordering system produced bills that looked similar to
the XML document in Example 106, you could use an XSLT script to
reformat the bill for a system that required the customer’s name in a single
element, name, and the city and state to be in a comma-separated field,
city.

 <xsl"template match="subTitle">
 <h2>
 <xsl:value-of select="."/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 105:XSLT Template Using apply-templates

Example 106:Bill XML Document

<widgetBill>
 <customer>
 <firstName>
 Joe
 </firstName>
 <lastName>
 Cool
 </lastName>
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee
 </city>
 <state>
 MS
 </state>
 <zipCode>
 3942
 </zipCode>
 </address>
 398

Writing XSLT Scripts
The XSLT script shown in Example 107 would result in the desired
transformation.

The script does the following:

1. Creates an element, <widgetBill>, in the output document and places
the results of the other templates as its children.

2. Creates an element, <name>, and sets its value to the result of the
concatenation.

 <amtDue>
 123.50
 </amtDue>
</widgetBill>

Example 106:Bill XML Document

Example 107:XSLT Script for widgetBill

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

1 <xsl:template match="widgetBill">
 <xsl:element name="widgetBill">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

2 <xsl:template match="customer">
 <xsl:element name="name">
 <xsl:value-of select="concat(//firstName,’ ’,//lastName)"/>
 </xsl:element>
 </xsl:template>

3 <xsl:template match="address">
 <xsl:element name="address">
 <xsl:copy-of select="//street"/>
 <xsl:element name="city">
 <xsl:value-of select="concat(//city,’, ’,//state)"/>
 </xsl:element>
 <xsl:copy-of select="//zipCode"/>
 </xsl:element>
 </xsl:template>

4 <xsl:template match="amtDue">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:transform>
399

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
3. Creates an element, <address>, and sets its value to the results of the
rules. <address> will contain a copy of the <street> element from the
source document, a new element, <city>, that is a concatenation, and
a copy of the <zipCode> element from the source document.

4. Copy the <amtDue> element from the source document into the output
document.

Processing the document in Example 106 on page 398 with this XSLT
script would result in the XML document shown in Example 108.

Example 108:Processed Bill XML Document

<widgetBill>
 <customer>
 Joe Cool
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee, MS
 </city>
 <zipCode>
 3942
 </zipCode>
 </address>
 <amtDue>
 123.50
 </amtDue>
</widgetBill>
 400

Writing XSLT Scripts
Common XSLT Functions

Overview XSLT provides a range of capabilities in processing XML documents. These
include conditional statements, looping, creating variables, and sorting.
However, there are a few common functions that are used to generate
output documents. These include:

• xsl:value-of

• xsl:copy-of

• xsl:element

xsl:value-of <xsl:value-of> creates a text node in the ouput document. It has a
required select attribute that specifies the text to be inserted into the
output document.

The value of select is evaluated as an expression describing the data to
insert. It can contain any of the XSLT string functions, such as concat(), or
an XSLT axis describing an element in the source document.

Once the select expression is evaluated the result is placed in the output
document.

xsl:copy-of <xsl:copy-of> copies data from the source document into the output
document. It has a required select. The value of select is an expression
describing the elements to be copied.

When the result of evaluating the expression is a tree fragment, the
complete fragment is copied into the output document. When the result is
an element, the element, its attributes, its namespaces , and its children are
copied into the output document. When the result is neither an element nor
a result tree fragment, the result is converted to a string and then inserted
into the output document.

xsl:element <xsl:element> creates an element in the output document. It takes a
required name attribute that specifies the name of the element that is
created. In addtion, you can specify a namespace for the element using the
optional namespace attribute.
401

CHAPTER 17 | Using the Artix Transformer to Solve Problems in Artix
 402

Part III
Appendecies

In this part This part contains the following apendecies:

Use Case Examples page 405

Command Line Use Case Examples page 421

SOAP Binding Extensions page 427

CORBA Type Mapping page 441

WebSphere MQ Artix Extensions page 485

Tibco Transport Extensions page 521

APPENDIX A

Use Case Examples
Two use cases have been provided to walk you through the
Artix Designer, and give you an introduction to the different
ways you can perform common tasks.

In this appendix This appendix discusses the following topics:

Create a Web Service Client Using a Template page 406

Create a Web Service Server Using a Wizard page 410

Expose a CORBA Server as a Web Service page 416
405

APPENDIX A | Use Case Examples
Create a Web Service Client Using a Template

Overview This use case walks you through the procedure for creating a Web Service
Client using a template-based method. Artix applies defaults for almost
every variable, thus making this the quickest way to get your Web Service
Client up and running with almost no input from you.

Before you begin Before starting this procedure, you need:

• Artix installed on your local machine

• A WSDL document (or a URL address) that describes the target service

• A target SOAP/HTTP service to test your client against

Procedure 1. Start Artix from either the icon on your desktop or the Start menu, to
display the Welcome dialog, as shown in Figure 139.

Figure 139:Welcome dialog
 406

Create a Web Service Client Using a Template
2. Select Create a New Workspace and click OK to display the New
Workspace dialog, as shown in Figure 140.

3. Select the C++ Client template icon.

4. Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a specific location if you
like.

5. Enter the file name or URL for your WSDL file in the field provided, or
click Browse to navigate to a suitable file.

6. Click OK to display the Artix Designer with your Web Service Client
contained in the Designer Tree.

Behind the scenes

Behind the scenes, Artix has performed the following tasks:

• Created a project directory and project file in the save location you
specified

• Imported your WSDL file and added it to the project file

• Created a deployment profile configured for C++ deployment of your
client

Figure 140:New Workspace dialog
407

APPENDIX A | Use Case Examples
Your Web Service Client is ready for code generation.

Deploying the client Now that Artix has automatically created the required deployment profile
information, deploying your Web Service Client involves two tasks:

• Create a deployment bundle

• Generate the client code

To create a deployment bundle:

1. Select the collection name (C++ Client) in the Designer Tree to
display the Collection Details panel, as shown in Figure 141.

2. Click the Add button under the Deployment Bundles section to display
the New Deployment Bundle wizard.

Figure 141:Collection Details panel
 408

Create a Web Service Client Using a Template
3. Move through the wizard, clicking Next on every panel to accept the
system defaults. For more information about this process, see “Editing
a Deployment Profile” on page 183.

4. Click Finish to exit the last panel and return to the Collection Details
panel, where your new bundle is now listed.

To generate your client code:

1. Select the collection name (C++ Client) in the Designer Tree, and
select Tools | Generate Code from the menu bar to display the
Generate Code dialog, as shown in Figure 142.

2. Click OK to generate the client code.

You will receive a confirmation when the process is complete (usually
3-4 seconds).

Figure 142:Generate Code dialog
409

APPENDIX A | Use Case Examples
Create a Web Service Server Using a Wizard

Overview This use case walks you through the procedure for creating a Web Service
server. Unlike the template method described in the previous use case
(“Create a Web Service Client Using a Template” on page 406), this use
case walks you through the process of providing the required input for the
server via the New Workspace wizard.

Before you begin Before starting this procedure, you need:

• Artix installed on your local machine

• A WSDL document (or a URL address) that describes the target service

• A target SOAP/HTTP service to test your client against

Creating the WS Server 1. From the Welcome dialog, select Create a new Workspace and click
OK to display the New Workspace dialog, as shown in “New
Workspace dialog” on page 410.

Figure 143:New Workspace dialog
 410

Create a Web Service Server Using a Wizard
2. Select the New Workspace Wizard icon, to display the New
Workspace wizard, as shown in Figure 144

3. Enter a name for the workspace, or accept the default provided.

4. Select the location where you would like to save your workspace, or
accept the default provided.

Tip: To define a new default save location for all future workspaces, go
to the User Preferences dialog (under the Edit menu).

5. Add a description for this workspace in the field provided.

6. Select the Add Shared Resources check box if you want to add
resources to this workspace that will be shared between all the
collections in the workspace.

Selecting this option will add an extra panel to the wizard for you to
enter the shared resource details.

Figure 144:New Workspace Wizard
411

APPENDIX A | Use Case Examples
7. Select the Add Collection check box if you want to add a collection to
this workspace now. Note that this is optional - you can always add a
collection later if you don’t want to add one now.

Selecting this option will add an extra panel to the wizard for you to
enter the collection details.

8. Click Next to display one of the following panels, depending on which
check boxes you selected on the first panel:

♦ If you checked the Add Shared Resources option, the Shared
Resources panel is displayed, as shown in Figure 145. Continue
with step 8.

♦ If you did not check the Add Resources option but did check the
Add Collection option, the Define Collection panel is displayed, as
shown in Figure 146. Continue with step 10.

Figure 145:New Workspace wizard—Shared Resources panel
 412

Create a Web Service Server Using a Wizard
♦ If you did not check either of the options on the first panel, the
Summary panel is displayed as shown in Figure 147 on
page 414. Continue with step 14.

9. Type the location of either a WSDL file or an IDL file in the Enter
Service URL or WSDL/IDL file field, or click Browse to navigate to the
file you would like to use.

When you have selected a file to use, click Add to list it in the Added
Items list.

10. Repeat step 8 as many times as you like to continue adding resources
to the list, then click Next to display Define Collection panel as shown
in Figure 146. If you did not choose to Add a Collection, go to step
14.

11. Enter a name for the new collection, or accept the default provided.

12. Enter a description for the new collection in the Description field.

Figure 146:New Workspace wizard—Define Collection panel
413

APPENDIX A | Use Case Examples
13. By default, all shared resources you added to this workspace on the
previous panel are selected to be added to this collection. If there are
any resources you do not want added, click on their check box to
deselect them.

14. Click Next to display the display the Summary panel, as shown in
Figure 147. This panel lists everything you just specified in the
wizard.

15. Click Finish to close the wizard and display the Artix Designer, where
the Designer Tree displays your newly created workspace.

Figure 147:New Workspace wizard—Summary panel.
 414

Create a Web Service Server Using a Wizard
Deploying the server Now that you have created your workspace, deploying your Web Service
Server involves three tasks:

• Create a deployment profile - this contains machine-specific
information that you can use multiple times to deploy as many
collections as you have in your workspace. For each machine
operating system, however, you would need a separate deployment
profile. Turn to “Creating a Deployment Profile” on page 179 for help
with this task.

• Create a deployment bundle - this defines the type of deployment you
want to perform, such as a client, server, or switch. Thus, you can
create a deployment profile, then deploy the same collection as a client
and/or a server, and/or a switch just by creating separate deployment
bundles. Turn to “Editing a Deployment Profile” on page 183 for help
with this task.

• Generate the code - a very simple (one-dialog) task once the profile
and bundle have been created. Turn to “Generating Code” on
page 192 for help with this task.
415

APPENDIX A | Use Case Examples
Expose a CORBA Server as a Web Service

Overview This use case walks you through the procedure for exposing a CORBA Server
as a Web Service using a template-based method. Artix applies defaults for
almost every variable, thus making this virtually a one-click process.

Before you begin Before starting this procedure, you need:

• Artix installed on your local machine

• An IDL and an IOR file for the CORBA server

• A SOAP address to where you want to expose the CORBA server

Procedure 1. Start Artix from either the icon on your desktop or the Start menu, to
display the Welcome dialog, as shown in Figure 139.

Figure 148:Welcome dialog
 416

Expose a CORBA Server as a Web Service
2. Select Create a New Workspace and click OK to display the New
Workspace dialog, as shown in Figure 140.

3. Select the IDLtoSOAP template icon.

4. Enter a name and save location for your workspace, or accept the
defaults provided. Click Browse to navigate to a specific location if you
like.

5. Enter the file name of an IDL file in the field provided, or click Browse
to navigate to a suitable file.

6. Enter the file name of an IOR file in the field provided, or click Browse
to navigate to a suitable file. The IOR file defines the address of the
CORBA server.

7. Click Generate to create a WSDL file based on the IDL and IOR.

8. Select a Port Type from the drop-down list provided. The port types
list is populated as a result of the WSDL generation process.

9. Lastly, specify a SOAP address in the Transport Location field. This is
the address from which you will access your Web Service.

Figure 149:New Workspace dialog
417

APPENDIX A | Use Case Examples
10. Click OK to display the Artix Designer with your Web Service contained
in the Designer Tree, as shown in Figure 150.

Behind the scenes Behind the scenes, Artix has performed the following tasks:

• Created a workspace directory and file in the save location you
specified

• Generated a WSDL file based on your IDL and IOR files and added it to
the workspace file

• Created two deployment profiles configured for C++ deployment of
your client

• Created a deployment bundle configured for C++ deployment of your
client

Your Web Service Client is ready for code generation.

Figure 150:Artix Designer with CORBA Server exposed as Web Service
 418

Expose a CORBA Server as a Web Service
Generating the client code Now that Artix has automatically created the required deployment profile
and bundle information, generating the code for your Web Service is very
simple:

1. Select the collection name (C++ Client) in the Designer Tree, and
select Tools | Generate Code from the menu bar to display the
Generate Code dialog, as shown in Figure 142.

2. Click OK to generate the client code.

You will receive a confirmation when the process is complete (usually
3-4 seconds).

Figure 151:Generate Code dialog
419

APPENDIX A | Use Case Examples
 420

APPENDIX B

Command Line Use
Case Examples
Two use cases have been provided to walk you through using
the Artix command line tools.

In this appendix This appendix discusses the following topics:

Create a C++ Web Service Client from a WSDL Contract page 422

Creating a C++ SOAP/HTTP Web Service from IDL page 423
421

APPENDIX B | Command Line Use Case Examples
Create a C++ Web Service Client from a
WSDL Contract

Overview This use case walks you through the procedure for creating a C++ Web
service client from an existing WSDL contract. Artix will generate all of the
code needed to develop you Web service client and deploy it using the
default Artix configuration.

Before you begin Before starting this procedure, you need:

• Artix installed on your local machine

• A supported C++ compiler

• A WSDL contract that describes the target service

• A target SOAP/HTTP service to test your client against

Procedure To create a C++ Web service client from a WSDL contract do the following:

1. From a command line prompt, change to your Artix installation’s bin
directory.

2. Run artix_env.

3. Change to the directory where the WSDL document describing the
target service is located.

4. Run the Artix C++ code generator on you WSDL file and provide the
flag to generate a sample client.

5. Build the generated code.

6. Run the client.

install_dir/artix/2.1/bin

wsdltocpp -client wsdlfile
 422

Creating a C++ SOAP/HTTP Web Service from IDL
Creating a C++ SOAP/HTTP Web Service
from IDL

Overview This use case walks you through the procedure for building a Web service
from a CORBA IDL interface using Artix command line tools. These steps
can be automated using a number of scripting languages and integrated into
your build system. For more detailed information about the command line
tools used and a complete listing of their options, see the Artix Command
Line Tools Reference.

Before you begin Before starting this procedure, you need:

• Artix installed on your local machine

• An IDL file describing the service

• A CORBA client to test your server against

Procedure To create a Web service from an IDL file using Artix do the following:

1. From a command line prompt, change to your Artix installation’s bin
directory.

2. Run artix_env.

3. Change to the directory where the target IDL file is located.

4. To generate a WSDL contract containing the logical details of the
service described by the IDL and a CORBA binding, run the IDL file
through idltowsdl using the command shown below:

This will generate a WSDL contract with a default target namespace
and a default schema namespace determined from the name of the
IDL file name. To set the target namespace use the -w flag and to set
the schema namespace use the -x flag. For more details read “Creating
Artix Contracts from CORBA IDL” on page 338.

install_dir/artix/2.1/bin

idltowsdl idlfile
423

APPENDIX B | Command Line Use Case Examples
5. To add a SOAP binding to the newly generated WSDL contract run the
wsdltosoap tool as shown below:

This will generate a new WSDL contract, wsdlfile-soap.wsdl, that
contains the original contract plus a default doc/literal SOAP binding
for the logical interface. You can change the style of the SOAP binding
using the -style flag and you can change the encoding of the SOAP
binding using the -use flag. For more details see “Adding a Default
SOAP Binding” on page 230.

6. To add an HTTP port to the contract with the SOAP binding, open it in
your favorite text or XML editor.

7. After the SOAP binding in the contract, add a <service> element and
give it a unique name.

8. Add a <port> element to the new <service> element and give the
<port> element a unique name.

9. Add a <soap:address> element to the <port> element and enter the
URL address where your Web service will be deployed in the location
attribute.

Example 109 shows a completed <service> element for the new Web
service. You can also add a number of optional HTTP property
elements to the port specification to define the behavior of the HTTP
port. For more details see “Configuring HTTP Transport Attributes” on
page 303.

10. To generate the C++ stub and skeleton code for the Web service, run
the new contract through wsdltocpp as shown below.

wsdltosoap wsdlfile

Example 109:Port

<service name="newHTTPservice">
 <port name="newHTTPport">
 <soap:address location="http:\\localhost:9000" />
 </port>
</service>

wsdltocpp wsdlfile-soap.wsdl
 424

Creating a C++ SOAP/HTTP Web Service from IDL
wsdltoccp has a number of flags that allow you to specify the C++
namespaces of used in the generated code among other options. For a
detailed discussion of all of the options offered by wsdltocpp see
Developing Artix Applications in C++.

11. Develop your application logic for the service and its clients in your
favorite C++ development environment.

12. Build your application using your favorite C++ complier.

13. Run the applications.

Most Artix applications will run using the default configuration supplied
with Artix. For information on modifying your Artix configuration see
Deploying and Managing Artix Solutions.
425

APPENDIX B | Command Line Use Case Examples
 426

APPENDIX C

SOAP Binding
Extensions
SOAP is an XML-based message specification by the W3C and
is widely accepted as the de facto format for communicating
over the Web.

Overview This appendix describes each of the configuration attributes that can be set
up as part of the WSDL extensions for configuring the SOAP message format
plug-in for use with Artix. It discusses the following topics:

soap:binding element page 428

soap:operation element page 430

soap:body element page 431

soap:header element page 435

soap:fault element page 437

soap:address element page 439
427

CHAPTER C | SOAP Binding Extensions
soap:binding element

Overview The soap:binding element in a WSDL contract is defined within the
<binding> component, as follows:

Only one soap:binding element is defined in a WSDL contract. It is used to
signify that SOAP is the message format being used for the binding.

Attributes Table 12 describes the attributes defined within the soap:binding element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">

Table 12: Attributes for soap:binding

Configuration Attribute Explanation

style The value of the style attribute within the soap:binding element acts
as the default for the style attribute within each soap:operation
element. It indicates whether request/response operations within this
binding are RPC-based (that is, messages contain parameters and return
values) or document-based (that is, messages contain one or more
documents).

Valid values are rpc and document. The specified value determines how
the SOAP Body within a SOAP message is structured.
 428

soap:binding element
If rpc is specified, each message part within the SOAP Body is a
parameter or return value and will appear inside a wrapper element
within the SOAP Body. The name of the wrapper element must match
the operation name. The namespace of the wrapper element is based on
the value of the soap:body namespace attribute. The message parts
within the wrapper element correspond to operation parameters and
must appear in the same order as the parameters in the operation. Each
part name must match the parameter name to which it corresponds.

For example, the SOAP Body of a SOAP request message is as follows if
the style is RPC-based:

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

If document is specified, message parts within the SOAP Body appear
directly under the SOAP Body element as body entries and do not appear
inside a wrapper element that corresponds to an operation. For example,
the SOAP Body of a SOAP request message is as follows if the style is
document-based:

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>

transport This defaults to the URL that corresponds to the HTTP binding in the
W3C SOAP specification (http://schemas.xmlsoap.org/soap/http). If you
want to use another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

Table 12: Attributes for soap:binding

Configuration Attribute Explanation
429

CHAPTER C | SOAP Binding Extensions
soap:operation element

Overview A soap:operation element in a WSDL contract is defined within an
<operation> component, which is defined in turn within the <binding>
component, as follows:

A soap:operation element is used to encompass information for an
operation as a whole, in terms of input criteria, output criteria, and fault
information.

Attributes Table 13 describes the attributes defined within a soap:operation element.

<binding name="…" type="…" >
 <soap:binding style="…" transport="…">
 <operation name="…" >
 <soap:operation style=”…” soapAction=”…”>

Table 13: Attributes for soap:operation

Configuration Attribute Explanation

style This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based
(that is, messages contain one or more documents).

Valid values are rpc and document. See “soap:binding element” on
page 428 for more details of the style attribute.

The default value for soap:operation style is based on the value
specified for the soap:binding style attribute.

soapAction This specifies the value of the SOAPAction HTTP header field for the
relevant operation. The value must take the form of the absolute URI
that is to be used to specify the intent of the SOAP message.

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.
 430

soap:body element
soap:body element

Overview A <soap:body> element in a binding is a child of the <input>, <output>, and
<fault> elements of the WSDL <operation> element, as follows:

A <soap:body> element is used to provide information on how message
parts are to be appear inside the body of a SOAP message. As explained in
“soap:operation element” on page 430, the structure of the SOAP Body
within a SOAP message is dependent on the setting of the soap:operation
style attribute.

Attributes Table 14 describes the attributes defined within the soap:body element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </input>
 <output>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </output>
 <fault>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </fault>
 </operation>
431

CHAPTER C | SOAP Binding Extensions
Table 14: Attributes for soap:body

Configuration Attribute Explanation

use This attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema
definition.

An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL contract via
an encodingStyle attribute. In this case, types are serialized based on
the set of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the
WSDL contract itself, within a <schema> element within the <types>
component of the contract.

Valid values for soap:body use are encoded and literal.
 432

soap:body element
If encoded is specified, the type attribute that is specified for each
message part (within the <message> component of the WSDL contract) is
used to reference an abstract type defined in some remote encoding
schema. In this case, a concrete SOAP message is produced by applying
encoding rules to the abstract types. The encoding rules are based on
the encoding style identified in the soap:body encodingStyle attribute.
The encoding takes as input the name and type attribute for each
message part (defined in the <message> component of the WSDL
contract). If the encoding style allows variation in the message format for
a given set of abstract types, the receiver of the message must ensure
they can understand all the format variations.

If literal is specified, either the element or type attribute that is
specified for each message part (within the <message> component of the
WSDL contract) is used to reference a concrete schema definition
(defined within the <types> component of the WSDL contract). If the
element attribute is used to reference a concrete schema definition, the
referenced element in the SOAP message appears directly under the
SOAP Body element (if the operation style is document-based) or under
a part accessor element that has the same name as the message part (if
the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body (if the operation
style is documented-based) or of the part accessor element (if the
operation style is document-based).

The use attribute is mandatory.

encodingStyle This attribute is used when the soap:body use attribute is set to
encoded. It specifies a list of URIs (each separated by a space) that
represent encoding styles that are to be used within the SOAP message.
The URIs should be listed in order, from the most restrictive encoding to
the least restrictive.

This attribute can also be used when the soap:body use attribute is set
to literal, to indicate that a particular encoding was used to derive the
concrete format, but that only the specified variation is supported. In this
case, the sender of the SOAP message must conform exactly to the
specified schema.

Table 14: Attributes for soap:body

Configuration Attribute Explanation
433

CHAPTER C | SOAP Binding Extensions
namespace If the soap:operation style attribute is set to rpc, each message part
within the SOAP Body of a SOAP message is a parameter or return value
and will appear inside a wrapper element within the SOAP Body. The
name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the
soap:body namespace attribute.

parts This attribute is a space separated list of parts from the parent <input>,
<output>, or <fault> element. When parts is set, only the specified
parts of the message are included in the SOAP body. The unlisted parts
are not transmitted unless they are placed into the SOAP header.

Table 14: Attributes for soap:body

Configuration Attribute Explanation
 434

soap:header element
soap:header element

Overview A <soap:header> element in a binding is an optional child of the <input>,
<output>, and <fault> elements of the WSDL <operation> element, as
follows:

A <soap:header> element defines the information that is placed in a SOAP
header element. You can define any number of <soap:header> elements for
an operation. As explained in “soap:operation element” on page 430, the
structure of the SOAP header within a SOAP message is dependent on the
setting of the soap:operation style attribute.

Attributes Table 15 describes the attributes defined within the soap:body element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </input>
 <output>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </output>
 <fault>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </fault>
 </operation>
435

CHAPTER C | SOAP Binding Extensions
Table 15: Attributes for soap:header

Configuration Attribute Explanation

message This attribute specifies the qualified name of the message from which
the contents of the SOAP header is taken.

part This attribute specifies the name of the message part that is placed into
the SOAP header.

use This attribute is used in the same way as the use attribute within the
soap:body element. See “use” on page 432 for more details.

encodingStyle This attribute is used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle” on page 433 for
more details.

namespace If the soap:operation style attribute is set to rpc, each message part
within the SOAP header of a SOAP message is a parameter or return
value and will appear inside a wrapper element within the SOAP header.
The name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the
soap:header namespace attribute.
 436

soap:fault element
soap:fault element

Overview A soap:fault element in a WSDL contract is defined within the <fault>
component within an <operation> component, as follows:

Only one soap:fault element is defined for a particular operation. The
operation must be a request-response or solicit-response type of operation,
with both <input> and <output> elements. The soap:fault element is used
to transmit error and status information within a SOAP response message.

Attributes Table 16 describes the attributes defined within the soap:fault element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use="…" encodingStyle="…">
 </input>
 <output>
 <soap:body use="…" encodingStyle="…">
 </output>
 <fault>
 <soap:fault name=”…” use=”…” encodingStyle=”…”
 </fault>
 </operation>
</binding>

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap:operation style element in the WSDL is set to
document, because faults do not contain parameters.

Table 16: soap:fault attributes

Configuration Attribute Explanation

name This specifies the name of the fault. This relates back to the name
attribute for the <fault> element specified for the corresponding
operation within the <portType> component of the WSDL contract.
437

CHAPTER C | SOAP Binding Extensions
use This attribute is used in the same way as the use attribute within the
soap:body element. See “use” on page 432 for more details.

encodingStyle This attribute is used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle” on page 433 for
more details.

Table 16: soap:fault attributes

Configuration Attribute Explanation
 438

soap:address element
soap:address element

Overview The soap:address element in a WSDL contract is defined within the <port>
component within the <service> component, as follows:

Only one soap:address element is defined in a WSDL contract. It is only
specified when you want to use SOAP over HTTP. If you want to use SOAP
over a different transport (for example, IIOP), the element name in this case
is iiop:address. Similarly, if you want to use a different payload format
over HTTP, the http-conf:client URL attribute is used instead.

<service name="…">
 <port binding="…" name="…">
 <soap:address location=”…”>
 </port>
</service>

Note: When you are using SOAP over HTTP, the http-conf:client and
http-conf:server elements can still be validly specified as peer elements
of the soap:address element. See “Creating an HTTP Service” on
page 300 for more details of http-conf:client and http-conf:server.
439

CHAPTER C | SOAP Binding Extensions
Attributes Table 17 describes the location attribute defined within the soap:address
element.

Table 17: Attribute for soap:address

Configuration Attribute Explanation

location This specifies the URL of the server to which the client request is being
sent.

Valid values are of the form:

http://myserver/mypath/
https://myserver/mypath
http://myserver:9001/mypath
http://myserver:9001-9010/mypath

The soap:address element is mandatory if you want to use SOAP over
HTTP. It does not need to be set if you want to use SOAP over any other
transport.
 440

APPENDIX D

CORBA Type
Mapping
The CORBA plug-in uses a detailed type map to ensure that
data is transmitted without ambiguity.

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types. For primitive types, the mapping
is straightforward. However, complex types such as structures, arrays, and
exceptions require more detailed descriptions.

Unsupported types The following CORBA types are not supported:

• value types

• boxed values

• local interfaces

• abstract interfaces

• forward-declared interfaces

In this appendix This appendix discusses the following topics:

Primitive Type Mapping page 443

Complex Type Mapping page 446
441

CHAPTER D | CORBA Type Mapping
Recursive Type Mapping page 463

Mapping XMLSchema Features that are not Native to IDL page 465

Artix References page 478
 442

Primitive Type Mapping
Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 18 lists the mappings for the supported IDL primitive types.

Table 18: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type

Any xsd:anyType corba:any IT_Bus::AnyHolder com.iona.webservices
.reflect.types.AnyTy
pe

boolean xsd:boolean corba:boolean IT_Bus::Boolean boolean

char xsd:byte corba:char IT_Bus::Char byte

wchar xsd:string corba:wchar java.lang.String

double xsd:double corba:double IT_Bus::Double double

float xsd:float corba:float IT_Bus::Float float

octet xsd:unsignedByte corba:octet IT_Bus::Octet short

long xsd:int corba:long IT_Bus::Long int

long long xsd:long corba:longlong IT_Bus::LongLong long

short xsd:short corba:short IT_Bus::Short short

string xsd:string corba:string IT_Bus::String java.lang.String

wstring xsd:string corba:wstring java.lang.String

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort int

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong long

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong java.math.BigInteger

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime java.util.Calendar
443

CHAPTER D | CORBA Type Mapping
Unsupported types Artix does not support the CORBA long double type.

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time
zone offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D..

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
score, that is described as an xsd:int as shown in Example 110.

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 444

Example 110:WSDL Operation Definition

<message name="runsScored">
 <part name="score" />
</message>
<portType ...>
 <operation name="getRuns">
 <input message="tns:runsScored" name="runsScored" />
 </operation>
</portType>
 444

Primitive Type Mapping
 It is described in the CORBA binding as shown in Example 111.

The IDL is shown in Example 112.

Example 111:Example CORBA Binding

<binding ...>
 <operation name="getRuns">
 <corba:operation name="getRuns">
 <corba:param name="score" mode="in" idltype="corba:long"/>
 </corba:operation>
 <input/>
 <output/>
 </operation>
</binding>

Example 112:getRuns IDL

// IDL
void getRuns(in score);
445

CHAPTER D | CORBA Type Mapping
Complex Type Mapping

Overview Because complex types (such as structures, arrays, and exceptions) require
a more involved mapping to resolve type ambiguity, the full mapping for a
complex type is described in a <corba:typeMapping> element at the bottom
of an Artix contract. This element contains a type map describing the
metadata required to fully describe a complex type as a CORBA data type.
This metadata may include the members of a structure, the bounds of an
array, or the legal values of an enumeration.

The <corba:typeMapping> element requires a targetNamespace attribute
that specifies the namespace for the elements defined by the type map. The
default URI is http://schemas.iona.com/bindings/corba/typemap. By
default, the types defined in the type map are referred to using the corbatm:
prefix.

Mapping chart Table 19 shows the mappings from complex IDL types to XMLSchema, Artix
CORBA type, and Artix C++ types.

Table 19: Complex Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding Type Artix C++ Type

struct See Example 114 corba:struct IT_Bus::SequenceComplexType

enum See Example 115 corba:enum IT_Bus::AnySimpleType

fixed xsd:decimal corba:fixed IT_Bus::Decimal

union See Example 120 corba:union IT_Bus::ChoiceComplexType

typedef See Example 123

array See Example 125 corba:array IT_Bus::ArrayT<>

sequence See Example 131 corba:sequence IT_Bus::ArrayT<>

exception See Example 134 corba:exception IT_Bus::UserFaultException
 446

Complex Type Mapping
Structures

Mapping Structures are mapped to <corba:struct> elements. A <corba:struct>
element requires three attributes:

The elements of the structure are described by a series of <corba:member>
elements. The elements must be declared in the same order used in the IDL
representation of the CORBA type. A <corba:member> requires two
attributes:

Example For example, you may have a structure, personalInfo, similar to the one in
Example 113.

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.

Example 113:personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

447

CHAPTER D | CORBA Type Mapping
It can be represented in the CORBA type map as shown in Example 114:

The idltype corbatm:hairColorType refers to a complex type that is defined
earlier in the CORBA type map.

Example 114:CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string" />
 <corba:member name="age" idltype="corba:long" />
 <corba:member name="hairColor" idltype="corbatm:hairColorType" />
 </corba:struct>
</corba:typeMapping>
 448

Complex Type Mapping
Enumerations

Mapping Enumerations are mapped to <corba:enum> elements. A <corba:enum>
element requires three attributes:

The values for the enumeration are described by a series of
<corba:enumerator> elements. The values must be listed in the same order
used in the IDL that defines the CORBA enumeration. A
<corba:enumerator> element takes one attribute, value.

Example For example, the enumeration defined in Example 113 on page 447,
hairColorType, can be represented in the CORBA type map as shown in
Example 115:

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 115:CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red" />
 <corba:enumerator value="brunette" />
 <corba:enumerator value="blonde" />
 </corba:enum>
</corba:typeMapping>
449

CHAPTER D | CORBA Type Mapping
Fixed

Mapping Fixed point data types are a special case in the Artix contract mapping. A
CORBA fixed type is represented in the logical portion of the contract as the
XML Schema primitive type xsd:decimal. However, because a CORBA fixed
type requires additional information to be fully mapped to a physical CORBA
data type, it must also be described in the CORBA type map section of an
Artix contract.

CORBA fixed data types are described using a <corba:fixed> element. A
<corba:fixed> element requires five attributes:

Example For example, the fixed type defined in Example 116, myFixed, would be

described by a type entry in the logical type description of the contract, as
shown in Example 117.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

scale The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

Example 116:myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 117:Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>
 450

Complex Type Mapping
In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 118. Notice that the description in the CORBA
type map includes the information needed to fully represent the
characteristics of this particular fixed data type.

Example 118:CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2" />
</corba:typeMapping>
451

CHAPTER D | CORBA Type Mapping
Unions

Overview Unions are particularly difficult to describe using the WSDL framework of an
Artix contract. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an <xsd:choice> and list the members
in the specified order. The OMG’s proposed method is to describe the union
as an <xsd:sequence> containing one element for the discriminator and an
<xsd:choice> to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

Artix Mapping Artix’s IDL compiler generates a contract that describes the logical union
using both methods. The description using <xsd:sequence> is named by
prepending _omg_ to the types name. The description using <xsd:chioce> is
used as the representation of the union throughout the contract.

For example consider the union, myUnion, shown in Example 119:

Example 119:myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};
 452

Complex Type Mapping
This union is described in the logical portion of the contact with entries
similar to those shown in Example 120:

CORBA type mapping In the CORBA type map portion of the contract, the relationship between
the union’s discriminator and its members must be resolved. This is
accomplished using a <corba:union> element. A <corba:union> element
has four mandatory attributes.

The members of the union are described using a series of nested
<corba:unionbranch> elements. A <corba:unionbranch> element has two
required attributes and one optional attribute.

Example 120:myUnion Logical Description

<xsd:complexType name="myUnion">
 <xsd:choice>
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
</xsd:complexType>
<xsd:complexType name="_omg_myUnion4">
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1" name="discriminator" type="xsd:short"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.
453

CHAPTER D | CORBA Type Mapping
Each <corba:unionbranch> except for one describing the union’s default
member will have at least one nested <corba:case> element. The
<corba:case> element’s only attribute, label, specifies the value used to
select the union member described by the <corba:unionbranch>.

For example myUnion, Example 119 on page 452, would be described with
a CORBA type map entry similar to that shown in Example 121.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 121:myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short"

repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0" />
 </corba:unionbranch>
 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1" />
 <corba:case label="2" />
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
 </corba:union>
</corba:typeMapping>
 454

Complex Type Mapping
Type Renaming

Mapping Renaming a type using a typedef statement is handled using a
<corba:alias> element in the CORBA type map. The Artix IDL compiler
also adds a logical description for the renamed type in the <types> section
of the contract, using an <xsd:simpleType>.

Example For example, the definition of myLong in Example 122, can be described as

shown in Example 123:

Example 122:myLong IDL

//IDL
typedef long myLong;

Example 123:myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0"

basetype="corba:long"/>
 </corba:typeMapping>
</definitions>
455

CHAPTER D | CORBA Type Mapping
Arrays

Logical mapping Arrays are described in the logical portion of an Artix contract, using an
<xsd:sequence> with its minOccurs and maxOccurs attributes set to the
value of the array’s size. For example, consider an array, myArray, as
defined in Example 124.

Its logical description will be similar to that shown in Example 125:

CORBA type mapping In the CORBA type map, arrays are described using a <corba:array>
element. A <corba:array> has five required attributes.

For example, the array myArray will have a CORBA type map description
similar to the one shown in Example 126.

Example 124:myArray IDL

//IDL
typedef long myArray[10];

Example 125:myArray logical description

<xsd:complexType name="myArray">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10" />
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array’s element. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.
 456

Complex Type Mapping
Example 126:myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>
457

CHAPTER D | CORBA Type Mapping
Multidimensional Arrays

Logical mapping Multidimensional arrays are handled by creating multiple arrays and
combining them to form the multidimensional array. For example, an array
defined as shown in Example 127

generates the logical description shown in Example 128.

CORBA type mapping The corresponding entry in the CORBA type map is:

Example 127:Multidimensional Array

\\ IDL
typedef long array2d[10][10];

Example 128:Logical Description of a Multidimensional Array

<xsd:complexType name="_1_array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd1:_1_array2d" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

Example 129:CORBA Type Map for a Multidimensional Array

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:anonarray name="_2_array2d" type="xsd1:_2_array2d" elemtype="corba:long" bound="10"/>
 <corba:array name="array2d" repositoryID="IDL:array2d:1.0" type="xsd1:array2d"

elemtype="corbatm:_2_array2d" bound="10"/>
</corba:typeMapping>
 458

Complex Type Mapping
Sequences

Logical mapping Because CORBA sequences are an extension of arrays, sequences are
described in Artix contracts similarly. Like arrays, sequences are described
in the logical type section of the contract using <xsd:sequence> elements.
Unlike arrays, the minOccurs and maxOccurs attributes do not have the
same value. minOccurs is set to 0 and maxOccurs is set to the upper limit of
the sequence. If the sequence is unbounded, maxOccurs is set to unbounded.

For example, the two sequences defined in Example 130, longSeq and
charSeq:

are described in the logical section of the contract with entries similar to
those shown in Example 131.

CORBA type mapping In the CORBA type map, sequences are described using a
<corba:sequence> element. A <corba:sequence> has five required
attributes.

Example 130:IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 131:Logical Description of Sequences

<xsd:complexType name="longSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="charSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:byte" minOccurs="0" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.
459

CHAPTER D | CORBA Type Mapping
For example, the sequences described in Example 131 has a CORBA type
map description similar to that shown in Example 132:

type The logical type the structure is mapping.

elemtype The IDL type of the sequence’s elements. This type can
be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

Example 132:CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>
 460

Complex Type Mapping
Exceptions

Mapping Because exceptions typically return more than one piece of information, they
require both an abstract type description and a CORBA type map entry. In
the abstract type description, exceptions are described much like structures.
In the CORBA type map, exceptions are described using <corba:exception>
elements. A <corba:exception> element has three required attributes:

The pieces of data returned with the exception are described by a series of
<corba:member> elements. The elements must be declared in the same
order as in the IDL representation of the exception. A <corba:member> has
two required attributes:

Example For example, the exception defined in Example 133, idNotFound,

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
within the type map.

Example 133:idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
461

CHAPTER D | CORBA Type Mapping
would be described in the logical type section of the contract, with an entry
similar to that shown in Example 134:

In the CORBA type map portion of the contract, idNotFound is described by
an entry similar to that shown in Example 135:

Example 134:idNotFound logical structure

<xsd:complexType name="idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
</xsd:complexType>

Example 135:CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short" />
 </corba:exception>
</corba:typeMapping>
 462

Recursive Type Mapping
Recursive Type Mapping

Overview Both CORBA IDL and XMLSchema allow you define recursive data types.
Because both type definition schemes support recursion, Artix directly maps
recursive types between IDL and XMLSchema. The CORBA typemap
generated by Artix to support the CORBA binding is straightforward and
directly reflects the recursive nature of the data types.

Defining recursive types in
XMLSchema

Recursive data types are defined in XMLSchema as complex types using the
<complexType> element. XMLSchema supports two means of defining a
recursive type. The first is to have an element of a complex type be of a type
that includes an element of the type being defined. Example 136 shows a
recursive complex type XMLSchema type, allAboutMe, defined using a
named type.

XMLSchema also supports the definition of recursive types using anonymous
types. However, Artix does not support this style of defining recursive types.

CORBA typemap As shown in Example 137, Artix maps recursive types into the CORBA
typemap section of the Artix contract as it would non-recursive types, except
that it maps the recursive element, which is a sequence in this case, to an

Example 136:Recursive XMLSchema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int" />
 <element name="mated" type="xsd:boolean" />
 <element name="conversation" type="tns:moreMe" />
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded" />
 </sequence>
</complexType>
463

CHAPTER D | CORBA Type Mapping
anonymous type using the <corba:anonsequence> element. The
<corba:anonsequence> specifies that when IDL is generated from this
binding the associated sequence will not generate a new type for itself.

Generated IDL While the XML in the CORBA typemap does not explicitly retain the
recursive nature of recursive XMLSchema types, the IDL generated from the
typemap restores the recursion in the IDL type. The IDL generated from the
typemap in Example 137 on page 464 defines allAboutMe using recursion.
Example 138 shows the generated IDL.

Example 137:Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:me" />
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="tns:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>

Example 138:IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};
 464

Mapping XMLSchema Features that are not Native to IDL
Mapping XMLSchema Features that are not
Native to IDL

Overview There are a number of data types that you can describe in your Artix
contract using XMLSchema that are not native to IDL. Artix can map these
data types into legal IDL so that your CORBA systems can interoperate with
applications that use these data type descriptions in their contracts.

These features include:

• Binary Types

• Attributes

• Nested Choices

• Inheritance

• Nillable
465

CHAPTER D | CORBA Type Mapping
Binary Types

Overview There are three binary types defined in XMLSchema that have direct
correlation to IDL data-types. These types are:

• xsd:base64Binary

• xsd:hexBinary

• soapenc:base64

These types are all mapped to octet sequences in CORBA.

Example For example, the schema type, joeBinary, described in Example 139
results in the CORBA typemap description shown in Example 140.

The resulting IDL for joeBinary is shown in Example 141.

The mappings for xsd:base64Binary and soapenc:base64 would be similar
except that the type attribute in the CORBA typemap would specify the
appropriate type.

Example 139:joeBinary schema description

<xsd:element name="joeBinary type="xsd:hexBinary" />

Example 140:joeBinary CORBA typemap

<corba:sequence name="joeBinary" bound="0"
 elemtype="corba:octet" repositoryID="IDL:joeBinary:1.0"
 type="xsd:hexBinary" />

Example 141:joeBinary IDL

\\IDL
typedef sequence<octet> joeBinary;
 466

Mapping XMLSchema Features that are not Native to IDL
Attributes

Mapping Required XMLSchema attributes are treated as normal elements in a
CORBA structure.

Example For example, the complex type, madAttr, described in Example 142
contains two attributes, material and size.

madAttr would generate the CORBA typemap shown in Example 143.
Notice that size and material are simply incorporated into the madAttr
structure in the CORBA typemap.

Note: Attributes are not supported for complex types defined with
<choice>.

Example 142:madAttr XMLSchema

<complexType name="madAttr">
 <sequence>
 <element name="style" type="xsd:string" />
 <element name="gender" type="xsd:byte" />
 </sequence>
 <attribute name="size" type="xsd:int" />
 <attribute name="material" />
 <simpleType>
 <restriction base="xsg:string">
 <maxLength value="3" />
 </restriction>
 </simpleType>
 </attribute>
<complexType>

Example 143:madAttr CORBA typemap

<corba:annonstring bound="3" name="materialType" type="tns:material" />
<corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="typens:madAttr">
 <corba:member name="style" idltype="corba:string"/>
 <corba:member name="gender" idltype="corba:char"/>
 <corba:member name="size" idltype="corba:long"/>
 <corba:member name="material" idltype="ns1:materialType"/>
</corba:struct>
467

CHAPTER D | CORBA Type Mapping
Similarly, in the IDL generated using a contract containing madAttr, the
attributes are made elements of the structure and are placed in the order in
which they are listed in the contract. The resulting IDL structure is shown in
Example 144.

Example 144:madAttr IDL

\\IDL
struct madAttr
{
 string style;
 char gender;
 long size;
 string<3> material;
}

 468

Mapping XMLSchema Features that are not Native to IDL
Nested Choices

Mapping When mapping complex types containing nested xsd:choice elements into
CORBA, Artix will break the nested xsd:choice elements into separate
unions in CORBA. The resulting union will have the name of the original
complex type with ChoiceType appended to it. So, if the original complex
type was named joe, the union representing the nested choice would be
named joeChoiceType.

The nested choice in the original complex type will be replaced by an
element of the new union created to represent the nested choice. This
element will have the name of the new union with _f appended. So if the
original structure was named carla, the replacement element will be named
carlaChoiceType_f.

The original type description will not be changed, the break out will only
appear in the CORBA typemap and in the resulting IDL.

Example For example, the complex type details, shown in Example 145, contains a
nested choice.

The resulting CORBA typemap, shown in Example 146, contains a new
union, detailsChoiceType, to describe the nested choice. Note that the
type attribute for both details and detailsChoiceType has the name of the

Example 145:details XMLSchema

<complexType name="Details">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="address" type="xsd:string"/>
 <choice>
 <element name="employer" type="xsd:string"/>
 <element name="unemploymentNumber" type="xsd:int"/>
 </choice>
 </sequence>
</complexType>
469

CHAPTER D | CORBA Type Mapping
original complex type defined in the schema. The nested choice is
represented in the original structure as a member of type
detailsChoiceType.

The resulting IDL is shown in Example 147.

Example 146:details CORBA typemap

<corba:struct name="details" repositoryID="IDL:details:1.0" type="xsd1:details">
 <corba:member idltype="corba:string" name="name"/>
 <corba:member idltype="corba:string" name="address"/>
 <corba:member idltype="ns1:detailsChoiceType" name="detailsChoiceType_f"/>
</corba:struct>
<corba:union discriminator="corba:long" name="detailsChoiceType"
 repositoryID="IDL:detailsChoiceType:1.0" type="xsd1:details">
 <corba:unionbranch idltype="corba:string" name="employer">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch idltype="corba:long" name="unemploymentNumber">
 <corba:case label="1"/>
 </corba:unionbranch>
</corba:union>

Example 147:details IDL

\\IDL
union detailsChoiceType switch(long)
{
 case 0:
 string employer;
 case 1:
 long unemploymentNumber;
};
struct details
{
 string name;
 string address;
 detailsChoiceType DetailsChoiceType_f;
};
 470

Mapping XMLSchema Features that are not Native to IDL
Inheritance

Mapping XMLSchema describes inheritance using the <complexContent> tag and the
<extension> tag. For example the complex type seaKayak, described in
Example 148, extends the complex type kayak by including two new fields.

When complex types using <complexContent> are mapped into CORBA
types, Artix creates generates an intermediate type to represent the complex
data defined within the <complexContent> element. The intermediate type is
named by appending an identifier describing the complex content to the
new type’s name. Table 20 shows the complex content identifiers used
appended to the intermediate type name.

Example 148:seaKayak XMLSchema

<complexType name="kayak">
 <sequence>
 <element name="length" type="xsd:int" />
 <element name="width" type="xsd:int" />
 <element name="material" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="seaKayak">
 <complexContent>
 <extension base="kayak">
 <sequence>
 <element name="chines" type="xsd:string" />
 <element name="cockpitStyle" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

Table 20: Complex Content Identifiers in CORBA Typemap

XMLSchema Type Typemap Identifier

<sequence> SequenceStruct

<all> AllStruct

<choice> ChoiceType
471

CHAPTER D | CORBA Type Mapping
The CORBA type generated to represent the XMLSchema type generated to
represent the type derived by extension will have an element of the type that
it extends, named baseType_f and an element of the intermediate type,
named intermediateType_f. Any attributes that are defined in the extended
type are then mapped into the new CORBA type following the rules for
mapping XMLSchema attributes into CORBA types.

Example Example 149 shows how Artix maps the complex types defined in
Example 148 on page 471 into a CORBA type map.

The IDL generated by Artix for the types defined in Example 148 on
page 471 is shown in Example 150.

Example 149:seaKayak CORBA type map

<corba:struct name="kayak" repositoryID="IDL:kayak:1.0" type="tns:kayak">
 <corba:element name="length" idltype="corba:long" />
 <corba:element name="width" idltype="corba:long" />
 <corba:element name="material" idltype="corba:string" />
</corba:struct>
<corba:struct name="seaKayak" repositoryID="IDL:seaKayak:1.0" type="tns:seaKayak">
 <corba:element name="kayak_f" idltype="ns1:kayak" />
 <corba:element name="seaKayakSequenceStruct_f" idltype="ns1:seaKayakSequenceStruct" />
</corba:struct>
<corba:struct name="seaKayakSequenceStruct" repositoryID="IDL:seaKayakSequenceStruct:1.0"
 type="tns:seaKayakSequenceStruct">
 <corba:element name="chines" idltype="corba:string" />
 <corba:element name="cockpitStyle" idltype="corba:string" />
</corba:struct>

Example 150:seaKayak IDL

\\ IDL
struct kayak
{
 long length;
 long width;
 string material;
};
struct seaKayakSequenceStruct
{
 string chines;
 string cockpitStyle;
};
 472

Mapping XMLSchema Features that are not Native to IDL
struct seaKayak
{
 kayak kayak_f;
 seaKayakSequenceStruct seqKayakSequenceStruct_f;
};

Example 150:seaKayak IDL
473

CHAPTER D | CORBA Type Mapping
Nillable

Mapping XMLSchema supports an optional attribute, nillable, that specifies that an
element can be nil. Setting an element to nil is different than omitting an
element whose minOccurs attribute is set to 0; the element must be
included as part of the data sent in the message.

Elements that have nillable="true" set in their logical description are
mapped to a CORBA union with a single case, TRUE, that holds the value of
the element if it is not set to nil.

Example For example, imagine a service that maintains a database of information on
people who download software from a web site. The only required piece of
information the visitor needs to supply is their zip code. Optionally, visitors
can supply their name and e-mail address. The data is stored in a data
structure, webData, shown in Example 151.

Example 151:webData XMLSchema

<complexType name="webData">
 <sequence>
 <element name="zipCode" type="xsd:int" />
 <element name="name" type="xsd:string" nillable="true />
 <element name="emailAddress" type="xsd:string"
 nillable="true" />
 </sequence>
</complexType>
 474

Mapping XMLSchema Features that are not Native to IDL
When webData is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and emailAddress. Example 152 shows the CORBA typemap for webData.

The type assigned to the union, string_nil, does not matter as long as the
type assigned maps back to an xsd:string. This is true for all nillable
element types.

Example 153 shows the IDL for webData.

Example 152:webData CORBA Typemap

<corba:typemapping ...>
 <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
 <corba:member idltype="corba:long" name="zipCode"/>
 <corba:member idltype="ns1:string_nil" name="name"/>
 <corba:member idltype="ns1:string_nil" name="emailAddress"/>
 </corba:struct>
 <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
 type="xsd1:emailAddress">
 <corba:unionbranch idltype="corba:string" name="value">
 <corba:case label="TRUE"/>
 </corba:unionbranch>
 </corba:union>
</corba:typeMapping>

Example 153:webData IDL

\\IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
struct webData {
 long zipCode;
 string_nil name;
 string_nil emailAddress;
};
475

CHAPTER D | CORBA Type Mapping
Optional Attributes

Overview Attributes defined as optional in XMLSchema are mapped similar to
nillable elements. Attributes that do not have use="required" set in their
logical description are mapped to a CORBA union with a single case, TRUE,
that holds the value of the element if it is set.

For example, you could define the complex type in Example 151 using
attributes instead of a sequence. The data description for webData defined
with attributes is shown in Example 154.

CORBA type mapping When webData is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and emailAddress. Example 155 shows the CORBA typemap for webData.

Note: By default attributes are optional if use is not set to required.

Example 154:webData XMLSchema Using Attributes

<complexType name="webData">
 <attribute name="zipCode" type="xsd:int" use="required"/>
 <attribute name="name" type="xsd:string"/>
 <attribute name="emailAddress" type="xsd:string"/>
</complexType>

Example 155:webData CORBA Typemap

<corba:typemapping ...>
 <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
 type="xsd1:emailAddress">
 <corba:unionbranch idltype="corba:string" name="value">
 <corba:case label="TRUE"/>
 </corba:unionbranch>
 </corba:union>
 <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
 <corba:member idltype="corba:long" name="zipCode"/>
 <corba:member idltype="ns1:string_nil" name="name"/>
 <corba:member idltype="ns1:string_nil" name="emailAddress"/>
 </corba:struct>
</corba:typeMapping>
 476

Mapping XMLSchema Features that are not Native to IDL
The type assigned to the union, string_nil, does not matter as long as the
type assigned maps back to an xsd:string. This is true for all optional
attributes.

Example 156 shows the IDL for webData.

Example 156:webData IDL

\\IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
struct webData {
 long zipCode;
 string_nil name;
 string_nil emailAddress;
};
477

CHAPTER D | CORBA Type Mapping
Artix References

Overview Artix references provide a means of passing a reference to a service between
two operations. Because Artix services are Web services, their references are
very different than references used in CORBA. Artix does, however, provide
a mechanism for passing Artix references to CORBA applications over the
Artix CORBA transport. This functionality allows CORBA applications to
make calls on Artix services that return references to other Artix services.

For a detailed discussion of Artix references read Developing Artix
Applications in C++.

Specifying references to map to
CORBA

Artix references are mapped into a CORBA in one of two ways. The simplest
way is to just specify your reference types as you would for an Artix service
using SOAP. In this case, the Artix references are mapped into generic
CORBA Objects.

The second method allows you to generate type-specific CORBA references,
but requires some planning in the creation of your XMLSchema type
definitions. When creating a reference type, you can specify the name of the
CORBA binding that describes the interface in the physical section of the
contract using an <xsd:annotation> element. Example 157 shows the
syntax for specifying the binding in the type definition.

When you specify a reference using the annotation, the CORBA binding
generator and the IDL generator will inspect the specified binding and create
a type-specific reference in the IDL generated for the contract that allows
you to make use of the reference.

Example 157:Reference Binding Specification

<xsd:element name="typeName" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>corba:binding=CORBABindingName</xsd:appinfo>
 </xsd:annotation>
</xsd:element>

Note: Before you can generate a type-specific reference you need to
generate the CORBA binding of the referenced interface.
 478

Artix References
CORBA typemap representation Artix references are mapped to <corba:object> elements in the CORBA
typemap section of an Artix contract. <corba:object> elements have four
attributes:

Example Example 158 shows an Artix contract fragment that uses Artix references.

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in
the schema, this attribute will be blank.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the
schema, this attribute will be Object. If the annotation is
used and the binding can be found, this attribute will be
set to the name of the interface that the binding
represents.

repositoryID Specifies the repository ID of the generated IDL type. If
the annotation element is left off the reference declaration
in the schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is
used and the binding can be found, this attribute will be
set to a properly formed repository ID based on the
interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 158:Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
479

CHAPTER D | CORBA Type Mapping
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>

Example 158:Reference Sample
 480

Artix References
The element named account is a reference to the interface defined by the
Account port type and the find_account operation of Bank returns an
element of type account. The annotation element in the definition of

 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>
 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 158:Reference Sample
481

CHAPTER D | CORBA Type Mapping
account specifies the binding, AccountCORBABinding, of the interface to
which the reference refers. Because you typically create the data types
before you create the bindings, you must be sure that the generated binding
name matches the name you specified. This can be controlled using the -b
flag to wsdltocorba.

The first step to generating the Bank interface to use a type-specific
reference to an Account is to generate the CORBA binding for the Account
interface. You would do this by using the command wsdltocorba -corba -i
Account -b AccountCORBABinding wsdlName.wsdl and replace wsdlName
with the name of your contract. Once you have generated the CORBA
binding for the Account interface, you can generate the CORBA binding and
IDL for the Bank interface.

Example 159 shows the generated CORBA typemap resulting from
generating both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file.
The first CORBA object is generated from the first pass of wsdltocorba to
generate the CORBA binding for Account. Because wsdltocorba could not
find the binding specified in the annotation, it generated a generic Object
reference. The second CORBA object, Account, is generated by the second
pass when the binding for Bank was generated. On that pass, wsldtocorba
could inspect the binding for the Account interface and generate a
type-specific object reference.

Example 159:CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>
 482

Artix References
Example 160 shows the IDL generated for the Bank interface.

Example 160:IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();

 float balance();

 void withdraw(in float amount)
 raises(::InsufficientFundsException);

 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);

 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
483

CHAPTER D | CORBA Type Mapping
 484

APPENDIX E

WebSphere MQ
Artix Extensions
Artix provides a number of proprietary WSDL extensions to
configure a WebSphere MQ service.

Overview To enable Artix to interoperate with WebSphere MQ, you must describe the
WebSphere MQ port in the Artix contract defining the behavior of your Artix
instance. Artix uses a number of proprietary WSDL extensions to specify all
of the attributes that can be set on an WebSphere MQ port. The
XMLSchema describing the extensions used for the WebSphere MQ port
definition is included in the Artix installation under the schemas directory.

WebSphere MQ port attributes Table 21 lists the attributes that are use to define the properties of a
WebSphere MQ port. They are described in detail in the sections that follow
the table.

Table 21: WebSphere MQ Port Attributes

Attributes Description

QueueManager Specifies the name of the queue manager.

QueueName Specifies the name of the message queue.
485

CHAPTER E | WebSphere MQ Artix Extensions
ReplyQueueName Specifies the name of the queue where response messages are received. This
setting is ignored by WebSphere MQ servers when the client specifies the
ReplyToQ in the request message’s message descriptor.

ReplyQueueManager Specifies the name of the reply queue manager. This setting is ignored by
WebSphere MQ servers when the client specifies the ReplyToQMgr in the
request message’s message descriptor.

Server_Client Specifies the type of WebSphere MQ installation is running on your
applications host machine.

ModelQueueName Specifies the name of the queue to be used as a model for creating dynamic
queues.

AliasQueueName Specifies the remote queue to which a server will put replies if its queue
manager is not on the same host as the client’s local queue manager.

ConnectionName Specifies the name of the connection by which the adapter connects to the
queue.

ConnectionReusable Specifies if the connection can be used by more than one application.

ConnectionFastPath Specifies if the queue manager will be loaded in process.

UsageStyle Specifies if messages can be queued without expecting a response.

CorrelationStyle Specifies what identifier is used to correlate request and response messages.

AccessMode Specifies the level of access applications have to the queue.

Timeout Specifies the amount of time within which the send and receive processing
must begin before an error is generated.

MessageExpiry Specifies the value of the MQ message descriptor’s Expiry field.

MessagePriority Specifies the value of the MQ message descriptor’s Priority field.

Delivery Specifies the value of the MQ message descriptor’s Persistence field.

Transactional Specifies if transaction operations must be performed on the messages.

ReportOption Specifies the value of the MQ message descriptor’s Report field.

Format Specifies the value of the MQ message descriptor’s Format field.

Table 21: WebSphere MQ Port Attributes

Attributes Description
 486

MessageId Specifies the value for the MQ message descriptor’s MsgId field..

CorrelationId Specifies the value for the MQ message descriptor’s CorrelId field.

ApplicationData Specifies optional information to be associated with the message.

AccountingToken Specifies the value for the MQ message decscriptor’s AccountingToken field.

Convert Specifies in the messages in the queue need to be converted to the system’s
native encoding.

ApplicationIdData Specifies the value for the MQ message descriptor’s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message descriptor’s ApplOriginData field.

UserIdentification Specifies the value for the MQ message descriptor’s UserIdentifier field.

Table 21: WebSphere MQ Port Attributes

Attributes Description
487

CHAPTER E | WebSphere MQ Artix Extensions
QueueManager

Overview QueueManager specifies the name of the WebSphere MQ queue manager
used for request messages. Client applications will use this queue manager
to place requests and server applications will use this queue manager to
listen for request messages. You must provide this information when
configuring a WebSphere MQ port.

Example Example 161 shows a simple WebSphere MQ server port configuration for
servers that listen for requests using a queue manager called leo.

Example 161:MQ Port Definition

<mq:server QueueManager="leo" QueueName="requestQ" />
 488

QueueName
QueueName

Overview QueueName is a required attribute for a WebSphere MQ port. It specifies the
request message queue. Client applications place request messages into this
queue. Server applications take requests from this queue. The queue must
be configured under the specified queue manager before it can be used.

Example Example 162 shows a definition of a simple WebSphere MQ client that
places oneway requests onto a queue called ether.

Example 162:WebSphere MQ QueueName example

<mq:client QueueManager="Qmgr" QueueName="ether" />
489

CHAPTER E | WebSphere MQ Artix Extensions
ReplyQueueName

Overview ReplyQueueName is mapped to the MQ message descriptor’s ReplyToQ field.
It specifies the name of the reply message queue used by the port. When
configuring an MQ client port this attribute is required if the clients expect
replies to their requests. When configuring an MQ server port you can leave
this attribute unset if you are sure that all clients are populating the
ReplyToQ field in the message descriptor of their requests.

Server handling of
ReplyQueueName

When a WebSphere MQ server receives a request, it first looks at the
request’s message descriptor’s ReplyToQ field. If the request’s message
descriptor has ReplyToQ set, the server uses the reply queue specified in the
message descriptor and ignores the ReplyQueueName setting. If the ReplyToQ
field in the message descriptor is not set, the server will use the
ReplyQueueName to determine where to send reply messages.

Example Example 163 shows a WebSphere MQ server port that defaults to placing
reply messages onto the queue outbox.

Example 163:MQ Server with ReplyQueueName Set

<mq:server QueueName="ether" QueueManager="leo"
 ReplyQueueName="outbox" ReplyQueueManager="pager" />
 490

ReplyQueueManager
ReplyQueueManager

Overview ReplyQueueManager is mapped to the MQ message descriptor’s ReplyToQMgr
field. It specifies the name of the WebSphere MQ queue manager that
controls the reply message queue. When configuring an MQ client port this
attribute is required if the clients expect replys to their requests. When
configuring an MQ server port you can leave this attribute unset if you are
sure that all clients are populating the ReplyToQMgr field in the message
descriptor of their requests.

Server handling of
ReplyQueueManager

When a WebSphere MQ server receives a request, it first looks at the
request’s message descriptor’s ReplyToQMgr field. If the request’s message
descriptor has ReplyToQMgr set, the server uses the reply queue specified in
the message descriptor and ignores the ReplyQueueManager setting. If the
ReplyToQMgr field in the message descriptor is not set, the server will use
the ReplyQueueManager to determine where to send reply messages.

Example Example 164 shows a WebSphere MQ client port that is configured to
receive replies from the server defined in Example 163 on page 490.

Example 164:MQ Client with ReplyQueueName Set

<mq:client QueueName="ether" QueueManager="leo"
 ReplyQueueName="outbox" ReplyQueueManager="pager" />
491

CHAPTER E | WebSphere MQ Artix Extensions
Server_Client

Overview Server_Client specifies the type of WebSphere MQ installation on an
application’s host machine. If your application’s host machine has a
WebSphere MQ client installation, you must set this attribute to client. If
the application’s host machine has a WebSphere MQ server installation you
do not need to set this attribute.
 492

ModelQueueName
ModelQueueName

Overview ModelQueueName is only needed if you are using dynamically created queues.
It specifies the name of the queue from which the dynamically created
queues are created.
493

CHAPTER E | WebSphere MQ Artix Extensions
AliasQueueName

Overview When interoperating between WebSphere MQ applications whose queue
managers are on different hosts, Artix requires that you specify the name of
the remote queue to which the server will post reply messages. This ensures
that the server will put the replies on the proper queue. Otherwise, the
server will receive a request message with the ReplyToQ field set to a queue
that is managed by a queue manager on a remote host and will be unable to
send the reply.

You specify this server’s local reply queue name in the WebSphere MQ
client’s AliasQueueName attribute when you define it in an Artix contract.

Effect of AliasQueueName When you specify a value for AliasQueueName in a WebSphere MQ client
port definition, you are altering how Artix populates the request message’s
ReplyToQ field and ReplyToQMgr field. Typically, Artix populates the reply
queue information in the request message’s message descriptor with the
values specified in ReplyQueueManager and ReplyQueueName. Setting
AliasQueueName causes Artix to leave ReplytoQMgr empty, and to set
ReplyToQ to the value of AliasQueueName. When the ReplyToQMgr field of
the message descriptor is left empty, the sending queue manager inspects
the queue named in the ReplyToQ field to determine who its queue manager
is and uses that value for ReplyToQMgr. The server puts the message on the
remote queue that is configured as a proxy for the client’s local reply queue.

Example If you had a system defined similar to that shown in Figure 152, you would
need to use the AliasQueueName attribute setting when configuring your
WebSphere MQ client. In this set up the client is running on a host with a
local queue manager QMgrA. QMgrA has two queues configured. RqA is a
remote queue that is a proxy for RqB and RplyA is a local queue. The server
is running on a different machine whose local queue manager is QMgrB.
 494

AliasQueueName
QMgrB also has two queues. RqB is a local queue and RplyB is a remote
queue that is a proxy for RplyA. The client places its request on RqA and
expects replies to arrive on RplyA.

The Artix WebSphere MQ port definitions for the client and server for this
deployment are shown in Example 165. AliasQueueName is set to RplyB
because that is the remote queue proxying for the reply queue in server’s
local queue manager. ReplyQueueManager and ReplyQueueName are set to
the client’s local queue manager so that it knows where to listen for
responses. In this example, the server’s ReplyQueueManager and
ReplyQueueName do not need to be set because you are assured that the
client is populating the request’s message descriptor with the needed
information for the server to determine where replies are sent.

Figure 152:MQ Remote Queues

Example 165:Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true" />
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true" />
495

CHAPTER E | WebSphere MQ Artix Extensions
ConnectionName

Overview ConnectionName specifies the name of the connection Artix uses to connect
to its queue.

Note: If you set CorrelationStyle to messageID copy and specify a
value for ConnectionName your system will not work as expected.
 496

ConnectionReusable
ConnectionReusable

Overview ConnectionReusable specifies if the connection named in the
ConnectionName field can be used by more than one application. Valid
entries are true and false. Defaults to false.
497

CHAPTER E | WebSphere MQ Artix Extensions
ConnectionFastPath

Overview ConnectionFastPath specifies if you want to load the request queue
manager in process. Valid entries are true and false. Defaults to false.

Example Example 166 shows a WebSphere MQ client port that loads its request
queue manager in process.

Example 166:WebSphere Client Port using ConnectionFastPath

<mq:client QueueName="gate" QueueManager="dhd"
 ReplyQueueName="inbound" ReplyQueueManager="flipside"
 ConnectionFastPath="true" />
 498

UsageStyle
UsageStyle

Overview UsageStyle specifies if a message can be queued without expecting a
response. Valid entries are peer, requester, and responder. The default
value is peer.

Attribute settings The behavior of each setting is described in Table 22.

Example In Example 167, the WebSphere MQ client wants a response from the
server and needs to be able to associate the response with the request that
generated it. Setting the UsageStyle to responder ensures that the server’s
response will properly populate the response message descriptor’s CorrelID
field according to the defined correlation style. In this case, the correlation
style is set to correlationId.

Table 22: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response.

requester Specifies that the message sender expects a
response message.

responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Example 167:MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster" ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId" />
499

CHAPTER E | WebSphere MQ Artix Extensions
CorrelationStyle

Overview CorrelationStyle determines how WebSphere MQ matches both the
message identifier and the correlation identifier to select a particular
message to be retrieved from the queue (this is accomplished by setting the
corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the
MatchOptions field in MQGMO to indicate that those fields should be used as
selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are messageId,
correlationId, and messageId copy.

Attribute settings Table 23 shows the actions of MQGET and MQPUT when receiving a message
using a WSDL specified message ID and a WSDL specified correlation ID.

Example Example 168 shows a WebSphere MQ client application that wants to
correlate messages using the messageID copy setting.

Note: When a value is specified for ConnectionName, you cannot use
messageID copy as the correlation style.

Table 23: MQGET and MQPUT Actions

Artix Port Setting Action for MQGET Action for MQPUT

messageId Set the CorrelId of the message
descriptor to MessageID.

Copy MessageID onto the message
descriptor’s CorrelId.

correlationId Set CorrelId of the message descriptor to
CorrelationID.

Copy CorrelationID onto message
descriptor’s CorrelId.

messageId copy Set MsgId of the message descriptor to
messageID.

Copy MessageID onto message
descriptor’s MsgId.
 500

CorrelationStyle
Example 168:MQ Client using messageID copy

<mq:client QueueManager="grub" QueueName="gnome"
 ReplyQueueManager="lilo" ReplyQueueName="kde"
 CorrelationStyle="messageId copy" />
501

CHAPTER E | WebSphere MQ Artix Extensions
AccessMode

Overview AccessMode controls the action of MQOPEN in the Artix WebSphere MQ
transport. Its values can be peek, send, receive, receive exclusive, and
receive shared. Each setting mapping corresponds to a WebSphere MQ
setting for the MQOPEN. The default is receive.

Attribute settings Table 24 describes the correlation between the Artix attribute settings and
the MQOPEN settings.

Table 24: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue
to put messages into. The queue is opened for
use with subsequent MQPUT calls.

receive (default) Equivalent to MQOO_INPUT_AS_Q_DEF. receive
opens a queue to get messages using a
queue-defined default. The default value depends
on the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive
exclusive opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_OBJECT_IN_USE if the queue is
currently open (by this or another application) for
input of any type.
 502

AccessMode
Example Example 169 shows the settings for a WebSphere MQ server port that is
set-up so that only one application at a time can access the queue.

receive shared Equivalent to MQOO_INPUT_SHARED. receive
shared opens queue to get messages with shared
access. The queue is opened for use with
subsequent MQGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO_INPUT_SHARED.

Table 24: Artix WebSphere MQ Access Modes

Attribute Setting Description

Example 169:WebSphere MQ Server setting AccessMode

<mq:server QueueManager="welk" QueueName="anacani"
 ReplyQueueManager="severinsen" ReplyQueueName="johnny"
 AccessMode="recieve exclusive" />
503

CHAPTER E | WebSphere MQ Artix Extensions
Timeout

Overview Timeout specifies the amount of time, in milliseconds, between a request
and the corresponding reply before an error message is generated. If the
reply to a particular request has not arrived after the specified period, it is
treated as an error.

Example Example 170 shows the settings for a MQ client port where replies are
required in at most 3 minutes.

Example 170:WebSphere MQ Client Port with a 3 Minute Timeout

<mq:client QueueManager="jpl" QueueName="appollo"
 ReplyQueueManager="jpl" ReplyQueueName="mercury"
 Timeout="180000" />
 504

MessageExpiry
MessageExpiry

Overview MessageExpiry is mapped to the MQ message descriptor’s Expiry field. It
specifies message lifetime, expressed in tenths of a second. It is set by the
Artix endpoint that puts the message onto the queue. The message becomes
eligible to be discarded if it has not been removed from the destination
queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the
put is to a remote queue. It may also be decremented by message channel
agents to reflect transmission times, if these are significant.

MessageExpiry can also be set to INFINITE which indicates that the
messages have unlimited lifetime and will never be eligible for deletion. If
MessageExpiry is not specified, it defaults to INFINITE lifetime.

Example Example 171 shows the settings for a WebSphere MQ client port where the
messages sent from applications using this port have a lifetime of 30
minutes.

Example 171:Client Port with a 3 Minute Message Lifetime

<mq:client QueueManager="domino" QueueName="dot"
 ReplyQueueManager="domino" ReplyQueueName="cash"
 MessageExpiry="18000" />
505

CHAPTER E | WebSphere MQ Artix Extensions
MessagePriority

Overview MessagePriority is mapped to the MQ message descriptor’s Priority
fileld. It specifies the message’s priority. Its value must be greater than or
equal to zero; zero is the lowest priority. If not specified, this field defaults to
priority normal, which is 5. The special values for MessagePriority
include highest (9), high (7), medium (5), low (3) and lowest (0).
 506

Delivery
Delivery

Overview Delivery can be persistent or not persistent. persistent means that
the message survives both system failures and restarts of the queue
manager. Internally, this sets the MQMD’s Persistence field to
MQPER_PERSISTENT or MQPER_NOT_PERSISTENT. The default value is not
persistent. To support transactional messaging, you must make the
messages persistent.

Example Example 172 shows the settings for a WebSphere MQ port that sends
persistent oneway messages.

Example 172:Persistent WebSphere MQ Port

<mq:client QueueManager="mointor" QueueName="msgQ"
 Delivery="persistent" />
507

CHAPTER E | WebSphere MQ Artix Extensions
Transactional

Overview Transactional controls how messages participate in transactions and what
role Webshpere MQ plays in the transactions.

Attribute settings The values of this attribute are explained in Table 25.

Example Example 173 shows the settings for a WebSphere MQ client port whose
requests will be part of transactions managed by WebSphere MQ. Note that
the Delivery attribute must be set to persistent when using transactions.

Table 25: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
rollback actions will be taken if errors occur.

internal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a transaction with
WebSphere MQ serving as the resource manager.

Example 173:MQ Client setup to use Transactions

<mq:client QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal" />
 508

ReportOption
ReportOption

Overview ReportOption is mapped to the MQ message descriptor’s Report field. It
enables the application sending the original message to specify which report
messages are required, whether the application message data is to be
included in them, and how the message and correlation identifiers in the
report or reply message are to be set. Artix only allows you to specify one
ReportOption per Artix port. Setting more than one will result in
unpredictable behavior.

Attribute settings The values of this attribute are explained in Table 26.

Table 26: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. You should never specifically
set ReportOption to none; it will create validation
errors in the contract.

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.
509

CHAPTER E | WebSphere MQ Artix Extensions
Example Example 174 shows the settings for a WebSphere MQ client that wants to
be notified if any of its messages expire before they are delivered.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Table 26: ReportOption Attribute Settings

Attribute Setting Description

Example 174:MQ Client Setup to Receive Expiration Reports

<mq:client QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 ReportOption="expiration" />
 510

Format
Format

Overview Format is mapped to the MQ message descriptor’s Format field. It specifies
an optional format name to indicate to the receiver the nature of the data in
the message. The name may contain any character in the queue manager's
character set, but it is recommended that the name be restricted to the
following:

• Uppercase A through Z

• Numeric digits 0 through 9

Special values FormatType can take the special values none, string, event, programmable
command, and unicode. These settings are described in Table 27.

Table 27: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.
511

CHAPTER E | WebSphere MQ Artix Extensions
When you are interoperating with WebSphere MQ applications host on a
mainframe and the data needs to be converted into the systems native data
format, you should set Format to string. Not doing so will result in the
mainframe receiving corrupted data.

Example Example 175 shows a WebSphere MQ client port used for making requests
against a server on a mainframe system. Note that the Convert attribute is
set to true signifying that WebSphere will convert the data into the
mainframes native data mapping.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 27: FormatType Attribute Settings

Attribute Setting Description

Example 175:WebSphere MQ Client Talking to the Mainframe

<mq:client QueueManager="hunter" QueueName="bigGuy"
 ReplyQueueManager="slate" ReplyQueueName="rusty"
 Format="string" Convert="true"/>
 512

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

MessageId
MessageId

Overview MessageId is is mapped to the MQ message descriptor’s MsgId field. It is an
alphanumeric string of up to 20 bytes in length. Depending on the setting of
CorrelationStyle, this string may be used to correlate request and
response messages with each other. A value must be specified in this
attribute if CorrelationStyle is set to none.

Example Example 176 shows the settings for a WebSphere MQ client that wants to
use message IDs to correlate response and request messages.

Example 176:WebSphere MQ Client using MessageID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 CorrelationStyle="messageId" MessageID="foo"/>
513

CHAPTER E | WebSphere MQ Artix Extensions
CorrelationId

Overview CorrelationId is mapped to the MQ message descriptor’s CorrelId field. It
is an alphanumeric string of up to 20 bytes in length. Depending on the
setting of CorrelationStyle, this string will be used to correlate request
and response messages with each other. A value must be specified in this
attribute if CorrelationStyle is set to none.

Example Example 177 shows the settings for a WebSphere MQ client that wants to
use correlation Ids to correlate response and request messages.

Example 177:WebSphere MQ Client using CorrelationID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 CorrelationStyle="correlationId" CorrelationID="foo"/>
 514

ApplicationData
ApplicationData

Overview ApplicationData specifies any application-specific information that needs
to be set in the message header.
515

CHAPTER E | WebSphere MQ Artix Extensions
AccountingToken

Overview AccountingToken is mapped to the MQ message descriptor’s
AccountingToken field. It specifies application-specific information used for
accounting purposes.

Example Example 178 shows the settings for a WebSphere MQ client used for
making requests against a server on a mainframe system that keeps tracks
of what department is using its resources.

Example 178:WebSphere MQ Client Sending Accounting Token

<mq:client QueueManager="hunter" QueueName="bigGuy"
 ReplyQueueManager="slate" ReplyQueueName="rusty"
 Format="string" Convert="true"
 AccountingToken="darkHorse" />
 516

Convert
Convert

Overview Convert specifies if messages are to be converted to the receiving system’s
native data format. Valid values are true and false. Default is false.

Example Example 179 shows a WebSphere MQ client port used for making requests
against a server on a Unix system.

Note: The WebSphere MQ transport will always attempt to convert string
data and always ignore non-string data. This setting is ignored.

Example 179:WebSphere MQ Client using Convert

<mq:client QueueManager="atm5" QueueName="ReqQ"
 ReplyQueueManager="hpux1" ReplyQueueName="RepQ"
 Format="string" Convert="true"/>
517

CHAPTER E | WebSphere MQ Artix Extensions
ApplicationIdData

Overview ApplicationIdData is mapped to the MQ message descriptor’s
ApplIdentityData field. It is application-specific string data that can be
used to provide additional information about the message or the applciation
from which it originated. This attribute is only valid when defining
WebSphere MQ clients using an <mq:client> element.
 518

ApplicationOriginData
ApplicationOriginData

Overview ApplicationOriginData is mapped to the MQ message descriptor’s
ApplOriginData field. It is application-specific string data that can be used
to provide additional information about the origin of the message.

Example Example 180 shows the settings for a WebSphere MQ client that wants to
identify itself to the server.

Example 180:WebSphere MQ Client Sending Origin Data

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 ApplicationOriginData="SSLclient" />
519

CHAPTER E | WebSphere MQ Artix Extensions
UserIdentification

Overview UserIdentification is mapped to the MQ message descriptor’s
UserIdentifier field. It is a string that represents the User ID of the
application from which the message originated. This attribute is only valid
when defining Websphere MQ clients using an <mq:client> element.

Example Example 181 shows the settings for a WebSphere MQ client that needs to
specify the User that is making the request.

Example 181:WebSphere MQ Client Sending UserID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 UserIdentification="tux" />
 520

APPENDIX F

Tibco Transport
Extensions
Artix provides a number of attributes used in defining a TIB/RV
service.

Port attributes Table 28 lists the Artix contract elements used to describe a TIB/RV port.

Table 28: TIB/RV Transport Properties

Attribute Explanation

tibrv:port Indicates that the port uses the TIB/RV transport.

tibrv:port@serverSubject A required element that specifies the subject to which
the server listens. This parameter must be the same
between client and server.

tibrv:port@clientSubject Specifies the subject that the client listens to. The
default is to use the transport inbox name. This
parameter only affects clients.

tibrv:port@bindingType Specifies the message binding type.

tibrv:port@callbackLevel Specifies the server-side callback level when TIB/RV
system advisory messages are received.

tibrv:port@responseDispatchTimeout Specifies the client-side response receive dispatch
timeout.
521

CHAPTER F | Tibco Transport Extensions
tibrv:port@transportService Specifies the UDP service name or port for
TibrvNetTransport.

tibrv:port@transportNetwork Specifies the binding network addresses for
TibrvNetTransport.

tibrv:port@transportDaemon Specifies the TCP daemon port for the
TibrvNetTransport.

tibrv:port@transportBatchMode Specifies if the TIB/RV transport uses batch mode to
send messages.

tibrv:port@cmSupport Specifies if Certified Message Delivery support is
enabled.

tibrv:port@cmTransportServerName Specifies the server’s TibrvCmTransport
correspondent name.

tibrv:port@cmTransportClientName Specifies the client TibrvCmTransport correspondent
name.

tibrv:port@cmTransportRequestOld Specifies if the endpoint can request old messages on
start-up.

tibrv:port@cmTransportLedgerName Specifies the TibrvCmTransport ledger file.

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a synchronous ledger.

tibrv:port@cmTransportRelayAgent Specifies the endpoint’s TibrvCmTransport relay
agent.

tibrv:port@cmTransportDefaultTimeLimit Specifies the default time limit for a Certified
Message to be delivered.

tibrv:port@cmListenerCancelAgreements Specifies if Certified Message agreements are
canceled when the endpoint disconnects.

tibrv:port@cmQueueTransportServerName Specifies the server’s TibrvCmQueueTransport
correspondent name.

tibrv:port@cmQueueTransportClientName Specifies the client’s TibrvCmQueueTransport
correspondent name.

Table 28: TIB/RV Transport Properties

Attribute Explanation
 522

tibrv:port@bindingType tibrv:port@bindingType specifies the message binding type. TIB/RV Artix
ports support three types of payload formats as described in Table 29.

tibrv:port@cmQueueTransportWorkerWeight Specifies the endpoint’s TibrvCmQueueTransport
worker weight.

tibrv:port@cmQueueTransportWorkerTasks Specifies the endpoint’s TibrvCmQueueTransport
worker tasks parameter.

tibrv:port@cmQueueTransportSchedulerWeight Specifies the TibrvCmQueueTransport scheduler
weight parameter.

tibrv:port@cmQueueTransportSchedulerHeartbeat Specifies the endpoint’s TibrvCmQueueTransport
scheduler heartbeat parameter.

tibrv:port@cmQueueTransportSchedulerActivation Specifies the TibrvCmQueueTransport scheduler
activation parameter.

tibrv:port@cmQueueTransportCompleteTime Specifies the TibrvCmQueueTransport complete time
parameter.

Table 28: TIB/RV Transport Properties

Attribute Explanation

Table 29: TIB/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

msg TibrvMsg The top-level messages will have fields of type TIBRVMSG_STRING.
The value of each field is the name of a WSDL part name from
the corresponding WSDL message. If the WSDL part is a
primitive type then the value of this type is put against the name
of the WSDL part. If the WSDL part is a complex type then a
nested TibrvMsg is created and added against the WSDL part
name.

xml SOAP, tagged data The message data is encapsulated in a field of TIBRVMSG_XML with
a null name and an ID of 0.

opaque fixed record length data,
variable record length data

The message data is encapsulated in a field of TIBRVMSG_OPAQUE
with a null name and an ID of 0.
523

CHAPTER F | Tibco Transport Extensions
tibrv:port@callbackLevel tibrv:port@callbackLevel specifies the server-side callback level when
TIB/RV system advisory messages are received. It has three settings:

• INFO

• WARN

• ERROR (default)

This parameter only affects servers.

tibrv:port@responseDispatchTim
eout

tibrv:port@responseDispatchTimeout specifies the client-side response
receive dispatch timeout. The default is TIBRV_WAIT_FOREVER. Note that if
only the TibrvNetTransport is used and there is no server return response for
a request, then not setting a timeout value causes the client to block forever.
This is because client has no way to know whether any server is processing
on the sending subject or not. In this case, we recommend that
responseDispatchTimeout is set.

tibrv:port@transportService tibrv:port@transportService specifies the UDP service name or port for
TibrvNetTransport. If empty or omitted, the default is rendezvous. If no
corresponding entry exists in /etc/services, 7500 for the TRDP daemon, or
7550 for the PGM daemon will be used. This parameter must be the same for
both client and server.

tibrv:port@transportNetwork tibrv:port@transportNetwork specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must
be interoperable between the client and the server.

tibrv:port@transportDaemon tibrv:port@transportDaemon specifies the TCP daemon port for
TibrvNetTransport. The default is to use 7500 for the TRDP daemon, or 7550
for the PGM daemon.

tibrv:port@transportBatchMode tibrv:port@transportBatchMode specifies if the TIB/RV transport uses
batch mode to send messages. The default is false which specifies that the
endpoint will send messages as soon as they are ready. When set to true,
the endpoint will send its messages in timed batches.
 524

tibrv:port@cmSupport tibrv:port@cmSupport specifies if Certified Message Delivery support is
enabled. The default is false which disables CM support. Set this
parameter to true to enable CM support.

tibrv:port@cmTransportServerNa
me

tibrv:port@cmTransportServerName specifies the server’s
TibrvCmTransport correspondent name. The default is to use a transient
correspondent name. This parameter must be the same for both client and
server if the client also uses Certified Message Delivery.

tibrv:port@cmTransportClientNa
me

tibrv:port@cmTransportClientName specifes the client’s
TibrvCMTransport correspondent name. The default is to use a transient
correspondent name.

tibrv:port@cmTransportRequest
Old

tibrv:port@cmTransportRequestOld specifies if the endpoint can request
old messages on start-up. requestOld parameter. The default is false which
disables the endpoint’s ability to request old messages when it starts up.
Setting this property to true enables the ability to request old messages.

tibrv:port@cmTransportLedgerN
ame

tibrv:port@cmTransportLedgerName specifes the file name of the
endpoint’s TibrvCMTrasnport ledger. The default is to use an in-process
ledger that is stored in memory.

tibrv:port@cmTransportSyncLed
ger

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. true specifies that the endpoint uses a synchronous
ledger. The default is false.

tibrv:port@cmTransportRelayAge
nt

tibrv:port@cmTransportRelayAgent Specifies the endpoint’s
TibrvCmTransport relay agent. If this property is not set, the endpoint does
not use a relay agent.

tibrv:port@cmTransportDefaultTi
meLimit

tibrv:port@cmTransportDefaultTimeLimit specifies TibrvCmTransport
message default time limit. The default is that no message time limit will be
set.

Note: When CM support is disabled all other CM properties are ignored.
525

CHAPTER F | Tibco Transport Extensions
tibrv:port@cmListenerCancelAgr
eements

tibrv:port@cmListenerCancelAgreements specifies if the TibrvCmListener
cancels Certified Message agreements when the endpoint disconnects.
parameter. If set to true, CM agreements are cancelled when the endpoint
disconnects. The default is false.

tibrv:port@cmQueueTransportSe
rverName

tibrv:port@cmQueueTransportServerName specifies the server’s
TibrvCmQueueTransport correspondent name. If this property is set, the
server listener joins to the distributed queue of the specified name. This
parameter must be the same among the server queue members.

tibrv:port@cmQueueTransportCli
entName

tibrv:port@cmQueueTransportClientName specifies the client’s
TibrvCmQueueTransport correspondent name. If this property is set, the
client listener joins to the distributed queue of the specifies name. This
parameter must be the same among all client queue members.

tibrv:port@cmQueueTransportW
orkerWeight

tibrv:port@cmQueueTransportWorkerWeight specifies the endpoint’s
TibrvCmQueueTransport worker weight. The default is
TIBRVCM_DEFAULT_WORKER_WEIGHT.

tibrv:port@cmQueueTransportW
orkerTasks

tibrv:port@cmQueueTransportWorkerTasks specifies the endpoint’s
TibrvCmQueueTransport worker tasks parameter. The default is
TIBRVCM_DEFAULT_WORKER_TASKS.

tibrv:port@cmQueueTransportSc
hedulerWeight

tibrv:port@cmQueueTransportSchedulerWeight specifies the
TibrvCmQueueTransport scheduler weight parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

tibrv:port@cmQueueTransportSc
hedulerHeartbeat

tibrv:port@cmQueueTransportSchedulerHeartbeat specifies the
TibrvCmQueueTransport scheduler heartbeat parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.

Note: If distributed queue is enabled on the client side, the transport
does not handle any request-response semantics. This is for load-balanced
polling-type clients, e.g. one client in the distributed queue periodically
invokes an operation that only has outputs and no input, and one listener
in the group processes the response.
 526

tibrv:port@cmQueueTransportSc
hedulerActivation

tibrv:port@cmQueueTransportSchedulerActivation Specifies the
TibrvCmQueueTransport scheduler activation parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

tibrv:port@cmQueueTransportCo
mpleteTime

tibrv:port@cmQueueTransportCompleteTime specifies the
TibrvCmQueueTransport complete time parameter. The default is 0.
527

CHAPTER F | Tibco Transport Extensions
 528

Glossary
B Binding

A binding associates a specific protocol and data format to operations defined
in a portType.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Collection
A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA-based applications. A
collection can also be deployed as a switch process.

Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all connection
(binding) information for that interface. In the context of the Artix Designer,
this contract is referred to as a Resource.

A contract contains two components: logical and physical. The logical
contract defines things that are independent of the underlying transport and
wire format: ‘portType’, ‘Operation’, ‘Message’, ‘Type’, and ‘Schema.’

The physical contract defines the wire format, middleware transport, and
service groupings, as well as the mapping between the portType
‘operations’ and wire formats, and the buffer layout for fixed formats and
extensors, The physical contract defines: ‘Port,’ ‘Binding’ and ‘Service.’
529

Glossary
CORBA
CORBA (Common Object Request Broker Architecture) defines standards for
interoperability and portability among distributed objects, independently of
the language in which those objects are written. It is a robust,
industry-accepted standard from the OMG (Object Management Group),
deployed in thousands of mission critical systems.

CORBA also specifies an extensive set of services for creating and managing
distributed objects, accessing them by name, storing them in persistent stores,
externalizing their state, and defining ad hoc relationships between them. An
ORB is the core element of the wider OMG framework for developing and
deploying distributed components.

E End-point
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application).

Extensible Style Sheet Transformation
A set of extensions to the XML style sheet language that describes
transformations between XML documents. For more information see the XSLT
specification.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a port and its binding. A binding can also be specified in a logical contract
port type, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Message
A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with defined types. A WSDL message
is analogous to a parameter in object-oriented programming.
 530

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

Glossary
O Operation
A WSDL operation is an abstract definition of the action supported by the
service. It is defined in terms of input and output messages. An operation is
loosely analogous to a function or method in object-oriented programming, or
a message queue or business process.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL file using the binding
definition.

Port Type
A WSDL port type is a collection of abstract operations, supported by one or
more endpoints. A port type is loosely analogous to a class in object-oriented
programming. A port type can be mapped to multiple transports using multiple
bindings.

Protocol
A protocol is a transport whose format is defined by an open standard.

R Resource
A resource can be one of two things:

• A WSDL file that defines the interface of your Artix solution

• A Schema that defines one or more types. This schema can be a stand
alone resource or it can define the types within a WSDL contract.

Resources are contained within collections. There can be one or more
resources in a collection, and the resources can either be specific to that
collection, or shared across several collections (shared resources).

Resources are created either from scratch using the Resource Editor wizards
and dialogs to define them, or are based on an existing files. For example,
you can use the Designer to convert an IDL file into WSDL.

Resource Editor
A GUI tool used for editing Artix resources. It provides several wizards for
adding services, transports, and bindings to an Artix resource.
531

Glossary
Routing
The redirection of a message from one WSDL binding to another. Routing
rules apply to an end-point, and the specification of routing rules is required
for a some Artix services. Artix supports topic-, subject- and content-based
routing. Topic- and subject-based routing rules can be fully expressed in the
WSDL contract. However, content-based routing rules may need to be placed
in custom handlers (C plug-ins). Content-based routing handler plug-ins are
dynamically loaded.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is instance of an Artix runtime deployed with one or more
contracts, but no generated language bindings (contrast this with end-point).
The service acts as a daemon that has no compile-time dependencies. A
service is dynamically configured by deploying one or more contracts on it.

Service Access Point
The mechanism and the points at which individual service providers and
consumers connect to the service bus.

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

SOAP
SOAP is an XML-based messaging framework specifically designed for
exchanging formatted data across the Internet. It can be used for sending
request and reply messages or for sending entire XML documents. As a
protocol, SOAP is simple, easy to use, and completely neutral with respect to
operating system, programming language, or distributed computing platform.

Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.
 532

Glossary
Switch
The implementation of an Artix WSDL service contract.

System
A collection of services and transports.

T Transport
An on-the-wire format for messages.

Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the ‘Port’ property in of an Artix contract.

Type
A WSDL data type is a container for data type definitions that is used to
describe messages (for example an XML schema).

W Web Services Description Language
An XML based specification for defining Web services. For more information
see the WSDL specification.

Workspace
The Workspace defines the structure of your Artix solution. It is the first thing
you need to create when using the Artix Designer, and all of the solution’s
components are included within it.

A workspace typically has one or more collections, which in turn contain
resources that define your solution's interface. A workspace also contains
"shared resources" which are common across one or more collections.

WSDL
WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or
procedure-oriented information.
533

http://www.w3.org/TR/wsdl

Glossary
A WSDL document defines services as collections of network endpoints, or
ports. In WSDL, the abstract definition of endpoints and messages is
separated from their concrete network deployment or data binding formats.
This allows the reuse of abstract definitions: messages, which are abstract
descriptions of the data being exchanged, and port types which are abstract
collections of operations. The concrete protocol and data format specifications
for a particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of
ports define a service. Hence, a WSDL document uses the following elements
in the definition of network services:

• Types—a container for data type definitions using some type system.

• Message—an abstract, typed definition of the data being
communicated.

• Operation—an abstract definition of an action supported by the
service.

• Port Type—an abstract set of operations supported by one or more
endpoints.

• Binding—a concrete protocol and data format specification for a
particular port type.

• Port—a single endpoint defined as a combination of a binding and a
network address.

• Service—a collection of related endpoints.

Source: Web Services Description Language (WSDL) 1.1. W3C Note 15
March 2001. (http://www.w3.org/TR/wsdl)

X XML
XML is a simpler but restricted form of SGML (Standard General Markup
Language). The markup describes the meaning of the text. XML enables the
separation of content from data. XML was created so that richly structured
documents could be used over the web.

XSD
XML Schema Definition (XSD) is the language used to define an XML
Schema. The XML Schema defines the structure of an XML document.

In Artix, a schema can be a standalone resource within a collection, or it can
be used as an import do define the types within a WSDL contract.
 534

Index

Symbols
<complexContent> 471
<complexType> 463
<corba:anonsequence> 464
<corba:object> 479
<xsd:annotation> 478

A
add

CORBA port 143
HTTP port (non-secure) 146
HTTP port (secure) 147
IIOP tunnel port 156
Java Message Service 154
MQ port 149
SOAP port (secure) 162
Tuxedo port 151

adding
IDL 89
messages 73
port types 77
resources 86
services 140
types 60

Address specification
CORBA 320
IIOP 324

arrays
CORBA 456

Artix Designer
binding editor 116

B
binding

adding 117
CORBA 119
fixed, adding 95, 98
SOAP, adding 126
tagged, adding 101
XML, adding 132

binding element 55
bindings
CORBA 244
supported types 116

C
coboltowsdl 354
collection 8, 24

creating 38
definition 36
deploying 45, 178
editing 42

configuring IIOP 325
Connecting to remote queues 494
contract 53

adding messages 73
adding port types 77
adding services 140
adding types 60
logical section 53
physical section 55

contracts 4
CORBA

binding, adding 119
corba:address 320
corba:alias 455
corba:array 456
corba:binding 244
corba:case 454
corba:enum 449
corba:enumerator 449
corba:excepetion 461
corba:fixed 450
corba:member 447, 461
corba:operation 245
corba:param 245
corba:policy 321
corba:raises 246
corba:return 246
corba:struct 447
corba:union 453
corba:unionbranch 453
CORBA port

adding 143
creating a collection 38
535

INDEX
D
deploying

creating a bundle 185
creating a profile 3, 179
solutions 9, 192

deployment bundle
creating 185
deploying 192

deployment options 178
deployment profile

creating 3, 179
developing a solution 5
dynamic 375
dynamic proxification 375

E
edit

collection 42
enumerations

CORBA 449
exceptions

CORBA 461
extension 471

F
fixed:binding 254
fixed:body 255
fixed:enumeration 258

fixedValue 258
fixed:field 256

bindingOnly 255
fixedValue 258
format 257
size 256

fixed:operation 254
fixed:sequnce 262
fixed binding 95, 98
fixed data types

CORBA 450
fml:binding 250
fml:element 251
fml:idNameMapping 251
fml:operation 251

G
generating contracts

from Java 345
 536
H
http-conf:HTTPClientIncomingContexts 372
http-conf:HTTPClientOutgoingContexts 372
http-conf:HTTPServerIncomingContexts 371
http-conf:HTTPServerOutgoingContexts 372
HTTP port

adding 147

I
ignorecase 372
IIOP

supported payload formats 156
iiop:address 324
iiop:payload 325
iiop:policy 325
IIOP tunnel

adding port 156
importing resources 86
importing WSDL 87
IOR specification 320, 324

J
javatowsdl 345
JMS

adding port 154
jms:address

useMessageIDAsCorrelationID 330

L
logical portion 4
logical section

Artix contract 53

M
messages

adding 73
mime:content 240
mime:multipartRelated 239
mime:part 239
MQ

adding port 149
mq:client 149, 327
mq:MQConnectionAttributes 372
mq:MQIncomingMessageAttributes 372
mq:MQOutoingMessageAttributes 372
mq:server 149, 327
MQ FormatType

INDEX
working with mainframes 512
MQ remote queues 494

N
new workspace - Fast Track 30
new workspace wizard 26
nillable 474

O
operation-based routing 168

P
physical portion 4
physical section

Artix contract 55
physical view

defining 55
port

add CORBA 143
add HTTP (secure) 147
add HTTP non-secure 146
adding IIOP tunnel 154, 156
adding SOAP (non-secure) 159
adding SOAP (secure) 162
adding Tuxedo 151
MQ adding 149

port-based routing 168
portType 223, 224
port type

adding 77
proxification 375

R
relationship view 51
resource

definition 48
resources

shared 8, 22
route

creating 169
router 375
routing

broadcast 369
failover 370
fanout 369
types 168

routing:contains 373
routing:destination 364
port 364
service 364

routing:empty 373
routing:endswith 373
routing:equals 372
routing:equals:contextAttributeName 371
routing:equals:contextName 371
routing:equals:value 372
routing:greater 372
routing:less 372
routing:nonempty 373
routing:operation 366

name 366
target 366

routing:route 363
multiRoute 369, 370

failover 370
fanout 369

name 363
routing:source 363

port 363
service 363

routing:startswith 373
routing:transportAttribute 371

S
service element 55
services

adding 140
shared resources 8, 22
SOAP

adding port 159, 162
binding, adding 126

soap:body
parts attribute 234

soap:header 233
encodingStyle 233
message attribute 233
namespace attribute 233
part attribute 233
use attribute 233

soapenc:base64 466
Specifying POA policies 143, 321, 325
structures

CORBA 447
537

INDEX
T
tagged:binding 270
tagged:body 271
tagged:case 274
tagged:choice 274
tagged:enumeration 272
tagged:field 272
tagged:operation 271
tagged:sequence 273
tagged binding 101
tibrv:binding 280
tibrv:binding@stringEncoding 280
tibrv:input 280
tibrv:input@messageNameFieldPath 280
tibrv:input@messageNameFieldValue 280
tibrv:input@sortFields 280
tibrv:operation 280
tibrv:output 280
tibrv:output@messageNameFieldPath 280
tibrv:output@messageNameFieldValue 281
tibrv:output@sortFields 280
tibrv:port 334, 521
tibrv:port@bindingType 523
tibrv:port@callbackLevel 524
tibrv:port@clientSubject 521
tibrv:port@cmListenerCancelAgreements 526
tibrv:port@cmQueueTransportClientName 526
tibrv:port@cmQueueTransportCompleteTime 527
tibrv:port@cmQueueTransportSchedulerActivation 5

27
tibrv:port@cmQueueTransportSchedulerHeartbeat 5

26
tibrv:port@cmQueueTransportSchedulerWeight 526
tibrv:port@cmQueueTransportServerName 526
tibrv:port@cmQueueTransportWorkerTasks 526
tibrv:port@cmQueueTransportWorkerWeight 526
tibrv:port@cmSupport 525
tibrv:port@cmTransportClientName 525
tibrv:port@cmTransportDefaultTimeLimit 525
tibrv:port@cmTransportLedgerName 525
tibrv:port@cmTransportRelayAgent 525
tibrv:port@cmTransportRequestOld 525
tibrv:port@cmTransportServerName 525
tibrv:port@cmTransportSyncLedger 525
tibrv:port@serverSubject 521
tibrv:port@transportBatchMode 524
tibrv:port@transportDaemon 524
tibrv:port@transportNetwork 524
tibrv:port@transportService 524
 538
TibrvMsg 280
tuxedo:input 335
tuxedo:server 151, 335
tuxedo:service 335
Tuxedo port

adding 151
typedefs

CORBA 455
types

adding 60

U
unions

Artix mapping 452
CORBA 452, 453
logical description 452

use case
fast track 406, 416
web service client 406, 416
web service server 410

V
value 258
viewing relationships in contracts 51

W
W3C 15
Web Service Definition Language 4
Web Services Definition Language 15
WebSphere MQ

AccessMode 502
AccountingToken 516
AliasQueueName 494
ApplicationData 515
ApplicationOriginData 519
ConnecitonName 496
ConnectionFastPath 498
ConnectionReusable 497
Convert 517
CorrelationId 514
CorrelationStyle 500
Delivery 507
Format 511
MessageExpiry 505
MessageId 513
MessagePriority 506
ModelQueueName 493
QueueManager 488

INDEX
QueueName 489
ReplyQueueManager 491
ReplyQueueName 490
ReportOption 509
Server_Client 492
Timeout 504
Transactional 508
UsageStyle 499
UserIdentification 520

Websphere MQ
ApplicationIdData 518

workspace
creating 7, 21
definition 20

Workspace Options dialog 7, 21
workspace templates 30
World Wide Web Consortium 15
WSDL 4, 15
WSDL elements 15
wsdltocorba 243, 323
wsdltosoap 230

X
xformat:binding 284

rootNode attribute 284
xformat:body 285

rootNode attribute 285
XML binding 132
XMLSchema 205
XML Stylesheet Language Transformations 392
XPath 395
XSD 205
xsd:base64Binary 466
xsd:hexBinary 466
xsl:apply-templates 397

select 398
xsl:copy-of 401

select 401
xsl:element 401

name 401
namespace 401

xsl:stylesheet 393
xsl:template 395

match 395
xsl:transform 393
xsl:value-of 401

select 401
XSLT 392
539

INDEX
 540

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Finding Your Way Around the Library
	Additional Resources for Help
	Document Conventions

	Using Artix Designer
	Introduction to Artix
	Overview
	Using Artix for the first time
	Working in Deployer Mode
	Working in Editor Mode
	Setting user preferences

	WSDL Basics

	Creating an Artix Workspace
	What is a Workspace?
	Creating a Workspace using a Wizard
	Creating a Workspace using a Template
	Working with Custom Templates

	Working with Artix Collections
	What is a Collection?
	Creating a Collection
	Editing a Collection
	Generating Code for a Collection

	Working with Artix Resources
	What are Resources?
	Navigating Resources
	What is a Contract?
	What is a Schema?
	Creating New Resources
	Creating a Contract
	Adding Types
	Adding Messages
	Adding Port Types
	Adding Access Control Lists
	Creating Resources from a File/URL
	Creating Contracts from Data Sets
	Creating an XSD Schema

	Editing Resources
	Editing Types
	Editing Messages
	Editing Port Types

	Adding Bindings
	What is a Binding?
	Adding a CORBA Binding
	Adding a CORBA Binding, Service, and Port at the Same Time

	Adding a Fixed Binding
	Adding a SOAP Binding
	Adding a SOAP Binding, Service, and Port at the Same Time

	Adding an XML Binding
	Adding a Tagged Binding
	Editing Bindings

	Adding Services
	Introduction
	Adding a CORBA Port
	Adding a CORBA Binding, Service, and Port at the Same Time

	Adding an HTTP Port
	Adding a WebSphere MQ Port
	Adding a Tuxedo Port
	Adding a Java Message Service Port
	Adding an IIOP Tunnel Port
	Adding a SOAP Port
	Adding a SOAP Binding, Service, and Port at the Same Time

	Editing Services

	Routing Messages
	What is a Route?
	Creating a Route
	Editing a Route

	Deployment
	Deployment Explained
	Creating a Deployment Profile
	Editing a Deployment Profile

	Creating a Deployment Bundle
	Editing a Deployment Bundle

	Generating Code

	Using Artix Command Line Tools
	Designing Artix Solutions from the Command Line
	Artix and WSDL
	Creating an Artix Contract
	Beyond the Contract

	Defining Data Types
	Specifying a Type System in a Contract
	XMLSchema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Messages
	Defining Your Interfaces
	Binding Interfaces to a Payload Format
	Adding a SOAP Binding
	Adding a Default SOAP Binding
	Adding SOAP Headers to a SOAP Binding
	Sending Data Using SOAP with Attachments

	Adding a CORBA Binding
	Adding an FML Binding
	Adding a Fixed Binding
	Adding a Tagged Binding
	Adding a TibMsg Binding
	Adding a Pure XML Binding
	Adding a G2++ Binding

	Adding Transports
	Defining a Service
	Creating an HTTP Service
	Specifying the Service Address
	Configuring HTTP Transport Attributes

	Creating a CORBA Service
	Configuring an Artix CORBA Port
	Generating CORBA IDL

	Creating an IIOP Service
	Creating a WebSphere MQ Service
	Creating a Java Messaging System Service
	Adding a TIBCO Service
	Creating a Tuxedo Service

	Creating Artix Contracts from Existing Applications
	Creating Artix Contracts from CORBA IDL
	Creating Contracts from Java Classes
	Creating Contracts from COBOL Copybooks

	Adding Routing Instructions
	Artix Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Error Handling
	Service Lifecycles
	Routing References to Transient Servants

	Using the Artix Transformer to Solve Problems in Artix
	Using the Artix Transformer as an Artix Server
	Using Artix to Facilitate Interface Versioning
	WSDL Messages and the Transformer
	Writing XSLT Scripts
	Elements of an XSLT Script
	XSLT Templates
	Common XSLT Functions

	Appendecies
	Use Case Examples
	Create a Web Service Client Using a Template
	Create a Web Service Server Using a Wizard
	Expose a CORBA Server as a Web Service

	Command Line Use Case Examples
	Create a C++ Web Service Client from a WSDL Contract
	Creating a C++ SOAP/HTTP Web Service from IDL

	SOAP Binding Extensions
	soap:binding element
	soap:operation element
	soap:body element
	soap:header element
	soap:fault element
	soap:address element

	CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Structures
	Enumerations
	Fixed
	Unions
	Type Renaming
	Arrays
	Multidimensional Arrays
	Sequences
	Exceptions

	Recursive Type Mapping
	Mapping XMLSchema Features that are not Native to IDL
	Binary Types
	Attributes
	Nested Choices
	Inheritance
	Nillable
	Optional Attributes

	Artix References

	WebSphere MQ Artix Extensions
	QueueManager
	QueueName
	ReplyQueueName
	ReplyQueueManager
	Server_Client
	ModelQueueName
	AliasQueueName
	ConnectionName
	ConnectionReusable
	ConnectionFastPath
	UsageStyle
	CorrelationStyle
	AccessMode
	Timeout
	MessageExpiry
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format
	MessageId
	CorrelationId
	ApplicationData
	AccountingToken
	Convert
	ApplicationIdData
	ApplicationOriginData
	UserIdentification

	Tibco Transport Extensions
	Glossary
	Index

