
Developing Artix Applications
in Java

Version 2.1, July 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
IONA Technologies PLC and/or its subsidiaries make no warranty of any kind to this material, including, but not
limited to, the implied warranties of merchantability, title, non-infringement and fitness for a particular purpose.
IONA Technologies PLC and/or its subsidiaries shall not be liable for errors contained herein, or for exemplary,
incidental, special, pecuniary or consequential damages (including, but not limited to, damages for business
interruption, loss of profits, or loss of data) in connection with the furnishing, performance or use of this mate-
rial.

COPYRIGHT NOTICE
No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Nov-2004

M 3 2 1 0

Contents

List of Figures v

List of Tables vii

Preface ix
What is Covered in this Book ix
Who Should Read this Book ix
How to Use this Book ix
Online Help x
Finding Your Way Around the Artix Library xi
Additional Resources for Information xii
Typographical Conventions xii
Keying conventions xiii

Chapter 1 Understanding the Artix Java Development Model 1
Separating Transport Details from Application Logic 2
Representing Services in Artix Contracts 4
Mapping from an Artix Contract to Java 6

Chapter 2 Developing Artix Enabled Clients and Servers 9
Generating Stub and Skeleton Code 10
Java Package Names 13
Developing a Server 15
Developing a Client 20
Building an Artix Application 24

Chapter 3 Advanced Programming Issues 25
Servant Registration 26

Static Servant Registration 27
Transient Servant Registration 28

Proxy Creation 30
Getting a Bus 32
i

CONTENTS
Threading 33
Setting Client Connection Attributes Using the Stub Interface 37
Class Loading 41

Chapter 4 Working with Artix Data Types 45
Using Native XMLSchema Simple Types 47

Simple Type Mapping 48
Special Simple Type Mappings 50
Unsupported Simple Types 52

Defining Your Own Simple Types 53
Using XMLSchema Complex Types 56

Sequence and All Complex Types 57
Choice Complex Types 64
Attributes 68
Nesting Complex Types 72
Deriving a Complex Type from a Simple Type 78
Occurrence Constraints 81

Using XMLSchema any Elements 84
SOAP Arrays 92
Lists 95
Enumerations 98
Deriving Types Using <complexContent> 104
Holder Classes 107
Using SOAP with Attachments 111

Chapter 5 Creating User-Defined Exceptions 117
Describing User-defined Exceptions in an Artix Contract 118
How Artix Generates Java User-defined Exceptions 120
Working with User-defined Exceptions in Artix Applications 122

Chapter 6 Working with Artix Type Factories 125
Introduction to Type Factories 126
Registering Type Factories 128
Getting Type Information From Type Factories 131

Chapter 7 Working with XMLSchema anyTypes 135
Introduction to Working with XMLSchema anyTypes 136
Setting anyType Values 138
 ii

CONTENTS
Retrieving Data from anyTypes 140

Chapter 8 Artix References 145
Introduction to Working with References 146

Reference Basic Concepts 147
Creating References 151
Instantiating Service Proxies Using a Reference 153

Using References in a Factory Pattern 154
Bank Service Contract 155
Bank Service Implementation 162
Bank Service Client 165

Using References to Implement Callbacks 168
The Accounting Contract 169
The Accounting Client 175
The Accounting Server 180

Chapter 9 The Artix Locator 183
Overview of the Locator 184
Locator WSDL 187
Registering Endpoints with the Locator 191
Reading a Reference from the Locator 192

Chapter 10 Using Message Contexts 197
Understanding Message Contexts in Artix 198

Getting the Context Registry 201
Getting the Message Context for a Thread 203
Working with Generic Contexts 206
Working with Artix Message Contexts 211

Sending Header Information Using Contexts 218
Defining Context Data Types 219
Registering Context Types 221
SOAP Header Example 223

Chapter 11 Developing Java Plug-Ins 233
Extending the BusPlugIn Class 234
Implementing the BusPlugInFactory Interface 237
iii

CONTENTS
Chapter 12 Writing Message Handlers 239
Message Handlers: An Introduction 240
Developing Request-Level Handlers 244
Developing Message-Level Handlers 251

Chapter 13 Artix IDL to Java Mapping 259
Introduction to IDL Mapping 260
IDL Basic Type Mapping 262
IDL Complex Type Mapping 264
IDL Module and Interface Mapping 277

Glossary 281

Index 291
 iv

List of Figures

Figure 1: SingleInstanceServant 34

Figure 2: SerializedServant 35

Figure 3: PerInvocationServant 36

Figure 4: Class Loader Firewall 41

Figure 5: Artix Locator Overview 184

Figure 6: Steps to Read a Reference from the Locator 192

Figure 7: Overview of the Message Context Mechanism 199

Figure 8: Contexts Passed Along Request/Reply Chain 211

Figure 9: The Life of a Message 240

Figure 10: Handler Levels 241

Figure 11: Artix and CORBA Alternatives for IDL to Java Mapping 261
v

LIST OF FIGURES
 vi

List of Tables

Table 1: discover-source values for the Class Loader Firewall 42

Table 2: Simple Schema Type to Primitive Java Type Mapping 48

Table 3: simple Schema Type to Java Wrapper Class Mapping 51

Table 4: Attributes for an any 84

Table 5: List Type Facets 95

Table 6: MIME Type Mappings 111

Table 7: anyType Setter Methods for Primitive Types 138

Table 8: Methods for Extracting Primitives from AnyType 141

Table 9: Artix Mapping of IDL Basic Types to Java 262
vii

LIST OF TABLES
 viii

Preface
What is Covered in this Book
Developing Artix Applications in Java discusses the main aspects of
developing transport-independent services and service consumers using
Java stub and Java skeleton code generated by Artix. This book covers:

• how to access the Artix bus

• how to use generated data types

• how to create user defined exceptions

• how to access the header information for the transports supported by
Artix.

Who Should Read this Book
Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book
If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled service or
service consumer, Chapter 2 describes the basic steps to implement a
service, connect to the Artix bus, and create JAX-RPC compliant proxies
using Artix-generated code.
ix

PREFACE
Chapter 3 extends the discussion of building Artix applications. It includes
details about the threading model used by Java Artix applications, using
Artix specific methods for creating proxies, and class loading issues that
may be encountered when using Artix.

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 4 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 5 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

If you want to learn how to develop Java code to use XMLSchema anyType
elements, Chapter 7 describes how they are mapped into Java and
describes the Artix classes that allow you to work with them.

Chapter 8 describes how Artix references work. It describes the basic
concepts and APIs for working with references in Artix. In addition, it gives
detailed examples of using references in a factory pattern and in developing
callbacks.

If you want to use SOAP headers, Chapter 10 describes how to use Artix
message contexts to set data into a SOAP header.

If you want to write message handlers for doing advanced message
processesing, Chapter 12 describes how to develop and configure message
handlers for use in Artix applications.

Online Help
While using the Artix Designer you can access contextual online help,
providing:

• A description of your current Artix Designer screen

• Detailed step-by-step instructions on how to perform tasks from this
screen

• A comprehensive index and glossary

• A full search feature

There are two ways that you can access the Online Help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu
 x

PREFACE
Finding Your Way Around the Artix Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The remainder of the Artix library is listed
here, with a short description of each book.

If you are new to Artix You may be interested in reading Learning about Artix. It describes basic
Artix concepts and guides you through a number of Artix programming
examples.

To design Artix solutions You should read Designing Artix Solutions. It provides detailed information
about creating WSDL-based Artix contracts, Artix stub and skeleton code,
and the artifacts needed to deploy Artix solutions.

To develop applications using
Artix stub and skeleton code

Depending on your development environment you should read one or more
of the following:

• Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the Artix C++
API

• Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Artix Java API

To manage and configure your
Artix solution

You should read Deploying and Managing Artix Solutions. It describes how
to configure and deploy Artix-enabled systems. It also discusses how to
manage them once they are deployed.

If you want to know more about
Artix security

You should read the Artix Security Guide. It outlines how to enable and
configure Artix’s security features. It also discusses how to integrate Artix
solutions into a secure environment.

Have you got the latest version? The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (at the bottom of the copyright notice).
xi

http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
Additional Resources for Information
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/knowledge_base/index.xml

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xii

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/update/
mailto:doc-feedback@iona.com

PREFACE
Keying conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Understanding the
Artix Java
Development
Model
The Artix Java development tools generate JAX-RPC compliant
Java code from WSDL-based Artix contracts. Using the
generated code, you can develop transport-independent
applications that take advantage of the Artix bus.

In this chapter This chapter discusses the following topics:

Separating Transport Details from Application Logic page 2

Representing Services in Artix Contracts page 4

Mapping from an Artix Contract to Java page 6
1

CHAPTER 1 | Understanding the Artix Java Development Model
Separating Transport Details from Application
Logic

Overview One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by limiting the types of messaging system the
application can work on. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Dividing the logical and physical Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application’s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.
 2

Separating Transport Details from Application Logic
The Artix bus The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.
3

CHAPTER 1 | Understanding the Artix Java Development Model
Representing Services in Artix Contracts

Overview Services, which are the operations exposed by an application, are described
in the logical section of an Artix contract. When defining a service in an Artix
contract, you break it down into three parts: the complex data types used in
the messages, the messages used by the operations, and the collection of
operations that make up the service.

Data types Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL <types> element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

The described types are used to define the message parts used by the
service.

Messages In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the <message> element and consist of one or more <part>
elements. Each message part represents an argument in an operation’s
parameter list or a piece of data returned as part of an exception.

Service In an Artix contract logical services are described using the <portType>
element and consist of one or more <operation> elements. Each
<operation> element describes an operation that is to be exposed over the
network.

Example 1: Array Description

<complexType name="ArrayOfInt">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
 type="xsd:int"/>
 </sequence>
</complexType>
 4

Representing Services in Artix Contracts
Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature
long myOp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<message name="inMessage">
 <part name="c1" type="xsd:char" />
 <part name="c2" type="xsd:char" />
</message>
<message name="outMessage">
 <part name="returnVal" type="xsd:int" />
</message>
<portType name="myService">
 <operation name="myOp">
 <input message="inMessage" name="in" />
 <output message="outMessage" name="out" />
 </operation>
</portType>
5

CHAPTER 1 | Understanding the Artix Java Development Model
Mapping from an Artix Contract to Java

Overview Artix maps the WSDL-based Artix contract description of a service into Java
server skeletons and client stubs following the JAX-RPC specification. This
allows application developers to implement the service’s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

Ports For each <port> element in an Artix contract, a Java interface that extends
java.rmi.Remote is generated. The name of the generated interface is taken
from the name attribute of the <port> element. The interface’s name will be
identical to the <port> elements’s name unless the <port> element’s name
ends in Port. In this case, the Port will be stripped off the interface’s name.

The generated interface will contain each of the operations of the
<portType> to which the <port> element is bound. For example, the
contract shown in Example 3 will generate an interface, sportsCenter,
containing one operation, update.

Example 3: SportsCenter Port

<message name="scoreRequest">
 <part name="teamName" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="score" type="xsd:int" />
</message>
<portType name="sportsCenterPortType">
 <operation name="update">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsCenterPortType">
...
<service name="sportsService">
 <port name="sportsCenterPort" binding="tns:scoreBinding">
...
 6

Mapping from an Artix Contract to Java
The generated Java interface is shown in Example 4.

Operations Every <operation> element in a contract generates a Java method within
the interface defined for the <operation> element’s <portType>. The
generated method’s name is taken from the <operation> element’s name
attribute. <operation> elements with the same name attribute will generate
overloaded Java methods in the interface.

All generated Java methods throw a java.rmi.RemoteException exception.
In addition, all <fault> elements listed as part of the operation create an
exception to the generated Java method.

Message parts The message parts of the operation’s <input> and <output> elements are
mapped as parameters in the generated method’s signature. The order of
the mapped parameters can be specified using the <operation> element’s
parameterOrder attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the parameterOrder
attribute will be placed in the generated method’s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the <message> elements of
the contract. The first unlisted output message part is mapped to the
generated method’s return type. The parameter names are taken from the
<part> element’s name attribute. If the parameterOrder attribute is not
specified, input message parts are listed before output message parts.
Message parts that are listed in both the input and output messages are
considered inout parameters and are listed only according to their position
in the input message.

All inout and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Holder classes. For
the XML primitive types, the Java Holder class used is the standard Java
Holder class, defined in javax.xml.rpc.holders package, for the

Example 4: SportsCenter Interface

//Java
public interface sportsCenter extends java.rmi.Remote
{
 int update(String teamName)
 throws java.rmi.RemoteException;
}

7

CHAPTER 1 | Understanding the Artix Java Development Model
appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Holder classes. For more
information on data type mapping, see “Working with Artix Data Types” on
page 45.

For example, the contract fragment shown in Example 5 would result in an
operation, final, with a return type of String and a parameter list that
contains two input parameters and three output parameters.

The generated Java interface is shown in Example 6.

Example 5: SportsFinal Port

<message name="scoreRequest">
 <part name="team1" type="xsd:string" />
 <part name="team2" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="winTeam" type="xsd:string" />
 <part name="team1score" type="xsd:int" />
 <part name="team2score" type="xsd:int" />
</message>
<portType name="sportsFinalPortType">
 <operation name="final">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsFinalPortType">
...
<service name="sportsService">
 <port name="sportsFinalPort" binding="tns:scoreBinding">
...

Example 6: SportsFinal Interface

//Java
public interface sportsFinal extends java.rmi.Remote
{
 String final(String team1, String team2,
 IntHolder team1score, IntHolder team2score)
 throws java.rmi.RemoteException;
}

 8

CHAPTER 2

Developing Artix
Enabled Clients
and Servers
Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

In this chapter This chapter discusses the following topics:

Generating Stub and Skeleton Code page 10

Java Package Names page 13

Developing a Server page 15

Developing a Client page 20

Building an Artix Application page 24
9

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code is similar to
code generated by a CORBA IDL compiler. There are two major differences
between CORBA-generated code and Artix-generated code:

• Artix-generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

• Artix maps WSDL types to Java using the mapping described in the
JAX-RPC specification. The resulting types are very different from those
generated by an IDL-to-Java compiler.

Generated files The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

portTypeName.java defines the Java interface that both the client and
server implement.

portTypeNameImpl.java defines the class used to implement the server.

portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 45.
 10

Generating Stub and Skeleton Code
Generating code from the
command line

You generate code at the command line using the command:

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

wsdltojava [-e service][-t port][-b binding][-i portType]
 [-d output_dir][-p [namespace=]package][-impl]
 [-server][-client][-types][-interface][-sample][-all]
 [-ant][-datahandlers][-nexclude namespace[=package]]
 [-ninclude namespace[=package]]artix-contract

-e service Specifies the name of the service for which the
tool will generate code. The default is to use the
first service listed in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to use the first port
listed in the service.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-impl Generates the skeleton class for implementing the
server defined by the contract.

-server Generates a simple main class for the server.
11

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Warning messages If you generate code from a WSDL file that contains multiple <portType>
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

-client Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

-types Generates the code to implement the complex
types defined by the contract.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test
your Java server.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax..activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more informaiton see “Using
SOAP with Attachments” on page 111 and
Desinging Artix Solutions.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XMLSchema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XMLSchema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.
 12

Java Package Names
Java Package Names

Artix packages The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com.iona.jbus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

Generated type packages The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in .com or .gov, the leading www. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped
to the Java package name com.widgetvendor.types.widgettypes.

Java packages Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.
13

CHAPTER 2 | Developing Artix Enabled Clients and Servers
java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.
 14

Developing a Server
Developing a Server

Overview The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing an
Artix-enabled server. The skeleton code hides the transport details, allowing
you to focus on business logic.

Generating the server
implementation class

The Artix code generation utility, wsdltojava, will generate an
implementation class for your server when passed the -impl command flag.

Generated code The implementation class code consists of two files:

PortName.java contains the interface the server implements.

PortNameImpl.java contains the class definition for the server’s
implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortNameImpl.java. A generated implementation class for a contract
defining a service with two operations, sayHi and greetMe, would resemble
Example 7. Only the code portions highlighted in bold (in the bodies of the
greetMe() and sayHi() methods) must be inserted by the programmer.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -types flag.

Example 7: Implementation of the HelloWorld PortType in the Server

// Java
import java.net.*;
import java.rmi.*;
15

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Writing the server main() The server main() of an Artix Java server must do three things before it can
service requests:

1. Initialize the Artix bus.

2. Create a servant for the service implementation.

3. Register the server implementation with the Artix bus.

4. Start the Artix bus.

You can use wsdltojava to generate a server main() with the code to
perform these steps by using the -server flag. The main() shown in
Example 10 on page 18 was generated using wsdltojava.

Initializing the bus

The Artix bus is initialized using com.iona.jbus.Bus.init(). The method
has the following signature:

public class HelloWorldImpl {

 /**
 * greetMe
 *
 * @param: stringParam0 (String)
 * @return: String
 */
 public String greetMe(String stringParam0) {
 System.out.println("HelloWorld.greetMe() called with

message: "+stringParam0);
 return "Hello Artix User: "+stringParam0;
 }

 /**
 * sayHi
 *
 * @return: String
 */
 public String sayHi() {
 System.out.println("HelloWorld.sayHi() called");
 return "Greetings from the Artix HelloWorld Server";
 }

Example 7: Implementation of the HelloWorld PortType in the Server

static Bus init(String args[]);
 16

Developing a Server
init() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Before the bus can begin processing requests made on your server, you
must register the servant object that implements your server’s business logic
with the bus. Registering the implementation object’s servant with the bus
allows the bus to create instances of the implementation object to service
requests.

Creating a servant for your service implementation

Artix wraps service implementation objects in a Servant object that allows
the bus to manage the object. To create a com.iona.jbus.Servant for your
service implementation you create an instance of a SingleInstanceServant
as shown in Example 8. The creator for a SingleInstanceServant uses the
path of the WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.
Example 8 shows the code to create a servant for the HelloWorld service.

Example 8: Creating a Servant

//Java
Servant servant =
 new SingleInstanceServant("./HelloWorld.wsdl",
 new HelloWorldImpl(), bus);
17

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Registering a servant for the server implementation

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus’
registerServant() method. This registers the servant with a fixed address
that is read from the contract associated with the application. The signature
for registerServant() is shown in Example 9.

In addition to the servant, registerServant() takes the service’s QName as
specified in the contract defining the service. You can also supply the name
of the WSDL port you on which you want the servant activated. If no port
name is given, the servant is activated on all ports.

Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus’ run() method. Once the bus
is started, it retains control of the process until it is shut down. The server’s
main() will be blocked until run() returns.

Completed server main() Example 10 shows how the main() for a Java Artix server might look.

Example 9: registerServant()

void registerServant(Servant servant,
 QName serviceName,
 String portName)
throws BusException

Example 10:Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {
 // Initialize the Artix bus
 Bus bus = Bus.init(args);
 18

Developing a Server
 // Register the Servant
 QName name = new QName("http://xmlbus.com/HelloWorld",
 "HelloWorldService");
 Servant servant =
 new SingleInstanceServant("./HelloWorld.wsdl",
 new HelloWorldImpl());
 bus.registerServant(servant, name, "HelloWorldPort");

 // Start the Bus
 bus.run();
 }
}

Example 10:Server main()
19

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Developing a Client

Overview Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix Java client initializes and shuts down the Artix bus.

Initializing the bus Client applications initialize the bus in the same manner as server
applications, by calling the bus’ init() method. Client applications,
however, do not need to make a call to the bus’ run() method.

Instantiating a service proxy Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the
javax.xml.rpc.Service interface. You need the QName of the service for
which you are creating the proxy, the QName of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of javax.xml.rpc.ServiceFactory to create the
service.

2. Use the ServiceFactory to create a Service instance for the service to
which the proxy will connect.

3. Use the Service to instantiate the dynamic proxy.

Note: If your client is going to run inside of a J2EE container you
will need to set the JAX-RPC ServiceFactory property to use the
IONA ServiceFactory prior to getting the ServiceFactory object.
You do this with the following code:

System.setProperty("javax.xml.rpc.ServiceFactory",
"com.iona.jbus.JBusServiceFactory");
 20

Developing a Client
Obtaining a ServiceFactory instance

To obtain an instance of the ServiceFactory you call
ServiceFactory.newInstance(). This returns the ServiceFactory. Only
one is created per application and the same ServiceFactory is returned for
each successive call.

Creating a Service instance

A Service instance is created from the ServiceFactory using
createService(). createService() takes two arguments:

• the URL of the contract defining the service.

• the service’s QName.

Creating the dynamic proxy

The dynamic proxy is created from the Service using getPort(). getPort()
takes two arguments:

• the QName of the endpoint with which the proxy contacts the service.

• the name of the generated Java interface in PortName.java with
.class appended. For example, if the generated interface’s name is
HelloWorld, this argument would be HelloWorld.class.

getPort() returns an instance of java.rmi.Remote that must be cast to the
generated interface.

Shutting the bus down Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus’ run() method and can simply call
shutdown() on the bus before the main thread exits. It is advisable to pass
true to shutdown() to ensure that the bus is fully shutdown before exiting.
21

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Full client code An Artix Java client developed to access HelloWorldService will look
similar to Example 11.

Example 11:Client Code

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://iona.com/HelloWorld",
 "HelloWorldService");

3 QName portName = new QName("","HelloWorldPort");

4 String wsdlPath = "file:/./HelloWorld.wsdl";
 URL wsdlLocation = new File(wsdlPath).toURL();

5 ServiceFactory factory = ServiceFactory.newInstance();

6 Service service = factory.createService(wsdlLocation, name);

7 HelloWorld proxy = (HelloWorld)service.getPort(portName,
 HelloWorld.class);

8 String string_out;

 string_out = proxy.sayHi();
 System.out.println(string_out);

9 bus.shutdown(true);

 }
}

 22

Developing a Client
The code does the following:

1. The com.iona.jbus.Bus.init() function initializes the bus.

2. Creates the service’s QName.

3. Creates the QName of the endpoint with which the proxy will contact the
service.

4. Creates the URL of the contract defining the service.

5. The newInstance() function returns the ServiceFactory.

6. The createService() function instantiates the Service from which the
dynamic proxy is created.

7. The getPort() function returns a dynamic proxy to the HelloWorld
service. getPort() returns an instance of java.rmi.Remote that must
be cast to the interface defining the service.

8. Makes a call on the proxy to request service.

9. Shuts down the bus.
23

CHAPTER 2 | Developing Artix Enabled Clients and Servers
Building an Artix Application

Required jar files Artix Java applications require that the following Artix jar files are in your
classpath:

• installdir\lib\artix\java_runtime\2.1\it_bus-api.jar

• installdir\lib\artix\ws_common\2.1\it_wsdl.jar

• installdir\lib\artix\ws_common\2.1\it_ws_reflect.jar

• installdir\lib\artix\ws_common\2.1\it_ws_reflect_types.jar

• installdir\lib\common\ifc\1.1\ifc.jar

• installdir\lib\jaxrpc\jaxrpc\1.1\jaxrpc-api.jar

Other jar files If your application uses SOAP with attachments, you will also need to
include install_dir/lib/sun/activation/1.0.1/activation.jar on your
classpath.

If your application uses xsd:any, you will need to include
install_dir/lib/ws_common/2.1/saaj-api.jar on your classpath.
 24

CHAPTER 3

Advanced
Programming
Issues
Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:

Servant Registration page 26

Proxy Creation page 30

Getting a Bus page 32

Threading page 33

Setting Client Connection Attributes Using the Stub Interface page 37

Class Loading page 41
25

CHAPTER 3 | Advanced Programming Issues
Servant Registration

Overview In order to make a service accessible to remote client’s, you must register its
associated servant with a bus instance. Once the servant is registered with
the bus instance the service is activated and begins listening for requests.

When a servant is instantiated in Java it is associated with the logical
portion of an Artix contract. It is a Java instance of the interfaced defined in
a WSDL <portType> element. At this point, a Java servant has no
knowledge of the physical details of the service which it implements.

The servant is associated with the physical details of the service when it is
registered with an instance of the Artix bus. At this point the servant is tied
to the physical details defined by the WSDL <port> element defining the
message format and transport used by the service.

Artix provides two methods for registering a servant:

Static registration ties the servant to a <port> element in the physical
contract defining the service.

Transient registration ties the servant to a cloned <port> element.

In this section This section discusses the following topics:

Static Servant Registration page 27

Transient Servant Registration page 28
 26

Servant Registration
Static Servant Registration

Overview When a servant is registered as a static servant it is linked to a <port>
definition that is read from the contract associated with the application. This
means that a static servant is restricted to using a service from the fixed
collection of services appearing in the contract.

Static servants are useful when a bus instance is only going to host a single
instance of a servant. They are also useful when using references and you do
not want to use the WSDL publishing plug-in because clients that have a
copy of the service’s contract have the servant’s port information.

Registering You register a static servant using the bus’ registerServant() method. The
signature for registerServant() is shown in Example 12.

In addition to the servant instance, registerServant() takes the service’s
QName as specified in the contract defining the service. You can also supply
the name of the WSDL port you on which you want the servant activated. If
no port name is given, the servant is activated on all ports. To register a
servant on more than one specific port, you can call registerServant()
multiple times and specifying a different port name on each call.

Example Example 13 shows the code for registering a static servant.

Example 12: registerServerFactory()

void registerServant(Servant servant,
 QName serviceName,
 String portName)
throws BusException

Example 13:Registering a Static Servant

QName name = new QName("http://whoDunIt.com/Slueth",
 "SluethService");
Servant servant = new SingleInstanceServant("./slueth.wsdl",
 new SluethImpl());
bus.registerServant(servant, name, "SluethHTTPPort");
27

CHAPTER 3 | Advanced Programming Issues
Transient Servant Registration

Overview When a servant is registered as a transient servant, Artix clones a <service>
definition from the physical contract associated with the application and
links the transient servant with the clone. This has the following effects:

• The transient servant’s physical details are based on an existing
<service> element that appears in the contract.

• The transient servant’s service QName is replaced by a dynamically
generated, unique service QName.

• The transient servant’s addressing information is replaced such that
each address is unique per-clone and per-port.

Transient servants are useful if the bus is going to be hosting a number of
instances of a servant as when a service is a factory for other services.

Supported transports While Artix will allow you to register any servant as transient, not all
transports support the notion of transience. Currently, the only transports
supported by Artix that can make use of transient servants are HTTP,
CORBA, and IIOP.

Service templates When using transient servants in your application, your contract must
provide a service template for the servant. A service template is a WSDL
service from which your transient servants will be cloned. When creating the
service template for transient servants adhear to the following:

• The service template must come before any actual WSDL services
defined in the contract. If you place your service templates after your
actual WSDL service definitions, you may run into problems using the
router.

• The service must use one of the supported transports.

• The service must fully describe the properties of the transport being
used.

• The address specified for either a CORBA service or a IIOP service
must be ior:. Specifying any other address in the template will cause
the servants to have invalid IORs.
 28

Servant Registration
Registering You register a transient servant using the bus’ registerTransientServant()
method. The signature of registerTransientServant() is shown in
Example 14.

In addition to the servant instance, registerTransientServant() takes the
service’s QName as specified in the contract defining the service. Unlike
registerServant(), registerTransientServant() does not allow you to
specify a port name because the bus dynamically assigns a port to the
transient servant.

Transient servant QNames Because the newly created transient servant is cloned from the service
whose QName was supplied, the new servant has a different QName. The
transient servant’s QName is returned when you invoke
registerTransientServant(). The returned QName is the QName you use
when creating references for the transient servant or when destroying the
transient servant.

Example Example 15 shows the code for registering a transient servant.

Example 14: registerTransientServant()

public abstract QName registerTransientServant(Servant servant,
 QName serviceName)
throws BusException;

Example 15:Registering a Transient Servant

QName name = new QName("http://whoDunIt.com/Slueth",
 "SluethService");
Servant servant = new SingleInstanceServant("./slueth.wsdl",
 new SluethImpl());
QName transientName = bus.registerTransientServant(servant,
 name,
 "SluethHTTPPort");
29

CHAPTER 3 | Advanced Programming Issues
Proxy Creation

Overview While the Artix Java API’s use dynamic proxies as specified by JAX-RPC,
you may not always be able to use the JAX-RPC specified method for
creating a service proxy. Artix provides a method for creating service proxies
that bypasses the steps outlined in the JAX-RPC specification.

createClient() You can create service proxies using the bus’ createClient() method.
createClient() takes the URL of the service’s contract, the QName of the
service, the name of the port the proxy will use to connect to the service,
and the Java Class representing the service’s remote interface and returns a
JAX-RPC style dynamic proxy for the service if it is successful.
createClient()’s signature is shown in Example 16.

Example Example 17 shows the code for creating a service proxy using
createClient().

Example 16:Bus.createClient()

Remote Bus.createClient(URL wsdlUrl, QName serviceName,
 String portName, Class interfaceClass)
throws BusException

Example 17:Creating a Service Proxy using createClient()

1 QName name = new QName("http://www.buystuff.com",
 "RegisterService");

2 String portName = new String("RegisterPort");

3 String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();

4 // Bus bus obtained earlier
Register proxy = bus.createClient(wsdlURL, name, portName,
 Register.class);
 30

Proxy Creation
The code in Example 17 does the following:

1. Creates the QName for the service from the contract defining the
application. In this example, the service, RegisterService, is defined
in the namespace http:\\www.buystuff.com.

2. Creates a String to hold the name of the <port> defining the transport
the proxy will use to contact the service. In this example, the transport
details are defined in a <port> named RegisterPort.

3. Creates a URL specifying where the service’s contract can be located. In
this example, the contract, register.wsdl, is located in the client’s
directory.

4. Calls createClient() with the correct parameters to create a service
proxy for the Register service.
31

CHAPTER 3 | Advanced Programming Issues
Getting a Bus

Overview There are many instances where you need to get the defualt bus for an
application. These include working with contexts and generating references.
When you are in the mainline code of your application, you will have access
to the instance of the bus you initialized. However, inside the
implementation object of your service or in methods outside the scope of
your client application’s mainline.

Inside a service implementation
object

If you are in a service’s implementation object, you can use the code shown
in Example 18.

From a client proxy If you have a client proxy object, you can use the JAX-RPC Stub interface as
shown in Example 19.

Example 18:Getting a Bus Reference Inside a Servant

com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

Example 19:Getting a Bus Reference from a Client Proxy

Stub clientStub = (Stub)client;
com.iona.jbus.MessageContext context =
clientStub._getProperty(com.iona.jbus.MessageContext.ARTIX_

MESSAGE_CONTEXT);
com.iona.jbus.Bus bus = context.getTheBus();
 32

Threading
Threading

Overview The Artix bus is a multithreaded C++ application that uses a thread pool to
hand out threads. When using the Artix Java APIs, you can use the Artix
configuration file to control how the C++ core manages its threads. In
addition the Artix Java APIs provide three servant threading models to
handle requests from the bus. These models are:

• single-instance multithreaded

• serialized single-instance

• per-invocation

Thread pool configuration The bus’s thread pool is configured in your applications configuration scope.
This configuration scope is specified in the main Artix configuration file.

There are three configuration variables that are used to configure the bus’
thread pool:

• thread_pool:initial_threads sets the number of initial threads in
each port's thread pool.

• thread_pool:low_water_mark sets the minimum number of threads in
each service's thread pool.

• thread_pool:high_water_mark sets the maximum number of threads
allowed in each service's thread pool.

For a detailed discussion of Artix configuration see Deploying and Managing
Artix Solutions.
33

CHAPTER 3 | Advanced Programming Issues
Single-instance multithreaded
servant

The standard Artix servant is the SingleInstanceServant. The
SingleInstanceServant provides a multi-threaded, single instance usage
model to the user. This means that all invocation threads for a given port
access the same implementation object as shown in Figure 1 on page 34.
The SingleInstanceServant provides no thread safety for the user code.

To instaniate a SingleInstanceServant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.
Example 20 shows an example of instantiating a SingleInstanceServant.

Figure 1: SingleInstanceServant

Example 20:Creating a SingleInstnaceServant

//Java
Servant servant =
 new SingleInstanceServant(new HelloImpl(),
 "./hello.wsdl", bus);
 34

Threading
Serialized single-instance servant Artix provides a thread safe single-instance servant called a
SerializedServant. A SerializedServant ensures that all invocations are
routed to a single implementation object in a serialized manner as shown in
Figure 2 on page 35. Using a SerializedServant is equivalent to using a
SingleInstanceServant whose target object is completely synchronized.

To instaniate a SerializedServant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.
Example 20 shows an example of instantiating a SerializedServant.

Per-invocation servant In addition to the multithreaded single instance servants, Artix provides a
per-invocation servant. This servant is implemented by the
PerInvocationServant class. A PerInvocationServant guarantees that a

Figure 2: SerializedServant

Example 21:Creating a SerializedServant

//Java
Servant servant = new SerializedServant(new HelloImpl(),
 "./hello.wsdl", bus);
35

CHAPTER 3 | Advanced Programming Issues
separate instance of the implementation object will be used for each
invocation as shown in Figure 3 on page 36. This ensures thread safety, but
does not allow the implementation object to have any statefull information.

To use a PerInvocationServant, your implementation object must either
have a no-argument constructor, or implement the Cloneable interface and
provide a clone() method. Like the other servants the
PerInvocationServant needs the path of the WSDL file describing the
service interface, an instance of your implementation object, and an
instance of an initialized Artix bus when being instantiated. Example 22
shows the code for instantiating a PerInvocationServant.

Figure 3: PerInvocationServant

Example 22:Creating a PerInvocationServant

//Java
Servant servant = new PerInvocationServant(new HelloImpl(),
 "./hello.wsdl", bus);
 36

Setting Client Connection Attributes Using the Stub Interface
Setting Client Connection Attributes Using the
Stub Interface

Overview The JAX-RPC specification lists four standard properties to which a service
proxy’s Stub interface provides access. Artix provides support for setting
three of them:

• Username

• Password

• Endpoint Address

Currently, Artix only supports setting these properties for HTTP connections.

The Stub interface As required by the JAX-RPC specification, all Artix proxies implement the
javax.xml.rpc.Stub interface. This interface provides access to a number
of low-level properties used in connecting the proxy to the service
implementation. To access these low-level properties the Stub interface has
two methods:

• _getProperty() returns the value of the specified property.

• _setProperty() allows you to set the value of the specified property.

Getting a Stub object Because all Artix proxies implement the Stub interface, you can simply cast
an Artix proxy to a Stub object. Example 23 shows code getting a Stub
object from an Artix proxy.

Example 23:Casting a Client Proxy to a Stub

//Java
import javax.xml.rpc.*;

// client proxy, client, created earlier
Stub clientStub = (Stub) client;
37

CHAPTER 3 | Advanced Programming Issues
Setting the username property One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.security.auth.username property. It is used to set a
username for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s UserName property.

To set the username property using the client’s Stub interface do the
following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 23 on page 37.

2. Create a String containing the username for the value of the property.

3. Call _setProperty() on the Stub specifying Stub.USERNAME_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 24 on page 38 shows code for setting the username for a client.

Setting the password property One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.security.auth.password property. It is used to set a
password for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s Password property.

To set the username property using the client’s Stub interface do the
following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 23 on page 37.

2. Create a String containing the password for the value of the property.

3. Call _setProperty() on the Stub specifying Stub.PASSWORD_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 24:Setting the Username Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String userName = new String("Smart");
secStub._setProperty(Stub.USERNAME_PROPERTY, userName);
 38

Setting Client Connection Attributes Using the Stub Interface
Example 25 on page 39 shows code for setting the password for a client.

Setting the endpoint address One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.service.endpoint.address property. It is used to set the
address for the target service. The property takes a String containing a valid
HTTP URL that points to a service implementing the interface supported by
the proxy.

You can only set this property before you invoke any of the service proxy’s
methods. Once the proxy makes a request on the remote service an HTTP
service connection is established between the client and the service. Due to
the multi-threaded nature of the Artix bus and the nature of HTTP
connections, this connection cannot be broken and reassigned to a new
endpoint. Attempts to reset the endpoint address property after invoking one
of the proxy’s methods will be ignored.

To set the endpoint address property using the client’s Stub interface do the
following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 23 on page 37.

2. Create a String containing the target endpoint’s HTTP URL for the
value of the property.

3. Call _setProperty() on the Stub specifying Stub.ENDPOIT_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 25 on page 39 shows code for setting the endpoint address
property for a client.

Example 25:Setting the Password Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String password = new String("86");
secStub._setProperty(Stub.PASSWORD_PROPERTY, password);
39

CHAPTER 3 | Advanced Programming Issues
Example 26:Setting the Endpoint Address Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String endpt = new
 String("http://control.silencecone.net/9986");
secStub._setProperty(Stub.ENDPOINT_PROPERTY, endpt);
 40

Class Loading
Class Loading

Overview There may be occasions where the jars provided with Artix conflict with the
jars used in your environment. In particular, you may be using different
versions of the Xerces XML parser and Log4J. To handle such situations,
Artix provides a class loader firewall that isolates the Artix runtime class
loader from the application class loader and the system class loader. This
allows the Artix runtime to load the jars it needs and your application to load
your versions of any jars that conflict.

How the class loader firewall
works

The class loader firewall provides a mechanism for your to hide the
application class loader’s jar files from the Artix runtime. It does this by
exposing a simple mechanism for you to create a set of positive filters
defining what classes loaded by the application class loader are visible to
the Artix runtime’s class loader and specifying the location from which the
Artix runtime class loader will load its classes. Any classes not matched by a
positive filter are blocked from the Artix runtime’s class loader and will only
be loaded from the locations specified in the firewall’s configuration file.
Figure 4 shows how the class loader firewall blocks off the Artix runtime.

Figure 4: Class Loader Firewall
41

CHAPTER 3 | Advanced Programming Issues
For example, in most cases you would create a positive filter allowing all of
the J2SE classes into the Artix runtime. However, you would not create a
positive filter for the Xerces classes if your applications use a different
version of Xerces than Artix does. Artix will need to load its own Xerces
classes in order to operate.

Configuring the firewall class
loader

To use the class loader firewall with an Artix Java application do the
following:

1. Create a file called artix_ce.xml and place it in your application’s
classpath.

2. Using the artix_ce.xml file included with the Java firewall demo as a
template, define the filters to only allow the desired packages from the
Artix class loader to be visible to your application code.

3. Define the rules governing where the Artix class loader will look for
specific classes in the <ce:loader> element of artix_ce.xml.

Defining class filters The class loader firewall, if it finds an artix_ce.xml file in the classpath,
assumes that all classes not specified by a positive filter are to be blocked
from the Artix runtime’s class loader. You define positive filters using one of
two <ce:filter> attributes: type="discover" and type="pattern".

Using type=”discover”

The discover filter type specifies that the class loader will discover the filters
from the location specified in the discover-source attribute. Table 1 shows
the values for discover-source.

Table 1: discover-source values for the Class Loader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your artix_ce.xml definition.
 42

Class Loading
Using type=”pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s class loader. The syntax for
specifying package patterns is similar to the syntax used in Java import
statements. For example, to specify that all classes from javax.xml.rpc are
to be allowed through the firewall you could use a filter like <ce:filter
type="pattern">javax.xml.rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce:filter
type="pattern">javax.xml.rpc.</ce:filter>.

Defining negative filters Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime class loader to be visible through the firewall. This is
particularly true with com.iona.jbus. The Artix runtime needs to share a
number of resources from this package with the application code, but it also
needs to ensure that some of its resources are loaded from the Artix jar files.

To solve this problem the class loader firewall allows you to define negative
filters. To define a negative filter you use a value of negative-pattern for
the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system’s

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
myApp.jar, you could define a filter like <ce:filter
type="discover"

discover-source="jar">.\myApp.jar</ce:filter>.

jar-of Discover the filters needed to load specified resource. This
option makes it possible to discover the contents of jar files
which you know are reachable through the class loading
system, but which you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EJBHome class, you could
use a filter like <ce:filter type="discover"
discover-source="jar-of">javax/ejb/EJBHome.class</ce:

filter>.

Table 1: discover-source values for the Class Loader Firewall

Value Meaning
43

CHAPTER 3 | Advanced Programming Issues
JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce:filter
type="negative-pattern">com.iona.jbus.jaxrpc.<\ce:filter>.

Specifying the location for loading
blocked resources

The location from which the Artix runtime class loader will load resources
blocked by the firewall are specified in the <ce:loader> element of
artix_ce.xml. Inside the loader definition, you use a number of
<ce:location> elements to specify the location of specific resources. These
locations can be either the relative or absolute pathnames of a jar file. You
can also specify a directory in which the class loader will search for the
required jar files.

For example, if all of your Artix specific jar files are stored in the location in
which they were installed you could use a loader element similar to
Example 27 to specify the proper Xerces and Log4J version to load into the
Artix runtime.

Examples For an example of using the Artix class loader firewall see the
java_firewall demo in the demos\basic folder of your Artix installation.
The demo provides an example of using the class loader firewall to shield
the Artix runtime from different versions of Xerces and Log4J.

Example 27:Loader Definition to Load Xerces and Log4J

<ce:loader>
 <ce:loaction>C:\IONA\lib\apache\jakarta-log4j\1.2.6\log4j.jar<\ce:loaction>
 <ce:location>C:\IONA\lib\apache\xerces\2.5.0\xercesImpl.jar<\ce:location>
</ce:loader>
 44

CHAPTER 4

Working with Artix
Data Types
Artix maps XMLSchema data types in an Artix contract into
Java data types. For XMLSchema simple types the mapping is
a one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

In this chapter This chapter discusses the following topics:

Using Native XMLSchema Simple Types page 47

Defining Your Own Simple Types page 53

Using XMLSchema Complex Types page 56

Using XMLSchema any Elements page 84

SOAP Arrays page 92

Lists page 95

Enumerations page 98

Deriving Types Using <complexContent> page 104

Holder Classes page 107
45

CHAPTER 4 | Working with Artix Data Types
Using SOAP with Attachments page 111
 46

Using Native XMLSchema Simple Types
Using Native XMLSchema Simple Types

Overview Artix follows the JAX-RPC specification for mapping native XMLSchema
types into Java. In most cases, the mapping from a native XMLSchema type
is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:

Simple Type Mapping page 48

Special Simple Type Mappings page 50

Unsupported Simple Types page 52
47

CHAPTER 4 | Working with Artix Data Types
Simple Type Mapping

Overview When a message part is described as being of one of the simple
XMLSchema types, the generated parameter’s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 28 will cause a parameter, score, of type int to be
generated.

Table of simple type mappings The simple type mappings are shown in Table 2.

Example 28:Message Description Using a Simple Type

<message name="scoreResponse">
 <part name="score" type="xsd:int" />
</message>

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd:string java.lang.String

xsd:int int

xsd:insignedInt long

xsd:long long

xsd:unsignedLong java.math.BigInteger

xsd:short short

xsd:unsignedShort int

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:integer java.math.BigInteger
 48

Using Native XMLSchema Simple Types
Simple type validation Artix Java validates XMLSchema simple types when they are passed to the
bus for writing to the wire. This means that when you are working with data
elements that are mapped from XMLSchema simple types you should take
care to ensure that they conform to the restrictions of the XMLSchema type.
For example, the Java APIs would allow you to set a value of -10 into a data
element that is mapped to an xsd:positiveInteger. However, when the
bus attempted to write out the message containing that data element, the
bus would throw an exception.

xsd:positiveInteger java.math.BigInteger

xsd:negativeInteger java.math.BigInteger

xsd:nonPositiveInteger java.math.BigInteger

xsd:nonNegativeInteger java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:dateTime java.util.Calendar

xsd:QName javax.xml.namespace.QName

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:ID java.lang.String

xsd:anySimpleType java.lang.String

xsd:anyURI java.lang.String

xsd:gYear java.lang.String

xsd:gMonth java.lang.String

xsd:gDay java.lang.String

xsd:gYearMonth java.lang.String

xsd:gMonthDay java.lang.String

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
49

CHAPTER 4 | Working with Artix Data Types
Special Simple Type Mappings

Overview Mapping XMLSchema simple types to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema simple type is mapped to the Java primitive’s corresponding
wrapper type. These cases include:

• an <element> with its nillable attribute set to true as shown in
Example 29.

• an <element> with its minOccurs attribute set to 0 and its maxOccurs
attribute set to 1 or its maxOccurs attribute not specified as shown in
Example 30.

• an <attribute> with its use attribute set to optional, or not specified,
and having neither its default attribute nor its fixed attribute
specified as shown in Example 31.

Mappings Table 3 shows how XMLSchema simple types are mapped into Java
wrapper classes in these special cases.

Example 29:Nillable Element

<element name="finned" type="xsd:boolean" nillable="true" />

Example 30:minOccurs set to Zero

<element name="plane" type="xsd:string" minOccurs="0" />

Example 31:Optional Attribute Description

<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>
 50

Using Native XMLSchema Simple Types
Table 3: simple Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte
51

CHAPTER 4 | Working with Artix Data Types
Unsupported Simple Types

List of unsupported simple types The following XMLSchema simple types are currently not supported by Artix
Java:

xsd:duration
xsd:time
xsd:date
xsd:ENTITY
xsd:NOTATION
xsd:IDREF
soapenc:base64
 52

Defining Your Own Simple Types
Defining Your Own Simple Types

Overview XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
<types> section of an Artix contract using a <simpleType> element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

Procedure To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate
<simpleType> element into the <types> section of your contract.

Describing a simple type in
XMLSchema

Example 32 shows the syntax for describing a simple type.

The type description is enclosed in a <simpleType> element and identified
by the value of the name attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the <restriction>

Example 32:Simple Type Syntax

<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
</simpleType>
53

CHAPTER 4 | Working with Artix Data Types
element. Each facet element is specified within the <restriction> element.
The available facets and their valid setting depends on the base type. For
example, xsd:string has six facets including:

• length

• minLength

• maxLength

• pattern

• whitespace

Example 33 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value, but
<SSN>032439876</SSN> is not valid.

Mapping simple types to Java Artix maps user-defined simple types to the Java type of the simple type’s
base type. So any message using the simple type SSN, shown in
Example 33, would be mapped to a String because the base type of SSN is
xsd:string. For example, the contract fragment shown in Example 34
would result in a Java method, creditInfo(), which took a parameter,
socNum, of String.

Example 33:SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}" />
 </restriction>
</simpleType>

Example 34:Credit Request with Simple Types

<message name="creditRequest">
 <part name="socNum" type="SSN" />
</message>
...
<portType name="creditAgent">
 <operation name="creditInfo">
 <input message="tns:creditRequest" name="credRec" />
 <output message="tns:creditReport" name="credRep" />
 </operation>
</portType>
 54

Defining Your Own Simple Types
Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you must ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Unenforced facets Artix does not enforce the following facets:

• length

• minLength

• maxLength

• pattern

• whiteSpace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

• totalDigits

• fractionDigits

Enforced facets Artix enforces the following facets:

• enumeration

For more information on the enumeration facet, read “Enumerations” on
page 98.
55

CHAPTER 4 | Working with Artix Data Types
Using XMLSchema Complex Types

Overview Complex types are described in the <types> section of an Artix contract.
Typically, they are described in XMLSchema using a <complexType>
element. In contrast to simple types, complex types can contain multiple
elements and have attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a
method for stiringifying the object.

In this section This section contains the following subsections:

Sequence and All Complex Types page 57

Choice Complex Types page 64

Attributes page 68

Nesting Complex Types page 72

Deriving a Complex Type from a Simple Type page 78

Occurrence Constraints page 81
 56

Using XMLSchema Complex Types
Sequence and All Complex Types

Overview Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a <sequence>
element. The other is to describe the structure inside of an <all> element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using a <sequence> and an <all> is in how the
elements of the structure are passed on the wire. When a structure is
described using a <sequence>, the elements are passed on the wire in the
exact order they are specified in the contract. When the structure is
described using an <all>, the elements of the structure can be passed on
the wire in any order.

Mapping to Java A complex type described with <sequence> or with <all> is mapped to a
Java class whose name is derived from the name attribute of the
<complexType> element in the contract from which the type is generated. As
specified in the JAX-RPC specification, the generated class has a getter and
setter method for each element described in the type. The individual
elements of the complex type are mapped to private variables within the
generated class.

Note: If neither <sequence>, <all>, nor <choice> is used to specify how
the elements of the complex type are to be transmitted, the default is
<sequence>.
57

CHAPTER 4 | Working with Artix Data Types
The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 35, the generated setter
method would have the signature void setName(String val).

The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter
method for the element described in Example 35 would have the signature
String getName().

In addition to the getter and setter methods, Artix also generates a
toString() method for each complex type. The toString() method returns
a string containing a labeled list of the values for each element in the class.

Example 35:Element Name Description

<complexType name="Address">
 <all>
 <element name="Name" type="xsd:string" />
 ...
 </all>
</complexType>

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.
 58

Using XMLSchema Complex Types
The maxOccurs attribute Any elements whose maxOccurs attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 36
would result in the generation of a private variable, observedSpeed,of type
float[].

The getter and setter methods for observedSpeed are shown in Example 37.

Example 36:Element with MaxOccurs Greater than One

<complexType name="drugTestResults">
 <sequence>
 <element name="observedSpeed" type="xsd:float"
 maxOccurs="unbounded"/>
...
 </sequence>
</complexType>

Example 37:observedSpeed Getter and Setter Methods

// Java
public class drugTestResults
{
 private float[] observedSpeed;
...
 void setObservedSpeed(float[] val);
 float[] getObservedSpeed();
...
}

59

CHAPTER 4 | Working with Artix Data Types
Example Suppose you had a contract with the complex type, monsterStats, shown in
Example 38.

The Java class generated to support monsterStats would be similar to
Example 39.

Example 38:monsterStats Description

<complexType name="monsterStats">
 <all>
 <element name="name" type="xsd:string" />
 <element name="weight" type="xsd:long" />
 <element name="origin" type="xsd:string" />
 <element name="strength" type="xsd:float" />
 <element name="specialAttack" type="xsd:string"
 maxOccurs="3" />
 </all>
</complexType>

Example 39:monsterStats Java Class

// Java
public class monsterStats
{
 public static final String TARGET_NAMESPACE =

"http://monsterBootCamp.com/types/monsterTypes";

 private String name;
 private long weight;
 private String origin;
 private float strength;
 private String[] specialAttack;

 public void setName(String val)
 {
 name=val;
 }
 public String getName()
 {
 return name;
 }
 60

Using XMLSchema Complex Types
 public void setWeight(long val)
 {
 weight=val;
 }
 public long getWeight()
 {
 return weight;
 }

 public void setOrigin(String val)
 {
 origin=val;
 }
 String getOrigin()
 {
 return origin;
 }

 public void setStrength(float val)
 {
 strength=val;
 }
 public float getStrength()
 {
 return strength;
 }

 public void setSpecialAttack(String[] val)
 {
 specialAttack=val;
 }
 public String[] getSpecialAttack()
 {
 return specialAttack;
 }

Example 39:monsterStats Java Class
61

CHAPTER 4 | Working with Artix Data Types
 public void setWeight(long val)
 {
 weight=val;
 }
 public long getWeight()
 {
 return weight;
 }

 public void setOrigin(String val)
 {
 origin=val;
 }
 String getOrigin()
 {
 return origin;
 }

 public void setStrength(float val)
 {
 strength=val;
 }
 public float getStrength()
 {
 return strength;
 }

 public void setSpecialAttack(String[] val)
 {
 specialAttack=val;
 }
 public String[] getSpecialAttack()
 {
 return specialAttack;
 }

Example 39:monsterStats Java Class
 62

Using XMLSchema Complex Types
 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null) {
 buffer.append("name: "+name+"\n");
 }
 if (weight != null) {
 buffer.append("weight: "+weight+"\n");
 }
 if (origin != null) {
 buffer.append("origin: "+origin+"\n");
 }
 if (strength != null) {
 buffer.append("strength: "+strength+"\n");
 }
 if (specialAttack != null) {
 buffer.append("specialAttack: "+specialAttack+"\n");
 }
 return buffer.toString();
 }
}

Example 39:monsterStats Java Class
63

CHAPTER 4 | Working with Artix Data Types
Choice Complex Types

Overview XMLSchema allows you to describe a complex type that may contain any
one of a number of elements. This is done using a <choice> element as part
of the complex type description. When elements are contained within a
<choice> element, only one of the elements will be transmitted across the
wire.

Mapping to Java Like complex types described with a <sequence> element or with an <all>
element, complex types described with a <choice> element are mapped to a
Java class with getter and setter methods for each possible element inside
the <choice> element. In addition, the generated Java class for a <choice>
complex type includes an additional element, _discriminator, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method
isSetelem_name() is generated. If the element is the currently valid value,
its isSet method returns true. If not, the method returns false.

The discriminator is set in each of the complex type elements’ setter
methods. This means that while any of the elements in the Java object
representing the complex type may contain valid data, the discriminator
points to the last element whose value was set. As stated in the Web
services specification only the element to which the discriminator is set will
be placed on the wire by a server. For Artix developers this has two
implications:

1. Artix servers will only write out the value for the last element set on an
object representing a <choice> complex type.

2. When Artix clients receive an object representing a <choice> complex
type, only the element pointed to by the discriminator will contain valid
data.
 64

Using XMLSchema Complex Types
Example Suppose you had a contract with the complex type, terrainReport, shown
in Example 40.

The Java class generated to represent terrainReport would be similar to
Example 41.

Example 40: terrainReport Description

<complexType name="terrainReport">
 <choice>
 <element name="water" type="xsd:float" />
 <element name="pier" type="xsd:short" />
 <element name="street" type="xsd:long" />
 </choice>
</complexType>

Example 41: terrainReport Java Class

// Java
public class TerrainReport
{
 public static final String TARGET_NAMESPACE =

"http://GlobeStrollers.com";

 private String __discriminator;

 private float water;
 private short pier;
 private long street;
65

CHAPTER 4 | Working with Artix Data Types
 public void setWater(float _v)
 {
 this.water=_v;
 _discriminator="water"’
 }
 public float getWater()
 {
 return water;
 }
 public boolean isSetWater()
 {
 if(__discriminator != null &&
 __discriminator.equals("water")) {
 return true;
 }

 return false;
 }

 public void setPier(short _v)
 {
 this.pier=_v;
 _discriminator="pier";
 }
 public short getPier()
 {
 return pier;
 }
 public boolean isSetPier()
 {
 if(__discriminator != null &&
 __discriminator.equals("pier")) {
 return true;
 }

 return false;
 }

Example 41: terrainReport Java Class
 66

Using XMLSchema Complex Types
 public void setStreet(long _v)
 {
 this.street=_v;
 _discriminator="street";
 }
 public long getStreet()
 {
 return street;
 }
 public boolean isSetStreet()
 {
 if(__discriminator != null &&
 __discriminator.equals("street")) {
 return true;
 }

 return false;
 }

 public void _setToNoMember()
 {
 __discriminator = null;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (water != null) {
 buffer.append("water: "+water+"\n");
 }
 if (pier != null) {
 buffer.append("pier: "+pier+"\n");
 }
 if (street != null) {
 buffer.append("street: "+street+"\n");
 }
 return buffer.toString();
 }
}

Example 41: terrainReport Java Class
67

CHAPTER 4 | Working with Artix Data Types
Attributes

Overview Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. When defining structures for an XML document
<attribute> declarations provide a means of adding information to be
specified within the tag, not the value that the tag contains. In other words,
when describing the XML element <value currency="euro">410<\value>
in XMLSchema currency would be described using an <attribute>
declaration as shown in Example 42.

When describing data types for use in developing application logic, however,
attributes are treated as elements of a structure. For each <attribute>
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

Describing an attribute in
XMLSchema

An XMLSchema <attribute> declaration has two required attributes. The
name attribute identifies the attribute. The use attribute specifies if the
attribute is required, optional, or prohibited..

An <attribute> declaration also has two optional attributes. The type
attribute specifies the type of value the attribute can take. It is used when
the attribute takes a value of a primitive type or of a type that is predefined
in the contract. If the type attribute is omitted from the <attribute>
declaration, the format of the data value must be described as part of the

Example 42:XMLSchema for value

<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="currency" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>
 68

Using XMLSchema Complex Types
<attribute> declaration. Example 43 shows an <attribute> declaration
for an attribute, catagory, that can take the values autobiography,
non-fiction, or fiction.

Example 44 shows an alternate description of the catagory attribute using
the type attribute.

The default/fixed attribute can be used when the use attribute is set to
optional. When the default attribute is given, the value of the generated
element is defaulted to the value specified. When the fixed attribute is
given, the value of the generated element is set to the value specified and
cannot be changed. In the generated Java class, using the fixed attribute
results in the generated element not having a setter method.

Example 43:Attribute with an In-Line Data Description

<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>

Example 44:Category Attribute Using the type Attribute

<simpleType name="catagoryType">
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
</simpleType>
<complexType name="attributed">
...
 <attribute name="category" type="catagoryType" use="required">
</complexType>
69

CHAPTER 4 | Working with Artix Data Types
Example mapping to Java Suppose you had a contract with the complex type, terrainReport, shown
in Example 45.

The Java class generated to represent terrainReport would be similar to
Example 46.

Example 45: techDoc Description

<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 <all>
 <attribute name="usefullness" type="xsd:float" use="optional"
 default="0.01" />
</complexType>

Example 46: techDoc Java Class

// Java
public class TechDoc
{
 public static final String TARGET_NAMESPACE =

"http://www.docUSA.org/usability";

 private String product;
 private short version;
 private Float usefullness = new Float(0.01);

 public void setProduct(String val)
 {
 product=val;
 }
 public String getProdcut()
 {
 return product;
 }
 70

Using XMLSchema Complex Types
 public void setVersion(short val)
 {
 version=val;
 }
 public short getVersion()
 {
 return version;
 }

 public void setUsefullness(Float val)
 {
 usefullness=val;
 }
 public Float getUsefullness()
 {
 return usefullness;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (prudcut != null) {
 buffer.append("product: "+product+"\n");
 }
 if (version != null) {
 buffer.append("version: "+version+"\n");
 }
 if (usefullness != null) {
 buffer.append("usefullness: "+usefullness+"\n");
 }
 return buffer.toString();
 }
}

Example 46: techDoc Java Class
71

CHAPTER 4 | Working with Artix Data Types
Nesting Complex Types

Overview XMLSchema allows you to define complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

• Nesting with Named Types

• Nesting with Anonymous Types

Nesting with Named Types When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element’s data is placed in the element’s type attribute as
shown in Example 47.

The complex type sylvesterState includes an element, food, of type
tweetyBird. The advantage of using named types is that tweetyBird can be
reused as either a standalone complex type or nested in another complex
type description.

Example 47:Nesting with a Named Type

<complexType name="tweetyBird">
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
</complexType>
<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food" type="tweetyBird" />
 </sequence>
</complexType>
 72

Using XMLSchema Complex Types
Nesting with Anonymous Types When you nest with an anonymous type, the element declaration for the
nested complex type does not have a type attribute. Instead, the element’s
type description is provided as part of the element’s declaration.
Example 48 shows a description of sylvesterState using an anonymous
type.

In this example, the food element of sylvesterState still contains a caged
sub-element and a granny_proximity sub-element. However, the complex
type used to describe food cannot be re-used.

Mapping to Java When a complex type containing nested complex types is mapped to Java,
each complex type that is nested creates a generated class to represent it.
The generated class for the top level complex type will have elements whose
elements are instances of the class generated to represent their type. For
example, the sylvesterState complex type, causes two Java classes to be
generated. One to represent the type of the food element and one to
represent sylvesterState.

The name of the classes generated to support the nested complex types
depends on the style of nesting used. For named nested complex types, the
generated class takes its name from the name attribute of the complex type
used to describe it. So the nested type in Example 47 on page 72 would
result in the generation of a class called TweetyBird. The food element of
SylvesterState would be an instance of TweetyBird.

Example 48:Nesting with an Anonymous Type

<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food">
 <complexType>
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>
73

CHAPTER 4 | Working with Artix Data Types
When you use anonymous nested complex types Artix names the class
generated to represent the nested class by appending _type to the name of
the parent complex type’s name attribute. If that does not produce a unique
name, Artix will append _n, where n is an incrementing whole number, to
the name until it finds a unique name for the generated class. For example,
the nested type in Example 48 on page 73 would generate a class,
SylvesterState_type, to represent the type of the food element in
SylvesterState. If there were another complex type whose name was
SylvesterState_type in the contract from which the code was generated,
Artix would name the class generated to support the food element
SylvesterState_type_1.

Example using nested types If you had an application using the complex type shown in Example 47 on
page 72 your application would include two classes to support it,
TweetyBird and SylvesterState.

Example 49 shows the generated Java class for tweetyBird.

Example 49:TweetyBird Class

//Java
public class TweetyBird
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/foodstuffs";

 private boolean caged;
 private int granny_proximity;

 public boolean isCaged()
 {
 return caged;
 }

 public void setCaged(boolean val)
 {
 caged=val;
 }
 74

Using XMLSchema Complex Types
The generated class for sylvesterState, shown in Example 50, has one
element, food, that is an instance of TweetyBird.

 public int getGranny_proximity()
 {
 return granny_proximity;
 }

 public void setGranny_proximity(int val)
 {
 granny_proximity=val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("caged: "+caged+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("granny_proximity: "+granny_proximity+"\n");
 }
 return buffer.toString();
 }
}

Example 49:TweetyBird Class

Example 50:SylvesterState Class

//Java
public class SylvesterState
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/cats";

 private int hunger;
 private TweetyBird food;
75

CHAPTER 4 | Working with Artix Data Types
When you set the value of SylvesterState.food, you must pass a valid
TweetyBird object to setFood(). Also, when you get the value of
SylvesterState.food, you are returned a TweetyBird object which has its
own getter and setter methods. Example 51 shows an example of using the
nested type sylvesterState in Java.

 public int getHunger()
 {
 return hunger;
 }

 public void setHunger(int val)
 {
 hunger=val;
 }

 public TweetyBird getFood()
 {
 return food;
 }

 public void setFood(TweetyBird val)
 {
 food=val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("hunger: "+hunger+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("food: "+food+"\n");
 }
 return buffer.toString();
 }
}

Example 50:SylvesterState Class

Example 51:Working with Nested Complex Types

// Java
 76

Using XMLSchema Complex Types
The code in Example 51 does the following:

1. Instantiates a new SylvesterState object and sets its hunger element
to 25.

2. Instantiates a new TweetyBird object and sets its values.

3. Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the food
element’s caged element.

5. Gets the food element, assigns it to outPrey then prints out the
granny_proximity element.

1 SylvesterState hunter = new SylvesterState();
hunter.setHunger(25);

2 TweetyBird prey = new TweetyBird();
prey.setCaged(false);
prey.setGranny_proximity(0);

3 hunter.setFood(pery);

4 System.out.println("The cat is this hungry:
"+hunter.getHunger());

System.out.println("The food is caged:
"+hunter.getFood().isCaged());

5 TweetyBird outPrey = hunter.getFood();
System.out.println("Granny is this many feet away:

"+outPrey.getGranny_proximity());

Example 51:Working with Nested Complex Types
77

CHAPTER 4 | Working with Artix Data Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

Example 52 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type to include a
currency attribute.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> element defines the derivation by
extension from xsd:decimal.

Java mapping A complex type derived from a simple type is mapped to a Java class. The
class will contain an element, value, of the simple type from which the
complex type is derived. The class will also have a get_value() and a
set_value() method. In addition, the generated class will have an element,
and the associated getter and setter methods, for each attribute that extends
the simple type.

Example 52:Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
</complexType>
 78

Using XMLSchema Complex Types
Example 53 shows the generated Java class representing
internationalPrice class generated from Example 52.

Example 53: internationalPrice Java Class

//Java
public class InternationalPrice
{
 public static final String TARGET_NAMESPACE =

"http://moneyTree.com";

 private String currency;
 private java.math.BigDecimal _value;

 public String getCurrency()
 {
 return currency;
 }

 public void setCurrency(String val)
 {
 currency = val;
 }

 public java.math.BigDecimal get_value()
 {
 return _value;
 }

 public void set_value(java.math.BigDecimal val)
 {
 _value = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (currency != null) {
 buffer.append("currency: "+currency+"\n");
 }
 if (_value != null) {
 buffer.append("_value: "+_value+"\n");
 }
 return buffer.toString();
 }
}

79

CHAPTER 4 | Working with Artix Data Types
The value of the currency attribute, which is added by extension, can be
accessed and modified using the getCurrency() and setCurrency()
methods. The simple type value (that is, the value enclosed between the
<internationalPrice> and </internationalPrice> tags) can be accessed
and modified by the get_value() and set_value() methods.
 80

Using XMLSchema Complex Types
Occurrence Constraints

Overview XMLSchema allows you to specify the minimum and the maximum number
of times that an element in a complex type can occur. You specify these
occurrence constraints on an element by setting the element’s minOccurs
and maxOccurs attributes. The minOccurs attribute specifies the minimum
number of times the element must occur. The maxOccurs attribute specifies
the upper limit for how many times the element can occur. For example, if
an element, lives, were to occur at least twice and no more than nine times
in a complex type it would be described as shown in Example 54.

Given the description in Example 54, a valid houseCat element would have
a single name and at least two lives. However, a valid houseCat element
could not have more than nine lives.

Mapping to Java When a complex type contains an element with its maxOccurs attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxOccurs
attribute of an element is set to a value equal to or greater than the value of
the element’s minOccurs, the code generator will generate a warning if the
minOccurs attribute is set without a maxOccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

Example 54:Occurrence Constraints Setting

<complexType name="houseCat">
 <all>
 <element name="name" type="xsd:string" />
 <element name="lives" type="xsd:short" minOccurs="2"
 maxOccurs="9" />
 </all>
</complexType>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“SOAP Arrays” on page 92.
81

CHAPTER 4 | Working with Artix Data Types
Example For example, the complex type, houseCat, shown in Example 54 will be
mapped to the Java class HouseCat shown in Example 55.

Example 55:HouseCat Java Class

// Java
public class HouseCat
{
 private String name;
 private short[] lives;

 public void setName(String val)
 {
 name=val;
 {
 public String getName()
 {
 return name;
 }

 public void setLives(short[] val)
 {
 lives=val;
 {
 public short[] getLives()
 {
 return lives;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null)
 {
 buffer.append("name: "+name+"\n");
 }
 if (lives != null)
 {
 buffer.append("lives: "+lives+"\n");
 }
 return buffer.toString();
 }
}

 82

Using XMLSchema Complex Types
The generated code does not force you to obey the min and the max
occurrence rules from the contract, but your application code should be sure
to obey the contract rules. Attempting to send too few or too many
occurrences of an element across the wire will create unpredictable results.
83

CHAPTER 4 | Working with Artix Data Types
Using XMLSchema any Elements

Overview An XMLSchema any is a special element used to denote that an element’s
contents are undefined. An element defined using any can contain any XML
data. When mapped to Java, an any element is mapped to a SOAPElement
as called for in the JAX-RPC specification.

Describing an any in the contract Example 56 shows the syntax for defining an element as an any in an Artix
contract.

Table 4 explains the details of the optional attributes.

Example 56:Syntax of an any

<any [maxOccurs = max] [minOccurs = min]
 [namespace = ((##any | ##other) | List of (anyURI |

(##targetNamespace | ##local)))]
 [processContents = (lax | skip | strict)] />

Table 4: Attributes for an any

Attribute Explanation

maxOccurs Specifies the maximum number of times the
element can occur. Default is 1.

minOccurs Specifies the minimum number of times the
element must occur. Default is 1.
 84

Using XMLSchema any Elements
namespace Specifies how to determine the namespace to use
when validating the contents of the any. Valid
entries are:

##any(default) specifies that the contents of the
any can be from any namespace.

##other specifies that the contents of the any can
be from any namespace but the target namespace.

list of URIs specifies that the contents of the any
are from one of the listed namespaces in the space
delimited list. The list can contain two special
values:

• ##local which correspondes to an empty
namespace.

• ##targetNamespace which corrensponds to the
tager namespace of the schema in which the
any is defined.

processContents Specifies how the contents of the any are validated.
Valid entries are:

strict(default) specifies that the contents of the any
must be a valid and well-formed XML document.

skip specifies that no validation is done on the
contents of the any. The only constraint is that it
must be a well-formed XML element.

lax specifies that if there is an XMLSchema
definition available to validate the contents of the
any, then it must be valid. If there is no
XMLSchema definition available, then validation is
skipped.

Table 4: Attributes for an any

Attribute Explanation
85

CHAPTER 4 | Working with Artix Data Types
Example 57 shows the definition of a type, wildCard, that contains an any.
The contents of wildCard can be defined in any, or no, namespace and the
validation of the contents is only performed if there is schema available.

Mapping to Java XMLSchema any elements are mapped to a Java element of type
javax.xml.soap.SOAPElement. The member is named _any and it is given
associated setter and getter methods. If a complex type contains more than
one any element the additional any elements are named _any_n, where n is
an integer starting at one. For example, if a complex type had two any
elements the generated Java type would have two
javax.xml.soap.SOAPElement members, _any and _any_1.

Example 58 shows the Java class generated for the complex type wildCard,
shown in Example 57 on page 86.

Example 57:Complex Type with an any

<complexType name="wildCard">
 <sequence>
 <any namespace="##any" processContents="lax" />
 </sequence>
</complexType>

Example 58:Generated Java Class with an any

// Java
import java.util.*;
import javax.xml.soap.SOAPElement;

public class WildCard
{
 public static final String TARGET_NAMESPACE =

"http://packageTracking.com/types/packageTypes";

 private javax.xml.soap.SOAPElement _any;

 public javax.xml.soap.SOAPElement get_any()
 {
 return _any;
 }
 86

Using XMLSchema any Elements
If the minOccurs or maxOccurs attribute of the any element are set, then the
Java element is mapped to an array of SOAPElement. For example, if the any
element in wildCard had maxOccurs="4", the _any member of the generated
Java class would be a javax.xml.soap.SOAPElement[].

Parsing an any The fact that an any element can hold any well-formed XML data makes it
very flexible. However, that flexibility requires that your application is
designed to handle all the possible contents of the any.

For most applications, the contents of the any will have a finite number of
forms and these are known at development time. For example, if your
application is retrieving student records from a college database it may
receive different records based on if the student is a graduate student or an
under graduate student. In cases where you know at development time the
possible contents of the any, you can query the any for the name of its root
element using SOAPElement.getElementName() and determine from the
returned javax.xml.soap.Name how to process the contents.

 public void set_any(javax.xml.soap.SOAPElement val)
 {
 this._any = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (_any != null) {
 buffer.append("_any: "+_any+"\n");
 }
 return buffer.toString();
 }
}

Example 58:Generated Java Class with an any

Note: Because the contents of the any is an XML document made up
entirely of text, you do not neccesarily need to determine the form of the
data. You can still extract the contents using the SOAPElement’s methods.
87

CHAPTER 4 | Working with Artix Data Types
Example 59 shows code for querying the any in WildCard for its element
name. Once the element is determined, the application uses the local part of
the name to determine how to process the contents of the any.

You can parse the XML content of the any using the
SOAPElement.getChildElements() method. getChildElements() returns a
Java Iterator containing a list of javax.xml.soap.Node elements
representing the nodes of the XML document contained in the any. These
nodes will in turn either be SOAPElement nodes or javax.xml.soap.Text
nodes which will require further parsing.

Example 60 shows code for extracting the data from an any containing a
houseCat, defined in Example 54 on page 81.

Example 59:Determining the Contents of an any

// Java
import java.util.*;
import javax.xml.soap.*;

WildCard dataHolder;

// Client proxy, proxy, instantiated earlier
dataHolder = proxy.getRecord();
SOAPElement studentRec=dataHolder.get_any();

// Get the root element name of the returned record
Name recordType = studentRec.getElementName();

if (recordType.getLocalName().equals("gradRec"))
{
 // process the data as a graduate student record
}
if (recordType.getLocalName().equals("ugradRec"))
{
 // process the data as a graduate student record
}

Example 60:Parsing the Contents of an any

// Java
import java.util.*;
import javax.xml.soap.*;

WildCard dataHolder;
 88

Using XMLSchema any Elements
The code in Example 60 does the following:

1. Gets the data and extracts the any from it.

2. Gets the children elements of the any.

3. Checks if there are any children elements. If there are, print the name.
If not, print an error message.

4. Checks if there are any more children elements. If there are, iterate
through the list and print the lives. If not, print an error message.

1 // Client proxy, proxy, instantiated earlier
dataHolder = proxy.getCat();
SOAPElement catHolder = dataHolder.get_any();

2 // Get the XML node from the returned any
Iterator catIt = catHolder.getChildElements();

3 if (catIt.hasNext())
{
 System.out.println("The cat’s name is

"+catIt.next().getValue());
}
else
{
 System.out.println("Malformed houseCat: No elements.");
 return(-1);
}

4 if (catIt.hasNext())
{
 for (Node index=catIt.next(); (catIt.hasNext());
 index=catIt.next())
 {
 System.out.println("The cat lived

"+index.getValue()+"years");
 }
else
{
 System.out.println("Malformed houseCat: No lives.");
 return(-1);
}
}

Example 60:Parsing the Contents of an any
89

CHAPTER 4 | Working with Artix Data Types
To get the value of the nodes, the code uses the getValue() method of the
node. For a SOAPElement node, getValue() returns the value of the element
if it has one, or it returns the value of the first child element that has one.
For example, if the SOAPElement contains the element <name>Joe</name>,
getValue() returns Joe. If the SOAPElement contains
<houseCat><name>Joe</name><lives>12</lives></houseCat>, getValue()
returns Joe. For a Text node, getValue() returns the text stored in the
node.

Putting content into an any When adding content into an any, you build up the XML document
contained in the any from scratch. The SOAPElement provides a number of
methods for adding attributes and elements. It has methods for setting the
value of the contained elements.

Example 61 shows the code for creating an any element containing the XML
document <houseCat><name>Joe</name><lives>12</lives></houseCat>.

The code in Example 61 does the following:

1. Gets an instance of the SOAPElementFactory.

2. Creates a new SOAPElement, using the factory, to hold the contents of
the any.

3. Adds the <name> child element and set its value.

4. Adds the <lives> child element and set its value.

Example 61:Building an any

//Java
import java.util.*;
import javax.xml.soap.*;

1 SOAPElementFactory factory = SOAPElementFactory.newInstance();

2 SOAPElement anyContent = factory.create("houseCat");

3 SOAPElement tmp = anyContent.addChildElement("name");
tmp.addTextNode("Joe");

4 tmp = anyContent.addChildElement("lives");
tmp.addTextNode("12");

5 WildCard dataHolder = new WildCard();
dataHolder.set_any();
 90

Using XMLSchema any Elements
5. Creates a new WildCard and set the any element to the newly created
SOAPElement.

More information For a detailed description of the classes used to represent and work with any
elements read the SOAP with Attachments API for Java™ (SAAJ) 1.2
specification.
91

CHAPTER 4 | Working with Artix Data Types
SOAP Arrays

Overview SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

Syntax of a SOAP Array SOAP arrays can be described by deriving from the SOAP-ENC:Array base
type using the wsdl:arrayType. The syntax for this is shown in Example 62.

Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
<ArrayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [][] or [,].

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 63.

Example 62:Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Example 63:Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
 92

SOAP Arrays
When using this syntax, the element’s maxOccurs attribute must always be
set to unbounded.

Java mapping SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message part
that was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPStrings, shown in Example 64 defines a
one-dimensional array of strings. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:string, and the number of dimensions, []
implying one dimension.

Any message part of type SOAPStrings and any complex type element of
type SOAPStrings would be mapped to String[]. So the contract fragment
shown in Example 65, would result in the generation a Java method
celebWasher() that took a parameter, badLang, of type String[].

Example 64:Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 65:Operation Using an Array

...
<message name="badLang">
 <part name="statement" type="SOAPStrings" />
</message>
<portType name="censor">
 <operation name="celebWasher">
 <input message="badLang" name="badLang" />
 </operation>
</portType>
...
93

CHAPTER 4 | Working with Artix Data Types
Multi-dimensional arrays Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SOAPStrings were mapped to a two-dimensional array, as shown in
Example 66, the mapping of celebWasher() would take a parameter,
badLang, of type String[][].

Sparse and partially transmitted
arrays

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, intArray[], of 10 integers and
only filled in intArray[1], intArray[6], and intArray[9], it would be
considered a sparse array.

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,
hotMatrix[x][y], and only put values in elements where 9 > x > 5 and 4
> y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

Example 66:Definition of a two-dimensional SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[][]"/>
 </restriction>
 </complexContent>
</complexType>
 94

Lists
Lists

Overview XMLSchema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, simpleList, using
a list type is shown in Example 67.

In Java code list types are mapped into arrays.

Defining list types in XMLSchema XMLSchema list types are simple types and as such are defined using a
<simpleType> element. The most common syntax used to define a list type
is shown in Example 68.

The value given for atomicType defines the type of the elements in the list. It
can only be one of the built in XMLSchema atomic types, like xsd:int or
xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type. Table 5
shows the facets used by list types.

Example 67:List Type Example

<simpleList>apple orange kiwi mango lemon lime<\simpleList>

Example 68:Syntax for List Types

<simpleType name="listType">
 <list itemType="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </list>
</simpleType>

Table 5: List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.
95

CHAPTER 4 | Working with Artix Data Types
For example, the definition for the simpleList element shown in
Example 67 on page 95, is shown in Example 69.

In addition to the syntax shown in Example 68 on page 95 you can also
define a list type using the less common syntax shown in Example 70.

minLength Defines the minimum number of elements allowed in
an instance of the list type.

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

pattern Defines the lexical form of the elements in an instance
of the list type. Patterns are defined using regular
expressions.

Table 5: List Type Facets

Facet Effect

Example 69:Definition for simpleList

<simpleType name="simpleListType">
 <list itemType="string"/>
</simpleType>
<element name="simpleList" type="simpleListType"/>

Example 70:Alternate Syntax for List Types

<simpleType name="listType">
 <list>
 <simpleType>
 <restriction base="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
 </simpleType>
 </list>
</simpleType>
 96

Lists
Mapping of list types in Java List types are mapped to Java arrays and do not cause a new class to be
generated to represent them. Instead, any message part that was specified
in the Artix contract as being of type listType or any element of another
complex type that was of type listType in the Artix contract would be
mapped to an array of the type specified by the itemType attribute.

For example, the list type, stringList, shown in Example 71 defines a list
of strings that must have at least two elements and no more than six
elements. The itemType attribute specifies the type of the list elements,
xsd:string. The facets minLength and maxLength set the size constraints on
the list.

Any message part of type stringList and any complex type element of type
stringList would be mapped to String[]. So the contract fragment shown
in Example 72, would result in the generation a Java method
celebWasher() that took a parameter, badLang, of type String[].

Example 71:Definition of stringList

<simpleType name="stringList">
 <list itemType="xsd:string">
 <minLength value="2" />
 <maxLength value="6"/>
 </list>
</simpleType>

Example 72:Operation Using a List

...
<message name="badLang">
 <part name="statement" type="stringList" />
</message>
<portType name="censor">
 <operation name="celebWasher">
 <input message="badLang" name="badLang" />
 </operation>
</portType>
...
97

CHAPTER 4 | Working with Artix Data Types
Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 73.

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration widgetSize, shown in Example 74, would be valid if it were
<widgetSize>big</widgetSize>, but not if it were
<widgetSize>big,mungo</widgetSize>.

Example 73:Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value" />
 <enumeration value="Case2Value" />
 ...
 <enumeration value="CaseNValue" />
 </restriction>
</simpleType>

Example 74:widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>
</simpleType>
 98

Enumerations
Mapping to a Java class Artix maps enumerations to a Java class whose name is taken from the
schema type’s name attribute. So Artix would generate a class, WidgetSize,
to represent the widgetSize enumeration.

The generated class contains two static public data members for each
possible case value. One, _CaseNValue, holds the data value of the
enumeration instance. The other, CaseNValue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration’s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, WidgetSize, shown in
Example 75, to represent the enumeration, widgetSize, shown in
Example 74 on page 98.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in “Nesting with Anonymous Types” on page 73.

Example 75:WidgetSize Class

// Java
public class WidgetSize
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";
99

CHAPTER 4 | Working with Artix Data Types
 private final String _val;

 public static final String _big = "big";
 public static final WidgetSize big = new WidgetSize(_big);

 public static final String _large = "large";
 public static final WidgetSize large = new WidgetSize(_large);

 public static final String _mungo = "mungo";
 public static final WidgetSize mungo = new WidgetSize(_mungo);

 public static final String _gargantuan = "gargantuan";
 public static final WidgetSize gargantuan = new

WidgetSize(_gargantuan);

 protected WidgetSize(String value)
 {
 _val = value;
 }

 public String getValue()
 {
 return _val;
 };

Example 75:WidgetSize Class
 100

Enumerations
 public static WidgetSize fromValue(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

 public static WidgetSize fromString(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

Example 75:WidgetSize Class
101

CHAPTER 4 | Working with Artix Data Types
Working with enumerations in
Java

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromValue() or fromString() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the getValue() method on that member to
determine the value for the member.

If you were working with the widgetSize enumeration, shown in
Example 74 on page 98, to build an ordering system, you would need a way
to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 76 shows a simple text entry method
for getting the proper member of the enumeration using fromValue(),

Because the value used to define the cases of the enumeration is a string,
fromValue() takes a String and returns the member based on the value of
the string. In this example, fromString() is interchangeable with
fromValue(). However, if the value of the enumeration were integers,
fromValue() would take an int.

 public String toString()
 {
 return ""+_val;
 }
}

Example 75:WidgetSize Class

Example 76:Using fromValue() to Get a Member of an Enumeration

// Java
temp = new String();
WidgetSize ordered_size;

// Get the type of widgets to order
System.out.println("What size widgets do you want?");
System.out.println("Big");
System.out.println("Large");
System.out.println("Mungo");
System.out.println("Gargantuan");
temp = inputBuffer.readLine();

ordered_size = WidgetSize.fromValue(temp);
 102

Enumerations
To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the getValue() method
to retrieve the value of the enumeration or you could use the toString()
method to return the value as a String. Example 77 uses getValue() to
return the value of the enumeration retrieved in Example 76 on page 102

Example 77:Using getValue()

// Java
String sizeVal = ordered_size.getValue();
System.out.println("You ordered "+sizeVal+" sized widgets.");
103

CHAPTER 4 | Working with Artix Data Types
Deriving Types Using <complexContent>

Overview Using XMLSchema, you can derive new complex types by extending other
complex types using the <complexContent> element. When generating the
Java class to represent the derived complex type, Artix extends the base
type’s class. In this way, the Artix-generated Java code preserves the
inheritance hierarchy intended in the XMLSchema.

Schema syntax You derive complex types from other complex types by using the
<complexContent> element and the <extension> element. The
<complexContent> element specifies that the included data description
includes more than one field. The <extension> element, which is part of the
<complexContent> definition, specifies the base type being extended to
create the new type. The base type is specified by the <extension>
element’s base attribute.

Within the <extension> element, you define the additional fields that make
up the new type. All elements that are allowed in a complex type description
are allowable as part of the new type’s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
<choice> element to specify that only one of the new fields is to be valid at
a time.

Example 78 shows an XMLSchema fragment that defines two complex
types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetOrderInfo to include two new fields,
orderNumber and amtDue.

Example 78:Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:decimal"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:QName" use="optional" />
</complexType>
 104

Deriving Types Using <complexContent>
Generated Java code As with all complex types defined in a contract, Artix generates a class to
represent complex types derived by extension. When the complex type is
derived by extension, the generated class extends the base class generated
to support the base complex type in the contract.

For example, the schema in Example 78 on page 104 would result in the
generation of two Java classes, WidgetOrderInfo and
WidgetBillOrderInfo. WidgetOrderBillInfo would extend
WidgetOrderInfo because widgetOrderBillInfo is derived by extension
from widgetOrderInfo. Example 79 shows the generated class for
widgetOrderBillInfo.

<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:boolean"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Example 78:Deriving a Complex Type by Extension

Example 79:WidgetOrderBillInfo

// Java
public class WidgetOrderBillInfo extends WidgetOrderInfo
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";

 private boolean amtDue;
 private String orderNumber;

 public boolean isAmtDue()
 {
 return amtDue;
 }
105

CHAPTER 4 | Working with Artix Data Types
 public void setAmtDue(boolean val)
 {
 this.amtDue = val;
 }

 public String getOrderNumber()
 {
 return orderNumber;
 }

 public void setOrderNumber(String val)
 {
 this.orderNumber = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 buffer.append("amtDue: "+amtDue+"\n");
 if (orderNumber != null)
 {
 buffer.append("orderNumber: "+orderNumber+"\n");
 }
 return buffer.toString();
 }
}

Example 79:WidgetOrderBillInfo
 106

Holder Classes
Holder Classes

Overview WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C++ does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
in/out parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in javax.xml.rpc.holders.
The names of the holder classes start with a capital letter and end with the
Holder postfix. The name of the holder class for long is LongHolder. For
primitive wrapper classes, Wrapper is placed after the class name and before
Holder. For example, the holder class for Long is LongWrapperHolder.

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the
javax.xml.rpc.holders.Holder interface. For example, the holder class for
a complex type, hand, would be HandHolder.

All holder classes provide the following:

• A public field named value of the mapped Java type. For example, a
HandHolder would have a value field of type Hand.

• A constructor that sets value to a default.

• A constructor that sets value to the value of the passed in parameter.

Working with holder classes A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation’s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 80 shows an example of an operation that would
require holder classes in the generated Java code.

Example 80:Multiple Output Parts

<message name="incomingPackage">
 <part name="ID" type="xsd:long" />
</message>
107

CHAPTER 4 | Working with Artix Data Types
Artix will use holder classes for the parameters of the Java method
generated to implement the operation, router, because the output message
has multiple parts. Example 81 shows the resulting Java method signature.

The first part of the outgoingPackage message, rerouted, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, destination, is mapped to a
holder class because it has to be mapped into the method’s parameter list.

<message name="outgoingPackage">
 <part name="rerouted" type="xsd:boolean" />
 <part name="destination" type="xsd:string" />
</message>
<portType name="portal">
 <operation name="router">
 <input message="tns:incomingPackage" name="recieved" />
 <output message="tns:outgoingPackage" name="shipped" />
 </operation>
</portType>

Example 80:Multiple Output Parts

Example 81: Interface Using Holders

//Java
import java.net.*;
import java.rmi.*;

public interface portal extends java.rmi.Remote
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 throws RemoteException;
}

 108

Holder Classes
An example of an application that implements the portal interface might be
one that determines if a package has reached its final destination. The
router method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 82 shows how
a server might implement the router method.

Example 83 shows a client calling router() on a portal service.

Example 82:Portal Implementation

//Java
import java.net.*;
import java.rmi.*;

// The methods boolean belongsHere() and
// String getFinalDestination() are left
// for the reader to implement.

public class portalImpl
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 {
 if(belongsHere(ID))
 {
 return false;
 }

 destination.value = getFinalDestination(ID);
 return true;
 }

}

Example 83:Client Calling router()

//Java
StringHolder destination = new StringHolder();
long ID = 1232;
boolean continuing;
109

CHAPTER 4 | Working with Artix Data Types
// proxy portalClient obtained earlier
continuing = portalClient.router(ID, destination);

if (continuing)
{
 System.out.println("Package "+ID+" is going to

"+destination.value);
}

Example 83:Client Calling router()
 110

Using SOAP with Attachments
Using SOAP with Attachments

Overview When a contract specifies that one or more of an operation’s messages are
being sent using SOAP with attachments, also called a MIME multi-part
related message, Artix treats the data being passed as an attachment
differently than it would normaly. The JAX-RPC specification defines specific
Java data types to be used when using SOAP attachments. The data
mappings for the data passed as a SOAP attachment is derived from the
MIME type specified in the contract for the message part.

In addition, Artix support the use of javax.activation.DataHandler objects
for handling SOAP attachments. DataHandler objects provide a generic
means of dealing with the data passed as a SOAP attachment. They also
allow you to directly access the stream representation of the data sent as a
SOAP attachment.

JAX-RPC mappings When Artix generates code for an operation that has one or more of its
message bound to a SOAP with attachment payload format, it inspects the
binding to see which parts of the bound message are being sent as
attachments. For the message parts that are to be sent as attachments, it
disregards the data type mappings described in previous sections and maps
the corresponding method parameter based on the MIME type specified for
the part in the contract. Table 6 shows the mappings for the supported
MIME types.

Table 6: MIME Type Mappings

MIME Type Java Type

image/gifa java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

multipart/* javax.mail.internet.MimeMultipart
111

CHAPTER 4 | Working with Artix Data Types
For example, the contract shown in Example 84 has one operation, store,
whose input message has three parts: a patient name, a patient ID number,
and a base64Binary buffer to hold an image. The input message is bound to
a SOAP message with attachments using the <mime:multiPart> element.

a. Artix only supports the decoding of images in the GIFF format. It does not
support the encoding of images into the GIFF format.

Example 84:Using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="storRequest">
 <part name="patientName" type="xsd:string" />
 <part name="patientNumber" type="xsd:int" />
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>
 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>
 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="rpc"/>
 112

Using SOAP with Attachments
The binding specifies that only one part of the message, the base64Binary
buffer, is to be passed as an attachment using the MIME type image/jpeg.
The other two parts of the message are to be passed in the SOAP body of
the message. If the operation were bound to a standard SOAP message, the

 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://mediStor.org/x-rays" use="encoded"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:AttachmentService" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 84:Using SOAP with Attachments
113

CHAPTER 4 | Working with Artix Data Types
generated method would have a String paramemter, an int parameter, and
a byte[] parameter. Instead the operation, store, is mapped as shown in
Example 85.

Using DataHandler objects Artix also provides the option to map SOAP attachments to
javax.activation.DataHandler objects. To have Artix map SOAP
attachments to DataHandler objects, use the -datahandlers flag when
running wsdltojava.

When using DataHander objects, Artix maps all SOAP attachements to a
DataHandler, so the contract in Example 84 on page 112 would result in
the operation shown in Example 86 as opposed to the one shown in
Example 85 on page 114.

Example 85: Java for SOAP with Attachments

// Java
package org.medistor.x_rays;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import java.awt.Image;

public class XRayStorageImpl implements java.rmi.Remote
{
 public boolean store(String patientName,
 int patientNumber,
 java.awt.Image xRay) {
 // User code goes in here.
 return false;
 }
}

Example 86:SOAP Attachments Using DataHandler Objects

// Java
package org.medistor.x_rays;

import java.net.*;
import java.rmi.*;
 114

Using SOAP with Attachments
Using DataHandler objects to manipulate SOAP attachments provides you
with greater control over the data being passed in the attachment. As
specified in the J2EE specification, DataHandler objects have methods that
allow you to manipulate the attachment data as either an Object, an
InputStream, or an OutputStream. In addition, DataHandler objects allow
you to querey it for the MIME type for the data being passed in the
attachment. For more information on using DataHandler objects see the
J2EE API documentation at
http://java.sun.com/j2ee/1.4/docs/api/index.html.

import java.lang.String;
import javax.activation.DataHandler;

public class XRayStorageImpl implements java.rmi.Remote
{
 public boolean store(String patientName,
 int patientNumber,
 javax.activation.DataHandler xRay)
 {
 // User code goes in here.
 return false;
 }
}

Example 86:SOAP Attachments Using DataHandler Objects

Note: When creating DataHandler objects to be passed in a SOAP
attachment, ensure that the MIME type specified in the creator method
matches the MIME type specified in the contract.
115

http://java.sun.com/j2ee/1.4/docs/api/index.html

CHAPTER 4 | Working with Artix Data Types
 116

CHAPTER 5

Creating
User-Defined
Exceptions
Artix supports the definition of user-defined exceptions using
the WSDL <fault> element. When mapped to Java, the
<fault> element is mapped to a throwable exception on the
associated Java method.

In this chapter This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 118

How Artix Generates Java User-defined Exceptions page 120

Working with User-defined Exceptions in Artix Applications page 122
117

CHAPTER 5 | Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix
Contract

Overview Artix allows you to create user-defined exceptions that your service can
propagate back to its clients. As with any information that is exchanged
between a service and client in Artix, the exception must be described in the
Artix contract. Describing a user-defined exception in an Artix contract
involves the following:

• Describing the message that the exception will transmit.

• Associating the exception message to a specific operation.

• Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a
user-defined exception. The third task, describing the binding of the
exception to a payload format, is beyond the scope of this book. For
information on binding messages to specific payload formats in an Artix
contract read Designing Artix Solutions.

Describing the exception message Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the <message> element. There
are no restrictions on the data types that can be passed as part of an
exception message or on the number of parts the message can contain.

Example 87 shows a message description in an Artix contract.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

Example 87:Message Description

<message name="notEnoughInventory">
 <part name="numInventory" type="xsd:int" />
</message
 118

Describing User-defined Exceptions in an Artix Contract
For more information on describing a message in an Artix contract, read
Designing Artix Solutions.

Associating the exception with an
operation

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a <fault> element to the operation’s
description. A <fault> element takes the same attributes as the <input>
and <output> elements. The message attribute specifies the <message>
element describing the data passed by the exception. The name attribute
specifies the name by which the exception will be referenced in the binding
section of the contract.

Example 88 shows an operation description that uses the message
described in Example 87 on page 118 as a user-defined exception.

The operation described in Example 88, getWidgets, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

Example 88:Operation with a User-defined Exception

<operation name="getWidgets">
 <input message="tns:widgetSizeMessage" name="size" />
 <output message="tns:widgetCostMessage" name="cost" />
 <fault message="tns:notEnoughInventory" name="notEnough" />
</operation>
119

CHAPTER 5 | Creating User-Defined Exceptions
How Artix Generates Java User-defined
Exceptions

Overview As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Exception class so that it can be thrown. It will have one private data
member of the type specified in the contract’s message part to represent
each part of the message, a creation method that allows you to specify the
values of each data member, and the associated getter and setter methods
for each data member. In addition, the generated class will have a
toString() method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the name attribute of the exception’s message description and
will always start with a capital letter.

Example Example 89 shows the generated exception class for the fault message in
Example 87 on page 118.

Example 89:Generated Java Class

//Java
import java.util.*;

public class NotEnoughInventory extends Exception
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/widgetOrderForm";

 private int numInventory;

 public NotEnoughInventory(int numInventory)
 {
 super();
 this.numInventory = numInventory;
 }
 120

How Artix Generates Java User-defined Exceptions
The TARGET_NAMESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

 public int getNumInventory()
 {
 return numInventory;
 }

 public void setNumInventory(int val)
 {
 numInventory = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 if (size != null)
 {
 buffer.append("numInventory: "+numInventory+"\n");
 }
 return buffer.toString();
 }
}

Example 89:Generated Java Class
121

CHAPTER 5 | Creating User-Defined Exceptions
Working with User-defined Exceptions in Artix
Applications

Overview Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception and inspect the contents using the standard methods.

Example Example 90 shows how a server implementing the getWidgets operation,
shown in Example 88 on page 119, might instantiate and throw a
NotEnoughInventory exception.

Example 91 shows how a client might catch and report the exception
thrown by the server.

Example 90:Throwing a User-defined Exception

//Java
...
// checkInventory() is left for the reader to implement
// size and numOrdered are parameters passed into the operation
if (numOrdered > checkInventory(size))
{
 throw NotEnoughInventory(checkInventory(size));
}

Example 91:Catching a User-defined Exception

// Java
...
try
{
 long cost = getWidgets(size, numOrdered);
}

 122

Working with User-defined Exceptions in Artix Applications
catch(NotEnoughInventory nei)
{
 // get the value stored in the exception
 int numInventory = nei.getNumInventory();
 System.out.println("The factory only has "+numInventory+
 " widgets of size "+size+".");
}

Example 91:Catching a User-defined Exception
123

CHAPTER 5 | Creating User-Defined Exceptions
 124

CHAPTER 6

Working with Artix
Type Factories
Artix uses generated type factories to support a number of
advanced features including XMLSchema anyType support
and message contexts.

In this chapter This chapter discusses the following topics:

Introduction to Type Factories page 126

Registering Type Factories page 128

Getting Type Information From Type Factories page 131
125

CHAPTER 6 | Working with Artix Type Factories
Introduction to Type Factories

What are type factories? Artix type factories are generated classes that allow the Artix bus to
dynamically create instances of user defined types. They are used to support
Artix functionality that manipulate data using generic Java Object instances
such as working with XMLSchema anyType instances, message contexts,
and SOAP headers.

Using type factories in your
applications

To use type factories in your Artix applications you need to do the following:

1. Generate the type factories for all of the XMLSchema types and
XMLSchema elements used by your application.

2. Register the type factories with the bus used by your application.

Once the type factories are registered with the bus, it will use the type
factories to create the proper holders for any data that needs them. In
addition, you can also use the functions on the type factories to get
information about the types used in your application or to dynamically
instantiate classes for your data types.

Generating type factories wsdltojava automatically generates a type factory for all user-defined types
in a contract when it generates the code for them. The type factory class is
named by postfixing TypeFactory onto the port type’s name. For example if
you generated Java code for a port type named packageDepot, the generated
type factory class would be packageDepotTypeFactory.

Additionally, you can pass wsdltojava an XMLSchema document that
defines types used by your application and it will generate the classes and
type factory for the defined types.

Each contract or XMLSchema document results in one type factory that
supports all of the types and elements defined by it. The generated type
factory will also support all of the types and elements defined by any
imported XMLSchema documents. So, if your application only uses the
complex types defined in its own contract you will only need to register one
type factory. However, if your application uses types defined in a second
XMLSchema document, you will need to generate and register the type
factory for those types also.
 126

Introduction to Type Factories
Java packages for anyType
support

When using type factories you must import the package
com.iona.webservices.reflect.types.TypeFactory.
127

CHAPTER 6 | Working with Artix Type Factories
Registering Type Factories

Overview Before the Artix bus can use the generated type factories, they must be
registered with the bus. This is done using the bus’ registerTypeFactory()
method.

Procedure To register type factories with an application’s bus do the following:

1. Get a reference to the application’s bus as shown in “Getting a Bus” on
page 32.

2. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 128.

3. Register the type factories using registerTypeFactory() on the Bus
object as shown in “Registering a type factory” on page 129.

Instantiating a type factory The Artix Java code generator automatically generates a type factory for all
of the complex types and elements defined in a contract. The type factory
class is named by postfixing TypeFactory onto the port type’s name. For
example if you generated Java code for a port type named packageDepot,
the generated type factory class would be PackageDepotTypeFactory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 92 shows the code to
instantiate the type factory for packageDepot.

Example 92: Instantiating a TypeFactory

//Java
PackageDepotTypeFactory factory = new PackageDepotTypeFactory();
 128

Registering Type Factories
Registering a type factory You register a type factory with the bus using its registerTypeFactory()
method. registerTypeFactory() takes an instance of a type factory as its
only argument. Example 93 shows code registering a type factory.

To register multiple type factories with the bus, call registerTypeFactory()
with each additional type factory. Subsequent calls add new type factories
to the list of registered type factories.

Determining if type factories are
registered

You can get a hash table of the type factories registered with a bus using
getTypeFactoryMap(). The returned hash table contains the QName for the
registered type factories and an ArrayList of TypeFactory objects
containing all of the registered type factories. Example 94 shows code for
returning the hash table of registered type factories.

Example Example 95 shows an example of registering two type factories,
packageDepotTypeFactory and widgetsTypeFactory.

Example 93:Registering a Type Factory

//Java

...
// Bus bus and TypeFactory factory obtained above
bus.registerTypeFactory(factory);

Example 94:Getting Hash Table of Registered Type Factories

//Java
HashMap factMap = bus.getTypeFactoryMap();

Example 95:Registering Type Factories

//Java
import javax.xml.rpc.*;
import com.iona.webservices.reflect.types.*;
...
// Start the bus and create the Artix client proxy

1 Bus bus = Bus.init();
2 packageDepotTypeFactory fact1 = new packageDepotTypeFactory();

widgetsTypeFactory facts = new widgetsTypeFactory();
129

CHAPTER 6 | Working with Artix Type Factories
The code in Example 95 does the following:

1. Initializes the bus.

2. Instantiates the type factory that will be registered.

3. Registers the type factories using registerTypeFactory(). The first
call registers the type factory for the types defined in the packageDepot
contract. The second call registers the factory for the types defined in
the widgets contract.

3 bus.registerTypeFactory(fact1);
bus.registerTypeFactory(fact2);

Example 95:Registering Type Factories
 130

Getting Type Information From Type Factories
Getting Type Information From Type Factories

Overview In most cases you will not need to do anything with the type factories once
they are registered. The bus automatically handles the creation of type
instances for dynamically created data.

However, you can use the type factory’s methods to get information about
the supported types or dynamically create instances of data types on your
own. TypeFactory objects have five methods that provide access to the
types supported by the factory. They are:

• getSupportedNamespaces()

• getSchemaType()

• getJavaType()

• getJavaTypeForElement()

• getTypeResourceLocation()

getSupportedNamespaces() getSupportedNamespaces() returns an array of strings listing the
namespace URIs used in the schema for which the type factory was
generated. For example, if your type factory was generated from a contract
that contained the fragment shown in Example 96 a calling
getSupportedNamespaces() on the generated type factory would return an
array of strings containing a single entry:
http://packageTracking.com/packageTypes.

Example 96:WSDL Fragment

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
131

CHAPTER 6 | Working with Artix Type Factories
Example 97 shows code calling getSupportedNamespaces().

getSchemaType() getSchemaType() returns the QName of the schema type for which the
specified class is generated. It takes a Class object for a generated type and
returns the QName given in the applications contract for the type which
resulted in the generated class.

For example, the contract fragment in Example 96 on page 131 would
cause a class called PackageInfo to be generated to support the
XMLSchema complex type packageInfo. Calling getSchemaType() on an

 <types>
 <schema
 targetNamespace="http://packageTracking.com/packageTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="packageInfo">
 <sequence>
 <element name="id" type="xsd:string" />
 <any namespace="##any" processContents="lax"
 maxOccurs="4" />
 <element name="size" type="xsd1:packageSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...
 <portType name="packageDepot">
 ...
 </portType>
 ...
</definitions>

Example 96:WSDL Fragment

Example 97:getSupportedNamespaces()

//Java

PackageDepotTypeFactory fact = new PackageDepotTypeFactory();
String[] typeNamespaces = fact.getSupportedNamespaces();
 132

Getting Type Information From Type Factories
instance of packageDepotTypeFactory, as shown in Example 98, would
return a QName whose local part is packageInfo and whose namespace
URI is http://packageTracking.com/packageTypes.

getJavaType() getJavaType() returns the Java Class object generated to support the
specified XMLSchema type. It takes the QName of an XMLSchema type
defined using a <type> element in the contract from which the type factory
was generated as an argument. Using the QName, getJavaType() finds the
Class object generated to support the XMLSchema type and returns an
instance of it.

For example, the code in Example 99 gets an instance of the generated
PackageInfo object by passing getJavaType() the QName of the
packageInfo XMLSchema type defined in Example 96 on page 131.

The code in Example 99 does the following:

1. Creates the QName for the XMLSchema type.

2. Calls getJavaType() on the type factory to get the Class object for the
XMLSchema type.

3. Uses the returned Class object to create a new instance of
PackageInfo.

Example 98:getSchemaType()

// Java
// PackageDepotTypeFactory fact obtained earlier
QName typeName = fact.getSchemaType(PackageInfo.class);

Example 99:getJavaType()

//Java

1 QName typeName = new
QName("http://packageTracking.com/packageTypes",
"packageInfo");

2 // PackageDepotTypeFactory, fact, obtained earlier
Class typeClass = fact.getJavaType(typeName);

3 PackageInfo newPackage = typeClass.newInstance();
133

CHAPTER 6 | Working with Artix Type Factories
getJavaTypeForElement() getJavaTypeForElement() returns the Java Class object generated to
support the specified XMLSchema element. It takes the QName of an
XMLSchema element defined using an <element> element in the contract
from which the type factory was generated as an argument. Using the
QName, getJavaTypeForElement() finds the Class object generated to
support the XMLSchema element and returns an instance of it.

getTypeResourceLocation() getTypeResourceLocation() returns a string containing the location of the
contract, or XMLSchema document, for which the type factory was
generated.
 134

CHAPTER 7

Working with
XMLSchema
anyTypes
The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

In this chapter This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 136

Setting anyType Values page 138

Retrieving Data from anyTypes page 140
135

CHAPTER 7 | Working with XMLSchema anyTypes
Introduction to Working with XMLSchema
anyTypes

XMLSchema anyType The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

Artix and anyType In Artix, an anyType can assume the value of any complex type defined
within the <types> section of an Artix contract. An anyType can also assume
the value of any XMLSchema primitive. For example, if your contract defines
the complex types joeFriday, samSpade, and mikeHammer, an anyType used
as a message part in an operation can assume the value of an element of
type samSpade or an element of type xsd:int. However, it could not assume
the value of an element of type aceVentura because aceVentura was not
defined in the contract.

Artix binding support Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

• SOAP

• Pure XML

• CORBA

Using anyType in Java When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory classes with the application’s bus. See
“Registering Type Factories” on page 128.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in “Retrieving Data from anyTypes” on page 140.
 136

Introduction to Working with XMLSchema anyTypes
Java packages for anyType
support

When using anyType data and the type factories you must import the
following:

• com.iona.webservices.reflect.types.AnyType

• com.iona.webservices.reflect.types.TypeFactory
137

CHAPTER 7 | Working with XMLSchema anyTypes
Setting anyType Values

Overview In Artix Java xsd:anyType is mapped to
com.iona.webservices.reflect.types.AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the QName for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data’s schema type when the object is
transmitted.

Setting primitive data The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 7.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 7: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type

setBoolean() boolean boolean

setByte() byte byte

setShort() short short

setInt() int int

setLong() long long

setFloat() float float

setDouble() double double

setString() string string

setShort() short short

setUByte() short ubyte

setUShort() int ushort
 138

Setting anyType Values
Setting complex type data You set complex data into any AnyType using the setType() method.
setType() can be used in one of two ways. The first is to provide the QName
of the XMLSchema type describing the data to store in the AnyType along
with the data. Using this method makes it easier to query the contents of
anyType objects that were created in the current application space because
Artix does not set the type identifier until after it sends the anyType across
the wire. Example 100 shows code for storing a widgetSize in an anyType.

The other way is to simply provide the data value to store in the AnyType
and Artix will determine the XMLSchema type describing the data. From the
receiving end this method for storing data in an anyType is equivalent to the
first method because Artix identifies the contents schema type when it
transmits the data. However, the application that store the value will have
no way to determine the data type once the value is stored until it is used as
part of a remote invocation. Example 101 shows code for storing a
widgetSize in an anyType without providing its QName.

setUInt() long uint

setULong() BigInteger ulong

setDecimal() BigDecimal decimal

Table 7: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type

Example 100:Storing Complex Data and Specifying its Type

//Java
widgetSize size = widgetSize.big;
QName qn = new QName("http://widgetVendor.com/types/",
 "widgetSize");
AnyType aT =new AnyType();
aT.setType(qn, size);

Example 101:Storing Complex Data without a QName

// Java
widgetSize size = widgetSize.big;
AnyType aT =new AnyType();
aT.setType(size);
139

CHAPTER 7 | Working with XMLSchema anyTypes
Retrieving Data from anyTypes

Overview Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value’s type you could
cast the value into the proper Java type and work with it using standard
Java methods.

Artix’s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not
specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java getClass() method on the Java Object
returned from AnyType.getObject() to get the Java class of the data stored
in the anyType.

Determining the type of an
anyType

The Artix Java AnyType provides a method, getSchemaTypeName(), that
returns the QName of the schema type of the data stored in the anyType.
Example 102 gets the schema type of an anyType and prints it out to the
console.

Example 102:Using getSchemaTypeName()

// Java
import com.iona.webservices.relect.types.*;

AnyType blackBox;

// Client proxy, proxy, instantiated previously
blackBox = proxy.newBox();
QName schemaType = blackBox.getSchemaTypeName();
System.out.println("The type for blackBox is defined in "
 +schemaType.getNamespaceURI());
System.out.println("blackBox is of type: "
 +schemaType.getLocalPart());
 140

Retrieving Data from anyTypes
The data stored in an Artix AnyType is a stored as a standard Java Object,
so when the data is extracted you can use the standard getClass() method
on the returned Object to determine its Java type.

Extracting primitive types from an
anyType

The Artix AnyType provides specific methods for extracting primitive types.
Table 8 lists the getter methods for the supported primitive types and the
local part of the schema type name returned by getSchemaType(). All of the
primitive types have http://www.w3.org/2001/XMLSchema as their
namespace URI.

Table 8: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name

getBoolean() boolean boolean

getByte() byte byte

getShort() short short

getInt() int int

getLong() long long

getFloat() float float

getDouble() double double

getString() String string

getUByte() short unsignedByte

getUShort() int unsignedShort

getUInt() long unsignedInt

getULong() BigInteger unsignedLong

getDecimal() BigDecimal decimal
141

CHAPTER 7 | Working with XMLSchema anyTypes
Extracting complex data from an
anyType

The Artix AnyType provides a generic method, getType(), that can be used
to extract complex data. getType() returns the data stored in the anyType as
a Java Object that you can then cast to the proper Java type. Example 103
shows an example of retrieving a widgetSize from an anyType.

Example If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and desktops.
Because the laptops and desktops are configured differently you’ve decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, laptopOrder and desktopOrder, in the
namespace http://myAssemblyLine.com/systemTypes. Example 104
shows code for receiving the order from the server, querying the returned
AnyType to see what type of order it is, and then extracting the order from
the AnyType.

Example 103:Extracting a Complex Type from an anyType

// Java
AnyType any;

// Client proxy, proxy, instantiated earlier
any = proxy.returnWidget();
widgetSize size = (widgetSize)any.getObject();

Example 104:Working with anyTypes

// Java
import javax.xml.namespace.QName;
import com.iona.webservices.reflect.types.*;

AnyType anyOrder;
1

// Client proxy, proxy, instantiated earlier
anyOrder = proxy.getSystemOrder();

2
// Get the schema type of the returned order
QName orderType = anyOrder.getSchemaType();
 142

Retrieving Data from anyTypes
The code in Example 104 on page 142 does the following:

1. Populates anyOrder.

2. Queries anyOrder for its schema type information.

3. Checks the namespace of the returned type to ensure it correct.

4. Checks if anyOrder is a laptopOrder. If so, cast anyOrder into a
laptopOrder.

5. Checks if anyOrder is a desktopOrder. If so, cast anyOrder into a
desktopOrder.

3 if (!(orderType.getNamespaceURI().equals(
 "http://myAssemblyLine.com/systemTypes"))
{
 // handle the fact that the schema type is from the wrong
 // namespace.
}

4 if (orderType.getLocalPart().equals("laptopOrder"))
{
 LapTopOrder order = (LapTopOrder)anyOrder.getType();
 buildLaptop(order);
}

5 if (orderType.getLocalPart().equals("desktopOrder"))
{
 DeskTopOrder order = (DeskTopOrder)anyOrder.getType();
 buildDesktop(order);
}

Example 104:Working with anyTypes
143

CHAPTER 7 | Working with XMLSchema anyTypes
 144

CHAPTER 8

Artix References
An Artix reference is a handle to a particular Artix service
instance. Because they can be passed as message parts, Artix
references provide a convenient and flexible way of identifying
and locating specific services.

In this chapter This chapter discusses the following topics:

Introduction to Working with References page 146

Using References in a Factory Pattern page 154

Using References to Implement Callbacks page 168
145

CHAPTER 8 | Artix References
Introduction to Working with References

Overview An Artix Reference is a Java object that fully describes a running Artix
service. Artix references have the following features:

• They are a built-in Artix data type.

• They can be passed as a parameter of an operation.

• They can be used to create service proxies for a service described by a
particular reference.

• They are the building blocks for the Artix locator and session manager.

• They are transport neutral. An Artix reference can be used to represent
any Artix service.

 In this section This section discusses the following topics:

Reference Basic Concepts page 147

Creating References page 151

Instantiating Service Proxies Using a Reference page 153
 146

Introduction to Working with References
Reference Basic Concepts

Overview An Artix reference is a Java object, derived from an XMLSchema definition
shipped with Artix, that fully describes a running Artix service. It lists the
service’s name, the service’s contact information, and the service’s WSDL
location. The data contained in the reference provides an Artix client process
with the information needed to instantiate a service proxy to contact the
referenced service.

Using references provides you with the ability to generate servants on the fly
and pass a client a reference to the newly instantiated servant. It also
provides you the ability to write applications that require using a callback
mechanism. In addition, the Artix locator and the Artix session manager use
references to supply applications with pointers to the services which they
are looking-up.

Contents of an Artix reference An Artix reference encapsulates the following data:

• Service QName—the QName of the service with which the reference is
associated. The is the name of the service given in the contract
defining the service.

• WSDL location URL—the location of the service’s contract. The WSDL
location URL in a reference services two distinct purposes:

♦ Service identification—the service is uniquely identified by the
combination a WSDL contract and a service QName.

♦ WSDL back-up—the reference is fully self-describing.

• List of ports—an unbounded sequence of port elements, each of which
contains the following data:

♦ Port name—the name given the port in the contract.

♦ Binding QName—the qualified name of the binding with which
the port is associated.

Note: If you have loaded the WSDL publishing plug-in,
wsdl_publish, on the server, the WSDL location URL will point to a
dynamically updated copy of the service’s contract. See “Accessing
WSDL from a reference” on page 148
147

CHAPTER 8 | Artix References
♦ Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold transport-specific data and qualities of service. For
example, if the port uses CORBA the properties would include the
<corba:policy> elements used in the WSDL.

The schema definition of a
reference

Like all types in Artix, the reference is defined in XMLSchema. The
XMLSchema defining a reference is located in the schema folder of your Artix
Installation and is called references.xsd. It can also be found on-line at
http://schemas.iona.com/references/references.xsd.

You will need to import the reference schema into the contract of any
application that uses references. It is required for Artix to properly generate
the Java code for operations using a reference as a parameter and for the
bus to properly marshal and unmarshal references passed between
endpoints.

Java mapping of a reference In Java an Artix reference is mapped to a class called
com.iona.schemas.references.Reference. This class is provided in the
libraries shipped with Artix. Your applications that use Artix references will
need to import this class.

Accessing WSDL from a reference An Artix reference contains a pointer to the contract defining the logical
service associated with the reference. By default, the reference’s WSDL
pointer points to the server’s local copy of the service contract. However, if
the server process is configured to load the WSDL publishing plugin, the
reference’s WSDL pointer points to an HTTP port from which a client can
download a live copy of the service’s contract.

Using the default provides a smaller footprint for your server process and
does not require opening an additional HTTP port, but it has two main
drawbacks:

• Artix needs to be able to read the WSDL in order to instantiate a
service proxy for the referenced service and often the client will not
have access to the service’s local file system.

• The <port> definition for the service may not be complete because the
service dynamically sets its port attributes at runtime. In particular, a
transient servant’s on-disk <port> definition is always incomplete.
 148

http://schemas.iona.com/references/references.xsd

Introduction to Working with References
Configuring your servers to load the WSDL publishing plugin avoids these
drawbacks. The WSDL publishing plugin provides a continually updated
version of a service’s in-memory WSDL contract using an HTTP port.
Because the WSDL model is always updated, the reference will always point
to a complete contract with valid contact information for the service. Also,
because the WSDL is published over an available HTTP port, a client always
has access to the WSDL when it attempts to instantiate a service proxy.

For information on configuring a service to load the WSDL publish plugin
see Deploying and Managing Artix Solutions.

References and the Artix router When references are passed through the Artix router, the router creates a
service proxy for each reference. In this way it ensures that messages are
correctly delivered to the referenced service. However, this creates two
issues that must be considered:

Misconnected Proxies

Because transient servants are not associated with a fixed service, the router
must guess at which WSDL service was used as the service template to
create the servant. It chooses the first compatible WSDL service it
encounters in the router’s contract. A compatible WSDL service is a service
that uses the same <portType> as the service template used to create the
transient servant.

If your contract contains a static WSDL service definition and a service
template that both use the same <portType>, the router will use the first
one listed in the contract. If the static service is first, the router will create a
proxy that connects to the servant defined by that service and not the
transient service that is referenced. The result will be that all messages
directed to the transient servant will be silently forwarded to the wrong
servant.

To avoid this situation place all service templates in your router’s contract
before the static WSDL services. This will ensure that the router will select
the service template and create a proxy for the transient servant.

Router bloat

Because the router cannot know when a proxy is no longer needed, it reaps
any of the proxies it creates. Because of this, a router that handles a large
number of references may get quite bloated. To solve this problem Artix
149

CHAPTER 8 | Artix References
includes a life-cycle service that allows you to configure a reaping schedule
for the router. For more information on using the life-cycle service see
Deploying and Managing Artix Solutions.
 150

Introduction to Working with References
Creating References

Overview References are created by a bus using the createReference() method.
Before a bus instance can create a reference for a service, the servant
implementing the service must be registered with the bus. The process for
creating a reference for a service involves three steps:

1. Get a handle to a bus as shown in “Getting a Bus” on page 32.

2. Register the servant with the bus.

3. Create a reference using the service’s QName.

Registering a servant Registering a service with the bus is a two step process. The first step is to
create an Artix Servant instance for your service. Example 105 shows an
example of creating a Servant for the WidgetLoader service. The Servant
contsructor requires the path of the contract defining the service, an
instance of the service’s implementation class, and a bus instance.

The second step in registering a service with the bus is to register the
servant with a bus instance. Servants can be registered as either static or
transient. A static servant is registered using Bus.registerServant() and
has a fixed port address that is defined in its contract. A transient servant is
registered using Bus.registerTransientServant(). A transient servant is a
clone of the service defined in the contract and each servant for a given
service will have a unique port number.

For a detailed discussion of registering servants, read “Servant Registration”
on page 26.

Example 105:Creating a ServerFactoryBase

//Java
Servant servant =
 new SingleInstanceServant("./Widgets.wsdl",
 new WidgetLoaderImpl(), bus);
151

CHAPTER 8 | Artix References
Creating the reference Once you have registered a service with the bus, you can create a reference
for it using the QName returned from the servant registration method.
References are created using the bus’ createReference() method.
Example 106 shows the signature for createReference().

The method takes in the QName of a registered service. The QName of a
registered service is returned when you register the servant with the bus.
Keeping track of the registered service’s QName when using references is
particularly important when working with transient servants. Because they
are clones of a service, each instance of a service registered with a transient
servant will have a unique QName that is generated by the bus.

Example Example 107 shows the code for generating a reference for a static instance
of the Cling service.

Example 106:createReference()

//Java
Reference createReference(QName service);

Example 107:Creating a Reference

//Java
import com.iona.jbus.*
import com.iona.schemas.references.Reference;

// Initialize a default bus
Bus bus = Bus.init();

// Register the servant
QName name = new QName("http://www.static.com/Cling",
 "ClingService");
Servant servant = new SingleInstanceServant(new ClingImpl(),
 "./cling.wsdl",
 bus);
QName clingName = bus.registerServant(servant, name,
 "ClingPort");

// Generate the reference for the register Cling Service
Reference clingRef = bus.createReference(clingName);
 152

Introduction to Working with References
Instantiating Service Proxies Using a Reference

Overview One of the primary uses of a reference is to create a service proxy for
connecting to the referenced service. The bus provides a method,
createClient(), that takes a reference and returns a JAX-RPC style
dynamic proxy for the referenced service.

Creating a service To create a service proxy from a reference, you need three things:

• a bus

• a reference

• the Java Class representing the service’s interface

You create service proxy from a reference by calling createClient() on the
servant’s default bus. createClient() takes a reference to a service and the
service’s interface Class as parameters. If the call is successful, it returns a
JAX-RPC style dynamic proxy for the service referenced. createClient()’s
signature is shown in Example 108.

Example Example 109 shows the code for creating a service proxy for the Cling
service from a reference.

Example 108:Bus.createClient()

Remote Bus.createClient(Reference ref,
 Class interfaceClass)
throws BusException

Example 109:Getting a Bus Reference Inside a Servant

// Java
com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

// Reference clingRef obtained earlier
Cling clingProxy = bus.createClient(clingRef, Cling.class);
153

CHAPTER 8 | Artix References
Using References in a Factory Pattern

Overview A common pattern for working with references is a factory pattern where
one object, a factory, creates references for other objects. For example, you
could develop a banking service that is responsible for creating and
managing accounts. It may have one operation, get_account, that returns
references to account objects that handle the more low level operations for
depositing or withdrawing money from an account. In this instance, your
bank implementation object is a factory for account objects.

This section discusses how such a banking service could be developed. The
examples used are loosely based on the transient servant demo supplied
with Artix. It is located in the
demos/servant_management/transient_sevants folder of your Artix
installation.

In this section The following topics are discussed in this section:

Bank Service Contract page 155

Bank Service Implementation page 162

Bank Service Client page 165
 154

Using References in a Factory Pattern
Bank Service Contract

Overview The WSDL contract defining the Bank service has several key elements that
are required for defining a service that uses references in a factory pattern.
The first thing to notice is that the contract imports the XMLSchema
definition for Artix references. Also, it defines two interfaces: Bank and
Account. Bank defines an operation for returning references to an Account.
Also, both interfaces have fully described bindings and service definitions.

For detailed information about Artix contracts read Designing Artix
Solutions.

Importing the reference schema Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be dome in one of
two ways. The most common way is to use an <import> element to import
the XMLSchema definition that is provided with Artix. Example 110 shows
a WSDL fragment that imports the reference schema.

The other way is to add the reference definition directly into the contract.
This is the method shown in the supplied transient servant demo.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 111.

Example 110:Importing the Reference Schema

<import namespace="http://schemas.iona.com/references"
 location="/usr/local/artix/schema/references.xsd" />

Example 111:Reference Alias

xmlns:reference="http://schemas.iona.com/references"
155

CHAPTER 8 | Artix References
Messages with references The Bank interface’s get_account operation returns a reference to an
Account. The message definition for the response of these operations have
one part, return, that is of type reference:Reference. Example 112 shows
the definition for a message that contains a reference.

Bank interface The <portType> defining the Bank interface defines a single operation
named get_account. This operation takes a string as input and returns a
reference. Example 113 shows the <portType> for the Bank interface.

Account interface The contract defining the service will also need to include a definition for the
Account interface. This interface can either be defined in a separate WSDL
fragment that is imported or it can be defined in the same contract as the
Bank interface. The transient servant demo defines the Account interface in
the same contract.

Bank binding While an Artix reference can describe a service that uses any of the bindings
supported by Artix, they can only be sent using the SOAP binding or the
CORBA binding. When using the SOAP binding, you do not need to anything
special to send an Artix reference. The transient servant demo supplied with
Artix uses a SOAP binding.

Example 112:Message with a Reference

<message name="bankResponse">
 <part name="return" type="reference:Reference" />
</message>

Example 113:Bank <portType>

<portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
</portType>
 156

Using References in a Factory Pattern
The CORBA binding maps an Artix reference into a generic CORBA Object.
You can do some additional work to create typed CORBA references. For
details on how Artix references are mapped into a CORBA binding see the
CORBA appendix of Designing Artix Solutions.

Account binding You will also need to add a binding for the referenced service, which in this
case is the Account interface. The binding for the referenced service can be
any one of the supported Artix bindings. The transient servant demo
supplied with Artix uses a SOAP binding for the Account interface.

Transport definitions References can be sent over any transport that supports SOAP or CORBA
messages. However, because in this example the servants used to service
Account objects will be transient, the Account service must use either HTTP
or CORBA.

Complete bank contract Example 114 shows the complete contract used for the code generated in
the following discussions about the factory pattern.

Example 114:Bank Service Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:references="http://schemas.iona.com/references"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BankService">
 <import namespace="http://schemas.iona.com/references"
 location="/usr/local/artix/schema/references.xsd" />
157

CHAPTER 8 | Artix References
 <message name="accountName">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="bankResponse">
 <part name="return" type="references:Reference"/>
 </message>
 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>
 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>
 <message name="depositResponse"/>
 <portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
 <binding name="BankBinding" type="tns:Bank">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_account">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>

Example 114:Bank Service Contract
 158

Using References in a Factory Pattern

 <message name="accountName">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="bankResponse">
 <part name="return" type="references:Reference"/>
 </message>
 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>
 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>
 <message name="depositResponse"/>
 <portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
 <binding name="BankBinding" type="tns:Bank">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_account">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>

Example 114:Bank Service Contract
159

CHAPTER 8 | Artix References
 <message name="accountName">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="bankResponse">
 <part name="return" type="references:Reference"/>
 </message>
 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>
 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>
 <message name="depositResponse"/>
 <portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
 <binding name="BankBinding" type="tns:Bank">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_account">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>

Example 114:Bank Service Contract
 160

Using References in a Factory Pattern
 <binding name="AccountBinding" type="tns:Account">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_balance">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 <operation name="deposit">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>
 <service name="BankService">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address location="http://localhost:0/BankService/BankPort/"/>
 </port>
 </service>
 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 </port>
 </service>
</definitions>

Example 114:Bank Service Contract
161

CHAPTER 8 | Artix References
Bank Service Implementation

Overview The bank service is the factory for accounts in this example. Its operation,
get_account, returns references to account objects. get_account create
accounts and registers them as transient servants. The accounts are
registered as transient servants to ensure that each new account has a
unique port definition and unique reference.

The bank service implementation
object

The Bank service defined in the contract will generated an implementation
object called BankImpl. This object will contain one method,
get_account(), for which you will provide the logic. In addition, for this
example, BankImpl has a global data member, accounts, that stores a table
of the created accounts by their account name. The line declaring accounts
is in bold because you need to add it to the generated file.

Example 115 shows the generated BamkImpl with accounts added.

Example 115:BankImpl

package com.iona.bus.demos.bank;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import com.iona.schemas.references.Reference;

/**
 * com.iona.bus.demos.bank.BankImpl
 */
public class BankImpl implements java.rmi.Remote
{

 Hashtable accounts = new Hashtable();
 162

Using References in a Factory Pattern
get_account The get_account operation in the contract is mapped to the get_account()
method in the bank service’s implementation object. get_account() first
checks the table of accounts to see if one with the given name already
exists. If one does exist, it returns the reference to that account. If no
account with that name exists, it creates a new AccountImpl object and
registers it as a transient servant with the bus.

The AccountImpl object is registered as a transient servant because
transient servants are guaranteed to have a unique port definition in their
in-memory contract and that the reference created for each AccountImpl
object will point to the correct AccountImpl. When using static servants, all
references point to a single instance of the servant object.

Once the AccountImpl object is registered with the bus, get_account()
generates a reference for the new servant using bus.createReference().
This is the reference that is returned to the client. Using the returned
reference, the client will create a service proxy to access the new Account
object.

Example 116 shows the fully implemented get_account().

 /**
 * get_account
 *
 * @param: account_name (String)
 * @return: com.iona.schemas.references.Reference
 */
 public com.iona.schemas.references.Reference

get_account(String account_name) {
 // User code goes in here.
 return new com.iona.schemas.references.Reference();
 }
}

Example 115:BankImpl

Note: When working with transient servants, you should ensure that the
WSDL publishing plug-in is loaded into the server process.

Example 116:get_account()

public Reference get_account(String account_name)
{

163

CHAPTER 8 | Artix References
The code in Example 116 does the following:

1. Looks up the account name in the table of existing accounts.

2. Checks to see if an account was found. If a valid account was found
skip to step 9. If not, continue.

3. Creates a new AccountImpl for a new account.

4. Gets the bus for this bank servant.

5. Creates a new Artix Servant for the new account.

6. Registers the new Servant as a transient servant with the bus.

7. Creates a reference for the newly registered transient servant.

8. Adds the new reference and account name to the table of accounts.

9. Returns the reference to the client.

1 Reference ref = (Reference)accounts.get(account_name)

2 if (ref == null)
 {

3 AccountImpl acct = new AccountImpl();

4 com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

5 String contract = new String("./bank.wsdl");
 Servant servant = new SingleInstanceServant(acct, contract,
 bus);

6 QName name = new QName("http://www.iona.com/bus/demos/bank",
 "AccountService");
 bus.registerTransientServant(servant, name);

7 ref = bus.createReference(name);

8 accounts.put(account_name, ref);
 }

8 return ref;
}

Example 116:get_account()
 164

Using References in a Factory Pattern
Bank Service Client

Overview The client for the bank service requests accounts and then performs
operations on the returned accounts. In this case, the returned accounts are
also services implemented by remote Artix servants. Therefore, before the
client can invoke operations on the returned accounts, it must create service
proxies for them.

Requirements for building the
client

While Artix references are fully self-describing, your client code will still
require the generated interface for the Account service. This interface will be
generated into a file called Account.java by wsdltojava.

Locating the Account service’s
contract

Artix references contain a pointer to the contract for the referred service. As
discussed in “Accessing WSDL from a reference” on page 148, the WSDL
pointer in a reference can either point to the server process’ local copy of the
service contract or, if the WSDL publishing plugin is loaded, to an HTTP
port where the in-memory copy of the contract can be obtained.

Because the Bank service registers the Accounts as transient servants, the
server’s local copy of the contract will not have a valid <port> definition any
of the Accounts. Therefore, you will need to ensure that the server process
has loaded the WSDL publishing plugin.

Client tasks The client main in this example does four things:

1. Creates a service proxy for the Bank.

2. Invokes get_account() on the Bank proxy.

3. Creates a service proxy for an Account using the returned reference.

4. Invokes operations in the Account proxy.

The first two things that the client does are typical Artix client programming
steps. Any Artix client will instantiate a service proxy using a known contract
and then invoke operations on the proxy. The third task of the client is, for
this discussion, the interesting task.

Using the reference returned from get_account(), the client will use the
Bus.createClient() method to create a service proxy for the Account. The
version of Bus.createClient() used to create a service proxy from a
165

CHAPTER 8 | Artix References
reference takes two parameters: an Artix reference and the interface class
for the referenced service. Example 117 shows the code for creating an
Account service proxy from a reference.

Code for the client main() Example 118 shows the completed code for the bank client’s main line.

Example 117:Creating an Account Service Proxy

acctProxy = bus.createClient(acctRef, Account);

Example 118:Code for Bank Client

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.references.Reference;

public class BankClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://www.iona.com/bus/demos/bank",
 "BankService");

3 String portName = new String("BankPort");

4 String wsdlPath = "file:/./bank.wsdl";
 URL wsdlURL = new File(wsdlPath).toURL();

5 Bank bankProxy = bus.createClient(wsdlURL, name, portName,
 Bank.class);

6 String account_name;
 System.out.println("What is the name of the account?");
 System.in.read(account_name);
 166

Using References in a Factory Pattern
The code in Example 118 does the following:

1. Initializes the bus.

2. Creates the QName for the Bank service.

3. Sets the port name for the Bank service.

4. Sets the URL to the client’s copy of the Bank service contract.

5. Creates a service proxy for the Bank service using
bus.createClient().

6. Gets the name of the account.

7. Gets a reference to the desired account by invoking get_account() on
the Bank service proxy.

8. Uses the returned reference to create an Account service proxy using
bus.createClient().

7 Reference acctRef = bankProxy.get_account(account_name);

8 Account acctProxy = bus.createClient(acctRef, Account.class);

 // Invoke operations on acctProxy
 }
}

Example 118:Code for Bank Client
167

CHAPTER 8 | Artix References
Using References to Implement Callbacks

Overview Another common use for Artix references is to create callbacks from a server
to a client. When creating a callback, the client instantiates a servant object
and registers it, using an Artix reference, with the server. The server can
then create a service proxy for the client’s callback object and invoke its
operations to update the client.

For example, an accounts receivable system may need to notify its clients
that it is closing the daily books and is not accepting new transactions until
the operation is complete. In this case, the clients would have a callback
object with two operations, posting and done_posting. The server would
invoke posting to notify the client that it is not accepting new transactions.
When it was done closing the books, the server would then invoke
done_posting.

In this section This section discusses the following topics:

The Accounting Contract page 169

The Accounting Client page 175

The Accounting Server page 180
 168

Using References to Implement Callbacks
The Accounting Contract

Overview The contract for an application the uses a callback needs to include the
interface definition, binding definition, and service information for both the
service implemented by the server and the callback object implemented by
the client. When using callbacks the client essentially plays a dual role. It
implements a servant, like a server process, and makes requests on a
service.

Importing the reference schema Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be done in one of
two ways. The most common way is to use an <import> element to import
the XMLSchema definition that is provided with Artix. Example 110 shows
a WSDL fragment that imports the reference schema.

The other way is to add the reference definition directly into the contract.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 111.

Messages with references The Register interface’s register_callback operation sends a reference to
a Notify object. The message definition for the parameter of the operation
has one part, ref, that is of type reference:Reference. Example 112
shows the definition for a message that contains a reference.

Example 119:Importing the Reference Schema

<import namespace="http://schemas.iona.com/references"
 location="/usr/local/artix/schema/references.xsd" />

Example 120:Reference Alias

xmlns:reference="http://schemas.iona.com/references"

Example 121:Message with a Reference

<message name="regMessage">
 <part name="ref" type="references:Reference" />
</message>
169

CHAPTER 8 | Artix References
The callback’s interface The interface for the callback object can be as complex or simple as your
application requires. For this example, the callback object will only need
two operations. One to inform the client that the server is busy and one to
tell the client that the server is ready to receive new posts. Neither operation
needs input or output messages, but because WSDL requires at least one
<input> or <output> element the interface definition includes a dummy
input message.

Example 122 shows the <portType> defining the callback object’s interface.

Server interface The server’s interface needs one operation, register_callback, to register
the client’s callback object and create a proxy for it. In addition to the
operation for registering the callback, the server can have any number of
operations defined for providing services to the clients. In this example, the
server has three operations: deposit, withdraw, and dailyPosting. The
client shown in this example only invokes desposit and withdraw. An
administrative client invokes dailyPosting.

Example 122:Callback Interface

<message name="callbackRequest" />
<portType name="Notify">
 <operation name="posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 <operation name="done_posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
</portType>
 170

Using References to Implement Callbacks
Example 123 shows the <portType> defining the server’s interface.

Bindings The callback object’s interface can be bound to any of the message formats
supported by Artix. Because the server’s interface includes an operation that
has a reference as a parameter, it can only be bound to a SOAP message or
a CORBA message. In this example, both interfaces are bound to SOAP
messages.

Transport details Because both the callback object and the server are registered as static
servants, they can use any of the transports supported by Artix. In this
example, HTTP is used.

Contract Example 124 shows the complete contract used for the code generated in
the following discussions about callbacks.

Example 123:Server Interface

<portType name="Register">
 <operation name="register_callback">
 <input name="param" message="tns:refMessage" />
 </operation>
 <operation name="deposit">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtMessage" />
 </operation>
 <operation name="withdraw">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtMessage" />
 </operation>
 <operation name="dailyPosting">
 <input name="date" message="tns:dateMessage" />
 </operation>
</portType>
171

CHAPTER 8 | Artix References
Example 124:Callback Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/callbacks"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:references="http://schemas.iona.com/references"
 targetNamespace="http://www.iona.com/bus/demos/callbacks"
 name="BankService">
 <import namespace="http://schemas.iona.com/references"
 location="/usr/local/artix/schema/references.xsd" />
 <message name="amtMessage">
 <part name="amount" type="xsd:float"/>
 </message>
 <message name="amtResponse">
 <part name="return" type="xsd:float"/>
 </message>
 <message name="refMessage">
 <part name="ref" type="references:Reference"/>
 </message>
 <message name="dateMessage">
 <part name="date" type="xsd:string"/>
 </message>
<message name="callbackRequest" />
 <portType name="Notify">
 <operation name="posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 <operation name="done_posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 </portType>
 172

Using References to Implement Callbacks
 <portType name="Register">
 <operation name="register_callback">
 <input name="param" message="tns:refMessage" />
 </operation>
 <operation name="deposit">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtResponse" />
 </operation>
 <operation name="withdraw">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtResponse" />
 </operation>
 <operation name="dailyPosting">
 <input name="date" message="tns:dateMessage" />
 </operation>
 </portType>
 <binding name="NotifyBinding" type="tns:Notify">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="posting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 <operation name="done_posting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbaks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 </binding>
 <binding name="RegisterBinding" type="tns:Register">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="register_callback">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>

Example 124:Callback Contract
173

CHAPTER 8 | Artix References
 <operation name="deposit">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </output>
 </operation>
 <operation name="withdraw">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </output>
 </operation>
 <operation name="dailyPosting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 </binding>
 <service name="NotifyService">
 <port name="NotifyPort" binding="tns:NotifyBinding">
 <soap:address location="http://localhost:0"/>
 </port>
 </service>
 <service name="RegisterService">
 <port name="RegisterPort" binding="tns:RegisterBinding">
 <soap:address location="http://localhost:0/RegisterService/RegisterPort/"/>
 </port>
 </service>
</definitions>

Example 124:Callback Contract
 174

Using References to Implement Callbacks
The Accounting Client

Overview A client that has a callback object has two major parts to develop:

• The callback object’s implementation object.

• The client’s main() that performs the clients work.

When using a callback, the client’s main() will perform one additional task
that is normally only performed in servers. It will instantiate a servant for the
callback object and register it with the bus.

Callback implementation The callback object for this example is very simple. It has one static
member, busy, that is set to 1 when posting() is invoked and set to 0 when
done_posting() is invoked. Using the instance of NotifyImpl registered
with the bus in the client’s main(), you can check the value of busy to see if
the Register service is doing its daily posting and not accepting new
requests.

To avoid thread conflicts, the callback object’s methods are synchronized.
When the methods complete, they then notify all interested parties that
callback object has been modified. This notifies the client the status has
been updated and it can stop waiting for the server.

Example 125 shows the code for the callback object.

Example 125:Callback Object

package com.iona.bus.demos.callbacks;

import java.net.*;
import java.rmi.*;

public class NotifyImpl implements java.rmi.Remote
{
 public int busy = 0;
175

CHAPTER 8 | Artix References
The client main() The client main() in this example does six things:

1. Creates a service proxy for the Register service.

2. Creates a servant for the callback object.

3. Registers the callback object’s servant with the bus so that it can
receive requests.

4. Registers the callback object with the Register service.

5. Invokes operations on the Register service.

6. Checks the callback object to see if the Register service is posting.

 public void posting()
 {
 synchronize(this)
 {
 busy = 1;
 notifyAll();
 }
 }

 public void done_posting()
 {
 synchronize(this)
 {
 busy = 0;
 notifyAll();
 }
 }
}

Example 125:Callback Object
 176

Using References to Implement Callbacks
Example 126 shows the code for client main().

Example 126:Callback Client Main()

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.references.Reference;

public class RegisterClient
{

 public static void main (String args[]) throws Exception
 {
 char op;

1 Bus bus = Bus.init(args);

2 QName name = new
 QName("http://www.iona.com/bus/demos/callbacks",
 "RegisterService");
 String portName = new String("RegisterPort");

 String wsdlPath = "file:/./resister.wsdl";
 URL wsdlURL = new File(wsdlPath).toURL();

 Register registerProxy = bus.createClient(wsdlURL, name,
 portName,
 Register.class);

3 NotifyImpl notify = new NotifyImpl();

 String contract = new String("./register.wsdl");

4 Servant servant = new SingleInstanceServant(notify, contract,
 bus);

 QName notifyName = new
 QName("http://www.iona.com/bus/demos/callbacks",
 "NotifyService");
177

CHAPTER 8 | Artix References
5 bus.registerServant(servant, notifyName);

6 Reference ref = bus.createReference(notifyName);

7 registerProxy.register_callback(ref);

 Float amount;
 float balance;
 String temp;

 while(true)
 {

8 synchronize(notify)
 {

9 while(notify.busy == 1)
 {
 System.out.println("The Server is posting. Please
 wait.");

10 notify.wait();
 }
 }

11 System.out.println("Choose an option:");
 System.out.println("1) Deposit");
 System.out.println("2) Withdraw");
 System.out.println("3) Exit");
 System.in.read(op);

 switch(op)
 {
 case ’1’:
 System.out.println("Amount to deposit?");
 System.in.read(temp);
 amount = new Float(temp);
 balance = registerProxy.deposit(amount.floatValue());
 System.out.println("New balance: "+balance);
 break;

Example 126:Callback Client Main()
 178

Using References to Implement Callbacks
The code in Example 126 does the following:

1. Initializes a bus for the client.

2. Creates a proxy for the Register service.

3. Creates an instance of NotifyImpl to be the callback object.

4. Creates a servant to wrap the callback object.

5. Registers the servant with the bus.

6. Creates a reference for the callback object’s servant.

7. Registers the callback by invoking the Register service’s
register_callback() operation.

8. Ensures that the callback object cannot be modified by other threads
before checking its state.

9. If the callback object’s busy flag is set to 1 the server is doing its daily
posting and the client needs to wait.

10. Waits on the callback object. When the server changes the value of
busy, this call will stop blocking and the flag can be checked again.

11. Makes requests on the Register service.

 case ’2’:
 System.out.println("Amount to withdraw?");
 System.in.read(temp);
 amount = new Float(temp);
 balance = registerProxy.withdraw(amount.floatValue());
 System.out.println("New balance: "+balance);
 break;
 Case ’3’:
 return;
 }
 }
 }
}

Example 126:Callback Client Main()
179

CHAPTER 8 | Artix References
The Accounting Server

Overview The server in this example also exhibits some hybrid behavior. The
register_callback operation receives a reference to the client’s callback
object and creates a service proxy for it. In this example, the proxy is put
into an object-level data element and the dailyPosting operation invokes
the proxy’s operations to inform the clients when the server is posting.

Server main() In this example, the server’s main() is a standard Artix server main(). It
initializes a bus instance, registers a Servant that wraps an instance of
RegisterImpl, and then calls Bus.run(). For a discussion of writing an Artix
server main() see “Developing a Server” on page 15.

RegisterImpl The Accounting server’s implementation object, as generated by
wsdltojava, is called RegisterImpl. It has four methods:
register_callback(), dailyPosting(), deposit(), and withdraw().
deposit() and withdraw() perform data requests for the client and they are
left for you to implement.

For the discussion of callbacks, register_callback() and dailyPosting()
are of interest. register_callback() is responsible for receiving the
callback object’s reference and instantiating a proxy for it. In this example,
the proxy is stored in the objects notify member. dailyPosting() then
invokes the callback object’s operations to inform the client when the server
is busy.

Example 127 shows the completed RegisterImpl class. The code in bold is
added to the generated class by the user.

Example 127:RegisterImpl

package com.iona.bus.demos.callbacks;

import java.net.*;
import java.rmi.*;

import com.iona.schemas.references.Reference;
import com.iona.jbus.*;
import java.lang.String;
 180

Using References to Implement Callbacks
register_callback() register_callback() does the following:

1. Gets a handle on the bus hosting this servant.

2. Creates a proxy for the callback object using the reference sent by the
client.

public class RegisterImpl implements java.rmi.Remote
{
 NotifyImpl notify;

 public void register_callback(com.iona.schemas.references.Reference ref)
 {
 com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

 notify = bus.createClient(ref, Notify.class);
 }

 public float deposit(float ammount)
 {
 // User code goes in here.
 return 0.0f;
 }

 public float withdraw(float ammount) {
 // User code goes in here.
 return 0.0f;
 }

 public void dailyPosting(String date)
 {
 notify.posting();

 // User code goes in here.

 notify.done_posting();
 }
}

Example 127:RegisterImpl
181

CHAPTER 8 | Artix References
dailyPosting() dailyPosting() does the following:

1. Invokes the callback object’s posting operation to notify the client that
the server is busy.

2. Performs the tasks involved in closing the daily books and posting the
results. This logic is left to the user to implement.

3. When the daily posting tasks are complete, it invokes the callback
object’s done_posting operation to notify the client that the server is
ready to handle new requests.
 182

CHAPTER 9

The Artix Locator
The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

In this chapter This chapter discusses the following topics:

Overview of the Locator page 184

Locator WSDL page 187

Registering Endpoints with the Locator page 191

Reading a Reference from the Locator page 192
183

CHAPTER 9 | The Artix Locator
Overview of the Locator

Overview The Artix locator is a service which can optionally be deployed for the
following purposes:

• Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

• Load balancing—if multiple service instances are registered against a
single service name, the locator load balances over the different service
instances using a round-robin algorithm.

Figure 5 gives a general overview of the locator architecture.

Figure 5: Artix Locator Overview
 184

Overview of the Locator
Locator service There are two basic options for deploying the locator service, as follows:

• Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 5). This approach is described in
detail in Deploying and Managing Artix Solutions. Sample source code
for such a standalone locator service is provided in the
demos/uncategorized/locator demonstration.

• Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

Endpoint definition An Artix endpoint is a particular WSDL service (identified by a service name)
in a particular bus instance (identified by a WSDL location URL). Hence, it
is possible to have endpoints with the same service type and service name,
as long as they are registered with different bus instances. A WSDL location
URL and a service name together identify an endpoint.

Registering endpoints A server that loads the locator’s endpoint manager plugin automatically
registers its endpoints with the locator in order to make them accessible to
Artix clients. When a server registers an endpoint in the locator, it creates an
entry in the locator that associates a service name with an Artix reference for
that endpoint.

Looking up references An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.
185

CHAPTER 9 | The Artix Locator
Load balancing with the locator If multiple endpoints are registered against a single service name in the
locator, the locator will employ a round-robin algorithm to pick one of the
endpoints. Hence, the locator effectively load balances a service over all of
its associated endpoints.

For example, Figure 5 on page 184 shows Service A with two endpoints
registered against it. When the Artix client looks up a reference for Service
A, it obtains a reference to whichever endpoint is next in the sequence.
 186

Locator WSDL
Locator WSDL

Overview The locator WSDL contract, locator.wsdl, defines the public interface of
the locator through which the service can be accessed. This section shows
extracts from the locator WSDL that are relevant to normal user
applications. The following aspects of the locator WSDL are described here:

• Binding and protocol

• WSDL contract

• Java mapping

Binding and protocol The locator service is accessed using the SOAP binding and the HTTP
transport.

WSDL contract Example 128 shows an extract from the locator WSDL contract that focuses
on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, lookup_endpoint, that an Artix client
typically needs to call.

Example 128:Locator WSDL Contract

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ref="http://schemas.iona.com/references"
xmlns:ls="http://ws.iona.com/locator"
targetNamespace="http://ws.iona.com/locator">

 <types>
 <xs:schema targetNamespace="http://ws.iona.com/locator">

1 <xs:import schemaLocation="../../../schemas/references.xsd"
 namespace="http://schemas.iona.com/references"/>
 ...

2 <xs:element name="lookupEndpoint">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_qname" type="xs:QName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
187

CHAPTER 9 | The Artix Locator
3 <xs:element name="lookupEndpointResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_endpoint"
 type="ref:Reference"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="EndpointNotExistFaultException">
 <xs:sequence>
 <xs:element name="error" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

4 <xs:element name="EndpointNotExistFault"
 type="ls:EndpointNotExistFaultException"/>
 </xs:schema>
 </types>
 ...
 <message name="lookupEndpointInput">
 <part name="parameters" element="ls:lookupEndpoint"/>
 </message>
 <message name="lookupEndpointOutput">
 <part name="parameters"
 element="ls:lookupEndpointResponse"/>
 </message>
 <message name="endpointNotExistFault">
 <part name="parameters" element="ls:EndpointNotExistFault"/>
 </message>

5 <portType name="LocatorService">
6 <operation name="lookup_endpoint">

 <input message="ls:lookupEndpointInput"/>
 <output message="ls:lookupEndpointOutput"/>
 <fault name="fault" message="ls:endpointNotExistFault"/>
 </operation>
 </portType>
...
 <service name="LocatorService">
 <port name="LocatorServicePort"
 binding="ls:LocatorServiceBinding">

7 <soap:address location="http://localhost:0"/>
 </port>
 </service>
</definitions>

Example 128:Locator WSDL Contract
 188

Locator WSDL
The preceding locator WSDL extract can be explained as follows:

1. This line imports the schema definition of the ref:Reference type. You
might have to edit the value of the schemaLocation attribute, if the
references.xsd schema file is stored in a different location relative to
the locator.wsdl file.

2. The lookupEndpoint type is the input parameter type for the
lookup_endpoint operation. It contains just the QName (qualified
name) of a particular WSDL service.

3. The lookupEndpointResponse type is the output parameter type for the
lookup_endpoint operation. It contains an Artix reference for the
specified service. If more than one endpoint is registered against a
particular service name, the locator picks one of the endpoints using a
round-robin algorithm.

4. The EndpointNotExist fault would be thrown if the lookup_endpoint
operation fails to find an endpoint registered against the requested
service type.

5. The LocatorService port type defines the public interface of the Artix
locator service.

6. The lookup_endpoint operation, which is called by Artix clients to
retrieve endpoint references, is the only operation from the
LocatorService port type that user applications would typically need.

7. The SOAP location attribute specifies the host and IP port for the
locator service. If you want the locator to run on a different host and
listen on a different IP port, you should edit this setting.

Java mapping Example 129 shows an extract from the Java mapping of the
LocatorService port type. This extract shows only the lookup_endpoint
operation—the other operations defined for the locator are normally not
needed by user applications.

Example 129:Java Mapping of the LocatorService Port Type

// Java
package com.iona.ws.locator;
189

CHAPTER 9 | The Artix Locator
import java.net.*;
import java.rmi.*;

import com.iona.schemas.references.Reference;
import javax.xml.rpc.holders.StringHolder;
import java.lang.String;
import javax.xml.namespace.QName;

/**
 * com.iona.ws.locator.LocatorService
 */
public interface LocatorService extends java.rmi.Remote
{
...

 public com.iona.schemas.references.Reference
lookup_endpoint(javax.xml.namespace.QName service_qname)

 throws EndpointNotExistFaultException, RemoteException;
}

Example 129:Java Mapping of the LocatorService Port Type
 190

Registering Endpoints with the Locator
Registering Endpoints with the Locator

Overview To register a server’s endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint that it creates.

Configuring a server to register
endpoints

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and locator_endpoint plug-ins, as shown in
Example 130.

When running the server, remember to select the appropriate configuration
scope by passing it as the -ORBname command-line parameter.

References For more details about configuring a server to register endpoints, see the
following references:

• The chapter on using the locator in Deploying and Managing Artix
Solutions.

• The locator demonstration in
artix/Version/demos/advanced/locator.

Example 130:Server Configuration Scope for Using the Locator

Artix Configuration File (artix.cfg)
...
located_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "http",
 "locator_endpoint"];
 plugins:locator:wsdl_url="../wsdl/locator.wsdl";
};
191

CHAPTER 9 | The Artix Locator
Reading a Reference from the Locator

Overview After the target server has started up and registered its endpoints with the
locator, an Artix client can then lookup the server’s endpoints using the
locator. The client can then connect to the target server by creating a service
proxy using the reference from the locator. Figure 6 shows an outline of how
a client connects to a server in this way.

Figure 6: Steps to Read a Reference from the Locator
 192

Reading a Reference from the Locator
Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 6, are as follows:

1. Generate the types and the interface for the locator by running
locator.wsdl through wsdltojava.

2. Construct a locator service proxy.

3. Use the locator proxy to invoke lookup_reference().

4. Use the reference returned from lookup_reference() to construct a
proxy to the service.

5. Invoke an operation using the created service proxy.

Example Example 131 shows an example of the code for an Artix client that retrieves
a reference to a SimpleService service from the Artix locator.

Note: This only needs to be done the first time you want to build a
client to use the locator. The generated Java code can be built into a
class and reused for subsequent client applications.

Example 131:Example of Reading a Reference from the Locator Service

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.references.Reference;
import com.iona.ws.locator.*;

public class SimpleServiceClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);
193

CHAPTER 9 | The Artix Locator
The code in Example 131 can be explained as follows:

1. You should ensure that the client picks up the correct configuration by
passing the appropriate value of the -ORBname parameter.

2. This line constructs a QName, name, that identifies the <service
name="LocatorService"> tag from the locator WSDL. See the listing of
the locator WSDL in Example 128 on page 187.

3. This line constructs a QName, lookup_name, that identifies the
SOAPHTTPService service from the SimpleService WSDL.

2 QName name = new QName("http://ws.iona.com/locator",
 "LocatorService");

3 QName lookup_name = new QName("http://www.iona.com/bus/tests",
 "SOAPHTTPService");

4 QName portName = new QName("","LocatorServicePort");

5 // Build the Locator Service Proxy
 String wsdlPath = "file:/../wsdl/locator.wsdl";
 URL wsdlLocation = new File(wsdlPath).toURL();

 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(wsdlLocation, name);

 LocatorService locator =
 (LocatorService)service.getPort(portName,
 LocatorService.class);

6 //Invoke lookup_endpoint()
 Reference simp_ref = locator.lookup_endpoint(lookup_name);

7 // Build a proxy to the target service from the reference
 SimpleService simple_client =
 (SimpleService)bus.createClient(simp_ref,
 SimpleService.class);

8 String greeting = "Greetings from a located client";
 String result;
 result = simple_client.say_hello(greeting);
 System.out.println("say_hello method returned: "+result);
 }
}

Example 131:Example of Reading a Reference from the Locator Service
 194

Reading a Reference from the Locator
4. This port name refers to the <port name="LocatorServicePort" ...>
tag in the locator WSDL (see Example 128 on page 187).

5. The locator service proxy is created by using the standard JAX-RPC
method for creating a dynamic proxy. For details see “Developing a
Client” on page 20.

6. The lookup_endpoint() operation is invoked on the locator to find an
endpoint of SOAPHTTPService type.

7. The SimpleService reference returned from the locator, simp_ref, is
then passed to the bus’ createClient() proxy constructor. The
createClient() proxy constructor takes Reference type and the class
of the proxy to be created as its arguments.

8. You can now use the simple client proxy to make invocations on the
remote Artix server.

Note: If there is more than one WSDL port registered for the
SOAPHTTPService server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.
195

CHAPTER 9 | The Artix Locator
 196

CHAPTER 10

Using Message
Contexts
Artix implements and extends the J2EE MessageContext
interface to allow users to manipulate metadata about
messages and transports.

In this chapter This chapter discusses the following topics:

Understanding Message Contexts in Artix page 198

Sending Header Information Using Contexts page 218
197

CHAPTER 10 | Using Message Contexts
Understanding Message Contexts in Artix

Overview Artix implements the JAX-RPC MessageContext interface. JAX-RPC message
contexts are primarily used in writing message handlers, but can also be
used to store metadata about messages or pass state information into or out
of the message handling chain. Generally, this metadata is not passed
across the wire with the message.

In addition, Artix extends the JAX-RPC message contexts to provide a
consistent, thread safe mechanism for passing additional information along
with request and reply messages. Currently, this mechanism can be used to
send SOAP headers and security information when using the SOAP binding.

Contexts and the bus Message contexts are bus objects that application level code can access. To
manage the Artix message contexts associated with it, a bus uses a context
registry that allows it to instantiate thread specific message contexts. Using
the message context, application code can access any of the properties set
by the application. Because the contexts are thread specific bus objects, any
changes made to a property stored in a context by a message handler is
reflected at the application level.

Artix message contexts, because they hold information which is to be
written out on the wire, have a request context container and a reply context
container for the thread in which it is running. The reply context container
 198

Understanding Message Contexts in Artix
stores information returned from a server and the request context container
stores information that is sent along with a request. This is shown in
Figure 7.

Getting message contexts To access message contexts in your application do the following:

1. If you are using Artix message contexts, register the type factories for
the data stored in the contexts. See “Registering Type Factories” on
page 128.

2. Get a reference to the bus’ context registry.

3. Get the message context for the thread in which your application is
running from the context registry.

Working with message contexts Once you have gotten the message context, you can chose to use it as a
generic JAX-RPC message context or to cast it to an Artix message context.
Both interfaces will allow you to access all of the properties set for the active
bus, but the Artix message context simplifies the accessing Artix specific
properties. The Artix message context interface is an extension of the generic
message context interface, so all of the generic message context methods
are available after you cast a generic message context to an Artix message
context.

Figure 7: Overview of the Message Context Mechanism
199

CHAPTER 10 | Using Message Contexts
In this section This section discusses the following topics:

Getting the Context Registry page 201

Getting the Message Context for a Thread page 203

Working with Generic Contexts page 206

Working with Artix Message Contexts page 211
 200

Understanding Message Contexts in Artix
Getting the Context Registry

Overview The Context Registry is maintained by the bus. It contains an entry for all of
the Artix specific property types registered with the bus. It also instantiates
thread specific message contexts and hands out references to the proper
message context to requesting applications.

Procedure The Bus has a method, getContextRegistry(), that returns a reference to
the bus instance’s context registry. The context registry is an object of type
ContextRegistry. Example 132 shows the signature of
getContextRegistry(). Because the context registry is specific to an
instantiated bus instance, you must call it on an initialized bus instance.

Example Example 133 shows an example of getting the context registry from within
the implementation object of an Artix service.

Example 132:getContextRegistry()

ContextRegistry com.iona.jbus.Bus.getContextRegistry();

Example 133:Getting the Context Registry

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

...
}

201

CHAPTER 10 | Using Message Contexts
The code in Example 133 does the following:

1. Import the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Get a handle to the application’s bus.

3. Call getContextRegistry() on the default bus to get the default bus’
context registry.
 202

Understanding Message Contexts in Artix
Getting the Message Context for a Thread

Overview To ensure thread safety, the context registry creates a Message Context
object for each thread. The message contexts maintained by the context
registry are passed as generic J2EE MessageContext objects. These objects
provide access to properties stored in the contexts using the APIs defined in
the J2EE specification.

Artix provides two means of getting the currnet message context for a
thread. If you have the context registry, you can use the registry’s
getCurrent() method. If you do not have the context registry, you can use
the DispatchLocals.getCurrentContext() method.

To manipulate Artix specific properties you must cast the returned
MessageContext into an IonaMessageContext object. Once the
MessageContext is cast to an IonaMessageContext it is an Artix message
context. The Artix message context APIs provide easy access to Artix specific
properties and track the context container for which each property is set.

getCurrent() Message contexts are passed out by the context registry using the registry’s
getCurrent() method. getCurrent() returns the message context object for
the thread from which it is called. Message contexts are returned as generic
J2EE MessageContext objects. Example 134 shows the signature for
getCurrent().

If you want to use the returned message context to work with Artix specific
context information you can cast it to an IonaMessageContext object. The
IonaMessageContext object is discussed in “Working with Artix Message
Contexts” on page 211.

Example 134:getCurrent()

javax.xml.rpc.handler.MessageCcontext ContextRegistry.getCurrent();
203

CHAPTER 10 | Using Message Contexts
Example 135 shows how to get an message context from the context
registry.

The code in Example 135 does the following:

1. Import the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Get a handle to the application’s bus.

3. Call getContextResistry() on the default bus to get the default bus’
context registry.

4. Call getCurrent() on the context registry to get the Artix message
context for the application’s thread.

DispatchLocals DispactLocals is a globally accessable interface that provides a simple
method for getting the current message context for a thread. Its
getCurrentMessageContext() method returns the message context object
for the thread from which it is called. Message contexts are returned as
generic J2EE MessageContext objects. Example 136 shows the signature
for getCurrent().

Example 135:Getting a Message Context

//Java
import java.net.*;
import java.rmi.*;
import javax.xml.rpc.*

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

4 MessageContext messCont = contReg.getCurrent();
...
}

Example 136:getCurrentMessageContext()

javax.xml.rpc.handler.MessageCcontext getCurrentMessageContext();
 204

Understanding Message Contexts in Artix
If you want to use the returned message context to work with Artix specific
context information you can cast it to an IonaMessageContext object. The
IonaMessageContext object is discussed in “Working with Artix Message
Contexts” on page 211.

Example 137 shows how to get an message context using the
DispatchLocals interface.

Example 137:Getting a Message Context

//Java
import java.net.*;
import java.rmi.*;
import javax.xml.rpc.*

import com.iona.jbus.*;

public class Atherny
{
 MessageContext messCont = DispatchLocals.getCurrentBus();
 ...
}

205

CHAPTER 10 | Using Message Contexts
Working with Generic Contexts

Overview A JAX-RPC message context is a container for properties that are shared
among the participants in applications message handling chain. They have
some predefined properties that are made available to message handlers
that run below the application level. However, you can add any named
property you like to the context as long as the name does not conflict with
one of the predefined properties.

Properties set in the message context are only available at certain steps
along the message handling chain. Properties set in the context by message
handlers are only available to message handlers further down the processing
chain and are destroyed once the operation’s invocation completes.
Properties set at the application level are available globally and live for the
duration of the application.

Generic message contexts have methods to set a property in the context, to
get a property from the context, and to remove a property from the context.
They also have methods to determine what properties are set in the context.

Setting a property in the context Before a property exists in the message context it must be set using the
message context’s setProperty() method. Example 138 shows the
signature for setProperty(). The first parameter, name, can be any string as
long as it is unique among the properties set in the context. The second
parameter, value, can be any instantiated Java object. It becomes the value
of the property stored in the context.

The scope of the property depends on where in the message handling chain
the property is set into the context. Properties set at the level from which the
operations are invoked they are global in scope and exist for the duration of
the process’ lifecycle or until they are explicitly removed from the message
context. Properties set by message handlers are only available to message
handlers further down the message handler chain and expire once the
operation’s invocation is completed. For more information about message
handlers, see “Writing Message Handlers” on page 239.

Example 138:MessageContext.setProperty()

void setProperty(Sting name, Object value);
 206

Understanding Message Contexts in Artix
Example 139 shows the code for setting a property in the request context.

The code in Example 139 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

3. Calls getContextResistry() on the default bus to get the default bus’
context registry.

4. Calls getCurrent() on the context registry to get the message context
for the application’s thread.

5. Creates the an instance of the property’s class and set the values.

6. Sets the property by calling setProperty().

Example 139:Setting a Property in a Message Context

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

4 MessageContext context = contReg.getCurrent();

5 boolean isEncrytped = TRUE;

6 context.setProperty("isEncrypted", isEncrypted);

...
}

207

CHAPTER 10 | Using Message Contexts
Getting a property from the
context

You get a property’s value from the message context using its
getProperty() method. Example 140 shows the signature for
getProperty(). It takes a single parameter, name, that is the name of the
property for which you want the value. If the property exists, it is returned. If
the property does not exist, null is returned.

Example 141 shows the code for getting a SOAP header from the request
context.

The code in Example 141 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

3. Calls getContextResistry() on the default bus to get the default bus’
context registry.

4. Calls getCurrent() on the context registry to get the message context
for the application’s thread.

5. Gets the property by calling getProperty() with the appropriate name.

Example 140:MessageContext.getProperty()

Object getProperty(String name);

Example 141:Getting a Property from the Message Context

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

4 MessageContext context = contReg.getCurrent();

5 boolean encrypt = (boolean)context.getProperty("isEncrypted");
...
}

 208

Understanding Message Contexts in Artix
Removing a property from the
context

If you wish to remove a property from the message context, you do so using
the message context’s removeProperty() method. Example 142 shows the
signature for removeProperty(). It takes a single parameter, name, that
represents the name of the property you wish to remove.

Example 143 shows the code for removing a property from the message
context.

The code in Example 143 does the following:

1. Gets a handle to the application’s bus.

2. Calls getContextResistry() on the default bus to get the default bus’
context registry.

3. Calls getCurrent() on the context registry to get the message context
for the application’s thread.

4. Removes the property by calling removeProperty().

Example 142:MessageContext.removeProperty()

void removeProperty(String name);

Example 143:Removing a Property from a Message Context

//Java
import java.net.*;
import java.rmi.*;
import com.iona.jbus.*;

public class Atherny
{

1 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 MessageContext context = contReg.getCurrent();

4 context.removeProperty("isEnctryted");
...
}

209

CHAPTER 10 | Using Message Contexts
Determining what properties are
set

The JAX-RPC MessageContext interface has two methods that allow you to
determine what properties are set in a context. containsProperty() takes
the name of a property, as a String, and returns true if the property is set
and false if the property is not. getPropertyNames() returns an Iterator
object with the names of all properties stored in the message context.

Example 144 shows the code for seeing if a property is set in the message
context.

Example 144:Querying a Property in the Message Context

//Java
import java.net.*;
import java.rmi.*;
import com.iona.jbus.*;

public class Atherny
{
com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

ContextRegistry contReg = def_bus.getContextRegistry();

MessageContext context = contReg.getCurrent();

if (context.containsProperty("isEnctryted"))
 {
 System.out("The property is set");
 }
...
}

 210

Understanding Message Contexts in Artix
Working with Artix Message Contexts

Overview Each Artix message context holds one Request Context Container and one
Reply Context Container. The request context container holds all of the
properties associated with messages that originate as service requests in a
proxy. The reply context container holds all of the properties associated with
messages that are created by services in response to a request. In both
instances, the properties in the context container are passed all the way
through the request and reply chain. For example, if Client makes a
request on ServerA, ServerA would receive the properties set in the request
context from the client. If ServerA then passes the request along to ServerB,
ServerB also receives the request context sent by Client. The same is true
when using the Artix router. Figure 8 shows how context properties are
passed with messages.

The context containers hold the data for all of the contexts instantiated in
the Artix message context’s thread. Each context container can hold one
instance of a registered property type. Properties are instantiated separately
for the request context container and the reply context container. For
instance, you can get a SOAP header property for the request context

Figure 8: Contexts Passed Along Request/Reply Chain
211

CHAPTER 10 | Using Message Contexts
container and leave the reply context container empty. In that case, the
SOAP header property would be included in all request messages sent from
the thread in which it was set.

Setting a property Before you can get a property from one of the context containers, the
property must be set in that container. Properties are set in one of two ways.
The first is that the property is set by the sender of the message. For
example, if a client sends a request with a WS-Security header, the server’s
request context container will have the WS-Security property set.

The second is to use the message context’s setter methods. The message
context has four setter methods: setReplyContext(),
setReplyContextAsString(), setRequestContext(), and
setRequestContextAsString(). setReplyContext() and
setRequestContext() allow you to set the values for properties that are
defined as non-string data. setReplyContextAsString() and
setRequestContextAsString() allow you to set the values for properties
that are defined as strings. Example 145 shows the signature for these
methods.

The first parameter to these methods, name, specifies the name of the
property you desire to set. The QName passed in must be a QName of a
property that is registered with the context registry.

The second parameter, value, is data you are using to set the property. It
must be of the appropriate type for the property specified in name.

To set a property do the following:

1. Create an instance of the object representing the property you want to
set.

2. Set the desired fields of the newly created property.

Example 145:Methods for Setting a Property

void setReplyContext(QName name, Object value);
void setReplyContextAsString(QName name, String value);
void setRequestContext(QName name, Object value);
void setRequestContextAsString(QName name, String value);
 212

Understanding Message Contexts in Artix
3. Call the appropriate setter method with the name of the property you
are setting and the property instance you created. For example, to set a
property into the reply context container, you would use
setReplyContext().

Example 146 shows the code for setting a property in the request context.

The code in Example 146 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

3. Calls getContextResistry() on the default bus to get the default bus’
context registry.

4. Calls getCurrent() on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

Example 146:Setting a Property in an Artix Message Context

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

4 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

5 clientType HTTPClientAttrs = new clientType();
HTTPClientAttrs.set_username("Murphy");
HTTPClientAttrs.set_password("1234");

6 QName contextName = new QName("http://widgets.com/",
 "HTTPClientAttributes");

7 context.setRequestContext(contextName, HTTPClientAttrs);

...
}

213

CHAPTER 10 | Using Message Contexts
5. Creates the an instance of the property’s class and set the values.

6. Creates the QName for the property.

7. Sets the property by calling setRequestContext() with the appropriate
QName and the newly created property object.

Getting a property Artix message contexts have four methods that allows you to get a property
from one of the context containers. These methods are getReplyContext(),
getReplyContextAsString(), getRequestContext(), and
getRequestContextAsString(). getReplyContext() and
getRequestContext() return the property a generic Java Object that must
be cast into the property’s type. getReplyContextAsString() and
getRequestContextAsString() return the values of properties of type
String. Example 147 shows the signature for these methods.

They take a single parameter, name, that specifies the name of the property
you desire to get. The QName passed in must be a QName of a property that is
registered with the context registry. You can register your own properties to
use as SOAP headers.

Example 148 shows the code for getting a SOAP header from the request
context.

Example 147:Methods for Getting a Property

Object getReplyContext(QName name);
String getReplyContextAsString(QName name);
Object getRequestContext(QName name);
String getRequestContextAsString(QName name);

Example 148:Getting a Property

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();
 214

Understanding Message Contexts in Artix
The code in Example 148 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

3. Calls getContextResistry() on the default bus to get the default bus’
context registry.

4. Calls getCurrent() on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

5. Creates the QName used to get the property from the context
container. This QName must be the same QName as the one with
which the property was registered.

6. Gets the customer SOAP header property by calling
getRequestContext() with the appropriate QName.

Working with a property Once you have gotten a property from the context container, you must first
cast the returned Object to the appropriate data type for the property. Each
property has its own associated data type. For example, in Example 148 the
custom SOAP header’s data is of type headerType.

Once the property is cast into the appropriate type you can access its fields
using the methods defined for the type. Any changes made to the property
by your application change the copy stored in the context container and will
be propagated when the property is sent with a message.

Removing a property If you do not want the data in a particular property to be propagated beyond
a certain point, you can remove it from a context container using one of the
the Artix message context’s remove methods. removeReplyContext()
removes properties from the message context’s reply container and

4 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

5 QName refName = new QName("http://widgets.com/","mySOAPHeader");
6 headerType header =

 (headerType)context.getRequestContext(refName);
...
}

Example 148:Getting a Property
215

CHAPTER 10 | Using Message Contexts
removeRequestContext() removes properties from the message context’s
request context container. This is useful if your application must forward
requests to other servers that do not need, or should not get, a property.

The removal methods take a single parameter, name, that specifies the
QName of the property you are removing from the container. Example 149
shows the code for removing the HTTP client attributes from the request
context container.

The code in Example 149 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

3. Calls getContextResistry() on the default bus to get the default bus’
context registry.

4. Calls getCurrent() on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

5. Creates the QName for the property to remove.

Example 149:Removing a Property

//Java
import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{

2 com.iona.jbus.Bus def_bus = DispatchLocals.getCurrentBus();

3 ContextRegistry contReg = def_bus.getContextRegistry();

4 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

5 QName contextName = new QName("http://widgets.com/",
 "HTTPClientAttributes");

6 context.removeRequestContext(contextName);
...
}

 216

Understanding Message Contexts in Artix
6. Removes the HTTP client attribute property by calling
removeRequestContext() with the appropriate QName.
217

CHAPTER 10 | Using Message Contexts
Sending Header Information Using Contexts

Overview Using the context mechanism, you can embed data in message headers that
are not part of the operation’s parameter list. This is useful in sending
metadata such as security tokens or session information that is not vital to
the logic involved in processing the request. Currently only SOAP headers
are supported.

The data sent in the message header is a custom context that you will need
to create and register with the Artix context container when you build your
application.

To send customer header information in a context you need to do the
following:

1. Define an XMLSchema for the data being stored in the header.

2. Generate the type factory and support code for the header data.

3. Register the type factory for the header data. See “Registering Type
Factories” on page 128.

4. Register the header data as a context.

Once the header data is registered as a context with Artix, it can be
accessed using the normal context mechanisms.

In this section This section discusses the following topics:

Note: If you change the payload format used by the application, your
code will continue to work. However, the header information stored in the
context will not be transmitted.

Defining Context Data Types page 219

Registering Context Types page 221

SOAP Header Example page 223
 218

Sending Header Information Using Contexts
Defining Context Data Types

Overview Contexts can store data of any XMLSchema type that is derived from
xsd:anyType. In other words, a context data type can be any primitive,
simple, or complex XMLSchema type.

When creating a context whose type is an XMLSchema primitive type or a
native XMLSchema simple type like xsd:nonNegativeInteger, you do not
need to explicitly define the context’s data type. However, if you are creating
a context whose type is a user-defined simple type or a complex type, you
need to define the data type in an XMLSchema document (XSD) or in the
types section of your contract and generate the appropriate type factories for
the data type.

Defining a context schema It is usually more appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
WSDL contract. This approach is more logical because contexts are
normally used to implement features independently of any particular WSDL
contract.

To define a complex context data type, ContextDataType, in the namespace,
ContextDataURI, you define a context schema following the outline shown
in Example 150.

Example 150:Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="ContextDataURI"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="ContextDataType">
 ...
 </xsd:complexType>
</xsd:schema>
219

CHAPTER 10 | Using Message Contexts
Example For example, you could define the data for a header that contains two
elements. One element, originator, is a string containing the name of the
message originator. The other element, timeStamp, is the date and time the
message was sent. The data type for this header, headerInfo, is shown in
Example 151.

Generating Java code for a context
schema

To generate the Java code for the context data type, ContextType, from a
context schema file, ContextSchema.xsd, enter the following command at
the command line:

The WSDL-to-Java compiler will generate two Java classes:

• ContextType.java contains the class representing the data type.

• ContextTypeTypeFactory.java contains the type factory needed to
instantiate the context data type.

These classes will need to be accessible to any applications that wish to
register and use a context of the defined type.

For more information on type factories see “Working with Artix Type
Factories” on page 125.

Example 151:Header Context Data Definition

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="headerInfo">
 <xsd:sequence>
 <xsd:element name="originator" type="xsd:string"/>
 <xsd:element name="timeStamp" type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

wsdltojava ContextSchema.xsd
 220

Sending Header Information Using Contexts
Registering Context Types

Overview Before you can use a context, you must register it with the bus’ context
registry using the registry’s registerContext() method. registerContext()
require that you provide the QName for the context and the QName of the data
type stored in the context.

The main effect of registering a context is that the context registry adds a
type factory reference to its internal table. This type factory reference
enables the context registry to create context data instances whenever they
are needed.

Registering a context to use as a
SOAP Header

To register a context to be used as a SOAP header you need to provide the
name of the WSDL message part that is to be inserted into the SOAP
header. This information comes from the WSDL contract defining the
messages used by the application.

Example 152 shows the signature of the registerContext() function used
to register a context to be used as a SOAP header.

registerContext() takes the following arguments:

Example 152:The registerContext() Function for SOAP Headers

void ContextRegistry.regiserContext(QName name, QName type,
 QName message_name,
 String part_name);

name The qualified name used to represent the property.

type The qualified name of the property’s data type.

message_name The qualified name of the WSDL message specified in the
<soap:header> element defining this SOAP header. If
there is no <soap:header> elements defined in the
contract, this can be any valid QName.

part_name The part name specified in the <soap:header> element
defining this SOAP header. If there is no <soap:header>
elements defined in the contract, this can be any valid
String.
221

CHAPTER 10 | Using Message Contexts
For example, to register a SOAP header property of the type defined in
Example 151 on page 220 you would use code similar to Example 153.

The code in Example 153 does the following:

1. Register the type factory for the header’s data type.

2. Get a handle to the bus’ context registry.

3. Build the QName by for the new property. This can be any valid QName.

4. Build the QName that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Build the QName for the message defining the SOAP header. In this
example, the SOAP header is not defined in the WSDL contract so the
value is unimportant.

6. Register the property with the context registry. The value used for the
part name, header_part, can be any string.

Example 153:Registering a SOAP Header Property

// Java

1 // Artix servant, servant, obtained earlier
headerInfoTypeFactory fact = new headerInfoTypeFactory();
servant.registerTypeFactory(fact);

2 // Bus, bus, obtained earlier
ContextRegestry contReg = bus.get_context_registry();

3 // Create a QName for the new property
QName name = new QName("http://javaExamples.iona.com",
 "SOAPHeader");

4 // Create a QName to hold the QName of the property’s data type
QName type = new QName("http://schemas.iona.com/types/context",
 "headerInfo");

5 // Create a QName for the message
QName message = new QName("http://myHeader.com/header"
 "header_info");

6 // Register the property
contReg.registerContext(name, type, message, "header_part");
 222

Sending Header Information Using Contexts
SOAP Header Example

Overview The example in this section transmits a custom SOAP header between two
Artix processes. The SOAP header is defined in the WSDL contract for this
example to demonstrate how context registration relates to the WSDL
contract for SOAP headers.

The SOAP header data in this example is transmitted as follows:

1. The client registers the property, SOAPHeaderInfo, with the context
registry for its bus.

2. The client initializes the property instance.

3. The client invokes the sayHi() operation on the server and the SOAP
header property is packaged into the request message’s SOAP header.

4. When the server starts up, it registers the SOAPHeaderInfo property
with the context registry for its bus.

5. When the sayHi() operation request arrives on the server side, the
SOAP header is extracted and put into the request context container as
a SOAPHeaderInfo property.

6. The sayHi() operation implementation extracts the property from the
request.

If the server is this example were not an Artix process, it would not need to
use the context mechanism to extract the SOAP header. It would have its
own method of handling the SOAP header.

WSDL contract Example 154 on page 224 shows the WSDL contract used to define the
service used in this example. It imports the XSD file, SOAPcontext.xsd, that
defines the SOAP header property’s data type in Example 151 on page 220.
The SOAPHeaderInfo type is used to define the only part of the headerMsg
message. In the SOAP binding for Greeter, GreeterSOAPBinding, the
definition of the input message includes a <soap:header> element that
223

CHAPTER 10 | Using Message Contexts
specifies that headerMsg:headerPart is to be placed in a SOAP header
when a request is made. Your application code will be responsible for
creating the property that populates the defined SOAP header.

Example 154:SOAP Header WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld" targetNamespace="http://www.iona.com/soapHeader"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:ns1="http://schemas.iona.com/types/context"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import location="file:/SOAPcontext.xsd"
 namespace="http://schemas.iona.com/types/context"/>
 <types>
 <schema targetNamespace="http://www.iona.com/custom_soap_header"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </types>
 <message name="greetMeRequest">
 <part element="requestType" name="me"/>
 </message>
 <message name="greetMeResponse">
 <part element="responseType" name="theResponse"/>
 </message>
 <message name="headerMsg">
 <part type="ns1:SOAPHeaderInfo" name="headerPart" />
 </message>
 <portType name="Greeter">
 <operation name="greetMe">
 <input message="greetMeRequest" name="greetMeRequest"/>
 <output message="greetMeResponse" name="greetMeResponse"/>
 </operation>
 </portType>
 224

Sending Header Information Using Contexts
Generating the Java classes for the
property’s data type

Because the XSD file for the property’s data type is imported into the
contract for the service wsdltojava will automatically generate the
appropriate classes and type factories for SOAPHeaderInfo when you
generate the code for the service.

To generate the code for the service save the WSDL contract into a file
called soapHeader.wsdl and the XSD file for SOAPHeaderInfo into a file
called SOAPcontext.xsd. Then run the following command:

The client The client in this example will send a SOAP header of type SOAPHeaderInfo
when it invokes the greetMe operation. To do this it must do four things:

1. Register the type factory for SOAPHeaderInfo.

2. Register a property of SOAPHeaderInfo type.

3. Create an instance of SOAPHeaderInfo.

4. Populate the instance with the appropriate data.

5. Set the SOAPHeaderInfo property in the request context container.

 <binding name="GreeterSOAPBinding" type="Greeter">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="greetMe">
 <soap:operation soapAction="" style="document"/>
 <input name="greetMeRequest">
 <soap:body use="literal"/>
 <soap:header use="literal" message="headerMsg" part="headerPart" />
 </input>
 <output name="greetMeResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="GreeterService">
 <port binding="GreeterSOAPBinding" name="SoapPort">
 <address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 154:SOAP Header WSDL

wsdltojava soapHeader.wsdl
225

CHAPTER 10 | Using Message Contexts
When the greetMe() method is invoked, the property will be inserted into
the SOAP message’s header element and sent to the server.

Example 155 on page 226 shows the code for the client.

Example 155:Client Code

// Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class GreeterClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://www.iona.com/soapHeader",
 "GreeterService");
 QName portName = new QName("","Greeter");

 String wsdlPath = "file:/./soapHeader.wsdl";
 URL wsdlLocation = new File(wsdlPath).toURL();

 ServiceFactory factory = ServiceFactory.newInstance();

 Service service = factory.createService(wsdlLocation, name);

 Greeter impl = (Greeter)service.getPort(portName,
 Greeter.class);

3 SOAPHeaderInfoTypeFactory fact =
 new SOAPHeaderInfoTypeFactory();
 bus.registerTypeFactory(fact);

4 ContextRegestry contReg = bus.getContextRegistry();
 226

Sending Header Information Using Contexts
The code in Example 155 on page 226 does the following:

1. Initializes an instance of the bus.

2. Creates a proxy for the Greeter service.

3. Register the type factory for SOAPHeaderInfo.

4. Gets the context registry from the bus.

5. Builds the QName for the new property.

6. Builds the QName for the property’s data type. The values for this are
taken from the XSD defining the data type. The first argument is the
namespace under which the type is defined. The second argument is
the name of the complex type.

5 QName name = new QName("http://javaExamples.iona.com",
 "SOAPHeader");

6 QName type =
 new QName("http://schemas.iona.com/types/context",
 "SOAPHeaderInfo");

7 QName message = new QName("http://www.iona.com/soapHeader"
 "headerMsg");

8 contReg.registerContext(name, type, message, "headerPart");

9 SOAPHeaderInfo header = new SOAPHeaderInfo();
 header.setOriginator("IONA Technologies");
 header.setMessage("Artix is powerful!");

10 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

11 context.setRequextContext(name, header);

12 String string_out;

 string_out = impl.greetMe("Chris");
 System.out.println(string_out);

 bus.shutdown(true);
 }
}

Example 155:Client Code
227

CHAPTER 10 | Using Message Contexts
7. Builds the QName for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
QName for the message defined in the <soap:header> element of the
contract, http://www.iona.com/soapHeader:headerMsg.

8. Registers the property with the context registry. The value used for the
part name, headerPart, is the part name specified in the contract’s
<soap:header> element.

9. Instantiates an instance of the SOAP header property’s class,
SOAPHeaderInfo, and sets the fields.

10. Gets the Artix message context for the client.

11. Adds the SOAP header property to the request context container.

12. Invokes greetMe(). The SOAP header property is placed into the SOAP
header of the request and sent to the server.

The server main line The server must also register the SOAPHeader property with its context
registry in order to extract the SOAP header sent with the request. Because
the property only needs to be registered with the context registry once, it
makes sense to register it in the server main line before control is passed to
the bus.

Example 156 on page 228 shows the code for the server’s main line.

Example 156:Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {

1 // Initialize the Artix bus
 Bus bus = Bus.init(args);
 228

Sending Header Information Using Contexts
The code in Example 156 on page 228 does the following:

1. Initializes an instance of the bus.

2. Registers the services implementation object with the bus.

3. Registers the type factory for SOAPHeaderInfo.

4. Gets the context registry from the bus.

5. Builds the QName for the new property.

2 // Register the implementation object factory
 QName name = new QName("http://www.iona.com/soapHeader",
 "GreeterService");
 Servant servant =
 new SingleInstanceServant("./soapHeader.wsdl",
 new GreeterImpl());
 bus.registerServant(servant, name, "SoapPort");

3 SOAPHeaderInfoTypeFactory fact =
 new SOAPHeaderInfoTypeFactory();
 bus.registerTypeFactory(fact);

4 ContextRegestry contReg = bus.getContextRegistry();

5 QName propName = new QName("http://javaExamples.iona.com",
 "SOAPHeader");

6 QName propType =
 new QName("http://schemas.iona.com/types/context",
 "SOAPHeaderInfo");

7 QName message = new QName("http://www.iona.com/soapHeader"
 "headerMsg");

8 contReg.registeContext(propName, propType,
 message, "headerPart");

9 // Start the Bus
 bus.run();
 }
}

Example 156:Server main()
229

CHAPTER 10 | Using Message Contexts
6. Builds the QName for the property’s data type. The values for this are
taken from the XSD defining the data type. The first argument is the
namespace under which the type is defined. The second argument is
the name of the complex type.

7. Builds the QName for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
QName for the message defined in the <soap:header> element of the
contract, http://www.iona.com/soapHeader:headerMsg.

8. Registers the property with the context registry. The value used for the
part name, headerPart, is the part name specified in the contract’s
<soap:header> element.

9. Hands control over to the bus.

The implementation object The service’s implementation object, GreeterImpl, gets the SOAP header
from the request message and prints the headers contents. To do this the
implementation object must get the SOAP header property from the request
context container. Getting the SOAP header property takes four steps:

1. Get a reference to the bus for the implementation object.

2. Get the bus’ context registry.

3. Get the thread’s Artix message context from the registry.

4. Get the SOAP header property from the request context container.

Example 157 shows the code for the GreeterImpl implementation object.

Example 157:Implementation of the Greeter Service

// Java
import java.net.*;
import java.rmi.*;
import javax.xml.namespace.QName;

import com.iona.jbus.*

public class GreeterImpl
{
 public String greetMe(String stringParam)
 {

1 com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();
 230

Sending Header Information Using Contexts
The code in Example 157 on page 230 does the following:

1. Gets an instance of the bus.

2. Gets the context registry from the bus.

3. Gets the context current for the implementation object’s thread.

4. Builds the QName for the SOAP header property. This QName must be the
same as the QName used when registering the property in the server
main.

5. Gets the SOAP header property from the request context container.

6. Prints out the information contained in the SOAP header.

7. Returns the results of the operation to the client.

2 ContextRegestry contReg = bus.getContextRegistry();

3 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

4 QName name = new QName("http://javaExamples.iona.com",
 "SOAPHeader");

5 SOAPHeaderInfo header = (SOAPHederInfo)
 reqContext.getRequestContext(name);

6 System.out.println("SOAP Header Originator:
 "+header.getOriginator());
 System.out.println("SOAP Header message:
 "+header.getMessage());

7 return "Hello Artix User: "+stringParam;
 }
}

Example 157:Implementation of the Greeter Service
231

CHAPTER 10 | Using Message Contexts
 232

CHAPTER 11

Developing Java
Plug-Ins
Java Plug-Ins can perform a number of tasks including
registering servants or implementing message handlers.

Overview Developing and loading an Artix plug-in in Java requires you to perform four
tasks:

1. Extend the BusPlugIn class to implement your plug-in’s application
logic.

2. Implement the BusPlugInFactory interface.

3. If needed, configure the plug-in’s class loader environment. See “Class
Loading” on page 41.

4. Configure Artix to use the plug-in. See Deploying and Managing Artix
Solutions.

In this chapter This chapter discusses the following topics:

Extending the BusPlugIn Class page 234

Implementing the BusPlugInFactory Interface page 237
233

CHAPTER 11 | Developing Java Plug-Ins
Extending the BusPlugIn Class

Overview The BusPlugIn class is the base class for all Artix plug-ins. It provides a
method, getBus(), that returns the bus with which the plug-in is
associated. In addition, it has two abstract classes that you must
implement:

• A constructor for your class.

• The busInit() method called by the bus to initialize the plug-in.

• The busShutdown() method called by the bus when it is shutting down
to allow the plug-in to perform any clean-up it needs before being
destroyed.

Implementing the constructor The constructor for your plug-in has two requirements:

1. Its first argument must be a bus instance.

2. It must call super() with the passed in bus reference.

Example 158 shows a constructor for a plug-in called BankPlugIn. It simply
calls super() on the bus instance. It could, however, have performed some
logging operations or initialized resources.

busInit() busInit() is called by every bus that loads your plug-in. Inside busInit(),
you perform all of the initialization needed for your plug-in to perform its job.
For example, if your plug-in implemented a service defined in WSDL you

Example 158:BusPlugIn constructor

// Java
public class BankPlugIn extends BusPlugIn
{
 public BankPlugIn(Bus bus)
 {
 super(bus);
 }
...
}

 234

Extending the BusPlugIn Class
would create and register the servant in busInit(). If your plug-in
implemented a JAX-RPC Handler, you would register your handler factory in
busInit().

Example 159 shows a busInit() method used in implementing the bank
service, described in Developing Artix Applications in Java, as a plug-in.

busShutdown() busShutdown() is called on the plug-in by the bus when the bus is shutting
down. Once busShutdown() completes, the bus calls destrotBusPlugIn()
on the plug-in factory object. This is good place to release instance specific
resources used by the plug-in or to do other house keeping. For example,
the bank plug-in may need to force the account objects it created to finish
any running transactions and flush their information to the permanent store
before shutting down as shown as shown in Example 160.

Example 159:busInit()

// Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
 private BankImpl bank;
 ...
 public void busInit() throws BusException
 {
 Bus bus = getBus();
 QName qname = new QName("http://www.iona.com/bus/demos/bank",
 "BankService");
 bank = new BankImpl();
 Servant servant = new SingleInstanceServant(bank,
 "./bank.wsdl", bus);
 bus.registerServant(servant, qname, "BankPort");
 }

 ...
}

235

CHAPTER 11 | Developing Java Plug-Ins
Example 160:busShutdown()

// Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import com.iona.schemas.references.Reference;

import javax.xml.namespace.QName;
import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
 private BankImpl bank;
 ...
 public void busShutdown() throws BusException
 {
 Account acctProxy;
 Reference ref;
 Bus bus = getBus()
 Iterator it = bank.accounts.values().interator();

 while(it.hasNext())
 {
 ref = (Reference)it.next();
 acctProxy = bus.createClient(ref, Account.class);
 acctProxy.closeDown();
 }
 }
}

 236

Implementing the BusPlugInFactory Interface
Implementing the BusPlugInFactory Interface

Overview The BusPlugInFactory interface provides the methods used by the Artix bus
to manage a plug-in implementation. It has two methods you must
implement:

• createBusPlugIn() creates instances of the plug-in and its associated
resources and associate them with particular bus instances.

• destroyBusPlugIn() destorys plug-in instances and frees the resources
associated with them.

createBusPlugIn() createBusPlugIn() is called by a bus instance when it loads a plug-in. In
most instances, createBusPlugIn() will simply instaniate an instance of
your plug-in object and return it. However, you can use this method to
initialize any global resources used by the plug-in.

Example 161 shows the signature for createBusPlugIn().

destroyBusPlugIn() destroyBusPlugIn() is called by a bus instance when it is shutting down
and releasing its resources. In most instances, this method does not need to
do anything. However, if you created any global resources for your plug-in
this would be a convinient place to free them.

Example 162 shows the signature for destroyBusPlugIn().

Example 161:createBusPlugIn()

public BusPlugIn createBusPlugIn(Bus bus) throws BusException;

Example 162:destroyBusPlugIn()

public void destroyBusPlugIn(BusPlugIn plugin);
237

CHAPTER 11 | Developing Java Plug-Ins
Example For example, the BusPlugInFactory implementation for a plug-in
BankPlugIn would look similar to Example 163.

Example 163:BankPlugInFactory

// Java
import com.iona.jbus.*;

public class BankPlugInFactory implements BusPlugInFactory
{
 public BusPlugIn createBusPlugIn(Bus bus) throws BusException
 {
 return new BankPlugIn(bus);
 }

 public void destroyBusPlugIn(BusPlugIn plugin)
 throws BusException
 {
 }
}

 238

CHAPTER 12

Writing Message
Handlers
Using the JAX-RPC Handler mechanism, developers can
access and manipulate messages as they pass along the
delivery chain.

In this chapter This chapter discusses the following topics:

Message Handlers: An Introduction page 240

Developing Request-Level Handlers page 244

Developing Message-Level Handlers page 251
239

CHAPTER 12 | Writing Message Handlers
Message Handlers: An Introduction

Overview When a service proxy invokes an operation on a service, the operations
parameters are passed to the Artix bus where they are built into a message
and placed on the wire. When the message is received by the service, the
Artix bus reads the message from the wire, reconstructs the message, and
then passes the operation parameters to the application code responsible for
implementing the operation. When the service is finished processing the
request, the reply message undergoes a similar chain of events on its trip to
the server. This is shown in Figure 9.

You can write message handlers that work with a message at each stop
along its path. For example, if you wanted to compress a message before
sending it on the wire, you could write a message handler that takes the
message data from the binding and compresses it before the transport puts

Figure 9: The Life of a Message
 240

Message Handlers: An Introduction
the message on the wire. Likewise, you could write a message handler that
takes the message from the transport and decompresses it before passing it
on to the binding.

Message handler levels The JAX-RPC specification outlines a mechanism for developers to write
custom message handlers using the Handler interface. Using the handler
mechanism, you can intercept and work with message data at four points
along the request message’s life cycle and at four points along the reply
message’s life cycle. Both requests and replies can be handled at the client
request level, the client message level, the server message level, and the
server request level. These levels are shown in Figure 10.

On the client side of an application, you can write message handlers to
process requests as they pass from the application to the binding and to
process responses as they passes from the binding to the application. These
are called request-level handlers. You can also write message handlers to

Figure 10: Handler Levels
241

CHAPTER 12 | Writing Message Handlers
process requests as they pass from the binding to the transport and to
process responses as they pass from the transport to the binding. These are
called message-level handlers.

On the server side of an application the direction of the message flow is
reversed, but the levels stay the same. For example, a request-level handler
on the server side would work with requests as they pass from the binding
to the application and a message-level handler would process with
responses as they passed from the binding to the transport.

Implementing a message handler Message handlers are developed as Artix plug-ins. This allows you to
develop a message handler once an reuse it in any Artix Java application.
Writing a plug-in requires that you implement the BusPlugInFactory
interface and extend the BusPlugIn class to initialize the message handlers.
For details on the plug-in interfaces see “Developing Java Plug-Ins” on
page 233.

To write a message handler, you implement the JAX-RPC Handler interface
and the HandlerFactory interface. To make implementing these interfaces
easier, Artix supplies a GenericHandler class and a GenericHandlerFactory
class that you can extend to write your handlers. These generic classes
provide idle implementations of all of the methods for the interfaces. By
extending them you only to provide implementations for the methods
needed by your message handler.

Your Handler implementation contains the logic for the message handler
you are writing. The Handler interface has two methods that process
messages: handleRequest() and handleResponse(). handleRequest() is
invoked when a request message is passing through the handler.
handleResponse() in invoked when a response message is passing through
the handler. These methods are invoked in both request level handlers and
message level handlers.

A HandlerFactory implementation is responsible for instantiating bus
specific instances of one or more message handlers. The HandlerFactory
interface has four methods for instantiating handlers:
getClientMessageHandler(), getClientRequestHandler(),
getServerMessageHandler(), and getServerRequestHandler(). As the
method names imply, each method is used to instantiate a message handler
for use at a specific point in the messaging chain. For example,
getClientMessageHandler() would be called by the bus to instantiate a
client side message handler for processing messages as the passed between
 242

Message Handlers: An Introduction
the binding and the transport. Each method in a factory can instantiate one
message handler. However, a factory can be developed to instantiate four
message handlers because the bus will only call the factory method needed
to instantiate the message handler configured to be used at a particular
point in the message chain.

Configuring Artix to use message
handlers

Before your applications can use message handlers, you must configure
them to load the message handlers at the appropriate points in the message
chain. This is done by adding the following configuration variables into the
application’s configuration scope:

binding:artix:client_message_interceptor_list is an ordered list of QNames
specifying the message-level handlers for a client.

binding:artix:client_request_interceptor_list is an ordered list of QNames
specifying the request-level handlers for a client.

binding:artix:server_message_interceptor_list is an ordered list of QNames
specifying the message-level handlers for a server.

binding:artix:server_request_interceptor_list is an ordered list of QNames
specifying the request-level handlers for a server.

The message handlers are placed in the list in the order they will be invoked
on the message as it passes through the messaging chain. For example, if
the server request interceptor list was specified as "tns:Freeze+tns:Dry", a
message would be passed into the message handler Freeze as it left the
binding. Once Freeze processed the message, it would be passed into Dry
for more processing. Dry would then pass the message along to the
application code. For more information on configuring Artix applications see
Deploying and Managing Artix Applications.
243

CHAPTER 12 | Writing Message Handlers
Developing Request-Level Handlers

Overview Request-level handlers process messages as they pass between your
application code and the binding that formats the message that is being sent
on the wire. On the client side, request messages are processed immediately
after the application invokes a remote method on its service proxy and
before the binding formats the message. Responses are processed after the
message is decoded by the binding and before the data is returned to the
client application code. On the server side, requests are processed as they
pass from the binding to the service implementation. Replies are processed
as they pass from the server implementation to the binding.

Currently, message handlers at the request level have limited access to the
message data. They can access the applications message context, access
the messages SOAP headers, or access the messages security properties.
For example, your application could have a client side message handler that
added a custom SOAP header to its requests for authorization purposes. The
server could then use a message handler to read the SOAP header and
perform the authorization before the request gets to the service
implementation.

Procedure To develop a request-level handler you need to do the following:

1. Implement a BusPluginFactory to load the plug-in that implements
your message handler. See “Implementing the BusPlugInFactory
Interface” on page 237.

2. Extend BusPlugin to load your message handler.

3. Implement a HandlerFactory to instantiate your message handler
when the bus needs it.

4. Implement a Handler to host the logic used by your message handler.

5. Configure your application to load the message handler plug-in.

6. Configure your application to include the message handler in the
request handler chain. See Deploying and Managing Artix Solutions.
 244

Developing Request-Level Handlers
The plug-in Your implementation of busInit() in your plug-in must register the handler
factory used to instantiate your message handler. Handler factory
registration is done using the bus’ registerHandlerFactory() method. The
signature for registerHandlerFactory() is shown in Example 164.

registerHandlerFactory() takes an instance of the handler factory for your
message handler. Subsequent calls to registerHandlerFactory() add to
the list of registered handler factories. So, if you need to register multiple
handler factories you simply call registerHandlerFactory() with an
instance of each handler factory to be registered.

Example 165 shows a the plug-in code for a message handler.

Example 164:registerHandlerFactory()

void registerHandlerFactory(HandlerFactory factory);

Example 165:Message Handler Plug-In

//Java

import com.iona.jbus.*;

public class HandlerPlugIn extends BusPlugIn
{
 public HandlerPlugin(Bus bus)
 {
 super(bus);
 }

 public void busInit() throws BusException
 {
 try
 {
 Bus bus = getBus();

 bus.registerHandlerFactory(new emoHandlerFactory());
 }
 catch (Exception ex)
 {
 throw new BusException(ex);
 }
 }
245

CHAPTER 12 | Writing Message Handlers
The code in Example 165 does the following:

1. Imports the Artix bus APIs.

2. Implements a constructor for the plug-in class.

3. Implements busInit() to register the handler factory.

4. Gets the plug-in’s bus.

5. Registers the message handler’s factory with the bus using
registerHandlerFactory().

6. Implements busShutdown().

The handler factory The easiest way to develop your handler factory is to extend the
GenericHandlerFactory included with Artix. You can also implement the
standard JAX-RPC HandlerFactory interface. The GenericHandlerFactory
implements all of the methods in the HandlerFactory interface, so you only
need to override the methods needed for your message handlers and provide
a constructor for your handler factory.

When developing request-level handlers, the two handler factory methods
that are of interest are getClientRequestHandler() and
getServerRequestHandler(). As their names imply they are used to
instantiate request-level handlers for either a client or a server. Depending
on your message handler implementation, you can override one or both of
these methods. For example, you could develop a single handler factory for
both the client side and the server side request-level handlers. The bus will
call the appropriate method to instantiate the correct handler.

The signatures for getClientRequestHandler() and
getServerRequestHandler() are shown in Example 166. They take no
arguments and return an instance of the class HandlerInfo.

 public void busShutdown() throws BusException
 {
 }
}

Example 165:Message Handler Plug-In

Example 166:Handler Factory Methods for Request Level Handlers

public javax.xml.rpc.handler.HandlerInfo getClientRequestHandler()
public javax.xml.rpc.handler.HandlerInfo getServerRequestHandler()
 246

Developing Request-Level Handlers
The returned HandlerInfo object needs to contain all the information
needed by the bus to manage your message handler. You need to supply the
Class that implements your message handler. For example if your client
side message handler is implemented by a class called
emoClientRequestHandler, you need to set the returned HandlerInfo’s
HanderClass field to emoClientRequestHandler.class by invoking
setHandlerClass() on the HandlerInfo object.

Example 167 shows code for implementing a handler factory.

Example 167:Handler Factory For Request Level Handlers

//Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

import javax.xml.rpc.handler.*;

1 public class TestHandlerFactory extends GenericHandlerFactory
{

2 public TestHandlerFactory()
 {
 super(new QName("http://www.iona.com/bus/tests",
 "TestInterceptor"));
 }

3 public HandlerInfo getClientRequestHandler()
 {

4 HandlerInfo info = new HandlerInfo();
5 info.setHandlerClass(emoClientRequestHandler.class);

 return info;
 }

 public HandlerInfo getServerRequestHandler()
 {
 HandlerInfo info = new HandlerInfo();
 info.setHandlerClass(emoServerRequestHandler.class);
 return info;
 }
}

247

CHAPTER 12 | Writing Message Handlers
The code in Example 167 does the following:

1. Extends GenericHandlerFactory.

2. Implements a constructor for the handler factory. The QName set is the
QName used by the bus to reference the handler factory.

3. Overrides getClientRequestHandler().

4. Instantiates a HandlerInfo object.

5. Sets the HandlerClass property to the class of the message handler
that will process client requests.

The handler The easiest way to develop your message handler logic is to extend the
GenericHandler class supplied with Artix. The GenericHandler class
provides implementations for all of the methods in the JAX-RPC Handler
interface, so all you need to do is override the methods your message
handler requires. You can also implement the JAX-RPC Handler interface if
you desire.

The Handler interface has two methods that are used to process messages:
handleRequest() and handleResponse(). handleRequest() processes
request messages and handleResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the message handler is called. For example, a message
handler that reads a SOAP header from a request in the server will not work
if it is placed in the client request chain.

The signatures for handleRequest() and handleResponse() are shown in
Example 168. Both methods have a MessageContext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 197. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

At the request level, your message handler can access both the generic
message context and the Artix specific context. Because the properties of
the generic message context do not effect the message as it passes through

Example 168:handleRequest() and handleResponse()

boolean handleRequest(MessageContext context);
boolean handleResponse(MessageContext context);
 248

Developing Request-Level Handlers
the messaging chain, it is more likely that your message handler will use the
Artix specific message context. Properties set into the Artix specific message
context at the request-level will be propagated down the message chain and
effect how the message is formatted and transmitted. For example, security
properties and SOAP headers manipulated in a client request handler will
change the properties that are sent to the server. On the return side of the
messaging chain, such as in a server request handler or a client response
handler, the request-level is the level in which the SOAP header and security
properties are made available.

Example 169 shows the code for a client request-level message handler that
sets a SOAP header on the request and reads the SOAP header returned
with the response.

Example 169:Client Request Level Message Handler

// Java
import com.iona.jbus.IonaMessageContext;
import com.iona.jbus.ContextException;

import javax.xml.namespace.QName;

import javax.xml.rpc.handler.*;

public class emoClientRequestHandler extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {
 IonaMessageContext mycontext = (IonaMessageContext)context;
 QName principalCtxName = new QName("", "SOAPHeaderInfo");
 SOAPHeaderInfo requestInfo = new SOAPHeaderInfo();
 requestInfo.setOriginator("Client");
 requestInfo.setMessage("Hello from Client!");
 mycontext.setRequestContext(principalCtxName,requestInfo);

 return true;
 }
249

CHAPTER 12 | Writing Message Handlers
 public boolean handleResponse(MessageContext context)
 {
 IonaMessageContext mycontext = (IonaMessageContext)context;
 QName ctxName = new QName("", "SOAPHeaderInfo");
 SOAPHeaderInfo replyInfo =

(SOAPHeaderInfo)mycontext.getReplyContext(ctxName);
 System.out.println("Header from Server: ");
 System.out.println("Originator - " +

replyInfo.getOriginator());
 System.out.println("Message - " + replyInfo.getMessage());

 return true;
 }
}

Example 169:Client Request Level Message Handler
 250

Developing Message-Level Handlers
Developing Message-Level Handlers

Overview Message-level handlers process messages as they pass between the binding
and the transport. On the client side, request messages are processed after
the binding formats the message and before the transport writes it to the
wire. Responses are processed after the message is read off of the wire and
before it is decoded by the binding. On the server side, requests are
processed after the message is read off of the wire and before it is decoded
by the binding. Replies are processed as they pass from the binding to the
transport.

Message handlers at the message level have access to the raw message
stream that is being written out the wire. This data has been formatted into
the appropriate message type specified by the binding. Message-level
handlers can also access the applications message context. For example,
your application could have a client side message handler that compresses
the message data to enhance network performance. The server could then
use a message handler to decompress the message data before it is sent to
the binding for decoding.

Procedure To develop a message-level message handler you need to do the following:

1. Implement a BusPluginFactory to load the plug-in that implements
your message handler. See “Implementing the BusPlugInFactory
Interface” on page 237.

2. Extend BusPlugin to load your message handler.

3. Implement a HandlerFactory to instantiate your message handler
when the bus needs it.

4. Implement a Handler to host the logic used by your message handler.

5. Configure your application to load the message handler plug-in.

6. Configure your application to include the message handler in the
message handler chain. See Deploying and Managing Artix Solutions.
251

CHAPTER 12 | Writing Message Handlers
The plug-in Your implementation of busInit() in your plug-in must register the handler
factory used to instantiate your message handler. Handler factory
registration is done using the bus’ registerHandlerFactory() method. The
signature for registerHandlerFactory() is shown in Example 170.

registerHandlerFactory() takes an instance of the handler factory for your
message handler. Subsequent calls to registerHandlerFactory() add to
the list of registered handler factories. So, if you need to register multiple
handler factories you simply call registerHandlerFactory() with an
instance of each handler factory to be registered.

Example 171 shows a the plug-in code for a message handler.

Example 170:registerHandlerFactory()

void registerHandlerFactory(HandlerFactory factory);

Example 171:Message Handler Plug-In

//Java

1 import com.iona.jbus.*;

public class HandlerPlugIn extends BusPlugIn
{

2 public HandlerPlugin(Bus bus)
 {
 super(bus);
 }

3 public void busInit() throws BusException
 {
 try
 {

4 Bus bus = getBus();

5 bus.registerHandlerFactory(new emoHandlerFactory());
 }
 catch (Exception ex)
 {
 throw new BusException(ex);
 }
 }
 252

Developing Message-Level Handlers
The code in Example 171 does the following:

1. Imports the Artix bus APIs.

2. Implements a constructor for the plug-in class.

3. Implements busInit() to register the handler factory.

4. Gets the plug-in’s bus.

5. Registers the message handler’s factory with the bus using
registerHandlerFactory().

6. Implements busShutdown().

The handler factory The easiest way to develop your handler factory is to extend the
GenericHandlerFactory included with Artix. You can also implement the
standard JAX-RPC HandlerFactory interface. The GenericHandlerFactory
implements all of the methods in the HandlerFactory interface, so you only
need to override the methods needed for your message handlers and provide
a constructor for your handler factory.

When developing message-level handlers, the two handler factory methods
that are of interest are getClientMessageHandler() and
getServerMessageHandler(). As their names imply they are used to
instantiate message-level handlers for either a client or a server. Depending
on your message handler implementation, you can override one or both of
these methods. For example, you could develop a single handler factory for
both the client side and the server side message-level handlers. The bus will
call the appropriate method to instantiate the correct handler.

The signatures for getClientMessageHandler() and
getServerMessageHandler() are shown in Example 172. They take no
arguments and return an instance of the class HandlerInfo.

6 public void busShutdown() throws BusException
 {
 }
}

Example 171:Message Handler Plug-In

Example 172:Handler Factory Methods for Message Level Handlers

public javax.xml.rpc.handler.HandlerInfo getClientMessageHandler()
public javax.xml.rpc.handler.HandlerInfo getServerMessageHandler()
253

CHAPTER 12 | Writing Message Handlers
The returned HandlerInfo object needs to contain all the information
needed by the bus to manage your message handler. You need to supply the
Class that implements your message handler. For example if your client
side message handler is implemented by a class called
emoClientMessageHandler, you need to set the returned HandlerInfo’s
HanderClass field to emoClientMessageHandler.class by invoking
setHandlerClass() on the HandlerInfo object.

Example 173 shows code for implementing a handler factory.

Example 173:Handler Factory For Message Level Handlers

//Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

import javax.xml.rpc.handler.*;

1 public class TestHandlerFactory extends GenericHandlerFactory
{

2 public TestHandlerFactory()
 {
 super(new QName("http://www.iona.com/bus/tests",
 "TestInterceptor"));
 }

3 public HandlerInfo getClientMessageHandler()
 {

4 HandlerInfo info = new HandlerInfo();
5 info.setHandlerClass(emoClientMessageHandler.class);

 return info;
 }

 public HandlerInfo getServerMessageHandler()
 {
 HandlerInfo info = new HandlerInfo();
 info.setHandlerClass(emoServerMessageHandler.class);
 return info;
 }
}

 254

Developing Message-Level Handlers
The code in Example 173 does the following:

1. Extends GenericHandlerFactory.

2. Implements a constructor for the handler factory. The QName set is the
QName used by the bus to reference the handler factory.

3. Overrides getClientMessaageHandler().

4. Instantiates a HandlerInfo object.

5. Sets the HandlerClass property to the class of the message handler
that will process client requests.

The handler The easiest way to develop your message handler logic is to extend the
GenericHandler class supplied with Artix. The GenericHandler class
provides implementations for all of the methods in the JAX-RPC Handler
interface, so all you need to do is override the methods your message
handler requires. You can also implement the JAX-RPC Handler interface if
you desire.

The Handler interface has two methods that are used to process messages:
handleRequest() and handleResponse(). handleRequest() processes
request messages and handleResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the message handler is called. For example, a message
handler that compresses a request in the client will cause unpredictable
results if it is placed in the server message chain.

The signatures for handleRequest() and handleResponse() are shown in
Example 174. Both methods have a MessageContext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 197. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

At the message level, your message handler can access both the generic
message context and a special StreamMessageContext that provides access
to the raw message data that will be written onto the wire. Because the

Example 174:handleRequest() and handleResponse()

boolean handleRequest(MessageContext context);
boolean handleResponse(MessageContext context);
255

CHAPTER 12 | Writing Message Handlers
properties of the generic message context do not effect the message as it
passes through the messaging chain, it is more likely that your
message-level handlers will use the raw message data. To get a
StreamMessageContext you cast the MessageContext passed into the
message handler method as shown in Example 175.

The StreamMessageContext has methods for getting and setting the input
and output streams used by the transport as shown in Example 176. While
StreamMessageContext provides methods for getting the output stream, you
should always work with the input stream provided. Artix will ensure that
data from the input stream is the data that gets propagated through the
message chain.

Example 175:Getting a StreamMessageContext

// Java
boolean handleResponse(MessageContext context)
{
 StreamMessageContext myCtx = (StreamMessageContext)context;
 ...
}

Example 176:StreamMessageContext

package com.iona.jbus;

import javax.xml.rpc.handler.MessageContext;
import java.io.InputStream;
import java.io.OutputStream;

public interface StreamMessageContext extends MessageContext
{
 public static final String INPUT_STREAM_PROPERTY =

"StreamMessageContext.InputStream";
 public static final String OUTPUT_STREAM_PROPERTY =

"StreamMessageContext.OutputStream";

 public InputStream getInputStream();
 public void setInputStream(InputStream ins);
 public OutputStream getOutputStream();
 public void setOutputStream(OutputStream out);
}

 256

Developing Message-Level Handlers
Example 177 shows the code for a client message-level message handler
that adds a string onto the end of a SOAP request before sending it to the
server and removes an additional string from the end of the SOAP response
before passing the SOAP message to the binding. The complete code for this
demo can be found in the custom interceptor demo included in your Artix
installation. TestInputStream extends InputStream to allow for adding a
string to the end of the stream.

Example 177:Client Message Level Message Handler

// Java
import com.iona.jbus.*;

import java.io.*;
import javax.xml.namespace.QName;
import javax.xml.rpc.handler.*;

public class emoClientMessageHandler extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {
 StreamMessageContext smc = (StreamMessageContext)context;
 InputStream ins = smc.getInputStream();
 ins = new TestInputStream(ins,
 TestInputStream.CLIENT_TO_SERVER);
 smc.setInputStream(ins);
 return true;
 }

 public boolean handleResponse(MessageContext context)
 {
 StreamMessageContext smc = (StreamMessageContext)context;
 InputStream ins = smc.getInputStream();
 ins.mark(1000);
 byte bytes[] = new

byte[TestInputStream.SERVER_TO_CLIENT.length];
 ins.read(bytes);
 String s = new String(bytes);
 System.out.println("Got string: "+s);
 return true;
 }
}

257

CHAPTER 12 | Writing Message Handlers
 258

CHAPTER 13

Artix IDL to Java
Mapping
This chapter describes how Artix maps IDL to Java; that is, the
mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to Java (using the
WSDL-to-Java compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 260

IDL Basic Type Mapping page 262

IDL Complex Type Mapping page 264

IDL Module and Interface Mapping page 277
259

CHAPTER 13 | Artix IDL to Java Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-Java mapping. Mapping
IDL to Java in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, SampleIDL.idl, to a WSDL contract,
SampleIDL.wsdl, using the following command:

2. Map the generated WSDL contract to Java using the WSDL-to-Java
compiler. For example, you could generate Java stub code from the
SampleIDL.wsdl file using the following command:

wsdltojava SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix
Command Line Reference Guide.

Alternative Java mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to Java directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to Java, as follows:

• Artix IDL-to-Java mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-Java. It is an IONA-proprietary mapping.

• CORBA IDL-to-Java mapping—as specified in the OMG Java Language
Mapping document (http://www.omg.org). This mapping is used, for
example, by the IONA’s Orbix.

idl -wsdl SampleIDL.idl
 260

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 11.

The advantage of using the Artix IDL-to-Java mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-Java mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix Java mapping:

• long double

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• forward-declared interfaces

Figure 11: Artix and CORBA Alternatives for IDL to Java Mapping
261

CHAPTER 13 | Artix IDL to Java Mapping
IDL Basic Type Mapping

Overview Table 9 shows how IDL basic types are mapped to WSDL and then to Java.

Table 9: Artix Mapping of IDL Basic Types to Java

IDL Type WSDL Schema Type Java Type

any xsd:anyType com.iona.webservices.reflect.

types.AnyType

boolean xsd:boolean boolean

char xsd:byte byte

string xsd:string java.lang.String

wchar xsd:string java.lang.String

wstring xsd:string java.lang.String

short xsd:short short

long xsd:int int

long long xsd:long long

unsigned short xsd:unsignedShort int

unsigned long xsd:unsignedInt long

unsigned long long xsd:unsignedLong java.math.BigInteger

float xsd:float float

double xsd:double double

octet xsd:unsignedByte short

fixed xsd:decimal java.math.BigDecimal
 262

IDL Basic Type Mapping
Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, or wstring).
263

CHAPTER 13 | Artix IDL to Java Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to Java:

• enum type

• struct type

• union type

• sequence types

• array types

• exception types

• typedef of a simple type

• typedef of a complex type

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
 264

IDL Complex Type Mapping
The WSDL-to-Java compiler maps the SampleTypes.Shape type to a Java
class, SampleTypesShape, as shown in Example 178.

Example 178:SampleTypesShape

// Java
public class SampleTypeShape
{
 ...

 private final String _val;

 public static final String _Square = "Square";
 public static final SampleTypeShape Square = new SampleTypeShape(_Square);

 public static final String _Circle = "Circle";
 public static final SampleTypeShape Circle = new SampleTypeShape(_Circle);

 public static final String _Triangle = "Triangle";
 public static final SampleTypeShape Triangle = new SampleTypeShape(_Triangle);

 protected SampleTypeShape(String value)
 {
 _val = value;
 }

 public String getValue()
 {
 return _val;
 };

 public static SampleTypeShape fromValue(String value)
 {
 if (value.equals(_Square)) {
 return Square;
 }
 if (value.equals(_Circle)) {
 return Circle;
 }
 if (value.equals(_Triangle)) {
 return Triangle;
 }
 throw new IllegalArgumentException("Invalid enumeration value: "+value);
 };
265

CHAPTER 13 | Artix IDL to Java Mapping
The value of the enumeration type can be accessed using the getValue()
member function.

Programming with the Enumeration Type

For details of how to use the enumeration type, see “Enumerations” on
page 98.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

 public static SampleTypeShape fromString(String value) {
 if (value.equals("Square")) {
 return Square;
 }
 if (value.equals("Circle")) {
 return Circle;
 }
 if (value.equals("Triangle")) {
 return Triangle;
 }
 throw new IllegalArgumentException("Invalid enumeration value: "+value);
 };

 public String toString() {
 return ""+_val;
 }

}

Example 178:SampleTypesShape

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};
 266

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

The WSDL-to-Java compiler maps the SampleTypes.Poly type to a C++
class, SampleTypesPoly, as shown in Example 179.

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>

Example 179:SampleTypesPoly

// Java
public class SampleTypesPoly {

...

 private String __discriminator;

 private short theShort;
 private String theString;

 public short getTheShort() {
 return theShort;
 }

 public void setTheShort(short _v) {
 this.theShort = _v;
 __discriminator = "theShort";
 }

 public boolean isSetTheShort() {
 if(__discriminator != null &&
 __discriminator.equals("theShort")) {
 return true;
 }

 return false;
 }
267

CHAPTER 13 | Artix IDL to Java Mapping
The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions.

Programming with the Union Type

For details of how to use the union type, see “Choice Complex Types” on
page 64.

 public String getTheString() {
 return theString;
 }

 public void setTheString(String _v) {
 this.theString = _v;
 __discriminator = "theString";
 }

 public boolean isSetTheString() {
 if(__discriminator != null &&
 __discriminator.equals("theString")) {
 return true;
 }

 return false;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("theShort: "+theShort+"\n");
 if (theString != null) {
 buffer.append("theString: "+theString+"\n");
 }
 return buffer.toString();
 }
}

Example 179:SampleTypesPoly
 268

IDL Complex Type Mapping
struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-Java compiler maps the SampleTypes.SampleStruct type to a
Java class, SampleTypesSampleStruct, as shown in Example 180.

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

Example 180:SampleTypesSampleStruct

//Java
public class SampleTypesSampleStruct {

...
 private String theString;
 private int theLong;

 public String getTheString() {
 return theString;
 }

 public void setTheString(String val) {
 this.theString = val;
 }
269

CHAPTER 13 | Artix IDL to Java Mapping
The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence and All
Complex Types” on page 57.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

 public int getTheLong() {
 return theLong;
 }

 public void setTheLong(int val) {
 this.theLong = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (theString != null) {
 buffer.append("theString: "+theString+"\n");
 }
 buffer.append("theLong: "+theLong+"\n");
 return buffer.toString();
 }
}

Example 180:SampleTypesSampleStruct

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};
 270

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-Java compiler maps the SampleTypes.SeqOfStruct type to a
Java class, SampleTypesSeqOfStruct, as shown in Example 181.

Programming with Sequence Types

For details of how to use sequence types, see “Sequence and All Complex
Types” on page 57.

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Example 181:SampleTypesSeqOfStruct

// Java
public class SampleTypesSeqOfStruct {

 private SampleTypesSampleStruct[] item;

 public SampleTypesSampleStruct[] getItem() {
 return item;
 }

 public void setItem(SampleTypesSampleStruct[] val) {
 this.item = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (item != null) {
 buffer.append("item: "+Arrays.asList(item).toString()+"\n");
 }
 return buffer.toString();
 }
}
271

CHAPTER 13 | Artix IDL to Java Mapping
array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>
 272

IDL Complex Type Mapping
The WSDL-to-Java compiler maps the SampleTypes.ArrOfStruct type to a
Java class, SampleTypesArrOfStruct, as shown in Example 182.

Programming with Array Types

For details of how to use array types, see “Sequence and All Complex
Types” on page 57.

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

Example 182:SampleTypesArrOfStruct

//Java
public class SampleTypesArrOfStruct {

 private SampleTypesSampleStruct[] item;

 public SampleTypesSampleStruct[] getItem() {
 return item;
 }

 public void setItem(SampleTypesSampleStruct[] val) {
 this.item = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (item != null) {
 buffer.append("item: "+Arrays.asList(item).toString()+"\n");
 }
 return buffer.toString();
 }
}

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};
273

CHAPTER 13 | Artix IDL to Java Mapping
The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

The WSDL-to-Java compiler maps the SampleTypes.GenericExc type to the
Java class, SampleTypesGenericExc, as shown in Example 183.

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>

Example 183:SampleTypesGenericExc

public class SampleTypesGenericExc {

 private String reason;

 public String getReason() {
 return reason;
 }

 public void setReason(String val) {
 this.reason = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (reason != null) {
 buffer.append("reason: "+reason+"\n");
 }
 return buffer.toString();
 }
}

 274

IDL Complex Type Mapping
In addition, the WSDL-to-Java compiler creates a class to map the message,
_exception.SampleTypes.GenericExc, to a Java exception as shown in
Example 184.

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see “Creating User-Defined Exceptions” on page 117.

Example 184:Java Exception

public class SampleTypesGenericExcException extends Exception {
 private String reason;

 public SampleTypesGenericExcException(String reason) {
 super();
 this.reason = reason;
 }

 public SampleTypesGenericExcException() {
 super();
 }

 public String getReason() {
 return reason;
 }

 public void setReason(String val) {
 this.reason = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer(super.toString());
 if (reason != null) {
 buffer.append("reason: "+reason+"\n");
 }
 return buffer.toString();
 }
}

275

CHAPTER 13 | Artix IDL to Java Mapping
typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float. The WSDL-to-Java compiler then maps the
xsd:float type directly to the float type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-Java compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypesSampleStruct Java type. The Java
mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific class being generated to represent the
sequence or array type.
 276

IDL Module and Interface Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix Java mapping for the following IDL
constructs:

• Module mapping

• Interface mapping

• Operation mapping

• Attribute mapping

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a Java identifier of the form
ModuleNameIdentifier. That is, the IDL scoping operator, ::, is dropped in
Java.

Although IDL modules do not map to packages under the Artix Java
mapping, it is possible nevertheless to put generated Java code into a
package using the -p switch to the WSDL-to-Java compiler (see “Generating
Stub and Skeleton Code” on page 10). For example, if you pass a
namespace, TEST, to the WSDL-to-Java -p switch, the
ModuleName::Identifier IDL identifier would map to
TEST.ModuleNameIdentifier.

Interface mapping An IDL interface, InterfaceName, maps to a Java class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleNameInterfaceName Java class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type maps to
the ModuleNameInterfaceNameTypeName Java class.
277

CHAPTER 13 | Artix IDL to Java Mapping
Operation mapping Example 185 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 185 on page 278, map to
C++ as shown in Example 186.

Example 185:Example IDL Operations

//IDL
module SampleTypes {

 interface Foo {
 string test_op(
 in long inLong,
 inout long inoutLong,
 out long outLong
);

 oneway void test_oneway(in string in_str);
 };
};

Example 186:Mapping IDL Operations to Java

//Java
public class FooImpl {

1 public String test_op(
 int inLong,
 javax.xml.rpc.holders.IntHolder inoutLong,
 javax.xml.rpc.holders.IntHolder outLong) {
 ...
 }

2 public void test_oneway(String in_str) {
 ...
 }
}
 278

IDL Module and Interface Mapping
The preceding C++ operation signatures can be explained as follows:

1. The Java mapping of an IDL operation retains a similar signature to its
IDL definition.

The order of parameters in the Java method, test_op(), is determined
as follows:

♦ First, the in parameters appear in the same order as in IDL.

♦ Next, the inout parameters appear in the same order as in IDL.

♦ Finally, the out parameters appear in the same order as in IDL.

2. The Java mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 187 shows two IDL attributes defined within the
SampleTypes::Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, bool_attr.

The attributes from the preceding IDL, Example 187 on page 279, map to
Java as shown in Example 188.

Example 187:Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute boolean bool_attr;
 };
};

Example 188:Mapping IDL Attributes to Java

// Java
public class FooImpl {
279

CHAPTER 13 | Artix IDL to Java Mapping
The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in Java, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in Java, _get_AttributeName().

1 public String _get_str_attr() {
 // User code goes in here.
 return "";
 }

 public void _set_str_attr(String _arg) {
 // User code goes in here.
 }

2 public boolean _get_bool_attr() {
 // User code goes in here.
 return false;
 }
}

Example 188:Mapping IDL Attributes to Java
 280

Glossary
A anyType

anyType is the root type for all XMLSchema types. All of the primitive types
are derivatives of this type, as are all user defined complex types.

Artix bus
The Artix bus reads the protocol details from the physical section of the Artix
contract, loads the appropriate payload and transport plug-ins, and handles
the mapping of the data onto and off the wire.

Artix message context
An Artix message context is a special message context that is used by Artix
to store and transmit transport details and message header information. They
contain two context containers. One for storing data about requests and one
for storing data about replys. For more details see “Working with Artix Message
Contexts” on page 211.

Artix reference
An Artix reference is a Java object that fully describes a running Artix service.
References can be passed between Artix endpoints as operation parameters
and are used extensively by the Artix locator. For more details see “Artix
References” on page 145.

B Binding
A binding maps an operation’s messages to a payload format. Bindings are
defined using the WSDL <binding> element. See also Payload format.

Bus
See Artix bus.

C Choice complex type
A choice complex type is an XMLSchema construct defined by using a
<choice> element to constrain the possible elements in a complex type. When
using a choice complex type only one of the elements defined in the complex
type can be valid at a time. For more details see “Choice Complex Types” on
page 64.
281

CHAPTER 14 |
Classloader firewall
The classloader firewall provides a user configurable way to block the Artix
Java runtime from classes on a system’s classpath. For more details see “Class
Loading” on page 41.

Contract
An Artix contract is a WSDL file that defines the interface and all connection
information for that interface.

A contract contains two components: logical and physical. The logical
component defines things that are independent of the underlying transport
and wire format such as abstract definitions of the data used and the
interface.

The physical component defines the wire format, middleware transport, and
service groupings, as well as the mapping between the operations defined in
the interface and the wire formats, and the buffer layout for fixed formats
and extensors.

D Discriminator
A discriminator is a data element created to support the mapping of a choice
complex type to a Java object. The discriminator element identifies the valid
element in a choice complex type. See also Choice complex type.

Dynamic proxy
A dynamic proxy is a Java construct introduced in version 1.3 by Sun
Micosystems. As specified by the JAX-RPC specification, Artix uses a dynamic
proxy to connect to remote services. For more information, go to
http://java.sun.com/reference/docs/index.html.

E Embedded deployment
An embedded deployment is a deployment mode in which an application
creates an endpoint, either by invoking Artix APIs directly, or by compiling
and linking Artix-generated stubs and skeletons to connect client and server
to the service bus.
 282

http://java.sun.com/reference/docs/index.html

Endpoint
The runtime incarnation of a service defined in an Artix contract. When using
the Artix Java APIs, an endpoint is activated when you register a servant with
the Artix bus. See also Service.

F Facet
A facet is a rule used in the derivation of user defined simple types. Common
facets include length, pattern, totalDigits, and fractionDigits. For more
details see “Defining Your Own Simple Types” on page 53.

Factory pattern
The factory pattern is a usage pattern where one service creates and manages
instances of another service. Typically, the factory service returns references
to the services it creates. For more details see “Using References in a Factory
Pattern” on page 154.

Fault message
A fault message is the WSDL construct used to define error messages, or
exceptions, passed between a service and its clients. They are defined using
a <fault> element in a WSDL contract. For more details see “Creating
User-Defined Exceptions” on page 117.

H Handler
Hanlder is the Java interface that a developer must implement to create a
message handler. It has has methods for processing both request and
response messages. Artix provides a GenericHandler class to provide a
template for implemeting message handlers. See also “Writing Message
Handlers” on page 239.

I Input message
An input message is the WSDL construct for defining the messages that are
sent from a client to a service and are specified using an <input> element in
a WSDL contract. When mapped into Java, the parts of the input message
are mapped into a method’s parameter list.
283

CHAPTER 14 |
Interface
An interface defines the operations offered by a service. Interfaces are defined
in an Artix contract using the WSDL <portType> element. When mapped to
Java, an interface results in the generation of an object with methods for each
of the operations defined in the interface. See also Operation.

J Java API for XML-Based RPC(JAX-RPC)
JAX-RPC is the Java specification upon which Artix based it Java API and
data type mappings. For more information go to
http://java.sun.com/xml/jaxrpc/overview.html.

L List type
A list type is a data type defined as consisting of a space separated list of
primitive type elements. For example, “1 2 3 4 5" is a valid value for a list
type. They are defined using a <xsd:list> element. For more details see
“Lists” on page 95.

Logical contract
The logical contract defines components that are independent of the
underlying transport and wire format. These include the type definitions and
the interface definitions. WSDL elements found in the logical contract include:
<portType>, <operation>, <message>, <type>, and <import>.

M Message
In Artix, a message is any data passed between two endpoints. Messages are
defined in an Artix contract using the WSDL <message> element and are used
for the input, output, and fault messages that define an operation. After a
message has been associated with an operation, it can be bound to any
payload format supported by Artix. See also Fault message, Input message,
and Output message.

Message-level handler
A message-level handler is a message handler that processes messages
between the Artix binding to the Artix transport. See “Writing Message
Handlers” on page 239.
 284

http://java.sun.com/xml/jaxrpc/overview.html

Message context
A message context is a bus container used by applications to store metadata
properties. These properties store information about the message being sent
went an operation is invoked. Artix uses the message context to store headers
and transport information. See also Artix message context and “Using Message
Contexts” on page 197.

Message handler
A message handler is a Java class responsible for intercepting a message
along the message chain and performing some processing on the raw message
data. See also Handler and “Writing Message Handlers” on page 239.

O Operation
An operation defines a specific interaction between a service and a client. It
is defined in an Artix contract using the WSDL <operation> element. Its
definition must include at least one input or output message. When mapped
into Java, an operation generates a method on the object representing the
interface in which it is defined.

Output message
An output message is the WSDL construct for defining the messages that are
sent from a service to a client and are specified using an <output> element
in a WSDL contract. When mapped into Java, the parts of the output message
are mapped as described in the JAX-RPC specification.

P Payload format
A payload format is how data is packaged to be sent on the wire. Examples
of payload formats supported by Artix include SOAP, TibMsg, and fixed record
length data. Data is bound to a payload format in an Artix contract using the
WSDL <binding> element.

Physical contract
The physical contract defines the bindings and transport details used by the
endpoints defined by an Artix contract. WSDL elements found in the physical
contract include: <binding>, <service>, and <port>.
285

CHAPTER 14 |
Plug-in
A plug-in is a module that Artix loads at runtime to provide a set of features.
All of the bindings and transports supported by Artix are implemented as
plug-ins. In addition, message handlers are implemented as plug-ins.

R Reply
A reply is the message returned by a service to a client in response to a request
from the client. See also Output message.

Request
A request is a message sent from a client to a service asking for the service
to do work. See also Input message.

Request-level handler
A request-level handler is a message handler that processes messages
between the Artix binding and the user’s application code. See “Writing
Message Handlers” on page 239.

Response
See Reply.

S Servant
A servant is a Java object that wraps the implementation object generated
from an interface. The servant wrapper enables the bus to associate the
implementation object with the physical details specified in its contract’s
service definition and to manage the object.

Service
A service is the contract definition of an Artix endpoint. It combines the logical
definition of an interface, the binding of the interface’s operations to a payload
format, and the transport details used to expose the interface. A service is
defined using a WSDL <port> element.

Service proxy
A service proxy is a proxy created by an Artix client to connect to a remote
service. See also Dynamic proxy.
 286

Service template
A service template is a WSDL service definition that serves as the model for
the colnes created for a transient reference. They must fully define all of the
details, except the address, of the transport used by the transient servant. The
address provided in the service template must be a wildcard value.

Standalone deployment
Standalone deployment is a deployment mode in which an Artix instance runs
independently of the endpoints it is integrating.

Static servant
A static servant is a servant whose physical details are linked to a <port>
definition in the contract associated with the application. For more details see
“Static Servant Registration” on page 27.

Stub interface
Artix service proxies implement the javax.xml.rpc.Stub interface. The Stub
interface provides access to a number of low-level properties used to connect
the proxy to a remote service. These properties can be used to get the Artix
bus from client applications, to register type factories, and set HTTP
connection properties.

T Transient servant
A transient servant is a servant whose physical details are cloned from a
<port> definition in the contract associated with the application. For more
details see “Transient Servant Registration” on page 28.

Transport
A transport is the network protocol, such as HTTP or IIOP, that is used by an
endpoint. The transport details for an endpoint are defined inside of the WSDL
<port> element defining the endpoint.

Type factory
A type factory is a Java class generated to support the use of XMLSchema
anyTypes and SOAP headers in Java.
287

CHAPTER 14 |
W Web Service Definition Language(WSDL)
WSDL is an XML format for describing network services as a set of endpoints.
Artix uses WSDL as the syntax for its contracts.

In WSDL, the abstract definition of endpoints and messages is separated
from their concrete network deployment or data binding formats. This allows
the reuse of abstract definitions: messages, which are abstract descriptions
of the data being exchanged, and port types which are abstract collections
of operations. The concrete protocol and data format specifications for a
particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of
ports define a service. Hence, a WSDL document uses the following
elements in the definition of network services:

• Types -- a container for data type definitions using some type system
(such as XMLSchema).

• Message -- an abstract, typed definition of the data being
communicated.

• Operation -- an abstract definition of an action supported by the
service.

• Port Type -- an abstract set of operations supported by one or more
endpoints.

• Binding -- a concrete protocol and data format specification for a
particular port type.

• Port -- a single endpoint defined as a combination of a binding and a
network address.

• Service -- a collection of related endpoints.

For more information go to http://www.w3.org/TR/wsdl.

WSDL <binding>
See Binding and Payload format.

WSDL <fault>
See Fault message.

WSDL <message>
See Message.
 288

http://www.w3.org/TR/wsdl

WSDL <operation>
See Operation.

WSDL <port>
See Service.

WSDL <portType>
See Interface.

WSDL <service>
A WSDL <service> element is a collection of WSDL <port> elements.

X XMLSchema
XMLSchema is a language specification by the W3C that defines an XML
meta-language for defining the contents and structure of XML documents. It
is used as the native type system for Artix. For more information go to
http://www.w3.org/XML/Schema.
289

http://www.w3.org/XML/Schema

CHAPTER 14 |
 290

Index

A
abstract interface type 261
AnyType

getBoolean() 141
getByte() 141
getDecimal() 141
getDouble() 141
getFloat() 141
getInt() 141
getLong() 141
getSchemaTypeName() 140
getShort() 141
getString() 141
getType() 142
getUByte() 141
getUInt() 141
getULong() 141
getUShort() 141
setBoolean() 138
setByte() 138
setDecimal() 139
setDouble() 138
setFloat() 138
setInt() 138
setLong() 138
setShort() 138
setString() 138
setType() 139
setUByte() 138
setUInt() 139
setULong() 139
setUShort() 138

anyType 136
arrayType attribute 93
Artix bus 3

initializing 16, 20
starting 18

Artix locator
overview 183

Artix services
locator 187
B
binding name

specifying to code generator 11
boxed value type 261
Bus

createClient() 30
createReference() 151
getTypeFactoryMap() 129
init() 16, 20
registerTypeFactory() 129
run() 18, 20
shutdown() 21

bus
registerHandlerFactory() 245, 252

BusPlugIn 234
BusPlugIn.busInit() 234
BusPlugIn.busShutdown() 235
BusPlugIn.getBus() 234
BusPlugInFactory 237
BusPlugInFactory().createBusPlugIn() 237

C
client

developing 20
client proxy

instantiating 20
client stub code 10
code generation 10

from the command line 11
impl flag 15
server flag 16
types flag 15

code generator
command-line 11
files generated 10

com.iona.jbus.Servant 17
com.iona.jbus package 13
com.iona.webservices.reflect.types.AnyType 137
com.iona.webservices.reflect.types.TypeFactory 12

7, 137
complex choice type

receiving 64
transmitting 64
291

INDEX
complex types
attributes 68
derivation by extension 104
derivation by restriction 78
deriving from simple 78
description in XMLSchema 56
mapping to Java 56

configuration
-ORBname switch 191

ContextRegistry 201
context registry 201
contexts

stub files, generating 220
type factories for 221

contract type descriptions 53, 56
CORBA

abstract interface 261
any 262
basic types 262
boolean 262
boxed value 261
char 262
enum type 264
exception type 273
fixed 262
forward-declared interfaces 261
local interface type 261
sequence type 270
string 262
struct type 269
typedef 276
union type 266, 272
value type 261
wchar 262
wstring 262

createClient() 30, 153, 195
createReference() 151, 152
createService() 21
creating a dynamic proxy 21
creating a Service instance 21

D
developing a server 15
dynamic proxies 20
dynamic proxy

instantiating 20
 292
E
EndpointNotExist fault 189
endpoints 185

registering with the locator 191
enum type 264
exception handling

CORBA mapping 274
exceptions

associating to an operation 119
describing in a contract 118

exception type 273

F
facets 53
fault message 5
forward-declared interfaces 261
fractionDigits facet 55
fromString() 99
fromValue() 99

G
generated getter method 58
generated setter method 58
generated types

getter method 58
setter method 58

GenericHandler 248, 255
GenericHandlerFactory 246, 253
getBoolean() 141
getByte() 141
getClass() 140
getClientMessageHandler() 253
getContextRegistry() 201
getCurrent() 203
getDecimal() 141
getDouble() 141
getFloat() 141
getInt() 141
getJavaType() 133
getJavaTypeForElement() 134
getLong() 141
getReplyContext() 214
getReplyContextAsString() 214
getRequestContext() 214
getRequestContextAsString() 214
getSchemaType() 132
getSchemaTypeName() 140
getServerMessageHandler() 253

INDEX
getShort() 141
getString() 141
getSupportedNamespaces() 131
getType() 142
getTypeFactoryMap() 129
getTypeResourceLocation() 134
getUByte() 141
getUInt() 141
getULong() 141
getUShort() 141
getValue() 99

H
Handler 248, 255

handleRequest() 248, 255
handleResponse() 248, 255

handleRequest() 248, 255
handleResponse() 248, 255
HandlerFactory 246, 253

getClientMessageHandler() 253
getServerMessageHandler() 253

HandlerInfo 247, 254
setHandlerClass() 247, 254

http plug-in 191

I
IDL

enum type 264
exception type 273
oneway operations 279
sequence type 270
struct type 269
typedef 276
union type 266, 272

IDL attributes
mapping to Java 279

IDL basic types 262
IDL interfaces

mapping to Java 277
IDL modules

mapping to Java 277
IDL operations

mapping to C++ 278
parameter order 279
return value 279

IDL readonly attribute 280
IDL-to-C++ mapping

Artix and CORBA 260
IDL types
unsupported 261

idl utility 260
init() 16, 20

-ORBname parameter 194
initializing the bus

client side 20
server side 16

input message 5
instantiating a client proxy 20
IonaMessageContext 203, 205
itemType 95
itemType attribute 97

J
java.io.* package 14
java.net.* package 14
java.rmi.Remote 6
java.rmi.RemoteException exception 7
Java Exception class 120
Java Holder class 7
javax.activation.DataHandler 114
javax.xml.namespace.QName package 13
javax.xml.rpc.* package 13
javax.xml.rpc.holders 107
javax.xml.rpc.holders.Holder interface 107
javax.xml.rpc.holders package 7
javax.xml.rpc.security.auth.password 38
javax.xml.rpc.security.auth.username 38
javax.xml.rpc.service.endpoint.address 39
javax.xml.rpc.ServiceFactory 20
javax.xml.rpc.Service interface 20
javax.xml.soap.Name 87
javax.xml.soap.Node 88
javax.xml.soap.SOAPElement 86
javax.xml.soap.Text 88

L
length facet 55
list types 95
load balancing

with the locator 184
local interface type 261
locator

binding and protocol 187
embedded deployment 185
EndpointNotExist fault 189
load balancing 184, 186
293

INDEX
LocatorService port type,Java mapping 189
lookupEndpointResponse type 189
lookupEndpoint type 189
reading a reference from 192
registering endpoints 191
standalone deployment 185
WSDL contract 187

locator, Artix 183
locator_endpoint plug-in 191
LocatorService port type 189
logical contract 2
lookupEndpointResponse type 189
lookupEndpoint type 189

M
mapping

IDL attributes 279
IDL interfaces 277
IDL modules 277
IDL operations 278
IDL to C++ 260

maxExclusive facet 55
maxInclusive facet 55
maxLength facet 55
MessageContext 203, 204

getProperty() 208
removeProperty() 209
setProperty() 206

message context 203
message part sharing 107
MIME multi-part related message 111
minExclusive facet 55
minInclusive facet 55
minLength facet 55
Multi-dimensional arrays 94

O
obtaining a ServiceFactory 21
occurrence constraints

overview of 81
oneway operations

in IDL 279
-ORBname, parameter to IT_Bus::init() 194
-ORBname command-line parameter 191
output message 5

P
parameters
 294
in IDL-to-Java mapping 279
partially transmitted arrays

SOAP arrays
partially transmitted 94

pattern facet 55
PerInvocationServant 35
physical contract 2
plug-ins

http 191
locator_endpoint 191
soap 191

port
specifying to code generator 11

ports
and endpoints 185

portType 11
primitive types

Java 48
proxies

constructor for references 195

R
receiving choice types 64
ref:Reference type 189
references

constructor for client proxies 195
looking up in the locator 185
reading from the locator 192
ref:Reference type 189
schema 189

registerContext() for SOAP 221
registerHandlerFactory() 245, 252
registering a servant instance 18
registerServant() 18, 27
registerTransientServant() 29
registerTypeFactory() 129
removeReplyContext() 215
removeRequestContext() 216
reply context container 211
request context container 211
required java packages 13
run() 18, 20

S
schema

for references 189
sequence complex types 57
sequence type 270

INDEX
SerializedServant 35
server

developing 15
implementation class 15
main() function 16

server skeleton code 10
Service.getPort() 21
ServiceFactory.newInstance() 21
service name

specifying to code generator 11
setBoolean() 138
setByte() 138
setDecimal() 139
setDouble() 138
setFloat() 138
setHandlerClass() 247, 254
setInt() 138
setLong() 138
setReplyContext() 212
setReplyContextAsString() 212
setRequestContext() 212
setRequestContextAsString() 212
setShort() 138
setString() 138
setType() 139
setUByte() 138
setUInt() 139
setULong() 139
setUShort() 138
shutdown() 21
shutting down the bus 21
simple types

XMLSchema 48
SingleInstanceServant 34
skeleton code

generating with wsdltojava 11
SOAP arrays

sparse 94
syntax 92

SOAP bindings 187
SOAPElement.getChildElements() 88
SOAPElement.getElementName() 87
SOAP-ENC:Array type 92
soap plug-in 191
SOAP with attachments 111
sparse arrays 94
static servant 27
StreamMessageContext 255
struct type 269
Stub._getProperty() 37
Stub._setProperty() 37
Stub interface 37

T
thread_pool:high_water_mark 33
thread_pool:initial_threads 33
thread_pool:low_water_mark 33
toString() 58, 99, 120
totalDigits facet 55
transient servant 28
transmitting choice types 64
typedef 276
type derivation

by extension 78, 104
by restriction 78

type factories 126
and contexts 221
generating 126
instantiating 128
registering 129

TypeFactory
getJavaType() 133
getJavaTypeForElement() 134
getSchemaType() 132
getSupportedNamespaces() 131
getTypeResourceLocation() 134

U
union type 266, 272
unsupported IDL types 261

V
value type 261

W
whiteSpace facet 55
wsdl:arrayType 92
wsdl:arrayType attribute 93
WSDL <fault> element 7, 119

message attribute 119
WSDL <input> element 7
WSDL <message> element 4, 7, 118

name attribute 120
WSDL <operation> element 4, 7

name attribute 7
parameterOrder attribute 7
295

INDEX
WSDL <output> element 7
WSDL <part> element 4
WSDL <port> element 6

name attribute 6
WSDL <portType> element 4, 6
WSDL <types> element 4, 53, 56, 136
WSDL faults 274
wsdltojava 11, 15

command-line switches 11
-datahandlers 114
files generated 10
XML schemas, generating from 220

wsdltojava utility 260

X
XMLSchema <all> element 57
XMLSchema <attribute> element 50, 68

default attribute 50, 69
fixed attribute 50, 69
name attribute 68
type attribute 68
use attribute 50, 68

XMLSchema <choice> element 64
XMLSchema <complexContent> element 104
XMLSchema <complexType> element 56

name attribute 57, 73
XMLSchema <element> element 50

maxOccurs attribute 50, 59, 81, 93
minOccurs attribute 50, 81
nillable attribute 50
type attribute 72

XMLSchema <extension> element 78, 104
base attribute 104

XMLSchema <restriction> element 53
base attribute 53

XMLSchema <sequence> element 57
XMLSchema <simpleContent> element 78
XMLSchema <simpleType> element 53

name attribute 53, 99
XMLSchema facets 53
xsd:anyType 136

and context types 219
xsd:list 95
 296

INDEX
297

INDEX
 298

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Online Help
	Finding Your Way Around the Artix Library
	Additional Resources for Information
	Typographical Conventions
	Keying conventions

	Understanding the Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java

	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Advanced Programming Issues
	Servant Registration
	Static Servant Registration
	Transient Servant Registration

	Proxy Creation
	Getting a Bus
	Threading
	Setting Client Connection Attributes Using the Stub Interface
	Class Loading

	Working with Artix Data Types
	Using Native XMLSchema Simple Types
	Simple Type Mapping
	Special Simple Type Mappings
	Unsupported Simple Types

	Defining Your Own Simple Types
	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Occurrence Constraints

	Using XMLSchema any Elements
	SOAP Arrays
	Lists
	Enumerations
	Deriving Types Using <complexContent>
	Holder Classes
	Using SOAP with Attachments

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Working with Artix Type Factories
	Introduction to Type Factories
	Registering Type Factories
	Getting Type Information From Type Factories

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Setting anyType Values
	Retrieving Data from anyTypes

	Artix References
	Introduction to Working with References
	Reference Basic Concepts
	Creating References
	Instantiating Service Proxies Using a Reference

	Using References in a Factory Pattern
	Bank Service Contract
	Bank Service Implementation
	Bank Service Client

	Using References to Implement Callbacks
	The Accounting Contract
	The Accounting Client
	The Accounting Server

	The Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator

	Using Message Contexts
	Understanding Message Contexts in Artix
	Getting the Context Registry
	Getting the Message Context for a Thread
	Working with Generic Contexts
	Working with Artix Message Contexts

	Sending Header Information Using Contexts
	Defining Context Data Types
	Registering Context Types
	SOAP Header Example

	Developing Java Plug-Ins
	Extending the BusPlugIn Class
	Implementing the BusPlugInFactory Interface

	Writing Message Handlers
	Message Handlers: An Introduction
	Developing Request-Level Handlers
	Developing Message-Level Handlers

	Artix IDL to Java Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Glossary
	Index

