IONA

>3 Artix™

Developing Artix Applications

in Java
Version 2.1, July 2004

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

IONA Technologies PLC and/or its subsidiaries make no warranty of any kind to this material, including, but not
limited to, the implied warranties of merchantability, title, non-infringement and fitness for a particular purpose.
IONA Technologies PLC and/or its subsidiaries shall not be liable for errors contained herein, or for exemplary,
incidental, special, pecuniary or consequential damages (including, but not limited to, damages for business
interruption, loss of profits, or loss of data) in connection with the furnishing, performance or use of this mate-
rial.

COPYRIGHT NOTICE

No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Nov-2004

M3210

Contents

List of Figures \
List of Tables vii
Preface ix
What is Covered in this Book ix

Who Should Read this Book ix

How to Use this Book ix
Online Help X
Finding Your Way Around the Artix Library Xi
Additional Resources for Information Xii
Typographical Conventions Xii
Keying conventions Xiii
Chapter 1 Understanding the Artix Java Development Model 1
Separating Transport Details from Application Logic 2
Representing Services in Artix Contracts 4
Mapping from an Artix Contract to Java 6
Chapter 2 Developing Artix Enabled Clients and Servers 9
Generating Stub and Skeleton Code 10

Java Package Names 13
Developing a Server 15
Developing a Client 20
Building an Artix Application 24
Chapter 3 Advanced Programming Issues 25
Servant Registration 26

Static Servant Registration 27

Transient Servant Registration 28

Proxy Creation 30

Getting a Bus 32

CONTENTS

Threading
Setting Client Connection Attributes Using the Stub Interface
Class Loading

Chapter 4 Working with Artix Data Types

Using Native XMLSchema Simple Types
Simple Type Mapping
Special Simple Type Mappings
Unsupported Simple Types

Defining Your Own Simple Types

Using XMLSchema Complex Types
Sequence and All Complex Types
Choice Complex Types
Attributes
Nesting Complex Types
Deriving a Complex Type from a Simple Type
Occurrence Constraints

Using XMLSchema any Elements

SOAP Arrays

Lists

Enumerations

Deriving Types Using <complexContent>

Holder Classes

Using SOAP with Attachments

Chapter 5 Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix Contract
How Artix Generates Java User-defined Exceptions
Working with User-defined Exceptions in Artix Applications

Chapter 6 Working with Artix Type Factories
Introduction to Type Factories
Registering Type Factories
Getting Type Information From Type Factories

Chapter 7 Working with XMLSchema anyTypes
Introduction to Working with XMLSchema anyTypes
Setting anyType Values

33
37
41

45
47
48
50
52
53
56
57
64
68
72
78
81
84
92
95
98

104
107
111

117
118
120
122

125
126
128
131

135
136
138

CONTENTS

Retrieving Data from anyTypes 140
Chapter 8 Artix References 145
Introduction to Working with References 146
Reference Basic Concepts 147

Creating References 151

Instantiating Service Proxies Using a Reference 153

Using References in a Factory Pattern 154

Bank Service Contract 155

Bank Service Implementation 162

Bank Service Client 165

Using References to Implement Callbacks 168

The Accounting Contract 169

The Accounting Client 175

The Accounting Server 180

Chapter 9 The Artix Locator 183
Overview of the Locator 184
Locator WSDL 187
Registering Endpoints with the Locator 191
Reading a Reference from the Locator 192
Chapter 10 Using Message Contexts 197
Understanding Message Contexts in Artix 198
Getting the Context Registry 201

Getting the Message Context for a Thread 203

Working with Generic Contexts 206

Working with Artix Message Contexts 211

Sending Header Information Using Contexts 218
Defining Context Data Types 219

Registering Context Types 221

SOAP Header Example 223

Chapter 11 Developing Java Plug-Ins 233
Extending the BusPluglIn Class 234

Implementing the BusPlugInFactory Interface 237

CONTENTS

Chapter 12 Writing Message Handlers
Message Handlers: An Introduction
Developing Request-Level Handlers
Developing Message-Level Handlers

Chapter 13 Artix IDL to Java Mapping
Introduction to IDL Mapping
IDL Basic Type Mapping
IDL Complex Type Mapping
IDL Module and Interface Mapping

Glossary

Index

239
240
244
251

259
260
262
264
277

281

291

List of Figures

Figure 1: SinglelnstanceServant

Figure 2: SerializedServant

Figure 3: PerlnvocationServant

Figure 4: Class Loader Firewall

Figure 5: Artix Locator Overview

Figure 6: Steps to Read a Reference from the Locator
Figure 7: Overview of the Message Context Mechanism
Figure 8: Contexts Passed Along Request/Reply Chain
Figure 9: The Life of a Message

Figure 10: Handler Levels

Figure 11: Artix and CORBA Alternatives for IDL to Java Mapping

34
35
36
41
184
192
199
211
240
241
261

LIST OF FIGURES

vi

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

discover-source values for the Class Loader Firewall
Simple Schema Type to Primitive Java Type Mapping
simple Schema Type to Java Wrapper Class Mapping
Attributes for an any

List Type Facets

MIME Type Mappings

anyType Setter Methods for Primitive Types

Methods for Extracting Primitives from AnyType

Artix Mapping of IDL Basic Types to Java

42
48
51
84
95
111
138
141
262

vii

LIST OF TABLES

viii

Preface

What is Covered in this Book

Developing Artix Applications in Java discusses the main aspects of
developing transport-independent services and service consumers using
Java stub and Java skeleton code generated by Artix. This book covers:

® how to access the Artix bus
® how to use generated data types
® how to create user defined exceptions

® how to access the header information for the transports supported by
Artix.

Who Should Read this Book

Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book

If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled service or
service consumer, Chapter 2 describes the basic steps to implement a
service, connect to the Artix bus, and create JAX-RPC compliant proxies
using Artix-generated code.

PREFACE

Chapter 3 extends the discussion of building Artix applications. It includes
details about the threading model used by Java Artix applications, using
Artix specific methods for creating proxies, and class loading issues that
may be encountered when using Artix.

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 4 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 5 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

If you want to learn how to develop Java code to use XMLSchema anyType
elements, Chapter 7 describes how they are mapped into Java and
describes the Artix classes that allow you to work with them.

Chapter 8 describes how Artix references work. It describes the basic
concepts and APlIs for working with references in Artix. In addition, it gives
detailed examples of using references in a factory pattern and in developing
callbacks.

If you want to use SOAP headers, Chapter 10 describes how to use Artix
message contexts to set data into a SOAP header.

If you want to write message handlers for doing advanced message
processesing, Chapter 12 describes how to develop and configure message
handlers for use in Artix applications.

Online Help

While using the Artix Designer you can access contextual online help,
providing:

® Adescription of your current Artix Designer screen

® Detailed step-by-step instructions on how to perform tasks from this
screen

® A comprehensive index and glossary

® Afull search feature

There are two ways that you can access the Online Help:
® (Click the Help button on the Artix Designer panel, or
® Select Contents from the Help menu

If you are new to Artix

To design Artix solutions

To develop applications using
Artix stub and skeleton code

To manage and configure your
Artix solution

If you want to know more about
Artix security

Have you got the latest version?

PREFACE

Finding Your Way Around the Artix Library

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The remainder of the Artix library is listed
here, with a short description of each book.

You may be interested in reading Learning about Artix. It describes basic
Artix concepts and guides you through a number of Artix programming
examples.

You should read Designing Artix Solutions. It provides detailed information
about creating WSDL-based Artix contracts, Artix stub and skeleton code,
and the artifacts needed to deploy Artix solutions.

Depending on your development environment you should read one or more

of the following:

® Developing Artix Applications in C++ - this book discusses the
technical aspects of programming applications using the Artix C++
API

® Developing Artix Applications in Java - this book discusses the
technical aspects of programming applications using the Artix Java API

You should read Deploying and Managing Artix Solutions. It describes how
to configure and deploy Artix-enabled systems. It also discusses how to
manage them once they are deployed.

You should read the Artix Security Guide. It outlines how to enable and
configure Artix’s security features. It also discusses how to integrate Artix
solutions into a secure environment.

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs. Compare the version details provided there
with the last updated date printed on the inside cover of the book you are
using (at the bottom of the copyright notice).

Xi

http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

Xii

Additional Resources for Information

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

htt p: // waw. i ona. cond suppor t/ know edge _base/ i ndex. xmi

The IONA update center contains the latest releases and patches for IONA
products:

htt p: // wawv i ona. cond suppor t / updat e/

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your name
Note: Some command examples may use angle
brackets to represent variable values you must

supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/update/
mailto:doc-feedback@iona.com

PREFACE

Keying conventions
This book uses the following keying conventions:

No prompt

%

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

xiii

PREFACE

Xiv

In this chapter

CHAPTER 1

Understanding the
Artix Java
Development
Model

The Artix Java development tools generate JAX-RPC compliant
Java code from WSDL-based Artix contracts. Using the
generated code, you can develop transport-independent
applications that take advantage of the Artix bus.

This chapter discusses the following topics:

Separating Transport Details from Application Logic page 2
Representing Services in Artix Contracts page 4
Mapping from an Artix Contract to Java page 6

CHAPTER 1 | Understanding the Artix Java Development Model

Separating Transport Details from Application

Logic

Overview

Dividing the logical and physical

One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by limiting the types of messaging system the
application can work on. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application’s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.

The Artix bus

Separating Transport Details from Application Logic

The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.

CHAPTER 1 | Understanding the Artix Java Development Model

Representing Services in Artix Contracts

Overview

Data types

Messages

Service

Services, which are the operations exposed by an application, are described
in the logical section of an Artix contract. When defining a service in an Artix
contract, you break it down into three parts: the complex data types used in
the messages, the messages used by the operations, and the collection of
operations that make up the service.

Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL <t ypes> element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

Example 1: Array Description

<conpl exType nane="ArrayCf | nt">
<sequence>
<el enent maxCccur s="unbounded" m nCccurs="0" nane="itenY
type="xsd:int"/>
</ sequence>
</ conpl exType>

The described types are used to define the message parts used by the
service.

In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the <message> element and consist of one or more <part >
elements. Each message part represents an argument in an operation’s
parameter list or a piece of data returned as part of an exception.

In an Artix contract logical services are described using the <port Type>
element and consist of one or more <oper at i on> elements. Each

<oper at i on> element describes an operation that is to be exposed over the
network.

Representing Services in Artix Contracts

Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature

I ong nyQp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<nessage name="i nMessage" >
<part name="cl1" type="xsd:char" />
<part name="c2" type="xsd:char" />
</ message>
<message nane="out Message">
<part name="returnVal" type="xsd:int" />
</ message>
<port Type nane="nyServi ce">
<oper ati on name="nyp" >
<i nput nessage="i nMessage" nane="in" />
<out put message="out Message" nanme="out" />
</ oper at i on>
</ por t Type>

CHAPTER 1 | Understanding the Artix Java Development Model

Mapping from an Artix Contract to Java

Overview

Ports

Artix maps the WSDL-based Artix contract description of a service into Java
server skeletons and client stubs following the JAX-RPC specification. This
allows application developers to implement the service’s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

For each <port > element in an Artix contract, a Java interface that extends
j ava. rm . Renot e is generated. The name of the generated interface is taken
from the nane attribute of the <port > element. The interface’s name will be
identical to the <port > elements’s name unless the <port > element’s name
ends in Port . In this case, the Port will be stripped off the interface’s name.

The generated interface will contain each of the operations of the
<por t Type> to which the <port > element is bound. For example, the
contract shown in Example 3 will generate an interface, sportsCenter,
containing one operation, updat e.

Example 3: SportsCenter Port

<message nane="scor eRequest ">
<part name="t eanNane" type="xsd:string" />
</ message>
<nessage nane="scor eRepl y">
<part name="score" type="xsd:int" />
</ message>
<port Type nane="sport sCent er Port Type" >
<oper at i on nane="updat e" >
<i nput nessage="scor eRequest" name="request" />
<ouput message="scoreRepl y* name="reply" />
</ operat i on>
</ port Type>
<bi ndi ng nanme="scor eBi ndi ng" type="tns: sport sCent er Port Type" >

<servi ce name="sportsService">
<port name="sportsCenterPort" bindi ng="tns: scoreBi ndi ng">

Operations

Message parts

Mapping from an Artix Contract to Java

The generated Java interface is shown in Example 4.
Example 4: SportsCenter Interface

/1 Java
public interface sportsCenter extends java.rm . Renote
{
int update(String team\ame)
throws java. rn . Renot eExcepti on;

Every <operati on> element in a contract generates a Java method within
the interface defined for the <oper at i on> element’s <port Type>. The
generated method’s name is taken from the <oper at i on> element’s nane
attribute. <oper at i on> elements with the same name attribute will generate
overloaded Java methods in the interface.

All generated Java methods throw a j ava. r m . Renot eExcept i on exception.
In addition, all <f aul t > elements listed as part of the operation create an
exception to the generated Java method.

The message parts of the operation’s <i nput > and <out put > elements are
mapped as parameters in the generated method’s signature. The order of
the mapped parameters can be specified using the <oper at i on> element’s
par anet er O der attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the par anet er O der
attribute will be placed in the generated method’s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the <nessage> elements of
the contract. The first unlisted output message part is mapped to the
generated method'’s return type. The parameter names are taken from the
<part > element’s name attribute. If the par anet er O der attribute is not
specified, input message parts are listed before output message parts.
Message parts that are listed in both the input and output messages are
considered i nout parameters and are listed only according to their position
in the input message.

All inout and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Hol der classes. For
the XML primitive types, the Java Holder class used is the standard Java

Hol der class, defined in j avax. xn . r pc. hol der s package, for the

CHAPTER 1 | Understanding the Artix Java Development Model

appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Hol der classes. For more

information on data type mapping, see “Working with Artix Data Types” on
page 45.

For example, the contract fragment shown in Example 5 would result in an
operation, final , with a return type of String and a parameter list that
contains two input parameters and three output parameters.

Example 5: SportsFinal Port

<nmessage nane="scor eRequest">
<part name="teanml" type="xsd:string" />
<part nanme="teanR" type="xsd:string" />
</ message>
<nessage name="scor eRepl y">
<part name="wi nTeanm type="xsd:string" />
<part name="t eanlscore" type="xsd:int" />
<part name="teanPscore" type="xsd:int" />
</ message>
<port Type nane="sport sFi nal Port Type">
<operation nanme="final ">
<i nput nessage="scor eRequest" name="request" />
<ouput nessage="scoreRepl y" name="reply" />
</ operati on>
</ port Type>
<bi ndi ng name="scor eBi ndi ng" type="tns: sport sFi nal Port Type">

<servi ce name="sportsService">
<port name="sportsFinal Port" bi ndi ng="t ns: scoreBi ndi ng" >

The generated Java interface is shown in Example 6.

Example 6: SportsFinal Interface

/1 Java
public interface sportsFinal extends java.rm . Renote
{

String final (String teanl, String tean®,
I nt Hol der teanilscore, |ntHol der teanRscore)
throws java.rm . Renot eExcepti on;

In this chapter

CHAPTER 2

Developing Artix
Enabled Clients
and Servers

Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

This chapter discusses the following topics:

Generating Stub and Skeleton Code page 10
Java Package Names page 13
Developing a Server page 15
Developing a Client page 20
Building an Artix Application page 24

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

Overview

Generated files

10

The Artix development tools include a utility to generate server skeleton and

client stub code from an Artix contract. The generated code is similar to

code generated by a CORBA IDL compiler. There are two major differences

between CORBA-generated code and Artix-generated code:

® Artix-generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

® Artix maps WSDL types to Java using the mapping described in the
JAX-RPC specification. The resulting types are very different from those
generated by an IDL-to-Java compiler.

The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

portTypeName.java defines the Java interface that both the client and
server implement.

portTypeNamelmpl.java defines the class used to implement the server.

portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 45.

Generating code from the
command line

Generating Stub and Skeleton Code

You generate code at the command line using the command:

wsdl toj ava [-e service][-t port][-b binding][-i portType]
[-d output_dir][-p [nanespace=] package] [-i npl]
[-server][-client][-types][-interface][-sanple][-all]
[-ant][- dat ahandl er s] [- nexcl ude namespace[=package]]
[- ni ncl ude nanespace[=package]] arti x-contr act

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdl t oj ava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

-e service Specifies the name of the service for which the
tool will generate code. The default is to use the
first service listed in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to use the first port
listed in the service.

-b bindi ng Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i port Type Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=] package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-inpl Generates the skeleton class for implementing the
server defined by the contract.

-server Generates a simple main class for the server.

11

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Warning messages

12

-client

-types

-interface

-sanpl e

-all

-ant

- dat ahandl ers

- nexcl ude
namespace[=package]

- ni ncl ude
namespace[=package]

Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -i nterface -types.

Generates the code to implement the complex
types defined by the contract.

Generates the Java interface for the service.

Generates a sample client that can be used to test
your Java server.

Generates code for all portTypes in the contract.

Generate an ant build target for the generated
code.

When a service uses SOAP w/ attachments as its
payload format, generate code that uses

j avax. . activati on. Dat aHandl er instead of the
standard Java classes specified in the JAX-RPC
specification. For more informaiton see “Using
SOAP with Attachments” on page 111 and
Desinging Artix Solutions.

Instructs the code generator to skip the specified
XMLSchema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

Instructs the code generator to generate code for
the specified XMLSchema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

If you generate code from a WSDL file that contains multiple <port Type>
elements, multiple bindings, multiple services, or multiple ports wsdl t oj ava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not

displayed.

Java Package Names

Java Package Names

Artix packages

Generated type packages

Java packages

The Artix bus object which provides the transport and payload format
independence in Artix is defined in the comi ona. j bus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. Theleading http:// orurn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in . comor . gov, the leading ww is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern . xxx or . xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http: // wwv wi dget Vendor . coni t ypes/ wi dget Types. xsd would be mapped
to the Java package name com wi dget vendor . t ypes. wi dget t ypes.

Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.

13

CHAPTER 2 | Developing Artix Enabled Clients and Servers

java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.

14

Developing a Server

Developing a Server

Overview

Generating the server
implementation class

Generated code

Completing the server
implementation

The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing an
Artix-enabled server. The skeleton code hides the transport details, allowing
you to focus on business logic.

The Artix code generation utility, wsdl t oj ava, will generate an
implementation class for your server when passed the -i npl command flag.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -t ypes flag.

The implementation class code consists of two files:
PortName.java contains the interface the server implements.
PortNamelmpl.java contains the class definition for the server’s

implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in

Port Narel npl . j ava. A generated implementation class for a contract
defining a service with two operations, sayH and gr eet Me, would resemble
Example 7. Only the code portions highlighted in bol d (in the bodies of the
greet Me() and sayH () methods) must be inserted by the programmer.

Example 7: Implementation of the HelloWorld PortType in the Server
Il Java

inport java.net.?*;
inport java.rm.?*;

15

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Writing the server main()

16

Example 7: Implementation of the HelloWorld PortType in the Server

public class Hel | oWrldlnpl {

/**
* greet M
*
* @aram stringParan® (String)
* @eturn: String
*/
public String greetMe(String stringParan®) {
Systemout.printIn("Hell oWrld.greet Me() called with
nessage: "+stringParan®);
return "Hello Artix User: "+stringParan;
}

/**

* sayH

* @eturn: String

*/

public String sayH () {
Systemout . println("Hell oWrld.sayH () called");
return "Qeetings fromthe Artix HelloWrld Server";

The server mai n() of an Artix Java server must do three things before it can
service requests:

1. Initialize the Artix bus.

2. Create a servant for the service implementation.

3. Register the server implementation with the Artix bus.
4. Start the Artix bus.

You can use wsdl t oj ava to generate a server mai n() with the code to
perform these steps by using the - server flag. The mai n() shown in
Example 10 on page 18 was generated using wsdl t oj ava.

Initializing the bus

The Artix bus is initialized using com i ona. j bus. Bus. i ni t () . The method
has the following signature:

static Bus init(String args[]);

Developing a Server

i nit() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Before the bus can begin processing requests made on your server, you
must register the servant object that implements your server’s business logic
with the bus. Registering the implementation object’s servant with the bus
allows the bus to create instances of the implementation object to service
requests.

Creating a servant for your service implementation

Artix wraps service implementation objects in a Servant object that allows
the bus to manage the object. To create a comi ona. j bus. Servant for your
service implementation you create an instance of a Si ngl el nst anceSer vant
as shown in Example 8. The creator for a Si ngl el nst anceSer vant uses the
path of the WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.

Example 8 shows the code to create a servant for the Hel | oVér | d service.

Example 8: Creating a Servant
/1 Java
Servant servant =

new Si ngl el nst anceServant ("./Hel | oWr | d. wsdl ",
new Hel | oWor | dinpl (), bus);

17

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Completed server main()

18

Registering a servant for the server implementation

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus’

regi st er Servant () method. This registers the servant with a fixed address
that is read from the contract associated with the application. The signature
for r egi st er Servant () is shown in Example 9.

Example 9: registerServant()

voi d regi sterServant (Servant servant,
Q\ane servi ceNane,
String port Nare)

t hrows BusException

In addition to the servant, r egi st er Servant () takes the service’s QName as
specified in the contract defining the service. You can also supply the name
of the WSDL port you on which you want the servant activated. If no port
name is given, the servant is activated on all ports.

Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus’ run() method. Once the bus
is started, it retains control of the process until it is shut down. The server's
mai n() will be blocked until run() returns.

Example 10 shows how the mai n() for a Java Artix server might look.
Example 10: Server main()

I/ Java
inport comiona.jbus. *;
inport javax.xm .namespace. Q\arre;

public class Server
{
public static void main(String args[])
throws Exception
{
[/ Initialize the Artix bus
Bus bus = Bus.init(args);

Developing a Server

Example 10: Server main()

I/ Register the Servant
\ane name = new QNane("http://xm bus. coni Hel | oWor | d",
"Hel | oWor | dServi ce");
Servant servant =
new Si ngl el nst anceServant ("./Hel | oWr| d. wsdl *,
new Hel | oVWr | dl npl ());
bus. r egi st er Servant (servant, nane, "HelloWrldPort");

/] Start the Bus
bus. run();

19

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Developing a Client

Overview

Initializing the bus

Instantiating a service proxy

20

Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix Java client initializes and shuts down the Artix bus.

Client applications initialize the bus in the same manner as server
applications, by calling the bus’ i ni t () method. Client applications,
however, do not need to make a call to the bus’ run() method.

Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the

j avax. xm . rpc. Servi ce interface. You need the Q\ane of the service for
which you are creating the proxy, the Q\ane of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of j avax. xn . r pc. Servi ceFact ory to create the
service.

Note: If your client is going to run inside of a J2EE container you
will need to set the JAX-RPC Ser vi ceFact ory property to use the
IONA Ser vi ceFact ory prior to getting the Servi ceFact ory object.
You do this with the following code:

Syst em set Property("javax. xm . rpc. Servi ceFact ory",
“com i ona. j bus. JBusServi ceFact ory");

2. Use the Servi ceFact ory to create a Servi ce instance for the service to
which the proxy will connect.

3. Use the Servi ce to instantiate the dynamic proxy.

Shutting the bus down

Developing a Client

Obtaining a ServiceFactory instance

To obtain an instance of the Servi ceFact ory you call

Servi ceFact ory. newl nst ance() . This returns the Servi ceFact ory. Only
one is created per application and the same Servi ceFact ory is returned for
each successive call.

Creating a Service instance

A Servi ce instance is created from the Servi ceFact ory using
creat eServi ce(). createServi ce() takes two arguments:

® the URL of the contract defining the service.

® the service's Q\ane.

Creating the dynamic proxy
The dynamic proxy is created from the Servi ce using get Port (). get Port ()
takes two arguments:
* the Q\ane of the endpoint with which the proxy contacts the service.
® the name of the generated Java interface in Port Nane. j ava with
.cl ass appended. For example, if the generated interface’s name is
Hel | over | d, this argument would be Hel | oWrl d. cl ass.

get Port () returns an instance of j ava. rm . Renot e that must be cast to the
generated interface.

Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus’ run() method and can simply call

shut down() on the bus before the main thread exits. It is advisable to pass
true to shut down() to ensure that the bus is fully shutdown before exiting.

21

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Full client code

22

An Artix Java client developed to access Hel | oVer | dSer vi ce will look
similar to Example 11.

Example 11: Client Code

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.?*;

i nport javax.xnl . namespace. Q\ang;
inport javax.xm.rpc.*;

inport comi ona.j bus. Bus;

public class HellowWrlddi ent

{

public static void main (String args[]) throws Exception

{

Bus bus = Bus.init(args);

Q\ane name = new QNane("http://iona. com Hel | oVor | d",
"Hel | oWr | dServi ce");

Q\ane portNane = new Q\ane("", " Hel | oWor | dPort ") ;

String wsdl Path = "file:/./HelloWrld. wsdl";
URL wadl Location = new Fi |l e(wsdl Pat h).toURL();

Servi ceFactory factory = ServiceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Hel | oWorl d proxy = (Hel | oWrl d) servi ce. get Port (port Nane,
Hel | oWr | d. cl ass) ;

String string_out;

string_out = proxy.sayH ();
Systemout. println(string_out);

bus. shut down(true);

}

Developing a Client

The code does the following:

1.
2.
3.

The comiona. j bus. Bus. i ni t () function initializes the bus.
Creates the service’s Q\ane.

Creates the Q\ane of the endpoint with which the proxy will contact the
service.

Creates the URL of the contract defining the service.
The new nst ance() function returns the Servi ceFactory.

The creat eServi ce() function instantiates the Servi ce from which the
dynamic proxy is created.

The get Port () function returns a dynamic proxy to the Hel | over | d
service. get Port () returns an instance of j ava. rm . Renot e that must
be cast to the interface defining the service.

Makes a call on the proxy to request service.
Shuts down the bus.

23

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Building an Artix Application

Required jar files Artix Java applications require that the following Artix jar files are in your
classpath:

® installdir\lib\artix\java_runtine\2. 1\it_bus-api.jar

° installdir\lib\artix\ws_conmmon\ 2. 1\it_wsdl .j ar
® installdir\lib\artix\ws_conmmon\ 2. 1\it_ws_reflect.jar
° installdir\lib\artixX\ws_common\ 2. 1\it_ws_refl ect _types.jar
® installdir\lib\comon\ifc\1l. 1\ifc.jar
o installdir\lib\jaxrpc\jaxrpc\l. 1\jaxrpc-api.jar
Other jar files If your application uses SOAP with attachments, you will also need to
include install _dir/lib/sun/activation/1.0.1/activation.jar on your
classpath.

If your application uses xsd: any, you will need to include
instal |l _dir/lib/ws_conmon/ 2.1/ saaj -api.jar on your classpath.

24

In this chapter

CHAPTER 3

Advanced
Programming
Issues

Several areas must be considered when programming complex
Artix applications.

This chapter discusses the following topics:

Servant Registration page 26
Proxy Creation page 30
Getting a Bus page 32
Threading page 33

Setting Client Connection Attributes Using the Stub Interface page 37

Class Loading page 41

25

CHAPTER 3 | Advanced Programming Issues

Servant Registration

Overview

In this section

26

In order to make a service accessible to remote client’s, you must register its
associated servant with a bus instance. Once the servant is registered with
the bus instance the service is activated and begins listening for requests.

When a servant is instantiated in Java it is associated with the logical
portion of an Artix contract. It is a Java instance of the interfaced defined in
a WSDL <port Type> element. At this point, a Java servant has no
knowledge of the physical details of the service which it implements.

The servant is associated with the physical details of the service when it is
registered with an instance of the Artix bus. At this point the servant is tied
to the physical details defined by the WSDL <port > element defining the
message format and transport used by the service.

Artix provides two methods for registering a servant:

Static registration ties the servant to a <port > element in the physical
contract defining the service.

Transient registration ties the servant to a cloned <port > element.

This section discusses the following topics:

Static Servant Registration page 27

Transient Servant Registration page 28

Servant Registration

Static Servant Registration

Overview

Registering

Example

When a servant is registered as a static servant it is linked to a <port >
definition that is read from the contract associated with the application. This
means that a static servant is restricted to using a service from the fixed
collection of services appearing in the contract.

Static servants are useful when a bus instance is only going to host a single
instance of a servant. They are also useful when using references and you do
not want to use the WSDL publishing plug-in because clients that have a
copy of the service’s contract have the servant’s port information.

You register a static servant using the bus’ regi st er Servant () method. The
signature for regi st er Servant () is shown in Example 12.

Example 12: registerServerFactory()

voi d regi st erServant (Servant servant,
Q\Bne servi ceNane,
String port Narre)

t hrows BusExcepti on

In addition to the servant instance, regi st er Servant () takes the service's
QName as specified in the contract defining the service. You can also supply
the name of the WSDL port you on which you want the servant activated. If
no port name is given, the servant is activated on all ports. To register a
servant on more than one specific port, you can call r egi st er Servant ()
multiple times and specifying a different port name on each call.

Example 13 shows the code for registering a static servant.
Example 13: Registering a Static Servant

Q\ane name = new Q\Nane("http://whoDunlt.coni Sl ueth",
" Sl uet hServi ce");
Servant servant = new S ngl el nstanceServant ("./sl ueth. wsdl ",
new Sl uethl npl ());
bus. r egi st er Servant (servant, nane, “S uet hHTTPPort");

27

CHAPTER 3 | Advanced Programming Issues

Transient Servant Registration

Overview

Supported transports

Service templates

28

When a servant is registered as a transient servant, Artix clones a <ser vi ce>

definition from the physical contract associated with the application and

links the transient servant with the clone. This has the following effects:

® The transient servant’s physical details are based on an existing
<ser vi ce> element that appears in the contract.

® The transient servant’s service QName is replaced by a dynamically
generated, unique service QName.

® The transient servant’s addressing information is replaced such that
each address is unique per-clone and per-port.

Transient servants are useful if the bus is going to be hosting a number of

instances of a servant as when a service is a factory for other services.

While Artix will allow you to register any servant as transient, not all
transports support the notion of transience. Currently, the only transports
supported by Artix that can make use of transient servants are HTTP,
CORBA, and IIOP.

When using transient servants in your application, your contract must

provide a service template for the servant. A service template is a WSDL

service from which your transient servants will be cloned. When creating the

service template for transient servants adhear to the following:

® The service template must come before any actual WSDL services
defined in the contract. If you place your service templates after your
actual WSDL service definitions, you may run into problems using the
router.

® The service must use one of the supported transports.

® The service must fully describe the properties of the transport being
used.

® The address specified for either a CORBA service or a [IOP service
must be i or: . Specifying any other address in the template will cause
the servants to have invalid IORs.

Registering

Transient servant QNames

Example

Servant Registration

You register a transient servant using the bus’ r egi st er Tr ansi ent Ser vant ()
method. The signature of r egi st er Tr ansi ent Servant () is shown in
Example 14.

Example 14: registerTransientServant()

publi c abstract Q\ame regi ster Transi ent Servant (Servant servant,
Q\ane servi ceNane)
t hrows BusExcepti on;

In addition to the servant instance, regi st er Transi ent Servant () takes the
service's QName as specified in the contract defining the service. Unlike
regi sterServant (), regi sterTransi ent Servant () does not allow you to
specify a port name because the bus dynamically assigns a port to the
transient servant.

Because the newly created transient servant is cloned from the service
whose QName was supplied, the new servant has a different QName. The
transient servant's QName is returned when you invoke

regi ster Tr ansi ent Servant (). The returned QName is the QName you use
when creating references for the transient servant or when destroying the
transient servant.

Example 15 shows the code for registering a transient servant.
Example 15: Registering a Transient Servant

Q\ane name = new Q\Nane("http://whoDunlt. coni Sl uet h",
" Sl uet hServi ce");
Servant servant = new Singl el nstanceServant ("./sl ueth.wsdl ",
new Sl uet hl npl ());
Q\ane transi ent Nane = bus. r egi st er Tr ansi ent Ser vant (ser vant,
nane,
"Sl uet hHTTPPort") ;

29

CHAPTER 3 | Advanced Programming Issues

Proxy Creation

Overview

createClient()

Example

30

While the Artix Java API's use dynamic proxies as specified by JAX-RPC,
you may not always be able to use the JAX-RPC specified method for
creating a service proxy. Artix provides a method for creating service proxies
that bypasses the steps outlined in the JAX-RPC specification.

You can create service proxies using the bus’ created i ent () method.
createdient () takes the URL of the service's contract, the QName of the
service, the name of the port the proxy will use to connect to the service,
and the Java A ass representing the service’s remote interface and returns a
JAX-RPC style dynamic proxy for the service if it is successful.
createdient ()’s signature is shown in Example 16.

Example 16: Bus.createClient()
Renote Bus.createdient (URL wsdl Url, Q\ame servi ceNane,

String portName, d ass interfaced ass)
t hrows BusException

Example 17 shows the code for creating a service proxy using
createdient().

Example 17: Creating a Service Proxy using createClient()

Q\ane name = new Q\Nane("htt p: //wwn buyst uf f. cont',
" Regi st er Servi ce");

String portName = new String("RegisterPort");

String wsdl Path = “file:/./resister.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h).toURL();

/1 Bus bus obtained earlier
Regi ster proxy = bus. createdient(wsdl URL, nane, portNane,
Regi ster. cl ass);

Proxy Creation

The code in Example 17 does the following:

1.

Creates the Q\ane for the service from the contract defining the
application. In this example, the service, Regi st er Ser vi ce, is defined
in the namespace htt p: \\ waw. buyst uf f . com

Creates a Stri ng to hold the name of the <port > defining the transport
the proxy will use to contact the service. In this example, the transport
details are defined in a <port > named Regi ster Port .

Creates a URL specifying where the service’s contract can be located. In
this example, the contract, regi st er. wsdl , is located in the client’s
directory.

Calls created i ent () with the correct parameters to create a service
proxy for the Regi st er service.

31

CHAPTER 3 | Advanced Programming Issues

Getting a Bus

Overview

Inside a service implementation
object

From a client proxy

32

There are many instances where you need to get the defualt bus for an
application. These include working with contexts and generating references.
When you are in the mainline code of your application, you will have access
to the instance of the bus you initialized. However, inside the
implementation object of your service or in methods outside the scope of
your client application’s mainline.

If you are in a service's implementation object, you can use the code shown
in Example 18.

Example 18: Getting a Bus Reference Inside a Servant

com i ona. j bus. Bus bus = D spat chLocal s. get Qurrent Bus();

If you have a client proxy object, you can use the JAX-RPC St ub interface as
shown in Example 19.

Example 19: Getting a Bus Reference from a Client Proxy

Stub clientStub = (Stub)client;

com i ona. j bus. MessageCont ext context =

client Stub. _get Property(comiona.jbus. MessageCont ext . ARTI X_
MESSACGE_CONTEXT) ;

com i ona. j bus. Bus bus = cont ext. get TheBus();

Threading

Threading

Overview

Thread pool configuration

The Artix bus is a multithreaded C+ + application that uses a thread pool to
hand out threads. When using the Artix Java APIs, you can use the Artix
configuration file to control how the C++ core manages its threads. In
addition the Artix Java APIs provide three servant threading models to
handle requests from the bus. These models are:

® single-instance multithreaded

® serialized single-instance

® per-invocation

The bus's thread pool is configured in your applications configuration scope.
This configuration scope is specified in the main Artix configuration file.

There are three configuration variables that are used to configure the bus’
thread pool:

® thread_pool :initial _threads sets the number of initial threads in
each port's thread pool.

t hread_pool : | ow wat er _mar k sets the minimum number of threads in
each service's thread pool.

t hr ead_pool : hi gh_wat er _nmar k sets the maximum number of threads
allowed in each service's thread pool.

For a detailed discussion of Artix configuration see Deploying and Managing
Artix Solutions.

33

CHAPTER 3 | Advanced Programming Issues

Single-instance multithreaded The standard Artix servant is the Si ngl el nst anceServant . The

servant Si ngl el nst anceSer vant provides a multi-threaded, single instance usage
model to the user. This means that all invocation threads for a given port
access the same implementation object as shown in Figure 1 on page 34.
The Si ngl el nst anceSer vant provides no thread safety for the user code.

attach () /detach () thread

C++ Runtime Java
5 — Work Queue 1 Thread Pool 1 . : :
. | o4 Port1|—|Rl|R2|R3 RN _,M ~_, servant |

1 O Service ‘

© | o{Port2 —»|R1|R2|R3 RN _{W.—r-’\f\z/ :

— Work Queue 2 Thread Pool 2 | ,

Figure 1: SinglelnstanceServant

To instaniate a Si ngl el nst anceSer vant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.

Example 20 shows an example of instantiating a Si ngl el nst anceSer vant .

Example 20: Creating a SinglelnstnaceServant
[/ Java
Servant servant =

new Si ngl el nst anceSer vant (new Hel | ol npl (),
"./hello.wsdl ", bus);

34

Serialized single-instance servant

Threading

Artix provides a thread safe single-instance servant called a
SerializedServant. A Seri al i zedServant ensures that all invocations are
routed to a single implementation object in a serialized manner as shown in
Figure 2 on page 35. Using a Seri al i zedSer vant is equivalent to using a
Si ngl el nst anceServant whose target object is completely synchronized.

attach () /detach () thread

C++ Runtime Java
E — Work Queue 1 Thread Pool1 | : 1
i | o Port1|—|R1[R2[R3| |RN| > F Servant |
! L 2 |1 |
\ O Service ; ! J_, :
- | ofPort2|—|R1[R2[R3| |RN| > G |

Per-invocation servant

Work Queue 2

Figure 2: SerializedServant

To instaniate a Seri al i zedSer vant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.
Example 20 shows an example of instantiating a Seri al i zedSer vant .

Example 21: Creating a SerializedServant

/1 Java
Servant servant = new Serial i zedSer vant (new Hel | ol npl (),

“./hello.wsdl ", bus);

In addition to the multithreaded single instance servants, Artix provides a
per-invocation servant. This servant is implemented by the
Per I nvocat i onSer vant class. A Perl nvocationServant guarantees that a

35

CHAPTER 3 | Advanced Programming Issues

36

separate instance of the implementation object will be used for each
invocation as shown in Figure 3 on page 36. This ensures thread safety, but
does not allow the implementation object to have any statefull information.

attach () /detach () thread

Work Queue 2 Thread Pool 2 |

C++ Runtime Java
— Work Queue 1 Thread Pool 1 ; ' create :
by () Q |
o Port1|—|R1 |R2|R3| [RN —)M destroy !
~a O cheate ;
'O Service : X destroy .
: O (;create :
e i
o— Port 2| —» | R1 | R2 |R3 RN M destroy |
! ~a O qereate '
- : destroy :

Figure 3: PerinvocationServant

To use a Per | nvocat i onSer vant , your implementation object must either
have a no-argument constructor, or implement the d oneabl e interface and
provide a cl one() method. Like the other servants the

Per | nvocat i onSer vant needs the path of the WSDL file describing the
service interface, an instance of your implementation object, and an
instance of an initialized Artix bus when being instantiated. Example 22
shows the code for instantiating a Per I nvocat i onSer vant .

Example 22: Creating a PerlnvocationServant
/1 Java

Servant servant = new Perl| nvocati onServant (new Hel | ol npl (),
“./hello.wsdl ", bus);

Setting Client Connection Attributes Using the Stub Interface

Setting Client Connection Attributes Using the

Stub Interface

Overview

The Stub interface

Getting a Stub object

The JAX-RPC specification lists four standard properties to which a service
proxy’s St ub interface provides access. Artix provides support for setting
three of them:

® Username
® Password
® Endpoint Address

Currently, Artix only supports setting these properties for HTTP connections.

As required by the JAX-RPC specification, all Artix proxies implement the
javax. xn . rpc. Stub interface. This interface provides access to a number
of low-level properties used in connecting the proxy to the service
implementation. To access these low-level properties the Stub interface has
two methods:

® getProperty() returns the value of the specified property.

® _setProperty() allows you to set the value of the specified property.

Because all Artix proxies implement the St ub interface, you can simply cast

an Artix proxy to a St ub object. Example 23 shows code getting a St ub
object from an Artix proxy.

Example 23: Casting a Client Proxy to a Stub

/1 Java
inport javax.xm.rpc.*;

Il client proxy, client, created earlier
Stub clientStub = (Stub) client;

37

CHAPTER 3 | Advanced Programming Issues

Setting the username property

Setting the password property

38

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. security. aut h. user name property. It is used to set a
username for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s User Nane property.

To set the username property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 23 on page 37.

2. Create a String containing the username for the value of the property.

3. Call _setProperty() on the Stub specifying St ub. USERNAME_PRCPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 24 on page 38 shows code for setting the username for a client.
Example 24: Setting the Username Property on a Stub

/] Java
inport javax.xmn.rpc*

/1 Service proxy, secdient, obtained earlier

Stub secStub = (Stub)secdient;

String userName = new String("Smart");

secSt ub. _set Property(St ub. USERNAME _PROPERTY, user Nane) ;

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. security. aut h. password property. It is used to set a
password for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s Passwor d property.

To set the username property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 23 on page 37.

2. Create a String containing the password for the value of the property.

Call _set Property() on the Stub specifying St ub. PASSWORD PRCPERTY
as the property name and the String created in step 2 as the value of
the property.

Setting the endpoint address

Setting Client Connection Attributes Using the Stub Interface

Example 25 on page 39 shows code for setting the password for a client.
Example 25: Setting the Password Property on a Stub

/1 Java
inport javax.xm.rpc*

I/ Service proxy, secdient, obtained earlier

Stub secStub = (Stub)secdient;

String password = new String("86");

secSt ub. _set Propert y(St ub. PASSWRD PROPERTY, password);

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. servi ce. endpoi nt . addr ess property. It is used to set the
address for the target service. The property takes a St ri ng containing a valid
HTTP URL that points to a service implementing the interface supported by
the proxy.

You can only set this property before you invoke any of the service proxy's
methods. Once the proxy makes a request on the remote service an HTTP
service connection is established between the client and the service. Due to
the multi-threaded nature of the Artix bus and the nature of HTTP
connections, this connection cannot be broken and reassigned to a new
endpoint. Attempts to reset the endpoint address property after invoking one
of the proxy’s methods will be ignored.

To set the endpoint address property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 23 on page 37.

2. Create a String containing the target endpoint’s HTTP URL for the
value of the property.

3. Call _setProperty() on the Stub specifying St ub. ENDPQ T_PRCPERTY
as the property name and the Stri ng created in step 2 as the value of
the property.

Example 25 on page 39 shows code for setting the endpoint address
property for a client.

39

40

CHAPTER 3 | Advanced Programming Issues

Example 26: Setting the Endpoint Address Property on a Stub

/1 Java
inport javax.xm.rpc*

Il Service proxy, secdient, obtained earlier
Stub secStub = (Stub)secdient;
String endpt new

String("http://control.silencecone. net/9986");
secSt ub. _set Property(St ub. ENDPQ NT_PROPERTY, endpt);

Class Loading

Class Loading

Overview

How the class loader firewall
works

There may be occasions where the jars provided with Artix conflict with the
jars used in your environment. In particular, you may be using different
versions of the Xerces XML parser and Log4J. To handle such situations,
Artix provides a class loader firewall that isolates the Artix runtime class
loader from the application class loader and the system class loader. This
allows the Artix runtime to load the jars it needs and your application to load
your versions of any jars that conflict.

The class loader firewall provides a mechanism for your to hide the
application class loader’s jar files from the Artix runtime. It does this by
exposing a simple mechanism for you to create a set of positive filters
defining what classes loaded by the application class loader are visible to
the Artix runtime’s class loader and specifying the location from which the
Artix runtime class loader will load its classes. Any classes not matched by a
positive filter are blocked from the Artix runtime’s class loader and will only
be loaded from the locations specified in the firewall’s configuration file.
Figure 4 shows how the class loader firewall blocks off the Artix runtime.

APPLICATION JVM Classes match the
ﬁ positive filters
w K tix Runtime JUM \
f Artix Runtime JVM |
T N I T_ e
|

Classes blocked by the
firewall and loaded from
the configured set of jars

Classes loaded from
the system classpath

Figure 4: Class Loader Firewall

41

CHAPTER 3 | Advanced Programming Issues

Configuring the firewall class
loader

Defining class filters

42

For example, in most cases you would create a positive filter allowing all of
the J2SE classes into the Artix runtime. However, you would not create a
positive filter for the Xerces classes if your applications use a different
version of Xerces than Artix does. Artix will need to load its own Xerces
classes in order to operate.

To use the class loader firewall with an Artix Java application do the

following:

1. Create a file called arti x_ce. xni and place it in your application’s
classpath.

2. Usingthe artix_ce. xn file included with the Java firewall demo as a
template, define the filters to only allow the desired packages from the
Artix class loader to be visible to your application code.

3. Define the rules governing where the Artix class loader will look for
specific classes in the <ce: | oader > element of arti x_ce. xn .

The class loader firewall, if it finds an arti x_ce. xn file in the classpath,
assumes that all classes not specified by a positive filter are to be blocked
from the Artix runtime’s class loader. You define positive filters using one of
two <ce: fil ter> attributes: t ype="di scover" and type="pattern".

Using type="discover”
The discover filter type specifies that the class loader will discover the filters

from the location specified in the di scover - sour ce attribute. Table 1 shows
the values for di scover - sour ce.

Table 1: discover-source values for the Class Loader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your arti x_ce. xm definition.

Defining negative filters

Class Loading

Table 1: discover-source values for the Class Loader Firewall

Value Meaning

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
nyApp. j ar, you could define a filter like <ce: filter

type="di scover"

di scover-source="jar"> \nyApp.jar</ce:filter>.

j ar-of Discover the filters needed to load specified resource. This
option makes it possible to discover the contents of jar files
which you know are reachable through the class loading
system, but which you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EJBHone class, you could
use a filter like <ce: filter type="discover"

di scover - sour ce="j ar - of " >j avax/ ej b/ EJBHone. cl ass</ ce:
filter>.

Using type="pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s class loader. The syntax for
specifying package patterns is similar to the syntax used in Java i nport
statements. For example, to specify that all classes from j avax. xni . r pc are
to be allowed through the firewall you could use a filter like <ce: filter
type="pattern">j avax. xm .rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce: filter

type="pattern">j avax. xnm .rpc.</ce:filter>.

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime class loader to be visible through the firewall. This is
particularly true with com i ona. j bus. The Artix runtime needs to share a
number of resources from this package with the application code, but it also
needs to ensure that some of its resources are loaded from the Artix jar files.

To solve this problem the class loader firewall allows you to define negative
filters. To define a negative filter you use a value of negat i ve- pat t ern for
the t ype attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system’s

43

CHAPTER 3 | Advanced Programming Issues

Specifying the location for loading
blocked resources

<ce: | oader >

JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce: filter
type="negati ve- pattern">comiona.jbus.jaxrpc.<\ce:filter>.

The location from which the Artix runtime class loader will load resources
blocked by the firewall are specified in the <ce: | oader > element of
artix_ce. xn . Inside the loader definition, you use a number of

<ce: | ocat i on> elements to specify the location of specific resources. These
locations can be either the relative or absolute pathnames of a jar file. You
can also specify a directory in which the class loader will search for the
required jar files.

For example, if all of your Artix specific jar files are stored in the location in
which they were installed you could use a loader element similar to
Example 27 to specify the proper Xerces and Log4J version to load into the
Artix runtime.

Example 27: Loader Definition to Load Xerces and Log4J

<ce:loaction>C \| ONA\| i b\ apache\ j akarta-1 0og4j\ 1. 2. 6\1 og4j . j ar<\ ce: | oacti on>
<ce: |l ocation>C \ | ONA\| i b\ apache\ xer ces\ 2. 5. O\ xercesl npl . j ar<\ce: | ocati on>

</ ce: | oader >

Examples

44

For an example of using the Artix class loader firewall see the
java_firewal I demo in the denos\ basi ¢ folder of your Artix installation.
The demo provides an example of using the class loader firewall to shield
the Artix runtime from different versions of Xerces and Log4J.

In this chapter

CHAPTER 4

Working with Artix
Data Types

Artix maps XMLSchema data types in an Artix contract into
Java data types. For XMLSchema simple types the mapping is
a one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

This chapter discusses the following topics:

Using Native XMLSchema Simple Types page 47
Defining Your Own Simple Types page 53
Using XMLSchema Complex Types page 56
Using XMLSchema any Elements page 84
SOAP Arrays page 92
Lists page 95
Enumerations page 98
Deriving Types Using <complexContent> page 104
Holder Classes page 107

45

CHAPTER 4 | Working with Artix Data Types

46

Using SOAP with Attachments

page 111

Using Native XMLSchema Simple Types

Using Native XMLSchema Simple Types

Overview Artix follows the JAX-RPC specification for mapping native XMLSchema
types into Java. In most cases, the mapping from a native XMLSchema type
is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:
Simple Type Mapping page 48
Special Simple Type Mappings page 50
Unsupported Simple Types page 52

47

CHAPTER 4 | Working with Artix Data Types

Simple Type Mapping

Overview When a message part is described as being of one of the simple
XMLSchema types, the generated parameter’s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 28 will cause a parameter, score, of type i nt to be
generated.

Example 28: Message Description Using a Simple Type
<message nane="scor eResponse" >

<part name="score" type="xsd:int" />
</ message>

Table of simple type mappings The simple type mappings are shown in Table 2.

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd: string java.lang. String
xsd: i nt int
xsd: i nsi gned! nt | ong
xsd: | ong | ong
xsd: unsi gnedLong j ava. mat h. Bi gl nt eger
xsd: short short
xsd: unsi gnedShor t int
xsd: f | oat f1 oat
xsd: doubl e doubl e
xsd: bool ean bool ean
xsd: byte byt e
xsd: i nt eger j ava. mat h. Bi gl nt eger

48

Simple type validation

Using Native XMLSchema Simple Types

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd: posi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: negat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonPosi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonNegat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: deci nal j ava. mat h. Bi gDeci nal
xsd: dat eTi ne java.util. Cal endar
xsd: Q\ane j avax. xnl . nanespace. Q\ane
xsd: base64Bi nary byte[]
xsd: hexBi nary byte[]
xsd: I D java.lang. String
xsd: anySi npl eType java.lang. String
xsd: anyUR java.lang. String
xsd: gYear java.lang. String
xsd: ghbnt h java.lang. String
xsd: gDay java.lang. String
xsd: gYear Mont h java.lang. String
xsd: ghont hDay java.lang. String

Artix Java validates XMLSchema simple types when they are passed to the
bus for writing to the wire. This means that when you are working with data
elements that are mapped from XMLSchema simple types you should take
care to ensure that they conform to the restrictions of the XMLSchema type.
For example, the Java APIs would allow you to set a value of - 10 into a data
element that is mapped to an xsd: posi ti vel nt eger . However, when the
bus attempted to write out the message containing that data element, the
bus would throw an exception.

49

CHAPTER 4 | Working with Artix Data Types

Special Simple Type Mappings

Overview Mapping XMLSchema simple types to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema simple type is mapped to the Java primitive’s corresponding
wrapper type. These cases include:
® an <el enent > with its ni | | abl e attribute set to true as shown in
Example 29.

Example 29: Nillable Element
<el enent name="finned" type="xsd: bool ean" nillable="true" />

® an <el enent > with its m nQccur s attribute set to 0 and its maxQccur s
attribute set to 1 or its maxCceur s attribute not specified as shown in
Example 30.

Example 30: minOccurs set to Zero
<el enent nane="pl ane" type="xsd:string" m nCQccurs="0" />

® an<attribute> with its use attribute set to opt i onal , or not specified,
and having neither its def aul t attribute nor its fi xed attribute
specified as shown in Example 31.

Example 31: Optional Attribute Description

<el enent nane="dat e">
<conpl exType>
<sequence/ >
<attribute nane="cal Type" type="xsd:string"
use="optional" />
</ conpl exType>
</ el enent >

Mappings Table 3 shows how XMLSchema simple types are mapped into Java
wrapper classes in these special cases.

50

Using Native XMLSchema Simple Types

Table 3: simple Schema Type to Java Wrapper Class Mapping

Schema Type Java Type
xsd: i nt java.l ang. I nt eger
xsd: | ong j ava. |l ang. Long
xsd: shor t java. |l ang. Short
xsd: f| oat java. | ang. Fl oat
xsd: doubl e java. | ang. Doubl e
xsd: bool ean j ava. | ang. Bool ean
xsd: byt e java.l ang. Byte

51

CHAPTER 4 | Working with Artix Data Types

Unsupported Simple Types

List of unsupported simple types The following XMLSchema simple types are currently not supported by Artix
Java:

xsd: dur ati on
xsd: time

xsd: dat e

xsd: ENTI TY
xsd: NOTATI ON
xsd: | DREF
soapenc: base64

52

Defining Your Own Simple Types

Defining Your Own Simple Types

Overview

Procedure

Describing a simple type in
XMLSchema

XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
<t ypes> section of an Artix contract using a <si npl eType> element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate
<si npl eType> element into the <t ypes> section of your contract.

Example 32 shows the syntax for describing a simple type.

Example 32: Simple Type Syntax

<si npl eType nane="t ypeNane" >
<restriction base="baseType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</restriction>
</ si npl eType>

The type description is enclosed in a <si npl eType> element and identified
by the value of the nane attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the <restriction>

53

CHAPTER 4 | Working with Artix Data Types

element. Each facet element is specified within the <restri cti on> element.
The available facets and their valid setting depends on the base type. For
example, xsd: string has six facets including:

® length

® ninLength

® maxLength

® pattern

® whitespace

Example 33 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form

XXX-XX-XXXX. <SSN>032- 43- 9876<SSN> is a valid value, but
<SSN>032439876</ SSN> is not valid.

Example 33: SSN Simple Type Description

<si npl eType nane="SSN'>
<restriction base="xsd:string">
<pattern val ue="\d{3}-\d{2}-\d{4}" />
</restriction>
</ si npl eType>

Mapping simple types to Java Artix maps user-defined simple types to the Java type of the simple type's
base type. So any message using the simple type SSN, shown in
Example 33, would be mapped to a Stri ng because the base type of SSNis
xsd: string. For example, the contract fragment shown in Example 34
would result in a Java method, credi t1nfo(), which took a parameter,
socNum of String.

Example 34: Credit Request with Simple Types

<nessage nane="credit Request ">
<part name="socNuni type="SSN' />
</ message>

<port Type nane="credi t Agent">
<oper ati on nane="credit| nfo">
<i nput nessage="tns: credit Request" nane="credRec" />
<out put message="tns: creditReport" nane="credRep" />
</ operati on>
</ port Type>

54

Unenforced facets

Enforced facets

Defining Your Own Simple Types

Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you must ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Artix does not enforce the following facets:
® length

® mnLength

® nmaxLength

® pattern

® whiteSpace
max| ncl usi ve
® naxExcl usive
® nininclusive
® ninExclusive
® totalDgits

® fractionDigits

Artix enforces the following facets:

® enuneration

For more information on the enumeration facet, read “Enumerations” on
page 98.

55

CHAPTER 4 | Working with Artix Data Types

Using XMLSchema Complex Types

Overview Complex types are described in the <t ypes> section of an Artix contract.
Typically, they are described in XMLSchema using a <conpl exType>
element. In contrast to simple types, complex types can contain multiple
elements and have attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a
method for stiringifying the object.

In this section This section contains the following subsections:
Sequence and All Complex Types page 57
Choice Complex Types page 64
Attributes page 68
Nesting Complex Types page 72
Deriving a Complex Type from a Simple Type page 78
Occurrence Constraints page 81

56

Using XMLSchema Complex Types

Sequence and All Complex Types

Overview

Mapping to Java

Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a <sequence>
element. The other is to describe the structure inside of an <al | > element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using a <sequence> and an <al | > is in how the
elements of the structure are passed on the wire. When a structure is
described using a <sequence>, the elements are passed on the wire in the
exact order they are specified in the contract. When the structure is
described using an <al | >, the elements of the structure can be passed on
the wire in any order.

Note: If neither <sequence>, <al | >, nor <choi ce> is used to specify how
the elements of the complex type are to be transmitted, the default is
<seguence>.

A complex type described with <sequence> or with <al | > is mapped to a
Java class whose name is derived from the nane attribute of the

<conpl exType> element in the contract from which the type is generated. As
specified in the JAX-RPC specification, the generated class has a getter and
setter method for each element described in the type. The individual
elements of the complex type are mapped to private variables within the
generated class.

57

CHAPTER 4 | Working with Artix Data Types

58

The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 35, the generated setter
method would have the signature voi d set Name(String val).

Example 35: Element Name Description

<conpl exType nane="Addr ess" >

<al | >

<el enent name="Nane" type="xsd:string" />

</all>
</ conpl exType>
The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter

method for the element described in Example 35 would have the signature
String get Nane().

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.

In addition to the getter and setter methods, Artix also generates a
toString() method for each complex type. The toStri ng() method returns
a string containing a labeled list of the values for each element in the class.

The maxOccurs attribute

Using XMLSchema Complex Types

Any elements whose maxCceur s attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 36

would result in the generation of a private variable, obser vedSpeed,of type
float[].

Example 36: Element with MaxOccurs Greater than One

<conpl exType nane="drugTest Resul t s">
<sequence>

<el enent name="obser vedSpeed" type="xsd: float"
maxCccur s=" unbounded"/ >

</ sequence>
</ conpl exType>

The getter and setter methods for obser vedSpeed are shown in Example 37.

Example 37:observedSpeed Getter and Setter Methods

/1l Java
public class drugTest Results
{

private float[] observedSpeed;

voi d set ChservedSpeed(float[] val);
float[] get CbservedSpeed();

i :

59

CHAPTER 4 | Working with Artix Data Types

Example Suppose you had a contract with the complex type, monst er St at s, shown in
Example 38.

Example 38: monsterStats Description

<conpl exType nane="nonst er St at s">
<al |l >
<el enent name="nane" type="xsd:string" />
<el enent name="wei ght" type="xsd:|ong" />
<el enent name="origi n" type="xsd:string" />
<el enent name="strength" type="xsd:float" />
<el ement name="speci al Attack" type="xsd: string"
maxCceur s="3" />
</all>
</ conpl exType>

The Java class generated to support nonst er St at s would be similar to
Example 39.

Example 39: monsterStats Java Class

/1 Java
public class nmonsterStats
{

public static final String TARGET _NAMESPACE =
"http://monst er Boot Canp. coni t ypes/ nonst er Types";

private String nane;

private |long weight;

private String origin;

private float strength;
private String[] special Attack;

public void setNane(String val)
{

nane=val ;

}
public String getName()

{

return nane;

}

60

Using XMLSchema Complex Types

Example 39: monsterStats Java Class

publ i c voi d set Wi ght (I ong val)

{ wei ght =val ;

Lublic | ong get Wi ght ()

{ return wei ght;

}

public void setQigin(String val)
{ origi n=val ;

}String get i gin()

{ return origin;

}

public void setStrength(float val)
{

st rengt h=val ;

public float getStrength()
{

return strength;

}

public void setSpecial Attack(String[] val)
{

speci al Attack=val ;

public String[] getSpecial Attack()
{

return speci al Attack;

}

61

CHAPTER 4 | Working with Artix Data Types

Example 39: monsterStats Java Class

publ i c voi d set Wi ght (I ong val)

{ wei ght =val ;

Lublic | ong get Wi ght ()

{ return wei ght;

}

public void setQigin(String val)
{ origi n=val ;

}String get i gin()

{ return origin;

}

public void setStrength(float val)
{

st rengt h=val ;

public float getStrength()
{

return strength;

}

public void setSpecial Attack(String[] val)
{

speci al Attack=val ;

public String[] getSpecial Attack()
{

return speci al Attack;

}

62

Using XMLSchema Complex Types

Example 39: monsterStats Java Class

public String toString()

{

StringBuffer buffer = new StringBuffer();
if (nane !'= null) {
buf f er. append(" nane: "+nane+"\n");
}
if (weight !'= null) {
buf f er. append(“wei ght: " +wei ght +'\n");
}
if (origin!=null) {
buf f er. append(“ori gin: “+origin+'\n");
}
if (strength !'=null) {
buf f er. append(“strength: "+strength+'\n");
}
if (special AAtack != null) {
buf f er. append(" speci al At tack: "+special Attack+"\n");

}
return buffer.toString();

63

CHAPTER 4 | Working with Artix Data Types

Choice Complex Types

Overview

Mapping to Java

64

XMLSchema allows you to describe a complex type that may contain any
one of a number of elements. This is done using a <choi ce> element as part
of the complex type description. When elements are contained within a
<choi ce> element, only one of the elements will be transmitted across the
wire.

Like complex types described with a <sequence> element or with an <al | >
element, complex types described with a <choi ce> element are mapped to a
Java class with getter and setter methods for each possible element inside

the <choi ce> element. In addition, the generated Java class for a <choi ce>
complex type includes an additional element, _di scri ninat or, to hold the

discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method

i sSet el em nane() is generated. If the element is the currently valid value,

its i sSet method returns t rue. If not, the method returns f al se.

The discriminator is set in each of the complex type elements’ setter

methods. This means that while any of the elements in the Java object

representing the complex type may contain valid data, the discriminator

points to the last element whose value was set. As stated in the Web

services specification only the element to which the discriminator is set will

be placed on the wire by a server. For Artix developers this has two

implications:

1. Artix servers will only write out the value for the last element set on an
object representing a <choi ce> complex type.

2. When Artix clients receive an object representing a <choi ce> complex
type, only the element pointed to by the discriminator will contain valid
data.

Example

Using XMLSchema Complex Types

Suppose you had a contract with the complex type, t errai nReport, shown
in Example 40.

Example 40: terrainReport Description

<conpl exType nanme="terrai nReport">
<choi ce>
<el enent name="water" type="xsd:float" />
<el enent name="pi er" type="xsd:short" />
<el enent name="street" type="xsd:long" />
</ choi ce>
</ conpl exType>

The Java class generated to represent t errai nReport would be similar to
Example 41.

Example 41: terrainReport Java Class

/1l Java
public class Terrai nReport
{

public static final String TARGET _NAMESPACE =
"http://d obeStrol | ers. con';

private String _ discrininator;
private float water;

private short pier;
private long street;

65

CHAPTER 4 | Working with Artix Data Types

Example 41: terrainReport Java Class

public void setVWater(float _v)
{

this. water=_v;
_discrimnator="water"’

}
public float getVWater()

{

return water;

}
publ i c bool ean i sSetWater ()
{

if(__discrimnator !'= null &%
__discrimnator. equal s("water")) {
return true;

}

return fal se;

}

public void setPier(short _v)
{
this. pier=_v;
_discrimnator="pier";
}
public short getPier()

{

return pier;

publ i c bool ean i sSetPier ()
{

if(__discrimnator !'= null &%
__discrimnator.equal s("pier")) {
return true;

}

return fal se;

}

66

Using XMLSchema Complex Types

Example 41: terrainReport Java Class

public void setStreet(long _v)
{
this.street=_v;
_discrimnator="street";
}
public long getStreet()
{

return street;

}
publ i c bool ean isSet Street ()
{
if(__discrimnator !'= null &%
__discrimnator.equal s("street")) {
return true;

}
return fal se;
}
public void _set ToNoMenber ()
{
_discrimnator = null;
}
public String toString()
{
StringBuffer buffer = new StringBuffer();
if (water !'=null) {
buf f er. append(“water: "+water+"\n");
}
if (pier '=null) {
buf f er. append("pier: "+pier+'\n");
}
if (street !'=null) {
buf f er. append(“street: "+street+"'\n");
}
return buffer.toString();
}

67

CHAPTER 4 | Working with Artix Data Types

Attributes

Overview

Describing an attribute in
XMLSchema

68

Artix supports the use of <at t ri but e> declarations within the scope of a
<conpl exType> definition. When defining structures for an XML document
<at tri but e> declarations provide a means of adding information to be
specified within the tag, not the value that the tag contains. In other words,
when describing the XML element <val ue currency="eur 0" >410<\ val ue>
in XMLSchema currency would be described using an <attri bute>
declaration as shown in Example 42.

Example 42: XMLSchema for value

<el enent name="val ue">
<conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: i nt eger" >
<xsd: attribute name="currency" type="xsd:string"
use="requi red"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

When describing data types for use in developing application logic, however,
attributes are treated as elements of a structure. For each <attri but e>
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

An XMLSchema <at t ri but e> declaration has two required attributes. The
nare attribute identifies the attribute. The use attribute specifies if the
attribute is requi red, opti onal , or prohi bi ted..

An <at tri but e> declaration also has two optional attributes. The t ype
attribute specifies the type of value the attribute can take. It is used when
the attribute takes a value of a primitive type or of a type that is predefined
in the contract. If the type attribute is omitted from the <attri but e>
declaration, the format of the data value must be described as part of the

Using XMLSchema Complex Types

<attribut e> declaration. Example 43 shows an <at t ri but e> declaration
for an attribute, cat agory, that can take the values aut obi ogr aphy,
non-fiction, orfiction.

Example 43: Attribute with an In-Line Data Description

<attribute name="category" use="required">
<si npl eType>
<restriction base="xsd: string">
<enuner ati on val ue="aut obi ogr aphy"/ >
<enuner ati on val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
</attri bute>

Example 44 shows an alternate description of the cat agory attribute using
the type attribute.

Example 44: Category Attribute Using the type Attribute

<si npl eType nane="cat agor yType" >
<restriction base="xsd: string">
<enuner at i on val ue="aut obi ogr aphy" />
<enuner ation val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
<conpl exType nane="attri but ed">

<attribute name="category" type="catagoryType" use="required">
</ conpl exType>

The def aul t /fi xed attribute can be used when the use attribute is set to
optional . When the defaul t attribute is given, the value of the generated
element is defaulted to the value specified. When the fi xed attribute is
given, the value of the generated element is set to the value specified and
cannot be changed. In the generated Java class, using the fi xed attribute
results in the generated element not having a setter method.

69

CHAPTER 4 | Working with Artix Data Types

Example mapping to Java

70

Suppose you had a contract with the complex type, t er rai nReport, shown
in Example 45.

Example 45: techDoc Description

<conpl exType nanme="t echDoc" >
<al |l >
<el enent name="product" type="xsd:string" />
<el enent name="versi on" type="xsd: short" />
<al | >
<attribute nane="useful | ness" type="xsd:float" use="optional "
defaul t="0.01" />
</ conpl exType>

The Java class generated to represent t er rai nReport would be similar to
Example 46.

Example 46: techDoc Java Class

Il Java
public class TechDoc
{

public static final String TARGET _NAMESPACE =
"http://ww: docUSA or g/ usability";

private String product;
private short version;
private Fl oat usefull ness = new Fl oat (0. 01);

publ i c void setProduct (String val)
{

pr oduct =val ;

}
public String getProdcut ()

{

return product;

}

Using XMLSchema Complex Types

Example 46: techDoc Java Class

public void setVersion(short val)

{
ver si on=val ;
}
public short getVersion()
{
return version;
}
public void setUsefull ness(Fl oat val)
{
usef ul I ness=val ;
}
public Float getUsefull ness()
{
return useful | ness;
}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (prudcut !'= null) {
buf f er. append(" product : "-+product +*\ n");
}

if (version!=null) {
buf f er. append(" versi on: "+version+"\n");

if (usefullness !'=null) {
buf f er. append(" usef ul | ness: "+useful | ness+"\n");

return buffer.toString();

}
}

71

CHAPTER 4 | Working with Artix Data Types

Nesting Complex Types

Overview

Nesting with Named Types

72

XMLSchema allows you to define complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

® Nesting with Named Types
® Nesting with Anonymous Types

When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element’s data is placed in the element’s t ype attribute as
shown in Example 47.

Example 47: Nesting with a Named Type

<conpl exType nane="t weet yBi rd">
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enment nane="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
<conpl exType nane="syl vester State">
<sequence>
<el ement name="hunger" type="xsd:int" />
<el enent name="food" type="tweetyBird" />
</ sequence>
</ conpl exType>

The complex type syl vest er St at e includes an element, f ood, of type
tweet yBi rd. The advantage of using named types is that t weet yBi rd can be
reused as either a standalone complex type or nested in another complex
type description.

Nesting with Anonymous Types

Mapping to Java

Using XMLSchema Complex Types

When you nest with an anonymous type, the element declaration for the
nested complex type does not have a t ype attribute. Instead, the element’s
type description is provided as part of the element’s declaration.

Example 48 shows a description of syl vest er St at e using an anonymous
type.

Example 48: Nesting with an Anonymous Type

<conpl exType nanme="syl vester State">
<sequence>
<el enent name="hunger" type="xsd:int" />
<el enent nane="food" >
<conpl exType>
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enent name="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>

In this example, the f ood element of syl vest er St at e still contains a caged
sub-element and a granny_pr oxi m ty sub-element. However, the complex
type used to describe f ood cannot be re-used.

When a complex type containing nested complex types is mapped to Java,
each complex type that is nested creates a generated class to represent it.
The generated class for the top level complex type will have elements whose
elements are instances of the class generated to represent their type. For
example, the syl vest er St at e complex type, causes two Java classes to be
generated. One to represent the type of the f ood element and one to
represent syl vest er St at e.

The name of the classes generated to support the nested complex types
depends on the style of nesting used. For named nested complex types, the
generated class takes its name from the name attribute of the complex type
used to describe it. So the nested type in Example 47 on page 72 would
result in the generation of a class called Tweet yBi rd. The f ood element of
Syl vest er St at e would be an instance of Tweet yBi r d.

73

CHAPTER 4 | Working with Artix Data Types

Example using nested types

74

When you use anonymous nested complex types Artix names the class
generated to represent the nested class by appending _t ype to the name of
the parent complex type’s nare attribute. If that does not produce a unique
name, Artix will append _n, where n is an incrementing whole number, to
the name until it finds a unique name for the generated class. For example,
the nested type in Example 48 on page 73 would generate a class,

Syl vest er St at e_t ype, to represent the type of the food element in

Syl vest er St at e. If there were another complex type whose name was

Syl vest er St at e_t ype in the contract from which the code was generated,
Artix would name the class generated to support the f ood element

Syl vester State_type_ 1.

If you had an application using the complex type shown in Example 47 on
page 72 your application would include two classes to support it,
Tweet yBi rd and Syl vester St ate.

Example 49 shows the generated Java class for t weet yBi r d.
Example 49: TweetyBird Class

/1 Java
public class TweetyBird

{
public static final String TARGET _NAMESPACE =
"http://toonville.org/foodstuffs";

private bool ean caged;
private int granny_proximty;

publ i ¢ bool ean i sCaged()
{

}

return caged;

publ i c voi d set Caged(bool ean val)
{

caged=val ;

}

Using XMLSchema Complex Types

Example 49: TweetyBird Class

public int get@anny_proxi mty()
{

}

return granny_proximty;

public void setGanny_proximty(int val)

{
granny_proxi mty=val ;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (caged != null) {
buf f er. append(" caged: "+caged+"'\n");

}
if (granny_proximty !'= null) {
buf f er. append(" granny_proxi mty: "+granny_proxi mty+'\n");

return buffer.toString();

}
}

The generated class for syl vest er St at e, shown in Example 50, has one
element, f ood, that is an instance of Tweet yBi rd.

Example 50: SylvesterState Class

/[Java

public class Syl vesterState

{
public static final String TARGET _NAMESPACE =
"http://toonville.org/cats";

private int hunger;
private TweetyBird food,;

75

CHAPTER 4 | Working with Artix Data Types

Example 50: SylvesterState Class

public int getHunger()
{

}

return hunger;

public voi d setHunger (int val)

{
}

hunger =val ;

publ i c TweetyBird get Food()
{

}

return food;

public voi d set Food(TweetyBird val)
{

}

f ood=val ;

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (caged !'= null) {
buf f er. append(" hunger: "+hunger+'\n");

}
if (granny_proximty !'= null) {
buf f er. append("food: "+food+'\n");

return buffer.toString();
}
}

When you set the value of Syl vester Stat e. f ood, you must pass a valid
Tweet yBi r d object to set Food() . Also, when you get the value of

Syl vest er St at e. f ood, you are returned a Tweet yBi r d object which has its
own getter and setter methods. Example 51 shows an example of using the
nested type syl vester Stat e in Java.

Example 51: Working with Nested Complex Types

/1 Java

76

Using XMLSchema Complex Types

Example 51: Working with Nested Complex Types

Syl vesterState hunter = new Syl vesterState();
hunt er . set Hunger (25) ;

TweetyBird prey = new TweetyBird();
prey. set Caged(fal se);
prey. set G anny_proxi mty(0);

hunt er . set Food(pery);

Systemout. println("The cat is this hungry:
"+hunt er. get Hunger ()) ;

Systemout. println("The food is caged:
"+hunt er . get Food() . i sCaged());

Tweet yBi rd out Prey = hunter. get Food();
Systemout. println("Ganny is this many feet away:
"+out Prey. get Ganny_proxi mty());

The code in Example 51 does the following:

1. Instantiates a new Syl vest er St at e object and sets its hunger element
to 25.

2. Instantiates a new Tweet yBi rd object and sets its values.
Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the f ood
element’s caged element.

5. Gets the f ood element, assigns it to out Prey then prints out the
granny_proxi mty element.

77

CHAPTER 4 | Working with Artix Data Types

Deriving a Complex Type from a Simple Type

Overview

Java mapping

78

Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

Example 52 shows an example of a complex type, i nter nati onal Pri ce,
derived by extension from the xsd: deci mal simple type to include a
currency attribute.

Example 52: Deriving a Complex Type from a Simple Type by Extension

<conpl exType nane="i nternational Pri ce">
<si npl eCont ent >
<ext ensi on base="xsd: deci mal ">
<attribute name="currency" type="xsd:string"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

The <si npl eCont ent > tag indicates that the new type does not contain any
sub-elements and the <ext ensi on> element defines the derivation by
extension from xsd: deci nal .

A complex type derived from a simple type is mapped to a Java class. The
class will contain an element, val ue, of the simple type from which the
complex type is derived. The class will also have a get _val ue() and a

set _val ue() method. In addition, the generated class will have an element,
and the associated getter and setter methods, for each attribute that extends
the simple type.

Using XMLSchema Complex Types

Example 53 shows the generated Java class representing
i nternational Price class generated from Example 52.

Example 53:internationalPrice Java Class

/1 Java
public class International Price

{

}

public static final String TARGET _NAMESPACE =
"http://moneyTree. con;

private String currency;
private java. math. Bi gDeci mal _val ue;

public String getQurrency()
{

return currency;

}

public void setCQurrency(String val)
{

currency = val;

}

public java. nath. Bi gDeci mal get _val ue()

{

return _val ue;

}

public void set_val ue(java. mat h. Bi gDeci nal val)

{

_value = val;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (currency !'= null) {
buf f er. append("currency: "+currency+"\n");

if (_value !'=null) {
buf f er. append(" _val ue: "+ val ue+"\n");

}
return buffer.toString();

}

79

CHAPTER 4 | Working with Artix Data Types

The value of the currency attribute, which is added by extension, can be
accessed and modified using the get Qurrency() and set Qurrency()
methods. The simple type value (that is, the value enclosed between the
<international Price>and </international Pri ce>tags) can be accessed
and modified by the get _val ue() and set_val ue() methods.

80

Using XMLSchema Complex Types

Occurrence Constraints

Overview

Mapping to Java

XMLSchema allows you to specify the minimum and the maximum number
of times that an element in a complex type can occur. You specify these
occurrence constraints on an element by setting the element’s m nCccur s
and naxCQccur s attributes. The ni nCeccur s attribute specifies the minimum
number of times the element must occur. The maxCQecur s attribute specifies
the upper limit for how many times the element can occur. For example, if
an element, | i ves, were to occur at least twice and no more than nine times
in a complex type it would be described as shown in Example 54.

Example 54: Occurrence Constraints Setting

<conpl exType nane="houseCat " >
<al | >
<el enent name="nane" type="xsd:string" />
<el enent name="I|ives" type="xsd:short" m nCccurs="2"
maxCceur s="9" />
</all>
</ conpl exType>

Given the description in Example 54, a valid houseCat element would have
a single nane and at least two | i ves. However, a valid houseCat element
could not have more than nine i ves.

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“SOAP Arrays” on page 92.

When a complex type contains an element with its maxCccur s attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxCceurs
attribute of an element is set to a value equal to or greater than the value of
the element’s m nCccur s, the code generator will generate a warning if the
m nCccur s attribute is set without a maxCeccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

81

CHAPTER 4 | Working with Artix Data Types

Example For example, the complex type, houseCat , shown in Example 54 will be
mapped to the Java class HouseCat shown in Example 55.

Example 55: HouseCat Java Class

/'l Java
public cl ass HouseCat
{

private String narme;
private short[] lives;

public void setName(String val)
{

nane=val ;

{
public String get Name()

{

return nane;

}

public void setLives(short[] val)

{

l'i ves=val ;

{
public short[] getLives()

{

return lives;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (nane !'= null)

{
}

if (lives I'= null)

buf f er. append(" nane: "+name+"\n");

buf fer. append("lives: "+l ives+'\n");

return buffer.toString();

82

Using XMLSchema Complex Types

The generated code does not force you to obey the min and the max
occurrence rules from the contract, but your application code should be sure
to obey the contract rules. Attempting to send too few or too many
occurrences of an element across the wire will create unpredictable results.

83

CHAPTER 4 | Working with Artix Data Types

Using XMLSchema any Elements

Overview

Describing an any in the contract

84

An XMLSchema any is a special element used to denote that an element’s
contents are undefined. An element defined using any can contain any XML
data. When mapped to Java, an any element is mapped to a SOAPE enent
as called for in the JAX-RPC specification.

Example 56 shows the syntax for defining an element as an any in an Artix
contract.

Example 56: Syntax of an any
<any [maxCccurs = max] [m nCccurs = mnj
[namespace = ((##any | ##other) | List of (anyUR |
(##t ar get Namespace | ##l ocal)))]
[processContents = (lax | skip | strict)] />

Table 4 explains the details of the optional attributes.

Table 4: Attributes for an any

Attribute Explanation

maxCceur s Specifies the maximum number of times the
element can occur. Default is 1.

m nCcecur s Specifies the minimum number of times the
element must occur. Default is 1.

Using XMLSchema any Elements

Table 4: Attributes for an any

Attribute

Explanation

namespace

Specifies how to determine the namespace to use
when validating the contents of the any. Valid
entries are:

##any(default) specifies that the contents of the
any can be from any namespace.

##other specifies that the contents of the any can
be from any namespace but the target namespace.

list of URIs specifies that the contents of the any

are from one of the listed namespaces in the space

delimited list. The list can contain two special

values:

® ## ocal which correspondes to an empty
namespace.

® st arget Namespace which corrensponds to the
tager namespace of the schema in which the
any is defined.

processCont ent s

Specifies how the contents of the any are validated.
Valid entries are:

strict(default) specifies that the contents of the any
must be a valid and well-formed XML document.

skip specifies that no validation is done on the
contents of the any. The only constraint is that it
must be a well-formed XML element.

lax specifies that if there is an XMLSchema
definition available to validate the contents of the
any, then it must be valid. If there is no
XMLSchema definition available, then validation is
skipped.

85

CHAPTER 4 | Working with Artix Data Types

Mapping to Java

86

Example 57 shows the definition of a type, wi | dCar d, that contains an any.
The contents of wi | dCar d can be defined in any, or no, namespace and the
validation of the contents is only performed if there is schema available.

Example 57: Complex Type with an any

<conpl exType nane="wi | dCar d">
<sequence>
<any namespace="##any" processContents="|ax" />
</ sequence>
</ conpl exType>

XMLSchema any elements are mapped to a Java element of type

j avax. xn . soap. SOAPE enent . The member is named _any and it is given
associated setter and getter methods. If a complex type contains more than
one any element the additional any elements are named _any_n, where n is
an integer starting at one. For example, if a complex type had two any
elements the generated Java type would have two

j avax. xn . soap. SQAPEl enent members, _any and _any_1.

Example 58 shows the Java class generated for the complex type wi | dCard,
shown in Example 57 on page 86.

Example 58: Generated Java Class with an any

/'l Java
inport java.util.*;
inport javax.xnl.soap. SOAPH enent ;

public class WIdCard

{
public static final String TARGET _NAMESPACE =
"http://packageTracki ng. coni t ypes/ packageTypes";

private javax.xm .soap. SOAPE enent _any;

publ i c javax. xm . soap. SOAPEl enent get _any()
{

return _any;

}

Parsing an any

Using XMLSchema any Elements

Example 58: Generated Java Class with an any

public void set_any(javax. xm . soap. SOAPE enent val)

{

this._any = val;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();
if (_Lany '=null) {

buf f er. append("_any: "+ any+"\n");

return buffer.toString();

}

}

If the mi nGccurs or maxQeeur s attribute of the any element are set, then the
Java element is mapped to an array of SOAPEl enent . For example, if the any
element in wi | dCar d had maxQccur s="4", the _any member of the generated
Java class would be a j avax. xni . soap. SOAPE enent [] .

The fact that an any element can hold any well-formed XML data makes it
very flexible. However, that flexibility requires that your application is
designed to handle all the possible contents of the any.

For most applications, the contents of the any will have a finite number of
forms and these are known at development time. For example, if your
application is retrieving student records from a college database it may
receive different records based on if the student is a graduate student or an
under graduate student. In cases where you know at development time the
possible contents of the any, you can query the any for the name of its root
element using SOAPE erent . get El enent Name() and determine from the
returned j avax. xn . soap. Nane how to process the contents.

Note: Because the contents of the any is an XML document made up
entirely of text, you do not neccesarily need to determine the form of the
data. You can still extract the contents using the SOAPE enent 's methods.

87

CHAPTER 4 | Working with Artix Data Types

88

Example 59 shows code for querying the any in W1 dCard for its element
name. Once the element is determined, the application uses the local part of
the name to determine how to process the contents of the any.

Example 59: Determining the Contents of an any
Il Java
inport java.util.*;

inport javax.xmn .soap.*;

W/ dCard dat aHol der;

// Qdient proxy, proxy, instantiated earlier
dat aHol der = proxy. get Record();
SQOAPH enent st udent Rec=dat aHol der. get _any();

/1 Get the root el enent name of the returned record
Nane recor dType = student Rec. get B enent Nane() ;

if (recordType. get Local Narme() . equal s("gradRec"))
{

I/ process the data as a graduate student record

if (recordType. get Local Nane() . equal s("ugradRec"))
{

}

Il process the data as a graduate student record

You can parse the XML content of the any using the

SQAPHE enent . get Chi | dEI enent s() method. get Chi | dEl enent s() returns a
Java Iterator containing a list of j avax. xni . soap. Node elements
representing the nodes of the XML document contained in the any. These
nodes will in turn either be SOAPE enent nodes or j avax. xni . soap. Text
nodes which will require further parsing.

Example 60 shows code for extracting the data from an any containing a
houseCat , defined in Example 54 on page 81.

Example 60: Parsing the Contents of an any
Il Java
inport java.util.*;

inport javax.xm .soap.*;

W dCard dat aHol der;

Using XMLSchema any Elements

Example 60: Parsing the Contents of an any

// dient proxy, proxy, instantiated earlier
dat aHol der = proxy. get Cat () ;
SQOAPH enent cat Hol der = dat aHbl der. get _any();

/1l Get the XM. node fromthe returned any
Iterator catlt = catHol der. get Chi | dEl erment s();

if (catlt.hasNext())
{

Systemout. println("The cat’s nane is
"+catlt.next().getValue());

}

el se

{
Systemout. println(" Ml forned houseCat: No el ements.");

return(-1);

}
if (catlt.hasNext())

for (Node index=catlt.next(); (catlt.hasNext());
i ndex=cat It. next ())

{

Systemout . printl n("The cat |ived
"+ ndex. get Val ue() +"years");

}

el se

{
Systemout. println("Mal fornmed houseCat: No lives.");

return(-1);
}
}
The code in Example 60 does the following:
1. Gets the data and extracts the any from it.
2. Gets the children elements of the any.

3. Checks if there are any children elements. If there are, print the name.
If not, print an error message.

4. Checks if there are any more children elements. If there are, iterate
through the list and print the lives. If not, print an error message.

89

CHAPTER 4 | Working with Artix Data Types

Putting content into an any

20

To get the value of the nodes, the code uses the get Val ue() method of the
node. For a SOAPE enent node, get Val ue() returns the value of the element
if it has one, or it returns the value of the first child element that has one.
For example, if the SOAPEl emrent contains the element <nanme>Joe</ nane>,
get Val ue() returns Joe. If the SOAPEI enent contains

<houseCat ><nane>Joe</ nane><| i ves>12</| i ves></ houseCat >, get Val ue()

returns Joe. For a Text node, get Val ue() returns the text stored in the
node.

When adding content into an any, you build up the XML document
contained in the any from scratch. The SOAPH enent provides a number of
methods for adding attributes and elements. It has methods for setting the
value of the contained elements.

Example 61 shows the code for creating an any element containing the XML
document <houseCat ><nane>Joe</ nane><l i ves>12</ | i ves></ houseCat >.

Example 61: Building an any

[/ Java
inport java.util.*;
inport javax.xmn .soap.*;

SQOAPH enent Factory factory = SOAPH enent Fact ory. newl nst ance() ;
SQOAPH enent anyContent = factory. create("houseCat");

SQOAPH enment tnp = anyCont ent . addChi | dEl enent (* nane") ;
t np. addText Node(" Joe") ;

tnp = anyCont ent . addChi | dEl enent ("1 i ves");
t np. addText Node("12");

W/ dCard dat aHol der = new W dCard();

dat aHol der . set _any();

The code in Example 61 does the following:

1. Gets an instance of the SOAPHE enent Fact ory.

2. Creates a new SOAPHE enent , using the factory, to hold the contents of
the any.

3. Adds the <name> child element and set its value.
4. Adds the <lives> child element and set its value.

More information

Using XMLSchema any Elements

5. Creates a new W1 dCard and set the any element to the newly created
SQAPE! errent .

For a detailed description of the classes used to represent and work with any
elements read the SOAP with Attachments API for Java™ (SAAJ) 1.2
specification.

91

CHAPTER 4 | Working with Artix Data Types

SOAP Arrays

Overview

Syntax of a SOAP Array

92

SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

SOAP arrays can be described by deriving from the SQAP- ENC Array base
type using the wsdl : ar r ayType. The syntax for this is shown in Example 62.

Example 62: Syntax for a SOAP Array derived using wsdl:arrayType

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : ar rayType="H enent Type<Ar r ayBounds>"/ >
</restriction>
</ conpl exCont ent >
</ conpl exType>

Using this syntax, TypeNane specifies the name of the newly-defined array
type. El erment Type specifies the type of the elements in the array.

<Ar r ayBounds> specifies the number of dimensions in the array. To specify a
single dimension array you would use [] ; to specify a two-dimensional array
you would use either [1[] or[,].

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 63.

Example 63: Syntax for a SOAP Array derived using an Element

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<sequence>
<el enent nanme="HE enent Nane" type="FE enent Type"
maxCccur s="unbounded" / >
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Java mapping

SOAP Arrays

When using this syntax, the element’s maxCccurs attribute must always be
set to unbounded.

SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message part
that was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPSt ri ngs, shown in Example 64 defines a
one-dimensional array of strings. The wsdl : ar r ay Type attribute specifies the
type of the array elements, xsd: string, and the number of dimensions, []
implying one dimension.

Example 64: Definition of a SOAP Array

<conpl exType nane="SOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP-ENC arrayType"
wsdl : arrayType="xsd: string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Any message part of type SOAPSt ri ngs and any complex type element of
type SsoAPSt ri ngs would be mapped to String[]. So the contract fragment
shown in Example 65, would result in the generation a Java method

cel ebVasher () that took a parameter, badLang, of type String[].

Example 65: Operation Using an Array

<nmessage name="badLang">
<part name="statenent" type="SOAPStrings" />
</ message>
<por t Type nane="censor">
<oper ati on name="cel ebWasher ">
<i nput nessage="badlLang" name="badLang" />
</ oper at i on>
</ por t Type>

93

CHAPTER 4 | Working with Artix Data Types

Multi-dimensional arrays

Sparse and partially transmitted
arrays

94

Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SQAPSt ri ngs were mapped to a two-dimensional array, as shown in
Example 66, the mapping of cel ebWasher () would take a parameter,
badLang, of type String[][].

Example 66: Definition of a two-dimensional SOAP Array

<conpl exType nanme="SQOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd: string[][]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, i nt Array[], of 10 integers and
only filled inintArray[1], i ntArray[6], and i nt Array[9], it would be
considered a sparse array.

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,

hot Mat ri x[x] [y], and only put values in elements where 9 > x > 5 and 4
>y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

Lists

Lists

Overview

Defining list types in XMLSchema

XMLSchema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, si npl eLi st , using
a list type is shown in Example 67.

Example 67: List Type Example
<si npl eLi st >appl e orange kiwi nango |enon |ine<\sinpl eLi st>

In Java code list types are mapped into arrays.

XMLSchema list types are simple types and as such are defined using a
<si npl eType> element. The most common syntax used to define a list type
is shown in Example 68.

Example 68: Syntax for List Types

<si npl eType nane="1i st Type">
<list itenType="atom cType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</ I | -st >
</ si npl eType>
The value given for at om cType defines the type of the elements in the list. It

can only be one of the built in XMLSchema atomic types, like xsd:int or
xsd: string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type. Table 5
shows the facets used by list types.

Table 5: List Type Facets

Facet Effect

I ength Defines the number of elements in an instance of the
list type.

95

CHAPTER 4 | Working with Artix Data Types

Table 5: List Type Facets

Facet

Effect

m nLengt h

Defines the minimum number of elements allowed in
an instance of the list type.

nmaxLengt h

Defines the maximum number of elements allowed in
an instance of the list type.

enuner ati on

Defines the allowable values for elements in an
instance of the list type.

pattern

Defines the lexical form of the elements in an instance
of the list type. Patterns are defined using regular
expressions.

For example, the definition for the si npl eLi st element shown in
Example 67 on page 95, is shown in Example 69.

Example 69: Definition for simpleList

<si npl eType name="si npl eLi st Type" >
<list itenType="string"/>

</ si npl eType>

<el ement name="si npl eLi st" type="si npl eLi st Type"/>

In addition to the syntax shown in Example 68 on page 95 you can also
define a list type using the less common syntax shown in Example 70.

Example 70: Alternate Syntax for List Types

<si npl eType nanme="Ii st Type" >

<list>

<si npl eType>

<restriction base="at om cType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</restriction>
</ si npl eType>

</list>

</ si npl eType>

96

Mapping of list types in Java

Lists

List types are mapped to Java arrays and do not cause a new class to be
generated to represent them. Instead, any message part that was specified
in the Artix contract as being of type Ii st Type or any element of another
complex type that was of type I i st Type in the Artix contract would be
mapped to an array of the type specified by the i t enType attribute.

For example, the list type, stringLi st, shown in Example 71 defines a list
of strings that must have at least two elements and no more than six
elements. The it enType attribute specifies the type of the list elements,
xsd: string. The facets m nLengt h and maxLengt h set the size constraints on
the list.

Example 71: Definition of stringList

<si npl eType name="stri ngLi st">
<list itenType="xsd:string">
<m nLengt h val ue="2" />
<maxLengt h val ue="6"/>
</list>
</ si npl eType>

Any message part of type st ri ngLi st and any complex type element of type
stringLi st would be mapped to String[]. So the contract fragment shown
in Example 72, would result in the generation a Java method

cel ebvesher () that took a parameter, badLang, of type String[].

Example 72: Operation Using a List

<nessage nane="badlLang">
<part name="statenent" type="stringList" />
</ message>
<port Type nane="censor">
<oper ati on name="cel ebWasher ">
<i nput nessage="badLang" name="badLang" />
</ oper at i on>
</ por t Type>

97

CHAPTER 4 | Working with Artix Data Types

Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 73.

Example 73: Syntax for an Enumeration

<si npl eType nanme="Enum\ane" >
<restriction base="Enunlype">
<enurrer ati on val ue="CaselVal ue" />
<enuneration val ue="Case2Val ue" />

<enurrer ati on val ue="CaseNval ue" />
</restriction>
</ si npl eType>

EnuniNane specifies the name of the enumeration type. EnunType specifies
the type of the case values. CaseNval ue, where Nis any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration wi dget Si ze, shown in Example 74, would be valid if it were
<wi dget Si ze>bi g</ wi dget Si ze>, but not if it were

<wi dget S ze>bi g, nungo</ wi dget Si ze>.

Example 74: widgetSize Enumeration

<si npl eType nanme="wi dget Si ze" >
<restriction base="xsd:string">
<enuneration val ue="bi g"/>
<enuneration val ue="1|arge"/>
<enuneration val ue="nungo"/>
<enuner at i on val ue="gar gantuan"/>
</restriction>
</ si npl eType>

98

Mapping to a Java class

Enumerations

Artix maps enumerations to a Java class whose name is taken from the
schema type’s nane attribute. So Artix would generate a class, Wdget Si ze,
to represent the wi dget Si ze enumeration.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in “Nesting with Anonymous Types” on page 73.

The generated class contains two static public data members for each
possible case value. One, _CaseNval ue, holds the data value of the
enumeration instance. The other, CaseNval ue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration’s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, W dget Si ze, shown in
Example 75, to represent the enumeration, wi dget Si ze, shown in
Example 74 on page 98.

Example 75: WidgetSize Class

Il Java
public class WdgetS ze
{

public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni t ypes/ wi dget Types";

99

CHAPTER 4 | Working with Artix Data Types

Example 75: WidgetSize Class
private final String _val;

public static final String _big = "big";
public static final WdgetSi ze big = new Wdget S ze(_bi g);

public static final String _large = "l arge";
public static final WdgetSize | arge = new Wdget Si ze(_| arge);

public static final String _nungo = "mungo";
public static final WdgetSi ze nungo = new Wdget Si ze(_mungo) ;

public static final String _gargantuan = "gargantuan";
public static final WdgetS ze gargantuan = new
W dget Si ze(_gar gant uan) ;

protected Wdget Si ze(String val ue)
{

_val = val ue;

}

public String getVal ue()
{

return _val;

}

100

Enumerations

Example 75: WidgetSize Class

public static WdgetS ze fronVal ue(String val ue)

{
i f (value.equal s("big"))

{
return big;
}
if (value.equal s("large"))
{

return | arge;

if (val ue. equal s("nmungo"))

{

return nmungo;

}

i f (val ue. equal s("gargantuan"))

{

return gargantuan;

}

throw new ||| egal Argunent Exception("Invalid enureration
val ue: "+val ue);

}

public static WdgetS ze fronBtring(String val ue)

{
i f (val ue.equal s("big"))

{

return big;

if (value.equal s("large"))

{ return | arge;

i}f (val ue. equal s("nungo"))

{ return mungo;

i}f (val ue. equal s("gargantuan"))
{ return gargantuan;

}

throw new I || egal Argunent Exception("lnval i d enuneration
val ue: "+val ue);

}

101

CHAPTER 4 | Working with Artix Data Types

Working with enumerations in
Java

102

Example 75: WidgetSize Class

public String toString()
{
return ""+ val ;
}
}

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromval ue() or fronBtring() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the get Val ue() method on that member to
determine the value for the member.

If you were working with the wi dget Si ze enumeration, shown in

Example 74 on page 98, to build an ordering system, you would need a way
to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 76 shows a simple text entry method
for getting the proper member of the enumeration using f r onval ue() ,

Example 76: Using fromValue() to Get a Member of an Enumeration

/1l Java
tenmp = new String();
Wdget Si ze ordered_si ze;

/l Get the type of widgets to order

Systemout . printl n("Wat size w dgets do you want ?");
Systemout. println("Big");

Systemout. println("Large");

System out . print| n("Mingo");

System out . print| n(" Gar gant uan") ;

tenp = i nput Buf fer.readLine();

ordered_si ze = Wdget S ze. fronVal ue(tenp);

Because the value used to define the cases of the enumeration is a string,
fromval ue() takes a String and returns the member based on the value of
the string. In this example, fronstring() is interchangeable with

fromval ue() . However, if the value of the enumeration were integers,
fromval ue() would take anint.

Enumerations

To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the get Val ue() method
to retrieve the value of the enumeration or you could use the t oSt ri ng()
method to return the value as a Stri ng. Example 77 uses get Val ue() to
return the value of the enumeration retrieved in Example 76 on page 102

Example 77: Using getValue()

/1 Java

String sizeVal = ordered_size. get Val ue();
Systemout. println("You ordered "+si zeVal +* sized wi dgets.");

103

CHAPTER 4 | Working with Artix Data Types

Deriving Types Using <complexContent>

Overview

Schema syntax

104

Using XMLSchema, you can derive new complex types by extending other
complex types using the <conpl exCont ent > element. When generating the
Java class to represent the derived complex type, Artix extends the base
type's class. In this way, the Artix-generated Java code preserves the
inheritance hierarchy intended in the XMLSchema.

You derive complex types from other complex types by using the

<conpl exCont ent > element and the <ext ensi on> element. The

<conpl exCont ent > element specifies that the included data description
includes more than one field. The <ext ensi on> element, which is part of the
<conpl exCont ent > definition, specifies the base type being extended to
create the new type. The base type is specified by the <ext ensi on>
element’s base attribute.

Within the <ext ensi on> element, you define the additional fields that make
up the new type. All elements that are allowed in a complex type description
are allowable as part of the new type’s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
<choi ce> element to specify that only one of the new fields is to be valid at
a time.

Example 78 shows an XMLSchema fragment that defines two complex
types, wi dget Order I nf o and wi dget - der Bi | | I nfo. wi dget OrderBi | | I nfo
is derived by extending wi dget O der | nf o to include two new fields,

or der Nunber and ant Due.

Example 78: Deriving a Complex Type by Extension

<conpl exType nane="wi dget O der | nf 0" >
<sequence>
<el enent name="armount" type="xsd: deci nal "/ >
<el enent name="or der_date" type="xsd: dat eTi ne"/>
<el ement name="type" type="xsdl:w dgetSi ze"/>
<el ement name="shi ppi ngAddr ess" type="xsd1l: Addr ess"/>
</ sequence>
<attribute name="rush" type="xsd: Q\Nane" use="optional " />
</ conpl exType>

Generated Java code

Deriving Types Using <complexContent>

Example 78: Deriving a Complex Type by Extension

<conpl exType name="wi dget O derBi | | | nfo">
<conpl exCont ent >
<ext ensi on base="xsd1:w dget O der | nfo">
<sequence>
<el ement nane="ant Due" type="xsd: bool ean"/>
<el enent nane="or der Nunber" type="xsd: string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

As with all complex types defined in a contract, Artix generates a class to
represent complex types derived by extension. When the complex type is
derived by extension, the generated class extends the base class generated
to support the base complex type in the contract.

For example, the schema in Example 78 on page 104 would result in the
generation of two Java classes, W dget Or der I nf o and

Wdget Bi | | Orderl nfo. Wdget O derBi |l | I nfo would extend

W dget O der | nf o because wi dget Order Bi | | I nf o is derived by extension
from wi dget O der | nf 0. Example 79 shows the generated class for

wi dget OrderBi | | | nfo.

Example 79: WidgetOrderBillinfo

/1l Java
public class Wdget OderBilllnfo extends Wdget O derl nfo

{
public static final String TARGET _NAMESPACE =

"http://w dget Vendor . coni t ypes/ w dget Types";

private bool ean ant Due;
private String order Nunber;

publ i ¢ bool ean i sAnt Due()
{

return ant Due;

}

105

CHAPTER 4 | Working with Artix Data Types

Example 79: WidgetOrderBillinfo

publ i c voi d set Ant Due(bool ean val)

{
this.am Due = val;
}
public String getQ der Nurber ()
{
return order Nunber;
}
public void setOrderNunber(String val)
{
this. order Nunber = val ;
}

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());

buf f er. append("ant Due: "+ant Due+'\n");
if (orderNunber !'= null)

buf f er. append(" or der Nunber : " +or der Nunber +*\ n");

}
return buffer.toString();

106

Holder Classes

Holder Classes

Overview

Working with holder classes

WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C+ + does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
infout parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in j avax. xm . r pc. hol der s.
The names of the holder classes start with a capital letter and end with the
Hol der postfix. The name of the holder class for | ong is LongHol der . For
primitive wrapper classes, W apper is placed after the class name and before
Hol der . For example, the holder class for Long is LongW apper Hol der .

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the

j avax. xm . rpc. hol ders. Hol der interface. For example, the holder class for
a complex type, hand, would be HandHol der .

All holder classes provide the following:

® A public field named val ue of the mapped Java type. For example, a
HandHol der would have a val ue field of type Hand.

® A constructor that sets val ue to a default.

® A constructor that sets val ue to the value of the passed in parameter.

A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation’s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 80 shows an example of an operation that would
require holder classes in the generated Java code.

Example 80: Multiple Output Parts
<nessage nane="i ncom ngPackage" >

<part name="I1D' type="xsd:long" />
</ message>

107

CHAPTER 4 | Working with Artix Data Types

108

Example 80: Multiple Output Parts

<nessage nane="out goi ngPackage" >
<part name="rerouted" type="xsd:bool ean" />
<part name="destination" type="xsd:string" />
</ message>

<port Type nane="portal ">
<oper ati on nane="router">
<i nput nessage="tns: i ncom ngPackage" nanme="reci eved" />

<out put message="tns: out goi ngPackage" nane="shi pped" />
</ operati on>
</ port Type>

Artix will use holder classes for the parameters of the Java method
generated to implement the operation, rout er, because the output message
has multiple parts. Example 81 shows the resulting Java method signature.

Example 81:/nterface Using Holders
/] Java
inport java.net.*;

inport java.rm.?*;

public interface portal extends java.rm .Renote

{
publ i c bool ean router(long ID,
javax. xm . rpc. hol ders. Stri ngHol der desti nati on)
throws Renot eExcepti on;
}

The first part of the out goi ngPackage message, rer out ed, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, desti nati on, is mapped to a
holder class because it has to be mapped into the method’s parameter list.

Holder Classes

An example of an application that implements the port al interface might be
one that determines if a package has reached its final destination. The
rout er method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 82 shows how
a server might implement the router method.

Example 82: Portal Implementation

/] Java
inport java.net.*;
inport java.rm.?*;

// The met hods bool ean bel ongsHere() and
/1 String getFinal Destination() are |eft
// for the reader to inplenent.

public class portal | npl
{

publ i ¢ bool ean router(long ID,
javax. xm . rpc. hol ders. Stri ngHol der desti nati on)

{
i f (bel ongsHere(ID))
{
return fal se;

}

destination. val ue = getFinal Destination(lD);
return true;

}

Example 83 shows a client calling rout er () on a portal service.
Example 83: Client Calling router()

/1 Java

StringHol der destination = new StringHol der();

long ID = 1232;
bool ean conti nui ng;

109

CHAPTER 4 | Working with Artix Data Types

110

Example 83: Client Calling router()

I/ proxy portal dient obtained earlier
continuing = portaldient.router(lID, destination);

if (continuing)
{
Systemout . print| n("Package "+l D+" is going to
"+desti nation. val ue);

Using SOAP with Attachments

Using SOAP with Attachments

Overview

JAX-RPC mappings

When a contract specifies that one or more of an operation’s messages are
being sent using SOAP with attachments, also called a MIME multi-part
related message, Artix treats the data being passed as an attachment
differently than it would normaly. The JAX-RPC specification defines specific
Java data types to be used when using SOAP attachments. The data
mappings for the data passed as a SOAP attachment is derived from the
MIME type specified in the contract for the message part.

In addition, Artix support the use of j avax. act i vat i on. Dat aHandl er objects
for handling SOAP attachments. Dat aHandl er objects provide a generic
means of dealing with the data passed as a SOAP attachment. They also
allow you to directly access the stream representation of the data sent as a
SOAP attachment.

When Artix generates code for an operation that has one or more of its
message bound to a SOAP with attachment payload format, it inspects the
binding to see which parts of the bound message are being sent as
attachments. For the message parts that are to be sent as attachments, it
disregards the data type mappings described in previous sections and maps
the corresponding method parameter based on the MIME type specified for
the part in the contract. Table 6 shows the mappings for the supported
MIME types.

Table 6: MIME Type Mappings

MIME Type Java Type
i mage/ gi f@ java. awt . | nrage
i mage/ j peg java. awt . | nage
text/plain java.lang. String
t ext/ xm javax. xm . transf orm Sour ce
appl i cati on/ xm javax. xm . transf orm Sour ce
multipart/* javax.nail.internet. M meMil ti part

111

CHAPTER 4 | Working with Artix Data Types

a. Artix only supports the decoding of images in the GIFF format. It does not
support the encoding of images into the GIFF format.

For example, the contract shown in Example 84 has one operation, store,
whose input message has three parts: a patient name, a patient ID number,
and a base64Bi nary buffer to hold an image. The input message is bound to
a SOAP message with attachments using the <m re: nul ti Part > element.

Example 84: Using SOAP with Attachments

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi niti ons nane="XraySt or age"
t ar get Namespace="ht t p: // nedi St or. or g/ x- r ays"
xm ns="http://schenas. xm soap. org/ wsdl / "
xm ns:tns="http://nedi Stor.org/x-rays"
xm ns: m me="ht tp: // schemas. xm soap. or g/ wsdl / m ne/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="ht t p: / / wan W8. or g/ 2001/ XM_Schema" >
<message nane="st or Request ">
<part nane="patient Name" type="xsd:string" />
<part name="patient Nunber" type="xsd:int" />
<part name="xRay" type="xsd: base64Bi nary"/>
</ message>
<message nane="st or Response" >
<part name="success" type="xsd: bool ean"/>
</ message>
<por t Type nane="xRaySt or age" >
<oper ati on name="store">
<i nput nessage="t ns: st or Request" nane="st or Request "/ >
<out put message="t ns: st or Response" nane="st or Response"/ >
</ oper at i on>
</ por t Type>
<bi ndi ng name="xRay$t or ageBi ndi ng" type="tns: xRaySt or age" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. or g/ soap/ ht t p"/>
<oper ati on name="store">
<soap: operati on soapAction="" style="rpc"/>

112

Using SOAP with Attachments

Example 84: Using SOAP with Attachments

<i nput nane="st or Request ">
<m ne: mul ti part Rel at ed>

<m ne: part name="bodyPart ">
<soap: body encodi ngStyl e="htt p: //schenas. xnm soap. or g/ soap/ encodi ng/ "

namespace="http:// medi St or. or g/ x-rays" use="encoded"/>
</ m ne: part >
<m ne: part name="i nageDat a" >
<m ne: content part="xRay" type="inage/jpeg"/>
</ m ne: part >
</ m ne: mul ti part Rel at ed>
</i nput >

<out put name="st or Response" >
<soap: body encodi ngStyl e="http://schenmas. xni soap. or g/ soap/ encodi ng/ "

namespace="ur n: At t achrment Ser vi ce" use="encoded"/>

</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="xRaySt orageServi ce">
<port bi ndi ng="t ns: xRaySt or ageBi ndi ng" name="xRaySt or agePort ">

<soap: address | ocati on="http://| ocal host: 9000"/ >
</ port >
</ servi ce>
</ definitions>
The binding specifies that only one part of the message, the base64Bi nary
buffer, is to be passed as an attachment using the MIME type i nage/ j peg.
The other two parts of the message are to be passed in the SOAP body of
the message. If the operation were bound to a standard SOAP message, the

113

CHAPTER 4 | Working with Artix Data Types

Using DataHandler objects

114

generated method would have a Stri ng paramemter, ani nt parameter, and
a byte[] parameter. Instead the operation, store, is mapped as shown in

Example 85.

Example 85: Java for SOAP with Attachments

/1 Java
package org. nedi stor. x_rays;

inport java.net.*;
inport java.rm.?*;

inport java.lang.String;
inport java.aw .| nage;

public class XRayStoragel npl inplenents java.rm . Renote
{
publ i ¢ bool ean store(String patient Nane,
int patientNunber,
java. awt . | mge xRay) {
/1 User code goes in here.
return fal se;

Artix also provides the option to map SOAP attachments to
j avax. act i vati on. Dat aHandl er objects. To have Artix map SOAP

attachments to Dat aHandl er objects, use the - dat ahandl ers flag when
running wsdl t oj ava.

When using Dat aHander objects, Artix maps all SOAP attachements to a
Dat aHandl er, so the contract in Example 84 on page 112 would result in

the operation shown in Example 86 as opposed to the one shown in
Example 85 on page 114.

Example 86: SOAP Attachments Using DataHandler Objects

Il Java
package org. nedi stor. x_rays;

inport java.net.*;
inport java.rm.?*;

Using SOAP with Attachments

Example 86: SOAP Attachments Using DataHandler Objects

inport java.lang. String;
inport javax.activation. DataHandl er;

public class XRayStoragel npl inplenents java.rm . Renote
{

publ i c bool ean store(String patient Nane,
int patientNunber,
j avax. acti vat i on. Dat aHandl er xRay)

/1 User code goes in here.
return fal se;

}
}

Using Dat aHandl er objects to manipulate SOAP attachments provides you
with greater control over the data being passed in the attachment. As
specified in the J2EE specification, Dat aHandl er objects have methods that
allow you to manipulate the attachment data as either an Qoj ect, an

I nput St ream or an Qut put Stream In addition, Dat aHandl er objects allow
you to querey it for the MIME type for the data being passed in the
attachment. For more information on using Dat aHandl er objects see the
J2EE API documentation at
http://java.sun.com/j2ee/1.4/docs/api/index.html.

Note: When creating Dat aHandl er objects to be passed in a SOAP
attachment, ensure that the MIME type specified in the creator method
matches the MIME type specified in the contract.

115

http://java.sun.com/j2ee/1.4/docs/api/index.html

CHAPTER 4 | Working with Artix Data Types

116

In this chapter

CHAPTER 5

Creating
User-Defined
Exceptions

Artix supports the definition of user-defined exceptions using
the WSDL <fault> element. When mapped to Java, the

<fault> element is mapped to a throwable exception on the
associated Java method.

This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 118

How Artix Generates Java User-defined Exceptions page 120

Working with User-defined Exceptions in Artix Applications page 122

117

CHAPTER 5 | Creating User-Defined Exceptions

Describing User-defined Exceptions in an Artix

Contract

Overview

Describing the exception message

118

Artix allows you to create user-defined exceptions that your service can
propagate back to its clients. As with any information that is exchanged
between a service and client in Artix, the exception must be described in the
Artix contract. Describing a user-defined exception in an Artix contract
involves the following:

® Describing the message that the exception will transmit.
® Associating the exception message to a specific operation.

® Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a
user-defined exception. The third task, describing the binding of the
exception to a payload format, is beyond the scope of this book. For
information on binding messages to specific payload formats in an Artix
contract read Designing Artix Solutions.

Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the <nessage> element. There
are no restrictions on the data types that can be passed as part of an
exception message or on the number of parts the message can contain.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

Example 87 shows a message description in an Artix contract.
Example 87: Message Description
<nessage nane="not Enoughl nvent ory">

<part name="num nventory" type="xsd:int" />
</ message

Associating the exception with an
operation

Describing User-defined Exceptions in an Artix Contract

For more information on describing a message in an Artix contract, read
Designing Artix Solutions.

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a <f aul t > element to the operation’s
description. A <f aul t > element takes the same attributes as the <i nput >
and <out put > elements. The nessage attribute specifies the <nessage>
element describing the data passed by the exception. The nane attribute
specifies the name by which the exception will be referenced in the binding
section of the contract.

Example 88 shows an operation description that uses the message
described in Example 87 on page 118 as a user-defined exception.

Example 88: Operation with a User-defined Exception

<oper at i on nane="get W dget s" >
<i nput nessage="t ns: wi dget S zeMessage" nane="si ze" />
<out put nessage="tns: w dget Cost Message" nane="cost" />
<fault message="t ns: not Enoughl nvent ory" nane="not Enough" />
</ oper at i on>

The operation described in Example 88, get Wdget s, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

119

CHAPTER 5 | Creating User-Defined Exceptions

How Artix Generates Java User-defined

Exceptions

Overview

Example

120

As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Except i on class so that it can be thrown. It will have one private data
member of the type specified in the contract’'s message part to represent
each part of the message, a creation method that allows you to specify the
values of each data member, and the associated getter and setter methods
for each data member. In addition, the generated class will have a
toString() method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the nane attribute of the exception’s message description and
will always start with a capital letter.

Example 89 shows the generated exception class for the fault message in
Example 87 on page 118.

Example 89: Generated Java Class

/1 Java
inport java.util.*;

publ i c cl ass Not Enoughl nventory extends Exception
{
public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni wi dget O der Forni';

private int num nventory;

publ i ¢ Not Enoughl nvent ory(i nt nuni nvent ory)
{

super ();

this. num nventory = nuninventory;

}

How Artix Generates Java User-defined Exceptions

Example 89: Generated Java Class

public int get Num nventory()
{

return num nventory;

}

public void set Num nventory(int val)

{

num nventory = val ;

}

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());

if (size!=null)

{

buf f er. append(" num nvent ory: "+num nventory+"\n");

}
return buffer.toString();

}
}

The TARGET_NAVESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

121

CHAPTER 5 | Creating User-Defined Exceptions

Working with User-defined Exceptions in Artix

Applications

Overview

Example

122

Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception and inspect the contents using the standard methods.

Example 90 shows how a server implementing the get W dget s operation,
shown in Example 88 on page 119, might instantiate and throw a
Not Enoughl nvent ory exception.

Example 90: Throwing a User-defined Exception

//Java

I/ checklnventory() is left for the reader to inplement
I/ size and nuntrdered are paraneters passed into the operation
if (nunCrdered > checkl nventory(size))
{
t hr ow Not Enoughl nvent or y(checkl nvent or y(si ze));

}

Example 91 shows how a client might catch and report the exception
thrown by the server.

Example 91: Catching a User-defined Exception

/1 Java

try
{

| ong cost = get Wdget s(si ze, nuntrdered);
}

Working with User-defined Exceptions in Artix Applications

Example 91: Catching a User-defined Exception

cat ch(Not Enoughl nvent ory nei)

Il get the value stored in the exception

int numnventory = nei.get Num nventory();

Systemout. println("The factory only has "+nunm nvent or y+
' widgets of size "+size+'.");

123

CHAPTER 5 | Creating User-Defined Exceptions

124

In this chapter

CHAPTER

6

Working with Artix

Type Factories

Artix uses generated type factories to support a number of
advanced features including XMLSchema anyType support
and message contexts.

This chapter discusses the following topics:

Introduction to Type Factories page 126
Registering Type Factories page 128
Getting Type Information From Type Factories page 131

125

CHAPTER 6 | Working with Artix Type Factories

Introduction to Type Factories

What are type factories? Artix type factories are generated classes that allow the Artix bus to
dynamically create instances of user defined types. They are used to support
Artix functionality that manipulate data using generic Java Qbj ect instances
such as working with XMLSchema anyType instances, message contexts,
and SOAP headers.

Using type factories in your To use type factories in your Artix applications you need to do the following:
applications 1. Generate the type factories for all of the XMLSchema types and
XMLSchema elements used by your application.
2. Register the type factories with the bus used by your application.
Once the type factories are registered with the bus, it will use the type
factories to create the proper holders for any data that needs them. In
addition, you can also use the functions on the type factories to get

information about the types used in your application or to dynamically
instantiate classes for your data types.

Generating type factories wsdl t oj ava automatically generates a type factory for all user-defined types
in a contract when it generates the code for them. The type factory class is
named by postfixing TypeFact ory onto the port type's name. For example if
you generated Java code for a port type named packageDepot , the generated
type factory class would be packageDepot TypeFact ory.

Additionally, you can pass wsdl t oj ava an XMLSchema document that
defines types used by your application and it will generate the classes and
type factory for the defined types.

Each contract or XMLSchema document results in one type factory that
supports all of the types and elements defined by it. The generated type
factory will also support all of the types and elements defined by any
imported XMLSchema documents. So, if your application only uses the
complex types defined in its own contract you will only need to register one
type factory. However, if your application uses types defined in a second
XMLSchema document, you will need to generate and register the type
factory for those types also.

126

Introduction to Type Factories

Java packages for anyType When using type factories you must import the package
support com i ona. webservi ces. refl ect. types. TypeFactory.

127

CHAPTER 6 | Working with Artix Type Factories

Registering Type Factories

Overview

Procedure

Instantiating a type factory

128

Before the Artix bus can use the generated type factories, they must be
registered with the bus. This is done using the bus’ r egi st er TypeFact or y()
method.

To register type factories with an application’s bus do the following:

1. Get a reference to the application’s bus as shown in “Getting a Bus” on
page 32.

2. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 128.

3. Register the type factories using regi st er TypeFact ory() on the Bus
object as shown in “Registering a type factory” on page 129.

The Artix Java code generator automatically generates a type factory for all
of the complex types and elements defined in a contract. The type factory
class is named by postfixing TypeFact ory onto the port type’s name. For
example if you generated Java code for a port type named packageDepot ,
the generated type factory class would be PackageDepot TypeFact ory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 92 shows the code to
instantiate the type factory for packageDepot .

Example 92: /Instantiating a TypeFactory

/1 Java
PackageDepot TypeFactory factory = new PackageDepot TypeFactory();

Registering a type factory

Determining if type factories are
registered

Example

=

Registering Type Factories

You register a type factory with the bus using its r egi st er TypeFact or y()
method. regi st er TypeFact ory() takes an instance of a type factory as its
only argument. Example 93 shows code registering a type factory.

Example 93: Registering a Type Factory

/1 Java

/1l Bus bus and TypeFactory factory obtai ned above
bus. r egi st er TypeFact or y(factory);

To register multiple type factories with the bus, call r egi st er TypeFact or y()
with each additional type factory. Subsequent calls add new type factories
to the list of registered type factories.

You can get a hash table of the type factories registered with a bus using
get TypeFact or yMap() . The returned hash table contains the Q\ane for the
registered type factories and an ArraylLi st of TypeFact ory objects
containing all of the registered type factories. Example 94 shows code for
returning the hash table of registered type factories.

Example 94: Getting Hash Table of Registered Type Factories

/1 Java
HashMap fact Map = bus. get TypeFact or yMap() ;

Example 95 shows an example of registering two type factories,
packageDepot TypeFact ory and wi dget sTypeFact ory.

Example 95: Registering Type Factories

/1 Java
inport javax.xni.rpc.*;
inport comiona. webservices. reflect.types. *;

/] Start the bus and create the Artix client proxy

Bus bus = Bus.init();

packageDepot TypeFactory fact1l = new packageDepot TypeFact ory();
wi dget sTypeFactory facts = new wi dget sTypeFactory();

129

CHAPTER 6 | Working with Artix Type Factories

130

Example 95: Registering Type Factories

3 bus.registerTypeFactory(factl);
bus. r egi st er TypeFact ory(fact 2) ;

The code in Example 95 does the following:

1.
2.
3.

Initializes the bus.

Instantiates the type factory that will be registered.

Registers the type factories using r egi st er TypeFact ory() . The first
call registers the type factory for the types defined in the packageDepot
contract. The second call registers the factory for the types defined in
the wi dget s contract.

Getting Type Information From Type Factories

Getting Type Information From Type Factories

Overview

getSupportedNamespaces()

In most cases you will not need to do anything with the type factories once
they are registered. The bus automatically handles the creation of type
instances for dynamically created data.

However, you can use the type factory’s methods to get information about
the supported types or dynamically create instances of data types on your
own. TypeFact ory objects have five methods that provide access to the
types supported by the factory. They are:

® getSupportedNamespaces()
® getSchemaType()

* getJavaType()

® getJavaTypeForElement()

® getTypeResourcelocation()

get Suppor t edNarrespaces() returns an array of strings listing the
namespace URIs used in the schema for which the type factory was
generated. For example, if your type factory was generated from a contract
that contained the fragment shown in Example 96 a calling

get Suppor t edNarespaces() on the generated type factory would return an
array of strings containing a single entry:

ht t p: // packageTr acki ng. coni packageTypes.

Example 96: WSDL Fragment

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<definitions ...>

131

CHAPTER 6 | Working with Artix Type Factories

Example 96: WSDL Fragment

<t ypes>
<schena
t ar get Nanespace="ht t p: / / packageTr acki ng. coni packageTypes"
xm ns="htt p: / / www. wW8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / ">
<conpl exType nane="packagel nf 0" >
<sequence>
<el enent name="i d" type="xsd:string" />
<any nanespace="##any" processContents="| ax"
maxQcecur s="4" />
<el ement name="si ze" type="xsdl: packageS ze"/>
<el enent name="shi ppi ngAddr ess" type="xsd1: Addr ess"/>
</ sequence>
</ conpl exType>
</ schema>
</ types>
<port Type name="packageDepot ">
</ port Type>
</definitions>
Example 97 shows code calling get Suppor t edNanespaces() .
Example 97: getSupportedNamespaces()

/1 Java

PackageDepot TypeFactory fact = new PackageDepot TypeFactory();
String[] typeNanespaces = fact. get Support edNanespaces();

getSchemaType() get SchemaType() returns the QName of the schema type for which the
specified class is generated. It takes a A ass object for a generated type and
returns the QName given in the applications contract for the type which
resulted in the generated class.

For example, the contract fragment in Example 96 on page 131 would
cause a class called Packagel nf o to be generated to support the
XMLSchema complex type packagel nf o. Calling get SchemaType() on an

132

getJavaType()

Getting Type Information From Type Factories

instance of packageDepot TypeFact ory, as shown in Example 98, would
return a QName whose local part is packagel nf o and whose namespace
URI is ht t p: / / packageTr acki ng. conl packageTypes.

Example 98: getSchemaType()

/1l Java
/| PackageDepot TypeFactory fact obtained earlier
Q\ane typeNane = fact. get SchemaType(Packagel nf o. cl ass) ;

get JavaType() returns the Java d ass object generated to support the
specified XMLSchema type. It takes the QName of an XMLSchema type
defined using a <t ype> element in the contract from which the type factory
was generated as an argument. Using the QName, get JavaType() finds the

d ass object generated to support the XMLSchema type and returns an
instance of it.

For example, the code in Example 99 gets an instance of the generated
Packagel nf o object by passing get JavaType() the QName of the
packagel nf o XMLSchema type defined in Example 96 on page 131.

Example 99: getJavaType()
/[Java

Q\ane typeNane = new
Q\ane(" htt p: // packageTr acki ng. coml packageTypes",
"packagel nf 0") ;
/| PackageDepot TypeFactory, fact, obtained earlier
d ass typed ass = fact.getJavaType(typeNare);
Packagel nf o newPackage = typed ass. new nst ance();

The code in Example 99 does the following:

1. Creates the QName for the XMLSchema type.

2. Calls get JavaType() on the type factory to get the A ass object for the
XMLSchema type.

3. Uses the returned A ass object to create a new instance of

Packagel nf o.

133

CHAPTER 6 | Working with Artix Type Factories

getJavaTypeForElement()

getTypeResourceLocation()

134

get JavaTypeFor El enent () returns the Java d ass object generated to
support the specified XMLSchema element. It takes the QName of an
XMLSchema element defined using an <el ement > element in the contract
from which the type factory was generated as an argument. Using the
QName, get JavaTypeFor B ement () finds the A ass object generated to
support the XMLSchema element and returns an instance of it.

get TypeResour ceLocat i on() returns a string containing the location of the
contract, or XMLSchema document, for which the type factory was
generated.

In this chapter

CHAPTER 7

Working with
XMLSchema
anyTypes

The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 136
Setting anyType Values page 138
Retrieving Data from anyTypes page 140

135

CHAPTER 7 | Working with XMLSchema anyTypes

Introduction to Working with XMLSchema

anyTypes

XMLSchema anyType

Artix and anyType

Artix binding support

Using anyType in Java

136

The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

In Artix, an anyType can assume the value of any complex type defined
within the <t ypes> section of an Artix contract. An anyType can also assume
the value of any XMLSchema primitive. For example, if your contract defines
the complex types j oeFri day, sanSpade, and m keHanmer , an anyType used
as a message part in an operation can assume the value of an element of
type sanBpade or an element of type xsd: i nt . However, it could not assume
the value of an element of type aceVent ur a because aceVent ur a was not
defined in the contract.

Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

® SOAP
® Pure XML
®* CORBA

When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory classes with the application’s bus. See
“Registering Type Factories” on page 128.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in “Retrieving Data from anyTypes” on page 140.

Introduction to Working with XMLSchema anyTypes

Java packages for anyType

When using anyType data and the type factories you must import the
support

following:
® comiona. webservices. refl ect.types. AnyType

® comiona.webservices. refl ect.types. TypeFact ory

137

CHAPTER 7 | Working with XMLSchema anyTypes

Setting anyType Values

Overview

Setting primitive data

In Artix Java xsd: anyType is mapped to

com i ona. webser vi ces. ref | ect . t ypes. AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the Quane for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data’'s schema type when the object is
transmitted.

The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 7.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 7: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
set Bool ean() bool ean bool ean
set Byt e() byt e byte
set Short () short short
setlnt() int int
set Long() | ong | ong
set Fl oat () f1 oat f1 oat
set Doubl e() doubl e doubl e
set String() string string
set Short () short short
set UByt e() short ubyte
set UShort () int ushort

138

Setting anyType Values

Table 7: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
setUnt() | ong ui nt
set ULong() Bi gl nt eger ul ong
set Deci nal () Bi gDeci mal deci nal
Setting complex type data You set complex data into any AnyType using the set Type() method.

set Type() can be used in one of two ways. The first is to provide the Q\ane
of the XMLSchema type describing the data to store in the AnyType along
with the data. Using this method makes it easier to query the contents of
anyType objects that were created in the current application space because
Artix does not set the type identifier until after it sends the anyType across
the wire. Example 100 shows code for storing a wi dget Si ze in an anyType.

Example 100:Storing Complex Data and Specifying its Type

/1 Java

wi dget Si ze size = widgetSi ze. bi g;

Q\ane gn = new Q\ane("http://w dget Vendor. conit ypes/",
"w dget S ze");

AnyType aT =new AnyType();

aT. set Type(gn, size);

The other way is to simply provide the data value to store in the AnyType
and Artix will determine the XMLSchema type describing the data. From the
receiving end this method for storing data in an anyType is equivalent to the
first method because Artix identifies the contents schema type when it
transmits the data. However, the application that store the value will have
no way to determine the data type once the value is stored until it is used as
part of a remote invocation. Example 101 shows code for storing a

wi dget Si ze in an anyType without providing its Q\ane.

Example 101:Storing Complex Data without a QName
/1l Java
wi dget Si ze size = widgetSi ze. bi g;

AnyType aT =new AnyType();
aT. set Type(si ze) ;

139

CHAPTER 7 | Working with XMLSchema anyTypes

Retrieving Data from anyTypes

Overview

Determining the type of an
anyType

140

Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value’s type you could

cast the value into the proper Java type and work with it using standard
Java methods.

Artix’s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not

specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java get A ass() method on the Java (j ect

returned from AnyType. get Coj ect () to get the Java class of the data stored
in the anyType.

The Artix Java AnyType provides a method, get SchemaTypeNane() , that
returns the Q\ane of the schema type of the data stored in the anyType.

Example 102 gets the schema type of an anyType and prints it out to the
console.

Example 102:Using getSchemaTypeName()

/1 Java
inport comiona. webservi ces.rel ect.types. *;

AnyType bl ackBox;

// dient proxy, proxy, instantiated previously
bl ackBox = proxy. newBox();
Q\ane schemaType = bl ackBox. get SchemaTypeNane() ;
Systemout. println("The type for blackBox is defined in "
+schemaType. get NamespaceUR ()) ;
Systemout. println("bl ackBox is of type: "
+schemaType. get Local Part ());

Extracting primitive types from an
anyType

Retrieving Data from anyTypes

The data stored in an Artix AnyType is a stored as a standard Java (oj ect,
so when the data is extracted you can use the standard get d ass() method
on the returned oj ect to determine its Java type.

The Artix AnyType provides specific methods for extracting primitive types.
Table 8 lists the getter methods for the supported primitive types and the
local part of the schema type name returned by get SchemaType() . All of the
primitive types have ht t p: / / ww. w3. or g/ 2001/ XM.Schema as their

namespace URI.

Table 8: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name
get Bool ean() bool ean bool ean
get Byte() byt e byt e
get Short () short short
getlnt() int int
get Long() | ong | ong
get Fl oat () f1 oat fl oat
get Doubl e() doubl e doubl e
get String() String string
get UByt e() short unsi gnedByt e
get UShort () int unsi gnedsShor t
getunt() | ong unsi gnedl nt
get ULong() Bi gl nt eger unsi gnedLong
get Deci mal () Bi gDeci mal deci nal

141

CHAPTER 7 | Working with XMLSchema anyTypes

Extracting complex data from an
anyType

Example

142

The Artix AnyType provides a generic method, get Type(), that can be used
to extract complex data. get Type() returns the data stored in the anyType as
a Java Object that you can then cast to the proper Java type. Example 103
shows an example of retrieving a wi dget Si ze from an anyType.

Example 103:Extracting a Complex Type from an anyType

/1l Java
AnyType any;

// dient proxy, proxy, instantiated earlier
any = proxy.returnWdget();
wi dget Si ze size = (wi dget Si ze) any. get (j ect () ;

If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and desktops.
Because the laptops and desktops are configured differently you've decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, | apt opQr der and deskt opQr der, in the
namespace htt p: // nyAssenbl yLi ne. coni syst enTypes. Example 104
shows code for receiving the order from the server, querying the returned
AnyType to see what type of order it is, and then extracting the order from
the AnyType.

Example 104:Working with anyTypes

/1l Java

i nport javax.xnl . namespace. Q\ang;

inport comiona.webservices.refl ect.types.*;

AnyType anyCr der;

// Qdient proxy, proxy, instantiated earlier
anyQrder = proxy. get Systentrder();

I/ Get the schema type of the returned order
Q\ane order Type = anyQ der . get SchenaType() ;

Retrieving Data from anyTypes

Example 104:Working with anyTypes

3 if (!(orderType. get NanmespaceURl (). equal s(
"http:// nyAssenbl yLi ne. coni syst enfTypes"))

/1 handl e the fact that the schema type is fromthe wong
/1 nanmespace.

}

4 if (orderType. getLocal Part().equal s("Il aptopQrder"))

{
LapTopQrder order = (LapTopQrder)anyQrder. get Type();
bui | dLapt op(or der);

5 if (orderType. getlLocal Part().equal s("deskt opCrder"))
{
DeskTopOrder order = (DeskTopQr der)anyCr der. get Type();
bui | dDeskt op(order);

}

The code in Example 104 on page 142 does the following:

1. Populates anyQ der .

2. Queries anyQr der for its schema type information.

3. Checks the namespace of the returned type to ensure it correct.
4

Checks if anyQrder is a | apt opQrder . If so, cast anyQrder into a
| apt opCr der.

5. Checks if anyQrder is a deskt opQ der. If so, cast anyQrder into a
deskt opCr der .

143

CHAPTER 7 | Working with XMLSchema anyTypes

144

CHAPTER 8

Artix References

An Artix reference is a handle to a particular Artix service
instance. Because they can be passed as message parts, Artix
references provide a convenient and flexible way of identifying
and locating specific services.

In this chapter This chapter discusses the following topics:
Introduction to Working with References page 146
Using References in a Factory Pattern page 154
Using References to Implement Callbacks page 168

145

CHAPTER 8 | Artix References

Introduction to Working with References

Overview An Artix Reference is a Java object that fully describes a running Artix
service. Artix references have the following features:

They are a built-in Artix data type.

They can be passed as a parameter of an operation.

They can be used to create service proxies for a service described by a
particular reference.

They are the building blocks for the Artix locator and session manager.

They are transport neutral. An Artix reference can be used to represent
any Artix service.

In this section This section discusses the following topics:
Reference Basic Concepts page 147
Creating References page 151
Instantiating Service Proxies Using a Reference page 153

146

Introduction to Working with References

Reference Basic Concepts

Overview

Contents of an Artix reference

An Artix reference is a Java object, derived from an XMLSchema definition
shipped with Artix, that fully describes a running Artix service. It lists the
service's name, the service's contact information, and the service’s WSDL
location. The data contained in the reference provides an Artix client process
with the information needed to instantiate a service proxy to contact the
referenced service.

Using references provides you with the ability to generate servants on the fly
and pass a client a reference to the newly instantiated servant. It also
provides you the ability to write applications that require using a callback
mechanism. In addition, the Artix locator and the Artix session manager use
references to supply applications with pointers to the services which they
are looking-up.

An Artix reference encapsulates the following data:

® Service QName—the QName of the service with which the reference is
associated. The is the name of the service given in the contract
defining the service.
® WSDL location URL—the location of the service's contract. The WSDL
location URL in a reference services two distinct purposes:
+ Service identification—the service is uniquely identified by the
combination a WSDL contract and a service QName.

+ WSDL back-up—the reference is fully self-describing.

Note: If you have loaded the WSDL publishing plug-in,

wsdl _publ i sh, on the server, the WSDL location URL will point to a
dynamically updated copy of the service's contract. See “Accessing
WSDL from a reference” on page 148

® [List of ports—an unbounded sequence of port elements, each of which
contains the following data:

¢+ Port name—the name given the port in the contract.

+ Binding QName—the qualified name of the binding with which
the port is associated.

147

CHAPTER 8 | Artix References

The schema definition of a
reference

Java mapping of a reference

Accessing WSDL from a reference

148

s+ Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold transport-specific data and qualities of service. For
example, if the port uses CORBA the properties would include the
<cor ba: pol i cy> elements used in the WSDL.

Like all types in Artix, the reference is defined in XMLSchema. The
XMLSchema defining a reference is located in the schena folder of your Artix
Installation and is called ref er ences. xsd. It can also be found on-line at
http://schemas.iona.com/references/references.xsd.

You will need to import the reference schema into the contract of any
application that uses references. It is required for Artix to properly generate
the Java code for operations using a reference as a parameter and for the
bus to properly marshal and unmarshal references passed between
endpoints.

In Java an Artix reference is mapped to a class called

com i ona. schenas. r ef er ences. Ref erence. This class is provided in the
libraries shipped with Artix. Your applications that use Artix references will
need to import this class.

An Artix reference contains a pointer to the contract defining the logical

service associated with the reference. By default, the reference’s WSDL

pointer points to the server's local copy of the service contract. However, if

the server process is configured to load the WSDL publishing plugin, the

reference’s WSDL pointer points to an HTTP port from which a client can

download a live copy of the service’s contract.

Using the default provides a smaller footprint for your server process and

does not require opening an additional HTTP port, but it has two main

drawbacks:

® Artix needs to be able to read the WSDL in order to instantiate a
service proxy for the referenced service and often the client will not
have access to the service’s local file system.

® The <port > definition for the service may not be complete because the
service dynamically sets its port attributes at runtime. In particular, a
transient servant’s on-disk <port > definition is always incomplete.

http://schemas.iona.com/references/references.xsd

References and the Artix router

Introduction to Working with References

Configuring your servers to load the WSDL publishing plugin avoids these
drawbacks. The WSDL publishing plugin provides a continually updated
version of a service’s in-memory WSDL contract using an HTTP port.
Because the WSDL model is always updated, the reference will always point
to a complete contract with valid contact information for the service. Also,
because the WSDL is published over an available HTTP port, a client always
has access to the WSDL when it attempts to instantiate a service proxy.

For information on configuring a service to load the WSDL publish plugin
see Deploying and Managing Artix Solutions.

When references are passed through the Artix router, the router creates a
service proxy for each reference. In this way it ensures that messages are
correctly delivered to the referenced service. However, this creates two
issues that must be considered:

Misconnected Proxies

Because transient servants are not associated with a fixed service, the router
must guess at which WSDL service was used as the service template to
create the servant. It chooses the first compatible WSDL service it
encounters in the router's contract. A compatible WSDL service is a service
that uses the same <port Type> as the service template used to create the
transient servant.

If your contract contains a static WSDL service definition and a service
template that both use the same <port Type>, the router will use the first
one listed in the contract. If the static service is first, the router will create a
proxy that connects to the servant defined by that service and not the
transient service that is referenced. The result will be that all messages
directed to the transient servant will be silently forwarded to the wrong
servant.

To avoid this situation place all service templates in your router’s contract
before the static WSDL services. This will ensure that the router will select
the service template and create a proxy for the transient servant.

Router bloat

Because the router cannot know when a proxy is no longer needed, it reaps
any of the proxies it creates. Because of this, a router that handles a large
number of references may get quite bloated. To solve this problem Artix

149

CHAPTER 8 | Artix References

includes a life-cycle service that allows you to configure a reaping schedule
for the router. For more information on using the life-cycle service see
Deploying and Managing Artix Solutions.

150

Introduction to Working with References

Creating References

Overview

Registering a servant

References are created by a bus using the creat eRef er ence() method.
Before a bus instance can create a reference for a service, the servant
implementing the service must be registered with the bus. The process for
creating a reference for a service involves three steps:

1. Get a handle to a bus as shown in “Getting a Bus” on page 32.
2. Register the servant with the bus.

3. Create a reference using the service’s Q\ane.

Registering a service with the bus is a two step process. The first step is to
create an Artix Servant instance for your service. Example 105 shows an
example of creating a Servant for the Wdget Loader service. The Servant
contsructor requires the path of the contract defining the service, an
instance of the service’s implementation class, and a bus instance.

Example 105:Creating a ServerFactoryBase

/[Java
Servant servant =
new Si ngl el nst anceServant ("./Wdgets. wsdl ",
new W dget Loader | npl (), bus);

The second step in registering a service with the bus is to register the
servant with a bus instance. Servants can be registered as either static or
transient. A static servant is registered using Bus. r egi st er Servant () and
has a fixed port address that is defined in its contract. A transient servant is
registered using Bus. r egi st er Tr ansi ent Servant () . A transient servant is a
clone of the service defined in the contract and each servant for a given
service will have a unique port number.

For a detailed discussion of registering servants, read “Servant Registration”
on page 26.

151

CHAPTER 8 | Artix References

Creating the reference

Example

152

Once you have registered a service with the bus, you can create a reference
for it using the Q\ane returned from the servant registration method.
References are created using the bus’ cr eat eRef erence() method.
Example 106 shows the signature for cr eat eRef er ence() .

Example 106:createReference()

/] Java
Ref erence cr eat eRef er ence(Q\arre servi ce) ;

The method takes in the Q\ane of a registered service. The Q\ane of a
registered service is returned when you register the servant with the bus.
Keeping track of the registered service’s Q\ame when using references is
particularly important when working with transient servants. Because they
are clones of a service, each instance of a service registered with a transient
servant will have a unique Q\ane that is generated by the bus.

Example 107 shows the code for generating a reference for a static instance
of the A i ng service.

Example 107:Creating a Reference

/1 Java
inport comiona.jbus.*
i nport com i ona. schenas. r ef er ences. Ref er ence;

/1 Initialize a default bus
Bus bus = Bus.init();

I/ Register the servant
Q\ane nanme = new Q\Nane(“http://ww. static.com ding",
"dingService");

Servant servant = new Si ngl el nst anceServant (new d i ngl npl (),
"./cling. wsdl ",
bus) ;

Q\ane clingName = bus. regi sterServant (servant, nare,

"dingPort");

I/ Cenerate the reference for the register ding Service
Ref erence clingRef = bus. creat eRef erence(cl i ngNare) ;

Introduction to Working with References

Instantiating Service Proxies Using a Reference

Overview

Creating a service

Example

One of the primary uses of a reference is to create a service proxy for
connecting to the referenced service. The bus provides a method,
createdient (), that takes a reference and returns a JAX-RPC style
dynamic proxy for the referenced service.

To create a service proxy from a reference, you need three things:

® abus

® areference

® the Java d ass representing the service's interface

You create service proxy from a reference by calling createQ i ent () on the
servant’s default bus. creat ed i ent () takes a reference to a service and the
service's interface A ass as parameters. If the call is successful, it returns a
JAX-RPC style dynamic proxy for the service referenced. createQient()’s
signature is shown in Example 108.

Example 108:Bus.createClient()
Renot e Bus. created i ent (Ref erence ref,

d ass interfaced ass)
throws BusException

Example 109 shows the code for creating a service proxy for the Cling
service from a reference.

Example 109:Getting a Bus Reference Inside a Servant

/] Java
com i ona. j bus. Bus bus = D spat chLocal s. get Qurrent Bus() ;

/1 Reference clingRef obtained earlier
ding clingProxy = bus.createdient(clingRef, ding.class);

153

CHAPTER 8 | Artix References

Using References in a Factory Pattern

Overview A common pattern for working with references is a factory pattern where
one object, a factory, creates references for other objects. For example, you
could develop a banking service that is responsible for creating and
managing accounts. It may have one operation, get _account, that returns
references to account objects that handle the more low level operations for
depositing or withdrawing money from an account. In this instance, your
bank implementation object is a factory for account objects.

This section discusses how such a banking service could be developed. The
examples used are loosely based on the transient servant demo supplied
with Artix. It is located in the

denos/ servant _managenent / t r ansi ent _sevant s folder of your Artix

installation.
In this section The following topics are discussed in this section:
Bank Service Contract page 155
Bank Service Implementation page 162
Bank Service Client page 165

154

Using References in a Factory Pattern

Bank Service Contract

Overview

Importing the reference schema

The WSDL contract defining the Bank service has several key elements that
are required for defining a service that uses references in a factory pattern.
The first thing to notice is that the contract imports the XMLSchema
definition for Artix references. Also, it defines two interfaces: Bank and
Account . Bank defines an operation for returning references to an Account .
Also, both interfaces have fully described bindings and service definitions.

For detailed information about Artix contracts read Designing Artix
Solutions.

Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be dome in one of
two ways. The most common way is to use an <i nport > element to import
the XMLSchema definition that is provided with Artix. Example 110 shows
a WSDL fragment that imports the reference schema.

Example 110:/mporting the Reference Schema

<i nport nanespace="htt p://schemas. i ona. con r ef er ences"
| ocati on="/usr/| ocal / arti x/ schenma/ r ef er ences. xsd" />

The other way is to add the reference definition directly into the contract.
This is the method shown in the supplied transient servant demo.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 111.

Example 111:Reference Alias

xm ns: ref erence="http://schemas. i ona. coni r ef er ences"

155

CHAPTER 8 | Artix References

Messages with references

Bank interface

Account interface

Bank binding

156

The Bank interface’s get _account operation returns a reference to an
Account . The message definition for the response of these operations have
one part, ret urn, that is of type ref er ence: Ref erence. Example 112 shows
the definition for a message that contains a reference.

Example 112:Message with a Reference
<nessage nanme="bankResponse" >

<part name="return" type="reference: Ref erence" />
</ message>

The <port Type> defining the Bank interface defines a single operation
named get _account . This operation takes a string as input and returns a
reference. Example 113 shows the <port Type> for the Bank interface.

Example 113:Bank <portType>

<port Type nane="Bank">
<oper ati on nane="get _account ">
<i nput name="acct Name" nessage="t ns: account Nane"/ >
<out put nane="return" message="tns: bankResponse"/>
</ operati on>
</ port Type>

The contract defining the service will also need to include a definition for the
Account interface. This interface can either be defined in a separate WSDL
fragment that is imported or it can be defined in the same contract as the
Bank interface. The transient servant demo defines the Account interface in
the same contract.

While an Artix reference can describe a service that uses any of the bindings
supported by Artix, they can only be sent using the SOAP binding or the
CORBA binding. When using the SOAP binding, you do not need to anything
special to send an Artix reference. The transient servant demo supplied with
Artix uses a SOAP binding.

Account binding

Transport definitions

Complete bank contract

Using References in a Factory Pattern

The CORBA binding maps an Artix reference into a generic CORBA Quj ect .
You can do some additional work to create typed CORBA references. For
details on how Artix references are mapped into a CORBA binding see the
CORBA appendix of Designing Artix Solutions.

You will also need to add a binding for the referenced service, which in this
case is the Account interface. The binding for the referenced service can be
any one of the supported Artix bindings. The transient servant demo
supplied with Artix uses a SOAP binding for the Account interface.

References can be sent over any transport that supports SOAP or CORBA
messages. However, because in this example the servants used to service
Account objects will be transient, the Account service must use either HTTP
or CORBA.

Example 114 shows the complete contract used for the code generated in
the following discussions about the factory pattern.

Example 114:Bank Service Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions xm ns="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="ht t p: // schenas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww: i ona. conl bus/ denos/ bank"
xm ns: xsd="ht t p: / / www W8. or g/ 2001/ XM-Schena"
xm ns: htt p="http: //schenas. i ona. con t ransports/ htt p"
xm ns: ref erences="http://schenas. i ona. coni r ef er ences"
xm ns: bank="ht t p: // waw. i ona. comi bus/ denos/ bank"
t ar get Nanespace="ht t p: / / ww. i ona. coni bus/ denos/ bank"

nanme="BankServi ce" >

<i nport nanespace="htt p://schenas. i ona. conir ef er ences"
| ocati on="/usr/| ocal / arti x/ scherma/r ef er ences. xsd" />

157

CHAPTER 8 | Artix References

Example 114:Bank Service Contract

<nmessage nane="account Nane">
<part nane="account_nane" type="xsd:string"/>
</ message>
<nessage nanme="bankResponse" >
<part name="return" type="references: Ref erence"/>
</ message>
<nessage nane="get bal ance"/>
<nessage nane="get bal anceResponse" >
<part name="bal ance" type="xsd:float"/>
</ message>
<nessage nane="deposit">
<part name="addition" type="xsd:float"/>
</ message>
<nessage nane="deposi t Response"/ >
<port Type nane="Bank">
<oper ati on name="get _account ">
<i nput nane="acct Name" nessage="t ns: account Nane"/ >
<out put nane="return" message="tns: bankResponse"/>
</ oper at i on>
</ por t Type>
<por t Type nane="Account">
<oper ati on name="get _bal ance">
<i nput nane="get_bal ance" nessage="tns: get _bal ance"/>
<out put nane="get _bal anceResponse" nessage="t ns: get _bal anceResponse"/ >
</ oper at i on>
<oper ati on name="deposit">
<i nput name="deposit" message="tns: deposit"/>
<out put nane="deposi t Response" nessage="t ns: deposi t Response"/ >
</ oper at i on>
</ por t Type>
<bi ndi ng name="BankBi ndi ng" type="tns: Bank">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas. xn soap. or g/ soap/ http"/>
<oper ati on name="get _account ">
<soap: operati on soapAction="htt p://wam\ i ona. coni bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. cond bus/ denos/ bank" />
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // ww. i ona. cond bus/ denos/ bank" / >
</ out put >
</ oper at i on>
</ bi ndi ng>

158

Using References in a Factory Pattern

Example 114:Bank Service Contract

<nmessage nane="account Nane">
<part nane="account_nane" type="xsd:string"/>

</ message>

<nessage nanme="bankResponse" >
<part name="return" type="references: Ref erence"/>

</ message>

<nessage nane="get bal ance"/>
<nessage nane="get bal anceResponse" >
<part name="bal ance" type="xsd:float"/>

</ message>

<nessage name="deposit">
<part name="addition" type="xsd:float"/>

</ message>

<nessage nane="deposi t Response"/ >
<port Type nane="Bank">
<oper ati on name="get _account ">
<i nput nane="acct Name" nessage="t ns: account Nane"/ >
<out put nane="return" message="tns: bankResponse"/>

</ oper at i on>
</ por t Type>

<por t Type nane="Account">
<oper ati on name="get _bal ance">
<i nput nane="get_bal ance" nessage="tns: get _bal ance"/>

<out put nanme=

</ oper at i on>

" get _bal anceResponse" message="t ns: get _bal anceResponse"/ >

<oper ati on name="deposit">

<i nput name="
<out put nanme=

</ oper at i on>
</ por t Type>

deposit" message="t ns: deposit"/>
" deposi t Response” nessage="t ns: deposi t Response" />

<bi ndi ng name="BankBi ndi ng" type="tns: Bank">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas. xn soap. or g/ soap/ http"/>
<oper ati on name="get _account ">
<soap: operati on soapAction="htt p://wam\ i ona. coni bus/ denos/ bank" styl e="rpc"/>

<i nput >
<soap: body

</i nput >
<out put >
<soap: body

</ out put >
</ oper at i on>
</ bi ndi ng>

use="literal" encodi ngStyl e="http://schemas. xni soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. cond bus/ denos/ bank" />

use="literal " encodingStyl e="http://schemas. xni soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // ww. i ona. cond bus/ denos/ bank" / >

159

CHAPTER 8 | Artix References

Example 114:Bank Service Contract

<nmessage nane="account Nane">
<part nane="account_nane" type="xsd:string"/>
</ message>
<nessage nanme="bankResponse" >
<part name="return" type="references: Ref erence"/>
</ message>
<nessage nane="get bal ance"/>
<nessage nane="get bal anceResponse" >
<part name="bal ance" type="xsd:float"/>
</ message>
<nessage nane="deposit">
<part name="addition" type="xsd:float"/>
</ message>
<nessage nane="deposi t Response"/ >
<port Type nane="Bank">
<oper ati on name="get _account ">
<i nput nane="acct Name" nessage="t ns: account Nane"/ >
<out put nane="return" message="tns: bankResponse"/>
</ oper at i on>
</ por t Type>
<por t Type nane="Account">
<oper ati on name="get _bal ance">
<i nput nane="get_bal ance" nessage="tns: get _bal ance"/>
<out put nane="get _bal anceResponse" nessage="t ns: get _bal anceResponse"/ >
</ oper at i on>
<oper ati on name="deposit">
<i nput name="deposit" message="tns: deposit"/>
<out put nane="deposi t Response" nessage="t ns: deposi t Response"/ >
</ oper at i on>
</ por t Type>
<bi ndi ng name="BankBi ndi ng" type="tns: Bank">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas. xn soap. or g/ soap/ http"/>
<oper ati on name="get _account ">
<soap: operati on soapAction="htt p://wam\ i ona. coni bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. cond bus/ denos/ bank" />
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // ww. i ona. cond bus/ denos/ bank" / >
</ out put >
</ oper at i on>
</ bi ndi ng>

160

Using References in a Factory Pattern

Example 114:Bank Service Contract

<bi ndi ng nanme="Account Bi ndi ng" type="tns: Account ">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas. xnm soap. or g/ soap/ http"/>
<oper ati on name="get _bal ance">
<soap: oper ati on soapAction="http://wmv i ona. coni bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="htt p: // wwv i ona. cond bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="htt p: // wwv i ona. cond bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
<oper ati on name="deposit">
<soap: oper at i on soapAction="http://wamv i ona. coni bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw. i ona. cond bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw. i ona. cond bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce nanme="BankServi ce">
<port name="BankPort" bi ndi ng="t ns: BankBi ndi ng" >
<soap: address | ocati on="http://| ocal host : 0/ BankSer vi ce/ BankPort/"/ >
</ port>
</ servi ce>
<servi ce name="Account Servi ce">
<port nanme="AccountPort" bi ndi ng="t ns: Account Bi ndi ng">
<soap: address | ocati on="http://| ocal host: 0" />
</ port >
</ servi ce>
</ definitions>

161

CHAPTER 8 | Artix References

Bank Service Implementation

Overview

The bank service implementation
object

162

The bank service is the factory for accounts in this example. Its operation,
get _account, returns references to account objects. get _account create
accounts and registers them as transient servants. The accounts are
registered as transient servants to ensure that each new account has a
unique port definition and unique reference.

The Bank service defined in the contract will generated an implementation
object called BankI npl . This object will contain one method,

get _account (), for which you will provide the logic. In addition, for this
example, Bankl npl has a global data member, account s, that stores a table
of the created accounts by their account name. The line declaring account s
is in bold because you need to add it to the generated file.

Example 115 shows the generated Bankl npl with account s added.
Example 115:Bankimpl

package com i ona. bus. denos. bank;

inport java.net.*;
inport java.rm.?*;

inport java.lang.String;
inport comiona. schenas. ref er ences. Ref er ence;

/ * %
* com i ona. bus. denos. bank. Bankl npl
*/
public class Banklnpl inplements java.rm .Renote

{

Hasht abl e accounts = new Hasht abl e() ;

get_account

Using References in a Factory Pattern

Example 115:Bankimpl

| **

* get_account
*
* @aram account_nane (String)
* @eturn: comiona. schenas. ref er ences. Ref er ence
*/
publ i c comi ona. schenas. r ef er ences. Ref er ence
get _account (String account _nane) {
/1l User code goes in here.
return new com i ona. schenas. r ef er ences. Ref er ence() ;

The get _account operation in the contract is mapped to the get _account ()
method in the bank service's implementation object. get _account () first
checks the table of accounts to see if one with the given name already
exists. If one does exist, it returns the reference to that account. If no
account with that name exists, it creates a new Account I npl object and
registers it as a transient servant with the bus.

The Account I npl object is registered as a transient servant because
transient servants are guaranteed to have a unique port definition in their
in-memory contract and that the reference created for each Account I npl
object will point to the correct Account I npl . When using static servants, all
references point to a single instance of the servant object.

Note: When working with transient servants, you should ensure that the
WSDL publishing plug-in is loaded into the server process.

Once the Account | npl object is registered with the bus, get _account ()
generates a reference for the new servant using bus. cr eat eRef er ence() .
This is the reference that is returned to the client. Using the returned
reference, the client will create a service proxy to access the new Account
object.

Example 116 shows the fully implemented get _account ().
Example 116:get_account()

publ i c Reference get_account (String account _nare)

{

163

CHAPTER 8 | Artix References

Example 116:get_account()

1 Reference ref = (Reference)accounts. get (account _nane)
2 if (ref == null)
{
3 Account | npl acct = new Account | npl ();
4 com i ona. j bus. Bus bus = D spat chLocal s. get Qurrent Bus();
5 String contract = new String("./bank.wsdl");
Servant servant = new Si ngl el nst anceSer vant (acct, contract,
bus) ;
6 Q\ane name = new QNane("http://ww:. i ona. conl bus/ denos/ bank",

" Account Servi ce");
bus. regi st er Tr ansi ent Servant (servant, nare);

7 ref = bus. creat eRef er ence(nane) ;
8 account s. put (account _nane, ref);
}
8 return ref;
}

The code in Example 116 does the following:
1. Looks up the account name in the table of existing accounts.

2. Checks to see if an account was found. If a valid account was found
skip to step 9. If not, continue.

Creates a new Account I npl for a new account.

Gets the bus for this bank servant.

Creates a new Artix Servant for the new account.

Registers the new Servant as a transient servant with the bus.
Creates a reference for the newly registered transient servant.

Adds the new reference and account name to the table of accounts.

W X N O oW

Returns the reference to the client.

164

Using References in a Factory Pattern

Bank Service Client

Overview

Requirements for building the
client

Locating the Account service’s
contract

Client tasks

The client for the bank service requests accounts and then performs
operations on the returned accounts. In this case, the returned accounts are
also services implemented by remote Artix servants. Therefore, before the
client can invoke operations on the returned accounts, it must create service
proxies for them.

While Artix references are fully self-describing, your client code will still
require the generated interface for the Account service. This interface will be
generated into a file called Account . j ava by wsdl t oj ava.

Artix references contain a pointer to the contract for the referred service. As
discussed in “Accessing WSDL from a reference” on page 148, the WSDL
pointer in a reference can either point to the server process’ local copy of the
service contract or, if the WSDL publishing plugin is loaded, to an HTTP
port where the in-memory copy of the contract can be obtained.

Because the Bank service registers the Accounts as transient servants, the
server's local copy of the contract will not have a valid <port > definition any
of the Accounts. Therefore, you will need to ensure that the server process
has loaded the WSDL publishing plugin.

The client main in this example does four things:

1. Creates a service proxy for the Bank.

2. Invokes get _account () on the Bank proxy.

3. Creates a service proxy for an Account using the returned reference.
4. Invokes operations in the Account proxy.

The first two things that the client does are typical Artix client programming
steps. Any Artix client will instantiate a service proxy using a known contract
and then invoke operations on the proxy. The third task of the client is, for
this discussion, the interesting task.

Using the reference returned from get _account (), the client will use the
Bus. created i ent () method to create a service proxy for the Account. The
version of Bus. created i ent () used to create a service proxy from a

165

CHAPTER 8 | Artix References

reference takes two parameters: an Artix reference and the interface class
for the referenced service. Example 117 shows the code for creating an
Account service proxy from a reference.

Example 117:Creating an Account Service Proxy

acct Proxy = bus. createdient (acct Ref, Account);

Code for the client main() Example 118 shows the completed code for the bank client’s main line.
Example 118:Code for Bank Client

/1 Java

inport java.util.*;
inport java.io.?*;

inport java.net.*;
inport java.rm.?*;

inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc.*;

inport comi ona.j bus. Bus;
inport comiona. schenas. ref er ences. Ref er ence;

public class Bankd i ent

{
public static void main (String args[]) throws Exception
{
1 Bus bus = Bus.init(args);
2 Q\anre name = new QNane("http://ww: i ona. con bus/ denos/ bank",
"BankSer vi ce") ;
3 String portName = new String("BankPort");
4 String wsdl Path = "file:/./bank.wsdl ";
URL wsdl URL = new Fi | e(wsdl Pat h).toURL();
5 Bank bankProxy = bus. createdient(wsdl UR, nane, portNane,
Bank. cl ass) ;
6 String account _nane;

Systemout. printl n("Wat is the nane of the account?");
System i n. read(account _narre) ;

166

Using References in a Factory Pattern

Example 118:Code for Bank Client

7 Ref erence acct Ref = bankPr oxy. get _account (account _nane) ;
8 Account acct Proxy = bus. created i ent (acct Ref, Account.cl ass);

/1 Invoke operations on acct Proxy

}
}
The code in Example 118 does the following:
1. Initializes the bus.
Creates the Q\ane for the Bank service.
Sets the port name for the Bank service.

Sets the URL to the client’s copy of the Bank service contract.

o &~ wnN

Creates a service proxy for the Bank service using
bus.createdient().

o

Gets the name of the account.

Gets a reference to the desired account by invoking get _account () on
the Bank service proxy.

8. Uses the returned reference to create an Account service proxy using
bus.createdient().

167

CHAPTER 8 | Artix References

Using References to Implement Callbacks

Overview Another common use for Artix references is to create callbacks from a server
to a client. When creating a callback, the client instantiates a servant object
and registers it, using an Artix reference, with the server. The server can
then create a service proxy for the client’s callback object and invoke its
operations to update the client.

For example, an accounts receivable system may need to notify its clients
that it is closing the daily books and is not accepting new transactions until
the operation is complete. In this case, the clients would have a callback
object with two operations, posti ng and done_post i ng. The server would
invoke posting to notify the client that it is not accepting new transactions.
When it was done closing the books, the server would then invoke
done_post i ng.

In this section This section discusses the following topics:
The Accounting Contract page 169
The Accounting Client page 175
The Accounting Server page 180

168

Using References to Implement Callbacks

The Accounting Contract

Overview

Importing the reference schema

Messages with references

The contract for an application the uses a callback needs to include the
interface definition, binding definition, and service information for both the
service implemented by the server and the callback object implemented by
the client. When using callbacks the client essentially plays a dual role. It
implements a servant, like a server process, and makes requests on a
service.

Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be done in one of
two ways. The most common way is to use an <i nport > element to import
the XMLSchema definition that is provided with Artix. Example 110 shows
a WSDL fragment that imports the reference schema.

Example 119:/mporting the Reference Schema

<i nport nanespace="htt p://schenas. i ona. conir ef er ences"
| ocation="/usr/| ocal / arti x/ schena/ref er ences. xsd" />

The other way is to add the reference definition directly into the contract.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 111.

Example 120:Reference Alias

xm ns: ref erence="http://schenas. i ona. coni r ef er ences"

The Regi st er interface’s regi st er _cal | back operation sends a reference to
a Noti fy object. The message definition for the parameter of the operation
has one part, ref, that is of type ref er ence: Ref erence. Example 112
shows the definition for a message that contains a reference.

Example 121:Message with a Reference
<message nane="regMessage">

<part nanme="ref" type="references: Reference" />
</ message>

169

CHAPTER 8 | Artix References

The callback’s interface The interface for the callback object can be as complex or simple as your
application requires. For this example, the callback object will only need
two operations. One to inform the client that the server is busy and one to
tell the client that the server is ready to receive new posts. Neither operation
needs input or output messages, but because WSDL requires at least one
<i nput > or <out put > element the interface definition includes a dummy
input message.

Example 122 shows the <port Type> defining the callback object’s interface.

Example 122:Callback Interface

<nessage name="cal | backRequest" />
<port Type nane="Notify">
<oper ati on nane="posti ng">
<i nput name="paran! nessage="tns: cal | backRequest" />
</ operati on>
<oper ati on nane="done_posti ng">
<i nput name="paran! nessage="tns: cal | backRequest" />
</ operati on>
</ port Type>

Server interface The server's interface needs one operation, regi st er _cal | back, to register
the client’s callback object and create a proxy for it. In addition to the
operation for registering the callback, the server can have any number of
operations defined for providing services to the clients. In this example, the
server has three operations: deposi t, wi t hdr aw, and dai | yPost i ng. The
client shown in this example only invokes desposit and wi t hdraw. An
administrative client invokes dai | yPost i ng.

170

Bindings

Transport details

Contract

Using References to Implement Callbacks

Example 123 shows the <port Type> defining the server's interface.
Example 123:Server Interface

<port Type nane="Regi ster">
<oper ati on name="regi st er_cal | back">
<i nput nane="parant nessage="tns:ref Message" />
</ oper at i on>
<oper ati on name="deposit">
<i nput name="anount" nessage="t ns: ant Message" />
<out put nane="return" message="tns: am Message" />
</ oper at i on>
<oper ati on name="wi t hdraw'>
<i nput name="anount" nessage="t ns: ant Message" />
<out put nane="return" message="tns: am Message" />
</ oper at i on>
<oper ati on name="dai | yPost i ng">
<i nput name="date" message="t ns: dat eMessage" />
</ oper at i on>
</ por t Type>

The callback object’s interface can be bound to any of the message formats
supported by Artix. Because the server’s interface includes an operation that
has a reference as a parameter, it can only be bound to a SOAP message or
a CORBA message. In this example, both interfaces are bound to SOAP
messages.

Because both the callback object and the server are registered as static
servants, they can use any of the transports supported by Artix. In this
example, HTTP is used.

Example 124 shows the complete contract used for the code generated in
the following discussions about callbacks.

171

CHAPTER 8 | Artix References

Example 124:Callback Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="ht t p: // waw. i ona. con bus/ denos/ cal | backs"
xm ns: xsd="ht t p: // waww. W8. or g/ 2001/ XM-Schena"
xm ns: http="http://schemas. i ona. con transports/http"
xm ns: ref erences="http://schenas. i ona. coni r ef er ences"
t ar get Namespace="ht t p: / / ww. i ona. coni bus/ denos/ cal | backs"
name="BankSer vi ce" >
<i nport nanespace="htt p://schenas.i ona. con r ef er ences"
| ocation="/usr/| ocal /arti x/ schema/r ef er ences. xsd"
<message nane="ant Message">
<part nanme="amount" type="xsd:float"/>
</ message>
<message nane="ant Response" >
<part name="return" type="xsd:float"/>
</ message>
<nessage nane="r ef Message" >
<part name="ref" type="references: Ref erence"/>
</ message>
<nessage nane="dat eMessage" >
<part name="date" type="xsd:string"/>
</ message>
<message name="cal | backRequest" />
<port Type nanme="Notify">
<oper ati on name="posti ng">
<i nput name="parani nessage="tns: cal | backRequest" />
</ oper at i on>
<oper ati on name="done_posti ng">
<i nput name="parani nessage="tns: cal | backRequest" />
</ oper at i on>
</ por t Type>

172

Using References to Implement Callbacks

Example 124:Callback Contract

<port Type nane="Regi ster">
<oper ati on name="regi st er _cal | back" >
<i nput name="paranl nessage="t ns: ref Message" />
</ oper at i on>
<oper ati on name="deposit">
<i nput name="amount" nessage="t ns: ant Message" />
<out put nane="return" message="tns: ant Response" />
</ oper at i on>
<oper ati on name="wi t hdraw'>
<i nput nanme="anount" nessage="tns: ant Message" />
<out put nane="return" message="tns: ant Response" />
</ oper at i on>
<oper ati on name="dai | yPosti ng">
<i nput nanme="dat e" nessage="t ns: dat eMessage" />
</ oper at i on>
</ por t Type>
<bi ndi ng nane="Noti f yBi ndi ng" type="tns: Notify">
<soap: bi ndi ng styl e="rpc" transport="http://schenas. xnl soap. or g/ soap/ http"/>
<oper ati on name="posti ng">
<soap: oper ati on soapAction="http://wmv i ona. coni bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // ww i ona. coni bus/ denos/ cal | backs" />
</i nput >
</ oper at i on>
<oper ati on name="done_posti ng">
<soap: oper ati on soapAction="http://wmv i ona. coni bus/ denos/ cal | baks" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw i ona. cond bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>
</ bi ndi ng>
<bi ndi ng name="Regi st erBi ndi ng" type="tns: Regi ster">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas. xn soap. or g/ soap/ http"/>
<oper ati on name="r egi st er_cal | back">
<soap: oper at i on soapAction="http://wamv i ona. coni bus/ denos/ cal | backs" style="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: / / waw i ona. cond bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>

173

CHAPTER 8 | Artix References

Example 124:Callback Contract

<oper ati on name="deposit">
<soap: operati on soapAction="htt p://wmv i ona. conl bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xnm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // ww. i ona. coni bus/ denos/ cal | backs"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xnm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. coni bus/ denos/ cal | backs"/ >
</ out put >
</ oper at i on>
<oper ati on name="wi t hdraw'>
<soap: operati on soapAction="htt p://wmv i ona. conl bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. coni bus/ denos/ cal | backs"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // wwv. i ona. coni bus/ denos/ cal | backs"/ >
</ out put >
</ oper at i on>
<oper ati on name="dai | yPosti ng">
<soap: operati on soapAction="htt p://wa i ona. coni bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xnm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. coni bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>
</ bi ndi ng>
<servi ce name="Noti fyServi ce">
<port nanme="NotifyPort" bindi ng="tns: NotifyBi ndi ng">
<soap: address | ocati on="http://| ocal host: 0"/>
</ port>
</ servi ce>
<servi ce name="Regi st er Servi ce">
<port name="Regi sterPort" bindi ng="t ns: Regi st er Bi ndi ng" >
<soap: address | ocati on="http://| ocal host : 0/ Regi st er Ser vi ce/ Regi sterPort/"/>
</ port>
</ servi ce>
</ defi ni ti ons>

174

Using References to Implement Callbacks

The Accounting Client

Overview

Callback implementation

A client that has a callback object has two major parts to develop:

® The callback object’s implementation object.

® The client’s mai n() that performs the clients work.

When using a callback, the client’s mai n() will perform one additional task

that is normally only performed in servers. It will instantiate a servant for the
callback object and register it with the bus.

The callback object for this example is very simple. It has one static
member, busy, that is set to 1 when posti ng() is invoked and set to 0 when
done_posting() is invoked. Using the instance of Noti fyl npl registered
with the bus in the client’s nai n(), you can check the value of busy to see if
the Regi st er service is doing its daily posting and not accepting new
requests.

To avoid thread conflicts, the callback object’'s methods are synchronized.
When the methods complete, they then notify all interested parties that
callback object has been modified. This notifies the client the status has
been updated and it can stop waiting for the server.

Example 125 shows the code for the callback object.
Example 125:Callback Object

package com i ona. bus. denos. cal | backs;

inport java.net.*;
inport java.rm.?*;

public class Notifylnpl inplenents java.rm . Renote

{
public int busy = 0;

175

CHAPTER 8 | Artix References

Example 125:Callback Object

public void posting()
{ synchroni ze(this)
{
busy = 1;
noti fyAll ();
}
}

publ i c voi d done_posti ng()
{
synchroni ze(this)
{
busy = 0;
noti fyAll ();
}
}
}

The client main() The client mai n() in this example does six things:
1. Creates a service proxy for the Regi st er service.
2. Creates a servant for the callback object.

3. Registers the callback object’s servant with the bus so that it can
receive requests.

Registers the callback object with the Regi st er service.
5. Invokes operations on the Regi st er service.

Checks the callback object to see if the Regi st er service is posting.

176

Using References to Implement Callbacks

Example 126 shows the code for client mai n().

Example 126:Callback Client Main()

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.?*;

inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc.*;

inport comiona.j bus. Bus;
inport comiona. schenas. r ef erences. Ref erence;

public class Registerdient

{

public static void main (String args[]) throws Exception

{

char op;
Bus bus = Bus.init(args);

Q\ane nane = new
Q\ane(" htt p: // www i ona. cond bus/ denos/ cal | backs",
"Regi ster Service");
String portName = new String("RegisterPort");

String wsdl Path = "“file:/./resister.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h).toURL();

Regi ster registerProxy = bus. created ient(wsdl URL, nane,
port Nane,
Regi ster. cl ass);
Noti fylmpl notify = new Notifylnpl();

String contract = new String("./register.wsdl");

Servant servant = new Singl el nst anceServant (notify, contract,
bus) ;

\ane noti fyNanme = new

Q\ane("http: //ww: i ona. com bus/ denos/ cal | backs",
"NotifyService");

177

CHAPTER 8 | Artix References

Example 126:Callback Client Main()

5 bus. r egi st er Servant (servant, notifyNane);
6 Ref erence ref = bus. creat eRef erence(noti f yNane) ;
7 regi st er Proxy. regi ster_cal | back(ref);

Fl oat amount ;
float bal ance;

String tenp;
whi | e(true)
{
8 synchroni ze(notify)
{
9 whi | e(notify. busy == 1)
{
Systemout . printl n("The Server is posting. Pl ease
wait.");
10 notify.wait();
}
}
11 System out . printl n(" Choose an option:");

Systemout. println("1) Deposit");
Systemout. println("2) Wthdraw');
Systemout.printin("3) Exit");
System i n. read(op);

swi t ch(op)

case '1':
Systemout . printl n("Anount to deposit?");
Systemin.read(tenp);
anount = new Fl oat (tenp);
bal ance = regi st erProxy. deposit (anount. fl oat Val ue());
Systemout. printl n("New bal ance: "+bal ance);
br eak;

178

Using References to Implement Callbacks

Example 126:Callback Client Main()

}

case '2':
Systemout. printl n("Amount to withdraw?");
Systemin.read(tenp);
anount = new Fl oat (tenp);
bal ance = regi sterProxy. w thdraw anount . f| oat Val ue());
Systemout. printl n("New bal ance: "+bal ance);
br eak;
Case '3':
return;

}

The code in Example 126 does the following:

N o o s~ e

10.

11.

Initializes a bus for the client.

Creates a proxy for the Regi ster service.

Creates an instance of Noti fyl npl to be the callback object.
Creates a servant to wrap the callback object.

Registers the servant with the bus.

Creates a reference for the callback object’s servant.

Registers the callback by invoking the Regi st er service's
regi ster _cal | back() operation.

Ensures that the callback object cannot be modified by other threads
before checking its state.

If the callback object’s busy flag is set to 1 the server is doing its daily
posting and the client needs to wait.

Waits on the callback object. When the server changes the value of
busy, this call will stop blocking and the flag can be checked again.

Makes requests on the Regi st er service.

179

CHAPTER 8 | Artix References

The Accounting Server

Overview

Server main()

Registerimpl

The server in this example also exhibits some hybrid behavior. The

regi st er _cal | back operation receives a reference to the client’s callback
object and creates a service proxy for it. In this example, the proxy is put
into an object-level data element and the dai | yPost i ng operation invokes
the proxy’s operations to inform the clients when the server is posting.

In this example, the server's mai n() is a standard Artix server mai n() . It
initializes a bus instance, registers a Servant that wraps an instance of
Regi st er | npl , and then calls Bus. run() . For a discussion of writing an Artix
server mai n() see “Developing a Server” on page 15.

The Accounting server’'s implementation object, as generated by

wsdl t oj ava, is called Regi ster | npl . It has four methods:

regi ster_cal | back(), dail yPosting(), deposit(), and wi thdraw().
deposit () and wi t hdraw() perform data requests for the client and they are
left for you to implement.

For the discussion of callbacks, regi st er_cal | back() and dai | yPosti ng()
are of interest. regi st er_cal | back() is responsible for receiving the
callback object’s reference and instantiating a proxy for it. In this example,
the proxy is stored in the objects noti fy member. dai | yPosting() then
invokes the callback object’s operations to inform the client when the server
is busy.

Example 127 shows the completed Regi st er I npl class. The code in bold is
added to the generated class by the user.

Example 127:RegisterImpl

package com i ona. bus. denos. cal | backs;

i nport
i nport

i nport

i nport
i nport

180

java. net.*;
java.rm.*;

com i ona. schenas. r ef er ences. Ref er ence;

comiona. j bus. *;
java.lang. String;

Using References to Implement Callbacks

Example 127:Registerlmpl

public class Registerlnpl inplenents java.rm . Renote

{
Notifylnpl notify;

public voi d register_cal | back(com i ona. schenas. r ef er ences. Ref erence ref)
{

com i ona. j bus. Bus bus = D spatchLocal s. get Qurrent Bus();

notify = bus.createdient(ref, Notify.class);

}
public float deposit(float ammount)
{
/1 User code goes in here.
return 0.0f;
}

public float wthdrawfloat ammount) {
// User code goes in here.
return 0. 0Of;

}

public void dail yPosting(String date)

{
notify. posting();

// User code goes in here.

noti fy. done_posting();
}
}

register_callback() regi ster_cal | back() does the following:
1. Gets a handle on the bus hosting this servant.

2. Creates a proxy for the callback object using the reference sent by the
client.

181

CHAPTER 8 | Artix References

dailyPosting() dai | yPost i ng() does the following:

1. Invokes the callback object’s posti ng operation to notify the client that
the server is busy.

2. Performs the tasks involved in closing the daily books and posting the
results. This logic is left to the user to implement.

3. When the daily posting tasks are complete, it invokes the callback
object’s done_post i ng operation to notify the client that the server is
ready to handle new requests.

182

In this chapter

CHAPTER 9

The Artix Locator

The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

This chapter discusses the following topics:

Overview of the Locator page 184
Locator WSDL page 187
Registering Endpoints with the Locator page 191
Reading a Reference from the Locator page 192

183

CHAPTER 9 | The Artix Locator

Overview of the Locator

Overview

184

The Artix locator is a service which can optionally be deployed for the

following purposes:

® Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

® load balancing—if multiple service instances are registered against a
single service name, the locator load balances over the different service
instances using a round-robin algorithm.

Figure 5 gives a general overview of the locator architecture.

STAND-ALONE
LOCATOR

L 2
|| ©

Endpoint Service A
Manager
Plug-in

Client
LocatorService
Plug-in

(])
=

a0

Figure 5: Artix Locator Overview

Endpoint Service B
Manager
Plug-in

€ ©
%EM

Endpoint @
Manager

Plug-in

Service C

Locator service

Endpoint definition

Registering endpoints

Looking up references

Overview of the Locator

There are two basic options for deploying the locator service, as follows:

® Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 5). This approach is described in
detail in Deploying and Managing Artix Solutions. Sample source code
for such a standalone locator service is provided in the
denos/ uncat egor i zed/ | ocat or demonstration.

® Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

An Artix endpoint is a particular WSDL service (identified by a service name)
in a particular bus instance (identified by a WSDL location URL). Hence, it
is possible to have endpoints with the same service type and service name,
as long as they are registered with different bus instances. A WSDL location
URL and a service name together identify an endpoint.

A server that loads the locator’s endpoint manager plugin automatically
registers its endpoints with the locator in order to make them accessible to
Artix clients. When a server registers an endpoint in the locator, it creates an
entry in the locator that associates a service name with an Artix reference for
that endpoint.

An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.

185

CHAPTER 9 | The Artix Locator

Load balancing with the locator

186

If multiple endpoints are registered against a single service name in the
locator, the locator will employ a round-robin algorithm to pick one of the
endpoints. Hence, the locator effectively load balances a service over all of
its associated endpoints.

For example, Figure 5 on page 184 shows Servi ce A with two endpoints
registered against it. When the Artix client looks up a reference for Servi ce
A, it obtains a reference to whichever endpoint is next in the sequence.

Locator WSDL

Locator WSDL

Overview The locator WSDL contract, | ocat or . wsdl , defines the public interface of
the locator through which the service can be accessed. This section shows
extracts from the locator WSDL that are relevant to normal user
applications. The following aspects of the locator WSDL are described here:
® Binding and protocol
® WSDL contract
® Java mapping

Binding and protocol The locator service is accessed using the SOAP binding and the HTTP
transport.
WSDL contract Example 128 shows an extract from the locator WSDL contract that focuses

on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, | ookup_endpoi nt, that an Artix client
typically needs to call.

Example 128:Locator WSDL Contract

<definitions xm ns="http://schenas. xn soap. or g/ wsdl /"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xs="htt p: // ww. w3. or g/ 2001/ XM_Schena"
xm ns: ref ="http://schemas. i ona. con r ef er ences"
xm ns: | s="http://ws.iona.conil ocator"
t ar get Namespace="ht t p: // ws. i ona. coni | ocat or " >

<t ypes>
<xs: schema t ar get Narespace="htt p: //ws. i ona. coni | ocat or " >
1 <xs:inport schemalLocation="../../../schemas/references. xsd"
nanmespace="ht t p: // schenas. i ona. coni r ef er ences"/ >
2 <xs: el enent name="| ookupEndpoi nt " >

<xs: conpl exType>
<xs: sequence>
<xs: el enent name="servi ce_gnane" type="xs: Q\Nane"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

187

CHAPTER 9 | The Artix Locator

Example 128:Locator WSDL Contract

3 <xs: el enent nane="| ookupEndpoi nt Response" >
<xs: conpl exType>
<xs: sequence>
<xs: el ement nane="servi ce_endpoi nt"
type="ref: Ref erence"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType nane="Endpoi nt Not Exi st Faul t Except i on">
<xs: sequence>
<xs: el ement nanme="error" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
4 <xs: el ement nanme="Endpoi nt Not Exi st Faul t"
type="1s: Endpoi nt Not Exi st Faul t Excepti on"/>
</ xs: schema>
</ types>

<message name="| ookupEndpoi nt | nput ">

<part nane="paraneters" el ement="1|s:| ookupEndpoi nt"/>
</ message>
<nmessage name="| ookupEndpoi nt Qut put " >

<part nane="paraneters"

el ement =" s: | ookupEndpoi nt Response"/ >

</ message>
<nessage name="endpoi nt Not Exi st Faul t ">

<part name="pararmeters" el ement="1s: Endpoi nt Not Exi st Faul t"/>

</ nessage>
5 <port Type nane="Locat or Servi ce">
6 <oper ati on nane="| ookup_endpoi nt ">

<i nput nessage="1|s: | ookupEndpoi nt | nput "/ >
<out put nessage="1s: | ookupEndpoi nt Qut put "/ >
<fault name="fault" message="Is: endpoi nt Not Exi st Faul t"/>
</ oper at i on>
</ por t Type>

<servi ce name="Locat or Servi ce">
<port name="Locat or Servi cePort"
bi ndi ng="1I s: Locat or Ser vi ceBi ndi ng" >
7 <soap: address |ocation="http://I|ocal host:0"/>
</ port>
</ servi ce>
</ definitions>

188

Java mapping

Locator WSDL

The preceding locator WSDL extract can be explained as follows:

1.

This line imports the schema definition of the r ef : Ref er ence type. You
might have to edit the value of the schemaLocat i on attribute, if the
ref er ences. xsd schema file is stored in a different location relative to
the I ocat or . wedl file.

The | ookupEndpoi nt type is the input parameter type for the

| ookup_endpoi nt operation. It contains just the QName (qualified
name) of a particular WSDL service.

The | ookupEndpoi nt Response type is the output parameter type for the
| ookup_endpoi nt operation. It contains an Artix reference for the
specified service. If more than one endpoint is registered against a
particular service name, the locator picks one of the endpoints using a
round-robin algorithm.

The Endpoi nt Not Exi st fault would be thrown if the | ookup_endpoi nt
operation fails to find an endpoint registered against the requested
service type.

The Locat or Servi ce port type defines the public interface of the Artix
locator service.

The | ookup_endpoi nt operation, which is called by Artix clients to
retrieve endpoint references, is the only operation from the

Locat or Servi ce port type that user applications would typically need.
The SOAP | ocati on attribute specifies the host and IP port for the
locator service. If you want the locator to run on a different host and
listen on a different IP port, you should edit this setting.

Example 129 shows an extract from the Java mapping of the

Locat or Ser vi ce port type. This extract shows only the | ookup_endpoi nt
operation—the other operations defined for the locator are normally not
needed by user applications.

Example 129:/ava Mapping of the LocatorService Port Type

/1l Java
package com i ona.ws. | ocator;

189

CHAPTER 9 | The Artix Locator

Example 129:/ava Mapping of the LocatorService Port Type

inport java.net.?*;
inport java.rm.?*;

i nport com i ona. schenas. r ef er ences. Ref er ence;
inport javax.xm.rpc. hol ders. StringHol der;
inport java.lang.String;

i nport javax.xnl . namespace. Q\ang;

/**
* comiona.ws. | ocator. Locat or Servi ce
*/
public interface LocatorService extends java.rm . Renote

{

publ i ¢ comiona. schenas. r ef er ences. Ref erence
| ookup_endpoi nt (j avax. xm . nanespace. QNarme servi ce_gnane)
t hrows Endpoi nt Not Exi st Faul t Excepti on, Renot eExcepti on;

}

190

Registering Endpoints with the Locator

Registering Endpoints with the Locator

Overview

Configuring a server to register
endpoints

References

To register a server's endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint that it creates.

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and | ocat or _endpoi nt plug-ins, as shown in
Example 130.

Example 130:Server Configuration Scope for Using the Locator

Artix Configuration File (artix.cfg)

| ocat ed_ser ver

{
orb_plugins = ["xmfile_|l og streant, "soap", "http",
"| ocat or _endpoi nt"];
pl ugi ns: | ocat or: wsdl _url ="../wsdl /| ocat or.wsdl ";
b

When running the server, remember to select the appropriate configuration
scope by passing it as the - CRBname command-line parameter.

For more details about configuring a server to register endpoints, see the
following references:

® The chapter on using the locator in Deploying and Managing Artix

Solutions.
® Thelocator demonstration in
arti x/ Ver si on/ denos/ advanced/ | ocat or .

191

CHAPTER 9 | The Artix Locator

Reading a Reference from the Locator

Overview After the target server has started up and registered its endpoints with the

locator, an Artix client can then lookup the server's endpoints using the
locator. The client can then connect to the target server by creating a service
proxy using the reference from the locator. Figure 6 shows an outline of how
a client connects to a server in this way.

¥

Ea—R/BAar

SOAPHTTP Service WSDL Location/
SOAPHTTP Service

lookup_endpoint()

Create locator proxy
? Create service proxy

&
&)

<

Locator (4] @
Proxy Invoke operation Endpoint
I Manager
Service Service A Plug-in

Proxy

Figure 6: Steps to Read a Reference from the Locator

192

Reading a Reference from the Locator

Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 6, are as follows:

1. Generate the types and the interface for the locator by running
| ocat or. wsdl through wsdl t oj ava.

Note: This only needs to be done the first time you want to build a
client to use the locator. The generated Java code can be built into a
class and reused for subsequent client applications.

2. Construct a locator service proxy.
Use the locator proxy to invoke | ookup_r ef erence() .

4. Use the reference returned from | ookup_ref erence() to construct a
proxy to the service.

5. Invoke an operation using the created service proxy.

Example Example 131 shows an example of the code for an Artix client that retrieves
a reference to a Si npl eServi ce service from the Artix locator.

Example 131:Example of Reading a Reference from the Locator Service

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.*;

inport javax.xm .namespace. Q\arre;
inport javax.xn.rpc.*;

inport comiona.j bus. Bus;
inport com i ona. schenas. r ef erences. Ref er ence;
inport comiona.ws.|ocator.*;

public class SinpleServicedient
{

public static void main (String args[]) throws Exception

{

1 Bus bus = Bus.init(args);

193

CHAPTER 9 | The Artix Locator

Example 131:Example of Reading a Reference from the Locator Service

2 Q\ane name = new QNane("http://ws.iona.conllocator",
"Locat or Servi ce");

3 Q\ane | ookup_narme = new QNane("htt p: //www i ona. cond bus/ t est s",
" SOAPHT TPSer vi ce") ;
4 Q\ane portNane = new Q\ame("", " Locat or Servi cePort");

5 /] Build the Locator Service Proxy
String wsdl Path = "file:/../wsdl/|ocator.wsdl ";
URL wadl Location = new Fi |l e(wsdl Path).toURL();

Servi ceFactory factory = ServiceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Locat or Servi ce | ocator =
(Locat or Servi ce) servi ce. get Port (port Nare,
Locat or Servi ce. cl ass) ;

6 /1l nvoke | ookup_endpoi nt ()
Ref erence sinp_ref = |ocator. | ookup_endpoi nt (| ookup_nane) ;
7 /1 Build a proxy to the target service fromthe reference

Sinpl eService sinple client =
(S npl eServi ce) bus. creat ed i ent (sinp_ref,
Si npl eSer vi ce. cl ass) ;

8 String greeting = "Qeetings froma located client";
String resul t;
result = sinple_client.say_hello(greeting);
Systemout. println("say_hell o method returned: "+result);

}

}

The code in Example 131 can be explained as follows:

1. You should ensure that the client picks up the correct configuration by
passing the appropriate value of the - CRBnane parameter.

2. This line constructs a QName, nane, that identifies the <ser vi ce
name="_Locat or Ser vi ce" > tag from the locator WSDL. See the listing of
the locator WSDL in Example 128 on page 187.

3. This line constructs a QName, | ookup_nane, that identifies the
SOAPHTTPSer vi ce service from the Si npl eSer vi ce WSDL.

194

Reading a Reference from the Locator

This port name refers to the <port name="Locat or Servi cePort" ...>
tag in the locator WSDL (see Example 128 on page 187).

The locator service proxy is created by using the standard JAX-RPC
method for creating a dynamic proxy. For details see “Developing a
Client” on page 20.

The | ookup_endpoi nt () operation is invoked on the locator to find an
endpoint of SOAPHTTPSer vi ce type.

Note: If there is more than one WSDL port registered for the
SOAPHTTPSer vi ce server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.

The Si npl eSer vi ce reference returned from the locator, si np_ref, is
then passed to the bus’ created i ent () proxy constructor. The
created ient () proxy constructor takes Ref er ence type and the class
of the proxy to be created as its arguments.

You can now use the simple client proxy to make invocations on the
remote Artix server.

195

CHAPTER 9 | The Artix Locator

196

CHAPTER 10

Using Message
Contexts

Artix implements and extends the J2EE MessageContext
interface to allow users to manipulate metadata about
messages and transports.

In this chapter This chapter discusses the following topics:
Understanding Message Contexts in Artix page 198
Sending Header Information Using Contexts page 218

197

CHAPTER 10 | Using Message Contexts

Understanding

Overview

Contexts and the bus

198

Message Contexts in Artix

Artix implements the JAX-RPC MessageCont ext interface. JAX-RPC message
contexts are primarily used in writing message handlers, but can also be
used to store metadata about messages or pass state information into or out
of the message handling chain. Generally, this metadata is not passed
across the wire with the message.

In addition, Artix extends the JAX-RPC message contexts to provide a

consistent, thread safe mechanism for passing additional information along
with request and reply messages. Currently, this mechanism can be used to
send SOAP headers and security information when using the SOAP binding.

Message contexts are bus objects that application level code can access. To
manage the Artix message contexts associated with it, a bus uses a context
registry that allows it to instantiate thread specific message contexts. Using
the message context, application code can access any of the properties set
by the application. Because the contexts are thread specific bus objects, any
changes made to a property stored in a context by a message handler is
reflected at the application level.

Artix message contexts, because they hold information which is to be

written out on the wire, have a request context container and a reply context
container for the thread in which it is running. The reply context container

Understanding Message Contexts in Artix

stores information returned from a server and the request context container
stores information that is sent along with a request. This is shown in

Figure 7.
(Context Registry >

Thread X Thread Y
: > Artix Message Artix Message
; Context X Context Y & |
" |Request Context ! Request Context
' |Reply Context : Reply Context

Figure 7: Overview of the Message Context Mechanism

Getting message contexts To access message contexts in your application do the following:

1. If you are using Artix message contexts, register the type factories for
the data stored in the contexts. See “Registering Type Factories” on
page 128.

2. Get a reference to the bus’ context registry.

Get the message context for the thread in which your application is
running from the context registry.

Working with message contexts Once you have gotten the message context, you can chose to use it as a
generic JAX-RPC message context or to cast it to an Artix message context.
Both interfaces will allow you to access all of the properties set for the active
bus, but the Artix message context simplifies the accessing Artix specific
properties. The Artix message context interface is an extension of the generic
message context interface, so all of the generic message context methods
are available after you cast a generic message context to an Artix message
context.

199

CHAPTER 10 | Using Message Contexts

In this section This section discusses the following topics:
Getting the Context Registry page 201
Getting the Message Context for a Thread page 203
Working with Generic Contexts page 206
Working with Artix Message Contexts page 211

200

Understanding Message Contexts in Artix

Getting the Context Registry

Overview

Procedure

Example

The Context Registry is maintained by the bus. It contains an entry for all of
the Artix specific property types registered with the bus. It also instantiates
thread specific message contexts and hands out references to the proper
message context to requesting applications.

The Bus has a method, get Cont ext Regi st ry(), that returns a reference to
the bus instance’s context registry. The context registry is an object of type
Cont ext Regi stry. Example 132 shows the signature of

get Cont ext Regi st ry() . Because the context registry is specific to an
instantiated bus instance, you must call it on an initialized bus instance.

Example 132:getContextRegistry()

Cont ext Regi stry com i ona. j bus. Bus. get Cont ext Regi stry();

Example 133 shows an example of getting the context registry from within
the implementation object of an Artix service.

Example 133:Getting the Context Registry
/1 Java

inport java.net.*;

inport java.rm.?*;

inport comiona.jbus.*;

public class Atherny

{

com i ona. j bus. Bus def _bus = D spatchLocal s. get Current Bus();

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

201

CHAPTER 10 | Using Message Contexts

The code in Example 133 does the following:

1. Import the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Get a handle to the application’s bus.
Call get Cont ext Regi stry() on the default bus to get the default bus’
context registry.

202

Understanding Message Contexts in Artix

Getting the Message Context for a Thread

Overview

getCurrent()

To ensure thread safety, the context registry creates a Message Context
object for each thread. The message contexts maintained by the context
registry are passed as generic J2EE MessageCont ext objects. These objects
provide access to properties stored in the contexts using the APIs defined in
the J2EE specification.

Artix provides two means of getting the currnet message context for a
thread. If you have the context registry, you can use the registry’s

get Qurrent () method. If you do not have the context registry, you can use
the D spat chLocal s. get Qurrent Cont ext () method.

To manipulate Artix specific properties you must cast the returned
MessageCont ext into an | onaMessageCont ext object. Once the
MessageCont ext is cast to an | onaMessageCont ext it is an Artix message
context. The Artix message context APIs provide easy access to Artix specific
properties and track the context container for which each property is set.

Message contexts are passed out by the context registry using the registry’s
get Qurrent () method. get Current () returns the message context object for
the thread from which it is called. Message contexts are returned as generic
J2EE MessageCont ext objects. Example 134 shows the signature for
getQurrent ().

Example 134:getCurrent()

j avax. xm . rpc. handl er . MessageCcont ext Cont ext Regi stry. get Qurrent ();

If you want to use the returned message context to work with Artix specific
context information you can cast it to an 1 onaMessageCont ext object. The
| onaMessageCont ext object is discussed in “Working with Artix Message
Contexts” on page 211.

203

CHAPTER 10 | Using Message Contexts

DispatchLocals

Example 135 shows how to get an message context from the context
registry.

Example 135:Getting a Message Context

I/ Java

inport java.net.*;

inport java.rm.?*;

inport javax.xm.rpc.*

inport comiona.jbus. *;

public class At herny

{

comiona. j bus. Bus def_bus = Di spatchLocal s. get Current Bus();

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

MessageCont ext messCont = cont Reg. get Current () ;

The code in Example 135 does the following:

1. Import the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Get a handle to the application’s bus.

Call get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Call getaurrent () on the context registry to get the Artix message
context for the application’s thread.

Di spact Local s is a globally accessable interface that provides a simple
method for getting the current message context for a thread. Its

get Qur r ent MessageCont ext () method returns the message context object
for the thread from which it is called. Message contexts are returned as
generic J2EE MessageCont ext objects. Example 136 shows the signature
for getQurrent ().

Example 136:getCurrentMessageContext()

javax. xm . rpc. handl er . MessageCcont ext get Qurr ent MessageCont ext () ;

204

Understanding Message Contexts in Artix

If you want to use the returned message context to work with Artix specific
context information you can cast it to an | onaMessageCont ext object. The
| onaMessageCont ext object is discussed in “Working with Artix Message
Contexts” on page 211.

Example 137 shows how to get an message context using the
D spat chLocal s interface.

Example 137:Getting a Message Context

/1 Java

inport java.net.?*;
inport java.rm.?*;
inport javax.xm.rpc.*

inport comiona.jbus.*;
public class Atherny

{
MessageCont ext messCont = D spatchlLocal s. get Qurrent Bus() ;

205

CHAPTER 10 | Using Message Contexts

Working with Generic Contexts

Overview

Setting a property in the context

206

A JAX-RPC message context is a container for properties that are shared
among the participants in applications message handling chain. They have
some predefined properties that are made available to message handlers
that run below the application level. However, you can add any named
property you like to the context as long as the name does not conflict with
one of the predefined properties.

Properties set in the message context are only available at certain steps
along the message handling chain. Properties set in the context by message
handlers are only available to message handlers further down the processing
chain and are destroyed once the operation’s invocation completes.
Properties set at the application level are available globally and live for the
duration of the application.

Generic message contexts have methods to set a property in the context, to

get a property from the context, and to remove a property from the context.
They also have methods to determine what properties are set in the context.

Before a property exists in the message context it must be set using the
message context’s set Property() method. Example 138 shows the
signature for set Property() . The first parameter, nanme, can be any string as
long as it is unique among the properties set in the context. The second
parameter, val ue, can be any instantiated Java object. It becomes the value
of the property stored in the context.

Example 138:MessageContext.setProperty()
voi d setProperty(Sting name, Cbject val ue);

The scope of the property depends on where in the message handling chain
the property is set into the context. Properties set at the level from which the
operations are invoked they are global in scope and exist for the duration of
the process’ lifecycle or until they are explicitly removed from the message
context. Properties set by message handlers are only available to message
handlers further down the message handler chain and expire once the
operation’s invocation is completed. For more information about message
handlers, see “Writing Message Handlers” on page 239.

Understanding Message Contexts in Artix

Example 139 shows the code for setting a property in the request context.
Example 139:Setting a Property in a Message Context

/1 Java

inport java.net.*;
inport java.rm.*;
inport comiona.jbus.*;

public class Atherny
{

com i ona. j bus. Bus def _bus = D spatchLocal s. get Current Bus();
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg. get Qurrent();

bool ean i sEncryt ped = TRUE

cont ext . set Property("i sEncrypted", isEncrypted);

The code in Example 139 does the following:

1. Imports the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Calls get Qurrent () on the context registry to get the message context
for the application’s thread.

Creates the an instance of the property’s class and set the values.
Sets the property by calling set Property().

207

CHAPTER 10 | Using Message Contexts

Getting a property from the
context

208

You get a property’s value from the message context using its

get Property() method. Example 140 shows the signature for

get Property(). It takes a single parameter, nane, that is the name of the
property for which you want the value. If the property exists, it is returned. If
the property does not exist, nul | is returned.

Example 140:MessageContext.getProperty()
Chj ect get Property(String nane);

Example 141 shows the code for getting a SOAP header from the request
context.

Example 141:Getting a Property from the Message Context

/1 Java

inport java.net.*;
inport java.rm.*;
inport comiona.jbus.*;

public class Atherny
{

comiona. j bus. Bus def_bus = Di spatchLocal s. get Current Bus();
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg. get Current ();

bool ean encrypt = (bool ean) cont ext . get Property("i sEncrypted");

The code in Example 141 does the following:

1. Imports the package com i ona. j bus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Calls get Qurrent () on the context registry to get the message context
for the application’s thread.

5. Gets the property by calling get Property() with the appropriate name.

Understanding Message Contexts in Artix

Removing a property from the If you wish to remove a property from the message context, you do so using

context the message context’s r enoveProperty() method. Example 142 shows the
signature for removeProperty() . It takes a single parameter, nane, that
represents the name of the property you wish to remove.

Example 142:MessageContext.removeProperty()
voi d renoveProperty(String nane);

Example 143 shows the code for removing a property from the message
context.

Example 143:Removing a Property from a Message Context

/1 Java

inport java.net.*;
inport java.rm.*;
inport comiona.jbus.*;

public class Atherny

{
1 comiona.jbus.Bus def _bus = D spatchLocal s. get Qurrent Bus();

2 ContextRegistry contReg = def_bus. get Cont ext Regi stry();
3 MessageCont ext context = contReg.getQurrent();
4 context.removeProperty("isEnctryted");

The code in Example 143 does the following:
1. Gets a handle to the application’s bus.

2. Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

3. Calls get current () on the context registry to get the message context
for the application’s thread.

4. Removes the property by calling renovePr operty() .

209

CHAPTER 10 | Using Message Contexts

Determining what properties are
set

210

The JAX-RPC MessageCont ext interface has two methods that allow you to
determine what properties are set in a context. cont ai nsProperty() takes
the name of a property, as a String, and returns true if the property is set
and false if the property is not. get PropertyNares() returns an | terat or
object with the names of all properties stored in the message context.

Example 144 shows the code for seeing if a property is set in the message
context.

Example 144:Querying a Property in the Message Context

/1 Java

inport java.net.?*;
inport java.rm.*;
inport comiona.jbus.*;

public class Atherny
{
com iona. j bus. Bus def _bus = D spatchLocal s. get Qurrent Bus();

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg. get Current ();

if (context.containsProperty("isEnctryted"))

{

Systemout ("The property is set");
}

Understanding Message Contexts in Artix

Working with Artix Message Contexts

Overview

EI CLIENT

Each Artix message context holds one Request Context Container and one
Reply Context Container. The request context container holds all of the
properties associated with messages that originate as service requests in a
proxy. The reply context container holds all of the properties associated with
messages that are created by services in response to a request. In both
instances, the properties in the context container are passed all the way
through the request and reply chain. For example, if Qi ent makes a
request on Server A, Server Awould receive the properties set in the request
context from the client. If Ser ver Athen passes the request along to Ser ver B,
Ser ver B also receives the request context sent by Qi ent. The same is true
when using the Artix router. Figure 8 shows how context properties are
passed with messages.

[EH ServerB

Q ServerA/Router Q

2

! ServerAProxy

Request Context

ﬂf ServerBProxy

Reply Context

Reply Context

Figure 8: Contexts Passed Along Request/Reply Chain

The context containers hold the data for all of the contexts instantiated in
the Artix message context’s thread. Each context container can hold one
instance of a registered property type. Properties are instantiated separately
for the request context container and the reply context container. For
instance, you can get a SOAP header property for the request context

211

CHAPTER 10 | Using Message Contexts

Setting a property

212

container and leave the reply context container empty. In that case, the
SOAP header property would be included in all request messages sent from
the thread in which it was set.

Before you can get a property from one of the context containers, the
property must be set in that container. Properties are set in one of two ways.
The first is that the property is set by the sender of the message. For
example, if a client sends a request with a WS-Security header, the server's
request context container will have the WS-Security property set.

The second is to use the message context’s setter methods. The message
context has four setter methods: set Repl yCont ext (),

set Repl yCont ext AsString(), set Request Cont ext (), and

set Request Cont ext AsStri ng() . set Repl yCont ext () and

set Request Cont ext () allow you to set the values for properties that are
defined as non-string data. set Repl yCont ext AsString() and

set Request Cont ext AsStri ng() allow you to set the values for properties
that are defined as strings. Example 145 shows the signature for these
methods.

Example 145:Methods for Setting a Property

voi d set Repl yCont ext (Q\ane nanme, (bject val ue);

voi d set Repl yCont ext AsStri ng(Q\ane nane, String val ue);
voi d set Request Cont ext (Q\Nane nane, (bj ect val ue);

voi d set Request Cont ext AsStri ng(QNanme nare, String val ue);

The first parameter to these methods, nane, specifies the name of the
property you desire to set. The Quane passed in must be a Q\ane of a
property that is registered with the context registry.

The second parameter, val ue, is data you are using to set the property. It
must be of the appropriate type for the property specified in nane.

To set a property do the following:

1. Create an instance of the object representing the property you want to
set.

2. Set the desired fields of the newly created property.

Understanding Message Contexts in Artix

3. Call the appropriate setter method with the name of the property you
are setting and the property instance you created. For example, to set a
property into the reply context container, you would use
set Repl yCont ext () .

Example 146 shows the code for setting a property in the request context.
Example 146:Setting a Property in an Artix Message Context

/1 Java

inport java.net.*;
inport java.rm.?*;
inport comiona.jbus.*;

public class Atherny

{

com i ona. j bus. Bus def _bus = D spatchLocal s. get Current Bus();
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

client Type HTTPA ient Attrs = new client Type();
HTTPA i ent Attrs. set _user name(" Mur phy") ;
HTTPA i ent At trs. set _passwor d("1234");

Q\ane cont ext Nane = new Q\ame(" http: //wi dgets. coni ",
"HITPA ient Attributes");

cont ext . set Request Cont ext (cont ext Nanme, HTTPd ientAttrs);

The code in Example 146 does the following:

1. Imports the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.

Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Calls get Qurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

213

CHAPTER 10 | Using Message Contexts

Creates the an instance of the property’s class and set the values.
Creates the QName for the property.

Sets the property by calling set Request Cont ext () with the appropriate
Quane and the newly created property object.

Getting a property Artix message contexts have four methods that allows you to get a property
from one of the context containers. These methods are get Repl yCont ext (),
get Repl yCont ext AsString(), get Request Cont ext (), and
get Request Cont ext AsSt ri ng() . get Repl yCont ext () and
get Request Cont ext () return the property a generic Java Qbj ect that must
be cast into the property’s type. get Repl yCont ext AsStri ng() and
get Request Cont ext AsStri ng() return the values of properties of type
String. Example 147 shows the signature for these methods.

Example 147:Methods for Getting a Property

Chj ect get Repl yCont ext (Q\ane nane) ;

String get Repl yCont ext AsSt ri ng(Q\ane nane) ;
Chj ect get Request Cont ext (Q\Nane nane) ;

String get Request Cont ext AsStri ng(QNane narre) ;

They take a single parameter, nane, that specifies the name of the property
you desire to get. The Q\ane passed in must be a Q\ane of a property that is
registered with the context registry. You can register your own properties to
use as SOAP headers.

Example 148 shows the code for getting a SOAP header from the request
context.

Example 148:Getting a Property

/1 Java
inport java.net.?*;
inport java.rm.*;

1 inport comiona.jbus.*;

public class Atherny
{
2 comiona.jbus.Bus def _bus = D spatchLocal s. get QurrentBus();

3 ContextRegistry cont Reg = def_bus. get Cont ext Regi stry();

214

Working with a property

Removing a property

4

5
6

Understanding Message Contexts in Artix

Example 148:Getting a Property

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

Q\ane ref Nanme = new Q\Nane("http://wi dgets. com ", " nySOAPHeader ") ;
header Type header =
(header Type) cont ext . get Request Cont ext (r ef Nane) ;

The code in Example 148 does the following:

1. Imports the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.
Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Calls get Qurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

5. Creates the QName used to get the property from the context
container. This QName must be the same QName as the one with
which the property was registered.

6. Gets the customer SOAP header property by calling
get Request Cont ext () with the appropriate Q\ane.

Once you have gotten a property from the context container, you must first
cast the returned oj ect to the appropriate data type for the property. Each
property has its own associated data type. For example, in Example 148 the
custom SOAP header’s data is of type header Type.

Once the property is cast into the appropriate type you can access its fields
using the methods defined for the type. Any changes made to the property
by your application change the copy stored in the context container and will
be propagated when the property is sent with a message.

If you do not want the data in a particular property to be propagated beyond
a certain point, you can remove it from a context container using one of the
the Artix message context’s remove methods. r emoveRepl yCont ext ()
removes properties from the message context’s reply container and

215

CHAPTER 10 | Using Message Contexts

216

r emoveRequest Cont ext () removes properties from the message context’s
request context container. This is useful if your application must forward
requests to other servers that do not need, or should not get, a property.
The removal methods take a single parameter, nane, that specifies the
Quane of the property you are removing from the container. Example 149
shows the code for removing the HTTP client attributes from the request
context container.

Example 149:Removing a Property

/1 Java

inport java.net.?*;
inport java.rm.?*;
inport comiona.jbus. *;

public class Atherny

{

com iona. j bus. Bus def _bus = D spatchLocal s. get Current Bus();
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

Q\ane cont ext Nane = new QNarre(" http://w dgets. coml ",
"HTTPd ient Attributes");

cont ext . r enoveRequest Cont ext (cont ext Narre) ;

The code in Example 149 does the following:

1. Imports the package com i ona. j bus so that it has access to the Artix
bus APIs.

2. Gets a handle to the application’s bus.
Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

4. Calls get Qurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

5. Creates the QName for the property to remove.

Understanding Message Contexts in Artix

6. Removes the HTTP client attribute property by calling
r enoveRequest Cont ext () with the appropriate Qhane.

217

CHAPTER 10 | Using Message Contexts

Sending Header Information Using Contexts

Overview Using the context mechanism, you can embed data in message headers that
are not part of the operation’s parameter list. This is useful in sending
metadata such as security tokens or session information that is not vital to
the logic involved in processing the request. Currently only SOAP headers
are supported.

The data sent in the message header is a custom context that you will need
to create and register with the Artix context container when you build your
application.

Note: If you change the payload format used by the application, your
code will continue to work. However, the header information stored in the
context will not be transmitted.

To send customer header information in a context you need to do the
following:

1. Define an XMLSchema for the data being stored in the header.
2. Generate the type factory and support code for the header data.

3. Register the type factory for the header data. See “Registering Type
Factories” on page 128.

4. Register the header data as a context.

Once the header data is registered as a context with Artix, it can be
accessed using the normal context mechanisms.

In this section This section discusses the following topics:
Defining Context Data Types page 219
Registering Context Types page 221
SOAP Header Example page 223

218

Sending Header Information Using Contexts

Defining Context Data Types

Overview

Defining a context schema

Contexts can store data of any XMLSchema type that is derived from
xsd: anyType. In other words, a context data type can be any primitive,
simple, or complex XMLSchema type.

When creating a context whose type is an XMLSchema primitive type or a
native XMLSchema simple type like xsd: nonNegat i vel nt eger , you do not
need to explicitly define the context's data type. However, if you are creating
a context whose type is a user-defined simple type or a complex type, you
need to define the data type in an XMLSchema document (XSD) or in the
types section of your contract and generate the appropriate type factories for
the data type.

It is usually more appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
WSDL contract. This approach is more logical because contexts are
normally used to implement features independently of any particular WSDL
contract.

To define a complex context data type, Cont ext Dat aType, in the namespace,
Cont ext Dat aUR! , you define a context schema following the outline shown
in Example 150.

Example 150:0utline of a Context Schema

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<xsd: schena
xm ns: xsd="ht t p: / / www W8. or g/ 2001/ XM_Schera"
t ar get Nanespace="Cont ext Dat aUR "
el enment For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xsd: conpl exType nane="Cont ext Dat aType" >

</ xsd: conpl exType>
</ xsd: schema>

219

CHAPTER 10 | Using Message Contexts

Example

Generating Java code for a context
schema

220

For example, you could define the data for a header that contains two
elements. One element, ori gi nat or, is a string containing the name of the
message originator. The other element, ti meSt anp, is the date and time the
message was sent. The data type for this header, header | nf o, is shown in
Example 151.

Example 151:Header Context Data Definition

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schena
xm ns: xsd="ht t p: / / waw. w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p: // schenas. i ona. coni t ypes/ cont ext "
el ement For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xsd: conpl exType nanme="header | nf 0" >
<xsd: sequence>
<xsd: el ement nane="origi nator" type="xsd:string"/>
<xsd: el ement nane="ti neStanp" type="xsd: dat eTi ne"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schenma>

To generate the Java code for the context data type, Cont ext Type, from a
context schema file, Cont ext Schena. xsd, enter the following command at
the command line:

wsdl t oj ava Cont ext Schena. xsd

The WSDL-to-Java compiler will generate two Java classes:

® (ontext Type. j ava contains the class representing the data type.

® (ont ext TypeTypeFact ory. j ava contains the type factory needed to
instantiate the context data type.

These classes will need to be accessible to any applications that wish to

register and use a context of the defined type.

For more information on type factories see “Working with Artix Type
Factories” on page 125.

Sending Header Information Using Contexts

Registering Context Types

Overview

Registering a context to use as a
SOAP Header

Before you can use a context, you must register it with the bus’ context
registry using the registry’s r egi st er Cont ext () method. r egi st er Cont ext ()
require that you provide the Qnane for the context and the Q\ane of the data
type stored in the context.

The main effect of registering a context is that the context registry adds a
type factory reference to its internal table. This type factory reference
enables the context registry to create context data instances whenever they
are needed.

To register a context to be used as a SOAP header you need to provide the
name of the WSDL message part that is to be inserted into the SOAP
header. This information comes from the WSDL contract defining the
messages used by the application.

Example 152 shows the signature of the regi st er Cont ext () function used
to register a context to be used as a SOAP header.

Example 152:The registerContext() Function for SOAP Headers

voi d Cont ext Regi stry. regi ser Cont ext (QNarme nanme, Q\ane type,
Q\ane nessage_nane,
String part_nane);

regi st er Cont ext () takes the following arguments:

nane The qualified name used to represent the property.
type The qualified name of the property’s data type.

message_nane The qualified name of the WSDL message specified in the
<soap: header > element defining this SOAP header. If
there is no <soap: header > elements defined in the
contract, this can be any valid Q\ane.

part_narme The part name specified in the <soap: header > element
defining this SOAP header. If there is no <soap: header >
elements defined in the contract, this can be any valid
String.

221

CHAPTER 10 | Using Message Contexts

222

For example, to register a SOAP header property of the type defined in
Example 151 on page 220 you would use code similar to Example 153.

Example 153:Registering a SOAP Header Property
Il Java

/1l Artix servant, servant, obtained earlier
header | nf oTypeFact ory fact = new header| nf oTypeFact ory();
servant . regi st er TypeFact ory(fact);

/1 Bus, bus, obtained earlier
Cont ext Regestry cont Reg = bus. get _context _regi stry();

// Create a Q\amre for the new property
Q\ane name = new Q\Nane("http://javaExanpl es. i ona. cont,
" SOAPHeader ") ;

/] CGreate a Q\arre to hol d the QNane of the property’s data type
Q\ne type = new Q\ane("http://schenas. i ona. condtypes/ context"”,
"header | nfo");

/I Create a Q\ane for the nessage
Q\Bne nessage = new Q\Nane("htt p: //nyHeader. coni header "
"header _i nfo");

/1 Register the property
cont Reg. r egi st er Cont ext (nane, type, nmessage, "header_part");

The code in Example 153 does the following:
1. Register the type factory for the header's data type.
Get a handle to the bus’ context registry.

2
3. Build the Q\ane by for the new property. This can be any valid Q\ane.
4

Build the Qnane that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Build the Q\ane for the message defining the SOAP header. In this
example, the SOAP header is not defined in the WSDL contract so the
value is unimportant.

6. Register the property with the context registry. The value used for the
part name, header _part, can be any string.

Sending Header Information Using Contexts

SOAP Header Example

Overview

WSDL contract

The example in this section transmits a custom SOAP header between two
Artix processes. The SOAP header is defined in the WSDL contract for this
example to demonstrate how context registration relates to the WSDL
contract for SOAP headers.

The SOAP header data in this example is transmitted as follows:

1. The client registers the property, SOAPHeader I nf o, with the context
registry for its bus.

2. The client initializes the property instance.
The client invokes the sayH () operation on the server and the SOAP
header property is packaged into the request message's SOAP header.

4. When the server starts up, it registers the SOaPHeader I nf o property
with the context registry for its bus.

5. When the sayH () operation request arrives on the server side, the
SOAP header is extracted and put into the request context container as
a SAPHeader | nf o property.

6. The sayH () operation implementation extracts the property from the
request.

If the server is this example were not an Artix process, it would not need to

use the context mechanism to extract the SOAP header. It would have its
own method of handling the SOAP header.

Example 154 on page 224 shows the WSDL contract used to define the
service used in this example. It imports the XSD file, SOAPcont ext . xsd, that
defines the SOAP header property’s data type in Example 151 on page 220.
The sOAPHeader | nf o type is used to define the only part of the header Msg
message. In the SOAP binding for G eet er, G eet er SOAPBI ndi ng, the
definition of the input message includes a <soap: header > element that

223

CHAPTER 10 | Using Message Contexts

specifies that header Msg: header Part is to be placed in a SOAP header
when a request is made. Your application code will be responsible for
creating the property that populates the defined SOAP header.

Example 154:SOAP Header WSDL

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions name="Hel | oWr| d" target Namespace="http://wwv. i ona. com soapHeader"
xm ns="http://schenas. xm soap. org/ wsdl / "
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: ns1="http://schemas. i ona. com t ypes/ cont ext "
xm ns: wsdl ="ht t p: // schenmas. xm soap. or g/ wsdl / "
xm ns: xsd="ht t p: / / wan W8. or g/ 2001/ XM_Schema" >
<inport |ocation="file:/SQAPcont ext . xsd"
namespace="htt p: // schenas. i ona. coni t ypes/ cont ext "/ >
<t ypes>
<schera t ar get Namespace="htt p: // wa i ona. com cust om soap_header"
xm ns="ht t p: // waw. W3. or g/ 2001/ XM_Schena" >
<el ement name="r esponseType" type="xsd:string"/>
<el enent name="r equest Type" type="xsd:string"/>
</ schena>
</ types>
<message nane="greet MeRequest ">
<part el enent ="r equest Type" name="ne"/>
</ message>
<message nane="greet MeResponse" >
<part el enent ="responseType" nane="t heResponse"/>
</ message>
<nessage name="header Msg" >
<part type="nsl: SOAPHeader | nfo" nane="header Part" />
</ message>
<port Type nane="Q eeter">
<oper ati on name="gr eet M" >
<i nput nmessage="gr eet MRequest" nane="gr eet MRequest "/ >
<out put message="gr eet MeResponse" name="gr eet MeResponse" />
</ oper at i on>
</ por t Type>

224

Sending Header Information Using Contexts

Example 154:SOAP Header WSDL

<bi ndi ng name="Q eet er SOAPBI ndi ng" type="Q eeter">
<soap: bi ndi ng styl e="docunent" transport="http://schenas. xm soap. org/ soap/ http"/>
<oper ati on name="gr eet Me" >
<soap: oper ati on soapAction="" styl e="docurent"/>
<i nput nane="gr eet MeRequest " >
<soap: body use="literal "/>
<soap: header use="literal" nmessage="header Msg" part="headerPart" />
</i nput >
<out put name="gr eet MeResponse" >
<soap: body use="literal "/>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce nane="Q eet er Servi ce">
<port bi ndi ng="@Q eet er SOAPBI ndi ng" nane="SoapPort">
<address | ocation="http://| ocal host: 9000"/ >
</ port >
</ servi ce>
</ definitions>

Generatingthe Javaclassesforthe Because the XSD file for the property’s data type is imported into the

property’s data type contract for the service wsdl t oj ava will automatically generate the
appropriate classes and type factories for SOAPHeader | nf o when you
generate the code for the service.

To generate the code for the service save the WSDL contract into a file
called soapHeader . wsdl and the XSD file for SOAPHeader | nf o into a file
called sQaPcont ext . xsd. Then run the following command:

wsdl t o] ava soapHeader . wsdl

The client The client in this example will send a SOAP header of type SOAPHeader | nf o
when it invokes the gr eet Me operation. To do this it must do four things:

1. Register the type factory for SOAPHeader I nf o.
Register a property of SQAPHeader I nf o type.
Create an instance of SOAPHeader I nf o.

Populate the instance with the appropriate data.

o &~ wnN

Set the SaPHeader | nf o property in the request context container.

225

CHAPTER 10 | Using Message Contexts

When the greet Me() method is invoked, the property will be inserted into
the SOAP message’s header element and sent to the server.

Example 155 on page 226 shows the code for the client.
Example 155:Client Code

/'l Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.*;

i nport javax.xnl . namespace. Q\ang;
inport javax.xni.rpc.*;

inport comi ona.j bus. Bus;

public class Geeterdient

{
public static void main (String args[]) throws Exception
1 { Bus bus = Bus.init(args);
2 Q\anre name = new QNane("http://ww. i ona. coml soapHeader ",

"Q eet er Service");
Q\ane portNane = new Q\ane("","Qeeter");

String wsdl Path = “file:/./soapHeader.wsdl “;
URL wadl Location = new Fi |l e(wsdl Pat h).toURL();

Servi ceFactory factory = Servi ceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Qeeter inpl = (Qeeter)service. get Port (port Narre,
Qeeter.class);

3 SQAPHeader | nf oTypeFactory fact =
new SQAPHeader | nf oTypeFact ory() ;
bus. r egi st er TypeFact ory(fact);

4 Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

226

10

11

12

Sending Header Information Using Contexts

Example 155:Client Code

}

\ane name = new Q\Nane("http://javaExanpl es. i ona. cont,
" SOAPHeader ") ;

Q\ane type =
new Q\anme("http://schenas. i ona. coni t ypes/ cont ext",
" SQAPHeader | nf 0") ;

Q\ane nessage = new Q\Nane("http://www i ona. conl soapHeader "
"header M5g") ;

cont Reg. r egi st er Cont ext (nane, type, nessage, "headerPart");
SQAPHeader | nf o header = new SOAPHeader | nfo() ;
header . set i gi nat or ("1 ONA Technol ogi es") ;

header . set Message("Artix is powerful !");

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

cont ext . set Requext Cont ext (nane, header);
String string_out;

string_out = inpl.greetMe("Chris");
Systemout . println(string out);

bus. shut down(true);

}

The code in Example 155 on page 226 does the following:

o ok wbd

Initializes an instance of the bus.

Creates a proxy for the Greeter service.
Register the type factory for SOAPHeader | nf o.
Gets the context registry from the bus.
Builds the Q\are for the new property.

Builds the Q\are for the property’s data type. The values for this are

taken from the XSD defining the data type. The first argument is the

namespace under which the type is defined. The second argument is
the name of the complex type.

227

CHAPTER 10 | Using Message Contexts

The server main line

228

7. Builds the Q\are for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
Quane for the message defined in the <soap: header > element of the
contract, http://waw i ona. con soapHeader : header Msg.

8. Registers the property with the context registry. The value used for the
part name, header Part, is the part name specified in the contract's
<soap: header > element.

9. Instantiates an instance of the SOAP header property’s class,
SOAPHeader | nf o, and sets the fields.

10. Gets the Artix message context for the client.
11. Adds the SOAP header property to the request context container.

12. Invokes greet Me() . The SOAP header property is placed into the SOAP
header of the request and sent to the server.

The server must also register the SOAPHeader property with its context
registry in order to extract the SOAP header sent with the request. Because
the property only needs to be registered with the context registry once, it

makes sense to register it in the server main line before control is passed to
the bus.

Example 156 on page 228 shows the code for the server's main line.
Example 156:Server main()

Il Java
inport comiona.jbus. *;
inport javax.xm .namespace. Q\arre;

public class Server
{
public static void main(String args[])
throws Exception
{
[l Initialize the Artix bus
Bus bus = Bus.init(args);

Sending Header Information Using Contexts

Example 156:Server main()

/!l Register the inplenentation object factory
Q\ane name = new Q\Nane("http: //ww. i ona. conl soapHeader ",
"Q eet er Service");
Servant servant =
new Si ngl el nst anceSer vant (" ./ soapHeader . wsdl *,
new Geeterlnpl());
bus. r egi st er Servant (servant, nanme, "SoapPort");

SQAPHeader | nf oTypeFactory fact =
new SQAPHeader | nf oTypeFact ory();
bus. r egi st er TypeFact ory(fact);

Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

\arre propNane = new QName("http://javaExanpl es. i ona. cont,
" SQAPHeader ") ;

Q\ane propType =
new QNane("htt p://schenas. i ona. coni t ypes/ cont ext ",
" SOAPHeader | nf 0") ;

\are nessage = new Q\Nane("http: //www i ona. conl soapHeader "
"header M5g") ;

cont Reg. r egi st eCont ext (propNane, propType,
nessage, "headerPart");

[/ Start the Bus
bus. run();
}

}
The code in Example 156 on page 228 does the following:
1. Initializes an instance of the bus.
Registers the services implementation object with the bus.
Registers the type factory for SOAPHeader | nf o.
Gets the context registry from the bus.

o &~ wnN

Builds the Q\are for the new property.

229

CHAPTER 10 | Using Message Contexts

6. Builds the Q\ane for the property’s data type. The values for this are
taken from the XSD defining the data type. The first argument is the
namespace under which the type is defined. The second argument is
the name of the complex type.

7. Builds the Q\are for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
Quane for the message defined in the <soap: header > element of the
contract, htt p: // waw. i ona. coni soapHeader : header Msg.

8. Registers the property with the context registry. The value used for the
part name, header Part, is the part name specified in the contract's
<soap: header > element.

9. Hands control over to the bus.

The implementation object The service’s implementation object, G eeter I npl , gets the SOAP header
from the request message and prints the headers contents. To do this the
implementation object must get the SOAP header property from the request
context container. Getting the SOAP header property takes four steps:

1. Get a reference to the bus for the implementation object.

2. Get the bus’ context registry.

3. Get the thread’s Artix message context from the registry.

4. Get the SOAP header property from the request context container.

Example 157 shows the code for the G eet er I npl implementation object.
Example 157:/mplementation of the Greeter Service

/1 Java

inport java.net.*;

inport java.rm.*;

inport javax.xm .namespace. Q\arre;

inport comiona.j bus. *

public class Geeterlnpl

{
public String greetMe(String stringParam)
{

1 comiona.jbus.Bus bus = D spatchLocal s. get Qurrent Bus();

230

Sending Header Information Using Contexts

Example 157:/mplementation of the Greeter Service

}

Gont ext Regestry cont Reg = bus. get Cont ext Regi stry();

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

Q\ane name = new QN\arre("http://j avaExanpl es. i ona. coni',
" SQAPHeader ") ;

SQAPHeader | nf o header = (SQAPHeder | nf 0)
r eqCont ext . get Request Cont ext (nane) ;

Systemout. printl n("SOAP Header Crigi nator:
"+header.getQriginator());

Systemout. printl n("SOAP Header nessage:
"+header . get Message()) ;

return "Hello Artix User: "+stringParam
}

The code in Example 157 on page 230 does the following:

1.

2.
3.
4

Gets an instance of the bus.
Gets the context registry from the bus.
Gets the context current for the implementation object’s thread.

Builds the Q\arre for the SOAP header property. This Q\Name must be the
same as the Q\ane used when registering the property in the server
main.

Gets the SOAP header property from the request context container.
Prints out the information contained in the SOAP header.
Returns the results of the operation to the client.

231

CHAPTER 10 | Using Message Contexts

232

Overview

In this chapter

CHAPTER 11

Developing Java
Plug-Ins

Java Plug-Ins can perform a number of tasks including
registering servants or implementing message handlers.

Developing and loading an Artix plug-in in Java requires you to perform four
tasks:

1. Extend the BusPl ugl n class to implement your plug-in's application
logic.

2. Implement the BusPl ugl nFact ory interface.
If needed, configure the plug-in’s class loader environment. See “Class
Loading” on page 41.

4. Configure Artix to use the plug-in. See Deploying and Managing Artix
Solutions.

This chapter discusses the following topics:

Extending the BusPlugln Class page 234

Implementing the BusPlugInFactory Interface page 237

233

CHAPTER 11 | Developing Java Plug-Ins

Extending the BusPlugin Class

Overview The BusP! ugl n class is the base class for all Artix plug-ins. It provides a
method, get Bus(), that returns the bus with which the plug-in is
associated. In addition, it has two abstract classes that you must
implement:
® A constructor for your class.
® The buslnit() method called by the bus to initialize the plug-in.
® The busShut down() method called by the bus when it is shutting down

to allow the plug-in to perform any clean-up it needs before being
destroyed.

Implementing the constructor The constructor for your plug-in has two requirements:
1. Its first argument must be a bus instance.
2. It must call super () with the passed in bus reference.

Example 158 shows a constructor for a plug-in called BankPl ugl n. It simply
calls super () on the bus instance. It could, however, have performed some
logging operations or initialized resources.

Example 158:BusPlugln constructor

/1 Java
public class BankPl ugl n ext ends BusP ugl n
{
publ i ¢ BankPl ugl n(Bus bus)
{
super (bus) ;

}

buslInit() busl ni t () is called by every bus that loads your plug-in. Inside businit(),
you perform all of the initialization needed for your plug-in to perform its job.
For example, if your plug-in implemented a service defined in WSDL you

234

busShutdown()

Extending the BusPlugin Class

would create and register the servant in busl ni t (). If your plug-in
implemented a JAX-RPC Handler, you would register your handler factory in
businit().

Example 159 shows a busl ni t () method used in implementing the bank
service, described in Developing Artix Applications in Java, as a plug-in.

Example 159:businit()

/'l Java

inport comiona.jbus.*;

inport comiona.jbus. servants.*;
inport javax.xnl.nanespace. Q\ane;

inport java.net.*;
inport java.io.*;

public cl ass BankPl ugl n ext ends BusPl ugln

{
private Bankl npl bank;

public void buslnit() throws BusException
{
Bus bus = getBus();
\arre gnane = new QNare(" http: //waww. i ona. comd bus/ denos/ bank",
"BankServi ce");
bank = new Bankl npl ();
Servant servant = new Si ngl el nst anceSer vant (bank,
"./bank.wsdl ", bus);
bus. regi st er Servant (servant, gname, "BankPort");

busShut down() is called on the plug-in by the bus when the bus is shutting
down. Once busShut down() completes, the bus calls dest r ot BusPl ugl n()
on the plug-in factory object. This is good place to release instance specific
resources used by the plug-in or to do other house keeping. For example,
the bank plug-in may need to force the account objects it created to finish
any running transactions and flush their information to the permanent store
before shutting down as shown as shown in Example 160.

235

CHAPTER 11 | Developing Java Plug-Ins

Example 160:busShutdown()

/'l Java

inport comiona.jbus. *;

inport comiona.jbus. servants. *;

i nport com i ona. schenas. r ef er ences. Ref er ence;

inport javax.xm .namespace. Q\arre;
inport java.net.?*;
inport java.io.*;

public class BankPl ugl n ext ends BusPl ugln

{
private Bankl npl bank;

publ i c voi d busShut down() throws BusException
{
Account acct Proxy;
Ref erence ref;
Bus bus = getBus()
Iterator it = bank.accounts. val ues().interator();

whi | e(it.hasNext())

{
ref = (Reference)it.next();
acct Proxy = bus.createdient(ref, Account.class);
acct Proxy. cl oseDown() ;

}

}
}

236

Implementing the BusPlugInFactory Interface

Implementing the BusPluginFactory Interface

Overview

createBusPlugin()

destroyBusPlugin()

The BusPI ugl nFact or y interface provides the methods used by the Artix bus

to manage a plug-in implementation. It has two methods you must

implement:

® createBusPl ugl n() creates instances of the plug-in and its associated
resources and associate them with particular bus instances.

® destroyBusPl ugl n() destorys plug-in instances and frees the resources
associated with them.

creat eBusPl ugl n() is called by a bus instance when it loads a plug-in. In
most instances, creat eBusPl ugl n() will simply instaniate an instance of
your plug-in object and return it. However, you can use this method to
initialize any global resources used by the plug-in.

Example 161 shows the signature for creat eBusPl ugl n() .
Example 161:createBusPlugin()

publ i ¢ BusPl ugl n creat eBusPl ugl n(Bus bus) throws BusException;

dest royBusPl ugl n() is called by a bus instance when it is shutting down
and releasing its resources. In most instances, this method does not need to
do anything. However, if you created any global resources for your plug-in
this would be a convinient place to free them.

Example 162 shows the signature for dest r oyBusPI ugl n() .
Example 162:destroyBusPlugin()

publ i c voi d destroyBusPl ugl n(BusPl ugl n pl ugin);

237

CHAPTER 11 | Developing Java Plug-Ins

Example For example, the BusPI ugl nFact ory implementation for a plug-in
BankPl ugl n would look similar to Example 163.

Example 163:BankPluginFactory

/'l Java
inport comiona.jbus.*;

public cl ass BankPl ugl nFactory i npl enments BusPl ugl nFact ory

{
publ i ¢ BusPl ugl n creat eBusPl ugl n(Bus bus) throws BusException
{
return new BankPl ugl n(bus) ;
}

publ i ¢ voi d destroyBusPl ugl n(BusPl ugl n pl ugi n)
throws BusException

{

}

238

CHAPTER 12

Writing Message
Handlers

Using the JAX-RPC Handler mechanism, developers can
access and manipulate messages as they pass along the
delivery chain.

In this chapter This chapter discusses the following topics:
Message Handlers: An Introduction page 240
Developing Request-Level Handlers page 244
Developing Message-Level Handlers page 251

239

CHAPTER 12 | Writing Message Handlers

Message Handlers: An Introduction

Overview

240

CLIENT

When a service proxy invokes an operation on a service, the operations
parameters are passed to the Artix bus where they are built into a message
and placed on the wire. When the message is received by the service, the
Artix bus reads the message from the wire, reconstructs the message, and
then passes the operation parameters to the application code responsible for
implementing the operation. When the service is finished processing the
request, the reply message undergoes a similar chain of events on its trip to
the server. This is shown in Figure 9.

SERVER |LU

2

< Application Code @M)

» > » »» \—b
zs | | O =g | |z
Binding Transport Transport Binding

C Application Code

Figure 9: The Life of a Message

You can write message handlers that work with a message at each stop
along its path. For example, if you wanted to compress a message before
sending it on the wire, you could write a message handler that takes the
message data from the binding and compresses it before the transport puts

Message handler levels

Proxy

Message Handlers: An Introduction

the message on the wire. Likewise, you could write a message handler that
takes the message from the transport and decompresses it before passing it
on to the binding.

The JAX-RPC specification outlines a mechanism for developers to write
custom message handlers using the Handl er interface. Using the handler
mechanism, you can intercept and work with message data at four points
along the request message’s life cycle and at four points along the reply
message's life cycle. Both requests and replies can be handled at the client
request level, the client message level, the server message level, and the
server request level. These levels are shown in Figure 10.

Request-Level Message-Level

) K 2
—< > <

Handlers Handlers

‘S T € ¥ K~

ES
s B | sl =

Binding Transport

A

=
=
o=

Transport

12| K [€+— K K

26

= | P P — P < P—

Message-Level Binding Request-Level
Handlers Handlers

Figure 10: Handler Levels

On the client side of an application, you can write message handlers to
process requests as they pass from the application to the binding and to
process responses as they passes from the binding to the application. These
are called request-level handlers. You can also write message handlers to

241

CHAPTER 12 | Writing Message Handlers

Implementing a message handler

242

process requests as they pass from the binding to the transport and to
process responses as they pass from the transport to the binding. These are
called message-level handlers.

On the server side of an application the direction of the message flow is
reversed, but the levels stay the same. For example, a request-level handler
on the server side would work with requests as they pass from the binding
to the application and a message-level handler would process with
responses as they passed from the binding to the transport.

Message handlers are developed as Artix plug-ins. This allows you to
develop a message handler once an reuse it in any Artix Java application.
Writing a plug-in requires that you implement the BusP! ugl nFact ory
interface and extend the BusP! ugl n class to initialize the message handlers.
For details on the plug-in interfaces see “Developing Java Plug-Ins” on
page 233.

To write a message handler, you implement the JAX-RPC Handl er interface
and the Handl er Fact ory interface. To make implementing these interfaces
easier, Artix supplies a Generi cHandl er class and a Gener i cHandl er Fact ory
class that you can extend to write your handlers. These generic classes
provide idle implementations of all of the methods for the interfaces. By
extending them you only to provide implementations for the methods
needed by your message handler.

Your Handl er implementation contains the logic for the message handler
you are writing. The Handl er interface has two methods that process
messages: handl eRequest () and handl eResponse() . handl eRequest () is
invoked when a request message is passing through the handler.

handl eResponse() in invoked when a response message is passing through
the handler. These methods are invoked in both request level handlers and
message level handlers.

A Handl er Fact ory implementation is responsible for instantiating bus
specific instances of one or more message handlers. The Handl er Fact ory
interface has four methods for instantiating handlers:

get d i ent MessageHandl er (), get d i ent Request Handl er (),

get Ser ver MessageHand! er (), and get Ser ver Request Handl er () . As the
method names imply, each method is used to instantiate a message handler
for use at a specific point in the messaging chain. For example,

get di ent MessageHand! er () would be called by the bus to instantiate a
client side message handler for processing messages as the passed between

Configuring Artix to use message
handlers

Message Handlers: An Introduction

the binding and the transport. Each method in a factory can instantiate one
message handler. However, a factory can be developed to instantiate four
message handlers because the bus will only call the factory method needed
to instantiate the message handler configured to be used at a particular
point in the message chain.

Before your applications can use message handlers, you must configure
them to load the message handlers at the appropriate points in the message
chain. This is done by adding the following configuration variables into the
application’s configuration scope:

binding:artix:client_message_interceptor _list is an ordered list of QNames
specifying the message-level handlers for a client.

binding:artix:client_request_interceptor_list is an ordered list of QNames
specifying the request-level handlers for a client.

binding:artix:server_message_interceptor_list is an ordered list of QNames
specifying the message-level handlers for a server.

binding:artix:server_request_interceptor_list is an ordered list of QNames
specifying the request-level handlers for a server.

The message handlers are placed in the list in the order they will be invoked
on the message as it passes through the messaging chain. For example, if
the server request interceptor list was specified as "t ns: Freeze+tns: Dry", a
message would be passed into the message handler Freeze as it left the
binding. Once Freeze processed the message, it would be passed into Dry
for more processing. Dry would then pass the message along to the
application code. For more information on configuring Artix applications see
Deploying and Managing Artix Applications.

243

CHAPTER 12 | Writing Message Handlers

Developing Request-Level Handlers

Overview

Procedure

244

Request-level handlers process messages as they pass between your
application code and the binding that formats the message that is being sent
on the wire. On the client side, request messages are processed immediately
after the application invokes a remote method on its service proxy and
before the binding formats the message. Responses are processed after the
message is decoded by the binding and before the data is returned to the
client application code. On the server side, requests are processed as they
pass from the binding to the service implementation. Replies are processed
as they pass from the server implementation to the binding.

Currently, message handlers at the request level have limited access to the
message data. They can access the applications message context, access
the messages SOAP headers, or access the messages security properties.
For example, your application could have a client side message handler that
added a custom SOAP header to its requests for authorization purposes. The
server could then use a message handler to read the SOAP header and
perform the authorization before the request gets to the service
implementation.

To develop a request-level handler you need to do the following:

1. Implement a BusPl ugi nFact ory to load the plug-in that implements
your message handler. See “Implementing the BusPlugInFactory
Interface” on page 237.

2. Extend BusP ugi n to load your message handler.

Implement a Handl er Fact ory to instantiate your message handler
when the bus needs it.

Implement a Handl er to host the logic used by your message handler.
Configure your application to load the message handler plug-in.

Configure your application to include the message handler in the
request handler chain. See Deploying and Managing Artix Solutions.

The plug-in

Developing Request-Level Handlers

Your implementation of busl ni t () in your plug-in must register the handler
factory used to instantiate your message handler. Handler factory
registration is done using the bus’ r egi st er Handl er Fact ory() method. The
signature for r egi st er Handl er Fact or y() is shown in Example 164.

Example 164:registerHandlerFactory()
voi d regi st er Handl er Fact ory(Handl er Factory factory);

regi st er Handl er Fact ory() takes an instance of the handler factory for your
message handler. Subsequent calls to regi st er Handl er Fact ory() add to
the list of registered handler factories. So, if you need to register multiple
handler factories you simply call r egi st er Handl er Fact ory() with an
instance of each handler factory to be registered.

Example 165 shows a the plug-in code for a message handler.
Example 165:Message Handler Plug-In

/1 Java

inport comiona.jbus.*;

publ i c cl ass Handl er Pl ugl n ext ends BusPl ugln

{
publ i ¢ Handl er Pl ugi n(Bus bus)
{
super (bus) ;

}

public void buslnit() throws BusException
{
try
{
Bus bus = getBus();

bus. r egi st er Handl er Fact or y(new enoHandl er Factory());

}

catch (Exception ex)

{

t hr ow new BusExcept i on(ex);
}
}

245

CHAPTER 12 | Writing Message Handlers

The handler factory

Example 165:Message Handler Plug-In

publ i c voi d busShut down() throws BusException

{

}
}
The code in Example 165 does the following:
1. Imports the Artix bus APIs.
Implements a constructor for the plug-in class.
Implements busl ni t () to register the handler factory.
Gets the plug-in’s bus.

o~ wn

Registers the message handler's factory with the bus using
regi st er Handl er Fact ory() .

6. Implements busShut down() .

The easiest way to develop your handler factory is to extend the

Generi cHandl er Fact ory included with Artix. You can also implement the
standard JAX-RPC Handl er Fact ory interface. The Generi cHandl er Fact ory
implements all of the methods in the Handl er Fact ory interface, so you only
need to override the methods needed for your message handlers and provide
a constructor for your handler factory.

When developing request-level handlers, the two handler factory methods
that are of interest are get d i ent Request Handl er () and

get Ser ver Request Handl er () . As their names imply they are used to
instantiate request-level handlers for either a client or a server. Depending
on your message handler implementation, you can override one or both of
these methods. For example, you could develop a single handler factory for
both the client side and the server side request-level handlers. The bus will
call the appropriate method to instantiate the correct handler.

The signatures for get d i ent Request Handl er () and
get Ser ver Request Handl er () are shown in Example 166. They take no
arguments and return an instance of the class Handl er | nf o.

Example 166:Handler Factory Methods for Request Level Handlers

publ i c javax.xn.rpc. handl er. Handl er I nfo get d i ent Request Handl er ()
public javax.xn.rpc. handl er. Handl er| nf o get Server Request Handl er ()

246

(S0

Developing Request-Level Handlers

The returned Handl er | nf o object needs to contain all the information
needed by the bus to manage your message handler. You need to supply the
d ass that implements your message handler. For example if your client
side message handler is implemented by a class called

enod i ent Request Handl er, you need to set the returned HandlerInfo’s
Hander d ass field to enod i ent Request Handl er . cl ass by invoking

set Handl er d ass() on the Handl er | nf o object.

Example 167 shows code for implementing a handler factory.
Example 167:Handler Factory For Request Level Handlers
/1 Java

inport comiona.jbus.*;

inport comiona.jbus. servants.*;

inport javax.xm .namespace. Q\arre;

inport java.net.*;
inport java.io.*;

inport javax.xm.rpc.handler.*;

public class Test Handl er Fact ory extends Generi cHandl er Fact ory

{
publ i ¢ Test Handl er Fact ory()
{
super (new Q\Nare(" htt p: //waww i ona. cond bus/ t est s",
"TestInterceptor"));
}

publ i c Handl erl nfo get d i ent Request Handl er ()

{
Handl erInfo info = new Handl erl nfo();
i nf 0. set Handl er d ass(enod i ent Request Handl er . cl ass) ;
return info;

}

publ i c Handl er | nf o get Ser ver Request Handl er ()
{
Handl erinfo info = new Handl erl nfo();
i nf 0. set Handl er d ass(enoSer ver Request Handl er . cl ass) ;
return info;
}
}

247

CHAPTER 12 | Writing Message Handlers

The handler

248

The code in Example 167 does the following:
1. Extends Generi cHandl er Fact ory.

2. Implements a constructor for the handler factory. The QName set is the
QName used by the bus to reference the handler factory.

3. Overrides get A i ent Request Handl er () .
Instantiates a Handl er I nf o object.

5. Sets the Handl er A ass property to the class of the message handler
that will process client requests.

The easiest way to develop your message handler logic is to extend the
Generi cHandl er class supplied with Artix. The Generi cHandl er class
provides implementations for all of the methods in the JAX-RPC Handl er
interface, so all you need to do is override the methods your message
handler requires. You can also implement the JAX-RPC Handl er interface if
you desire.

The Handl er interface has two methods that are used to process messages:
handl eRequest () and handl eResponse() . handl eRequest () processes
request messages and handl eResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the message handler is called. For example, a message
handler that reads a SOAP header from a request in the server will not work
if it is placed in the client request chain.

The signatures for handl eRequest () and handl eResponse() are shown in
Example 168. Both methods have a MessageCont ext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 197. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return f al se.

Example 168:handleRequest() and handleResponse()

bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext context);

At the request level, your message handler can access both the generic
message context and the Artix specific context. Because the properties of
the generic message context do not effect the message as it passes through

Developing Request-Level Handlers

the messaging chain, it is more likely that your message handler will use the
Artix specific message context. Properties set into the Artix specific message
context at the request-level will be propagated down the message chain and
effect how the message is formatted and transmitted. For example, security
properties and SOAP headers manipulated in a client request handler will
change the properties that are sent to the server. On the return side of the
messaging chain, such as in a server request handler or a client response
handler, the request-level is the level in which the SOAP header and security
properties are made available.

Example 169 shows the code for a client request-level message handler that
sets a SOAP header on the request and reads the SOAP header returned
with the response.

Example 169:Client Request Level Message Handler

Il Java
inport comiona.jbus. | onaMessageCont ext ;
inport comiona.j bus. Cont ext Excepti on;

inport javax.xnl.nanespace. Q\ane;
inport javax.xm.rpc.handler.*;

public class enod i ent Request Handl er extends Generi cHandl er
{
publ i c bool ean handl eRequest (MessageCont ext cont ext)
{
| onaMessageCont ext nycontext = (| onaMessageCont ext) cont ext ;
Q\ane princi pal & xNane = new Q\ane("", " SOAPHeader|nfo");
SAPHeader I nfo request | nfo = new SQAPHeader I nf o() ;
requestInfo.setQiginator("dient");
request I nf o. set Message(“Hello fromQdient!");
nmycont ext . set Request Cont ext (pri nci pal & xNaneg, r equest | nf 0) ;

return true;

249

CHAPTER 12 | Writing Message Handlers

Example 169:Client Request Level Message Handler

publ i ¢ bool ean handl eResponse(MessageCont ext cont ext)

{
| onaMessageCont ext nycont ext = (| onaMessageCont ext) cont ext ;
Q\ane ct xName = new Q\Nane("", " SOAPHeader|nfo");
SOAPHeader I nfo repl ylnfo =
(SQAPHeader | nf 0) nycont ext . get Repl yCont ext (ct xNarre) ;
Systemout. printl| n("Header from Server: ");

Systemout. println("Qiginator - " +
replylnfo.getQiginator());
System out. pri ntl n(" Message - " + replyl nfo. get Message());

return true;
}
}

250

Developing Message-Level Handlers

Developing Message-Level Handlers

Overview

Procedure

Message-level handlers process messages as they pass between the binding
and the transport. On the client side, request messages are processed after
the binding formats the message and before the transport writes it to the
wire. Responses are processed after the message is read off of the wire and
before it is decoded by the binding. On the server side, requests are
processed after the message is read off of the wire and before it is decoded
by the binding. Replies are processed as they pass from the binding to the
transport.

Message handlers at the message level have access to the raw message
stream that is being written out the wire. This data has been formatted into
the appropriate message type specified by the binding. Message-level
handlers can also access the applications message context. For example,
your application could have a client side message handler that compresses
the message data to enhance network performance. The server could then
use a message handler to decompress the message data before it is sent to
the binding for decoding.

To develop a message-level message handler you need to do the following:

1. Implement a BusPl ugi nFact ory to load the plug-in that implements
your message handler. See “Implementing the BusPlugInFactory
Interface” on page 237.

2. Extend BusPl ugi n to load your message handler.

Implement a Handl er Fact ory to instantiate your message handler
when the bus needs it.

Implement a Handl er to host the logic used by your message handler.
Configure your application to load the message handler plug-in.

Configure your application to include the message handler in the
message handler chain. See Deploying and Managing Artix Solutions.

251

CHAPTER 12 | Writing Message Handlers

The plug-in

252

Your implementation of busl ni t () in your plug-in must register the handler
factory used to instantiate your message handler. Handler factory
registration is done using the bus’ regi st er Handl er Fact ory() method. The
signature for r egi st er Handl er Fact ory() is shown in Example 170.

Example 170:registerHandlerFactory()
voi d regi sterHandl er Fact or y(Handl er Factory factory);

regi st er Handl er Fact ory() takes an instance of the handler factory for your
message handler. Subsequent calls to regi st er Handl er Fact ory() add to
the list of registered handler factories. So, if you need to register multiple
handler factories you simply call r egi st er Handl er Fact ory() with an
instance of each handler factory to be registered.

Example 171 shows a the plug-in code for a message handler.
Example 171:Message Handler Plug-In

/] Java

inport comiona.jbus.*;

public class Handl er Pl ugl n ext ends BusPl ugl n

{
publ i ¢ Handl er Pl ugi n(Bus bus)

{
super (bus) ;

}

public void buslnit() throws BusException
{
try
{
Bus bus = getBus();

bus. r egi st er Handl er Fact or y(new enoHandl er Factory());

}

catch (Exception ex)

{

}
}

t hr ow new BusExcepti on(ex) ;

The handler factory

Developing Message-Level Handlers

Example 171:Message Handler Plug-In

public voi d busShut down() throws BusException
{

}
}
The code in Example 171 does the following:
1. Imports the Artix bus APIs.
Implements a constructor for the plug-in class.
Implements busini t () to register the handler factory.
Gets the plug-in’s bus.

o &~ wnN

Registers the message handler’s factory with the bus using
regi st er Handl er Fact ory() .

6. Implements busShut down() .

The easiest way to develop your handler factory is to extend the

Gener i cHandl er Fact ory included with Artix. You can also implement the
standard JAX-RPC Handl er Fact ory interface. The Generi cHandl er Fact ory
implements all of the methods in the Handl er Fact ory interface, so you only
need to override the methods needed for your message handlers and provide
a constructor for your handler factory.

When developing message-level handlers, the two handler factory methods
that are of interest are get A i ent MessageHand! er () and

get Ser ver MessageHandl er () . As their names imply they are used to
instantiate message-level handlers for either a client or a server. Depending
on your message handler implementation, you can override one or both of
these methods. For example, you could develop a single handler factory for
both the client side and the server side message-level handlers. The bus will
call the appropriate method to instantiate the correct handler.

The signatures for get d i ent MessageHandl er () and
get Ser ver MessageHandl er () are shown in Example 172. They take no
arguments and return an instance of the class Handl er | nf o.

Example 172:Handler Factory Methods for Message Level Handlers

public javax.xn .rpc. handl er. Handl er I nfo get d i ent MessageHandl er ()
publ i c javax.xni.rpc. handl er. Handl er | nf o get Ser ver MessageHand| er ()

253

CHAPTER 12 | Writing Message Handlers

254

(S0

The returned Handl er | nf o object needs to contain all the information
needed by the bus to manage your message handler. You need to supply the
d ass that implements your message handler. For example if your client
side message handler is implemented by a class called

enod i ent MessageHandl er, you need to set the returned Handlerlnfo’s
Hander d ass field to enod i ent MessageHandl er . cl ass by invoking

set Handl er d ass() on the Handl er | nf o object.

Example 173 shows code for implementing a handler factory.
Example 173:Handler Factory For Message Level Handlers

/1 Java

inport comiona.jbus. *;

inport comiona.jbus. servants. *;
inport javax.xm .namespace. Q\arre;

inport java.net.*;
inport java.io.*;

inport javax.xm.rpc. handl er.*;

public class Test Handl er Factory extends Generi cHandl er Fact ory
{
publ i ¢ Test Handl er Fact ory()
{
super (new QNare(" htt p: // www. i ona. cond bus/ t est s",
"TestInterceptor"));

}

publ i ¢ Handl erl nfo getd i ent MessageHandl er ()

{
Handl erinfo info = new Handl erl nfo();
i nf o. set Handl er d ass(enod i ent MessageHand| er. cl ass) ;
return info;

}

publ i c Handl er | nf o get Ser ver MessageHandl er ()
{
Handl erInfo info = new Handl erl nfo();
i nf 0. set Handl er A ass(enoSer ver MessageHand| er . cl ass) ;
return info;
}
}

The handler

Developing Message-Level Handlers

The code in Example 173 does the following:
1. Extends Generi cHandl er Factory.

2. Implements a constructor for the handler factory. The QName set is the
QName used by the bus to reference the handler factory.

3. Overrides get A i ent MessaageHand! er () .
4. Instantiates a Handl er I nf o object.

5. Sets the Handl er A ass property to the class of the message handler
that will process client requests.

The easiest way to develop your message handler logic is to extend the
Generi cHandl er class supplied with Artix. The Generi cHandl er class
provides implementations for all of the methods in the JAX-RPC Handl er
interface, so all you need to do is override the methods your message
handler requires. You can also implement the JAX-RPC Handl er interface if
you desire.

The Handl er interface has two methods that are used to process messages:
handl eRequest () and handl eResponse() . handl eRequest () processes
request messages and handl eResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the message handler is called. For example, a message
handler that compresses a request in the client will cause unpredictable
results if it is placed in the server message chain.

The signatures for handl eRequest () and handl eResponse() are shown in
Example 174. Both methods have a MessageCont ext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 197. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return f al se.

Example 174:handleRequest() and handleResponse()

bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext cont ext);

At the message level, your message handler can access both the generic
message context and a special StreanvessageCont ext that provides access
to the raw message data that will be written onto the wire. Because the

255

CHAPTER 12 | Writing Message Handlers

properties of the generic message context do not effect the message as it
passes through the messaging chain, it is more likely that your
message-level handlers will use the raw message data. To get a

St reanMessageCont ext you cast the MessageCont ext passed into the
message handler method as shown in Example 175.

Example 175:Getting a StreamMessageContext

/1 Java
bool ean handl eResponse(MessageCont ext cont ext)
{

St reaniessageCont ext nyQt x = (StreanMessageCont ext) cont ext ;

}

The StreamMessageCont ext has methods for getting and setting the input
and output streams used by the transport as shown in Example 176. While
St reamMessageCont ext provides methods for getting the output stream, you
should always work with the input stream provided. Artix will ensure that
data from the input stream is the data that gets propagated through the
message chain.

Example 176:StreamMessageContext
package comi ona.j bus;

inport javax.xn.rpc. handl er. MessageCont ext ;
inport java.io.lnputStream
inport java.io.QutputStream

public interface StreamvessageContext extends MessageCont ext
{
public static final String | NPUT_STREAM PRCPERTY =
" St r eamviessageCont ext . | nput St reant';
public static final String QUTPUT_STREAM PRCPERTY =
" St r eamvessageCont ext . Qut put St reant';

publ i c I nput Stream get | nput Streang);

public voi d setlnputStrean{| nput Streamins);
publ i ¢ Qut put Stream get Qut put Strean();

publ i c voi d set Qut put Strean{ Qut put Stream out) ;

256

Developing Message-Level Handlers

Example 177 shows the code for a client message-level message handler
that adds a string onto the end of a SOAP request before sending it to the
server and removes an additional string from the end of the SOAP response
before passing the SOAP message to the binding. The complete code for this
demo can be found in the custom interceptor demo included in your Artix
installation. Test I nput St r eamextends | nput St reamto allow for adding a
string to the end of the stream.

Example 177:Client Message Level Message Handler

/1l Java
inport comiona.jbus.*;

inport java.io.*;
inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc. handler.*;

public class enod i ent MessageHandl er extends Generi cHandl er

{

publ i c bool ean handl eRequest (MessageCont ext cont ext)

{
St reamessageCont ext snt = (St reanmMessageCont ext) cont ext ;
I nput Streamins = snt. getl nput Strean();
ins = new Test | nput St rean(i ns,

Test | nput Stream CLI ENT_TO _SERVER) ;

snt. set | nput Strean(i ns) ;
return true;

}

publ i ¢ bool ean handl eResponse(MessageCont ext cont ext)
{
St reamessageCont ext snt = (St reanmMessageCont ext) cont ext ;
I nput Streamins = snt. getl nput Strean();
i ns. mar k(1000) ;
byte bytes[] = new
byt e[Test | nput St ream SERVER TO CLI ENT. | engt h] ;
i ns. read(bytes);
String s = new String(bytes);
Systemout. println("Got string: "+s);
return true;
}
}

257

CHAPTER 12 | Writing Message Handlers

258

In this chapter

CHAPTER 13

Artix IDL to Java
Mapping

This chapter describes how Artix maps IDL to Java; that is, the
mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to Java (using the
WSDL-to-Java compiler).

This chapter discusses the following topics:

Introduction to IDL Mapping page 260
IDL Basic Type Mapping page 262
IDL Complex Type Mapping page 264
IDL Module and Interface Mapping page 277

259

CHAPTER 13 | Artix IDL to Java Mapping

Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-Java mapping. Mapping
IDL to Java in Artix is performed as a two step process, as follows:
1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, Sanpl el DL. i dI , to a WSDL contract,
Sanpl el DL. wsdl , using the following command:

idl -wsdl SanplelDL.idl

2. Map the generated WSDL contract to Java using the WSDL-to-Java
compiler. For example, you could generate Java stub code from the
Sanpl el DL. wsdl file using the following command:
wsdl t oj ava Sanpl el DL. wsdl

For a detailed discussion of these command-line utilities, see the Artix
Command Line Reference Guide.

Alternative Java mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to Java directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to Java, as follows:
® Artix IDL-to-Java mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-Java. It is an IONA-proprietary mapping.

® CORBA IDL-to-Java mapping—as specified in the OMG Java Language
Mapping document (http://www.omg.org). This mapping is used, for
example, by the IONA’s Orbix.

260

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Unsupported IDL types

Introduction to IDL Mapping

These alternative approaches are illustrated in Figure 11.

IDL-to-WSDL = WSDL-to-Java | (2
WSDL - %’

»
6/

@
@

IDL-to-Java

CORBA
Java

Figure 11: Artix and CORBA Alternatives for IDL to Java Mapping

The advantage of using the Artix IDL-to-Java mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-Java mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

The following IDL types are not supported by the Artix Java mapping:

| ong doubl e

Value types

Boxed values

Local interfaces

Abstract interfaces
forward-declared interfaces

261

CHAPTER 13 | Artix IDL to Java Mapping

IDL Basic Type Mapping

Overview Table 9 shows how IDL basic types are mapped to WSDL and then to Java.
Table 9: Artix Mapping of IDL Basic Types to Java
IDL Type WSDL Schema Type Java Type
any xsd: anyType com i ona. webservi ces.refl ect.
types. AnyType
bool ean xsd: bool ean bool ean
char xsd: byte byt e
string xsd: string java.lang. String
wchar xsd: string java.lang. String
wstring xsd: string java.lang. String
short xsd: short short
| ong xsd: i nt int
long | ong xsd: | ong | ong
unsi gned short xsd: unsi gnedShor t int
unsi gned | ong xsd: unsi gnedl| nt | ong
unsi gned | ong | ong xsd: unsi gnedLong j ava. mat h. Bi gl nt eger
f1 oat xsd: f | oat f1 oat
doubl e xsd: doubl e doubl e
oct et xsd: unsi gnedByt e short
fixed xsd: deci nal j ava. mat h. Bi gDeci mal

262

IDL Basic Type Mapping

Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the stri ng,
wchar, and wstri ng IDL types all map to the same type, xsd: string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl : bi ndi ng> </ wsdl : bi ndi ng> tags). Hence, whenever an
xsd: string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (stri ng, wchar, or wstri ng).

263

CHAPTER 13 | Artix IDL to Java Mapping

IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to Java:

enum type

struct type

union type

sequence types

array types

exception types

typedef of a simple type
typedef of a complex type

enum type Consider the following definition of an IDL enum type, Sanpl eTypes: : Shape:

/1 1DL
nmodul e Sanpl eTypes {

IE

enum Shape { Square, Grcle, Triangle };

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Shape enum to a WSDL
restricted simple type, Sanpl eTypes. Shape, as follows:

<xsd: si npl eType nane="Sanpl eTypes. Shape" >

<xsd:restriction base="xsd:string">

<xsd: enurrer ati on val ue="Square"/>
<xsd: enuneration value="Grcle"/>
<xsd: enurrer ati on val ue="Tri angl e"/>

</ xsd:restriction>

</ xsd: si npl eType>

264

IDL Complex Type Mapping

The WSDL-to-Java compiler maps the Sanpl eTypes. Shape type to a Java
class, Sanpl eTypesShape, as shown in Example 178.

Example 178:SampleTypesShape

/1 Java
public class Sanpl eTypeShape
{

private final String _val;

public static final String _Square = "Square";

public static final Sanpl eTypeShape Square = new Sanpl eTypeShape(_Square);

public static final String _Grcle ="Qrcle";

public static final Sanpl eTypeShape G rcle = new Sanpl eTypeShape(_G rcle);

public static final String _Triangle = "Triangle";

public static final Sanpl eTypeShape Tri angl e = new Sanpl eTypeShape(_Tri angl e) ;

prot ect ed Sanpl eTypeShape(String val ue)
{
_val = val ue;

}

public String get Val ue()
{

return _val;

}

public static Sanpl eTypeShape fronVal ue(String val ue)
{
if (val ue. equal s(_Square)) {
return Square;
}
if (value.equals(_Grcle)) {
return Arcle;
}
if (value.equal s(_Triangle)) {
return Triangl e;

}

throw new ||| egal Argunent Exception("Invalid enureration val ue:

"+val ue);

265

CHAPTER 13 | Artix IDL to Java Mapping

Example 178:SampleTypesShape

public static Sanpl eTypeShape fronString(String val ue) {
if (value.equal s("Square")) {
return Square;

}
if (value.equals("Qrcle")) {
return Qrcle;

}
if (value.equal s("Triangle")) {
return Triangl e;

}

throw new ||| egal Argunent Exception("lnvalid enuneration val ue: "+val ue);

IE

public String toString() {
return ""+ val;

}

The value of the enumeration type can be accessed using the get Val ue()
member function.

Programming with the Enumeration Type

For details of how to use the enumeration type, see “Enumerations” on
page 98.

union type Consider the following definition of an IDL union type, Sanpl eTypes: : Pol y:

/1 1D
nodul e Sanpl eTypes {
union Poly sw tch(short) {
case 1: short theShort;
case 2: string theString;

}

266

IDL Complex Type Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Pol y union to an XML
schema choice complex type, Sanpl eTypes. Pol y, as follows:

<xsd: conpl exType nanme="Sanpl eTypes. Pol y">
<xsd: choi ce>
<xsd: el ement nanme="t heShort" type="xsd: short"/>
<xsd: el enent nanme="theString" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. Pol y type to a C++
class, Sanpl eTypesPol y, as shown in Example 179.

Example 179:SampleTypesPoly

/1 Java
public class Sanpl eTypesPoly {

private String _ discrininator;

private short theShort;
private String theString;

public short get TheShort() {
return theShort;

}

public void set TheShort (short _v) {
this.theShort = _v;

__discrimnator = "theShort";
}
publ i ¢ bool ean i sSet TheShort () {
if(_discrimpator != null &%
__discrimnator.equal s("theShort")) {
return true;
}
return fal se;
}

267

CHAPTER 13 | Artix IDL to Java Mapping

Example 179:SampleTypesPoly

public String getTheString() {
return theString;

}

public void setTheString(String _v) {
this.theString = _v;
_discrimnator = "theString";

}

publ i c bool ean isSet TheString() {
if(_discrimpator != null &
__discrininator.equal s("theString")) {
return true;

}

return fal se;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
buf f er. append("t heShort: "+theShort+"\n");
if (theString !'= null) {
buf fer. append("theString: "+theString+'\n");

}
return buffer.toString();

The value of the union can be modified and accessed using the
get Uni onMenber () and set Uni onMenber () pairs of functions.

Programming with the Union Type

For details of how to use the union type, see “Choice Complex Types” on
page 64.

268

IDL Complex Type Mapping

struct type Consider the following definition of an IDL struct type,
Sanpl eTypes: : Sanpl eStruct :

I/ 1D
nodul e Sanpl eTypes {
struct Sanpl eStruct {
string theString;
| ong t helLong;
I
I¥

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eStruct struct to
an XML schema sequence complex type, Sanpl eTypes. Sanpl eStruct , as
follows:

<xsd: conpl exType name="Sanpl eTypes. Sanpl eStruct ">
<xsd: sequence>
<xsd: el ement nane="theString" type="xsd:string"/>
<xsd: el ement nane="t heLong" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. Sanpl eStruct type to a
Java class, Sanpl eTypesSanpl eSt ruct , as shown in Example 180.

Example 180:SampleTypesSampleStruct

/1 Java
public class Sanpl eTypesSanpl eStruct {

private String theString;
private int thelLong;

public String getTheString() {
return theString;

}

public void setTheString(String val) {
this.theString = val;
}

269

CHAPTER 13 | Artix IDL to Java Mapping

Example 180:SampleTypesSampleStruct

public int getTheLong() {
return thelong;

}

public void set TheLong(int val) {
this.theLong = val ;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (theString !'=null) {
buf fer. append("theString: "+theString+'\n");

}
buf f er. append("t heLong: "+t heLong+"\n");
return buffer.toString();

The members of the struct can be accessed and modified using the
get Struct Menber () and set Struct Menber () pairs of functions.
Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence and All
Complex Types” on page 57.

sequence types Consider the following definition of an IDL sequence type,
Sanpl eTypes: : Seqtr Struct :
/1 1DL
nmodul e Sanpl eTypes {
typedef sequence< Sanpl eStruct > Seqtr Struct;

IE

270

IDL Complex Type Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Seqqf Struct sequence
to a WSDL sequence type with occurrence constraints,
Sanpl eTypes. SeqCf St ruct, as follows:

<xsd: conpl exType name="Sanpl eTypes. SeqCf Struct ">
<xsd: sequence>
<xsd: el erent name="iten
t ype="xsd1: Sanpl eTypes. Sanpl eStruct "
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

The WSDL-to-Java compiler maps the Sanpl eTypes. SeqCf Struct type to a
Java class, Sanpl eTypesSeqdf Struct, as shown in Example 181.

Example 181:SampleTypesSeqOfStruct

/1 Java
public class Sanpl eTypesSeqCf Struct {

private Sanpl eTypesSanpl eStruct[] item

publi ¢ Sanpl eTypesSanpl eStruct[] getlten() {
return item

}

public void setlten{Sanpl eTypesSanpl eStruct[] val) {
this.item= val;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (item!=null) {
buf f er. append("item "+Arrays.asList(item.toString()+"\n");

}
return buffer.toString();

Programming with Sequence Types
For details of how to use sequence types, see “Sequence and All Complex
Types” on page 57.

271

CHAPTER 13 | Artix IDL to Java Mapping

array types Consider the following definition of an IDL union type,
Sanpl eTypes: : AirCf Struct :

/1 1DL
nodul e Sanpl eTypes {
typedef Sanpl eStruct ArrCf Struct[10];

iE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Arr & Struct array to a
WSDL sequence type with occurrence constraints,
Sanpl eTypes. Arr O Struct , as follows:

<xsd: conpl exType name="Sanpl eTypes. Arr Cf Struct ">
<xsd: sequence>
<xsd: el ement nane="itenl
t ype="xsd1: Sanpl eTypes. Sanpl eSt ruct "
m nCccur s="10" maxQccur s="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

272

IDL Complex Type Mapping

The WSDL-to-Java compiler maps the Sanpl eTypes. Arr O Struct type to a
Java class, Sanpl eTypesArr O Struct, as shown in Example 182.

Example 182:SampleTypesArrOfStruct

/1 Java
public class Sanpl eTypesArr&f Struct {

private Sanpl eTypesSanpl eStruct[] item

publ i ¢ Sanpl eTypesSanpl eStruct[] getlten() {
return item

}

public void setlten{Sanpl eTypesSanpl eStruct[] val) {
this.item= val;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
if (item!=null) {
buf fer. append("item "+Arrays.asList(item.toString()+"\n");

return buffer.toString();

}
}
Programming with Array Types
For details of how to use array types, see “Sequence and All Complex
Types” on page 57.
exception types Consider the following definition of an IDL exception type,

Sanpl eTypes: : Generi cExcepti on:

/1 1DL
nmodul e Sanpl eTypes {
exception GenericExc {
string reason;

}

273

CHAPTER 13 | Artix IDL to Java Mapping

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Generi cExc exception
to a WSDL sequence type, Sanpl eTypes. Gener i cExc, and to a WSDL fault
message, _except i on. Sanpl eTypes. Gener i cExc, as follows:

<xsd: conpl exType name="Sanpl eTypes. Gener i cExc" >
<xsd: sequence>
<xsd: el ement nanme="reason" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el enent nane="Sanpl eTypes. Generi cExc"
type="xsdl1: Sanpl eTypes. Generi cExc"/>

<nessage nane="_excepti on. Sanpl eTypes. Gener i cExc" >
<part nane="exception"
el enent =" xsd1: Sanpl eTypes. Generi cExc"/ >

</ message>

The WSDL-to-Java compiler maps the Sanpl eTypes. Gener i cExc type to the
Java class, Sanpl eTypesGeneri cExc, as shown in Example 183.

Example 183:SampleTypesGenericExc
public class Sanpl eTypesGeneri cExc {
private String reason;

public String get Reason() {
return reason;

}

public void setReason(String val) {
this.reason = val;

}
public String toString() {
StringBuf fer buffer = new StringBuffer();
if (reason != null) {
buf f er. append("“reason: "+reason+'\n");

return buffer.toString();

274

IDL Complex Type Mapping

In addition, the WSDL-to-Java compiler creates a class to map the message,
_except i on. Sanpl eTypes. Generi cExc, to a Java exception as shown in
Example 184.

Example 184:Java Exception

public class Sanpl eTypesGeneri cExcExcepti on extends Exception {
private String reason;

publ i ¢ Sanpl eTypesGeneri cExcException(String reason) {
super () ;
this. reason = reason;

}

publ i ¢ Sanpl eTypesCGeneri cExcException() {
super () ;

}

public String get Reason() {
return reason;

}

public void setReason(String val) {
this.reason = val;

}

public String toString() {
StringBuffer buffer = new StringBuffer(super.toString());
if (reason !'= null) {
buf f er. append("“reason: "+reason+'\n");

return buffer.toString();

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see “Creating User-Defined Exceptions” on page 117.

275

CHAPTER 13 | Artix IDL to Java Mapping

typedef of a simple type

typedef of a complex type

276

Consider the following IDL typedef that defines an alias of a f1 oat ,
Sanpl eTypes: : Fl oat Al i as:

/1 1DL
nodul e Sanpl eTypes {
typedef float FloatAli as;

iE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Fl oat Al i as typedef
directory to the type, xsd: f | oat . The WSDL-to-Java compiler then maps the
xsd: fl oat type directly to the f1 oat type.

Consider the following IDL typedef that defines an alias of a struct,
Sanpl eTypes: : Sanpl eStruct Al i as:

/1 1DL
nodul e Sanpl eTypes {
typedef SanpleStruct Sanpl eStructAli as;

IE

The IDL-to-WSDL compiler maps the Sanpl eTypes: : Sanpl eStruct Al i as
typedef directly to the plain, unaliased Sanpl eTypes. Sanpl eStruct type.

The WSDL-to-Java compiler then maps the Sanpl eTypes. Sanpl eSt r uct
WSDL type directly to the Sanpl eTypesSanpl eSt ruct Java type. The Java
mapping uses the original, unaliased type.

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific class being generated to represent the
sequence or array type.

IDL Module and Interface Mapping

IDL Module and Interface Mapping

Overview

Module mapping

Interface mapping

This section describes the Artix Java mapping for the following IDL
constructs:

® Module mapping

® |Interface mapping

® Operation mapping
® Attribute mapping

An IDL identifier appearing within the scope of an IDL module,

Modul eNane: : | dent i fi er, maps to a Java identifier of the form

Modul eNanel denti fi er. That is, the IDL scoping operator, : :, is dropped in
Java.

Although IDL modules do not map to packages under the Artix Java
mapping, it is possible nevertheless to put generated Java code into a
package using the - p switch to the WSDL-to-Java compiler (see “Generating
Stub and Skeleton Code” on page 10). For example, if you pass a
namespace, TEST, to the WSDL-to-Java - p switch, the

Modul eNare: : 1 denti fier IDL identifier would map to

TEST. Modul eNanel denti fier.

An IDL interface, I nt er f aceNane, maps to a Java class of the same name,
I nt er f aceNane. If the interface is defined in the scope of a module, that is
Modul eNarre: : | nt er f aceNane, the interface maps to the

Modul eNanel nt er f aceNare Java class.

If an IDL data type, TypeNane, is defined within the scope of an IDL
interface, that is Modul eNare: : | nt er f aceNane: : TypeNane, the type maps to
the Mbdul eNanel nt er f aceNaneTypeNane Java class.

277

CHAPTER 13 | Artix IDL to Java Mapping

Example 185 shows two IDL operations defined within the

Sanpl eTypes: : Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,

test _oneway().

Operation mapping

Example 185:E£xample IDL Operations

/11 DL
nmodul e Sanpl eTypes {

interface Foo {
string test_op(
in |long inLong,
i nout |ong inoutLong,
out long outlLong

)5
oneway void test_oneway(in string in_str);

}
iE

The operations from the preceding IDL, Example 185 on page 278, map to
C++ as shown in Example 186.

Example 186:Mapping IDL Operations to Java

I/ Java
public class Fool npl {
1 public String test_op(
int inLong,
javax. xm . rpc. hol ders. | nt Hol der i nout Long,
javax. xm . rpc. hol ders. | nt Hol der out Long) {
}

2 public void test_oneway(String in_str) {

}

278

IDL Module and Interface Mapping

The preceding C++ operation signatures can be explained as follows:

1. The Java mapping of an IDL operation retains a similar signature to its
IDL definition.

The order of parameters in the Java method, t est _op(), is determined
as follows:

+ First, the i n parameters appear in the same order as in IDL.
. Next, the i nout parameters appear in the same order as in IDL.
+ Finally, the out parameters appear in the same order as in IDL.

2. The Java mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only i n parameters and a voi d
return type.

Attribute mapping Example 187 shows two IDL attributes defined within the
Sanpl eTypes: : Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, bool _attr.

Example 187:Example IDL Attributes

/1 1DL
nmodul e Sanpl eTypes {

interface Foo {
attribute string str_attr;
readonly attribute bool ean bool _attr;
IH
b

The attributes from the preceding IDL, Example 187 on page 279, map to
Java as shown in Example 188.

Example 188:Mapping IDL Attributes to Java

/'l Java
public class Fool npl {

279

CHAPTER 13 | Artix IDL to Java Mapping

Example 188:Mapping IDL Attributes to Java

1 public String _get_str_attr() {
/1 User code goes in here.
return "";

}

public void _set_str_attr(String _arg) {
/1 User code goes in here.

}
2 public boolean _get_bool _attr() {

/1l User code goes in here.
return fal se;

}

The preceding C+ + attribute signatures can be explained as follows:

1. Anormal IDL attribute, At tri but eNane, maps to a pair of accessor and
modifier functions in Java, _get _Attri but eName(),
_set_AttributeNane().

2. An IDL readonly attribute, Attri but eName, maps to a single accessor
function in Java, _get _Attri but eNare() .

280

Glossary

anyType
anyType is the root type for all XMLSchema types. All of the primitive types
are derivatives of this type, as are all user defined complex types.

Artix bus

The Artix bus reads the protocol details from the physical section of the Artix
contract, loads the appropriate payload and transport plug-ins, and handles
the mapping of the data onto and off the wire.

Artix message context

An Artix message context is a special message context that is used by Artix
to store and transmit transport details and message header information. They
contain two context containers. One for storing data about requests and one
for storing data about replys. For more details see “Working with Artix Message
Contexts” on page 211.

Artix reference

An Artix reference is a Java object that fully describes a running Artix service.
References can be passed between Artix endpoints as operation parameters
and are used extensively by the Artix locator. For more details see “Artix
References” on page 145.

Binding
A binding maps an operation’s messages to a payload format. Bindings are
defined using the WSDL <bi ndi ng> element. See also Payload format.

Bus
See Artix bus.

Choice complex type

A choice complex type is an XMLSchema construct defined by using a
<choi ce>element to constrain the possible elements in a complex type. When
using a choice complex type only one of the elements defined in the complex
type can be valid at a time. For more details see “Choice Complex Types” on
page 64.

281

CHAPTER 14 |

282

Classloader firewall
The classloader firewall provides a user configurable way to block the Artix
Java runtime from classes on a system’s classpath. For more details see “Class
Loading” on page 41.

Contract

An Artix contract is a WSDL file that defines the interface and all connection
information for that interface.

A contract contains two components: /ogical and physical. The logical
component defines things that are independent of the underlying transport
and wire format such as abstract definitions of the data used and the
interface.

The physical component defines the wire format, middleware transport, and
service groupings, as well as the mapping between the operations defined in
the interface and the wire formats, and the buffer layout for fixed formats
and extensors.

Discriminator

A discriminator is a data element created to support the mapping of a choice
complex type to a Java object. The discriminator element identifies the valid
element in a choice complex type. See also Choice complex type.

Dynamic proxy

A dynamic proxy is a Java construct introduced in version 1.3 by Sun
Micosystems. As specified by the JAX-RPC specification, Artix uses a dynamic
proxy to connect to remote services. For more information, go to
http://java.sun.com/reference/docs/index.htmi.

Embedded deployment

An embedded deployment is a deployment mode in which an application
creates an endpoint, either by invoking Artix APIs directly, or by compiling
and linking Artix-generated stubs and skeletons to connect client and server
to the service bus.

http://java.sun.com/reference/docs/index.html

Endpoint

The runtime incarnation of a service defined in an Artix contract. When using
the Artix Java APls, an endpoint is activated when you register a servant with
the Artix bus. See also Service.

Facet

A facet is a rule used in the derivation of user defined simple types. Common
facetsincludel ength, pattern,total Digits,andfractionD gits. Formore
details see “Defining Your Own Simple Types” on page 53.

Factory pattern

The factory pattern is a usage pattern where one service creates and manages
instances of another service. Typically, the factory service returns references
to the services it creates. For more details see “Using References in a Factory
Pattern” on page 154.

Fault message

A fault message is the WSDL construct used to define error messages, or
exceptions, passed between a service and its clients. They are defined using
a <faul t > element in a WSDL contract. For more details see “Creating
User-Defined Exceptions” on page 117.

Handler

Hanl der is the Java interface that a developer must implement to create a
message handler. It has has methods for processing both request and
response messages. Artix provides a Generi cHandl er class to provide a
template for implemeting message handlers. See also “Writing Message
Handlers” on page 239.

Input message

An input message is the WSDL construct for defining the messages that are
sent from a client to a service and are specified using an <i nput > element in
a WSDL contract. When mapped into Java, the parts of the input message
are mapped into a method’s parameter list.

283

CHAPTER 14 |

284

Interface

An interface defines the operations offered by a service. Interfaces are defined
in an Artix contract using the WSDL <port Type> element. When mapped to
Java, an interface results in the generation of an object with methods for each
of the operations defined in the interface. See also Operation.

Java API for XML-Based RPC(JAX-RPC)

JAX-RPC is the Java specification upon which Artix based it Java APl and
data type mappings. For more information go to
http://java.sun.com/xml/jaxrpc/overview.html.

List type

A list type is a data type defined as consisting of a space separated list of
primitive type elements. For example, “1 2 3 4 5" is a valid value for a list
type. They are defined using a <xsd: | i st > element. For more details see
“Lists” on page 95.

Logical contract

The logical contract defines components that are independent of the
underlying transport and wire format. These include the type definitions and
the interface definitions. WSDL elements found in the logical contract include:
<por t Type>, <oper ati on>, <nessage>, <t ype>, and <i nport >.

Message

In Artix, a message is any data passed between two endpoints. Messages are
defined in an Artix contract using the WSDL <nessage> element and are used
for the input, output, and fault messages that define an operation. After a
message has been associated with an operation, it can be bound to any
payload format supported by Artix. See also Fault message, Input message,
and Output message.

Message-level handler

A message-level handler is a message handler that processes messages
between the Artix binding to the Artix transport. See “Writing Message
Handlers” on page 239.

http://java.sun.com/xml/jaxrpc/overview.html

Message context

A message context is a bus container used by applications to store metadata
properties. These properties store information about the message being sent
went an operation is invoked. Artix uses the message context to store headers
and transport information. See also Artix message context and “Using Message
Contexts” on page 197.

Message handler

A message handler is a Java class responsible for intercepting a message
along the message chain and performing some processing on the raw message
data. See also Handler and “Writing Message Handlers” on page 239.

Operation

An operation defines a specific interaction between a service and a client. It
is defined in an Artix contract using the WSDL <oper at i on> element. Its
definition must include at least one input or output message. When mapped
into Java, an operation generates a method on the object representing the
interface in which it is defined.

Output message

An output message is the WSDL construct for defining the messages that are
sent from a service to a client and are specified using an <out put > element
in a WSDL contract. When mapped into Java, the parts of the output message
are mapped as described in the JAX-RPC specification.

Payload format

A payload format is how data is packaged to be sent on the wire. Examples
of payload formats supported by Artix include SOAP, TibMsg, and fixed record
length data. Data is bound to a payload format in an Artix contract using the
WSDL <bi ndi ng> element.

Physical contract

The physical contract defines the bindings and transport details used by the
endpoints defined by an Artix contract. WSDL elements found in the physical
contract include: <bi ndi ng>, <ser vi ce>, and <port >.

285

CHAPTER 14 |

286

Plug-in

A plug-in is a module that Artix loads at runtime to provide a set of features.
All of the bindings and transports supported by Artix are implemented as
plug-ins. In addition, message handlers are implemented as plug-ins.

Reply
A reply is the message returned by a service to a client in response to a request
from the client. See also Output message.

Request
A request is a message sent from a client to a service asking for the service
to do work. See also Input message.

Request-level handler

A request-level handler is a message handler that processes messages
between the Artix binding and the user’s application code. See “Writing
Message Handlers” on page 239.

Response
See Reply.

Servant

A servant is a Java object that wraps the implementation object generated
from an interface. The servant wrapper enables the bus to associate the
implementation object with the physical details specified in its contract’s
service definition and to manage the object.

Service

A service is the contract definition of an Artix endpoint. It combines the logical
definition of an interface, the binding of the interface’s operations to a payload
format, and the transport details used to expose the interface. A service is
defined using a WSDL <port > element.

Service proxy
A service proxy is a proxy created by an Artix client to connect to a remote
service. See also Dynamic proxy.

Service template

A service template is a WSDL service definition that serves as the model for
the colnes created for a transient reference. They must fully define all of the
details, except the address, of the transport used by the transient servant. The
address provided in the service template must be a wildcard value.

Standalone deployment
Standalone deployment is a deployment mode in which an Artix instance runs
independently of the endpoints it is integrating.

Static servant

A static servant is a servant whose physical details are linked to a <port >
definition in the contract associated with the application. For more details see
“Static Servant Registration” on page 27.

Stub interface

Artix service proxies implement the j avax. xni . r pc. St ub interface. The Stub
interface provides access to a number of low-level properties used to connect
the proxy to a remote service. These properties can be used to get the Artix
bus from client applications, to register type factories, and set HTTP
connection properties.

Transient servant

A transient servant is a servant whose physical details are cloned from a
<por t > definition in the contract associated with the application. For more
details see “Transient Servant Registration” on page 28.

Transport

A transport is the network protocol, such as HTTP or IIOP, that is used by an
endpoint. The transport details for an endpoint are defined inside of the WSDL
<por t > element defining the endpoint.

Type factory

A type factory is a Java class generated to support the use of XMLSchema
anyTypes and SOAP headers in Java.

287

CHAPTER 14 |

288

Web Service Definition Language(WSDL)
WSDL is an XML format for describing network services as a set of endpoints.
Artix uses WSDL as the syntax for its contracts.

In WSDL, the abstract definition of endpoints and messages is separated

from their concrete network deployment or data binding formats. This allows

the reuse of abstract definitions: messages, which are abstract descriptions

of the data being exchanged, and port types which are abstract collections

of operations. The concrete protocol and data format specifications for a

particular port type constitutes a reusable binding. A port is defined by

associating a network address with a reusable binding, and a collection of

ports define a service. Hence, a WSDL document uses the following

elements in the definition of network services:

® Types -- a container for data type definitions using some type system
(such as XMLSchema).

® Message -- an abstract, typed definition of the data being
communicated.

® Operation -- an abstract definition of an action supported by the
service.

® Port Type -- an abstract set of operations supported by one or more
endpoints.

® Binding -- a concrete protocol and data format specification for a
particular port type.

® Port -- a single endpoint defined as a combination of a binding and a
network address.

® Service -- a collection of related endpoints.

For more information go to http://www.w3.org/TR/wsdl.

WSDL <binding>
See Binding and Payload format.

WSDL <fault>
See Fault message.

WSDL <message>
See Message.

http://www.w3.org/TR/wsdl

WSDL <operation>
See Operation.

WSDL <port>
See Service.

WSDL <portType>
See Interface.

WSDL <service>
A WSDL <servi ce> element is a collection of WSDL <por t > elements.

XMLSchema

XMLSchema is a language specification by the W3C that defines an XML
meta-language for defining the contents and structure of XML documents. It
is used as the native type system for Artix. For more information go to
http://www.w3.0org/XML/Schema.

289

http://www.w3.org/XML/Schema

CHAPTER 14 |

290

Index

A

abstract interface type 261
AnyType
getBoolean() 141
getByte() 141
getDecimal() 141
getDouble() 141
getFloat() 141
getint() 141
getlong() 141
getSchemaTypeName() 140
getShort() 141
getString() 141
getType() 142
getUByte() 141
getUInt() 141
getULong() 141
getUShort() 141
setBoolean() 138
setByte() 138
setDecimal() 139
setDouble() 138
setFloat() 138
setint() 138
setLong() 138
setShort() 138
setString() 138
setType() 139
setUByte() 138
setUInt() 139
setULong() 139
setUShort() 138
anyType 136
arrayType attribute 93
Artix bus 3
initializing 16, 20
starting 18
Artix locator
overview 183
Artix services
locator 187

B

binding name

specifying to code generator 11
boxed value type 261
Bus

createClient() 30

createReference() 151

getTypeFactoryMap() 129

init() 16, 20

registerTypeFactory() 129

run() 18, 20

shutdown() 21
bus

registerHandlerFactory() 245, 252
BusPlugin 234
BusPluglin.busInit() 234
BusPlugIn.busShutdown() 235
BusPlugln.getBus() 234
BusPlugInFactory 237
BusPluglnFactory().createBusPlugin() 237

C

client
developing 20
client proxy
instantiating 20
client stub code 10
code generation 10
from the command line 11
impl flag 15
server flag 16
types flag 15
code generator
command-line 11
files generated 10
com.iona.jbus.Servant 17
com.iona.jbus package 13
com.iona.webservices.reflect.types.AnyType 137
com.iona.webservices.reflect.types.TypeFactory 12
7,137
complex choice type
receiving 64
transmitting 64

291

INDEX

complex types

attributes 68

derivation by extension 104

derivation by restriction 78

deriving from simple 78

description in XMLSchema 56

mapping to Java 56
configuration

-ORBname switch 191
ContextRegistry 201
context registry 201
contexts

stub files, generating 220

type factories for 221
contract type descriptions 53, 56
CORBA

abstract interface 261

any 262

basic types 262

boolean 262

boxed value 261

char 262

enum type 264

exception type 273

fixed 262

forward-declared interfaces 261

local interface type 261

sequence type 270

string 262

struct type 269

typedef 276

union type 266, 272

value type 261

wchar 262

wstring 262
createClient() 30, 153, 195
createReference() 151, 152
createService() 21
creating a dynamic proxy 21
creating a Service instance 21

D

developing a server 15

dynamic proxies 20

dynamic proxy
instantiating 20

292

E
EndpointNotExist fault 189
endpoints 185

registering with the locator 191
enum type 264
exception handling

CORBA mapping 274
exceptions

associating to an operation 119

describing in a contract 118
exception type 273

F

facets 53

fault message 5
forward-declared interfaces 261
fractionDigits facet 55
fromString() 99

fromValue() 99

G

generated getter method 58
generated setter method 58
generated types

getter method 58

setter method 58
GenericHandler 248, 255
GenericHandlerFactory 246, 253
getBoolean() 141
getByte() 141
getClass() 140
getClientMessageHandler() 253
getContextRegistry() 201
getCurrent() 203
getDecimal() 141
getDouble() 141
getFloat() 141
getint() 141
getJavaType() 133
getJavaTypeForElement() 134
getlong() 141
getReplyContext() 214
getReplyContextAsString() 214
getRequestContext() 214
getRequestContextAsString() 214
getSchemaType() 132
getSchemaTypeName() 140
getServerMessageHandler() 253

getShort() 141

getString() 141
getSupportedNamespaces() 131
getType() 142
getTypeFactoryMap() 129
getTypeResourcelLocation() 134
getUByte() 141

getUInt() 141

getULong() 141

getUShort() 141

getValue() 99

H

Handler 248, 255
handleRequest() 248, 255
handleResponse() 248, 255

handleRequest() 248, 255

handleResponse() 248, 255

HandlerFactory 246, 253

getClientMessageHandler() 253
getServerMessageHandler() 253

Handlerinfo 247, 254
setHandlerClass() 247, 254
http plug-in 191

|
IDL
enum type 264
exception type 273
oneway operations 279
sequence type 270
struct type 269
typedef 276
union type 266, 272
IDL attributes
mapping to Java 279
IDL basic types 262
IDL interfaces
mapping to Java 277
IDL modules
mapping to Java 277
IDL operations
mapping to C++ 278
parameter order 279
return value 279
IDL readonly attribute 280
IDL-to-C++ mapping
Artix and CORBA 260

INDEX

IDL types

unsupported 261
idl utility 260
init() 16, 20

-ORBname parameter 194
initializing the bus

client side 20

server side 16
input message 5
instantiating a client proxy 20
lonaMessageContext 203, 205
itemType 95
itemType attribute 97

J

java.io.* package 14

java.net.* package 14

java.rmi.Remote 6
java.rmi.RemoteException exception 7
Java Exception class 120

Java Holder class 7
javax.activation.DataHandler 114
javax.xml.namespace.QName package 13
javax.xml.rpc.* package 13
javax.xml.rpc.holders 107
javax.xml.rpc.holders.Holder interface 107
javax.xml.rpc.holders package 7
javax.xml.rpc.security.auth.password 38
javax.xml.rpc.security.auth.username 38
javax.xml.rpc.service.endpoint.address 39
javax.xml.rpc.ServiceFactory 20
javax.xml.rpc.Service interface 20
javax.xml.soap.Name 87
javax.xml.soap.Node 88
javax.xml.soap.SOAPElement 86
javax.xml.soap.Text 88

L

length facet 55

list types 95

load balancing
with the locator 184

local interface type 261

locator
binding and protocol 187
embedded deployment 185
EndpointNotExist fault 189
load balancing 184, 186

293

INDEX

LocatorService port type,Java mapping 189
lookupEndpointResponse type 189
lookupEndpoint type 189
reading a reference from 192
registering endpoints 191
standalone deployment 185
WSDL contract 187
locator, Artix 183
locator_endpoint plug-in 191
LocatorService port type 189
logical contract 2
lookupEndpointResponse type 189
lookupEndpoint type 189

M
mapping

IDL attributes 279

IDL interfaces 277

IDL modules 277

IDL operations 278

IDL to C++ 260
maxExclusive facet 55
maxlInclusive facet 55
maxLength facet 55
MessageContext 203, 204

getProperty() 208

removeProperty() 209

setProperty() 206
message context 203
message part sharing 107
MIME multi-part related message 111
minExclusive facet 55
mininclusive facet 55
minLength facet 55
Multi-dimensional arrays 94

o)
obtaining a ServiceFactory 21
occurrence constraints
overview of 81
oneway operations
in IDL 279
-ORBname, parameter to IT_Bus::init() 194
-ORBname command-line parameter 191
output message 5

P

parameters

294

in IDL-to-Java mapping 279
partially transmitted arrays

SOAP arrays

partially transmitted 94

pattern facet 55
PerlnvocationServant 35
physical contract 2
plug-ins

http 191

locator_endpoint 191

soap 191
port

specifying to code generator 11
ports

and endpoints 185
portType 11
primitive types

Java 48
proxies

constructor for references 195

R

receiving choice types 64
ref:Reference type 189
references
constructor for client proxies 195
looking up in the locator 185
reading from the locator 192
ref:Reference type 189
schema 189
registerContext() for SOAP 221
registerHandlerFactory() 245, 252
registering a servant instance 18
registerServant() 18, 27
registerTransientServant() 29
registerTypeFactory() 129
removeReplyContext() 215
removeRequestContext() 216
reply context container 211
request context container 211
required java packages 13
run() 18, 20

S
schema

for references 189
sequence complex types 57
sequence type 270

SerializedServant 35
server
developing 15
implementation class 15
main() function 16
server skeleton code 10
Service.getPort() 21
ServiceFactory.newlInstance() 21
service name
specifying to code generator 11
setBoolean() 138
setByte() 138
setDecimal() 139
setDouble() 138
setFloat() 138
setHandlerClass() 247, 254
setint() 138
setLong() 138
setReplyContext() 212
setReplyContextAsString() 212
setRequestContext() 212
setRequestContextAsString() 212
setShort() 138
setString() 138
setType() 139
setUByte() 138
setUInt() 139
setULong() 139
setUShort() 138
shutdown() 21
shutting down the bus 21
simple types
XMLSchema 48
SinglelnstanceServant 34
skeleton code
generating with wsdltojava 11
SOAP arrays
sparse 94
syntax 92
SOAP bindings 187

SOAPElement.getChildElements() 88
SOAPElement.getElementName() 87

SOAP-ENC:Array type 92
soap plug-in 191

SOAP with attachments 111
sparse arrays 94

static servant 27
StreamMessageContext 255
struct type 269

INDEX

Stub._getProperty() 37
Stub._setProperty() 37
Stub interface 37

T
thread_pool:high_water_mark 33
thread_pool:initial_threads 33
thread_pool:low_water_mark 33
toString() 58, 99, 120
totalDigits facet 55
transient servant 28
transmitting choice types 64
typedef 276
type derivation
by extension 78, 104
by restriction 78
type factories 126
and contexts 221
generating 126
instantiating 128
registering 129
TypeFactory
getJavaType() 133
getJavaTypeForElement() 134
getSchemaType() 132
getSupportedNamespaces() 131
getTypeResourcelLocation() 134

U
union type 266, 272
unsupported IDL types 261

\"
value type 261

w

whiteSpace facet 55

wsdl:arrayType 92

wsdl:arrayType attribute 93

WSDL <fault> element 7, 119
message attribute 119

WSDL <input> element 7

WSDL <message> element 4, 7, 118
name attribute 120

WSDL <operation> element 4, 7
name attribute 7
parameterOrder attribute 7

295

INDEX

WSDL <output> element 7
WSDL <part> element 4
WSDL <port> element 6
name attribute 6
WSDL <portType> element 4, 6
WSDL <types> element 4, 53, 56, 136
WSDL faults 274
wsdltojava 11, 15
command-line switches 11
-datahandlers 114
files generated 10
XML schemas, generating from 220
wsdltojava utility 260

X
XMLSchema <all> element 57
XMLSchema <attribute> element 50, 68
default attribute 50, 69
fixed attribute 50, 69
name attribute 68
type attribute 68
use attribute 50, 68
XMLSchema <choice> element 64
XMLSchema <complexContent> element 104
XMLSchema <complexType> element 56
name attribute 57, 73
XMLSchema <element> element 50
maxOccurs attribute 50, 59, 81, 93
minOccurs attribute 50, 81
nillable attribute 50
type attribute 72
XMLSchema <extension> element 78, 104
base attribute 104
XMLSchema <restriction> element 53
base attribute 53
XMLSchema <sequence> element 57
XMLSchema <simpleContent> element 78
XMLSchema <simpleType> element 53
name attribute 53, 99
XMLSchema facets 53
xsd:anyType 136
and context types 219
xsd:list 95

296

INDEX

297

INDEX

298

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Online Help
	Finding Your Way Around the Artix Library
	Additional Resources for Information
	Typographical Conventions
	Keying conventions

	Understanding the Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java

	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Advanced Programming Issues
	Servant Registration
	Static Servant Registration
	Transient Servant Registration

	Proxy Creation
	Getting a Bus
	Threading
	Setting Client Connection Attributes Using the Stub Interface
	Class Loading

	Working with Artix Data Types
	Using Native XMLSchema Simple Types
	Simple Type Mapping
	Special Simple Type Mappings
	Unsupported Simple Types

	Defining Your Own Simple Types
	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Occurrence Constraints

	Using XMLSchema any Elements
	SOAP Arrays
	Lists
	Enumerations
	Deriving Types Using <complexContent>
	Holder Classes
	Using SOAP with Attachments

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Working with Artix Type Factories
	Introduction to Type Factories
	Registering Type Factories
	Getting Type Information From Type Factories

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Setting anyType Values
	Retrieving Data from anyTypes

	Artix References
	Introduction to Working with References
	Reference Basic Concepts
	Creating References
	Instantiating Service Proxies Using a Reference

	Using References in a Factory Pattern
	Bank Service Contract
	Bank Service Implementation
	Bank Service Client

	Using References to Implement Callbacks
	The Accounting Contract
	The Accounting Client
	The Accounting Server

	The Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator

	Using Message Contexts
	Understanding Message Contexts in Artix
	Getting the Context Registry
	Getting the Message Context for a Thread
	Working with Generic Contexts
	Working with Artix Message Contexts

	Sending Header Information Using Contexts
	Defining Context Data Types
	Registering Context Types
	SOAP Header Example

	Developing Java Plug-Ins
	Extending the BusPlugIn Class
	Implementing the BusPlugInFactory Interface

	Writing Message Handlers
	Message Handlers: An Introduction
	Developing Request-Level Handlers
	Developing Message-Level Handlers

	Artix IDL to Java Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Glossary
	Index

