
Learning About Artix
Version 2.1, July 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
IONA Technologies PLC and/or its subsidiaries make no warranty of any kind to this material, including, but not
limited to, the implied warranties of merchantability, title, non-infringement and fitness for a particular purpose.
IONA Technologies PLC and/or its subsidiaries shall not be liable for errors contained herein, or for exemplary,
incidental, special, pecuniary or consequential damages (including, but not limited to, damages for business
interruption, loss of profits, or loss of data) in connection with the furnishing, performance or use of this mate-
rial.

COPYRIGHT NOTICE
No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 04-Jan-2005

M 3 2 0 7

Contents

List of Figures vii

Preface ix
What is Covered in this Book ix
Who Should Read this Book ix
Organization of this Book ix
Online Help x
Additional Resources for Help x
Document Conventions xi

Part I Introduction to Artix and WSDL Concepts

Chapter 1 Introduction 3
What is Artix? 4
Solving Problems with Artix 11
Using the Artix Documentation 14

Chapter 2 Artix Concepts 17
The Elements of Artix 18
The Artix Bus 19
Artix Service Access Points 20
Artix Contracts 21
Artix Services 24

Chapter 3 WSDL Concepts 27
Web Services Description Language Basics 28

Namespace Definitions 33
A Complete WSDL File 36

Chapter 4 Coding the Web Service 39
The wsdltocpp Utility 40
iii

CONTENTS
The wsdltojava Utility 43
Generating Code 46

Generating the Client Application Code 48
Generating the Server Application Code 51

Adding Processing Logic to the Coding 54
Building the Application 58

Building the Server Application 59
Building the Client Application 62

Running the Application 63
The C++ Application 64
The Java Application 65
Interoperability Between the C++ and Java Applications 66

Part II Using Artix

Chapter 5 Using the Artix Designer 69
Introduction 70
Creating a New Workspace 79
Creating the WSDL File 81
Defining the Contract Elements 84

Defining the Types 86
Defining the Messages 92
Defining the Port Type 96
Defining the Binding 100
Defining the Service 103

Developing an Application 106
Generating Starting Point Code 109

Defining Deployment Profiles 110
Defining Deployment Bundles 112
Generating the C++ and Java Code 116

Adding Logic to the Code 119
The C++ Client Code 120
The C++ Server Code 122
The Java Client Code 124
The Java Server Code 125

Compiling the Applications 126
Running the Application 128
 iv

CONTENTS
Chapter 6 Faults and Exceptions 131
Raising Exceptions 132
Handling Runtime Exceptions 134
Working with WSDL Faults 136
Developing an Application 140

Glossary 147

Index 155
v

CONTENTS
 vi

List of Figures

Figure 1: Artix High-Performance Architecture 6

Figure 2: Artix Designer GUI Tool 7

Figure 3: The Artix Bus 18

Figure 4: New Workspace dialog 72

Figure 5: Designer Tree 74

Figure 6: Artix Designer Main Window 75

Figure 7: Resource Navigator—Diagram View 76

Figure 8: Edit Type Attributes Dialog 77

Figure 9: Resource Navigator—Text View 78

Figure 10: New Workspace dialog 79

Figure 11: New Workspace wizard—Summary panel 80

Figure 12: New Resource dialog 81

Figure 13: Resource Navigator containing new contract 82

Figure 14: New Contract—Text view 83

Figure 15: New Type wizard 84

Figure 16: New Type wizard—Define Type Properties panel 87

Figure 17: New Type wizard—Summary panel 88

Figure 18: Resource Navigator showing the new Types 89

Figure 19: WSDL with Types added 89

Figure 20: New Type wizard—Define Type Properties panel 90

Figure 21: New Types in WSDL 91

Figure 22: New Message wizard—Select WSDL panel 92

Figure 23: New Message wizard—Define Parts panel 93

Figure 24: New Message wizard—View Summary panel 94

Figure 25: New messages definition in WSDL 95

Figure 26: New Port Type wizard—Define Port Type Operations panel 97
vii

LIST OF FIGURES
Figure 27: New Port Type wizard—Define Operation Messages panel 98

Figure 28: New Port Type wizard—Define Operation Messages panel 99

Figure 29: New Binding wizard—Set Binding Defaults panel 101

Figure 30: New Binding wizard—Edit Binding panel 102

Figure 31: New Service wizard—Define Port panel 104

Figure 32: New Service wizard—Define Extensor Properties panel 105

Figure 33: New Collection wizard 107

Figure 34: New Client item 108

Figure 35: Generate Code dialog 116
 viii

Preface
What is Covered in this Book
Learning about Artix provides an introduction to IONA’s Artix technology.
This book gives a brief overview of the architecture and functionality of Artix,
and a brief introduction to Web Services Definition Language (WSDL).

It also provides basic tutorial material for learning how to use Artix.

This book also provides guidance for finding your way around the Artix
product library.

Who Should Read this Book
Learning about Artix is for anyone who needs to understand the concepts
and terms used in IONA’s Artix product.

It also provides examples that you can return to and work through at any
time to increase your understanding of how Artix works, both from the
command line and from the Artix Designer.

Organization of this Book
This book is contains two types of information that you can read separately
or together, depending on how much detail you need to know about Artix.

Part I of the book contains conceptual information about Artix and WSDL:

• “Introduction” on page 3 introduces the Artix product, and the types of
problem that it is designed to solve.

• “Artix Concepts” on page 17 explains the main concepts used in Artix.
ix

PREFACE
• “WSDL Concepts” on page 27 explains the basics of Web Services
Definition Language (WSDL).

Part II contains examples that you can work through to learn more about
using Artix:

• “Coding the Web Service” on page 39 details how to use the
command-line tools to build an Artix solution.

• “Using the Artix Designer” on page 69 gives an overview of the Artix
Designer GUI tool, and explains how to use this tool to perform the
same tasks described in the command-line chapter.

• “Faults and Exceptions” on page 131 explains how to declare faults in
WSDL files and how to handle the corresponding C++ and Java
exceptions in Artix client and server applications.

There is also a “Glossary” on page 147 of this book to help you with any
unfamiliar terms.

Online Help
The Artix Designer includes comprehensive online help, providing:
• Detailed step-by-step instructions on how to perform important tasks.

• A contextual description of each screen.

• A full search feature.

There are two ways to access the online help: via the Help menu in the Artix
Designer, or by clicking the Help button on any interface dialog.

In addition, online help is provided for the Artix integration with BMC
Enterprise Management Systems. See the BMC Patrol Help menu for
details.

Additional Resources for Help
The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products.

The IONA update center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, contact IONA at:
support@iona.com.
 x

mailto:support@iona.com

PREFACE
Comments on IONA documentation can be sent to:
.

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name
xi

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xii

Part I
Introduction to Artix and

WSDL Concepts

In this part This part contains the following chapters:

Introduction page 3

Artix Concepts page 17

WSDL Concepts page 27

CHAPTER 1

Introduction
This chapter introduces the main features of Artix, and
describes where to look in the documentation for further
information.

In this chapter This chapter discusses the following topics:

What is Artix? page 4

Solving Problems with Artix page 11

Using the Artix Documentation page 14
3

CHAPTER 1 | Introduction
What is Artix?

Overview Artix is a Web services-based solution for enterprise application integration.
It represents a new approach to application integration that exploits the
middleware technologies and the products already present within an
enterprise. This new approach also allows Artix to rapidly provide integration
solutions that increase operational efficiencies, and enable an enterprise to
adopt or extend a Service-Oriented Architecture (SOA).

This section contains the following topics:

• “Web service concepts”

• “Artix technology”

• “Benefits of Artix” on page 5

• “Using Artix” on page 7

• “Becoming proficient with Artix” on page 8

• “Artix features” on page 8

• “Supported transports and protocols” on page 9

• “Supported payload formats” on page 9

Web service concepts The information services community generally regards Web services as
application-to-application interactions that use XML data representations
and the hypertext transfer protocol (HTTP). The advantages of Web services
lie in the fact that the data encoding scheme and transport semantics are
based on standardized, non-proprietary specifications. Another advantage of
Web Services is that string-based message content is human readable, can
be created and manipulated by any programming development tool, and
provides a high level of security and data integrity.

Artix technology Artix allows organizations to define their existing applications as Web
services, without worrying about the underlying middleware. It then
provides the ability to expose those applications across a number of
middleware technologies. Artix also enables developers to write new
applications in C++ and Java that can also be exposed in a middleware
 4

What is Artix?
neutral manner. In addition, Artix provides enterprise levels of service such
as session management, service look-up, security, and transaction
propagation.

Artix uses IONA’s proven Adaptive Runtime Technology (ART) to provide a
high-speed, robust, and scalable backbone for Web services deployment. In
addition, Artix extends ART and the Web service metaphor by using the
Artix Bus, IONA’s transport and message format switching technology. The
Artix Bus enables you to create Web services that communicate using
protocols other than SOAP over HTTP. For example, you can develop and
deploy Web services using proven enterprise quality communication
mechanisms such as TIBCO Rendevous, CORBA, and IBM WebSphere MQ.

Benefits of Artix Artix differs from the integration approach used by Enterprise Application
Integration (EAI) products. The EAI approach uses a canonical format in a
centralized EAI hub. All messages are transformed from a source
application’s native format to this canonical format, and then transformed
again to the format of the target application. Each application requires two,
typically proprietary, adapters that translate to and from the canonical
format.
5

CHAPTER 1 | Introduction
Requiring two transformations for every message incurs high overheads.
Many enterprises would prefer a high-performance solution that directly
transforms a small set of message types instead of a more general solution
with lower performance.

Artix connects applications at the middleware transport level and translates
messages only once. It hides the details of the connection and provides high
performance. Figure 1 shows an example Artix integration between BEA
Tuxedo and IBM MQSeries.

Artix also enables you to obtain maximum value from your IT assets through
the reuse of your existing systems. You can lower operating costs by
consolidating diverse systems and existing infrastructure.

Figure 1: Artix High-Performance Architecture

Tuxedo MQSeries

Transport of Choice

Artix
binding binding

No Canonical Format: Direct On-The-Wire Transformation
 6

What is Artix?
Lastly, Artix provides a range of easy-to-use tools that enable you to create,
manage, and deploy your integration solutions. These include GUI tools,
command-line tools, and APIs. For example, Figure 2 shows the main
window of the Artix Designer GUI tool. This tool automates and simplifies
the creation of Web service integration applications.

Using Artix There are three ways to use Artix:

• First, you can write applications using the Artix Application
Programming Interface (API). In this situation, you are writing new
applications using Artix as your development tool. This is the approach
used in the examples in this book.

• Second, you can integrate two existing applications, built on different
middleware technologies, into a single application. In this situation,
developers work with their current development tools and Artix
functions as a broker between the two dissimilar data encoding
schemas and transport protocols.

Figure 2: Artix Designer GUI Tool
7

CHAPTER 1 | Introduction
This approach requires the extended functionality of the Artix
Advanced or Enterprise products, and is not covered in this book.

• Lastly, you can use Artix as a replacement for other middleware
transport protocols. Your application code remains unchanged; the
Artix libraries replace the middleware libraries within your executable.
This approach is also not covered in this book.

Becoming proficient with Artix To become an effective Artix developer you need to understand four central
concepts, only one of which is related to writing code.

• First, you need to understand the syntax for WSDL files and the Artix
extensions to the WSDL specification.

• Second, you need to understand the relationship between Artix WSDL
extensions, Adaptive Runtime Technology plug-ins, and setting
configuration entries.

• Third, if you are programming in C++ you need an understanding of
the Artix API, and the IONA and Artix foundation class libraries, which
you can use in your application.

• Fourth, you must gain proficiency with the Artix Designer, a GUI tool
through which you can write and edit WSDL files, convert CORBA
Interface Definition Language (IDL) files, data files, and COBOL
copybooks into WSDL, and generate code.

This book introduces concepts in all four of these categories. The other Artix
product documentation covers each of these concepts in greater detail.

Artix features Artix includes for the following unique features:

• Support for multiple transports and message data formats

• C++ and Java development

• Message routing

• Transaction support

• Asynchronous Web services

• Role-based security, single sign on, and security integration

• Session management and stateful Web services

• Look-up services

• Load-balancing
 8

What is Artix?
• Integration with EJBs

• Easy-to-use development tools

• Support for .NET

• Integration with enterprise management tools such as IBM Tivoli and
BMC Patrol

• Support for a wide range of codesets

• Support for XSLT-based message transformation

Supported transports and
protocols

A transport is an on-the-wire format for messages; whereas a protocol is a
transport that is defined by an open specification. For example, MQ and
Tuxedo are transports, while HTTP and IIOP are protocols.

In Artix, both protocols and transports are referred to as transports. Artix
supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ (formerly MQSeries)

• TIBCO Rendezvous™

• IIOP

• CORBA

• Java Messaging Service

Supported payload formats A payload format controls the layout of a message delivered over a
transport. Artix can automatically transform between the following payload
formats:

• G2++

• FML (a Tuxedo format)

• FRL (fixed record length)

Note: Single sign-on, locator look-up services, and session management
are not available in all editions of Artix. Please check the conditions of your
Artix license to see if your installation supports these features.

Note: Only HTTP is available in all editions of Artix. Check the conditions
of your Artix license to see if your installation supports the remaining
transports.
9

CHAPTER 1 | Introduction
• Tagged (variable record length)

• SOAP

• TibrvMsg (a TIBCO Rendezvous format)

• Pure XML

Further information For more information about supported transports and payload formats, see
Designing Artix Solutions.

For information about Artix mainframe support, see the Artix Mainframe
documentation, available at: /http:/www.iona.com/support/docs/index.xml.

Note: SOAP is the only payload format available in all editions of Artix.
Check the conditions of your Artix license to see if your installation
supports the remaining payloads.
 10

www.iona.com/support/docs/index.xml

Solving Problems with Artix
Solving Problems with Artix

Overview Artix enables you to easily solve problems of how to integrate existing
back-end systems using Web services. It also enables you to develop new
Web services using C++ or Java, and retain all of the enterprise levels of
service that you require.

This section describes the three main phases in an Artix solution:

• “Design phase”

• “Development phase” on page 12

• “Deployment phase” on page 12

Artix integration solutions that use a standalone Artix service do not always
require the development of any code, and can involve design and
deployment phases only.

Design phase In the design phase, you map out the architecture of the systems that you
want to integrate or develop. You decide what services you want to build,
what operations each service needs, and the data that the services needs to
exchange.

After making these decisions, you map the information into Artix contracts
that describe the services, operations, and data types. As part of this step,
you also map out the transports used by each service and any routing rules
that will be used.

The Artix Designer GUI and command-line tools automate the mapping of
your service descriptions into WSDL-based Artix contracts. These tools
enable you to:

• Import existing WSDL documents (for example, those generated by
third-party tools).

• Generate a WSDL contact from scratch.

• Generate a WSDL contract from an external metadata source (for
example, CORBA IDL).
11

CHAPTER 1 | Introduction
Development phase If your solution involves creating new applications, a custom router, or
locator or session management features, you need to develop some Artix
application code (C++ or Java). This involves generating client stub code
and server skeleton code from the Artix contracts that you created in the
design phase. You can generate this code using the Artix Designer GUI and
command-line tools.

When you have generated the client stub code and server skeleton code, you
can then develop the code that implements the business logic you require.
Artix takes care of generating the starting point code, and you can then use
your favorite development environment to develop and debug the
application code.

If necessary, Artix also provides advanced APIs for directly manipulating
SOAP messages, and for writing SOAP message handlers. These can be
plugged into the Artix runtime for custom-built processing of SOAP
messages.

Deployment phase In the deployment phase, you take the Artix contracts from the design
phase, and any applications created in the development phase, and deploy
your integrated system. You might need to modify the generated Artix
configuration files, or edit the Artix contracts describing your solution to fit
the exact circumstances of your deployment environment.

Applications that use Artix can be deployed in two different ways:

Embedded mode

In embedded mode, applications are modified to invoke Artix functions
directly and locally, instead of invoking a standalone Artix service. This
approach is the most invasive to the application, but also provides the
highest performance. Embedded mode requires linking the application with
the Artix-generated stub and skeleton code to connect the client and server
to the Artix Bus.

Standalone mode

In standalone mode, Artix runs as a separate process that is invoked as a
service. Standalone mode provides a zero-touch integration solution that
does not involve any coding. However, standalone mode is less efficient
than embedded mode.
 12

Solving Problems with Artix
When designing a system, you simply generate and deploy the Artix
contracts that specify each endpoint of the Artix Bus. Because a standalone
switch is not linked directly with the applications that use it (in embedded
mode), a contract for standalone mode deployment must specify routing
information.
13

CHAPTER 1 | Introduction
Using the Artix Documentation

Overview The Artix documentation library consists of a number of guides to help you
understand and use Artix. The guides are broken down into groups reflecting
the three phases of Artix problem solving. This section gives a brief overview
of each guide and suggests an order in which to read the library.

This section contains the following topics:

• “If you are new to Artix”

• “Designing with Artix” on page 15

• “Developing with Artix” on page 15

• “Deploying and Managing Artix Solutions” on page 15

• “Latest updates” on page 16

If you are new to Artix If you are approaching Artix for the first time, it is suggested that you work
through the library in the following order:

1. Learning about Artix (this book)

2. Designing Artix Solutions

This book describes how to use the Artix GUI or the command line
tools to describe your services in an Artix contract. It also provides
detailed information about the WSDL extensions used in Artix contracts
and explains the mappings between data types and Artix bindings.

3. Developing Artix Applications in C++
Developing Artix Applications in Java

The development guides discuss the technical aspects of programming
applications using the Artix API.

4. Deploying and Managing Artix Solutions

This book describes deploying Artix enabled systems. It provides
detailed examples for a number of typical use cases.

5. Artix Security Guide

An introduction to the security features in Artix.

6. Artix IBM Tivoli Integration Guide
 14

Using the Artix Documentation
Describes how to integrate Artix with the IBM Tivoli enterprise
application.

7. Artix BMC Integration Guide

Describes how to integrate Artix with the BMC Patrol enterprise
application.

8. Command Line Reference Guide

A quick reference to the various command-line tools supplied with
Artix

Designing with Artix Designing Artix Solutions is divided into two parts:

• The first part explains how to create and manage Artix contracts using
the Artix Designer GUI. It also explains how to generate stub and
skeleton code for development, and configuration files for deployment.

• The second part explains how to create and manage Artix contracts
using the Artix command line tools. It also explains how to generate
stubs, skeletons, and configuration files. This book contains detailed
descriptions of the Artix WSDL extensions used to define routes,
payload formats, and transports. It also provides an overview of WSDL
and how it maps to certain programming concepts.

Developing with Artix The Artix documentation suite includes two main development guides:

• Developing Artix Applications in C++

• Developing Artix Applications in Java

Both guides describe how to develop clients and servers using the Artix
APIs. They provide examples of using Artix advanced functionality such as
transactions, using locator services, session management, and dynamic
configuration.

Deploying and Managing Artix
Solutions

Deploying and Managing Artix Solutions explains how to configure and
deploy all aspects of an Artix solution. It describes the Artix configuration
file, where to locate the contracts that control your Artix services, and how
to run Artix applications. It also explains how to configure and deploy the
Artix locator and session manager.
15

CHAPTER 1 | Introduction
In addition, the Artix Tivoli Integration Guide and the Artix BMC Integration
Guide explain Artix integration with third party Enterprise Management
Systems IBM Tivoli and BMC Patrol.

Lastly, Artix provides the Artix Security Guide for security configuration and
management.

Latest updates The latest updates to the Artix 2.1 documentation can be found at:
http://www.iona.com/support/docs/artix/2.1/index.xml.
 16

http://www.iona.com/support/docs/artix/2.1/index.xml

CHAPTER 2

Artix Concepts
This chapter introduces the key concepts used in the Artix
product.

In this chapter This chapter discusses the following topics:

The Elements of Artix page 18

The Artix Bus page 19

Artix Service Access Points page 20

Artix Contracts page 21

Artix Services page 24
17

CHAPTER 2 | Artix Concepts
The Elements of Artix

Overview This section gives a high-level overview of the main components in the Artix
product:

• “The Artix Bus” on page 19

• “Artix Service Access Points” on page 20

• “Artix Contracts” on page 21

• “Artix Services” on page 24

Artix components Artix’ unique features are implemented by a number of plug-ins to IONA’s
ART platform. These plug-ins form the core of Artix, the Artix Bus.
Applications that make use of Artix connect to the Artix Bus using Artix
Service Access Points (SAPs). Service Access Points are described by Artix
Contracts.

Figure 3 shows an example of how all of these Artix elements fit together.

The rest of this chapter describes each of these components in more detail.

Figure 3: The Artix Bus

Artix Bus

Client Server

SAP
contract

SAP
contract

CORBASOAP/HTTP
 18

The Artix Bus
The Artix Bus

Overview The Artix Bus is a set of plug-ins that work in much the same way as
simultaneous translators at the United Nations. Reader plug-ins read data
that may be in a number of disparate formats, the Artix Bus directly
translates the data into another format, and writer plug-ins write the data
back out to the wire in the new format.

In this way, Artix enables all of the applications in your company to
communicate over the Web, without needing to understand SOAP or HTTP.
It also means that clients can contact Web services without understanding
the native language of the server handling requests.

Benefits While other Web service products provide some ability to expose enterprise
applications as Web services, they frequently require a good deal of coding.
The Artix Bus eliminates the need to modify your applications or write code
by directly translating between the enterprise application’s native
communication protocol and SOAP over HTTP, which is the prevalent
protocol used for Web services.

For example, by deploying an Artix instance with a SOAP over WebSphere
MQ Service Access Point and a SOAP over HTTP Service Access Point, you
can expose a WebSphere MQ application directly as a Web service. The
WebSphere MQ application does not need to be altered or made aware that
it was being exposed using SOAP over HTTP.

The Artix Bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI products, Artix translates directly between different
middlewares, without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted.
19

CHAPTER 2 | Artix Concepts
Artix Service Access Points

Overview An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection An Artix SAP provides an abstract connection point between applications,
shown in Figure 3 on page 18. The benefit of using this abstract connection
is that it allows you to change the underlying communication mechanisms
without recoding any of your applications. You simply need to modify the
contract describing the SAP.

For example, if one of your back-end service providers is a Tuxedo
application and you want to swap it for a CORBA implementation, you
simply change the SAP’s contract to contain a CORBA connection to the
Artix Bus. The clients accessing the back-end service provider do not need
to be aware of the change.
 20

Artix Contracts
Artix Contracts

Overview Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics such as service operations and messages in an
abstract way—independent of the transport or protocol used to implement
the SAP—these characteristics can be bound to a variety of protocols and
formats. Artix allows an abstract definition to be bound to multiple specific
protocols and formats. This means that the same definitions can be reused
in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a pair of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

This section covers the following topics:

• “WSDL basics”

• “The Artix contract” on page 22

• “Further information” on page 23

WSDL basics Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL terms can be defined as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations defined in
a portType.
21

CHAPTER 2 | Artix Concepts
A WSDL Port specifies the transport details for a binding, and defines a
single communication endpoint.

A WSDL service specifies a set of related ports.

The Artix contract An Artix contract is specified in WSDL and is conceptually divided into
logical and physical components.

The logical contract

The logical contract specifies components that are independent of the
underlying transport and wire format. It fully specifies the data structure and
the possible operations or interactions with the interface. It enables Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (transport and wire format).

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details, for example:

• The wire format, middleware transport, and service groupings.

• The connection between the portType operations and wire formats.

• Buffer layout for fixed formats.

• Artix extensions to WSDL.

Table 1: Artix WSDL Contract Elements

Logical contract:

<schema>

<types> (analogous to typedefs)

<message> (analogous to a parameter)

<portType> (analogous to a class or CORBA interface definition)

<operation> (analogous to a method)

Physical contract:

<binding> (payload format)

<service> (groups of ports)

<port> (transport addressing information)

<route> (rules governing system interaction)
 22

Artix Contracts
Further information For a more detailed introduction to the WSDL concepts used in Artix
contracts, see “WSDL Concepts” on page 27.
23

CHAPTER 2 | Artix Concepts
Artix Services

Overview In addition to the core Artix components, Artix also provides three services:

• “Artix locator”

• “Artix session manager”

• “Artix Transformer” on page 25

These services provide advanced functionality that Artix deployments can
use to gain even more flexibility.

Artix locator The Artix locator provides service look-up and load balancing functionality to
an Artix deployment. The locator functionality is provided by two Artix
plug-ins:

• The Locator Service plug-in is responsible for collecting service
references and passing the references out to client applications.

• The Endpoint Manager plug-in reports service details to the Locator
Service plug-in to facilitate load balancing and to ensure that all
references are current.

For information about deploying the Artix locator, read Deploying and
Managing Artix Solutions.

For information about developing client applications that use the locator to
look-up services, read Developing Artix Applications in C++.

Artix session manager The Artix session manager allows you to control the number of concurrent
clients allowed to connect to a group of services. It also provides control
over the amount of time a client can have access to a service before having
to request an extension.

The session manager is split into three plug-ins:

• The Service Manager Service plug-in processes client session requests,
passes valid sessions to clients, and processes session renewals.

Note: Currently Java clients cannot look up services with the Artix
locator.
 24

Artix Services
• The Endpoint Manager plug-in provides service details to the Session
Manager Service plug-in and validates client requests based on their
session tokens.

• The Simple Policy plug-in defines the duration of each session as well
as the number of concurrent sessions permitted in each group.

For information about deploying the Artix session manager, read Deploying
and Managing Artix Solutions.

For information about developing client applications that use session
managed services, read Developing Artix Applications in C++.

Artix Transformer The Artix Transformer provides Artix with a way to transform operation
parameters on the wire using rules written in Extensible Style Sheet
Transformation (XSLT) scripts. The Transformer can be used to provide a
simple means of transforming data. For example, it can be used to develop
an application that accepts names as a single string and returns them as
separate first and last name strings.

The Transformer can also be placed between two applications where it can
transform messages as they pass between the applications. This
functionality allows you to connect applications that do not use exactly the
same interfaces and still realize the benefits of not using a canonical format.

Also, because the transformations are described in XSLT scripts, using the
Transformer requires no code changes in either of the applications being
integrated. Just as the Artix Bus hides the transport details from the
applications, the Artix Transformer hides the interface transformation details
from the applications.

For information on deploying the Artix Transformer, read Deploying and
Managing Artix Solutions.

Note: Currently Java clients cannot use session managed services.
25

CHAPTER 2 | Artix Concepts
 26

CHAPTER 3

WSDL Concepts
Artix contracts are WSDL documents that describe logical
abstract services and the data they use. This chapter provides
a more detailed introduction to WSDL concepts.

In this chapter This chapter discusses the following topics:

Web Services Description Language Basics page 28

A Complete WSDL File page 36
27

CHAPTER 3 | WSDL Concepts
Web Services Description Language Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. In this respect, it is similar
to a CORBA IDL file, an abstract C++ class, or a Java interface definition.

Information within the WSDL file describes the operations offered by the
Web service and the location of the Web service. Because the WSDL file is
an XML document, it can be validated against an XML schema document to
ensure its accuracy.

You do not need to be a WSDL expert to use Artix. However, a basic
understanding of WSDL concepts is recommended.

WSDL File Structure

WSDL files include three sections, which collectively define a Web service:

• “Import section”

• “Logical section”

• “Physical section” on page 31

While a complete Web service definition requires content from each of these
sections, a specific WSDL file does not need to include all three sections.

Import section The import section integrates content from other WSDL files into the current
WSDL file. Like a CORBA IDL file, you can build a complex WSDL file by
simply importing other WSDL files. Inclusion of import elements is optional,
but its use greatly facilitates the writing and maintenance of large, or
complex, WSDL files.

Logical section The logical section includes a description of the Web service that is
independent of any programming language, marshalling schema or protocol.
This section of the WSDL file describes the data types and operations
offered by the Web service. It is composed of three subsections:

• Types

• Message

• portTypes
 28

Web Services Description Language Basics
Types

The types subsection includes the definitions for specific data types used
within an application. It describes how the data is represented within your
application’s code. Each Web service development tool maps these data
type definitions into programming language-specific data types and classes.

This subsection is an XML schema that defines the format of these types.
When creating a WSDL file, you can either include the XML schema as part
of the file or import an existing schema. By using file imports, you can
maintain your type definitions in a separate file that can be used by multiple
applications.

The following WSDL file fragment illustrates the contents of the types
subsection. There are two data types defined: InParameter and
OutParameter. Both types represent string values. Do not be misled by the
names: InParameter and OutParameter. The types can be used to represent
any string value.

Messages

The message subsection describes how the data are combined to form Web
service requests and responses. For example, your messages might specify
that a Web service request requires two pieces of data (parts), while the
corresponding response includes only a single part.

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>
29

CHAPTER 3 | WSDL Concepts
The following WSDL file fragment illustrates the contents of the message
subsection. There are two message definitions. Each message contains a
single part. Do not be misled by the names of the messages or parts.
Regardless of the assigned name, the messages could be used to represent
either a Web service request or response.

portTypes

The portType subsection describes how messages are combined to define
the operations available from the Web service, and each portType can
contain one or more operations. For example, a request/response type
operation specifies one input message and one output message. Each Web
service development tool maps the portType to a class, each operation to a
method in the class definition, and each message to either the input or
output parameters of a method.

The following WSDL file fragment illustrates the contents of the portType
subsection. In Artix, the portType name becomes the name of the class that
implements the Web service. This class contains the method sayHi, whose
signature includes an in parameter corresponding to the input element and
an out parameter corresponding to the output element.

The syntax and format of the logical section is standardized through
specifications issued by the World Wide Web Consortium (W3C). All Web
service development tools must support these specifications to ensure
interoperability between Web services developed with different tools.

<message name="RequestMessage">
 <part name="InPart" type="ns1:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="ns1:OutParameter"/>
</message>

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="ns1:RequestMessage" name="sayHiRequest"/>
 <output message="ns1:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
 30

Web Services Description Language Basics
Physical section The physical section includes the data marshalling schema and
transport-specific content, and describes the interaction of a Web service
application with the runtime environment. The information in this section is
specific to your application, and is composed of two subsections:

• binding

• service

The binding subsection describes how the data is encoded during
transmission, while the service subsection provides information specific to
the transport protocol.

Binding

For standard SOAP-encoded Web services, there are two formats to the
binding subsection: rpc/encoded and document/literal. The syntax and
contents of both formats are described in W3C specifications. For this
reason, the contents of the binding subsection, and its child elements, can
be relatively sparse, as each Web service product implements the same
specification and the interpretation of the marshalling schema and format
can be coded into the product.

Artix supports alternative marshalling schemas and formats for the binding
subsection. In WSDL files using these extensions, the contents of the
binding subsection is more complex. Artix provides command-line and GUI
tools that generate these more complex bindings, so you do not need to
hand edit your WSDL files.

The following WSDL file fragment illustrates the contents of the binding and
service subsections. In the second and third lines, you can see that the
TutorialPortType_SOAPBinding describes the marshalling of data for the
TutorialPortType. Each binding subsection is associated with only one
portType, although a WSDL file can contain multiple binding elements
associated with the same portType.
31

CHAPTER 3 | WSDL Concepts
Note that in this example, the binding specifies the rpc/encoded format.
Later in this document you will use the Artix Designer to create a WSDL file
using the document/literal format.

Service

The service subsection is associated, through its nested port elements,
with the binding TutorialPortType_SOAPBinding. Each service element is
associated with only one binding.

Although the W3C provides specifications for some binding and service
definitions (for example, the Simple Object Access Protocol (SOAP)
binding), it is permissible for Web service development tools to define
alternative binding and service representations. To support multiple data
encoding schemas and transport protocols, Artix extends the W3C
specifications.

<binding
 name="TutorialPortType_SOAPBinding"
 type="ns1:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>

<service name="HelloWorldService">
 <port
 binding="ns1:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
 32

Web Services Description Language Basics
Namespace Definitions

Overview Every element in a WSDL file must belong to a namespace. Namespace
declarations are scoped. A declaration can exist globally over the entire
WSDL document, or locally within an element and its enclosed child
elements.

Namespace Prefixes

Namespaces are identified through namespace prefixes, which are generally
defined within the opening root element of the WSDL file. Prefixes defined
within the root element have global scope and are available throughout the
entire WSDL file. However namespaces can be defined, or redefined, within
an element. In this case, the scope of the prefix applies only to the element
and its child elements.

If an element name is not qualified with a namespace prefix, the element
belongs to the default namespace. When writing a WSDL file, you can
redefine the default namespace within an element. By redefining the default
namespace locally, you can reduce the effort needed to define the child
elements contained within this element.

Later in this document you will use the Artix Designer to create a WSDL file.
The Artix Designer completely manages the namespace and prefix
declarations—you do not need to edit these entries.

The following WSDL file fragment illustrates the contents of the opening root
<definitions> element. This element contains the global namespace
prefixes that are themselves prefixed with xmlns, which corresponds to the
default namespace.

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
33

CHAPTER 3 | WSDL Concepts
Understanding the namespace
definition tags

Name

The name attribute is an arbitrary, user-defined name assigned to this WSDL
file.

TargetNamespace

The targetNamespace attribute is an arbitrary, user-defined identifier for
the namespace that applies to elements defined within this WSDL file.
Although the value of this attribute appears to be an Internet URL, it need
not actually represent a Web page. The URL format is used to ensure
uniqueness; you can use any unique content for this value. Note that the
value of the targetNamespace attribute and the value of the xmlns:tns
namespace prefix are identical. Elements within the WSDL file prefixed with
tns are also assigned to the target namespace.

XMLNS

The xmlns attribute defines the default namespace and corresponds to the
schema that defines the structure of a WSDL document. This entry is a valid
URL and you can use it to retrieve a copy of the XML schema file that
describes the WSDL file contents. Elements within your WSDL file that do
not include a namespace prefix become members of this namespace. These
elements must be defined in the XML schema file available at
http://schemas.xmlsoap.org/wsdl/.

XMLNS:SOAP

The xmlns:soap attribute defines the namespace that must be used when
adding elements that describe a SOAP binding. Again, this entry is a valid
URL and you can use it to retrieve a copy of the XML schema file that
describes the SOAP binding. You can see how this namespace prefix is used
in the WSDL file fragment described in “Physical section” on page 31.

XMLNS:TNS

The xmlns:tns attribute is the namespace prefix for elements defined in
this WSDL file document. Its value is assigned by the user and is identical to
the value of the targetNamespace attribute. You use the tns prefix to refer
to the original default namespace within elements that have a locally
defined target namespace.
 34

http://schemas.xmlsoap.org/wsdl/

Web Services Description Language Basics
XMLNS:WSDL

The xmlns:wsdl attribute also defines the default namespace; it is the
same value as the xmlns attribute. You use this prefix within an element
where you have redefined the default namespace.

XMLNS:XSD

Lastly, the xmlns:xsd attribute defines the namespace for the basic XML
types. This too is a valid URL that you can use to obtain further information
about the XML basic types.
35

CHAPTER 3 | WSDL Concepts
A Complete WSDL File
The following WSDL file describes a simple HelloWorld Web service. In the
earlier sections of this chapter, you reviewed the contents of this file.

<?xml version="1.0" encoding="UTF-8"?>

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>

<message name="RequestMessage">
 <part name="InPart" type="tns:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="tns:OutParameter"/>
</message>
 36

A Complete WSDL File
You will use this file in the following chapter to create a Web service
application.

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
<binding
 name="TutorialPortType_SOAPBinding"
 type="tns:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>
<service name="HelloWorldService">
 <port
 binding="tns:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
</definitions>
37

CHAPTER 3 | WSDL Concepts
 38

CHAPTER 4

Coding the Web
Service
You can use a WSDL file to generate code and develop a Web
service application. The discussion in this chapter illustrates
how to use the Artix wsdltocpp and wsdltojava utilities to
generate C++ and Java code from a WSDL file.

In this Chapter This chapter discusses the following topics:

The wsdltocpp Utility page 40

The wsdltojava Utility page 43

Generating Code page 46

Adding Processing Logic to the Coding page 54

Building the Client Application page 62

Running the Application page 63
39

CHAPTER 4 | Coding the Web Service
The wsdltocpp Utility

Overview Once you have a WSDL file, whether you write it yourself or obtain it from
another source, you can write an application. With Artix, you can write a
client application against an existing Web service, you can write a server
application that implements the Web service, or you can write both the
client and server applications. The wsdltocpp utility is a command-line tool
that you will use to generate C++ code from a WSDL file.

This section discusses the following topics:

• “Command-line options”

• “Specifying the service/port” on page 41

• “Specifying the C++ namespace” on page 42

• “Generating the implementation class” on page 42

• “Generating application-specific code” on page 42

• “Generating the makefile” on page 42

Command-line options You control the output of the wsdltocpp command-line utility through
command-line options. By specifying the appropriate options, you can
generate exactly the code you need. The syntax used to invoke the
wsdltocpp utility is:

Where {WSDL-URL} is the path, or Web location, of the WSDL file, and
options can be:

wsdltocpp [options] {WSDL-URL}

-e Web-service-name
 The value of the name attribute in the <service> element. If

the WSDL file includes multiple <service> elements, and the -e
option is not specified, the value defaults to the name of the
first <service> element in the WSDL file.
 40

The wsdltocpp Utility
Each of these options is explained in more details in the subsections that
follow.

There are other options in addition to those described. These additional
options are not, however, commonly used and are not discussed in this
book. Refer to Designing Artix Solutions for a complete discussion of the
command-line options.

Specifying the service/port If your WSDL file includes multiple <service> elements, or multiple <port>
elements within a single <service> element, you need to specify which
<service> and/or <port> should be referenced during the code generation
process.

You use the -e and -t command-line options to specify these values.

If the WSDL file contains multiple service/port definitions and you do not use
the -e and/or -t options, code will be generated for the first <service> and
<port> defined in the WSDL file.

-t port
 The value of the name attribute in the <port> element. If a

<service> element contains multiple <port> elements, and the
-t option is not specified, the value defaults to the name of
the first <port> element. If neither the -e nor -t option is
specified, the first <port> element within the first
<service> element in the WSDL file is used for code
generation.

-n namespace
 The C++ namespace for the generated code.
 Defaults to the global namespace.
-impl
 Whether to generate starting point code for the C++ class into

which you will code the Web service implementation.
-m { NMAKE | UNIX }
 Whether to generate a makefile for the selected platform.
 Choose either NMAKE for Windows or UNIX for Unix.
-server
 Whether to generate server stub classes only.
-client
 Whether to generate client proxy classes only.
-sample
 Whether to generate starting point code for client and/or

server mainline applications. Works in conjunction with the
-server and -client options.
41

CHAPTER 4 | Coding the Web Service
For the simple HelloWorldTutorial.wsdl file documented in “WSDL
Concepts” on page 27, there is only a single <service> element containing
a single <port> element. Consequently, you will not need to use these
options when generating code from this WSDL file.

Specifying the C++ namespace Generated C++ code should be included within a C++ namespace. You
use the -n option to provide the name of the namespace. Use of this option
is not mandatory, but it is good programming practice to generate code
within a namespace.

Generating the implementation
class

The wsdltocpp utility generates starting point code for the Web service
implementation class when you supply the -impl option. There is no way to
specify names for the generated files; the names of the generated files are
derived from either the portType name or the name of the WSDL file.
Therefore, if you use the -impl option multiple times, the starting point code
is regenerated, deleting any code you have added to an earlier version of the
generated files.

Generating application-specific
code

You can control whether code is generated only for client applications, only
for server applications, or for both types of application. Use the -client
option to restrict code generation to client-related files; use the -server
option to restrict code generation to server-related files.

The -sample option indicates whether starting point client and/or server
mainline code should be generated. You must be careful not to overwrite the
client mainline code once you have begun coding your application. If you
need to rerun the wsdltocpp utility, be certain not to use the -sample option.

Generating the makefile The wsdltocpp utility can create a makefile. Use the -m {NMAKE | UNIX}
option to create a makefile that is complete for the type of application you
are creating. That is, if you are only building a client application, the
makefile will not include any references to files and classes specific to server
applications.
 42

The wsdltojava Utility
The wsdltojava Utility

Overview The wsdltojava utility is a command-line tool that you can use to generate
Java code from a WSDL file. This section discuss the utility, within these
topics:

• “Command-line options”

• “Specifying the service/port” on page 44

• “Specifying the package” on page 44

• “Generating the implementation class” on page 44

• “Generating application-specific code” on page 45

Command-line options You control the output of the wsdltojava command-line utility through
command-line options. By specifying the appropriate options, you can
generate exactly the code you need. The syntax used to invoke the
wsdltojava utility is:

Where {WSDL-URL} is the path, or Web location, of the WSDL file, and
options can be:

wsdltojava [options] {WSDL-URL}

-e Web-service-name
 The value of the name attribute in the <service> element. If

the WSDL file includes multiple <service> elements, and the -e
option is not specified, the value defaults to the name of the
first <service> element in the WSDL file.

-t port
 The value of the name attribute in the <port> element. If a

<service> element contains multiple <port> elements, and the
-t option is not specified, the value defaults to the name of
the first <port> element. If neither the -e nor -t option is
specified, the first <port> element within the first
<service> element in the WSDL file is used for code
generation.

-p package
 The package name for the generated code. If omitted, the

utility creates a package name from the value of the
targetNamespace attribute in the WSDL file. If you do not want
a package, enter -p "".
43

CHAPTER 4 | Coding the Web Service
Each of these options is explained in more detail in the subsections that
follow.

There are other options in addition to those described. These additional
options are not, however, commonly used and are not be discussed in this
book. Refer to Designing Artix Solutions for a complete discussion of the
command-line options.

Specifying the service/port If your WSDL file includes multiple <service> elements, or multiple <port>
elements within a single <service> element, you need to specify what
<service> and/or <port> should be referenced during the code generation
process. You use the -e and -t command-line options to specify these
values. If the WSDL file contains multiple service/port definitions and you do
not use the -e and/or -t options, code is generated for the first service and
port defined in the WSDL file.

For the simple HelloWorldTutorial.wsdl file developed in “WSDL
Concepts” on page 27, there is only a single <service> element containing
a single <port> element. Consequently, you do not need to use these
options when generating code from this WSDL file.

Specifying the package Generated Java code should be included within a package. You use the -p
option to provide the package name.

Generating the implementation
class

The wsdltojava utility generates starting point code for the Web service
implementation class when you supply the -impl option. There is no way to
specify names for the generated files; the names of the generated files are
derived from either the portType name or the name of the WSDL file.

-impl
 Whether to generate starting point code for the Java class

into which you will code the Web service implementation.
-server
 Whether to only generate code for the server stub classes and

a server mainline.
-client
 Whether to generate client proxy classes only.
-sample
 Whether to generate starting point code for the client

mainline application.
-ant
 New
 44

The wsdltojava Utility
Therefore, if you use the -impl option multiple times, the starting point code
is regenerated, deleting any code you have added to an earlier version of the
generated files.

Generating application-specific
code

You can control whether code is generated only for client applications, only
for server applications, or for both types of application. Use the -client
option to restrict code generation to client-related files; use the -server
option to restrict code generation to server-related files. When you supply
the -server option, the wsdltojava utility generates both the server stubs
and mainline code.

The -sample option indicates whether starting point client mainline code
should be generated. You must be careful not to overwrite mainline code
once you have begun coding your application. If you need to rerun the
wsdltojava utility, do not use the -sample option.
45

CHAPTER 4 | Coding the Web Service
Generating Code

Overview This section discusses how to generate the code for your applications, and
contains the following topics:

• “Configuring Artix”

• “Creating the directory structure” on page 46

• “Copying the WSDL file” on page 47

Configuring Artix During the installation process, Artix creates two configuration files. The file
<installationDirectory>\artix\2.1\etc\domains\artix.cfg is the main
configuration file. During start-up, every Artix process reads this file. For the
purposes of the exercises in this book you do not need to change the
contents of this file. As you develop more complex applications, you might
need to extend and/or edit this file.

The file <installationDirectory>\artix\2.1\bin\artix_env.bat is used
to set the Artix development and runtime environments. You must run this
file in every command window before building or running an Artix
application.

You must also be certain that your C++ compiler and libraries are available
to your applications. With Windows, you might need to run the
vcvars32.bat file to properly set your environment.

Note: You might find it convenient to place a call to the vcvars32.bat file
into the artix_env script file. To do this, open the artix_env script file in a
text editor and place the following entry at the beginning of the file:

This syntax assumes that your Visual Studio installation is in the default
location. The quotation marks and semicolon are required.

Creating the directory structure A number of demo applications are available in the
<installationDirectory>\artix\2.1\demos directory. After you complete
this the examples in this book you should review each of these demos.

call "C:\Program Files\Microsoft Visual
Studio\VC98\bin\cvars32.bat";
 46

Generating Code
For the examples in this book, create a subdirectory called Tutorial under
the Demos directory. Under the Tutorial directory, create the subdirectories
client and server, and within the client and server subdirectories,
create the subdirectories cxx and java.

Copying the WSDL file Copy the contents of the HelloWorldTutorial.wsdl, from “A Complete
WSDL File” on page 36, into a text document.

Note: In the PDF version of this tutorial, the file content spans two pages.
You need to copy and paste the contents from the first page, and then copy
and paste the contents from the second page.

Save the file as HelloWorldTutorial.wsdl into the Tutorial directory. To
view the contents with formatting, open the file in your Internet Explorer
browser.
47

CHAPTER 4 | Coding the Web Service
Generating the Client Application Code

Overview This subsection discusses how to generate the client application code, and
contains the following topics:

• “Generating the C++ client application”

• “Generated files”

• “Generating the Java client application” on page 49

• “Generated files” on page 49

Generating the C++ client
application

To generate the C++ client application, complete the following steps:

1. Open a command window to the
<installationDirectory>\artix\2.1\bin directory and run the
artix_env.bat file.

2. Move to the following directory:
<installationDirectory>\artix\2.1\demos\Tutorial\client

3. Generate the C++ client application with the command:

Generated files The following files are generated within the client\cxx subdirectory:

• Tutorial.h: A header file that defines the method signatures for the
Web service.

• TutorialClient.h, TutorialClient.cxx: Header and implementation
files that define the client proxy class. This client proxy class
implements the virtual sayHi method. You do not need to edit the code
in these files, but you should review the contents of the header file.
Note that there are multiple constructors defined. In this example, your
code uses the first constructor, which does not require any input from
your code. As you develop more complex applications you will learn
the value of the alternative constructors. The alternative constructors
are not discussed in this book.

• TutorialClientSample.cxx: The starting point code for your client
application. In this example, you need to add code to this file.

wsdltocpp -n ArtixDemo -client -sample -m NMAKE
HelloWorldTutorial.wsdl
 48

Generating Code
• HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and implementation
files that include the definitions for the classes that represent the data
types defined in the WSDL file <types> section.

• You must review the contents of the header file, from which you learn
the APIs needed to work with the generated type definitions.

• HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes required if you have defined an
anyType in your WSDL file.

• You do not need to review the contents of these files.

• makefile: A makefile that you can use to build the client application.

Generating the Java client
application

To generate the Java client application, complete the following steps:

1. Open a command window to the
<installationDirectory>\artix\2.1\bin directory and run the
artix_env.bat file.

2. Move to the following directory:
<installationDirectory>\artix\2.1\demos\Tutorial\client\java

3. Generate the Java client application with the command:

Generated files The wsdltojava utility creates the subdirectory ArtixDemo, into which the
following files are generated:

• Tutorial.java: An interface that defines the method signatures for
the Web service.

• TutorialTypeFactory.java: Definition of a class that creates and
manages anyTypes defined in your WSDL file.

• TutorialDemo.java: Starting point code for a client mainline
application. For this simple example, the generated code in this file
represents a fully functional application. With a more complex
application, you can use this code as a template.

wsdltojava -p ArtixDemo -client -sample -ant
../../HelloWorldTutorial.wsdl
49

CHAPTER 4 | Coding the Web Service
The wsdltojava utility also creates the subdirectory client\java, into
which the following file is generated:

♦ build.xml: an Apache ant-based make file containing the
information needed to build the application
 50

Generating Code
Generating the Server Application Code

Overview This subsection discusses how to generate the server application code, and
contains the following topics:

• “Generate the C++ server application”

• “Generated files”

• “Generating the Java server application” on page 52

• “Generated files” on page 52

Generate the C++ server
application

To generate code for the C++ server application, complete the following
steps:

1. Move to the Tutorial\server\cxx directory.

2. Generate the C++ server application with the command:

Generated files The following files are generated into the server\cxx subdirectory:

• Tutorial.h: A header file that defines the method signatures for the
Web service.

• TutorialServer.h, TutorialServer.cxx: Header and implementation
files that define the server stub class.

• You do not need to review the contents of these files.

• TutorialServerSample.cxx: The starting point code for your server
mainline application. In this example, you do not need to add code to
this file. In more complex applications, you might need to extend the
generated code, for example, by using the servant management
classes.

• TutorialImpl.h, TutorialImpl.cxx: Header and implementation files
that contain starting point code for your Web service implementation
class. For this example you need to add coding to the method bodies
corresponding to the Web service operations. In more complex

wsdltocpp -n ArtixDemo -server -sample -m NMAKE -impl
../HelloWorldTutorial.wsdl
51

CHAPTER 4 | Coding the Web Service
applications, you might need to edit the header file as well as add code
to the implementation file, for example, by overriding the activated
method inherited from the implementation class’ superclass.

• HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and implementation
files that include definitions for the classes representing the data types
defined in the WSDL <types> section.

You must review the contents of the header file, from which you learn
the APIs needed to work with the generated type definitions.

• HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes that create instances of your
application-specific data types.

You do not need to review the contents of these files.

• makefile: A makefile that you can use the build the server
application.

Generating the Java server
application

To generate code for the Java server application, complete the following
steps:

1. Move to the Tutorial\server directory.

2. Generate the Java server application with the command:

Generated files The wsdltojava utility creates the subdirectory ArtixDemo, into which the
following files are generated:

• Tutorial.java: An interface that defines the method signatures for
the Web service.

• TutorialTypeFactory.java: Definition of a class that creates and
manages anyTypes defined in your WSDL file.

• TutorialImpl.java: Starting point code for your Web service
implementation class. In this example you need to add code to the
methods corresponding to the Web service operations.

wsdltojava -p ArtixDemo -server -impl -ant
../../HelloWorldTutorial.wsdl
 52

Generating Code
• TutorialServer.java: Starting point code for a server mainline
application. For this simple example, the generated code in this file
represents a fully functional application. With a more complex
application, you might extend the generated code.

The wsdltojava utility also creates the subdirectory client\java, into
which the following file is generated:

♦ build.xml: an Apache ant-based make file containing the
information needed to build the application.
53

CHAPTER 4 | Coding the Web Service
Adding Processing Logic to the Coding

Overview The files describing the C++ or Java implementation classes contain
compilable code, but there is no processing logic in the method bodies. In
this demo application, you need to add processing logic to the
implementation class’ sayHi method.

This section discusses how to add the processing logic, and contains the
following topics:

• “The C++ implementation class”

• “The Java implementation class” on page 57

The C++ implementation class In a text editor, open the TutorialImpl.cxx file and note the signature for
the sayHi method:

The method includes two parameters: the first representing the part within
the input message, and the second representing the part within the output
message. The return type is void.

All C++ methods in Artix have void return types and output is always
represented by out parameters. At first this may seem to be an
inconvenience, but when you consider that input and output messages
could include multiple parts and that WSDL has no concept of a return
value, this approach makes sense. InParameter correspond to the parts of
the input message and OutParameters correspond to the parts of the output
message. Since an output message does not assign greater importance to
one of its possible multiple parts, it would be impossible for the code
generating logic to select which part should correspond to a return value.

void
TutorialImpl::sayHi(
 const ArtixDemo::InParameter & InPart,
 ArtixDemo::OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception))
{
}

 54

Adding Processing Logic to the Coding
To add processing logic to the sayHi method, return a message that
includes the input. For example, Hello Artix User, where Artix User
corresponds to the value of InPart.

You can assume that as the InParameter and the OutParameter both
correspond to an xsd:string you can concatenate "Hello " with InPart
and assign the new string to OutPart. This is, however, incorrect.
55

CHAPTER 4 | Coding the Web Service
If you examine the definitions for the InParameter and OutParameter in the
HelloWorldTutorial_wsldTypes.h file (shown below), you will notice that
they are not strings, but classes that encapsulate a member variable that is
a string. To get and set the value of this member variable, you must use the
accessor methods.

Consequently, the code you add to the sayHi method body is:

namespace ArtixDemo
{
 . . .

 class InParameter : public IT_Bus::AnySimpleType
 {
 public:
 InParameter();
 InParameter(const InParameter & value);
 . . .

 void setvalue(const IT_Bus::String & value);
 const IT_Bus::String & getvalue() const;

 private:
 IT_Bus::String m_val;

 };
 . . .

 class OutParameter : public IT_Bus::AnySimpleType
 {
 public:
 OutParameter();
 OutParameter(const OutParameter & value);
 . . .

 void setvalue(const IT_Bus::String & value);
 const IT_Bus::String & getvalue() const;

 private:
 IT_Bus::String m_val;

 };
 . . .
};

OutPart.setvalue("Hello " + InPart.getvalue());
 56

Adding Processing Logic to the Coding
The Java implementation class In a text editor, open the TutorialImpl.java file. Add the following code to
the sayHi method body:

return "Hello " + inPart;
57

CHAPTER 4 | Coding the Web Service
Building the Application

Overview You are now ready to build your applications.

This section walks you through this process, within the following topics:

• “Building the Server Application” on page 59

• “Building the Client Application” on page 62
 58

Building the Application
Building the Server Application

Overview This subsection contains the following topics:

• “Building the C++ server application”

• “Building the Java server application”

• “The C++ client application” on page 60

• “The Java client application” on page 61

Building the C++ server
application

To build the C++ Server application, complete the following steps:

1. Run the artix_env.bat file at the following directory:
<installationDirectory>\artix\2.1\bin

2. Move to the <installationDirectory>\artix\2.1\demos\Tutorial\
server\cxx directory.

3. Build the server application with the command:

This creates the server executable file server.exe.

Building the Java server
application

To build the Java Server application, complete the following steps:

1. Move to the <installationDirectory>\artix\2.1\demos\Tutorial\
server\java directory.

2. Build the server application with the command:

This creates the server file TutorialServer.class.

nmake all

ant (or ant build)
59

CHAPTER 4 | Coding the Web Service
The C++ client application For this example, you need to work with the TutorialClientSample.cxx
file. Although this file is compilable, it does not actually invoke the Web
service operations. Open the file and examine the generated code:

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "TutorialClient.h"

IT_USING_NAMESPACE_STD
using namespace ArtixDemo
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 cout << "Tutorial Client" << endl;

 try
 {
 IT_Bus::init(argc, argv);
 TutorialClient client;

 // Sample invocation calls are shown in
 // commented lines below.
 /*
 ArtixDemo::InParameter InPart;
 ArtixDemo::OutParameter OutPart;
 client.sayHi (InPart, OutPart);
 */
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

 60

Building the Application
Note that the code generation process produced a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter, and no output statement to display the value
returned in the out parameter.

You need to remove the comment delimiters and edit the code as follows:

The Java client application For this example, the generated code is a complete running application. To
run the demo, there is no need to modify the generated code.

ArtixDemo::InParameter InPart;
ArtixDemo::OutParameter OutPart;

InPart.setvalue("Artix User");

client.sayHi (InPart, OutPart);

cout << "sayHi returned: " + OutPart.getvalue() << endl;
61

CHAPTER 4 | Coding the Web Service
Building the Client Application

Overview Now that you have completed coding the client mainline, you can build the
application. This subsection contains the following topics:

• “Building the C++ client application”

• “Building the Java client application”

Building the C++ client
application

To build the C++ Client application. complete the following steps:

1. Run the artix_env.bat file at the following directory:
<installationDirectory>\artix\2.1\bin.

2. Move to the
<installationDirectory>\artix\2.1\demos\Tutorial\client\cxx
directory.

3. Build the client application with the command:

This creates the client executable file client.exe.

Building the Java client
application

To build the Java Client application, complete the following steps:

1. Move to the
<installationDirectory>\artix\2.1\demos\Tutorial\java
directory.

2. Build the client application with the command:

This creates the client file TutorialDemo.class.

nmake all

ant (or ant build)
 62

Running the Application
Running the Application

In this section This section contains the following topics:

• “The C++ Application” on page 64

• “The Java Application” on page 65

• “Interoperability Between the C++ and Java Applications” on page 66

Set the runtime environment Before you can run the application, you must set the environment. To set
the Artix environment, complete the following steps:

1. Run the artix_env.bat file at the following directory:
<installationDirectory>\artix\2.1\bin

2. Alter the CLASSPATH to include the current directory, by running the
following command:

set CLASSPATH=.;%CLASSPATH%
63

CHAPTER 4 | Coding the Web Service
The C++ Application

Overview You can now start the C++ server application and then run the C++ client
application.

Start the C++ server application To start the C++ server application:

1. Move to the <installationDirectory>\artix\2.1\demos\Tutorial\
server\cxx directory.

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the C++ client application To run the C++ client application:

1. Move to the
<installationDirectory>\artix\2.1\demos\Tutorial\client\cxx
directory.

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the C++ server application To stop the C++ Server application, issue Ctrl-C in the command window
running the server application.

start tutorialserver.exe

tutorialclient.exe
 64

Running the Application
The Java Application

Overview You can now start the Java server application and then run the Java client
application.

Start the Java server application To start the Java server application:

1. Move to the <installationDirectory>\artix\2.1\demos\Tutorial\
server\java directory.

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the Java client application To run the Java client application:

1. Move to the <installationDirectory>\artix\2.1\demos\Tutorial\
client\java directory.

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the Java server application To stop the Java Server application, issue Ctrl-C in the command window
running the server application.

start ant run.TutorialServer

java ArtixDemo.TutorialDemo sayHi <your name>
65

CHAPTER 4 | Coding the Web Service
Interoperability Between the C++ and Java Applications
To demonstrate that the C++ and Java Web service applications and
clients are interoperable, you can run the Java client application against the
C++ server application, and vice versa.
 66

Part II
Using Artix

In this part This part contains the following chapters:

Coding the Web Service page 39

Using the Artix Designer page 69

Faults and Exceptions page 131

Glossary page 147

CHAPTER 5

Using the Artix
Designer
This chapter introduces the Artix Designer, and outlines how
you can use it to build a WSDL file and to generate starting
point code.

In This Chapter This chapter discusses the following topics:

Introduction page 70

Creating a New Workspace page 79

Creating the WSDL File page 81

Developing an Application page 106

Generating Starting Point Code page 109

Adding Logic to the Code page 119

Compiling the Applications page 126

Running the Application page 128
69

CHAPTER 5 | Using the Artix Designer
Introduction

In this section This section discusses the following topics:

• “Starting the Artix Designer”

• “Welcome dialog” on page 71

• “The Artix workspace” on page 71

• “Designer Tree” on page 72

• “Artix Designer main window” on page 75

• “The Resource Navigator” on page 75

• “Working with WSDL” on page 77

Overview The Artix Designer is a graphical user interface (GUI) application through
which you can write and edit WSDL files. Although there are other XML
editing tools that you can use to write a WSDL file, the Artix Designer has an
understanding of the Artix WSDL extensions and is a much easier way to
write the WSDL files used in an Artix application. For example, the Artix
Designer automatically adds the required namespace declarations and prefix
definitions when you build Artix applications that involve other data
marshalling schemas, transport protocols, or routing.

The Artix Designer is also integrated with the Artix command-line tools, such
as the wsdltocpp utility, so that you can also use it to generate starting point
code. Integration with other command-line utilities allows the Artix Designer
to import IDL files and convert their contents into WSDL, generate starting
point code for Java Web service applications, or convert WSDL files into
IDL.

Starting the Artix Designer In Windows you can start the Artix Designer in any of the following ways.

• Select Start | Programs | IONA Artix 2.1 | Designer.

• Double-click on either an .iad file or a .wsdl file

• From the <installationDirectory>\artix\2.1\bin directory, run the
batch file start_designer.bat.
Selecting the menu entry simply runs the start_designer.bat file.
 70

Introduction
Welcome dialog The first time you start the Artix Designer, the Welcome dialog is displayed,
which offers the following options:

• Create a workspace (the entity that structures your solution)

• Open an existing workspace or resource file

• Go straight to the Designer

• Run an interactive demo (an overview of the Designer’s features)

To stop this dialog displaying every time you start Artix, check the box
provided. Once you have done this, Artix will open with your most recently
used workspace or WSDL file loaded.

The Artix workspace An Artix workspace defines the structure of your Artix solution, and includes
all your WSDL contracts. The Artix Designer provides a range of wizard
templates to help you get started.

For example, you can use templates to create a C++ Web services client, or
a C++ Web services client and server, or you can create a new workspace
using the New Workspace wizard. Figure 4 shows the new workspace
wizard selected in the New Workspace dialog.
71

CHAPTER 5 | Using the Artix Designer
It is not necessary to create all of the application files using the Artix
Designer. For example, one approach is to import an existing WSDL file into
the Designer and then edit the file as required. Alternatively, you can import
a CORBA IDL file into the Designer, and the Designer transforms the
contents of the IDL file into the equivalent WSDL file.

Designer Tree The Designer Tree is a navigation tree displayed on the left side of the Artix
Designer. The Designer Tree displays the following information, in the order
shown:

Figure 4: New Workspace dialog

Workspace An Artix Workspace includes all the WSDL
contracts in your Artix solution.

The Designer Tree displays the workspace name
(for example, HelloWorld), and contains its
profiles, collections, and shared resources.
 72

Introduction
Workspace Services Lists the details of the Artix services, and their
status for this workspace. The services available
are:

- Locator

- Session Manager

- Security

- Management

Shared Resources These are all the WSDL contracts that you want to
work with.

Shared resources are also displayed within
collections, by italicized text and a dimmed icon.

If you click on a shared resource, the pane on the
right of the screen displays the WSDL view of that
resource.

Deployment Profiles Deployment Profiles define machine-level
information such as the Artix save location, the
compiler location, and the operating system being
used.

If you click on a Deployment Profile, the pane on
the right of the screen displays the details for that
profile.

Collections These are groups of WSDL contracts that are
organized into logical collections for deployment
purposes. A collection maps to an executable or
process that implements the WSDL defined in it.

You can drag and drop resources between
collections and also from the shared resource folder
to a collection.

If you click on a collection, the pane on the right of
the screen displays the details of that collection.
73

CHAPTER 5 | Using the Artix Designer
Figure 5 shows a simple example of a workspace named GoogleSearch
displayed in the Designer Tree.

Deployment Bundles The Deployment Bundle defines the deployment
characteristics for a collection, such as the
deployment type (client, server, or switch), code
generation options, and configuration details. You
can also modify the service WSDL for each
deployment bundle, if necessary.

If you click on a Deployment Bundle, the pane on
the right of the screen displays the details for that
bundle.

Figure 5: Designer Tree
 74

Introduction
Artix Designer main window Figure 6 displays the Artix Designer main window. The right-hand pane
displays summary information for items displayed in the Designer Tree. For
example, clicking on your workspace folder in the tree displays the
Workspace Details, shown in Figure 6.

Similarly, clicking on the Shared Resources, Collections, Deployment
Profiles, or Deployment Bundles folder displays summary information for
these items in right-hand pane.

The Resource Navigator The Resource Navigator is the engine room of the Artix Designer. It has two
main purposes—firstly, it provides a way for you to navigate around the
various components of your resource. Secondly, it provides you with editing
tools to add or update components in your resources.

Figure 6: Artix Designer Main Window
75

CHAPTER 5 | Using the Artix Designer
Clicking on resource in the Designer Tree displays a graphical view of the
resource in the right-hand pane. This is the Resource Navigator diagram
view, shown in Figure 7.

The icons representing the resource elements (types, messages, services,
and so on) in the graphical view can have a small plus sign attached. This
indicates that the element has children.

Figure 7: Resource Navigator—Diagram View
 76

Introduction
You can view children (types, messages, and so on) by double clicking on
the element icon. You can then view or edit the individual items directly
from the Resource Navigator. Each child component has an associated
dialog to enable viewing or editing. For example, double clicking on a type
launches the Edit Type Attributes dialog, shown in Figure 8.

Working with WSDL The Resource Navigator also enables you to view and edit the resource’s
XML directly instead of working through the graphical representation as
previously described.

Figure 8: Edit Type Attributes Dialog
77

CHAPTER 5 | Using the Artix Designer
To access the text view of the resource, shown in Figure 9, click on the Text
tab at the bottom of the Resource Navigator pane.

Working in the Text view of the resource requires a sound knowledge of
WSDL and or XSD. Be aware that if you make changes to the text, it could
easily invalidate your resource.

If you do make a change to the text that causes a problem, errors are
identified in a separate ERRORS panel directly under the text. This enables
you to easily identify the exact position of the problem within the file.

Figure 9: Resource Navigator—Text View
 78

Creating a New Workspace
Creating a New Workspace
To create a new workspace, complete the following steps:

1. After starting the Artix Designer, you are presented with the Welcome
window. Select Create a new workspace and click OK to display the
New Workspace window, as shown in Figure 10.

2. Select New Workspace Wizard icon and click OK to display the New
Workspace wizard.

3. In the Define Workspace panel, name your project GuiTutorial, and
enter, or browse to, the directory that will contain your project.

Leave the Add Shared Resources check box unchecked—you are using
the Artix Designer to write a new WSDL file.

Figure 10: New Workspace dialog
79

CHAPTER 5 | Using the Artix Designer
4. Click Next to display the Show Summary panel, as shown in
Figure 11.

5. Click Finish to close this wizard and return to the Artix Designer.

The Artix Designer has created the workspace, and displays it in the
Designer Tree with a folder for shared resources, deployment profiles,
and collections (processes). Save the workspace to create the
necessary directories on your drive.

Figure 11: New Workspace wizard—Summary panel
 80

Creating the WSDL File
Creating the WSDL File

Overview The next task is to create a WSDL file, or Artix contract. This is stored on the
tree as an entry under the Shared Resources icon.

Procedure To create the WSDL file, complete the following steps:

1. Right click on the Shared Resources folder and select New Resource
(or select File | New Resource), to display the New Resource dialog as
shown in Figure 12.

2. Select Empty WSDL Contract and click OK to display the New Contract
dialog.

Figure 12: New Resource dialog

Note: The Resource from Existing File or URL icon lets you to create
a resource from an existing WSDL or IDL file, and the Contract from
Data Set icon let you create a resource from a description of an
existing data record format.
81

CHAPTER 5 | Using the Artix Designer
3. In the New Contract dialog, enter HelloWorldGuiTutorial into the
Name text box, and enter http://www.iona.com/guitutorial into the
TargetNamespace text box.

These entries become the values of the name, targetNamespace, and
xmlns:tns attributes in the opening <definitions> element in the
WSDL file.

4. Click the OK button to close this dialog and return to the Artix
Designer.

Artix Designer displays the structure of the new contract in the
Resource Navigator.

5. To view the contents of the WSDL file click on the Text tab.

Figure 13: Resource Navigator containing new contract
 82

Creating the WSDL File
The WSDL appears as shown in Figure 14:

Currently the WSDL file only includes the opening <definitions>
element.

Figure 14: New Contract—Text view
83

CHAPTER 5 | Using the Artix Designer
Defining the Contract Elements

Overview The Artix contract mirrors the structure of a WSDL file. As such, you need
to create these elements in your contract to make it a valid WSDL file for use
by Artix.

The Artix Designer makes it very easy to create these elements by providing
a series of wizards—one for each of the WSDL elements:

• Types

• Messages
Port Types

• Bindings

• Services

Figure 15 displays the first panel of the New Type wizard, as an example.

Figure 15: New Type wizard
 84

Defining the Contract Elements
This section guides you through creating the contract elements, in the
following topics:

• “Defining the Types” on page 86

• “Defining the Messages” on page 92

• “Defining the Port Type” on page 96

• “Defining the Binding” on page 100

• “Defining the Service” on page 103
85

CHAPTER 5 | Using the Artix Designer
Defining the Types

Overview The <types> section of the WSDL file contains your data type definitions.
For this simple application, you have several choices:

• You could choose not to define unique types for the application and
use a basic type instead, for example, xsd:string, as message parts.

• Alternatively, you could define simple types; that is, new types that are
derived from an existing xsd type.

• Lastly, you could define element types, which are wrappers around
other defined types. This approach is especially useful if your types are
complex or highly structured; for example, a structure or array.
Additionally, using elements as message parts allows you to select the
document/literal encoding format for your binding.

This is the approach outlined in this subsection.

Defining the simple types To create a type, complete the following steps:

1. Select the HelloWorldGuiTutorial icon under Shared Resources and
select Resource | New | Type to display the New Type wizard, as
shown in Figure 15.

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click Next to display the
Define Type Properties panel, as shown in Figure 16.

Note: Throughout the entire WSDL file creation process you add your
new content to the current WSDL file. Selecting the Add to new WSDL
radio button creates another WSDL file that includes selected content. This
is the approach you follow if you want to create WSDL file fragments for
reuse.
 86

Defining the Contract Elements
3. In the Define Type Properties panel, enter InParameter into the Name
text box and select the simpleType radio button.

4. Accept the default namespace provided.

5. Click Next to display the Define Type Attributes panel.

6. Select xsd:string from the Base Type drop down list.

The remaining controls are used to further restrict the simple type, for
example, limiting the length of the string to a specific number of
characters or to one of a restricted number of entries. For this example,
you do not need these additional restrictions.

7. Click Next to display the View Summary panel, as shown in Figure 17.

Figure 16: New Type wizard—Define Type Properties panel
87

CHAPTER 5 | Using the Artix Designer
8. In the View Summary panel, you can review the content that will be
added to the WSDL file.

9. Select the check box at the bottom of the panel to create a new type
and click Next to return you to the first panel in the wizard, as shown
in Figure 15.

10. Create a second simple type named OutParameter.

Note that the Base Type drop-down list now includes
ns1:InParameter as a valid type. Be careful, as newly defined types
are added to the top of the list; you need to scroll down the list to find
the xsd:string entry.

11. Click Finish to close the wizard and return to the Artix Designer.

12. Click on the Save icon in the toolbar, or select File | Save to save the
changes to your workspace.

Figure 17: New Type wizard—Summary panel
 88

Defining the Contract Elements
13. Double-click on the Types icon in the right-hand pane to see the two
new parameters, as shown in Figure 18:

14. Select the Text tab to review the current contents of the WSDL file.
Note that the <types> section has been added to the file.

Defining the Element Types You now need to define element types that wrap each of your simple types.
The procedure for doing this is identical to that of defining a simple type
except you select the element radio button in the Define Type Properties
panel of the New Type wizard.

Figure 18: Resource Navigator showing the new Types

Figure 19: WSDL with Types added
89

CHAPTER 5 | Using the Artix Designer
To create the element types, complete the following steps:

1. Select the HelloWorldGuiTutorial icon in the Designer Tree and select
Resource | New | Type.

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click Next to display the
Define Type Properties panel.

3. In the Define Type Properties panel, enter InElement into the Name
text box, and accept the default provided for the namespace.

4. Select the element radio button, as shown in Figure 20.

5. Click Next to display the Define Type Attributes panel.

6. Select ns1:InParameter from the Type drop-down list.

7. Click Next to display the View Summary panel.

8. Select the check box at the bottom of the panel to create another new
type and click Next to return you to the first panel in the wizard.

9. Create a second type named OutElement. The type should be
ns1:OutParameter.

Figure 20: New Type wizard—Define Type Properties panel
 90

Defining the Contract Elements
10. Click Finish to close the wizard and return to the Artix Designer.

11. Click on the Save icon in the toolbar or select File | Save.

12. Select the HelloWorldGuiTutorial icon and click the Text tab to review
the contents of the WSDL file, as shown in Figure 21.

Note that the <types> section now includes four definitions:

♦ Simple type InParameter, of type xsd:string.

♦ Simple type OutParameter, of type xsd:string.

♦ Element type InElement, of type ns1:InParameter.

♦ Element type OutElement, of type ns1:OutParameter.

For a more thorough explanation of creating types, including all of the
screen shots from the New Type wizard, see Designing Artix Solutions.

Figure 21: New Types in WSDL
91

CHAPTER 5 | Using the Artix Designer
Defining the Messages

Overview Now that you have defined the required types, you can begin to define the
messages. Your types are used as the message parts.

Procedure To define a message, complete the following steps:

1. Select the HelloWorldGuiTutorial icon and select Resource | New |
Message to display the New Message wizard, as shown in Figure 22.

2. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Define Message Properties panel.

3. Type RequestMessage in the Name field and click Next to display the
Define Parts panel, as shown in Figure 23.

Figure 22: New Message wizard—Select WSDL panel
 92

Defining the Contract Elements
4. Type InPart into the Name text box and select ns1:InElement from
the Type drop-down list.

5. Click Add to add your part to the Part List control.

If your message requires multiple parts (which is not the situation in
this case), you can define another part and add it to the Part List.

Note: Be careful — Do not select ns1:InParameter from the Type
drop-down list

Figure 23: New Message wizard—Define Parts panel
93

CHAPTER 5 | Using the Artix Designer
6. Click Next to display the View Summary panel as shown in Figure 24.

7. Select the check box at the bottom of the panel to create another new
message and click Next to return you to the first panel in the wizard.

8. Repeat the process to create a second message – ResponseMessage –
with a part named OutPart of type ns1:OutElement.

9. This time at the View Summary panel, click Finish to close the wizard
and return to the Artix Designer.

10. Click on the Save icon in the toolbar or select File | Save.

Figure 24: New Message wizard—View Summary panel
 94

Defining the Contract Elements
11. Select the HelloWorldGuiTutorial icon and click the Text tab to review
the contents of the WSDL file, as shown in Figure 25.

For a more thorough explanation of creating messages, including all of the
screen shots from the New Message wizard, see Designing Artix Solutions.

Figure 25: New messages definition in WSDL
95

CHAPTER 5 | Using the Artix Designer
Defining the Port Type

Overview A port type contains operations, which are composed of one or more
messages:

• A one-way operation includes only an input message; the client
application does not receive a response from the Web service.

• A request-response operation includes an input message, an output
message, and zero, or more, fault messages. Defining and coding fault
messages will be discussed in the following chapter.

In this example, you will define a port type that includes one
request-response operation called sayHi which uses RequestMessage as its
input and ResponseMessage as its output.

There is nothing significant about the names assigned to the messages or
parts; name assignments are to assist the developer. Artix does not care
what names are used. An identical application could be created by naming
the messages One and Two, and the parts X and Y.

Procedure To create a new port type, complete the following steps:

1. Select the HelloWorldGuiTutorial icon and select Resource | New |
Port Type to display the New Port Type wizard.

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click Next to display the
Define Port Properties panel.
 96

Defining the Contract Elements
3. Type GuiTutorialPT in the Name field and click Next to display the
Define Port Type Operations panel, as shown in Figure 26.

4. Type sayHi in Name field.

Figure 26: New Port Type wizard—Define Port Type Operations panel
97

CHAPTER 5 | Using the Artix Designer
5. Select Request-response from the Style drop-down list and click Next
to display the Define Operations Messages panel.

6. Select input from the Type drop-down list and ns1:RequestMessage
from the Message drop-down list.

The Name sayHiRequest appears in the Name text box. If desired, you
can change this entry to something more meaningful to your
application. In this example, leave the suggested content.

7. Click Add, which transfers the input message to the Operation
Messages control.

8. Now, click on the Type drop-down list. Note that input no longer
appears in the listing; an operation can have only one input message.
Select output from the Type list and ns1:ResponseMessage from the
Message drop-down list.

The Name sayHiResponse appears in the Name text box; leave this
suggested content.

Figure 27: New Port Type wizard—Define Operation Messages panel
 98

Defining the Contract Elements
9. Click Add to transfer the ouptut message to the Operation Messages
control.

If you click on the Type drop-down list you will see that the output
entry no longer appears in the listing; an operation can have only one
output message. Although in this example you are not adding fault
messages to this operation, multiple fault message can be added to an
operation. To do this, you repeat the process outlined above.

10. Lastly, click Next to display the View Port Operations Summary panel.
Since this example only requires one portType, click Next to display
the Port Type Summary panel, and then Finish to close this wizard and
return to the Artix Designer.

11. Click on the Save icon in the toolbar or select File | Save.

12. Select the HelloWorldGuiTutorial icon and click the Text tab, and
review the contents of the WSDL file.

Figure 28: New Port Type wizard—Define Operation Messages panel
99

CHAPTER 5 | Using the Artix Designer
Defining the Binding

Overview A binding describes how the messages are marshalled. Each binding is
associated with a single portType, although the same portType can be
associated with multiple bindings.

In “Coding the Web Service” on page 39, the binding used the rpc/encoded
style. In this example, you specify the document/literal style, which is
required when message parts are element types.

Procedure To define a binding, complete the following steps:

1. Select the HelloWorldGuiTutorial icon and select Resource | New |
Binding to display the New Binding wizard.

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click Next to display the
Select Binding Type panel.
 100

Defining the Contract Elements
3. Select SOAP and click Next to display the Set Binding Defaults panel,
as shown in Figure 29.

4. Select GuiTutorialPT from the Port Type drop-down list.

Because your WSDL file only contains one portType definition, this is
the only one in the list. If there were multiple port types defined, you
would need to select the desired portType from the list.

Note that a name is already entered into the Binding field. You can
change this entry. The only requirement is that each binding in the
WSDL file be given a unique name.

Figure 29: New Binding wizard—Set Binding Defaults panel
101

CHAPTER 5 | Using the Artix Designer
5. In the Additional Settings group there are two drop-down lists. From
the Style list, select document, and from the Use list, select literal. If
you select an invalid combination, for example rpc/encoded or
document/encoded, you will not be able to move to the next window.
Click Next to display the Edit Binding panel, as shown in Figure 30.

6. Select the sayHi icon representing your operation and review the
binding details. Click Next to view the View WSDL Contract panel,
where you can review the content that will be added to the WSDL file.

7. Click Finish to close this wizard and return to the Artix Designer.

8. Click on the Save icon in the toolbar or select File | Save.

9. Select the HelloWorldGuiTutorial icon and click on the WSDL tab to
review the contents of the WSDL file.

Figure 30: New Binding wizard—Edit Binding panel
 102

Defining the Contract Elements
Defining the Service

Overview A service provides transport-specific information. Each service element can
include one, or more, port elements. The port elements must be uniquely
identified through the value of the name attribute. Each port element is
associated with a single binding element, although the same binding
element can be associated with one or more port elements. In addition, a
WSDL file may contain multiple service elements.

In this example, the WSDL file contains one service element, which contains
a single port element.

Procedure To create a service, complete the following steps:

1. Select the HelloWorldGuiTutorial icon and select Resource | New |
Service to display the New Service wizard.

2. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Define Service panel.
103

CHAPTER 5 | Using the Artix Designer
3. Type HelloWorldService in the Name field and click Next to display
the Define Port panel, as shown in Figure 31.

4. Type HelloWorldPort in the Name field and select
ns1:GuiTutorialPT_SOAPBinding from the Binding drop-down list.

Because your WSDL file only contains one binding definition, this is
the only entry in the list. If there were multiple bindings defined, you
would need to select the desired binding from the list.

Figure 31: New Service wizard—Define Port panel
 104

Defining the Contract Elements
Click Next to display the Define Extensor Properties panel, as shown in
Figure 32.

5. Select soap from the Transport Type drop-down list and enter
http://localhost:9000 as the value for the Location. This is the only
required field, and you can specify any port number you choose.

Click Next to display the Port Summary panel where you can review
the new content that will be added to the WSDL file.

6. Lastly, click Finish to close this wizard and return to the Artix Designer.

7. Click on the Save icon in the toolbar or select File | Save.

8. Select the HelloWorldGuiTutorial icon, click on the Text tab, and
review the contents of the WSDL file.

For a more thorough explanation of adding services, including all of the
screen shots from the New Service wizard, see Designing Artix Solutions.

You’ve now completed your WSDL file, and you are ready to use it to
develop an application.

Figure 32: New Service wizard—Define Extensor Properties panel
105

CHAPTER 5 | Using the Artix Designer
Developing an Application

Overview Currently your WSDL contract is located under the Shared Resources icon
within the Artix Designer and in the GuiTutorial\Resources directory on
your drive. Other than the fact that this WSDL file uses element types and
document/literal encoding, this WSDL file is functionally equivalent to the
file used in “Coding the Web Service” on page 39. You could repeat that
example using this WSDL file instead of the file provided in this document.

In this section, use the same WSDL file for both the client and server
applications. With the Artix Designer you accomplish this goal by creating
Collections, which are the resources that are used by a Web service
component.

This section contains the following topics to help you develop an
application:

• “Creating a client application”

• “Creating a server application” on page 108

Creating a client application When you create a new collection, Artix places a corresponding icon under
the Collections icon in the Designer Tree.
 106

Developing an Application
To create a collection, complete the following steps:

1. Select File | New | Collection. to display the New Collection dialog.

2. Select the New Collection icon and click OK to display the New
Collection wizard, as shown in Figure 33.

3. Type Client in the Name field.

If you wanted to add any extra resources (other than the Shared ones
listed on this panel) to this collection, you would select the Add
Collection Resources check box. For the purpose of this example,
however, you are not adding any extra resources to this collection.

Note that the Artix Designer automatically adds the
HelloWorldGuiTutorial resource to the collection. If you had a
workspace with multiple entries under the Shared Resources icon, you
might not want to include each resource in every collection. In such
cases, uncheck any entry you want excluded.

Click Next and then Finish to close this wizard and return to the Artix
Designer.

Figure 33: New Collection wizard
107

CHAPTER 5 | Using the Artix Designer
4. Click on the Save icon in the toolbar or select File | Save.

The Designer Tree now includes an icon representing the client application.
Note the nested icon and italic font representing the included (shared)
resource file. This format indicates that the collection’s resource is a link to
the resource file listed under the Shared Resources icon and not a resource
uniquely associated with this application.

In a more complex application, your collection might include both shared
resources and resources specific to the application. In this situation, you
could create a new resource within the collection rather than as a shared
resource as described in step 3 in this section.

Creating a server application Following the same procedure, create a second collection named Server
that also includes the HelloWorldGuiTutorial resource.

You have now created your client and server applications. The next step is
to generate the starting point code.

Figure 34: New Client item
 108

Generating Starting Point Code
Generating Starting Point Code

Overview The Artix Designer is capable of generating starting point (stub and skeleton)
code plus configuration scripts for multiple platforms and operating systems
and for multiple implementation languages. Depending on your objectives,
you might want to generate only client code, only server code, or only some
of the files produced by the wsdltocpp or wsdltojava utilities. You provide
this information to the Artix Designer by defining a Deployment Profile and
Deployment Bundle, and then running the Code Generator.

This section outlines how to do this. The following topics are covered:

• “Defining Deployment Profiles” on page 110

• “Defining Deployment Bundles” on page 112

• “Generating the C++ and Java Code” on page 116
109

CHAPTER 5 | Using the Artix Designer
Defining Deployment Profiles

Overview A Deployment Profile contains platform, operating system, and
implementation language specifications that apply to all entities in the
workspace.

A deployment profile can be used with multiple deployment bundles in
generating code for the same platform, operating system, and
implementation language.

This section contains the following topics:

• “Creating the C++ profile”

• “Creating the Java profile”

Creating the C++ profile To create the C++ deployment profile, complete the following steps:

1. Select the GuiTutorial icon in the Designer Tree and select File | New
| Deployment Profile to display the New Deployment Profile wizard.

2. Type cxx_profile in the Name field and select Windows from the
Operating System drop-down list.

3. Click Next to display the Artix Location panel.

4. Confirm that the paths to your Artix Installation Directory and
artix_env script files are correct.

5. Select the C++ radio button and click Next and then Finish to close
this wizard and return to the Artix Designer. The C++ Profile is listed
in the Designer Tree under the Deployment Profiles folder.

6. Click on the Save icon in the toolbar or select File | Save.

You use this profile to generate C++ code for the Windows operating
system.

Creating the Java profile To create the Java deployment profile, complete the following steps:

1. Select the GuiTutorial icon in the Designer Tree and select File | New
| Deployment Profile to display the New Deployment Profile wizard.

2. Type java_profile in the Name field and select Windows from the
Operating System drop-down list.

3. Click Next to display the Artix Location panel.
 110

Generating Starting Point Code
4. Confirm that the paths to your Artix Installation Directory and
artix_env script files are correct.

5. Select the Java radio button and click Next and Finish to close this
wizard and return to the Artix Designer. The Java Profile is listed in the
Designer Tree under the Deployment Profiles folder.

6. Click on the Save icon in the toolbar or select File | Save.

You use this profile to generate Java code for the Windows operating
system.
111

CHAPTER 5 | Using the Artix Designer
Defining Deployment Bundles

Overview A Deployment Bundle defines a collection’s deployment-specific details,
such as the deployment type and the code to be used (C++ or Java).

Because you have separate collections for the client and server applications,
and you want to generate both C++ and Java starting point code, you need
to define four deployment bundles:

• C++ client

• C++ server

• Java client

• Java server

Creating the two bundles is almost exactly the same procedure; the only
difference occurs when it comes to selecting the deployment profile and
setting the Code Generation options.

This section contains the following topics:

• “Creating the C++ client bundle”

• “Creating the Java client bundle” on page 113

• “Creating the C++ server bundles” on page 114

• “Creating the Java server bundle” on page 114

Creating the C++ client bundle To create the C++ client bundle, complete the following steps:

1. Select the Client collection in the Designer Tree.

2. Select File | New | Deployment Bundle to display the New
Deployment Bundle wizard.

3. Type cxx_client in the Name field.

4. Type the path to the directory into which you want to generate the
starting point code in the Location field. For this example, accept the
default: C:\IONA\artix\2.1\demos\GuiTutorial\Client\cxx_client.

5. Select cxx_profile from the Deployment Profile drop-down list.

Note: You can create multiple deployment bundles for a collection, but
you must create at least one deployment profile before creating a bundle.
 112

Generating Starting Point Code
6. Select the Client radio button and click Next to display the Code
Generation panel.

7. Check the Generate Code and Sample check boxes for the
HelloWorldService and HelloWorldPort.

8. Check the Configure Language Options check box and click Next to
display the Language Options panel.

9. Enter GUI as the value for the Namespace. This entry becomes the
C++ namespace within the generated code.

10. Click Next twice, and then Finish to close this wizard and return to the
Artix Designer.

11. Click the Save icon in the toolbar or select File | Save.

Creating the Java client bundle To create the Java client bundle, complete the following steps:

1. Select the Client collection in the Designer Tree.

2. Select File | New | Deployment Bundle to display the New
Deployment Bundle wizard.

3. Type java_client in the Name field.

4. Enter the path to directory into which you want to save the starting
point code in the Location field. For this example, accept the default:
C:\IONA\artix\2.1\demos\GuiTutorial\Client\java_client.

5. Select java_profile from the Deployment Profile drop-down list.

6. Select the Client radio button and click Next to display the Code
Generation panel.

7. Check the Generate Code and Sample check boxes for the
HelloWorldService and HelloWorldPort.

8. Check the Configure Language Options check box and click Next to
display the Language Options panel.

9. Click the Override Namespace as packaging name check box, and
enter com.iona as the value for the Java Package within the Code
Generation Options grouping. This entry becomes the Java package
hierarchy within the generated code.

10. Click Next twice, and then Finish to close this wizard and return to the
Designer.

11. Click the Save icon in the toolbar or select File | Save.
113

CHAPTER 5 | Using the Artix Designer
Creating the C++ server bundles To create the C++ server bundle, complete the following steps:

1. Select the Server collection in the Designer Tree.

2. Select File | New | Deployment Bundle to display the New
Deployment Bundle wizard.

3. Type cxx_server in the Name field.

4. Enter the path to directory into which you want to save the starting
point code in the Location field. For this example, accept the default:
C:\IONA\artix\2.1\demos\GuiTutorial\Server\cxx_server.

5. Select cxx_profile from the Deployment Profile drop-down list.

6. Select the Server radio button, and click Next to display the Code
Generation panel.

7. Check the Generate Code and Sample check boxes for the
HelloWorldService and HelloWorldPort.

8. Check the Configure Language Options check box and click Next to
display the Language Options panel.

9. Enter GUI as the value for the Namespace within the Code Generation
Options grouping. This entry becomes the C++ namespace within the
generated code.

10. Click Next twice, and then Finish to close this wizard and return to the
Designer.

11. Click the Save icon in the toolbar or select File | Save.

Creating the Java server bundle To create the Java server bundle, complete the following steps:

1. Select the Server collection in the Designer Tree.

2. Select File | New | Deployment Bundle to display the Deployment
Bundle wizard.

3. Type java_server in the Name field.

4. Enter the path to directory into which you want to save the starting
point code in the Location field. For this example, accept the default:
C:\IONA\artix\2.1\demos\GuiTutorial\Server\java_server.

5. Select java_profile from the Deployment Profile drop-down list.

6. Select the Server radio button, and click Next to display the Code
Generation panel.
 114

Generating Starting Point Code
7. Check the Generate Code and Sample check boxes for the
HelloWorldService and HelloWorldPort.

8. Check the Configure Language Options check box and click Next to
display the Language Options panel.

9. Click the Override Namespace as package name check box, and enter
com.iona as the value for the Java Package within the Code Generation
Options grouping. This entry becomes the Java package hierarchy
within the generated code.

10. Click Next twice, and then Finish to close this wizard and return to the
Artix Designer. (The skipped windows are used when specifying more
advanced code generation processes.)

11. Click the Save icon in the toolbar or select File | Save.

You have now created all the required deployment artifacts and are ready to
generate the code for your applications.
115

CHAPTER 5 | Using the Artix Designer
Generating the C++ and Java Code

Overview When you have created your deployment profile and bundle, you can use
the Code Generator to create the code for your collection. This generates the
code, environment scripts, and configuration files in the locations that you
specify.

This section contains the following topics:

• “Generating the C++ client code”

• “Generating the Java client code” on page 117

• “Generating the C++ server code” on page 117

• “Generating the Java server code” on page 118

Generating the C++ client code To generate the code for the C++ client, complete the following steps:

1. Select the Client icon in the Designer Tree and select Tools | Generate
Code to display the Generate Code dialog, as shown in Figure 35.

Figure 35: Generate Code dialog
 116

Generating Starting Point Code
2. Select cxx_client from the Deployment Bundle drop-down list. Note
that the list only displays bundles that were defined for the client
application.

3. The deployer is preconfigured to generate stub code and environment
scripts for the client application. To generate all of the client starting
point code, check the box under the Generate heading for the User
Code component

4. Click OK.

The code generation process runs to completion.

5. Click Close to close this dialog and return to the Artix Designer.

Generating the Java client code To generate the code for the Java Client, complete the following steps:

1. Select the Client icon in the Designer Tree and select Tools | Generate
Code to display the Generate Code dialog.

2. Select java_client from the Deployment Bundle drop-down list. Note
that the list only displays bundles that were defined for the client
application.

3. The deployer is preconfigured to generate stub code and environment
scripts for the client application. Since you want to generate all of the
client starting point code, check the box under the Generate heading
for the User Code component.

4. Click OK.

The code generation process runs to completion.

5. Click Close to close this dialog and return to the Artix Designer.

Generating the C++ server code To generate the code for the C++ server, complete the following steps:

1. Select the Server icon from the Designer Tree and select Tools |
Generate Code to display the Generate Code dialog.

2. Select cxx_server from the Deployment Bundle drop-down list.

3. The deployer is preconfigured to generate stub code and environment
scripts and start/stop scripts for the server application. To generate all
of the server starting point code, check the box under the Generate
heading for the User Code component.

4. Click OK.
117

CHAPTER 5 | Using the Artix Designer
The code generation process runs to completion.

5. Click Close to close this dialog and return to the Artix Designer.

Generating the Java server code To generate the code for the Java server, complete the following steps:

1. Select Server icon from the Designer Tree and select Tools | Generate
Code to display the Generate Code dialog.

2. Select java_server from the Deployment Bundle drop-down list.

3. The deployer is preconfigured to generate stub code and environment
scripts and start/stop scripts for the server application. To generate all
of the server starting point code, check the box under the Generate
heading for the User Code component.

4. Click OK.

The code generation process runs to completion.

5. Click Close to close this dialog and return to the Artix Designer.

You have now generated all the required code and are finished with the Artix
Designer for now. Close the application by selecting File | Exit.
 118

Adding Logic to the Code
Adding Logic to the Code

Overview Through the code generation process you created four applications:

• The C++ client

• The Java client

• The C++ server

• The Java server.

All of these applications compile and run. However, because there is no
business logic in the sayHi method body, and because the C++ client code
does not actually make a request against the Web service, running the
applications does not produce output.

You need to complete the coding in the files representing the C++ and Java
implementation objects and in the C++ client mainline file. The Java client
mainline file is a complete, albeit very basic, application and so needs no
modification.

This section contains the following topics:

• “The C++ Client Code” on page 120

• “The C++ Server Code” on page 122

• “The Java Client Code” on page 124

• “The Java Server Code” on page 125
119

CHAPTER 5 | Using the Artix Designer
The C++ Client Code

Overview The code generation produces several files. This subsection explains what
each of these files is for. The files are:

• “GuiTutorialPT.h”

• “GuiTutorialPTClient.h/.cxx”

• “HelloWorldGuiTutorial_ wsdlTypes.h/.cxx”

• “HelloWorldGuiTutorial_ wsdlTypesFactory.h/.cxx” on page 121

• “GuiTutorialPTClientSample.cxx” on page 121

GuiTutorialPT.h This header file is common to both the client and server applications. It
contains the signatures for each of the Web service operations. Open this file
in a text editor and review the signature for the sayHi method.

Note that although the message parts were defined as the element types
InElement and OutElement, the method signature uses C++ classes
derived from the simple types InParameter and OutParameter.

GuiTutorialPTClient.h/.cxx These files represent the client proxy class. Your client mainline code must
instantiate an instance of this class to invoke on the Web service. The proxy
class includes multiple constructors, a destructor, and a method for each of
the Web service’s operations.

In this simple application your client code uses the no argument constructor.
Alternative constructors allow you to change the WSDL file, service name, or
port name initialization values. One constructor allows initialization from an
Artix reference.

HelloWorldGuiTutorial_
wsdlTypes.h/.cxx

These files are common to both the client and server applications and
include the definitions and implementations for the classes that represent
your application-specific types.

virtual void
 sayHi(
 const InParameter & InPart,
 OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
 120

Adding Logic to the Code
You must review the contents of these files to understand how to use the
APIs of these classes.

HelloWorldGuiTutorial_
wsdlTypesFactory.h/.cxx

These files are common to both the client and server applications and
include definitions and implementations for the factory methods required if
your application-specific types includes the anyType.

For this example, you do not need to be concerned with the contents of
these files.

GuiTutorialPTClientSample.cxx For the client application, you only need to work with the
GuiTutorialPTClientSample.cxx file.

Note that the code generation process produced a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter and no output statement to display the value
returned in the out parameter.

To do this, complete the following steps:

1. In a text editor, open the GuiTutorialPTClientSample.cxx file and
add the following code:

2. Save and exit the file.

InParameter InPart;
OutParameter OutPart;

InPart.setvalue("Artix User");

client.sayHi (InPart, OutPart);

cout << "sayHi returned: " + OutPart.getvalue() << endl;
121

CHAPTER 5 | Using the Artix Designer
The C++ Server Code

Overview The code generation produces several files. This subsection explains what
each of these files is for. The files are:

• “GuiTutorialPT.h”

• “GuiTutorialPTServer.h/.cxx”

• “HelloWorldGuiTutorial_ wsdlTypes.h/.cxx”

• “HelloWorldGuiTutorial_ wsdlTypesFactory.h/.cxx”

• “GuiTutorialPTServerSample.cxx”

• “GuiTutorialPTImpl.h/.cxx” on page 123

GuiTutorialPT.h The header file that is common to both the client and server applications.

GuiTutorialPTServer.h/.cxx These files represent the server stub class. Your code does not directly use
this class. Rather, the implementation class is a subclass of the
GuiTutorialPTServer class.

HelloWorldGuiTutorial_
wsdlTypes.h/.cxx

These files are common to both the client and server applications and
include the definitions and implementations for the classes that represent
your application-specific types.

You must review the contents of these files to understand how to use the
APIs of these classes.

HelloWorldGuiTutorial_
wsdlTypesFactory.h/.cxx

These files are common to both the client and server application, and
include definitions and implementations for the factory methods required if
your application-specific types includes the anyType.

For this application, you do not need to be concerned with the contents of
these files.

GuiTutorialPTServerSample.cxx This file represents the server mainline application. For this application you
do not need to edit the contents of this file. The server mainline instantiates
an instance of the implementation class and registers it with the Artix
runtime. The process then enters an event loop to process incoming
requests.
 122

Adding Logic to the Code
GuiTutorialPTImpl.h/.cxx These files represent your Web service’s implementation class. The
GuiTutorialPTImpl.cxx file contains compilable code, but there is no
processing logic in the method bodies.

For the server application, you need to add processing logic to the
implementation class’ sayHi method. To do this, complete the following
steps:

1. In a text editor, open the GuiTutorialPTImpl.cxx file and note the
signature for the sayHi method.

The method includes two parameters, the first representing the part
within the input message and the second representing the part within
the output message. The return type is void.

2. Add the following code to the sayHi method body:

3. Save and exit the file.

OutPart.setvalue("Hello " + InPart.getvalue());
123

CHAPTER 5 | Using the Artix Designer
The Java Client Code

Overview The code generation produced several files. This subsection explains what
each of these files is for. The files are:

• “GuiTutorialPT.java”

• “GuiTutorialPTTypes.java and GuiTutorialPTTypesFactory.java”

• “GuiTutorialPTDemo.java”

GuiTutorialPT.java This file represents the interface definition common to both the client and
server applications. This interface defines the operation offered by the Web
service.

GuiTutorialPTTypes.java and
GuiTutorialPTTypesFactory.java

Definition of the classes that create and manage anyTypes defined in your
WSDL file.

GuiTutorialPTDemo.java This file represents the client mainline application. For this simple example,
the generated code in this file represents a fully functional application. With
a more involved application, you would use this code as a template for
writing a more complex client application.

public String sayHi(String inPart) throws RemoteException
 124

Adding Logic to the Code
The Java Server Code
The code generation produced several files. This subsection explains what
each of these files is for. The files are:

• “GuiTutorialPT.java”

• “GuiTutorialPTTypes.java and GuiTutorialPTTypesFactory.java”

• “GuiTutorialPTServer.java”

• “GuiTutorialPTImpl.java”

GuiTutorialPT.java The interface definition common to both the client and server applications.

GuiTutorialPTTypes.java and
GuiTutorialPTTypesFactory.java

Definition of the classes that create and manage anyTypes defined in your
WSDL file.

GuiTutorialPTServer.java Starting point code for a server mainline application. For this simple
example, the generated code in this file represents a fully functional
application. With a more involved application, you might extend the
generated code.

GuiTutorialPTImpl.java Starting point code for your Web service’s implementation class.

For this example, you need to add coding to the method bodies
corresponding to the Web service operations. To do this, complete the
following steps:

1. In a text editor, open the file GuiTutorialPTImpl.java.

2. Add the following code to the sayHi method body:

3. Save and edit the file.

return "Hello " + inPart;
125

CHAPTER 5 | Using the Artix Designer
Compiling the Applications

Overview You are now ready to compile the applications. The following topics in this
section will help you with the process:

• “The C++ applications”

• “The Java applications”

The C++ applications To build the C++ client and server applications, complete the following
steps:

1. Run the artix_env.bat file from the following directory:
<installationDirectory>\artix\2.1\bin.

2. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Client\cxx_client\src\cxx.

3. Build the client application with the command:

4. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Server\cxx_server\src\cxx.

5. Build the server application with the command:

The Java applications To build the Java client and server applications, complete the following
steps:

1. Run the artix_env.bat file from the following directory:
<installationDirectory>\artix\2.1\bin.

2. In the open command window, place the current directory onto the
CLASSPATH with the command:

nmake all

nmake all

set CLASSPATH=.;%CLASSPATH%
 126

Compiling the Applications
3. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Client\java_client\src\java.

4. Build the client application with the command:

5. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Server\java_server\src\java.

6. Build the server application with the command:

7. Close the command window.

javac com\iona*.java

javac com\iona*.java
127

CHAPTER 5 | Using the Artix Designer
Running the Application

Overview You are now ready to run the applications. The following topics in this
section will help you with the process:

• “The C++ applications”

• “The Java applications”

• “Interoperability” on page 129

The C++ applications To run the C++ client against the C++ server, complete the following
steps:

1. Run the artix_env.bat file from the following directory:
<installationDirectory>\artix\2.1\bin.

2. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Server\cxx_server\src\cxx.

3. Start the server process with the command:

The server process starts in a new command window.

4. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Client\cxx_client\src\cxx.

5. Run the client process with the command:

Observe the message in the client process window.

6. Stop the server process by issuing the command Ctrl-C in its
command window.

start guitutorialptserver.exe

guitutorialptclient.exe
 128

Running the Application
The Java applications To run the Java client against the Java server, complete the following steps:

1. Run the artix_env.bat file from the following directory:
<installationDirectory>\artix\2.1\bin.

2. In the open command window, place the current directory onto the
CLASSPATH with the command:

3. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Server\java_server\src\java.

4. Start the server process with the command:

The server process starts in a new command window.

5. Move to the following directory:
<installationDirectory>\artix\2.1\demos\GuiTutorial\

Client\java_client\src\java.

6. Run the client process with the command:

Observe the message in the client process window.

7. Stop the server process by issuing the command Ctrl-C in its
command window.

Interoperability You can also run the C++ client against the Java server or the Java client
against the C++ server. Use the steps in the previous sections as a guide.

set CLASSPATH=.;%CLASSPATH%

start java com.iona.GuiTutorialPTServer

java com.iona.GuiTutorialPTDemo sayHi <a_Name>
129

CHAPTER 5 | Using the Artix Designer
 130

CHAPTER 6

Faults and
Exceptions
This chapter explains how to declare faults in WSDL files and
how to handle the corresponding C++ and Java exceptions in
Artix client and server applications.

In this chapter This chapter discusses the following topics:

Raising Exceptions page 132

Handling Runtime Exceptions page 134

Working with WSDL Faults page 136

Developing an Application page 140
131

CHAPTER 6 | Faults and Exceptions
Raising Exceptions

Overview Exceptions can originate from three different sources:

• “Artix runtime libraries”

• “Artix runtime services”, for example, the locator service

• “Web service business logic”

In each case, the exception is returned to the client application.

Artix runtime libraries The Artix runtime libraries can throw a C++ exception. The WSDL file
provides no information about exceptions originating from the Artix runtime
libraries because these exceptions are not directly related to your Web
service contract. In C++ applications, these exceptions are returned as
subclasses of the Artix class IT_Bus::Exception. Consequently, your client
code must use try{} and catch (IT_Bus::Exception){} blocks to
gracefully handle possible exceptions. In Java applications, these exceptions
are returned as java.lang.Exception.

Artix runtime services The Artix runtime services can throw a C++ exception. Many of the Artix
runtime services are described in WSDL files, and a service’s operations can
include fault messages. If your application uses these services, your
application must also include the client-side classes generated from this
WSDL file. In this case, you can use the runtime service’s WSDL file, and
the contents of the generated code, to understand how the WSDL faults
map to C++ and Java classes. Your application code uses these classes to
handle the service’s exceptions.

Web service business logic The business logic within a Web service can throw a C++ or Java
exception. When you write the WSDL file that describes your Web service,
you can include zero or more fault messages in each request:response
operation. When you run the code generation utilities, these fault messages
become C++ or Java classes that your application code uses to handle your
application’s exceptions.
 132

Raising Exceptions
Handling exceptions raised by either an Artix runtime service or your
application’s business logic is similar. You enclose your application code
within a try{} block and use one, or more, catch{} blocks to handle the
possible exceptions.
133

CHAPTER 6 | Faults and Exceptions
Handling Runtime Exceptions

Overview This section discusses runtime exceptions, and contains the following
topics:

• “Types of runtime exceptions”

• “IT_Bus::Exception Class API”

• “Handling IT_Bus::Exception” on page 135

Types of runtime exceptions Artix includes an extensive collection of runtime exceptions, which primarily
represent errors that occur during marshalling and transport:

♦ IT_Bus::ConnectException

♦ IT_Bus::DeserializationException

♦ IT_Bus::IOException

♦ IT_Bus::NoDataException

♦ IT_Bus::SecurityException

♦ IT_Bus::SerializationException

♦ IT_Bus::ServiceException

♦ IT_Bus::TransportException

♦ IT_Bus::UserFaultException

These exceptions are defined in corresponding header files, which are
located in the <installationDirectory>\artix\2.1\include\it_bus
directory.

IT_Bus::Exception Class API The IT_Bus::Exception is the superclass for all of these exception classes.
You can use the IT_Bus::Exception class’ API to extract details about what
caused the exception.

The IT_Bus::Exception class is actually just a typedef of the
IT_Bus::FWException class. The header file that includes this typedef entry
is <installationDirectory>\artix\2.1\include\it_bus\types.h.

Your application code will never create an instance of a runtime exception.
Consequently, the only API methods you need are used to obtain a
description, and optionally a message code describing the processing error.
 134

Handling Runtime Exceptions
The IT_Bus::Exception::message() method returns an informative
description of the error that caused the runtime exception.

The IT_Bus::Exception::error() method returns an exception code.

Handling IT_Bus::Exception The code generated for your C++ client application includes a try{} block
around all of the application logic and a catch(IT_Bus::Exception){}
block.

The Java client application’s main method includes a throws Exception
clause. To handle the runtime exceptions, you could place a try{} block
around the remote method invocation followed by a corresponding catch{}
block.

This is generally all that is needed, although your code could catch each of
the runtime exceptions separately.

int
main(int argc, char* argv[])
{
 . . .

 try
 {
 . . .
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

135

CHAPTER 6 | Faults and Exceptions
Working with WSDL Faults

Overview This section discusses WSDL faults, and contains the following topics:

• “Defining WSDL faults”

• “Throwing the exception” on page 138

• “Handling the exception” on page 139

Defining WSDL faults A WSDL fault is simply a message that, when using the document literal
paradigm, can contain zero or one part. A message corresponding to a
WSDL fault is referenced by the <fault> child element under the
<operation> element. A request-response operation can include zero, or
more, child fault elements. If appropriate to the Web service, the same fault
message can be associated with multiple operations.

The wsdltocpp utility creates a C++ class corresponding to the message; a
message part becomes an instance variable, and accessor methods are
provided to manipulate the value of this variable. If a fault message needs to
contain multiple parts, you need to define a complex type, which then
becomes the type of the message part.

You need to study the generated code to understand how to create and
manipulate the exception class.
 136

Working with WSDL Faults
As with messages representing a request or response, fault messages can
contain either encoded or literal element parts. The following WSDL file
fragment illustrates the WSDL file definition of a fault message.

Note that the message, UnknownUser, only contains one part, theFault,
which is an instance of the element DoIKnowYou. DoIKnowYou is a wrapper
around the complex type FaultDetails, which contains two pieces of
information, a string message and a numeric code.

The operation that uses this fault must include a fault child element within
the operation element, as illustrated in the following WSDL file fragment.

If you are using the Artix Designer to create your WSDL file, you do not need
to worry about how to include the fault message in the binding; the Designer
handles this task.

<types>
 <schema targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 . . .

 <complexType name="FaultDetails">
 <sequence>
 <element name="FaultMsg" type="xsd:string"/>
 <element name="FaultID" type="xsd:int"/>
 </sequence>
 </complexType>
 <element name="DoIKnowYou" type="tns:FaultDetails"/>

 </schema>
</types>

<message name="UnknownUser">
 <part element="tns:DoIKnowYou" name="theFault"/>
</message>

<portType name="GuiTutorialPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 <fault message="tns:UnknownUser" name="sayHiFault"/>
 </operation>
</portType>
137

CHAPTER 6 | Faults and Exceptions
When you run the wsdltocpp utility, two C++ classes are generated. The
class FaultDetails corresponds to the complex type. This class includes
variables corresponding to the FaultMsg and FaultID elements, and
accessor methods to manipulate these values. The class
UnknownUserException corresponds to the UnknownUser message. This class
includes a variable of type FaultDetails and accessor methods to
manipulate this value.

When you run the wsdltojava utility, two Java classes are generated. The
class FaultDetails corresponds to the complex type. This class includes
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. The class FaultDetailsException
corresponds to the UnknownUser message. This class includes instance
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. Your code uses the
FaultDetailsException directly; there is no need to use the FaultDetails
class.

Throwing the exception Although both C++ class definitions include a copy constructor, neither
class includes a constructor that allows you to set the instance variables.
Consequently, to throw the exception from your Web service’s code, you
must first instantiate and initialize an instance of the FaultDetails class
and use this instance to initialize an instance of the UnknownUserException
class. Finally, your code throws the UnknownUserException instance.

In the Java FaultDetailsException class, there is a constructor that allows
you to set values for the FaultMsg and FaultID. Consequently, your code
can instantiate, initialize, and throw the exception in a single line of code:

FaultDetails faultData;
faultData.setFaultMsg("User unknown to me");
faultData.setFaultID(200);

UnknownUserException ex;
ex.settheFault(faultData);

throw ex;

throw new FaultDetailsException("User unknown to me", 200);
 138

Working with WSDL Faults
Handling the exception In C++, the exception UnknownUserException is derived from the Artix
class IT_Bus::UserFaultException, which is derived from
IT_Bus::Exception.

Consequently, you must include code to catch this exception before your
code that handles IT_Bus::Exception. Since the catch block receives a
reference to the UnknownUserException object, your code needs to use the
accessor method to obtain the FaultDetails object and then extract the
FaultMsg and FaultID.

In Java, the client mainline code generated by the wsdltojava utility
includes a catch{} block to process the FaultDetailsException. Do not be
concerned with the exception stack trace; the generated code prints this
information:

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

catch (com.iona.FaultDetailsException ex)
 {
 System.out.println
 ("Exception: com.iona.FaultDetailsException has Occurred.");
 ex.printStackTrace();
 }
139

CHAPTER 6 | Faults and Exceptions
Developing an Application

Overview The GuiTutorial application developed in “Using the Artix Designer” on
page 69 can be easily modified to demonstrate fault usage. To do this you
must define new types representing the fault details, define a new message,
and modify the sayHi operation details. These changes have an impact on
the binding definition. It is easiest to delete the existing binding and service
elements from the WSDL file and recreate these entries once the other
modifications are complete.

This section contains the following topics:

• “Modifying the WSDL file”

• “Creating the data types” on page 141

• “Defining the element type” on page 142

• “Defining the fault message” on page 142

• “Editing the portType definition” on page 142

• “Recreating the SOAP binding” on page 143

• “Creating the new Service” on page 143

• “Generating the application code” on page 144

• “Completing the code” on page 144

• “Building the application” on page 146

• “Running the application” on page 146

Modifying the WSDL file Start the Artix Designer and open the GuiTutorial project.

1. Select the HelloWorldGuiTutorial icon under the Shared Resources
icon and click on the Text tab to display the WSDL view of the
contract.

2. Select Resource | Edit | Services to display the Edit Service dialog.

3. Select the HelloWorldService icon in the top panel and click on Delete.
Confirm your action by clicking Yes when prompted.

4. Click Apply and then OK to close this dialog and return to the WSDL
view of the contract.

5. Check that the <service>...</service> section has been removed.
 140

Developing an Application
6. Select Resource | Edit | Bindings to display the Edit Binding dialog.

7. Select the GuiTutorialPT_SOAPBinding icon in the top panel and click
Delete. Confirm you action by clicking Yes when prompted.

8. Click Apply and then OK to close this dialog and return to the WSDL
view of the contract.

9. Check that the <binding>...</binding> section has been removed.

Note: If you select the Client or Server version of the HelloWorldGuiTutorial
icon under the Collections folder and view the WSDL file contents, you will
see the edited content. These icons represent links to the WSDL file in the
Shared Resources directory, so edits are applied to the file associated with
the Client and Server collections.

Creating the data types To create the data types that represent the exception details, complete the
following steps:

1. Select the HelloWorldGuiTutorial icon in the Designer Tree and select
Resource | New | Type to display the New Type wizard.

2. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Define Properties panel.

3. Type FaultDetails in the Name field and select the complexType
radio button.

4. Click Next to display the Define Type Attributes panel.

5. Select sequence from the Group Type drop-down list.

6. Select the xsd:string from the Type drop-down list.

7. Type FaultMsg in the Name field.

8. Click Add to transfer this element to the Element List table.

9. To add the second member of the FaultDetails sequence, select
xsd:int from the Type drop-down list and then enter FaultID into the
Name text box. Click the Add button. Your sequence now includes two
members.

10. Click Next and then Finish to complete the type definition entry.
141

CHAPTER 6 | Faults and Exceptions
Defining the element type To define an element type that wraps your complex types, repeat the
procedure described in “Creating the data types” with the following
exceptions:

1. Select the element radio button in the Define Type Properties window.

2. Create one element type called DoIKnowYou of type ns1:FaultDetails.

In the Define Type Attributes window, you are only presented with a
Type drop-down list. Because an element type is simply a wrapper
around another type, there are no additional options.

3. When you have finished, click Finish to close this wizard and return to
the Artix Designer.

Defining the fault message To define the fault message, complete the following steps:

1. Select the HelloWorldGuiTutorial icon in the Designer Tree and select
Resource | New | Message menu entry to display the New Message
wizard.

2. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Message Properties panel.

3. Type UnknownUser in the Name field and click Next to display the
Define Parts panel.

4. Type theFault in the Name field and select ns1:DoIKnowYou from the
Type drop-down list.

5. Click Add to add the part to the Part List table.

6. Click Next to display the View Summary panel, where you can review
the content that will be added to the WSDL file.

7. Click Finish to close this wizard and return to the Artix Designer.

Editing the portType definition To edit the portType definition, complete the following steps:

1. Select the HelloWorldGuiTutorial icon from the Designer Tree and
select Resource | Edit | Port Types to display the Edit Port Type
dialog.

2. Select the sayHi operation in the top panel and then click Edit to
display the Edit Operation Messages dialog.

3. Select fault from the Type drop-down list.
 142

Developing an Application
4. Select ns1:UnknownUser from the Message drop-down list.

5. Click Add to add the fault message to the Operation Messages table.

6. Click Apply and then OK to close this dialog.

7. Click OK to close the Edit Port Type dialog and return to the Artix
Designer where you can review the contents of the WSDL file and
confirm that the sayHi operation now includes a fault element.

Recreating the SOAP binding Now you need to recreate the SOAP binding and service and port
definitions. To create the new binding, complete the following steps:

1. Select the HelloWorldGuiTutorial icon from the Designer Tree and
select Resource | New | Binding to display the New Binding wizard.

2. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Select Binding Type panel.

3. Select the SOAP radio button and click Next to display the Select Port
Type panel.

4. Select GuiTutorialPT from the Port Type drop-down list. Note that a
suggested name is already entered in the Binding Name field. You can
change this entry; the only requirement is that each binding in the
WSDL file, if you create multiple bindings, have a unique Binding
Name.

5. Select document from the Style list, and select literal from the Use list.

6. Click Next to display the Edit Binding panel.

7. Select the sayHi icon representing your operation and review the
binding details. Click Next to display the View Summary panel where
you can review the new content that will be added to the WSDL file.

8. Click Finish to close this wizard and return to the Artix Designer.

Creating the new Service To create a new service, complete the following steps:

1. Select the HelloWorldGuiTutorial icon form the Designer Tree and click
the WSDL tab, where you can review the contents of the WSDL file.

2. Once again, select the HelloWorldGuiTutorial icon and select
Resource | New | Service to display the New Service wizard.

3. Select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click Next to display the Define Service panel.
143

CHAPTER 6 | Faults and Exceptions
4. Type HelloWorldService in the Name field and click Next to display
the Define Port panel.

5. Type HelloWorldPort in the Name field and select
GuiTutorialPT_SOAPBinding from the Binding drop-down list.

6. Click Next to display the Define Extensor Properties panel.

7. Select soap from the Transport Type drop-down list and enter
http://localhost:9000 as the Location value. This is the only required
entry, and you can select any port screen from the list.

8. Click Next to display the Port Summary panel where you can review
the new content that will be added to the WSDL file.

9. Click Finish to close this wizard and return to the Artix Designer.

Generating the application code You will use the Artix Designer to generate starting point code for the
application. Since the Deployment Profiles and Deployment Bundles have
already been created, you only need to regenerate the starting point code
and then re-implement and recompile the applications.

Repeat the steps described in “Generating the C++ and Java Code” on
page 116.

Completing the code In the C++ implementation class, you need to complete the sayHi method.
You modify the previous coding so that the UnknownUserException is thrown
unless the value of InPart is Artix User.

if (InPart.getvalue() != "Artix User")
{
 FaultDetails faultData;
 faultData.setFaultMsg("User unknown to me");
 faultData.setFaultID(200);

 UnknownUserException ex;
 ex.settheFault(faultData);

 throw ex;
}
OutPart.setvalue("Hello " + InPart.getvalue());
 144

Developing an Application
In the client application GuiTutorialPTClientSample.cxx file, remove the
comment delimiters and replace with the following code:

Also add a new catch{} block before the existing catch{} block.

In the Java application, the client mainline produced by the wsdltojava
utility already includes a catch{} block to handle the
FaultDetailsException.

GuiTutorial::InParameter InPart;
GuiTutorial::OutParameter OutPart;

// Set user name to command line parameter
InPart.set_value("Artix User");
if (argc > 1)
{
 InPart.setvalue(argv[1]);
}
// Alternative code to set user name
/*
argc > 1 ? InPart.set_value(argv[1]) : \
 InPart.setvalue("Artix User");
*/
client.sayHi (InPart, OutPart);
cout << "sayHi returned: " + OutPart.getvalue() << endl;

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

try {
 if ("sayHi".equals(args[0]))
 {
 . . .
 }
catch (com.iona.FaultDetailsException ex)
 {
 System.out.println
 ("Exception: com.iona.FaultDetailsException
 has Occurred.");
 ex.printStackTrace();
 }
145

CHAPTER 6 | Faults and Exceptions
You need to add code to the GuiTutorialPTImpl.java file, providing an
implementation for the sayHi method that throws the
FaultDetailsException.

Building the application Now that you have completed coding, you can build the application. Repeat
the steps described in “Compiling the Applications” on page 126.

Running the application Run the applications as described in “Running the Application” on
page 128.

When running the C++ client, Artix User is supplied to the Web service
when you do not provide a name on the command line. If you provide a
name on the command line, that name is passed to the Web service.

When running the Java client supply "Artix User" or another name as the
required parameter (quotation marks around Artix User are important).

Note that the server simply throws the exception, which the client
applications catch and display if the name is not Artix User.

public String sayHi(String inPart) throws FaultDetailsException
{
 String _return = null;
 if (inPart.equals("Artix User"))
 {
 _return = "Hello " + inPart;
 }
 else
 {
 FaultDetailsException fd = new FaultDetailsException
 ("User unknown to me", 200);
 throw fd;
 }
 return _return;
}

 146

Glossary
B Binding

A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Collection
A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA-based applications. It can
also be deployed as a switch process.

Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical.

The logical contract defines things that are independent of the underlying
transport and wire format, and is specified in the <portType>, <operation>,
<message>, <type>, and <schema> WSDL elements.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.’ The physical contract is specified in the <port>, <binding> and
<service> WSDL elements.
147

GLOSSARY
CORBA
CORBA (Common Object Request Broker Architecture) defines standards for
interoperability and portability among distributed objects, independently of
the language in which those objects are written. It is a robust,
industry-accepted standard from the OMG (Object Management Group),
deployed in thousands of mission-critical systems.

CORBA also specifies an extensive set of services for creating and managing
distributed objects, accessing them by name, storing them in persistent stores,
externalizing their state, and defining ad hoc relationships between them. An
ORB is the core element of the wider OMG framework for developing and
deploying distributed components.

D Deployment Mode
One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

Endpoint
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an endpoint can be compiled into an
application). Contrast with Service.

Extensible Style Sheet Transformation
A set of extensions to the XML style sheet language that describes
transformations between XML documents. For more information see the XSLT
specification.
 148

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a port and its binding. A binding can also be specified in a logical contract
port type, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Message
A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with defined types. A WSDL message
is analogous to a parameter in object-oriented programming.

O Operation
A WSDL operation is an abstract definition of the action supported by the
service. It is defined in terms of input and output messages. An operation is
loosely analogous to a function or method in object-oriented programming, or
a message queue or business process.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL file using the binding
definition.

Port Type
A WSDL port type is a collection of abstract operations, supported by one or
more endpoints. A port type is loosely analogous to a class in object-oriented
programming. A port type can be mapped to multiple transports using multiple
bindings.

Protocol
A protocol is a transport whose format is defined by an open standard.
149

GLOSSARY
R Resource
A resource can be one of two things:

• A WSDL file that defines the interface of your Artix solution

• A Schema that defines one or more types. This schema can be a stand
alone resource or it can define the types within a WSDL contract.

Resources are contained within collections. There can be one or more
resources in a collection, and the resources can either be specific to that
collection, or shared across several collections (shared resources).

Resources are created either from scratch using the Resource Editor wizards
and dialogs to define them, or are based on an existing files. For example,
you can use the Designer to convert an IDL file into WSDL.

Resource Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.

Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a WSDL contract and apply to both endpoints and
standalone services. Artix supports port-based routing and operation-based
routing defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point
The mechanism and the points at which individual service providers and
consumers connect to the service bus.
 150

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

SOAP
SOAP is an XML-based messaging framework specifically designed for
exchanging formatted data across the Internet. It can be used for sending
request and reply messages or for sending entire XML documents. As a
protocol, SOAP is simple, easy to use, and completely neutral with respect to
operating system, programming language, or distributed computing platform.

Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.

T Transport
An on-the-wire format for messages.

Transport Plug-in
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port> element of an Artix contract.

Type
A WSDL data type is a container for data type definitions that is used to
describe messages (for example an XML schema).
151

GLOSSARY
W Web Services Description Language
An XML-based specification for defining Web services. For more information
see the WSDL specification.

Workspace
The Artix Workspace defines the structure of your Artix solution. It is the first
thing you need to create when using the Artix Designer, and all of the solution’s
components are included within it.

A workspace typically has one or more collections, which in turn contain
resources that define your solution's interface. A workspace also contains
shared resources that are common across one or more collections.

WSDL
WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or
procedure-oriented information.

A WSDL document defines services as collections of network endpoints, or
ports. In WSDL, the abstract definition of endpoints and messages is
separated from their concrete network deployment or data binding formats.
This allows the reuse of abstract definitions: messages, which are abstract
descriptions of the data being exchanged, and port types which are abstract
collections of operations. The concrete protocol and data format specifications
for a particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of
ports define a service. Hence, a WSDL document uses the following elements
in the definition of network services:

• Types—a container for data type definitions using some type system
(such as XSD).

• Message—an abstract, typed definition of the data being
communicated.

• Operation—an abstract definition of an action supported by the
service.

• Port Type—an abstract set of operations supported by one or more
endpoints.

• Binding—a concrete protocol and data format specification for a
particular port type.
 152

http://www.w3.org/TR/wsdl

• Port—a single endpoint defined as a combination of a binding and a
network address.

• Service—a collection of related endpoints.

Source: Web Services Description Language (WSDL) 1.1. W3C Note 15
March 2001. (http://www.w3.org/TR/wsdl)

X XML
XML is a simpler but restricted form of SGML (Standard General Markup
Language). The markup describes the meaning of the text. XML enables the
separation of content from data. XML was created so that richly structured
documents could be used over the web.

XSD
XML Schema Definition (XSD) is the language used to define an XML
Schema. The XML Schema defines the structure of an XML document.

In Artix, a schema can be a standalone resource within a collection, or it can
be used as an import do define the types within a WSDL contract.
153

GLOSSARY
 154

Index

A
Artix

approach 5
documentation 14
features 8

Artix Bus 5, 18, 19
Artix contract 18, 22, 75
Artix Workspace 71, 72

B
binding 21

C
C++

client 71
server 71

collection 147
Collections 73
contract 21

graphical view 75
WSDL view 78

CORBA 9
CORBA IDL 11

D
deployment

phase 12
Designer Tree 72
design phase 11
development phase 12

E
Edit Type Attributes 77
embedded mode 12
ERRORS panel 78
Establishing the page 8 39, 69, 131

F
FML 9
FRL 9
G
G2 9

H
HTTP 9

I
IDL 11
IIOP 9
integration 4

J
Java Messaging Service 9

M
MQSeries 9

N
navigation tree 72

O
online help x
operation 21

P
payload format 9
portType 21
protocol 9

R
Run Deployer 116

S
Select WS Type 71
Service Access Point 18, 20, 21
Shared Resources 73
SOAP 10
standalone mode 12
supported transports 9
155

INDEX
T
templates 71
TIBCO 9
TibrvMsg 10
transports 9
Tuxedo 9

V
VRL 10

W
Web Services Definition Language 21, 28
wizard templates 71
Workspace 71, 72, 152
Workspace Details 75
WSDL 28

editing 78
view of contract 78

WSDL view 78

X
XML 10
 156

INDEX
157

INDEX
 158

	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	Organization of this Book
	Online Help
	Additional Resources for Help
	Document Conventions

	Introduction to Artix and WSDL Concepts
	Introduction
	What is Artix?
	Solving Problems with Artix
	Using the Artix Documentation

	Artix Concepts
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts
	Artix Services

	WSDL Concepts
	Web Services Description Language Basics
	Namespace Definitions

	A Complete WSDL File

	Coding the Web Service
	The wsdltocpp Utility
	The wsdltojava Utility
	Generating Code
	Generating the Client Application Code
	Generating the Server Application Code

	Adding Processing Logic to the Coding
	Building the Application
	Building the Server Application
	Building the Client Application

	Running the Application
	The C++ Application
	The Java Application
	Interoperability Between the C++ and Java Applications

	Using Artix
	Using the Artix Designer
	Introduction
	Creating a New Workspace
	Creating the WSDL File
	Defining the Contract Elements
	Defining the Types
	Defining the Messages
	Defining the Port Type
	Defining the Binding
	Defining the Service

	Developing an Application
	Generating Starting Point Code
	Defining Deployment Profiles
	Defining Deployment Bundles
	Generating the C++ and Java Code

	Adding Logic to the Code
	The C++ Client Code
	The C++ Server Code
	The Java Client Code
	The Java Server Code

	Compiling the Applications
	Running the Application

	Faults and Exceptions
	Raising Exceptions
	Handling Runtime Exceptions
	Working with WSDL Faults
	Developing an Application

	Glossary
	Index

