
Artix for CORBA
Version 3.0, June 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 30-Oct-2005

Contents

List of Figures vii

Preface ix

Chapter 1 Introduction to CORBA Web Services 1
Artix Architecture 2
Integrating a CORBA Server with Web Services 6

Accessing the CORBA Server through a Standalone Router 7
Accessing the CORBA Server through an Embedded Router 8
Replacing the WS Client by an Artix Client 9
Replacing the CORBA Server by an Artix Server 10

Integrating a CORBA Client with Web Services 11
Accessing the WS Server through a Standalone Router 12
Replacing the CORBA Client by an Artix Client 13
Replacing the WS Server by an Artix Server 14

Chapter 2 Exposing a Web Service as a CORBA Service 15
Converting WSDL to IDL 16
Exposing an Artix Web Service as a CORBA Service 19
Exposing a Non-Artix Web Service as a CORBA Service 23

Standalone CORBA-to-SOAP Router Scenario 24
Configuring and Running a Standalone CORBA-to-SOAP Router 25

Using an Orbix 3.3 Client to Access an Artix Server 31

Chapter 3 Exposing a CORBA Service as a Web Service 35
Converting IDL to WSDL 36
Embedding Artix in a CORBA Service 45

Embedded Router Scenario 46
Embedding a Router in the CORBA Server 48

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service 51
Standalone SOAP-to-CORBA Router Scenario 52
Configuring and Running a Standalone SOAP-to-CORBA Router 54
iii

CONTENTS
Chapter 4 Integrating the CORBA Naming Service with Artix 57
How an Artix Client Resolves a Name 58
How an Artix Server Binds a Name 62
Artix Client Integrated with a CORBA Server 65

CORBA Server Implementation 66
Artix Client Configuration 69

Chapter 5 Advanced CORBA Port Configuration 71
Configuring Fixed Ports and Long-Lived IORs 72
CORBA Timeout Policies 78
Retrying Invocations and Rebinding 80

Chapter 6 Artix IDL to C++ Mapping 83
Introduction to IDL Mapping 84
IDL Basic Type Mapping 86
IDL Complex Type Mapping 88
IDL Module and Interface Mapping 96

Chapter 7 Artix WSDL-to-IDL Mapping 101
Simple Types 102

Atomic Types 103
String Type 105
Date and Time Types 108
Deriving Simple Types by Restriction 110
List Type 112
Unsupported Simple Types 114

Complex Types 115
Sequence Complex Types 116
Choice Complex Types 117
All Complex Types 118
Attributes 119
Nesting Complex Types 121
Deriving a Complex Type from a Simple Type 123
Deriving a Complex Type from a Complex Type 125
Arrays 128

Wildcarding Types 131
Occurrence Constraints 132
Nillable Types 134
 iv

CONTENTS
Chapter 8 Security Interoperability 137
SOAP-to-CORBA Scenario 138

Overview of the Secure SOAP-to-CORBA Scenario 139
SOAP Client 141
SOAP-to-CORBA Router 145
CORBA Server 151

Single Sign-On SOAP-to-CORBA Scenario 154
Overview of the Secure SSO SOAP-to-CORBA Scenario 155
SSO SOAP Client 157
SSO SOAP-to-CORBA Router 159

Chapter 9 Monitoring GIOP Message Content 161
Introduction to GIOP Snoop 162
Configuring GIOP Snoop 163
GIOP Snoop Output 166

Appendix A Configuring a CORBA Binding 171

Appendix B Configuring a CORBA Port 177

Appendix C CORBA Utilities in Artix 183
Generating a CORBA Binding 184
Converting WSDL to OMG IDL 185
Converting OMG IDL to WSDL 186

Appendix D Mapping CORBA Exceptions 191
Mapping from CORBA System Exceptions 192
Mapping from Fault Categories 194
Mapping of Completion Status 195

Index 197
v

CONTENTS
 vi

List of Figures

Figure 1: Artix Application with Multiple Bindings and Transports 2

Figure 2: Example of a SOAP/HTTP-to-CORBA Router 4

Figure 3: WS Client Accesses CORBA Server through Standalone Router 7

Figure 4: WS Client Accesses CORBA Server through Embedded Router 8

Figure 5: Replacing the WS Client by an Artix Client 9

Figure 6: Replacing the CORBA Server by an Artix Server 10

Figure 7: Client Accesses the WS Server through a Standalone Router 12

Figure 8: Replacing the CORBA Client by an Artix Client 13

Figure 9: Replacing the WS Server by an Artix Server 14

Figure 10: Standalone Artix Router 24

Figure 11: Artix Router Embedded in a CORBA Server 46

Figure 12: Standalone Artix Router 52

Figure 13: Artix Client Resolving a Name from the Naming Service 58

Figure 14: Artix Server Binding a Name to the Naming Service 62

Figure 15: Artix and CORBA Alternatives for IDL to C++ Mapping 85

Figure 16: Allowed Inheritance Relationships for Complex Types 125

Figure 17: Propagating Credentials Across a SOAP-to-CORBA Router 139

Figure 18: Propagating an SSO Token Across a SOAP-to-CORBA Router 155
vii

LIST OF FIGURES
 viii

Preface
What is Covered in this Book
This book describes a variety of different CORBA integration scenarios and
explains how to use the Artix command-line tools to generate or modify
WSDL contracts and IDL interfaces as required. Details of Artix
programming, however, do not fall within the scope of this book.

Who Should Read this Book
This book is aimed at engineers already familiar with CORBA technology
who need to integrate Web services applications with CORBA.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Learning about Artix.

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

� Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:
ix

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm

PREFACE
� Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.

� Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

� Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.

� Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

� Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

� Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

� Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

� Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

� IONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

� IONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

� Artix Security Guide provides detailed information about using the
security features of Artix.

Reference material

In addition to the technical guides, the Artix library includes the following
reference manuals:

� Artix Command Line Reference

� Artix C++ API Reference
 x

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html

PREFACE
� Artix Java API Reference

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help
Artix Designer includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index, and glossary.

� A full search feature.

� Context-sensitive help.

There are two ways that you can access the online help:

� Click the Help button on the Artix Designer panel, or

� Select Contents from the Help menu

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.
xi

http://www.iona.com/support/docs/artix/3.0/javadoc/index.html
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/knowledge_base/index.xml

PREFACE
The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 xii

http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xiii

PREFACE
 xiv

CHAPTER 1

Introduction to
CORBA Web
Services
Artix provides a flexible framework for bridging between
CORBA and Web Services domains. Several different
approaches can be used to integrate a CORBA application into
a Web Services domain and this introduction provides a brief
overview of some typical integration scenarios.

In this chapter This chapter discusses the following topics:

Artix Architecture page 2

Integrating a CORBA Server with Web Services page 6

Integrating a CORBA Client with Web Services page 11
1

CHAPTER 1 | Introduction to CORBA Web Services
Artix Architecture

Overview The key feature of the Artix architecture is that it supports multiple
communication protocols. With the help of the plug-in development APIs,
moreover, it is possible to extend Artix to support any custom protocol.

Figure 1 illustrates this multi-protocol support, showing an Artix application
that is capable of sending or receiving operation invocations over three
different protocols: SOAP/MQ, SOAP/HTTP, and IIOP.

WSDL contract The Web Services Definition Language (WSDL) contract plays a central role
in Artix. It defines the interfaces (or port types) and operations for a Web
service. In this respect, the WSDL contract is analogous to an IDL interface
in CORBA. However, WSDL contracts contain more than just interface
definitions. The main elements of a WSDL contract are as follows:

� Port types�a port type is analogous to an IDL interface. It defines
remotely callable operations that have parameters and return values.

� Bindings�a binding describes how to encode all of the operations and
data types associated with a particular port type. A binding is specific
to a particular protocol�for example, SOAP or CORBA.

Figure 1: Artix Application with Multiple Bindings and Transports

CORBA

GIOPHTTP

SOAP

Artix Stubs

Application

MQ

Bindings

Transports

Servant object

SOAP/
HTTP SOAP/MQ IIOP
 2

Artix Architecture
� Port definitions�a port contains endpoint data that enables clients to
locate and connect to a remote server. For example, a CORBA port
might contain stringified IOR data.

Servant object An Artix servant provides the implementation of a port type (analogously to
the way in which an Orbix servant provides the implementation of an IDL
interface). The servant class is implemented using the appropriate language
mapping (an IONA proprietary mapping for C++ or a standard JAX-RPC
mapping for Java).

Artix stubs The Artix stub contains the code that is needed to encode and decode the
messages received and sent by an Artix application. Artix provides
command-line tools to generate the stub code from WSDL, as follows:

� wsdltocpp command�generates C++ stub code from WSDL.

� wsdltojava command�generates Java stub code from WSDL.

Bindings A binding is a particular kind of encoding for operations and data types (for
example, CORBA or SOAP). Support for a binding is enabled by loading the
relevant plug-in (for example, the soap plug-in for SOAP, or the ws_orb
plug-in for CORBA, and so on).

In addition to loading the relevant plug-in, you must also provide an XML
description of the binding in the WSDL contract. Artix provides tools that
will generate the binding for you automatically; there is no need to write
them by hand.

Transports A transport is responsible for sending and receiving messages over a specific
transport protocol (for example, HTTP or MQ-Series). Support for a transport
is enabled by loading the relevant plug-in (for example, the mq plug-in for
MQ-Series, or the at_http plug-in for HTTP).

In Artix, transports are closely associated with port definitions. For example,
if you include either a <http-conf:client/> or a <http-conf:server/> tag
within the scope of a port element, this indicates that the port uses the
HTTP transport.
3

CHAPTER 1 | Introduction to CORBA Web Services
Artix routers An Artix router is used to bridge operation invocations between different
communication protocols. Figure 2 shows an example of a
SOAP/HTTP-to-CORBA router. This router translates incoming SOAP/HTTP
request messages into outgoing IIOP request messages. On the reply cycle,
the router translates incoming IIOP reply messages into outgoing
SOAP/HTTP reply messages.

Artix container The Artix container, it_container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

By loading the router plug-in (along with the requisite binding and
transport plug-ins) the container is configured to run as a standalone router.

Router plug-in The router plug-in implements a general-purpose protocol bridge. Messages
that arrive on one port are sent out on another port.

For example, the router plug-in shown in Figure 2 on page 4 receives
request messages over the SOAP/HTTP protocol and forwards the request
message out again over the IIOP protocol.

Figure 2: Example of a SOAP/HTTP-to-CORBA Router

CORBA

GIOPHTTP

SOAP

Router plug-in

Artix Container
 4

Artix Architecture
Routes To configure a router, you need to specify which ports are connected to
which other ports. Use the ns1:route element to connect a source port to a
destination port. For example:

<ns1:route name="route_0">
 <ns1:source service="tns:<SourceService>"
 port="<SourcePort>"/>
 <ns1:destination service="tns:<DestinationService>"
 port="<DestinationPort>"/>
</ns1:route>
5

CHAPTER 1 | Introduction to CORBA Web Services
Integrating a CORBA Server with Web
Services

Overview This section considers the problem of a legacy CORBA server that is to be
opened up to Web services applications. Artix supports a variety of solutions
to this integration problem, which are briefly described in the following
subsections.

In this section This section contains the following subsections:

Accessing the CORBA Server through a Standalone Router page 7

Accessing the CORBA Server through an Embedded Router page 8

Replacing the WS Client by an Artix Client page 9

Replacing the CORBA Server by an Artix Server page 10
 6

Integrating a CORBA Server with Web Services
Accessing the CORBA Server through a Standalone Router

Overview One of the simplest ways to integrate a WS client with a CORBA server is to
deploy a standalone router to act as a bridge between them. This approach
can be used in any system.

Figure 3 shows a CORBA server that is accessible through a standalone
router. The router is responsible for mapping incoming SOAP/HTTP requests
into outgoing IIOP requests.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any CORBA server.

� Compatible with any WS client.

� Non-intrusive�no changes need be made either to the client or to the
server.

And the following disadvantage:

� Loss of performance�every operation invocation that passes through
the router consists of two remote invocations (client-to-router followed
by router-to-server).

Figure 3: WS Client Accesses CORBA Server through Standalone Router

CORBA
Client

IIOP port

WS
Client

CORBA
Server

Standalone
Router

SOAP/HTTP port
IIOP

SOAP/HTTP-to-CORBA
7

CHAPTER 1 | Introduction to CORBA Web Services
Accessing the CORBA Server through an Embedded Router

Overview If the CORBA server is implemented using an Orbix 6.x product, it is usually
possible to embed the Artix router directly into the Orbix executable. This
approach yields significant performance gains.

Figure 4 shows an example of a CORBA server that is accessible through an
embedded router. The router is responsible for mapping incoming
SOAP/HTTP requests into colocated IIOP requests.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with Orbix 6.x implementations of the CORBA server.

� Compatible with any WS client.

� No changes need be made to the WS client.

� The CORBA server must be reconfigured, but remains otherwise
unchanged.

And the following disadvantage:

� Moderate performance�this scenario is more efficient than using a
standalone router, but is not as efficient as some other scenarios.

Figure 4: WS Client Accesses CORBA Server through Embedded Router

CORBA
Client

SOAP/HTTP port

WS
Client

IIOP

SOAP/HTTP

IIOP port

Embedded
Router

CORBA Server
 8

Integrating a CORBA Server with Web Services
Replacing the WS Client by an Artix Client

Overview If you have not implemented the WS client yet, you could implement it using
Artix. An Artix client offers great flexibility, because it can communicate
through multiple protocols, including IIOP and SOAP/HTTP.

Figure 5 shows an example of a CORBA server that is accessed by an Artix
client and a CORBA client. The Artix client is configured to talk directly to
the CORBA server using the IIOP protocol.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any CORBA server.

� No changes need be made to the CORBA server.

� Performance is optimized.

� Artix client offers flexibility for future integration.

And the following disadvantage:

� If you have already implemented the WS client, you would have to
re-write it to use the Artix APIs.

Figure 5: Replacing the WS Client by an Artix Client

CORBA
Client

Artix
Client

CORBA
Server

IIOP port
IIOP

IIOP
9

CHAPTER 1 | Introduction to CORBA Web Services
Replacing the CORBA Server by an Artix Server

Overview If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the CORBA server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 6 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any WS client.

� No changes need be made to the WS client.

� Performance is optimized.

� Artix server offers flexibility for future integration.

And the following disadvantage:

� You must re-implement the CORBA server as an Artix server.

Figure 6: Replacing the CORBA Server by an Artix Server

CORBA
Client

SOAP/HTTP port

WS
Client

Artix
Server

IIOP

SOAP/HTTP

IIOP port
 10

Integrating a CORBA Client with Web Services
Integrating a CORBA Client with Web Services

Overview This section considers the problem of CORBA client that needs to access a
Web services server. Artix supports a variety of solutions to this integration
problem, which are briefly described in the following subsections.

In this section This section contains the following subsections:

Accessing the WS Server through a Standalone Router page 12

Replacing the CORBA Client by an Artix Client page 13

Replacing the WS Server by an Artix Server page 14
11

CHAPTER 1 | Introduction to CORBA Web Services
Accessing the WS Server through a Standalone Router

Overview A relatively simple way to integrate a CORBA client with a WS server is to
deploy a standalone router to act as a bridge between them. This approach
can be used in any system.

Figure 7 shows a WS server that is accessible through a standalone router.
The router is responsible for mapping incoming IIOP requests into outgoing
SOAP/HTTP requests.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any WS server.

� Compatible with any CORBA client.

� Non-intrusive�no changes need be made either to the client or to the
server.

And the following disadvantage:

� Loss of performance�every operation invocation that passes through
the router consists of two remote invocations (client-to-router followed
by router-to-server). This has a noticeable impact on performance.

Figure 7: Client Accesses the WS Server through a Standalone Router

WS
Client

SOAP/HTTP port

CORBA
Client

WS
Server

CORBA
Server

Standalone
Router

IIOP port

IIOP port

IIOP
 12

Integrating a CORBA Client with Web Services
Replacing the CORBA Client by an Artix Client

Overview To exploit the full power of the Artix product, you might find it worthwhile to
replace the CORBA client by re-implementing it as an Artix client. The Artix
client can then communicate using a wide variety of protocols, including
IIOP and SOAP/HTTP.

Figure 8 shows an example of a WS server that is accessed by an Artix
client and a WS client. The Artix client is configured to talk directly to the
WS server using the SOAP/HTTP protocol.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any WS server.

� No changes need be made to the WS server.

� Performance is optimized.

� Artix client offers flexibility for future integration.

And the following disadvantage:

� You must re-implement the CORBA client as an Artix client.

Figure 8: Replacing the CORBA Client by an Artix Client

WS
Client

SOAP/HTTP port

Artix
Client

WS
Server

CORBA
Server

IIOP port

IIOP

SOAP/HTTP
13

CHAPTER 1 | Introduction to CORBA Web Services
Replacing the WS Server by an Artix Server

Overview If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the WS server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 9 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Advantages and disadvantages This scenario offers the following advantages:

� Compatible with any CORBA client.

� No changes need be made to the CORBA client.

� Performance is optimized.

� Artix server offers flexibility for future integration.

And the following disadvantage:

� If you have already implemented the WS server using a third-party
product, you would have to re-write it as an Artix server.

Figure 9: Replacing the WS Server by an Artix Server

WS
Client

SOAP/HTTP port

CORBA
Client

Artix
Server

CORBA
Server

IIOP port

IIOP

IIOP

IIOP port
 14

CHAPTER 2

Exposing a Web
Service as a
CORBA Service
This chapter describes how to expose a Web service as a
CORBA service using Artix. If the Web Service is implemented
using Artix, it is relatively easy to integrate with CORBA; if
implemented using a third-party product, integration is made
possible using Artix routers.

In this chapter This chapter discusses the following topics:

Converting WSDL to IDL page 16

Exposing an Artix Web Service as a CORBA Service page 19

Exposing a Non-Artix Web Service as a CORBA Service page 23

Using an Orbix 3.3 Client to Access an Artix Server page 31
15

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Converting WSDL to IDL

Overview To convert a WSDL contract to an equivalent OMG IDL interface (or
interfaces), perform the following steps:

1. Add CORBA bindings to WSDL.

2. Add CORBA endpoints to WSDL.

3. Generate the IDL.

Add CORBA bindings to WSDL Generate a CORBA binding for each port type that you want to expose as an
IDL interface:

� If you want to expose a single WSDL port type from the WSDL file,
<WSDLFile>.wsdl, enter the following command:
> wsdltocorba -corba -i <PortTypeName> <WSDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element. This command generates a new WSDL file,
<WSDLFile>-corba.wsdl.

� If you want to expose multiple WSDL port types, you must run the
wsdltocorba command iteratively, once for each port type. For
example:
> wsdltocorba -corba -i <PortType_A> -o <WSDLFile>01.wsdl

<WSDLFile>.wsdl
> wsdltocorba -corba -i <PortType_B> -o <WSDLFile>02.wsdl

<WSDLFile>01.wsdl
> wsdltocorba -corba -i <PortType_C> -o <WSDLFile>03.wsdl

<WSDLFile>02.wsdl
...

Where the -o flag is used to specify the name of the output file at each
stage. Rename the last file in the sequence to
<WSDLFile>-corba.wsdl.
 16

Converting WSDL to IDL
Add CORBA endpoints to WSDL It is not strictly necessary to add CORBA endpoints to the WSDL at this
stage (that is, prior to generating the IDL), but it is convenient to make these
modifications to the WSDL contract now.

To add the CORBA endpoints, open the <WSDLFile>-corba.wsdl file
generated in the previous step and add a service element for each of the
port types you want to expose. For example, a simple CORBA endpoint that
is associated with the <CORBABinding> binding could have the following
form:

The value of the location attribute in the corba:address element can be
specified as one of the following URL types:

� File URL�to configure the Artix server to write an IOR to a file as it
starts up, specify the location attribute as follows:
location="file:///<DirPath>/<IORFile>.ior"

On Windows platforms, the URL format can indicate a particular
drive�for example the C: drive�as follows:

location="file:///C:/<DirPath>/<IORFile>.ior"

� corbaname URL�to configure the Artix server to bind an object
reference in the CORBA naming service, specify the location attribute
as follows:
location="corbaname:rir:/NameService#StringName"

<definitions name="" targetNamespace="..."
 ...
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...>
 ...
 <service name="<CORBAServiceName>">
 <port binding="tns:<CORBABinding>" name="<CORBAPortName>">
 <corba:address location="file:///greeter.ior"/>
 </port>
 </service>
</definitions>

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.
17

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Where StringName is a name in the CORBA naming service. For more
details, see �How an Artix Client Resolves a Name� on page 58.

� Placeholder IOR�is appropriate for IORs created dynamically at
runtime (for example, IORs created by factory objects). In this case,
you should use the special placeholder value, IOR:, for the location
attribute, as follows:
location="IOR:"

Artix then uses the enclosing service element as a template for
transient object references.

Generate the IDL Generate an IDL interface for each port type, as follows:

� To generate IDL for a single port type, select the relevant CORBA
binding, <CORBABinding>, from the WSDL and enter the following
command:
> wsdltocorba -idl -b <CORBABinding> <WSDLFile>-corba.wsdl

The output from this command is written to an IDL file,
<WSDLFile>-corba.idl. If you want to change the name of the IDL
output file, you can use the -o <IDLFileName> option.

� To generate IDL for multiple port types, you must run the wsdltocorba
command once for each port type. After generating all of the IDL
interfaces individually, you would typically concatenate the output files
into a single IDL file.

Note: It is also possible to add a CORBA endpoint to the WSDL contract
using the wsdltoservice command line tool. For details of this command,
see the Command Line Reference document.
 18

Exposing an Artix Web Service as a CORBA Service
Exposing an Artix Web Service as a
CORBA Service

Overview It is relatively straightforward to expose an Artix Web service as a CORBA
service. Essentially, you must add the configuration of the relevant CORBA
bindings to the WSDL contract and ensure that the requisite CORBA
plug-ins are loaded into the Artix application.

In detail, the steps for exposing an Artix service as a CORBA service are as
follows:

1. Convert WSDL to IDL.

2. Write code to activate the CORBA endpoints.

3. Re-build the Artix server.

4. Configure the Artix server.

Convert WSDL to IDL Follow the instructions in �Converting WSDL to IDL� on page 16 to convert
your WSDL contract to IDL. The output from this step consists of two files,
as follows:

� Modified WSDL file�the WSDL contract is modified to include
CORBA bindings and CORBA endpoints. The Artix server needs the
modified contract to expose the service over CORBA.

� IDL file�an IDL file is generated from the modified WSDL. CORBA
clients use this IDL file to access the CORBA service exposed by the
Artix server.
19

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Write code to activate the CORBA
endpoints

In the main function of your application source code, add some code to
activate the CORBA endpoints. For example, given the following service
element in the WSDL contract:

You can activate all of the ports in the <CORBAServiceName> service by
registering a servant, as follows:

Where m_servant is an object that implements a WSDL port type. This
could be the very same object that is registered with other protocols, such
as SOAP/HTTP, or it could be a new instance of the service. The second
argument, <WSDLFile>.wsdl, gives the location of the modified WSDL
contract. In this example, it is assumed that the WSDL contract is stored in
the same directory as the application executable.

<definitions name="" targetNamespace="<TargetNameSpace>"
 ...
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...>
 ...
 <service name="<CORBAServiceName>">
 <port binding="tns:<CORBABinding>" name="<CORBAPortName>">
 <corba:address location="..."/>
 </port>
 </service>
</definitions>

// C++
IT_Bus::QName m_service_qname("", "<CORBAServiceName>",

"<TargetNameSpace>")

m_bus()->register_servant(
 m_servant, // Service implementation
 "<WSDLFile>.wsdl", // WSDL file location
 m_service_qname // Service QName
);

Note: For more details about activating service endpoints and registering
servants, see the �Artix Programming Considerations� chapter from
Developing Artix Applications in C++.
 20

Exposing an Artix Web Service as a CORBA Service
Re-build the Artix server Before re-building the Artix server executable, you must regenerate the Artix
stub files from the modified WSDL contract. In particular, you must ensure
that C++ code is generated for each of the newly-defined CORBA bindings.

After regenerating the stub files, you can re-build the Artix server.

Configure the Artix server The Artix server must be configured to load the requisite CORBA plug-ins.
Example 1 shows how to modify the Artix configuration scope,
artix_srvr_with_corba_binding, to enable the CORBA bindings.

The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins list, adding the plug-ins needed to support
CORBA bindings. The following additional plug-ins are needed:

♦ iiop_profile, giop, and iiop plug-ins�provide support for the
Internet Inter-ORB Protocol (IIOP), which is used by CORBA.

♦ ws_orb plug-in�enables the Artix application to send and receive
CORBA messages.

2. You should ensure that the binding:client_binding_list (either
within this scope or in the nearest enclosing scope) includes bindings
with the GIOP+IIOP protocol combination. The client binding list shown
here is a typical default setting.

Example 1: Artix Configuration Required for a CORBA Binding

Artix Configuration File

artix_srvr_with_corba_binding {
 ...

 # Modified configuration required for a CORBA binding:
 #

1 orb_plugins = [..., "iiop_profile", "giop", "iiop",
"ws_orb"];

2 binding:client_binding_list =
["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

3 plugins:iiop_profile:shlib_name = "it_iiop_profile";
 plugins:giop:shlib_name = "it_giop";
 plugins:iiop:shlib_name = "it_iiop";
 plugins:ws_orb:shlib_name = "it_ws_orb";
};
21

CHAPTER 2 | Exposing a Web Service as a CORBA Service
3. For each of the additional plug-ins you must specify the root name of
the shared library (or DLL on Windows) that contains the plug-in code.
The requisite plugins:<plugin_name>:shlib_name entries can be
copied from the root scope of the Artix configuration file, artix.cfg.

You can optionally specify additional configuration settings for the
plug-ins at this point (see the Artix Configuration Reference for more
details).
 22

Exposing a Non-Artix Web Service as a CORBA Service
Exposing a Non-Artix Web Service as a
CORBA Service

Overview If you want to expose a non-Artix Web service as a CORBA service, you
must deploy a standalone Artix router that acts as a bridge between CORBA
clients and the Web services server.

In this section This section contains the following subsections:

Standalone CORBA-to-SOAP Router Scenario page 24

Configuring and Running a Standalone CORBA-to-SOAP Router
page 25
23

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Standalone CORBA-to-SOAP Router Scenario

Overview Figure 10 shows an overview of a standalone CORBA-to-SOAP router. In
this scenario, the router is packaged as a standalone application, which acts
as a bridge between the CORBA client and the Web services server. The
standalone router is responsible for converting incoming CORBA requests
into outgoing requests on the Web services server. Replies from the Web
services server are converted into CORBA replies by the router and sent back
to the client.

Container The Artix container, it_container, is an executable that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

Modifications to CORBA server When using a standalone Artix router, no modifications need be made to the
CORBA server.

Elements required for this
scenario

The following elements are required to implement this scenario:

� IDL interface for clients.

� WSDL contract for the standalone router.

� Artix configuration file for the standalone router.

Figure 1: Standalone Artix Router

SOAP/HTTP portCORBA
Client

WS
Server

Standalone
Router

IIOP port

WSDL

Router Contract

IDL

Client Contract

Config

Router Configuration
 24

Exposing a Non-Artix Web Service as a CORBA Service
Configuring and Running a Standalone CORBA-to-SOAP Router

Overview This section describes how to configure and run a standalone router that
acts as a bridge between CORBA clients and a SOAP/HTTP Web services
server. The following steps are described:

1. Convert WSDL to IDL.

2. Generate the router.wsdl file.

3. Create the Artix configuration.

4. Run the standalone router.

Convert WSDL to IDL Follow the instructions in �Converting WSDL to IDL� on page 16 to convert
your WSDL contract to IDL and to generate CORBA bindings and CORBA
endpoints in the WSDL contract. The output from this step is a modified
WSDL file, <WSDLFile>.wsdl, and an IDL file.

Generate the router.wsdl file To generate the router.wsdl file, you need to augment the
<WSDLFile>.wsdl file from the previous step. Specifically, you must add the
requisite bindings and endpoints for the second leg of the route, which goes
from the router to the SOAP Web service.

1. Generate CORBA bindings and CORBA endpoints�if you followed the
steps in �Converting WSDL to IDL� on page 16, the <WSDLFile>.wsdl
file already contains the relevant CORBA bindings and CORBA
endpoints.

2. Generate SOAP bindings�generate a SOAP binding for each port type
that is exposed as an IDL interface. The router acts like a SOAP client
with respect to the SOAP Web services server.

If the router needs to access a single WSDL port type, generate a
SOAP binding with the following command:

> wsdltosoap -i <PortTypeName> -b <BindingName>
<WSDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName> is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <WSDLFile>-soap.wsdl.
25

CHAPTER 2 | Exposing a Web Service as a CORBA Service
If the router needs to access multiple WSDL port types, you must run
the wsdltosoap command iteratively, once for each port type. For
example:

> wsdltosoap -i <PortType_A> -b <Binding_A>
-o <WSDLFile>01.wsdl <WSDLFile>.wsdl

> wsdltosoap -i <PortType_B> -b <Binding_B>
-o <WSDLFile>02.wsdl <WSDLFile>01.wsdl

> wsdltosoap -i <PortType_C> -b <Binding_C>
-o <WSDLFile>03.wsdl <WSDLFile>02.wsdl

...

Where the -o <FileName> flag specifies the name of the output file. At
the end of this step, rename the WSDL file to router.wsdl.

3. Add SOAP endpoints�add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

In the preceding example, you must add a line that defines the
http-conf namespace prefix in the <definitions> tag.

The most important setting in the SOAP port is the location attribute
of the soap:address element, which can be set to one of the following
HTTP URLs:

♦ Explicit HTTP URL�if a particular service is provided at a fixed
address, you can specify the <hostname> and <port> values
explicitly.

location="http://<hostname>:<port>

<definitions name="" targetNamespace="..."
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ...>
 ...
 <service name="<SOAPServiceName>">
 <port binding="tns:<SOAPBinding>" name="<SOAPPortName>">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>
 26

Exposing a Non-Artix Web Service as a CORBA Service
♦ Placeholder HTTP URL�if a service is created dynamically at
runtime, you should specify a transient HTTP URL, as follows:

location="http://localhost:0

At runtime, the placeholder URL is replaced by an explicit
address. Artix then treats the enclosing service element as a
template, allowing multiple transient services to be created at
runtime.

4. Add a route for each exposed port type�for each port type, you need
to set up a route to translate incoming CORBA requests into outgoing
SOAP requests. For example, the following route definition instructs
the router to map incoming CORBA request messages to a SOAP/HTTP
endpoint.

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

The ns1:source element identifies the CORBA endpoint in the router
that receives incoming requests from a client. The ns1:destination

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="route_0">
 <ns1:source service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 <ns1:destination service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 </ns1:route>
</definitions>
27

CHAPTER 2 | Exposing a Web Service as a CORBA Service
element identifies the SOAP/HTTP endpoint in the Orbix server to
which outgoing requests are routed.

5. Check that you have added all the namespaces that you need�for a
typical CORBA to SOAP/HTTP route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

Create the Artix configuration Example 2 shows a suitable configuration for a standalone router that maps
incoming CORBA requests to outgoing SOAP/HTTP requests.

Note: Generally, when defining routes, if the location of the source
endpoint is a placeholder, the location of the destination endpoint
should also be a placeholder.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:references="http://schemas.iona.com/references"
 ...>
 ...
</definitions>

Example 2: Artix Configuration Suitable for a Standalone Artix Router

Artix Configuration File

1 # Global configuration scope
...

standalone_router {
 # Configuration for standalone router:
 #

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "ws_orb", "soap", "at_http", "routing"];

3 plugins:routing:wsdl_url="../../etc/router.wsdl";

4 plugins:ws_orb:shlib_name = "it_ws_orb";
 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 28

Exposing a Non-Artix Web Service as a CORBA Service
The preceding Artix configuration can be explained as follows:

1. The basic configuration settings needed by the Artix container process
are inherited from the global configuration scope.

2. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ xmlfile_log_stream plug-in�enables logging to an XML file.

♦ iiop_profile, giop, and iiop plug-ins�enables the IIOP
protocol (used by CORBA).

♦ ws_orb plug-in�enables the router to send and receive CORBA
messages.

♦ soap plug-in�enables the router to send and receive SOAP
messages.

♦ at_http plug-in�enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in�contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

3. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see �Converting WSDL to IDL� on page 16).
The URL can be a relative filename (as here) or a general file: URL.

4. To load the Artix plug-ins, you must specify the root name of the
shared library (or DLL on Windows) that contains the plug-in code. The
requisite plugins:<plugin_name>:shlib_name entries can be copied
from the root scope of the Artix configuration file, artix.cfg.

 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";

 # Uncomment these lines for interoperability with Orbix 3.3
5 #policies:giop:interop_policy:negotiate_transmission_codeset

= "false";
 #policies:giop:interop_policy:send_principal = "true";
 #policies:giop:interop_policy:send_locate_request = "false";
};

Example 2: Artix Configuration Suitable for a Standalone Artix Router
29

CHAPTER 2 | Exposing a Web Service as a CORBA Service
You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

5. If the router needs to integrate with Orbix 3.3 CORBA clients, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Run the standalone router Run the standalone router by invoking the container, it_container, passing
the router�s ORB name as a command-line parameter (the ORB name is
identical to the name of the router�s configuration scope).

For example, to run the router configured in Example 2 on page 28, enter
the following at a command prompt:

it_container -ORBname standalone_router

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.
 30

Using an Orbix 3.3 Client to Access an Artix Server
Using an Orbix 3.3 Client to Access an
Artix Server

Overview This section gives a summary of the problems that might occur when you try
to compile an Artix-generated IDL file (generated by the wsdltocorba tool)
using the Orbix 3.3 IDL compiler.

Because the Orbix 3.3 product was designed to conform to the CORBA 2.1
specification (which is an earlier version of the CORBA specification than
that used for Artix) there are some differences between the conventions used
in Orbix 3.3 IDL files and the conventions used in Artix IDL files.

Data type compatibility Most of the IDL data types generated by the Artix wsdltocorba tool are
compatible with Orbix 3.3. But there are some exceptions. The following
WSDL data types require workarounds in order to interoperate with the
Orbix 3.3 product:

� xsd:dateType type mapping to the TimeBase::UtcT IDL type.

� Complex type derived from a simple type.

xsd:dateType type mapping to the
TimeBase::UtcT IDL type

Artix uses the TimeBase::UtcT type to represent the xsd:dateTime XML
schema type. To support the TimeBase::UtcT type, Artix-generated IDL files
contain the following #include statement:

#include <omg/TimeBase.idl>

Note: The following list of issues is not necessarily exhaustive. This
section summarizes only those interoperability issues known about at the
time of writing.
31

CHAPTER 2 | Exposing a Web Service as a CORBA Service
A problem arises, however, when the Orbix 3.3 IDL compiler attempts to
compile the TimeBase.idl file, because the TimeBase.idl file includes
#pragma macros that are incompatible with the Orbix 3.3 IDL compiler. To
fix this problem, perform the following steps:

1. Make a copy of the TimeBase.idl file (the original of this file can be
found in the ArtixInstallDir/artix/Version/idl/omg directory).

2. Edit the copied file to delete the following #pragma macros:

3. Edit the #include statement in the main IDL file, to point at the
modified copy of the TimeBase.idl file.

Complex type derived from a
simple type

A problem arises with XML schema complex types that are defined by
derivation from a simple type. For example, consider the following schema
type, Document, that adds a string attribute to a simple string type:

When the wsdltocorba utility maps this schema type to IDL, it generates
the following struct:

When this IDL sample is passed to the Orbix 3.3 compiler, it fails to compile
because the Orbix 3.3 compiler does not allow identifiers that begin with
the _ (underscore) character.

#pragma IT_SystemSpecification

#pragma IT_BeginCBESpecific AllJava "@@\
@module TimeBase=org.omg"

<xsd:complexType name="Document">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="ID" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

// IDL
struct Document {
 string_nil ID;
 string _simpleTypeValue;
};
 32

Using an Orbix 3.3 Client to Access an Artix Server
To work around this problem, you can manually edit the CORBA binding in
the WSDL file, replacing _simpleTypeValue by simpleTypeValue (removing
the underscore character). For example, for the Document data type, the
CORBA binding defines the following mapping by default:

To modify the mapping in this case, simply replace _simpleTypeValue by
simpleTypeValue in the preceding code fragment.

Incompatible #pragma macros The following #pragma macros which appear in some standard Artix IDL files
are incompatible with Orbix 3.3 and will cause the Orbix 3.3 IDL compiler
to report an error:

#pragma IT_SystemSpecification
#pragma IT_BeginCBESpecific

<corba:struct name="Document" repositoryID="IDL:Document:1.0"
 type="s:Document">
 <corba:member idltype="ns1:string_nil" name="ID"/>
 <corba:member idltype="corba:string"
 name="_simpleTypeValue"/>
</corba:struct>
33

CHAPTER 2 | Exposing a Web Service as a CORBA Service
 34

CHAPTER 3

Exposing a CORBA
Service as a Web
Service
This chapter describes how to expose a CORBA service as a
Web service using Artix. Different approaches can be taken,
depending on whether the back-end CORBA service is
implemented using the Orbix 6 product, the Orbix 3.3 product
or some other third-party ORB product.

In this chapter This chapter discusses the following topics:

Converting IDL to WSDL page 36

Embedding Artix in a CORBA Service page 45

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service page 51
35

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Converting IDL to WSDL

Overview The first step in exposing a CORBA server as a Web service is to convert the
CORBA server�s IDL into a WSDL contract. For all of the examples presented
in this chapter, the following assumptions are made:

� The server�s IDL does not feature callbacks.

� Web service clients use the SOAP/HTTP protocol.

WSDL contract files This subsection describes how to generate the following two WSDL files:

� router.wsdl file�deployed along with the embedded router and the
Orbix server, the router.wsdl file contains all of the router information
required to map incoming SOAP requests to outgoing CORBA requests.

� client.wsdl file�contains all of the information required by Web
services clients to make SOAP/HTTP invocations on the router.

Contents of the router contract Given that the router has to be capable of routing incoming SOAP requests
to outgoing CORBA requests, the router generally must contain the following
elements:

� Port types.

� CORBA bindings.

� SOAP bindings.

� CORBA endpoints.

� SOAP/HTTP endpoints.

� Routes from SOAP/HTTP endpoints to CORBA endpoints.

Generate the router contract To generate a router contract from a given IDL file, <IDLFile>.idl, perform
the following steps:

1. Generate WSDL from the IDL file�at a command-line prompt, enter:

> idltowsdl <IDLFile>.idl

This command generates a WSDL file, <IDLFile>.wsdl, which
contains the following:

♦ XSD schema types, generated from the IDL data types.
 36

Converting IDL to WSDL
♦ portType elements�a port type for each IDL interface in the
source.

♦ binding elements�a CORBA binding for each port type.

♦ service elements�a CORBA endpoint for each port type

You might need to specify additional flags to the idltowsdl command
utility. Some of the more commonly required options are:

-r <ref_schema> specifies the location of the references schema.
The schema file, references.xsd, is located in the
ArtixInstallDir/artix/Version/schemas directory and on the
Internet. The references schema is needed whenever you generate
WSDL from IDL that uses object references.

-a <corba_address> specifies a default value for the location
attribute in the corba:address elements.

-unwrap generates doc/literal unwrapped style of WSDL.

-usetypes generates rpc/literal style of WSDL.

The default style of WSDL generated by the idltowsdl utility is
doc/literal wrapped.

2. Edit the corba:address elements for each CORBA endpoint�for each
CORBA endpoint, you have to specify the location of a CORBA object
reference.

Using your favorite text editor, open the <IDLFile>.wsdl file generated
in the previous step. Replace the dummy setting, location="...", in
each of the corba:address elements, by one of the following location
URL settings:

♦ File URL�if the Orbix server writes an IOR to a file as it starts up,
you specify the location attribute as follows:

location="file:///<DirPath>/<IORFile>.ior"

On Windows platforms, the URL format can indicate a particular
drive�for example the C: drive�as follows:

location="file:///C:/<DirPath>/<IORFile>.ior"

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.
37

CHAPTER 3 | Exposing a CORBA Service as a Web Service
♦ corbaname URL�allows you to retrieve an object reference from
the CORBA naming service. This setting has the following format:

location="corbaname:rir:/NameService#StringName"

Where StringName is a name in the CORBA naming service. For
more details, see �How an Artix Client Resolves a Name� on
page 58.

♦ Stringified IOR�if you know that the Orbix server�s IOR is not
going to change for some time, you can paste the stringified IOR
directly into the location attribute, as follows:

location="IOR:000000..."

♦ Placeholder IOR�is appropriate for IORs created dynamically at
runtime (for example, IORs created by factory objects). In this
case, you should use the special placeholder value, IOR:, for the
location attribute, as follows:

location="IOR:"

Artix uses the enclosing service element as a template for
transient object references.

For example, if your Orbix server writes an IOR to the file,
/tmp/app_iors/hello_world_service.ior, you can use it to specify
the endpoint location as follows:

3. Generate SOAP bindings�generate a SOAP binding for each port type
that you want to expose as a Web service. If you want to expose a
single WSDL port type, enter the following command:

> wsdltosoap -i <PortTypeName> -b <BindingName>
<IDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName> is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <IDLFile>-soap.wsdl.

<service name="HelloWorldCORBAService">
 <port binding="tns:HelloWorldCORBABinding" name="HelloWorldCORBAPort">
 <corba:address location="file:///tmp/app_iors/hello_world_service.ior"/>
 </port>
</service>
 38

Converting IDL to WSDL
If you want to expose multiple WSDL port types, you must run the
wsdltosoap command iteratively, once for each port type. For example:

> wsdltosoap -i <PortType_A> -b <Binding_A>
-o <IDLFile>01.wsdl <IDLFile>.wsdl

> wsdltosoap -i <PortType_B> -b <Binding_B>
-o <IDLFile>02.wsdl <IDLFile>01.wsdl

> wsdltosoap -i <PortType_C> -b <Binding_C>
-o <IDLFile>03.wsdl <IDLFile>02.wsdl

...

Where the -o <FileName> flag specifies the name of the output file. At
the end of this step, rename the WSDL file to router.wsdl.

4. Add SOAP endpoints�add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

In the preceding example, you must add a line that defines the
http-conf namespace prefix in the <definitions> tag.

The most important setting in the SOAP port is the location attribute
of the soap:address element, which can be set to one of the following
HTTP URLs:

♦ Explicit HTTP URL�if a particular service is meant to listen on a
fixed address, you can specify the <hostname> and <port> values
explicitly.

location="http://<hostname>:<port>

<definitions name="" targetNamespace="..."
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ...>
 ...
 <service name="<SOAPServiceName>">
 <port binding="tns:<SOAPBinding>" name="<SOAPPortName>">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>
39

CHAPTER 3 | Exposing a CORBA Service as a Web Service
♦ Placeholder HTTP URL�if a service is meant to be created
dynamically at runtime, you should specify a transient HTTP
URL, as follows:

location="http://localhost:0

At runtime, the placeholder URL is replaced by an explicit
address when the service is created. Artix treats the enclosing
service element as a template, allowing multiple transient
services to be created at runtime.

5. Add a route for each exposed port type�for each port type, you need
to set up a route to translate incoming SOAP requests into outgoing
CORBA requests. For example, the following route definition instructs
the router to map incoming SOAP/HTTP request messages to a CORBA
endpoint.

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

The ns1:source element identifies the SOAP/HTTP endpoint in the
router that receives incoming requests from a client. The

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="route_0">
 <ns1:source service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 <ns1:destination service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 </ns1:route>
</definitions>
 40

Converting IDL to WSDL
ns1:destination element identifies the CORBA endpoint in the Orbix
server to which outgoing requests are routed.

6. Check that you have added all the namespaces that you need�for a
typical SOAP/HTTP to CORBA route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

7. Include the references schema (if required)�if your IDL passes any
object references (for example, as parameters or return values), the
corresponding WSDL contract needs to include the references schema
to represent the object references.

For example, assuming that the references.xsd schema file is stored
in the same directory as router.wsdl, you can include the references
schema in the router contract as follows:

Note: Generally, when defining routes, if the location of the source
endpoint is a placeholder, the location of the destination endpoint
should also be a placeholder.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:references="http://schemas.iona.com/references"
 ...>
 ...
</definitions>

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...>
 <types>
 <schema targetNamespace="..." ...>
 <import namespace="http://schemas.iona.com/references"
 schemaLocation="references.xsd"/>
 ...
 </schema>
 </types>
 ...
</definitions>
41

CHAPTER 3 | Exposing a CORBA Service as a Web Service
The original copy of the references.xsd schema file is located in the
ArtixInstallDir/artix/Version/schemas directory.

router.wsdl file contents For example, if the router contract contains a single port type, the contents
of router.wsdl would have the following outline:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr_over_ii

op.idl"
 xmlns:references="http://schemas.iona.com/references"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:tns="TargetNamespaceURI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
 <types>
 ...
 </types>
 <message name="..."/>
 ...

 <portType name="<PortTypeName>">
 ...
 </portType>

 <binding name="<CORBABindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <service name="<CORBAServiceName>">
 ...
 </service>

 <service name="<SOAPServiceName>">
 42

Converting IDL to WSDL
Generate the client contract The client WSDL contract is a modified copy of the router contract
containing only those details of the contract that are relevant to the client.
To generate the client contract, perform the following steps:

1. Copy the router.wsdl file to client.wsdl.

2. Edit the client.wsdl file to remove redundant elements. That is, you
should remove the following:

♦ CORBA binding elements.

♦ CORBA service elements.

♦ route elements.

You could also optionally remove some of the redundant namespace
definitions, such as corba, corbatm, and ns1.

client.wsdl file contents For example, if the client contract contains a single port type, the contents
of client.wsdl would have the following outline:

 ...
 </service>

 <ns1:route name="route_0">
 <ns1:source service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 <ns1:destination service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 </ns1:route>
</definitions>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr_over_ii

op.idl"
 xmlns:references="http://schemas.iona.com/references"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:tns="TargetNamespaceURI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
43

CHAPTER 3 | Exposing a CORBA Service as a Web Service
 <types>
 ...
 </types>
 <message name="..."/>
 ...

 <portType name="<PortTypeName>">
 ...
 </portType>

 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <service name="<SOAPServiceName>">
 ...
 </service>
</definitions>
 44

Embedding Artix in a CORBA Service
Embedding Artix in a CORBA Service

Overview If you want to expose an Orbix 6 CORBA server as a Web service, you have
the option of embedding Artix directly in the CORBA server.

This embedding is possible because Artix and Orbix are both built using the
same framework: IONA�s Adaptive Runtime Technology (ART). Using the
ART framework, it is possible to run Artix and Orbix in the same process just
by loading the appropriate set of plug-ins needed by each product.

In this section This section contains the following subsections:

Embedded Router Scenario page 46

Embedding a Router in the CORBA Server page 48
45

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Embedded Router Scenario

Overview Figure 11 shows an overview of an Artix router embedded in a CORBA
server. In this scenario, the CORBA service is exposed as a Web service that
supports SOAP over HTTP. The embedded router is responsible for
converting incoming SOAP/HTTP requests into colocated requests on the
CORBA server. Any replies from the CORBA server are then converted into
SOAP/HTTP replies by the router and sent back to the client.

Note: Embedding an Artix router is an option that is only available to
Orbix 6 based CORBA applications. In general, the most straightforward
way to build these applications is to use the Orbix libraries included with
the Artix product. If you need to link with libraries taken directly from an
Orbix distribution, you must take care to ensure that these libraries are
binary compatible with Artix.

Figure 1: Artix Router Embedded in a CORBA Server

Web Services
Client

WSDL

Router Contract

Embedded Router

IDL

Target Contract

CORBA
Server

SOAP/HTTP

IIOP

Generate

Artix Orbix 6
 46

Embedding Artix in a CORBA Service
Modifications to CORBA server The following changes must be made to the CORBA server to embed the
Artix router:

� Code changes�No.

� Re-compilation�No.

� Configuration�modify the Orbix configuration file.

Elements required for this
scenario

The following elements are required to implement this scenario:

� WSDL contract for clients.

� WSDL contract for the embedded router.

� Modified Orbix configuration file for the CORBA server.
47

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Embedding a Router in the CORBA Server

Overview This section describes how to embed a router in a CORBA server. The
embedded router enables the CORBA server to receive requests from a
SOAP/HTTP Web services client. The following steps are described:

� Convert IDL to WSDL.

� Deploy the requisite WSDL files.

� Edit the Artix configuration.

Convert IDL to WSDL Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server�s IDL interface. For details of how to
convert the IDL file to WSDL, see �Converting IDL to WSDL� on page 36.

Deploy the requisite WSDL files Deploy the following WSDL files on the CORBA server host:

� router.wsdl�the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

� references.xsd�the schema that defines the references:Reference
data type, which Artix uses to represent object references.

The references schema is usually (but not always) required on the
server side. If your IDL does not pass object references as parameters
or return values, however, you do not need to deploy this file.

Edit the Artix configuration Given that your CORBA server is configured by a particular configuration
scope, orbix_srvr_with_embeded_router, Example 3 shows how to modify
the server configuration to embed an Artix router.

Example 1: Artix Configuration Suitable for an Embedded Artix Router

Artix Configuration File

orbix_srvr_with_embedded_router {
 ...

 # Modified configuration required for embedded router:
 #
 48

Embedding Artix in a CORBA Service
The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ ws_orb plug-in�enables the router to send and receive CORBA
messages.

♦ soap plug-in�enables the router to send and receive SOAP
messages.

♦ at_http plug-in�enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in�contains the core of the Artix router.

♦ bus_loader plug-in�triggers the Artix Bus initialization step. This
plug-in is needed only when you are loading Artix plug-ins into a
non-Artix application.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

1 orb_plugins = [..., "ws_orb", "soap", "at_http", "routing",
"bus_loader"];

2 binding:client_binding_list = ["OTS+GIOP+IIOP", "GIOP+IIOP"];

3 plugins:routing:wsdl_url="../../etc/router.wsdl";

4 plugins:ws_orb:shlib_name = "it_ws_orb";
 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";
 plugins:bus_loader:shlib_name = "it_bus_loader";

5 share_variables_with_internal_orb = "false";
};

Example 1: Artix Configuration Suitable for an Embedded Artix Router

Note: In Artix 3.0, Artix plug-ins were refactored to cleanly separate
the ORB initialization step from the Artix Bus initialization step.
Usually, in an Artix application, IT_Bus::init() triggers the Bus
initialization step. In this example, however, the CORBA server never
calls IT_Bus::init(). Therefore, the bus_loader plug-in is needed to
finish the initialization of the Artix plug-ins.
49

CHAPTER 3 | Exposing a CORBA Service as a Web Service
2. The Artix embedded router is not compatible with the POA_Coloc
interceptor. Therefore you must edit the server�s
binding:client_binding_list entry to remove any bindings
containing the POA_Coloc interceptor.

For example, if the client binding list is defined as follows:

binding:client_binding_list =
["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

You would replace it with the following list:

binding:client_binding_list = ["OTS+GIOP+IIOP","GIOP+IIOP"];

If you do not purge the POA_Coloc entries from the client binding list,
clients that attempt to access the server through the router will receive
a CORBA::UNKNOWN exception.

3. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see �Converting IDL to WSDL� on page 36).
The URL can be a relative filename (as here) or a general file: URL.

4. In order for Orbix to load the Artix plug-ins, for each plug-in you must
specify the root name of the shared library (or DLL on Windows) that
contains the plug-in code. The requisite
plugins:<plugin_name>:shlib_name entries can be copied from the
root scope of the Artix configuration file, artix.cfg.

You can also specify additional configuration settings for the Artix
plug-ins at this point (see the Artix Configuration Reference for more
details).

5. In certain circumstances, Orbix creates an internal ORB instance (for
example, during initialization). To prevent the settings from the current
scope being used by the internal ORBs�specifically, to prevent the
internal ORB from loading Artix plug-ins�you should set the
share_variables_with_internal_orb configuration variable to false.

Note: If the binding:client_binding_list variable does not
appear explicitly in the server�s configuration scope, try to find it in
the next enclosing scope (or the scope that is nearest to the server�s
configuration scope) and copy it into the server�s scope.
 50

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
Exposing an Orbix 3.3 or Non-Orbix Service as
a Web Service

Overview If you want to expose an Orbix 3.3 or non-Orbix CORBA server as a Web
service, it is generally necessary to deploy a standalone Artix router that acts
as a bridge between Web services clients and the CORBA server. Using a
standalone router is a non-intrusive integration approach that should work
with any CORBA back-end.

In this section This section contains the following subsections:

Standalone SOAP-to-CORBA Router Scenario page 52

Configuring and Running a Standalone SOAP-to-CORBA Router
page 54
51

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Standalone SOAP-to-CORBA Router Scenario

Overview Figure 12 shows an overview of a standalone router. In this scenario, the
router is packaged as a standalone application, which acts as a bridge
between the Web services client and the CORBA server. The standalone
router is responsible for converting incoming SOAP/HTTP requests into
outgoing requests on the CORBA server. Replies from the CORBA server are
converted into SOAP/HTTP replies by the router and sent back to the client.

Container The Artix container, it_container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

Modifications to CORBA server When using a standalone Artix router, no modifications need be made to the
CORBA server.

Figure 2: Standalone Artix Router

Web Services
Client

WSDL

Router Contract

Standalone Router

IDL

Target Contract

CORBA
Server

SOAP/HTTP IIOP

Generate

Artix Orbix 3.3
 52

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
Elements required for this
scenario

The following elements are required to implement this scenario:

� WSDL contract for clients.

� WSDL contract for the standalone router.

� Artix configuration file for the standalone router.
53

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Configuring and Running a Standalone SOAP-to-CORBA Router

Overview This section describes how to configure and run a standalone router that
acts as a bridge between a SOAP/HTTP Web services client and a CORBA
server. The following steps are described:

� Convert IDL to WSDL.

� Deploy the requisite WSDL files.

� Create the Artix configuration.

� Run the standalone router.

Convert IDL to WSDL Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server�s IDL interface. For details, see
�Converting IDL to WSDL� on page 36.

Deploy the requisite WSDL files Deploy the following WSDL files on the standalone router host:

� router.wsdl�the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

� references.xsd�the schema that defines the references:Reference
data type, which Artix uses to represent object references.

The references schema is usually (but not always) required on the
server side. If your IDL does not pass object references as parameters
or return values, however, you do not need to deploy this file.

Create the Artix configuration Example 4 shows a suitable configuration for a standalone router that maps
incoming SOAP/HTTP requests to outgoing CORBA requests.

Example 2: Artix Configuration Suitable for a Standalone Artix Router

Artix Configuration File

standalone_router {
 # Configuration for standalone router:
 #

1 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "ws_orb", "soap", "at_http", "routing"];
 54

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ xmlfile_log_stream plug-in�enables logging to an XML file.

♦ iiop_profile, giop, and iiop plug-ins�enables the IIOP
protocol (used by CORBA).

♦ ws_orb plug-in�enables the router to send and receive CORBA
messages.

♦ soap plug-in�enables the router to send and receive SOAP
messages.

♦ at_http plug-in�enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in�contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

2. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see �Converting IDL to WSDL� on page 36).
The URL can be a relative filename (as here) or a general file: URL.

3. To load the Artix plug-ins, you must specify the root name of the
shared library (or DLL on Windows) that contains the plug-in code. The
requisite plugins:<plugin_name>:shlib_name entries can be copied
from the root scope of the Artix configuration file, artix.cfg.

2 plugins:routing:wsdl_url="../../etc/router.wsdl";

3 plugins:ws_orb:shlib_name = "it_ws_orb";
 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";

 # Uncomment these lines for interoperability with Orbix 3.3
4 #policies:giop:interop_policy:negotiate_transmission_codeset

= "false";
 #policies:giop:interop_policy:send_principal = "true";
 #policies:giop:interop_policy:send_locate_request = "false";
};

Example 2: Artix Configuration Suitable for a Standalone Artix Router
55

CHAPTER 3 | Exposing a CORBA Service as a Web Service
You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

4. If the router needs to integrate with an Orbix 3.3 CORBA server, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Run the standalone router Run the standalone router by invoking the container, it_container, passing
the router�s ORB name as a command-line parameter (the ORB name is
identical to the name of the router�s configuration scope).

For example, to run the router configured in Example 4 on page 54, enter
the following at a command prompt:

it_container -ORBname standalone_router

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.
 56

CHAPTER 4

Integrating the
CORBA Naming
Service with Artix
In a mixed Artix/CORBA system, it is often necessary for an
Artix application to retrieve an object reference from the
CORBA Naming Service. Artix supports a relatively simple
configuration option for binding a name to or resolving a name
from the CORBA Naming Service: simply set the location
attribute of <corba:address> to be a corbaname URL.

In this chapter This chapter discusses the following topics:

How an Artix Client Resolves a Name page 58

How an Artix Server Binds a Name page 62

Artix Client Integrated with a CORBA Server page 65
57

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
How an Artix Client Resolves a Name

Overview Figure 13 shows a typical scenario where an Artix client might need to
resolve a name from the CORBA Naming Service. The Artix client, which is
configured to have a corba binding, connects to a pure CORBA server using
the CORBA Naming Service.

To configure the client to resolve the name, you need to specify a corbaname
URL in the corba:address element within a service. No programming is
required. There are, however, some prerequisites settings in the Artix
configuration file that are also required in order to enable the client to find
the CORBA Naming Service.

Figure 1: Artix Client Resolving a Name from the Naming Service

Artix
Client

CORBA
ServerIIOP port

IIOP

<hostname>:<port>

Orbix 6.x
Locator

CORBA
Naming
Service

1 2

3

 58

How an Artix Client Resolves a Name
Resolving steps for Orbix 6.x Artix performs the following steps to resolve a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 13):

Prerequisites Before configuring the client�s WSDL contract to resolve a name from the
CORBA Naming Service, you must edit the Artix configuration file to provide
some details about the remote naming service. The configuration settings
depend on the kind of ORB you are interoperating with, as follows:

Interoperating with Orbix 6.x, ASP 5.x

In your Artix configuration file,
ArtixInstallDir/artix/Version/etc/domains/artix.cfg, add the
following lines to the configuration scope used by the Artix client:

Step Action

1 The Artix client sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 The Artix client contacts the CORBA Naming Service to resolve
the name specified in the WSDL corba:address element.

3 The object reference returned from the naming service is used
to contact the CORBA server.

Artix Configuration File
artix_client_of_Orbix_6 {
 ...
 initial_references:NameService:reference = "corbaloc::<hostname>:<port>/NameService";
 url_resolvers:corbaname:plugin="naming_resolver";
 plugins:naming_resolver:shlib_name="it_naming";
};
59

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
Where <hostname>:<port> is the host and port where the Orbix locator
service is running. By default, Orbix 6.x configures the locator <port> to be
3075, but you might need to check the plugins:locator:iiop:port setting
in your Orbix 6.x configuration file if you are not sure of the value.

Interoperating with Orbix 3.3

In your Artix configuration file,
ArtixInstallDir/artix/Version/etc/domains/artix.cfg, add the
following lines to the configuration scope used by the Artix client:

The stringified IOR shown in the preceding example, IOR:000000..., can be
obtained from the 3.3.x Naming Service by starting the NS with the -I
<filename> switch and copying the IOR from the <filename> into the
configuration file. When using the IOR: format, you do not need to load the
naming_resolver plug-in (the naming_resolver is needed only to resolve
corbaloc URLs).

Interoperating with other ORBs

Generally, the approach used for interoperating with Orbix 3.3 (initializing
initial_references:NameService:reference with the value of the naming
service�s IOR) should work for just about any third-party ORB product. You
might need to modify some of the GIOP interoperability policies, however.
For more details, consult the Artix Configuration Reference.

Note: The Orbix locator service is responsible for keeping track of
running Orbix services. It is completely unrelated to the Artix locator
service.

Artix Configuration File
artix_client_or_Orbix_33 {
 ...
 initial_references:NameService:reference = "IOR:000000......";

 policies:giop:interop_policy:negotiate_transmission_codeset = "false";
 policies:giop:interop_policy:send_principal = "true";
 policies:giop:interop_policy:send_locate_request = "false";
};
 60

How an Artix Client Resolves a Name
Configure the WSDL service To configure an Artix client to resolve a name in the CORBA Naming
Service, use the corbaname URL format in the <corba:address> tag, as
follows:

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format. For example, if you have a
name with id equal to ArtixTest and kind equal to obj, contained within a
naming context with id equal to Foo and kind equal to ctx, the corbaname
URL would be expressed as:

corbaname:rir:/NameService#Foo.ctx/ArtixTest.obj

In other words, the general format of a string name is as follows:

<id>[.<kind>]/<id>[.<kind>]/...

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>
61

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
How an Artix Server Binds a Name

Overview Figure 14 shows a typical scenario where an Artix server might need to bind
a name to the CORBA Naming Service. In the context of the CORBA Naming
Service, binding a name means that the server advertises the location of a
CORBA object by storing an object reference against a name in the naming
service.

To configure the server to bind the name, you need to specify a corbaname
URL in the corba:address element within a service (exactly the same
configuration as an Artix client). When the Artix server activates the
<service> or <port>, by registering with the Artix Bus, the runtime
automatically binds the name in the naming service.

Figure 2: Artix Server Binding a Name to the Naming Service

Artix
Server

CORBA
Client

IIOP port

<hostname>:<port>

Orbix 6.x
Locator

CORBA
Naming
Service

1 2
 62

How an Artix Server Binds a Name
Binding steps for Orbix 6.x Artix performs the following steps to bind a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 14):

Prerequisites The prerequisites for an Artix server that binds a name to the CORBA
Naming Service are identical to the prerequisites for an Artix client that
resolves a name�see �Prerequisites� on page 59 for details.

Configure the WSDL service To configure an Artix server to bind a name in the CORBA Naming Service,
use the corbaname URL format in the <corba:address> tag, as follows:

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format.

This is identical to the configuration for an Artix client, but the server treats
this configuration setting differently. When an Artix server activates a service
containing a corbaname URL, the server automatically binds the given
StringName into the CORBA naming service.

Step Action

1 The Artix server sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 The Artix server contacts the CORBA Naming Service to bind
the name specified in the WSDL corba:address element.

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>
63

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
Binding semantics The automatic binding performed by an Artix server when it encounters a
corbaname URL has the following characteristics:

� The binding operation has the semantics of the
CosNaming::NamingContext::rebind() IDL operation. That is, the
bind operation either creates a new binding or clobbers an existing
binding of the same name.

� If some of the naming contexts in the StringName compound name do
not yet exist in the naming service, the Artix server does not create the
missing contexts.

For example, if you try to bind a StringName with the value
Foo/Bar/SomeName where neither the Foo nor Foo/Bar naming contexts
exist yet, the Artix server will not bind the given name. You would need
to create the naming contexts manually prior to running the Artix server
(for example, in Orbix 6.x you could issue the command itadmin ns
newnc NameContext).
 64

Artix Client Integrated with a CORBA Server
Artix Client Integrated with a CORBA Server

Overview This section presents an example scenario of an Artix client integrated with
a CORBA server, where the client obtains a CORBA object reference through
the CORBA Naming Service.

In summary, the scenario works as follows:

� A CORBA Naming Service from an ORB product (presumed to be Orbix
6.x) is assumed to be running.

� As the CORBA server starts up, it uses the CosNaming::NamingContext
IDL interface to bind a name to the naming service.

� When the Artix client starts up, the Artix runtime reads the client�s
WSDL contract, extracts a corbaname URL and contacts the naming
service to resolve the corbaname URL.

In this section This section contains the following subsections:

CORBA Server Implementation page 66

Artix Client Configuration page 69
65

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
CORBA Server Implementation

Overview The code example in this subsection shows you how a server binds a name
to the root naming context of the CORBA Naming Service. This shows how a
CORBA programmer can use the standard CosNaming::NamingContext IDL
interface to bind a name.

CORBA server main function Example 5 shows part of the main() function for a CORBA server that
registers a name in the CORBA Naming Service. The lines of code shown in
bold bind the name, ArtixTest, to the root naming context.

Note: This is a pure CORBA example; there is no Artix programming
involved here.

Example 1: CORBA Server that Register a Name in the Naming Service

// C++
...
#include <omg/CosNaming.hh>
...
int main(int argc, char* argv[])
{
 IT_TerminationHandler::set_signal_handler(sig_handler);

 try
 {
 cout << "Initializing the ORB" << endl;
 global_orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var poa_obj =
 global_orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(poa_obj);
 assert(!CORBA::is_nil(root_poa));

 cout << "Creating objects" << endl;

 HWImplementation hw_servant;
 PortableServer::ObjectId_var hw_oid =
 root_poa->activate_object(&hw_servant);
 66

Artix Client Integrated with a CORBA Server
 CORBA::Object_var ref=
root_poa->create_reference_with_id(

 hw_oid,
 _tc_HelloWorld->id()
);

 // Use the simple NamingContext interface
 CosNaming::NamingContext_var rootContext;

 // Get a reference to the Root Naming Context.
 CORBA::Object_var objVar;
 objVar = global_orb->resolve_initial_references(
 "NameService"
);
 rootContext = CosNaming::NamingContext::_narrow(objVar);

 if (CORBA::is_nil(rootContext.in()))
 {
 cerr << "_narrow returned nil" << endl;
 return 1;
 }

 CosNaming::Name_var tmpName = new CosNaming::Name(1);
 tmpName->length(1);

 tmpName[0].id = CORBA::string_dup("ArtixTest");
 tmpName[0].kind = CORBA::string_dup("");
 rootContext->rebind(tmpName, ref);

 // Activate the POA Manager to allow requests to arrive
 PortableServer::POAManager_var poa_manager =
 root_poa->the_POAManager();
 poa_manager->activate();

 // Give control to the ORB
 //
 global_orb->run();
 return 0;
 }
 catch (CORBA::Exception& e)
 {
 cout << "Error occurred: " << e << endl;
 }
 return 1;
}

Example 1: CORBA Server that Register a Name in the Naming Service
67

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
Demonstration code If you want to run this CORBA server code in a real example, you could use
the following demonstration as a starting point:

ArtixInstallDir/artix/Version/demos/transports/cdr_over_iiop/corb
a

In the server subdirectory, there is an existing server.cxx mainline file that
publishes the IOR by saving to a file. To change the server to use the
naming service, you can replace the existing server main() function with the
code shown in Example 5 on page 66.

Note the following points:

� Remember to add the include line, #include <omg/CosNaming.hh>, at
the start of the server.cxx file.

� Edit the server Makefile, adding the it_naming library to the link list.
For example, on Windows you would add it_naming.lib to the link
list.

� You need a separate ORB product (for example, Orbix) to run the
CORBA Naming Service. The Artix product does not include a CORBA
Naming Service.
 68

Artix Client Integrated with a CORBA Server
Artix Client Configuration

Overview This subsection shows how to configure an Artix client to fetch an object
reference from the CORBA Naming Service.

Demonstration configuration The configuration files referred to in this subsection are taken from the
cdr_over_iiop demonstration and located in the following directory:

ArtixInstallDir/artix/Version/demos/transports/cdr_over_iiop/etc

The corresponding client application requires no modification. You can
choose to run either a C++ version of the client:

cdr_over_iiop/cxx/client

Or a Java version of the client:

cdr_over_iiop/java/client

Artix configuration file Example 6 shows the Artix configuration required for the Artix client to
interoperate with the Orbix 6.x naming service.

To configure the cdr_over_iiop demonstration, edit the
cdr_over_iiop/etc/cdr_over_iiop.cfg file, inserting the three lines
highlighted in bold in Example 6 on page 69. You might need to modify the

Example 2: Artix Configuration for Interoperating with Orbix 6 Naming

Artix Configuration File
include "../../../../../etc/domains/artix.cfg";

demos {
 cdr_over_iiop {
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop", "ws_orb"];

 initial_references:NameService:reference = "corbaloc::localhost:3075/NameService";
 url_resolvers:corbaname:plugin = "naming_resolver";
 plugins:naming_resolver:shlib_name = "it_naming";

 corba {
 orb_plugins = ["iiop_profile", "giop", "iiop"];
 };
 };
};
69

CHAPTER 4 | Integrating the CORBA Naming Service with Artix
value of the hostname and port�this example assumes that the Orbix
locator service is running on the same host as the client, localhost, and
listening on the default port, 3075.

WSDL contract You also need to edit the client�s WSDL contract, specifying the location
attribute of the corba:address element using a corbaname URL. Example 7
shows the modifications you need to make to the corba:address element in
the cdr_over_iiop/etc/cdr_over_iiop.wsdl contract file.

When the client starts up, the Artix runtime automatically retrieves the
CORBA object reference by resolving the name, ArtixTest, in the scope of
the root naming context.

Note: The configuration shown in Example 6 on page 69 is specific to
the Orbix 6.x naming service. If you use a different ORB product, you
might have to set this configuration differently�see �Prerequisites� on
page 59 for more details.

Example 3: CORBA Address Specified as a corbaname URL

<definitions name="cdr_over_iiop" targetNamespace="http://www.iona.com/cdr_over_iiop"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://www.iona.com/cdr_over_iiop"
 ... >
 ...
 <service name="HelloWorldService">
 <port binding="corbatm:HelloWorldBinding" name="HelloWorldPort">
 <corba:address location="corbaname:rir:/NameService#ArtixTest"/>
 </port>
 </service>
</definitions>
 70

CHAPTER 5

Advanced CORBA
Port Configuration
This chapter describes some advanced configuration options
for customizing a CORBA port on an Artix server.

In this chapter This chapter discusses the following topics:

Configuring Fixed Ports and Long-Lived IORs page 72

CORBA Timeout Policies page 78

Retrying Invocations and Rebinding page 80
71

CHAPTER 5 | Advanced CORBA Port Configuration
Configuring Fixed Ports and Long-Lived IORs

Overview Artix provides a corba:policy element that enables you to customize
certain CORBA-specific policies for a WSDL service that acts as a CORBA
endpoint. Essentially, the corba:policy element makes it possible to enable
the following features on a CORBA endpoint:

� Fixed IP port�the WSDL service listens on the same IP port all the
time. This is useful, for example, if the available range of IP ports is
restricted or if the service must be accessible through a firewall.

� Long-lived interoperable object references (IORs)�the IOR remains
valid even after the server is stopped and restarted.

You can configure a WSDL service to behave in one of the following ways:

� Transient service.

� Direct persistent service.

Transient service By default, a CORBA endpoint is automatically configured to be transient. A
transient service generates IORs with the following characteristics:

� Randomly-assigned IP port�the IP port is assigned by the underlying
operating system. Hence, the port is generally different each time the
Artix server is run.

� Short-lived IORs�the CORBA binding generates IORs in such a way
that they are guaranteed to become invalid when the server is stopped
and restarted.

Note: In this context, transient is a CORBA concept which refers to the
TRANSIENT value of the PortableServer::LifespanPolicy. This notion of
transience should not be confused with the Artix notion of transience,
which is concerned with registering transient servants. The two concepts
are completely different.
 72

Configuring Fixed Ports and Long-Lived IORs
Direct persistent service You can optionally configure a CORBA endpoint to be direct persistent. A
direct persistent service generates IORs with the following characteristics:

� Fixed IP port�you can explicitly assign the IP port by configuration.
Hence, the IP port remains the same each time the Artix server is run.

� Long-lived IORs�the CORBA binding generates IORs in such a way
that they remain valid even when the server is stopped and restarted.
All of the addressing information embedded in the IOR must remain
constant, in particular:

♦ IP port is fixed�the WSDL service must be configured to listen
on a fixed IP port.

♦ POA name is fixed�the POA name is a CORBA-specific
construct that identifies an endpoint.

♦ Object ID in IOR is fixed�the Object ID is a CORBA-specific
construct that identifies a particular object in a given POA
instance.

♦ POA is persistent�a prerequisite for generating long-lived IORs is
that the POA must have a life span policy value of PERSISTENT.
73

CHAPTER 5 | Advanced CORBA Port Configuration
Configuring a service to be direct
persistent

To configure an Artix service to be direct persistent, you must edit both the
WSDL file and the Artix configuration file.

Editing the WSDL file

Artix enables you to set direct persistence attributes in WSDL by adding a
corba:policy element to the WSDL service, as shown in Example 8.

The corba:policy attributes from Example 8 can be explained as follows:

� persistent attribute�by setting this attribute to true, you configure
the CORBA binding to generate persistent IORs (that is, IORs that
continue to be valid even after the Artix server is stopped and
restarted). The default value is false.

� poaname attribute�in CORBA terminology, a POA is an object that
groups CORBA objects together (a kind of container for CORBA
objects). It is necessary to set the POA name here, because the POA
name is embedded in the generated IORs. The generated IORs would

Example 1: Setting Direct Persistence Attributes in WSDL

<definitions name="" targetNamespace="..."
 ...
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...>
 ...
 <service name="CORBAServiceName">
 <port binding="tns:CORBABinding" name="CORBAPortName">
 <corba:address location="file:///greeter.ior"/>
 <corba:policy persistent="true"
 poaname="FQPN"
 serviceid="ObjectID" />
 </port>
 </service>
</definitions>

Note: In CORBA terms, this is equivalent to setting the
PortableServer::LifespanPolicy policy to PERSISTENT.
 74

Configuring Fixed Ports and Long-Lived IORs
not be long-lived, unless the POA name remains constant. By default,
a POA name is automatically generated with the value,
{ServiceNamespace}ServiceLocalPart#PortName.

� serviceid attribute�in CORBA terminology, this attribute specifies an
Object ID for a CORBA object. It is necessary to set the Object ID here,
because the Object ID is embedded in the server-generated IOR. The
Object ID must have a constant value in order for the IOR to be
long-lived. By default, the underlying POA would generate a random
value for the Object ID.

Artix currently allows you to set only one Object ID for each port.

Editing the Artix configuration file

To complete the configuration of direct persistence, you must also set some
configuration variables in the relevant scope of the Artix configuration file.
For example, if your Artix server uses the artix_server configuration scope,
you would add the configuration variables as shown in Example 9.

Note: The POA name, FQPN, is a fully-qualified POA name. In
practice, however, you can only set a simple POA name. Artix
currently does not provide a way of creating a POA name hierarchy.

Note: The serviceid attribute also implicitly sets the
PortableServer::IdAssignmentPolicy policy to USER_ID. If the
serviceid attribute is not set, the
PortableServer::IdAssignmentPolicy policy defaults to SYSTEM_ID.

Example 2: Setting Direct Persistence Configuration Variables

Artix Configuration File
...
artix_server {
 ...
 poa:FQPN:direct_persistent="true";
 poa:FQPN:well_known_address="WKA_prefix";
 WKA_prefix:iiop:port="IP_Port";
};
75

CHAPTER 5 | Advanced CORBA Port Configuration
The configuration variables from Example 9 can be explained as follows:

� poa:FQPN:direct_persistent variable�you must set this variable to
true, which configures the CORBA binding to receive direct
connections from Orbix clients. You should substitute FQPN with the
POA name from the poaname attribute in the WSDL (see Example 8 on
page 74).

� poa:FQPN:well_known_address variable�this variable defines a prefix,
WKA_prefix, which forms part of the variable names that configure a
fixed port for the WSDL service. You should substitute FQPN with the
POA name from the poaname attribute in the WSDL.

� WKA_prefix:iiop:port variable�this variable configures a fixed IP
port for the WSDL service associated with WKA_prefix.

Fixed port configuration variables The following IIOP configuration variables can be set for a CORBA endpoint
that uses the WKA_prefix prefix:

WKA_prefix:iiop:host = "host";

Specifies the hostname, host, to publish in the IIOP profile of
server-generated IORs. This variable is potentially useful for
multi-homed hosts, because it enables you to specify which network
card the client should attempt to connect to.

WKA_prefix:iiop:port = "port";

Specifies the fixed IP port, port, on which the server listens for
incoming IIOP/TLS messages. This port value is also published in the
IIOP profile of generated IORs.

WKA_prefix:iiop:listen_addr = "host";

Restricts the IIOP/TLS listening point to listen only on the specified
address, host. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface. The default is
to listen on 0.0.0.0 (which represents every network card on the host).

Note: In CORBA terms, this is equivalent to setting the
IT_PortableServer::PersistenceModePolicy policy to
DIRECT_PERSISTENCE. The alternative policy value,
INDIRECT_PERSISTENCE, is not compatible with Artix, because it
would require connections to be routed through the Orbix locator
service, which is not part of the Artix product.
 76

Configuring Fixed Ports and Long-Lived IORs
Secure fixed port configuration
variables

Additionally, the following secure fixed port configuration variables can be
set for a CORBA endpoint that uses the WKA_prefix prefix:

WKA_prefix:iiop_tls:host
WKA_prefix:iiop_tls:port
WKA_prefix:iiop_tls:listen_addr

These configuration variables function analogously to their insecure
counterparts.

Note: These secure configuration variables will have no effect, unless the
iiop_tls plug-in is also loaded. It is strongly recommended that you read
the Artix Security Guide for details of how to configure IIOP/TLS security.
77

CHAPTER 5 | Advanced CORBA Port Configuration
CORBA Timeout Policies

Overview Artix servers that expose a CORBA endpoint can be configured to use
CORBA-specific timeout policies. The timeout policies described here affect
GIOP transports (for example, the IIOP or IIOP/TLS transports), but do not
have any affect on non-CORBA transports.

Example To use the timeout policies, add the relevant configuration variables to the
Artix server�s configuration scope in the Artix configuration file. For example,
for an Artix server that uses the artix_server configuration scope, you can
set the CORBA relative roundtrip timeout as follows:

Timeout policies You can configure the following CORBA timeout policies in your Artix
configuration file:

policies:relative_binding_exclusive_request_timeout

Limits the amount of time allowed to deliver a request, exclusive of
binding attempts. Request delivery is considered complete when the
last fragment of the GIOP request is sent over the wire to the target
object. This policy�s value is set in millisecond units.

policies:relative_binding_exclusive_roundtrip_timeout

Limits the amount of time allowed to deliver a request and receive its
reply, exclusive of binding attempts. The countdown begins
immediately after a binding is obtained for the invocation. This policy�s
value is set in millisecond units.

policies:relative_connection_creation_timeout

Specifies how much time is allowed to resolve each address in an IOR,
within each binding iteration. Defaults to 8 seconds.

Artix Configuration File
artix_server {
 # Limit total time for an invocation to 2 seconds
 # (including time for connection and binding establishment).
 policies:relative_roundtrip_timeout = "2000";
}

 78

CORBA Timeout Policies
An IOR can have several TAG_INTERNET_IOP (IIOP transport) profiles,
each with one or more addresses, while each address can resolve
through DNS to multiple IP addresses.

This policy applies to each IP address within an IOR. Each attempt to

resolve an IP address is regarded as a separate attempt to create a

connection. The policy�s value is set in millisecond units.

policies:relative_request_timeout

Specifies how much time is allowed to deliver a request. Request
delivery is considered complete when the last fragment of the GIOP
request is sent over the wire to the target object. The timeout-specified
period includes any delay in establishing a binding. This policy type is
useful to a client that only needs to limit request delivery time. Set this
policy�s value in millisecond units.

No default is set for this policy; if it is not set, request delivery has
unlimited time to complete.

policies:relative_roundtrip_timeout

Specifies how much time is allowed to deliver a request and its reply.
Set this policy�s value in millisecond units. No default is set for this
policy; if it is not set, a request has unlimited time to complete.

The timeout countdown begins with the request invocation, and
includes the following activities:

♦ Marshalling in/inout parameters

♦ Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of
reply data, all received reply data is discarded. In some cases, the
client might attempt to cancel the request by sending a GIOP
CancelRequest message.
79

CHAPTER 5 | Advanced CORBA Port Configuration
Retrying Invocations and Rebinding

Overview Artix lets you configure CORBA policies that customize invocation retries
and reconnection. The policies can be grouped into the following categories:

� Retrying invocations.

� Rebinding.

Retrying invocations The following configuration variables determine how the CORBA binding
deals with requests that raise the CORBA::TRANSIENT exception with a
completion status of COMPLETED_NO. In terms of an IIOP connection, a
TRANSIENT exception is raised if an error occurred before or during an
attempt to write to or connect to a socket.

policies:invocation_retry:backoff_ratio

Specifies the degree to which delays between invocation retries
increase from one retry to the next. Defaults to 2.

policies:invocation_retry:initial_retry_delay

Specifies the amount of time, in milliseconds, between the first and
second retries. Defaults to 100.

policies:invocation_retry:max_forwards

Specifies the number of times an invocation message can be
forwarded. Defaults to 20. To specify unlimited forwards, set to -1.

policies:invocation_retry:max_retries

Specifies the number of transparent reinvocations attempted on receipt
of a TRANSIENT exception. Defaults to 5.

Note: The delay between the initial invocation and first retry is
always 0.
 80

Retrying Invocations and Rebinding
Rebinding The following configuration variables determine how the CORBA binding
deals with requests that raise the CORBA::COMM_FAILURE exception with a
completion status of COMPLETED_NO. In terms of an IIOP connection, a
COMM_FAILURE exception is raised with a completion status of COMPLETED_NO,
if the connection went down.

policies:rebind_policy

Specifies the default value for the rebind policy. Can be one of the
following:

♦ TRANSPARENT (default)

♦ NO_REBIND

♦ NO_RECONNECT

policies:invocation_retry:max_rebinds

Specifies the number of transparent rebinds attempted on receipt of a
COMM_FAILURE exception. Defaults to 5.

Note: This setting is valid only if the effective
policies:rebind_policy value is TRANSPARENT; otherwise, no
rebinding occurs.
81

CHAPTER 5 | Advanced CORBA Port Configuration
 82

CHAPTER 6

Artix IDL to C++
Mapping
This chapter describes how Artix maps IDL to C++; that is,
the mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 84

IDL Basic Type Mapping page 86

IDL Complex Type Mapping page 88

IDL Module and Interface Mapping page 96
83

CHAPTER 6 | Artix IDL to C++ Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping
IDL to C++ in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, SampleIDL.idl, to a WSDL contract,
SampleIDL.wsdl, using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to C++ using the WSDL-to-C++
compiler. For example, you could generate C++ stub code from the
SampleIDL.wsdl file using the following command:

wsdltocpp SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix
User�s Guide.

Alternative C++ mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to C++ directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to C++, as follows:

� Artix IDL-to-C++ mapping�this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-C++. It is an IONA-proprietary mapping.

� CORBA IDL-to-C++ mapping�as specified in the OMG C++
Language Mapping document (http://www.omg.org). This mapping is
used, for example, by the IONA�s Orbix.
 84

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 15.

The advantage of using the Artix IDL-to-C++ mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-C++ mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++ mapping:

� wchar.

� wstring.

� long double.

� Value types.

� Boxed values.

� Local interfaces.

� Abstract interfaces.

� forward-declared interfaces.

Figure 1: Artix and CORBA Alternatives for IDL to C++ Mapping

IDL File

WSDL
Contract

Artix
C++

Stubs

CORBA
C++

Stubs

Artix

CORBA

IDL-to-WSDL

IDL-to-C++

WSDL-to-C++
85

CHAPTER 6 | Artix IDL to C++ Mapping
IDL Basic Type Mapping

Overview Table 1 shows how IDL basic types are mapped to WSDL and then to C++.

Table 1: Artix Mapping of IDL Basic Types to C++

IDL Type WSDL Schema Type C++ Type

any xsd:anyType IT_Bus::AnyHolder

boolean xsd:boolean IT_Bus::Boolean

char xsd:byte IT_Bus::Byte

string xsd:string IT_Bus::String

wchar xsd:string IT_Bus::String

wstring xsd:string IT_Bus::String

short xsd:short IT_Bus::Short

long xsd:int IT_Bus::Int

long long xsd:long IT_Bus::Long

unsigned short xsd:unsignedShort IT_Bus::UShort

unsigned long xsd:unsignedInt IT_Bus::UInt

unsigned long long xsd:unsignedLong IT_Bus::ULong

float xsd:float IT_Bus::Float

double xsd:double IT_Bus::Double

long double Not supported Not supported

octet xsd:unsignedByte IT_Bus::UByte

fixed xsd:decimal IT_Bus::Decimal

Object references:Reference IT_Bus::Reference
 86

IDL Basic Type Mapping
Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, or wstring).
87

CHAPTER 6 | Artix IDL to C++ Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to C++:

� enum type.

� struct type.

� union type.

� sequence types.

� array types.

� exception types.

� typedef of a simple type.

� typedef of a complex type.

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
 88

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Shape type to a C++
class, SampleTypes_Shape, as follows:

The value of the enumeration type can be accessed and modified using the
get_value() and set_value() member functions.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

class SampleTypes_Shape : public IT_Bus::AnySimpleType
{
 public:
 SampleTypes_Shape();
 SampleTypes_Shape(const IT_Bus::String & value);
 ...
 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;
};

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>
89

CHAPTER 6 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Poly type to a C++
class, SampleTypes_Poly, as follows:

The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator_as_uint() functions.

struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

// C++
class SampleTypes_Poly : public IT_Bus::ChoiceComplexType
{
 public:
 ...
 const IT_Bus::Short gettheShort() const;
 void settheShort(const IT_Bus::Short& val);

 const IT_Bus::String& gettheString() const;
 void settheString(const IT_Bus::String& val);

 enum PolyDiscriminator
 {
 theShort,
 theString,
 Poly_MAXLONG=-1L
 } m_discriminator;

 PolyDiscriminator get_discriminator() const { ... }
 IT_Bus::UInt get_discriminator_as_uint() const { ... }
 ...
};

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};
 90

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-C++ compiler maps the SampleTypes.SampleStruct type to
a C++ class, SampleTypes_SampleStruct, as follows:

The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SampleStruct : public
IT_Bus::SequenceComplexType

{
 public:
 SampleTypes_SampleStruct();
 SampleTypes_SampleStruct(const SampleTypes_SampleStruct&

copy);
 ...
 const IT_Bus::String & gettheString() const;
 IT_Bus::String & gettheString();
 void settheString(const IT_Bus::String & val);

 const IT_Bus::Int & gettheLong() const;
 IT_Bus::Int & gettheLong();
 void settheLong(const IT_Bus::Int & val);
};

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};
91

CHAPTER 6 | Artix IDL to C++ Mapping
The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.SeqOfStruct type to a
C++ class, SampleTypes_SeqOfStruct, as follows:

The SampleTypes_SeqOfStruct class is an Artix C++ array type (based on
the IT_Vector template). Hence, the array class has an API similar to the
std::vector type from the C++ Standard Template Library.

array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SeqOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_SeqOfStruct_item_qname, 0, -1>

{
 public:
 ...
};

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT_Bus::ArrayT base class uses the bounds
specified in the IDL.

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};
 92

IDL Complex Type Mapping
The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypes_ArrOfStruct, as follows:

The SampleTypes_ArrOfStruct class is an Artix C++ array type (based on
the IT_Vector template). The array class has an API similar to the
std::vector type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_ArrOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_ArrOfStruct_item_qname, 10, 10>

{
 ...
};

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};
93

CHAPTER 6 | Artix IDL to C++ Mapping
The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.GenericExc and
_exception.SampleTypes.GenericExc types to C++ classes,
SampleTypes_GenericExc and _exception_SampleTypes_GenericExc, as
follows:

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>

// C++
class SampleTypes_GenericExc : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_GenericExc();
 ...
 const IT_Bus::String & getreason() const;
 IT_Bus::String & getreason();
 void setreason(const IT_Bus::String & val);
};
...
class _exception_SampleTypes_GenericExcException : public

IT_Bus::UserFaultException
{
 public:
 _exception_SampleTypes_GenericExcException();
 ...
 const SampleTypes_GenericExc & getexception() const;
 SampleTypes_GenericExc & getexception();
 void setexception(const SampleTypes_GenericExc & val);
 ...
};
 94

IDL Complex Type Mapping
typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float.

The WSDL-to-C++ compiler then maps the xsd:float type directly to the
IT_Bus::Float C++ type. Hence, no C++ typedef is generated for the
float type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-C++ compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypes::SampleStruct C++ type. Hence,
no C++ typedef is generated for this struct type. Instead of a typedef, the
C++ mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific C++ class being generated to represent the
sequence or array type.
95

CHAPTER 6 | Artix IDL to C++ Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL
constructs:

� Module mapping.

� Interface mapping.

� Object reference mapping.

� Operation mapping.

� Attribute mapping.

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C++ compiler.

For example, if you pass a namespace, TEST, to the WSDL-to-C++ -n
switch, the ModuleName::Identifier IDL identifier would map to
TEST::ModuleName_Identifier.

Interface mapping An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type maps to
the ModuleName_InterfaceName_TypeName C++ class.
 96

IDL Module and Interface Mapping
Object reference mapping When an IDL interface is used as an operation parameter or return type, it is
mapped to the IT_Bus::Reference C++ type.

For example, consider an operation, get_foo(), that returns a reference to a
Foo interface as follows:

The get_foo() IDL operation then maps to the following C++ function:

Note that this mapping is very different from the OMG IDL-to-C++
mapping. In the Artix mapping, the get_foo() operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the IT_Bus::Reference object into the
FooClient constructor.

// IDL
interface Foo {};

interface Bar {
 Foo get_foo();
};

// C++
void get_foo(
 IT_Bus::Reference & var_return
) IT_THROW_DECL((IT_Bus::Exception));
97

CHAPTER 6 | Artix IDL to C++ Mapping
Operation mapping Example 10 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 10 on page 98, map to
C++ as shown in Example 11,

Example 1: Example IDL Operations

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 SampleStruct test_op(
 in SampleStruct in_struct,
 inout SampleStruct inout_struct,
 out SampleStruct out_struct
) raises (GenericExc);

 oneway void test_oneway(in string in_str);
 };
};

Example 2: Mapping IDL Operations to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void test_op(
 const TEST::SampleTypes_SampleStruct & in_struct,
 TEST::SampleTypes_SampleStruct & inout_struct,
 TEST::SampleTypes_SampleStruct & var_return,
 TEST::SampleTypes_SampleStruct & out_struct
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void test_oneway(
 const IT_Bus::String & in_str
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 98

IDL Module and Interface Mapping
The preceding C++ operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var_return.

The order of parameters in the C++ function signature, test_op(), is
determined as follows:

♦ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

♦ Next, the return value appears as the parameter, var_return
(with the same semantics as an out parameter).

♦ Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 12 shows two IDL attributes defined within the SampleTypes::Foo
interface. The first attribute is readable and writable, str_attr, and the
second attribute is readonly, struct_attr.

Example 3: Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute SampleStruct struct_attr;
 };
};
99

CHAPTER 6 | Artix IDL to C++ Mapping
The attributes from the preceding IDL, Example 12 on page 99, map to
C++ as shown in Example 13,

The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++, _get_AttributeName().

Example 4: Mapping IDL Attributes to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void _get_str_attr(
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

 virtual void _set_str_attr(
 const IT_Bus::String & _arg
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void _get_struct_attr(
 TEST::SampleTypes_SampleStruct & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 100

CHAPTER 7

Artix WSDL-to-IDL
Mapping
This chapter describes how the Artix WSDL-to-IDL compiler
maps WSDL types to OMG IDL types.

In this chapter This chapter discusses the following topics:

Simple Types page 102

Complex Types page 115

Wildcarding Types page 131

Occurrence Constraints page 132

Nillable Types page 134
101

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Simple Types

Overview This section describes the mapping of simple WSDL types to IDL.

In this section This section contains the following subsections:

Atomic Types page 103

String Type page 105

Date and Time Types page 108

Deriving Simple Types by Restriction page 110

List Type page 112

Unsupported Simple Types page 114
 102

Simple Types
Atomic Types

Table of atomic types Table 2 shows how the XSD schema atomic types map to IDL.

Table 1: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type

xsd:boolean boolean

xsd:byte char

xsd:unsignedByte octet

xsd:short short

xsd:unsignedShort unsigned short

xsd:int long

xsd:unsignedInt unsigned long

xsd:long long long

xsd:unsignedLong unsigned long long

xsd:float float

xsd:double double

xsd:string string

xsd:normalizedString string

xsd:token string

xsd:language string

xsd:NMTOKEN string

xsd:NMTOKENS Not supported

xsd:Name string

xsd:NCName string
103

CHAPTER 7 | Artix WSDL-to-IDL Mapping
xsd:ID string

xsd:QName string

xsd:dateTime TimeBase::UtcT

xsd:date string

xsd:time string

xsd:gDay string

xsd:gMonth string

xsd:gMonthDay string

xsd:gYear string

xsd:gYearMonth string

xsd:decimal Typedef of fixed<31,6>

xsd:integer long long

xsd:positiveInteger unsigned long long

xsd:negativeInteger long long

xsd:nonPositiveInteger long long

xsd:nonNegativeInteger unsigned long long

xsd:base64Binary base64BinarySeq

(typedef of sequence<octet>)

xsd:hexBinary hexBinarySeq

(typedef of sequence<octet>)

soapenc:base64 base64Seq

(typedef of sequence<octet>)

xsd:ID Not supported.

Table 1: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type
 104

Simple Types
String Type

Overview By default, xsd:string maps to the ordinary IDL string type.

If you are planning to use international strings, however, you might want
xsd:string to map to the IDL wide string type, wstring, instead. The
wsdltocorba utility does not provide an option to change the default
mapping, but you can easily alter the mapping by manually editing the
contents of the CORBA <binding> tag in the WSDL.

Default CORBA binding Consider, for example, how to add a CORBA binding to the Greeter port
type (see the hello_world.wsdl file located in
ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/e

tc). You can add a CORBA binding by entering the following command:

The WSDL output from this command, hello_world-corba.wsdl, includes
a new CORBA binding, GreeterCORBABinding, as shown in Example 14.
The contents of this binding element essentially determine the
WSDL-to-CORBA mapping for the port type. Some parameters and return
types in the binding are declared to have an idltype attribute of
corba:string, which means they map to the IDL string type.

> wsdltocorba -corba -i Greeter hello_world.wsdl

Example 1: Default CORBA Binding Generated by wsdltocorba

<definitions ... >
 ...
 <binding name="GreeterCORBABinding" type="tns:Greeter">
 <corba:binding repositoryID="IDL:Greeter:1.0"/>
 <operation name="sayHi">
 <corba:operation name="sayHi">
 <corba:return idltype="corba:string" name="theResponse"/>
 </corba:operation>
 <input name="sayHiRequest"/>
 <output name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <corba:operation name="greetMe">
 <corba:param idltype="corba:string" mode="in" name="me"/>
 <corba:return idltype="corba:string" name="theResponse"/>
105

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Manually modified CORBA
binding

To alter the WSDL-to-IDL string mapping, replace some or all of the
instances of corba:string by corba:wstring. Example 15 shows the result
of replacing all instances of corba:string by corba:wstring.

 </corba:operation>
 <input name="greetMeRequest"/>
 <output name="greetMeResponse"/>
 </operation>
 </binding>
</definitions>

Example 1: Default CORBA Binding Generated by wsdltocorba

Example 2: Manually Modified CORBA Binding

<definitions ... >
 ...
 <binding name="GreeterCORBABinding" type="tns:Greeter">
 <corba:binding repositoryID="IDL:Greeter:1.0"/>
 <operation name="sayHi">
 <corba:operation name="sayHi">
 <corba:return idltype="corba:wstring" name="theResponse"/>
 </corba:operation>
 <input name="sayHiRequest"/>
 <output name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <corba:operation name="greetMe">
 <corba:param idltype="corba:wstring" mode="in" name="me"/>
 <corba:return idltype="corba:wstring" name="theResponse"/>
 </corba:operation>
 <input name="greetMeRequest"/>
 <output name="greetMeResponse"/>
 </operation>
 </binding>
</definitions>
 106

Simple Types
Generated IDL Example 16 shows the IDL that would be generated from the modified
CORBA binding in Example 15 on page 106.

To generate this IDL interface, you would enter the following command:

Example 3: IDL Generated from the Modified CORBA Binding

// IDL

interface Greeter {
 wstring sayHi();
 wstring greetMe(in wstring me);
};

> wsdltocorba -idl -b GreeterCORBABinding hello_world-corba.wsdl
107

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Date and Time Types

Overview The WSDL-to-IDL mapping currently supports only the xsd:dateTime type,
which maps to the TimeBase::UtcT IDL type.

TimeBase::UtcT type The TimeBase::UtcT type, which holds a UTC time value, is defined in the
OMG�s CORBA Time Service specification. Example 17 shows the definition
of UtcT in the TimeBase module.

Note: The mapping is subject to certain restrictions, as detailed below.

Example 4: Definition of the TimeBase IDL Module

// IDL
module TimeBase
{
 typedef unsigned long long TimeT;
 typedef TimeT InaccuracyT;
 typedef short TdfT;

 struct UtcT
 {
 TimeT time;
 unsigned long inacclo;
 unsigned short inacchi;
 TdfT tdf;
 };

 struct IntervalT
 {
 TimeT lower_bound;
 TimeT upper_bound;
 };
};
 108

Simple Types
Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

� Values with a local time zone. Local time is treated as a 0 UTC time
zone offset.

� Values prior to 15 October 1582.

� Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

� Values with a non-zero inacclo or inacchi.

� Values with a time zone offset that is not divisible by 30 minutes.

� Values with time zone offsets greater than 14:30 or less than -14:30.

� Values with greater than millisecond accuracy.

� Values with years greater than 9999.
109

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Deriving Simple Types by Restriction

Overview Most derived simple types are mapped as if they had been declared to be
the base type. For example, XSD types derived from xsd:string are treated
as if they were declared as xsd:string and are therefore mapped to the IDL
string type.

Exceptionally, derived simple types declared using the <enumeration> facet
are treated as a special case: enumerated simple types are mapped to an
IDL enum type.

Unchecked facets The following facets can be used, but are not checked at runtime:

� length

� minLength

� maxLength

� pattern

� enumeration

� whiteSpace

� maxInclusive

� maxExclusive

� minInclusive

� minExclusive

� totalDigits

� fractionDigits

Checked facets The following facets are supported and checked at runtime:

� enumeration
 110

Simple Types
Example with a maxLength facet The following example shows how you can use the <maxLength> facet to
define a string whose length is limited to 100 characters:

The WSDL-to-IDL mapping maps this String100 type to the string type.

Example with enumeration facets The following example shows how to define an enumerated type,
ColorEnum, using the <enumeration> facet:

The WSDL-to-IDL mapping maps this ColorEnum type to the following IDL
enum type.

<xsd:simpleType name="String100">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="100"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ColorEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="RED"/>
 <xsd:enumeration value="GREEN"/>
 <xsd:enumeration value="BLUE"/>
 </xsd:restriction>
</xsd:simpleType>

// IDL
enum ColorEnum {
 RED,
 GREEN,
 BLUE
};
111

CHAPTER 7 | Artix WSDL-to-IDL Mapping
List Type

Overview An xsd:list type maps to an IDL sequence type,
sequence<MappedElementType>, where MappedElementType is the IDL type
representing the list elements.

There are two styles of list declaration, both of which are supported in Artix:

� Lists defined using itemType.

� Lists defined by derivation.

Lists defined using itemType Where the list element type is a schema atomic type, you can define the list
type using the itemType attribute. For example, a list of strings can be
defined as follows:

This maps to the following IDL type:

Lists defined by derivation Where the list element type is derived from a schema atomic type (by the
application of various restricting facets), you can define the list type using a
restriction element. For example, you can define a list of restricted
integers as follows:

<xsd:simpleType name="StringList">
 <xsd:list itemType="xsd:string"/>
</xsd:simpleType>

// IDL
typedef sequence<string> StringList;

<xsd:simpleType name="IntList">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:maxInclusive value="1000"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>
 112

Simple Types
This maps to the following IDL type:

// IDL
typedef sequence<long> IntList;
113

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Unsupported Simple Types

Overview This subsection lists the XSD simple types that are not supported by the
wsdltocorba mapping utility.

Unsupported types The following XSD simple types are not supported by the WSDL-to-IDL
mapping:

xsd:duration
xsd:ENTITY
xsd:ENTITIES
xsd:IDREF
xsd:IDREFS
xsd:NMTOKENS
xsd:NOTATION
xsd:union
 114

Complex Types
Complex Types

Overview This section describes the mapping of complex WSDL types to IDL.

In this section This section contains the following subsections:

Sequence Complex Types page 116

Choice Complex Types page 117

All Complex Types page 118

Attributes page 119

Nesting Complex Types page 121

Deriving a Complex Type from a Simple Type page 123

Arrays page 128
115

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Sequence Complex Types

Overview The XSD sequence complex type maps to an IDL struct type, where each
element of the original sequence maps to a member of the IDL struct.

Occurrence constraints The WSDL-to-IDL mapping does not support occurrence constraints on the
sequence element. If minOccurs or maxOccurs attribute settings appear in
the sequence element, they are ignored by the WSDL-to-IDL compiler.

On the other hand, elements appearing within the sequence element can
define occurrence constraints�see �Arrays� on page 128.

WSDL example Example 18 shows an XSD sequence type with three simple elements.

IDL mapping Example 19 shows the result of mapping the SimpleStruct type (from the
preceding Example 18) to IDL.

Example 5: Definition of a Sequence Complex Type in WSDL

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Example 6: Mapping of SimpleStruct to IDL

// IDL
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};
 116

Complex Types
Choice Complex Types

Overview The XSD choice complex type maps to an IDL union type, where each
element of the original choice maps to a member of the IDL union.

Occurrence constraints Artix does not support occurrence constraints on the choice element.

WSDL example Example 20 shows an XSD choice type with three elements.

IDL mapping Example 21 shows the result of mapping the SimpleChoice type (from the
preceding Example 20) to IDL.

Example 7: Definition of a Choice Complex Type in WSDL

<xsd:complexType name="SimpleChoice">
 <xsd:choice>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>

Example 8: Mapping of SimpleChoice to IDL

// IDL
union SimpleChoice switch (long) {
 case 0:
 float varFloat;
 case 1:
 long varInt;
 case 2:
 string varString;
};
117

CHAPTER 7 | Artix WSDL-to-IDL Mapping
All Complex Types

Overview The XSD all complex type maps to an IDL struct type, where each element
of the original all maps to a member of the IDL struct.

Occurrence constraints Artix does not support occurrence constraints on the all element.

WSDL example Example 22 shows an XSD all type with three simple elements.

IDL mapping Example 23 shows the result of mapping the SimpleAll type (from the
preceding Example 22) to IDL.

Example 9: Definition of an All Complex Type in WSDL

<xsd:complexType name="SimpleAll">
 <xsd:all>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:all>
</xsd:complexType>

Example 10:Mapping of SimpleAll to IDL

// IDL
struct SimpleAll {
 float varFloat;
 long varInt;
 string varString;
};
 118

Complex Types
Attributes

Overview Attributes of a sequence type or of an all type map to additional members of
an IDL struct. The type representing an attribute in IDL is defined as a
nillable type (see �Nillable Types� on page 134 for details). This makes it
possible for attributes to be treated as optional.

Attributes can be declared within the scope of the xsd:complexType
element. Hence, you can include attributes in the definitions of an all type, a
sequence type, and a choice type.

The declaration of an attribute in a complex type has the following syntax:

<xsd:complexType name="TypeName">
 <xsd:attribute name="AttrName" type="AttrType"
 use="[optional|required|prohibited]"/>
 ...
</xsd:complexType>

Attribute use The use attribute setting is ignored by the WSDL-to-IDL mapping.

Because attributes are declared as nillable types in IDL, the attributes are
effectively optional by default. If the attribute use is defined as required or
prohibited, however, it is up to the developer to enforce these conditions.

Note: Attributes of a choice type are currently not supported by the
WSDL-to-IDL mapping.
119

CHAPTER 7 | Artix WSDL-to-IDL Mapping
WSDL example Example 24 shows an XSD sequence type, which is declared to have two
attributes, varAttrString and varAttrIntOptional.

IDL mapping Example 25 shows the result of mapping the SimpleStructWithAttributes
type (from the preceding Example 24) to IDL.

Example 11:Definition of a Complex Type with Attributes in WSDL

<xsd:complexType name="SimpleStructWithAttributes">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="varAttrString" type="xsd:string"/>
 <xsd:attribute name="varAttrIntOptional" type="xsd:int"
 use="optional"/>
</xsd:complexType>

Example 12:Mapping of SimpleStructWithAttributes to IDL

// IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
union long_nil switch(boolean) {
 case TRUE:
 long value;
};

struct SimpleStructWithAttributes {
 string_nil varAttrString;
 long_nil varAttrIntOptional;
 float varFloat;
 long varInt;
 string varString;
};
 120

Complex Types
Nesting Complex Types

Overview It is possible to nest complex types within each other. When mapped to IDL,
the nested complex types map to a nested hierarchy of structs, where each
instance of a nested type is declared as a member of another struct.

Avoiding anonymous types In general, it is recommended that you name types that are nested inside
other types, instead of using anonymous types. This results in simpler code
when the types are mapped to IDL.

WSDL example Example 26 shows the definition of a nested sequence type, NestedStruct,
which contains another sequence type, SimpleStruct, as an element.

Note: The WSDL-to-IDL mapping has only limited supported for mapping
anonymous type, which does not work in all cases.

Example 13:Definition of a Nested Type in WSDL

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="NestedStruct">
 <xsd:sequence>
 <xsd:element name="varString" type="xsd:string"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varStruct" type="tns:SimpleStruct"/>
 </xsd:sequence>
</xsd:complexType>
121

CHAPTER 7 | Artix WSDL-to-IDL Mapping
IDL mapping Example 27 shows the result of mapping the NestedStruct type (from the
preceding Example 26) to IDL.

Example 14:Mapping of NestedStruct to IDL

// IDL
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};

struct NestedStruct {
 string varString;
 long varInt;
 float varFloat;
 SimpleStruct varStruct;
};
 122

Complex Types
Deriving a Complex Type from a Simple Type

Overview A complex type derived from a simple type maps to an IDL struct type with
a member, _simpleTypeValue, to hold the value of the simple type. Any
attributes defined by the derived type are represented as nillable members
of the struct (see �Attributes� on page 119 for more details).

The following kinds of derivation are supported:

� Derivation by restriction.

� Derivation by extension.

Derivation by restriction Example 28 shows an example of a complex type, OrderNumber, derived by
restriction from the xsd:decimal simple type. The new type is restricted to
have values less than 1,000,000.

IDL mapping of restricted type Example 29 shows the result of mapping the OrderNumber type (from the
preceding Example 28) to IDL. The _simpleTypeValue struct member
represents the simple type value.

Example 15:Complex Type Derived by Restriction from a Simple Type

<xsd:complexType name="OrderNumber">
 <xsd:simpleContent>
 <xsd:restriction base="xsd:decimal">
 <xsd:maxExclusive value="1000000"/>
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>

Example 16:Mapping of OrderNumber to IDL

// IDL
typedef fixed<31, 6> fixed_1;

struct OrderNumber {
 fixed_1 _simpleTypeValue;
};
123

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Derivation by extension Example 30 shows an example of a complex type, InternationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

IDL mapping of extended type Example 31 shows the result of mapping the InternationalPrice type
(from the preceding Example 30) to IDL. In addition to the
_simpleTypeValue member, representing the simple type, there is a
currency member of string_nil type, representing the currency attribute.

Example 17:Complex Type Derived by Extension from a Simple Type

<xsd:complexType name="InternationalPrice">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 18:Mapping of InternationalPrice to IDL

// IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
typedef fixed<31, 6> fixed_1;

struct InternationalPrice {
 string_nil currency;
 fixed_1 _simpleTypeValue;
};
 124

Complex Types
Deriving a Complex Type from a Complex Type

Overview Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

� Derivation by restriction.

� Derivation by extension.

Allowed inheritance relationships Figure 16 shows the inheritance relationships allowed between complex
types. All of these inheritance relationships are supported by the
WSDL-to-IDL mapping, including cross-inheritance. For example, a
sequence can derive from a choice, a choice from an all, an all from a
choice, and so on.

Figure 1: Allowed Inheritance Relationships for Complex Types

Sequence Choice All

Sequence Choice All
125

CHAPTER 7 | Artix WSDL-to-IDL Mapping
IDL mapping Artix maps schema derived types to an IDL struct (irrespective of whether
the schema derived type is a sequence, a choice, or an all). The generated
IDL struct always contains the following two members:

� The base member�holds an instance of the base type, BaseType. The
name of this member is BaseType_f.

� The extension member�holds an instance of the extension type. The
name of this member obeys the following naming convention (where
DerivedType is the name of the derived type in XML):

♦ sequence extension�the name is DerivedTypeSequenceStruct_f.

♦ choice extension�the name is DerivedTypeChoiceType_f.

♦ all extension�the name is DerivedTypeAllStruct_f.

In addition, if the derived type defines attributes, they are mapped directly
to members of the IDL struct.

WSDL example Example 32 shows the definition of a derived type that is obtained by
extending a sequence type (base type) with a choice type (extension type).

Example 19:XML Example of a Choice Type Derived from a Struct Type

// Base type.
<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

// Derived type.
<xsd:complexType name="DerivedChoice_BaseStruct">
 <xsd:complexContent mixed="false">
 <xsd:extension base="s:SimpleStruct">
 <xsd:choice>
 <xsd:element name="varStringExt"
 type="xsd:string"/>
 <xsd:element name="varFloatExt" type="xsd:float"/>
 </xsd:choice>
 <xsd:attribute name="attrString" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 126

Complex Types
Mapped example The preceding DerivedChoice_BaseStruct schema type maps to an IDL
struct, DerivedChoice_BaseStruct, as shown in Example 33.

</xsd:complexType>

Example 19:XML Example of a Choice Type Derived from a Struct Type

Example 20: IDL Mapping of the DerivedChoice_BaseStruct Type

// IDL

// Base type.
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};

// Extended part of derived type.
union DerivedChoice_BaseStructChoiceType switch(long) {
 case 0:
 string varStringExt;
 case 1:
 float varFloatExt;
};

// Derived type.
struct DerivedChoice_BaseStruct {
 string_nil attrString;

 SimpleStruct SimpleStruct_f;
 DerivedChoice_BaseStructChoiceType
 DerivedChoice_BaseStructChoiceType_f;
};
127

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Arrays

Overview An Artix array is a sequence complex type that satisfies the following special
conditions:

� The sequence complex type schema defines a single element only.

� The element definition has a maxOccurs attribute with a value greater
than 1.

Hence, an Artix array definition has the following general syntax:

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

Mapping arrays to IDL The way Artix maps arrays to IDL depend on the values of the minOccurs
and maxOccurs attributes, as shown in Table 3.

Note: All elements implicitly have minOccurs=1 and maxOccurs=1, unless
specified otherwise.

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>

Table 2: Array to IDL Mapping for Various Occurrence Constraints

Occurrence Constraints IDL Type

minOccurs="N" maxOccurs="N" ArrayName[N]

minOccurs="N" maxOccurs="M"

(with N < M)

sequence<ElementType, M>

maxOccurs="unbounded" sequence<ElementType>
 128

Complex Types
Fixed array The following XSD schema shows the definition of an array, FixedArray,
whose minOccurs and maxOccurs constraints are set to an identical, finite
value.

The preceding FixedArray schema type maps to the following IDL array:

Bounded array The following XSD schema shows the definition of an array, BoundedArray,
whose minOccurs and maxOccurs constraints are finite and unequal.

The preceding BoundedArray schema type maps to the following IDL
bounded sequence type:

Unbounded array The following XSD schema shows the definition of an array,
UnboundedArray, whose maxOccurs constraint is unbounded.

<xsd:complexType name="FixedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="3"
 name="item" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef long FixedArray[3];

<xsd:complexType name="BoundedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="1"
 name="item" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<float, 3> BoundedArray;

<xsd:complexType name="UnboundedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="item" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
129

CHAPTER 7 | Artix WSDL-to-IDL Mapping
The preceding UnboundedArray schema type maps to the following IDL
unbounded sequence type:

Nested arrays The following XSD schema shows the definition of a nested array,
NestedArray, which is defined as an array whose elements are of
UnboundedArray type.

The preceding NestedArray schema type maps to the following IDL
unbounded sequence type:

// IDL
typedef sequence<string> UnboundedArray;

<xsd:complexType name="NestedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="subarray" type="s:UnboundedArray"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<UnboundedArray> NestedArray;
 130

Wildcarding Types
Wildcarding Types

Overview The XML schema wildcarding types enable you to define XML types with
loosely defined characteristics. Table 4 shows how the XSD schema
wildcarding types map to IDL.

xsd:anyType example Consider an XSD sequence, AnyStruct, whose elements are declared to be
of xsd:anyType type, as shown in Example 34.

The preceding AnyStruct schema type maps to the IDL struct type shown in
Example 35.

Table 3: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type

xsd:anyURI string

xsd:anyType any

xsd:any Not supported

Example 21:AnyStruct Schema Type with xsd:anyType Members

<xsd:complexType name="AnyStruct">
 <xsd:sequence>
 <xsd:element name="varAny_1" type="xsd:anyType"/>
 <xsd:element name="varAny_2" type="xsd:anyType"/>
 </xsd:sequence>
</xsd:complexType>

Example 22:Mapping of AnyStruct Type to IDL

struct AnyStruct {
 any varAny_1;
 any varAny_2;
};
131

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Occurrence Constraints

Overview Certain XML schema tags�for example, <element>, <sequence>, <choice>
and <any>�can be declared to occur multiple times using occurrence
constraints. The occurrence constraints are specified by assigning integer
values (or the special value unbounded) to the minOccurs and maxOccurs
attributes.

The WSDL-to-IDL mapping currently supports only element occurrence
constraints (that is, minOccurs and maxOccurs attribute settings within the
<element> tag).

Element occurrence constraints You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema element has
the following form:

Limitations In the current version of Artix, element occurrence constraints can be used
only within the following complex types:

� all complex types,

� sequence complex types.

Element occurrence constraints are not supported within the scope of the
following:

� choice complex types.

Mapping to IDL Given an <xsd:element name="ElemName" ... > element with occurrence
constraints, defined in an <xsd:sequence> or an <xsd:all> tag, Artix defines
an ElemNameArray type in IDL to represent the multiply occurring element.

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound"/>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
�Arrays� on page 128.
 132

Occurrence Constraints
The ElemNameArray type is defined according to the rules in Table 3 on
page 128, which determine the mapped IDL type based on the values of the
minOccurs and maxOccurs attributes.

Example of element occurrence
constraints

The following XSD schema shows the definition of an <xsd:sequence> type,
CompoundArray, which has two multiply occurring member elements.

The preceding CompoundArray schema type maps to the following IDL
struct, CompoundArray, which uses two generated array types, array1Array
and array2Array, to represent the types of its member elements:

<xsd:complexType name="CompoundArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="array1" type="xsd:string"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="array2" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<string> array1Array;
typedef sequence<string> array2Array;

struct CompoundArray {
 array1Array array1;
 array2Array array2;
};
133

CHAPTER 7 | Artix WSDL-to-IDL Mapping
Nillable Types

Overview An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

Nillable syntax To declare an element as nillable, use the following syntax:

<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

Mapping to IDL If a given element of ElementType type is defined with nillable="true" and
ElementType maps to MappedType in IDL, Artix automatically generates a
union IDL type, MappedType_nil, as follows:

Artix uses this MappedType_nil type to represent the type of the nillable
element in IDL (for example, where it appears as the member of a struct and
so on).

Example The following XSD schema shows the definition of an <xsd:sequence> type,
StructWithNillables, which contains several nillable elements:

// IDL
union MappedType_nil switch(boolean) {
 case TRUE:
 MappedType value;
};

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="varAttrString" type="xsd:string"/>
</xsd:complexType>
 134

Nillable Types
The preceding StructWithNillables schema type maps to the IDL struct,
StructWithNillables, which uses generated nillable types, float_nil,
long_nil, string_nil and SimpleStruct_nil, to represent the types of its
member elements:

<xsd:complexType name="StructWithNillables">
 <xsd:sequence>
 <xsd:element name="varFloat" nillable="true"
 type="xsd:float"/>
 <xsd:element name="varInt" nillable="true"
 type="xsd:int"/>
 <xsd:element name="varString" nillable="true"
 type="xsd:string"/>
 <xsd:element name="varStruct" nillable="true"
 type="s:SimpleStruct"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
union float_nil switch(boolean) {
 case TRUE:
 float value;
};
union long_nil switch(boolean) {
 case TRUE:
 long value;
};
union string_nil switch(boolean) {
 case TRUE:
 string value;
};

struct SimpleStruct {
 string_nil varAttrString;
 float varFloat;
 long varInt;
 string varString;
};
union SimpleStruct_nil switch(boolean) {
 case TRUE:
 SimpleStruct value;
};
135

CHAPTER 7 | Artix WSDL-to-IDL Mapping
struct StructWithNillables {
 float_nil varFloat;
 long_nil varInt;
 string_nil varString;
 SimpleStruct_nil varStruct;
};
 136

CHAPTER 8

Security
Interoperability
When a secure SOAP client interoperates with a secure
CORBA server, it is often necessary to transform the SOAP
client�s credentials (for example, a username and password
embedded in the SOAP header or in the HTTP header) into a
form of credentials that the CORBA server understands. This
chapter describes two different scenarios for propagating
credentials between a SOAP client and a CORBA server.

In this chapter This chapter discusses the following topics:

SOAP-to-CORBA Scenario page 138

Single Sign-On SOAP-to-CORBA Scenario page 154
137

CHAPTER 8 | Security Interoperability
SOAP-to-CORBA Scenario

Overview This section describes how to integrate a secure SOAP client with a secure
CORBA server, by interposing a suitably configured SOAP-to-CORBA Artix
router. The router transforms the SOAP client�s WSSE username and
password credentials into CSI/GSSUP credentials for the CORBA server.

In this section This section contains the following subsections:

Overview of the Secure SOAP-to-CORBA Scenario page 139

SOAP Client page 141

SOAP-to-CORBA Router page 145

CORBA Server page 151
 138

SOAP-to-CORBA Scenario
Overview of the Secure SOAP-to-CORBA Scenario

Overview This subsection describes a secure SOAP-to-CORBA scenario, where the
router is configured to integrate SOAP security with CORBA security. The
key functionality provided by the router in this scenario is the ability to
extract SOAP credentials (provided in the form of a WSSE username and
password) and propagate them as CORBA-compatible GSSUP credentials.

SOAP-to-CORBA scenario Figure 17 shows the outline of a scenario where WSSE username and
password credentials, embedded in a SOAP header, are transformed into
GSSUP credentials, embedded in a GIOP service context.

Figure 1: Propagating Credentials Across a SOAP-to-CORBA Router

Artix Security Service

SOAP Client

SOAP Header

3

CSI auth layer

u/p

u/p

SAML

4

1

2

SOAP-to-CORBA Router CORBA Server

u/p/d

u/p

u/p/d
139

CHAPTER 8 | Security Interoperability
Steps The steps for propagating credentials across the SOAP-to-CORBA router, as
shown in Figure 17, can be described as follows:

Demonstration code Demonstration code for this SOAP-to-CORBA scenario is available from the
following location:

ArtixInstallDir/artix/Version/demos/security/secure_soap_corba

Enabling GSSUP propagation To enable GSSUP propagation (where received username and password
credentials are inserted into the outgoing GSSUP credentials by the router),
set the following router configuration variable to true:

policies:bindings:corba:gssup_propagation = "true";

Stage Description

1 The client initializes the WSSE username and password
credentials, u/p, and sends these credentials, embedded in a
WSSE SOAP header, across to the router.

2 The router extracts the received WSSE username and password
credentials, u/p, and transfers them into GSSUP credentials,
consisting of username, password and domain, u/p/d. The
username and password are copied straight into the GSSUP
credentials. The domain is set to a blank string (which acts as
a wildcard that matches any domain).

3 The GSSUP credentials, u/p/d, are sent on to the CORBA
server using the CSI authentication over transport mechanism.

4 The CORBA server authenticates the received GSSUP
credentials, u/p/d, by calling out to the Artix security service
(this step is performed automatically by the gsp plug-in).
 140

SOAP-to-CORBA Scenario
SOAP Client

Overview When making an invocation, the SOAP client sends username and password
credentials in a SOAP header (formatted according to the WSSE standard).
This section describes how to program and configure a SOAP client to send
WSSE username and password credentials.

Choice of credentials In this example, the SOAP client is programmed to send
username/password credentials in the SOAP header. It is also possible,
however, to send username/password credentials in the HTTP header, using
the HTTP Basic Authentication mechanism. The propagation mechanism in
the router supports either type of credentials.

Setting the WSSE username and
password

Example 36 shows how you can program a SOAP client to send username
and password credentials using the WSSE standard.

Example 1: SOAP Client Setting WSSE Username/Password Credentials

// C++
...
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>
...
#include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD

using namespace HW;
using namespace IT_Bus;
using namespace IT_ContextAttributes;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv);

1 Bus* bus = Bus::create_reference();
 ContextRegistry* registry = bus->get_context_registry();
141

CHAPTER 8 | Security Interoperability
The preceding client code can be explained as follows:

1. The following four lines contain the standard steps for obtaining a
pointer to the request context container object, request_contexts. The
request context container object contains a collection of context
objects, which contain various settings that can influence the next
invocation request.

For more details about Artix contexts, see the contexts chapter from
Developing Artix Applications in C++.

2. Obtain a pointer to the BusSecurity context object from the request
context container. The BusSecurity context is selected by passing the
QName constant, IT_ContextAttributes::SECURITY_SERVER_CONTEXT,

 ContextCurrent& current = registry->get_current();
 ContextContainer* request_contexts =
 current.request_contexts();

 HelloWorldClient client;
 BusSecurity* security_attr;
 String* username;
 String* token;
 String string_out;

2 AnyType* output_attr = request_contexts->get_context(
 SECURITY_SERVER_CONTEXT,
 true
);

3 security_attr = dynamic_cast<BusSecurity*> (output_attr);
4 security_attr->setWSSEUsernameToken("user_test");

 security_attr->setWSSEPasswordToken("user_password");
5 client.sayHi(string_out);

 ...
 }
 catch(IT_Bus::Exception& e)
 {
 ... // Handle exception (not shown)
 return -1;
 }
 return 0;
}

Example 1: SOAP Client Setting WSSE Username/Password Credentials
 142

SOAP-to-CORBA Scenario
as the first parameter to get_context(). The second parameter to
get_context(), with the boolean value true, indicates that a new
BusSecurity instance should be created, if one does not already exist.

3. Cast the return value from get_context() to the
IT_ContextAttributes::BusSecurity type.

4. Call the setWSSEUsernameToken() and setWSSEPasswordToken()
functions to specify the credentials to send with the next invocation. In
this example the username and password are sent in the SOAP header
and formatted according to the WSSE standard.

5. Invoke the remote WSDL operation, sayHi. The specified username
and password are propagated in the SOAP header along with this
invocation request.

Client configuration Example 37 shows the configuration of the SOAP client in this scenario,
which uses the secure_artix.secure_soap_corba.client.gssup
configuration scope.

Example 2: SOAP Client Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:58482,it_iiops:1.2@localhost:58
482/IT_SecurityService";

 client
 {
 # Secure HTTPS client-side configuration

1 policies:https:trusted_ca_list_policy =
"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

2 policies:https:client_secure_invocation_policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];

 policies:https:client_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
143

CHAPTER 8 | Security Interoperability
The preceding client configuration can be explained as follows:

1. The trusted CA list policy specifies a listed of trusted CA certificates.
During the SSL handshake, the client checks that the server�s
certificate is signed by one of the CA certificates from this list.

2. The client�s HTTPS security policies require that connections are
secure and the server identifies itself by sending an X.509 certificate.

3. Because this client supports mutual SSL authentication, the principal
sponsor settings are used to associate an X.509 certificate with the
client application.

4. The https plug-in must appear explicitly in the orb_plugins list in
order to support the secure HTTPS protocol. Other required plug-ins
(for example, soap and at_http) are loaded dynamically, based on the
settings that appear in the client�s WSDL contract.

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

 ...
 gssup
 {

4 orb_plugins = ["xmlfile_log_stream", "https"];
 };
 };
};

Example 2: SOAP Client Configuration
 144

SOAP-to-CORBA Scenario
SOAP-to-CORBA Router

Overview The SOAP-to-CORBA router receives incoming SOAP/HTTP requests,
translates them into IIOP requests and then forwards them on to a CORBA
server. In addition to translating requests, the router is also configured to
transfer the incoming username/password credentials (embedded in a SOAP
header) into outgoing CSI credentials (embedded in a GIOP service context).
Hence, the SOAP-to-CORBA router enables interoperation of SOAP/HTTP
security with CORBA security.

Transferring credentials from
SOAP to CORBA

The transferal of credentials from SOAP to CORBA obeys the following
semantics:

� Extracting username/password credentials�the router can extract
either WSSE username/password from the SOAP header or
username/password from the HTTP header. If username/password
credentials are sent in both headers, you can influence the priority by
setting the plugins:asp:security_level configuration variable to one
of the following values:

♦ REQUEST_LEVEL�give priority to the WSSE username and
password from the SOAP header.

♦ MESSAGE_LEVEL�give priority to the username and password from
the HTTP header.

� The username and password credentials are inserted into GSSUP
credentials, which are transmitted using the CSI authentication over
transport mechanism.

� The domain name in the GSSUP credentials is set to an empty string
(which acts as a wildcard that matches any domain).

� The router does not attempt to authenticate the GSSUP credentials.
Hence, the router does not call the Artix security service.

� The GSSUP credentials are used for a single invocation only.

Note: Internally, the GSSUP credentials are set using the
IT_CSI::CSICurrent3::set_effective_own_gssup_credentials_info()
function.
145

CHAPTER 8 | Security Interoperability
Router WSDL contract Example 38 shows the WSDL contract for the SOAP-to-CORBA router.

Example 3: SOAP-to-CORBA Router WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 ...>
 <types>
 ...
 </types>
 ...
 <portType name="HelloWorldPortType">
 ...
 </portType>

 <binding name="HelloWorldPortBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

 <binding name="CORBAHelloWorldBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

1 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

2 <soap:address location="https://localhost:8085"/>
 </port>
 </service>

3 <service name="CORBAHelloWorldService">
 <port binding="tns:CORBAHelloWorldBinding"
 name="CORBAHelloWorldPort">

4 <corba:address
 location="file:../../corba/server/HelloWorld.ior"/>
 <corba:policy/>
 </port>
 </service>
 146

SOAP-to-CORBA Scenario
The preceding router WSDL contract can be explained as follows:

1. The HellowWorldService specifies a SOAP/HTTP endpoint for the
HelloWorldPortType port type.

2. The SOAP/HTTP endpoint has the address, https://localhost:8085
(you might want to change this to specify the actual name of the host
where the router is running).

3. The CORBAHelloWorldService specifies a CORBA endpoint for the
HelloWorldPortType port type.

4. The location of the CORBA endpoint is given by a stringified
interoperable object reference (IOR), which is stored in the file,
HelloWorld.ior. The CORBA server is programmed to create this file
as it starts up.

5. The route element sets up a route as follows:

♦ The source endpoint (which receives incoming requests) is the
SOAP/HTTP endpoint, HelloWorldPort.

♦ The destination endpoint (to which the router sends outgoing
requests) is the CORBA endpoint, CORBAHelloWorldPort.

5 <ns2:route name="r1">
 <ns2:source port="HelloWorldPort"
 service="tns:HelloWorldService"/>
 <ns2:destination port="CORBAHelloWorldPort"
 service="tns:CORBAHelloWorldService"/>
 </ns2:route>
</definitions>

Example 3: SOAP-to-CORBA Router WSDL Contract

Note: The secure HTTPS protocol is used here (as indicated by the
https prefix in the URL).

Note: A more sophisticated alternative for specifying the CORBA
endpoint would be to use the CORBA Naming Service.
147

CHAPTER 8 | Security Interoperability
Router configuration Example 39 shows the configuration of the router in this scenario, which
uses the secure_artix.secure_soap_corba.switch.gssup configuration
scope.

Example 4: SOAP-to-CORBA Router Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:58482,it_iiops:1.2@localhost:58
482/IT_SecurityService";

 switch
 {
 ###################################
 # required for token propagation
 plugins:gsp:accept_asserted_authorization_info =

"false";

 plugins:gsp:assert_authorization_info = "false";

 # iiop_tls config
1 policies:iiop_tls:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

2 policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=router_cert.p12","password_file=router_cert.pwf"];

 # csi auth config
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";
 148

SOAP-to-CORBA Scenario
4 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 #binding/plugin list
5 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "routing", "gsp", "https"];
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "CSI+OTS+GIOP+IIOP", "CSI+GIOP+IIOP",
"CSI+OTS+GIOP+IIOP_TLS", "CSI+GIOP+IIOP_TLS","OTS+GIOP+IIOP",
"GIOP+IIOP", "GIOP+IIOP_TLS"];

6 plugins:routing:wsdl_url="../../etc/router.wsdl";

 # Secure HTTPS server-side settings
 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

 policies:https:target_secure_invocation_policy:requires
= ["Confidentiality", "EstablishTrustInClient"];

 policies:https:target_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 gssup
 {
 ###
 # flags to control credential propagation

7 policies:bindings:corba:token_propagation="false";
8 policies:bindings:corba:gssup_propagation="true";

 ##
 };
 };
 };
};

Example 4: SOAP-to-CORBA Router Configuration
149

CHAPTER 8 | Security Interoperability
The preceding router configuration can be explained as follows:

1. This trusted CA list policy specifies the CA certificates that are used to
check certificates received from the CORBA server during the SSL/TLS
handshake.

2. This policy specifies that the router can only open secure IIOP/TLS
connections to CORBA servers.

3. The principal sponsor settings associate an X.509 certificate with the
Artix router.

4. CSI provides two different mechanisms for transporting credentials,
both of which are supported by the router:

♦ Authorization over transport�transfers credentials in the form of
a username, password and domain name. This is the mechanism
used in the current scenario.

♦ Identity assertion�transfers credentials in the form of an
asserted identity. This is the mechanism that is used in
combination with single sign-on�see �Single Sign-On
SOAP-to-CORBA Scenario� on page 154.

5. The https plug-in must be included in the orb_plugins list to enable
the secure HTTPS protocol. The iiop_tls plug-in enables secure
IIOP/TLS communication.

6. This line specifies the location of the router WSDL contract.

7. The token propagation option is disabled in this scenario.

8. The GSSUP propagation option is enabled in this scenario. This is the
key setting for enabling security interoperability. The CORBA binding
extracts the username and password credentials from incoming
SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credentials object, to be transmitted using CSI authentication over
transport. The domain name in the outgoing GSSUP credentials is set
to a blank string.

Note: If you intend to use secure IIOP/TLS communications, it is
best to remove the iiop plug-in from the orb_plugins list. This helps
to safeguard against accidental mis-configuration.
 150

SOAP-to-CORBA Scenario
CORBA Server

Overview In this scenario, the CORBA server must be configured to accept GSSUP
credentials through the CSI authentication over transport mechanism. This
subsection describes how to configure the CORBA server to authenticate the
received CSI credentials.

Server configuration Example 40 shows the configuration of the CORBA server in this scenario,
which uses the secure_artix.secure_soap_corba.server.gssup
configuration scope.

Example 5: CORBA Server Supporting GSSUP Credentials

secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:58482,it_iiops:1.2@localhost:58
482/IT_SecurityService";

 server
 {

 # binding/plugin list
 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop_tls", "gsp"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 # disable authorization
1 plugins:gsp:enable_authorization="false";

2 # disable client side caching
 # plugins:gsp:authentication_cache_size = "-1";
 # plugins:gsp:authentication_cache_timeout = "0";

 # csi auth config
151

CHAPTER 8 | Security Interoperability
 policies:csi:auth_over_transport:authentication_service
= "com.iona.corba.security.csi.AuthenticationService";

3 policies:csi:auth_over_transport:server_domain_name =
"PCGROUP";

 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

 # iiop_tls config
policies:iiop_tls:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

4 policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

5 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=server_cert.p12","password_file=server_cert.pwf"];

 # Configuration required for Token propagation.
6 plugins:gsp:accept_asserted_authorization_info =

"false";

 # Configuration required for GSSUP propagation.
7 policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];
 policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];
 };
 };
};

Example 5: CORBA Server Supporting GSSUP Credentials
 152

SOAP-to-CORBA Scenario
The preceding server configuration can be described as follows:

1. In this example, authorization is disabled for simplicity. You can enable
authorization, however, if your application requires it.

2. You might want to disable client side caching for testing purposes (this
would force the server to contact the security service with every
invocation). Normally, however, you should leave these lines
commented out, as shown here. Client caching improves performance
considerably.

3. If needed for authorization purposes, you can set the domain name
here.

4. These settings for the IIOP/TLS target secure invocation policy ensure
that the server accepts only secure connections. The server also
requires the EstablishTrustInClient association option, which
implies that clients must provide an X.509 certificate during the
SSL/TLS handshake.

5. The principal sponsor settings associate an X.509 certificate (in
PKCS#12 format) with the CORBA server.

6. If the server receives credentials in the form of an SSO token, this
setting ensures that the server re-authenticates the token, instead of
relying on SAML data propagated with the request.

7. These CSI authorization over transport policies require clients to
provide GSSUP credentials, which contain a username, password and
domain name. The gsp plug-in is then responsible for contacting the
Artix security service to authenticate these credentials.
153

CHAPTER 8 | Security Interoperability
Single Sign-On SOAP-to-CORBA Scenario

Overview This section describes how to integrate a single sign-on SOAP client with a
secure CORBA server, by interposing a suitably configured SOAP-to-CORBA
Artix router.

In this section This section contains the following subsections:

Overview of the Secure SSO SOAP-to-CORBA Scenario page 155

SSO SOAP Client page 157

SSO SOAP-to-CORBA Router page 159
 154

Single Sign-On SOAP-to-CORBA Scenario
Overview of the Secure SSO SOAP-to-CORBA Scenario

Overview This subsection describes a variation of the secure SOAP-to-CORBA
scenario, where the client is configured to use single sign-on (SSO). In this
scenario, the client authenticates the username and password with the login
service prior to sending an invocation to the router. Instead of sending
username and password credentials to the router, the client sends the SSO
token it received from the login service. The router can then be configured to
propagate the SSO token to the remote CORBA server.

SSO SOAP-to-CORBA scenario Figure 18 shows the outline of a scenario where an SSO token, embedded
in a SOAP header, is transformed into a CSI identity token, embedded in a
GIOP header (GIOP service context).

Figure 2: Propagating an SSO Token Across a SOAP-to-CORBA Router

Artix Security Service

SOAP Client

SOAP Header

4

1

CSI identity layer

Login
Service

u/p

u/p

t

t

t SAMLt

5

2

3

SOAP-to-CORBA Router CORBA Server
155

CHAPTER 8 | Security Interoperability
Steps The steps for propagating credentials across the SOAP-to-CORBA router, as
shown in Figure 17, can be described as follows:

Demonstration code Demonstration code for the SSO SOAP-to-CORBA scenario is available from
the following location:

ArtixInstallDir/artix/Version/demos/security/secure_soap_corba

Enabling token propagation To enable SSO token propagation (where received SSO tokens are inserted
into the outgoing CSI identity token by the router), set the following router
configuration variable to true:

policies:bindings:corba:token_propagation = "true";

Stage Description

1 When single sign-on is enabled, the client calls out to the login
service, passing in the client�s WSSE credentials, u/p, in order
to obtain an SSO token.

2 When the client invokes an operation on the router, the SSO
token, t, is sent as the password in the WSSE credentials.

3 The router extracts the SSO token, t, from the received WSSE
credentials and then inserts the SSO token into the outgoing
CSI identity token.

Note: The router should not attempt to authenticate the
received SSO token. In the current example, authentication
does not occur, because the router does not load the
artix_security plug-in.

4 The SSO token, t, is sent on to the CORBA server using the CSI
identity assertion mechanism.

5 The CORBA server re-authenticates the client�s SSO token, t,
by calling out to the Artix security service. The return value
contains the SAML role and realm data for the token.
 156

Single Sign-On SOAP-to-CORBA Scenario
SSO SOAP Client

Overview This subsection describes how to configure a SOAP client to use single
sign-on. The initial client credentials are a WSSE username and password
(programmed as shown in �Setting the WSSE username and password� on
page 141). After contacting the login service, however, the client uses an
SSO token as its credentials for subsequent invocations.

SSO client configuration Example 41 shows the configuration of the single sign-on SOAP client,
which uses the secure_artix.secure_soap_corba.client.token
configuration scope.

Example 6: Single Sign-On SOAP Client Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:58482,it_iiops:1.2@localhost:58
482/IT_SecurityService";

 client
 {
 # Secure HTTPS client-side configuration
 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

 policies:https:client_secure_invocation_policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];

 policies:https:client_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];
157

CHAPTER 8 | Security Interoperability
The preceding configuration can be explained as follows:

1. To enable the single sign-on functionality in the client, add the
login_client plug-in to the list of ORB plug-ins.

2. It is also necessary to add login_client to the Artix client request
interceptor list (the single sign-on functionality is implemented by a
client request interceptor).

3. The bus:initial_contract:url:login_service variable specifies the
location of the login service�s WSDL contract. This contract contains
the address of the login service endpoint.

4. This line identifies the dynamic library that contains the login_client
plug-in.

 ...
 token
 {

1 orb_plugins = ["xmlfile_log_stream",
"login_client", "https"];

2 binding:artix:client_request_interceptor_list=
"login_client";

3 bus:initial_contract:url:login_service =
"../../wsdl/login_service.wsdl";

4 plugins:login_client:shlib_name =
"it_login_client";

 };
 };
};

Example 6: Single Sign-On SOAP Client Configuration
 158

Single Sign-On SOAP-to-CORBA Scenario
SSO SOAP-to-CORBA Router

Overview The single sign-on SOAP-to-CORBA router is configured similarly to the
normal SOAP-to-CORBA router (�SOAP-to-CORBA Router� on page 145),
except that the CORBA binding is configured to enable token propagation
instead of GSSUP propagation.

Transferring credentials from
SOAP to CORBA

The transferal of credentials from SOAP to CORBA in the single sign-on
scenario obeys the following semantics:

� The SSO token credentials are inserted into a CSI identity token, which
is transmitted using the CSI identity assertion mechanism.

� The router does not attempt to authenticate the SSO token. Hence, the
router does not call the Artix security service.

� The SSO token is used for a single invocation only.

SSO router configuration Example 42 shows the configuration of the single sign-on router, which uses
the secure_artix.secure_soap_corba.switch.token configuration scope.

Note: Internally, the CSI identity token is set using the
IT_CSI::CSICurrent2::set_received_itt_principal_name_identity_to
ken() function.

Example 7: Single Sign-On SOAP-to-CORBA Router Configuration

Artix Configuration File
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:58482,it_iiops:1.2@localhost:58
482/IT_SecurityService";

 switch
 {
 plugins:gsp:assert_authorization_info = "false";
159

CHAPTER 8 | Security Interoperability
The preceding router configuration can be explained as follows:

1. The rest of the secure_artix.secure_soap_corba.switch scope is the
same as the scenario without single sign-on. See �SOAP-to-CORBA
Router� on page 145 for details.

2. This line is of particular importance for the single sign-on scenario. It
enables the CSI identity assertion mechanism, which is needed to
transmit the SSO token to the CORBA server.

3. The token propagation option is enabled in this scenario. This is the
key setting for enabling security interoperability. The CORBA binding
extracts the SSO token from incoming SOAP/HTTP invocations and
inserts the token into an outgoing IIOP request, to be transmitted using
CSI identity assertion.

4. The GSSUP propagation option is disabled in this scenario.

1 # Common configuration
 ...

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 ...
 token
 {

3 policies:bindings:corba:token_propagation="true";
4 policies:bindings:corba:gssup_propagation="false";

 };
 ...
 };
 };
};

Example 7: Single Sign-On SOAP-to-CORBA Router Configuration
 160

CHAPTER 9

Monitoring GIOP
Message Content
Artix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

In this chapter This chapter contains the following sections:

Introduction to GIOP Snoop page 162

Configuring GIOP Snoop page 163

GIOP Snoop Output page 166
161

CHAPTER 9 | Monitoring GIOP Message Content
Introduction to GIOP Snoop

Overview GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport. The primary purposes of GIOP Snoop are to provide a
protocol level monitor and debug aid.

GIOP plug-ins The primary protocol for inter-ORB communications is the General
Inter-ORB Protocol (GIOP) as defined the CORBA Specification.
 162

Configuring GIOP Snoop
Configuring GIOP Snoop

Overview GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following
configuration topics:

� Loading the GIOP Snoop plug-in.

� Client-side snooping.

� Server-side snooping.

� GIOP Snoop verbosity levels.

� Directing output to a file.

Loading the GIOP Snoop plug-in For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix orb_plugins list (... denotes existing configured
settings):

In addition, the giop_snoop plug-in must be located and loaded using the
following settings:

orb_plugins = [..., "giop_snoop", ...];

Artix Configuration File
plugins:giop_snoop:shlib_name = "it_giop_snoop";
163

CHAPTER 9 | Monitoring GIOP Message Content
Client-side snooping To enable client-side snooping, include the GIOP_SNOOP factory in the client
binding list. In this example, GIOP Snoop is enabled for IIOP-specific
bindings:

Server-side snooping To enable server-side snooping, include the GIOP_SNOOP factory in the server
binding list.

GIOP Snoop verbosity levels You can use the following variable to control the GIOP Snoop verbosity level:

The verbosity levels are as follows:

These verbosity levels are explained with examples in �GIOP Snoop Output�
on page 166.

binding:client_binding_list =
 [..., "GIOP+GIOP_SNOOP+IIOP", ...];

plugins:giop:message_server_binding_list =
 [..., "GIOP_SNOOP+GIOP", ...];

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH
 164

Configuring GIOP Snoop
Directing output to a file By default, output is directed to standard error (stderr). However, you can
specify an output file using the following configuration variable:

A month/day/year time stamp is included in the output filename with the
following general format:

As a result, for a long running application, each day results in the creation of
a new log file. To enable administrators to control the size and content of
output files GIOP Snoop does not hold output files open. Instead, it opens
and then closes the file for each snoop message trace. This setting is
enabled with:

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";
165

CHAPTER 9 | Monitoring GIOP Message Content

0

GIOP Snoop Output

Overview The output shown in this section uses a simple example that shows
client-side output for a single binding and operation invocation. The client
establishes a client-side binding that involves a message interceptor chain
consisting of IIOP, GIOP Snoop, and GIOP. The client then connects to the
server and first sends a [LocateRequest] to the server to test if the target
object is reachable. When confirmed, a two-way invocation [Request] is
sent, and the server processes the request. When complete, the server
sends a [Reply] message back to the client.

Output detail varies depending on the configured verbosity level. With level
1 (LOW), only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples.

LOW verbosity client-side
snooping

An example of LOW verbosity output is as follows:

This example shows an initial conversation from the client-side perspective.
The client transmits a [LocateRequest] message to which it receives a
[LocateReply] indicates that the server supports the target object. It then
makes an invocation on the operation null_op.

The Conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each
connection is given a logical identifier. The first incoming and outgoing GIOP
message to pass through each connection are indicated by (first for
binding).

[Conn:1] Out:(first for binding) [LocateRequest] MsgLen: 39 ReqId:
[Conn:1] In: (first for binding) [LocateReply] MsgLen: 8 ReqId: 0
 Locate status: OBJECT_HERE
[Conn:1] Out: [Request] MsgLen: 60 ReqId: 1 (two-way)
 Operation (len 8) 'null_op'
[Conn:1] In: [Reply] MsgLen: 12 ReqId: 1
 Reply status (0) NO_EXCEPTION
 166

GIOP Snoop Output
The direction of the message is given (Out for outgoing, In for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (ReqId), which associates [LocateRequest] messages
with their corresponding [LocateReply] messages. The (two-way) indicates
the operation is two way and a response (Reply) is expected. String lengths
such as len 8 specified for Operation includes the trailing null.

MEDIUM verbosity client-side
snooping

An example of MEDIUM verbosity output is as follows:

For MEDIUM verbosity output, extra information is provided. The addition of
time stamps (in hh:mm:ss) precedes each snoop line. The byte order of the
data is indicated (Endian) along with more detailed header information such
as the target address shown in this example. The target address is a GIOP
1.2 addition in place of the previous object key data.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'

16:24:39 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE

16:24:39 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'
 Operation (len 8) 'null_op'

16:24:39 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
167

CHAPTER 9 | Monitoring GIOP Message Content
HIGH verbosity client side
snooping

The following is an example of HIGH verbosity output:

This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to
show the exact on-the-wire header values passing through the interceptor.
Messages are also separated showing inter-message boundaries.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][03][00][00][00][27]
 Msg Hdr (len 39): [00][00][00][00][00][00][00][00][00][00][00][1b][3a][3e]
[02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6][08][00][00][00]
[00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][04][00][00][00][08]
 Msg Hdr (len 8): [00][00][00][00][00][00][00][01]
[---- end of message ----]

16:31:37 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 Operation (len 8) 'null_op'
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][00][00][00][00][3c]
 Msg Hdr (len 60): [00][00][00][01][03][00][00][00][00][00][00][00][00][00]
[00][1b][3a][3e][02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6]
[08][00][00][00][00][00][00][00][00][00][00][00][00][08][6e][75][6c][6c][5f][6f]
[70][00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
 Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
[---- end of message ----]
 168

GIOP Snoop Output
VERY HIGH verbosity client side
snooping

This is the highest verbosity level available. Displayed data includes HIGH
level output and in addition the message body content is displayed. Because
the plug-in does not have access to IDL interface definitions, it does not
know the data types contained in the body (parameter values, return values
and so on) and simply provides ASCII-hex output. Body content display is
truncated to a maximum of 4 KB with no output given for an empty body.
Body content output follows the header output, for example:

...
GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
Msg Body (len <x>): <content>
...
169

CHAPTER 9 | Monitoring GIOP Message Content
 170

APPENDIX 10

Configuring a
CORBA Binding
CORBA bindings are described using a variety of IONA-specific
WSDL elements within the WSDL binding element. In most
cases, the CORBA binding description is generated
automatically using the wsdltocorba utility. Usually, it is
unnecessary to modify generated CORBA bindings.
171

APPENDIX 10 | Configuring a CORBA Binding
Namespace The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace
http://schemas.iona.com/bindings/corba. To use the CORBA extensions
you will need to include the following in the <definitions> tag of your
contract:

corba:binding element The corba:binding element indicates that the binding is a CORBA binding.
This element has one required attribute: repositoryID. repositoryID
specifies the full type ID of the interface. The type ID is embedded in the
object�s IOR and therefore must conform to the IDs that are generated from
an IDL compiler. These are of the form:

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation element The corba:operation element is an IONA-specific element of <operation>
and describes the parts of the operation�s messages. <corba:operation>
takes a single attribute, name, which duplicates the name given in
<operation>.

corba:param element The corba:param element is a member of <corba:operation>. Each <part>
of the input and output messages specified in the logical operation, except
for the part representing the return value of the operation, must have a

xmlns:corba="http://schemas.iona.com/bindings/corba"

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
 172

corresponding <corba:param>. The parameter order defined in the binding
must match the order specified in the IDL definition of the operation.
<corba:param> has the following required attributes:

corba:return element The corba:return element is a member of <corba:operation> and
specifies the return type, if any, of the operation. It only has two attributes:

corba:raises element The corba:raises element is a member of <corba:operation> and
describes any exceptions the operation can raise. The exceptions are defined
as fault messages in the logical definition of the operation. Each fault
message must have a corresponding corba:raises element. The
corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

In addition to operations specified in <corba:operation> tags, within the
<operation> block, each <operation> in the binding must also specify
empty input and output elements as required by the WSDL specification.
The CORBA binding specification, however, does not use them.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
173

APPENDIX 10 | Configuring a CORBA Binding
For each fault message defined in the logical description of the operation, a
corresponding fault element must be provided in the <operation>, as
required by the WSDL specification. The name attribute of the fault element
specifies the name of the schema type representing the data passed in the
fault message.

Example For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, shown in
Example 43.

Example 1: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>
 174

The CORBA binding for personalInfoLookup is shown in Example 44.

Example 2: personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
175

APPENDIX 10 | Configuring a CORBA Binding
 176

APPENDIX 11

Configuring a
CORBA Port
CORBA ports are described using the IONA-specific WSDL
elements, corba:address and corba:policy, within the WSDL
port element, to specify how a CORBA object is exposed.
177

CHAPTER 11 | Configuring a CORBA Port
Namespace Example 45 shows the namespace entries you need to add to the
definitions element of your contract to use the CORBA extensions.

corba:address element The IOR of the CORBA object is specified using the corba:address element.
You have four options for specifying IORs in Artix contracts:

� Specify the objects IOR directly, by entering the object�s IOR directly
into the contract using the stringified IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

� Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

Example 1: Artix CORBA Extension Namespaces

<definitions
 ...
 xmlns:iiop="http://schemas.iona.com/bindings/corba"
 ... >

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes (///).

It is usually simplest to specify the file name using an absolute path. If you
specify the file name using a relative path, the location is taken to be
relative to the directory the Artix process is started in, not relative to the
containing WSDL file.

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
 178

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

corba:policy element Using the optional corba:policy element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

� POA Name.

� Persistence.

� ID Assignment.

Setting these policies lets you exploit some of the enterprise features of
IONA�s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

By default, an Artix POA is created with the default name,
{ServiceNamespace}ServiceLocalPart#PortName. For example, if a CORBA
port is defined by the following WSDL fragment:

The unique POA name automatically generated for this CORBA port is
{http://iona.com/mycorbaservice}CorbaService#CorbaPort.

<definitions
 ...
 xmlns:corbatm="http://iona.com/mycorbaservice" >

 <service name="CorbaService">
 <port binding="corbatm:CorbaBinding" name="CorbaPort">
 <corba:address
 location="file:../../hello_world_service.ior"/>
 </port>
 </service>
 ...
179

CHAPTER 11 | Configuring a CORBA Port
Alternatively, you can specify the POA name explicitly by setting the
poaname attribute, as follows:

When setting a POA name using the poaname attribute, it is your
responsibility to ensure that the POA name is unique. That is, the POA
name should not be shared between CORBA ports within a service or across
CORBA services.

Persistence

By default Artix POA�s have a persistence policy of false. To set the POA�s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 46:

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

<corba:policy serviceid="POAid" />

Example 2: CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior" />
 <corba:policy persistent="true" />
 <corba:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
 180

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior (relative to the directory in which the Artix process is started),
and creates a persistent POA with an object id of personalInfo to connect
the CORBA application.
181

CHAPTER 11 | Configuring a CORBA Port
 182

APPENDIX 12

CORBA Utilities in
Artix
Use the idltowsdl utility to convert OMG IDL to WSDL and use
the wsdltocorba utility to generate CORBA bindings and to
convert WSDL to OMG IDL.

In this chapter This chapter discusses the following topics:

Generating a CORBA Binding page 184

Converting WSDL to OMG IDL page 185

Converting OMG IDL to WSDL page 186
183

APPENDIX 12 | CORBA Utilities in Artix
Generating a CORBA Binding

Overview The wsdltocorba utility can perform two distinct tasks:

� Generate a CORBA binding.

� Convert WSDL to OMG IDL.

This section discusses how to use the wsdltocorba utility to add a CORBA
binding to an existing WSDL contract.

WSDLTOCORBA

Synopsis wsdltocorba -corba -i port-type [-d directory] [-o file]
[-props namespace] [-?] [-v] [-verbose] wsdl_file

Options The command has the following options:

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i port-type Specifies the name of the port type being mapped to a
CORBA binding.

-d directory Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-props namespace Specifies the target namespace for the
corba:typeMapping element (an element that defines the
WSDL-to-IDL mappings for complex types).

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.
 184

Converting WSDL to OMG IDL
Converting WSDL to OMG IDL

Overview The wsdltocorba utility can perform two distinct tasks:

� Generate a CORBA binding.

� Convert WSDL to OMG IDL.

This section discusses how to use the wsdltocorba utility to convert a
WSDL contract into an OMG IDL file.

WSDLTOCORBA

Synopsis wsdltocorba -idl -b binding [-d directory] [-o file] [-?] [-v]
[-verbose] wsdl_file

Options The command has the following options:

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-d directory Specifies the directory into which the new IDL file is
written.

-o file Specifies the name of the generated IDL file. Defaults to
wsdl_file.idl.

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.
185

APPENDIX 12 | CORBA Utilities in Artix
Converting OMG IDL to WSDL

Overview IONA�s IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The default behavior of the tool is to
create WSDL file that uses wrapped doc/literal style messages. Wrapped
doc/literal style messages have a single part, defined using an element that
wraps all of the elements in the message.

IDLTOWSDL

Synopsis idltowsdl [-I idl-include-directory]* [-3] [-o output-directory
] [-a corba-address] [-b] [-f corba-address-file] [-n
schema-import-file] [-s idl-sequence-type] [-w target-namespace
] [-x schema-namespace] [-t type-map-namespace] [-useTypes]
[-unwrap] [-r reference-schema-file] [-L logical-wsdl-file]
[-P physical-wsdl-file] [-T schema-file-name] [-fasttrack] [
-interface interface-name] [-soapaddr soap-port-address] [
-qualified] [-inline] [-e xml-encoding-type] [-?] [-v] [
-verbose] IDLFile

Options The command has the following options:

-I idl-include-directorySpecify a directory to be included in the search
path for the IDL preprocessor.

-3 Select parsing mode for compatibility with
legacy Orbix 3 IDL files.

-o output-directory Specifies the directory into which the WSDL file
is written.

-a corba-address Specifies an absolute address through which the
object reference may be accessed. The
corba-address may be a relative or absolute
path to a file, or a corbaname URL

-b Specifies that bounded strings are to be treated
as unbounded. This eliminates the generation of
the special types for the bounded string.
 186

Converting OMG IDL to WSDL
-f corba-address-file Specifies a file containing a string representation
of an object reference. The object reference is
placed in the corba:address element in the
<port> definition of the generated service. The
corba-address-file must exist when you run
the idltowsdl utility.

-n schema-import-file Specifies that a schema file,
schema-import-file, is to be included in the
generated contract by an import statement. This
option cannot be used with the -T option.

-s idl-sequence-type Specifies the XML schema type used to map the
IDL sequence<octet> type. Valid values are
base64Binary or hexBinary. The default is
base64Binary.

-w target-namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/IDLFile.

-x schema-namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/IDLFile.

-t type-map-namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/IDL
File.

-useTypes Generate rpc style messages. rpc style messages
have parts defined using XMLSchema types
instead of XML elements.

-unwrap Generate unwrapped doc/literal messages.
Unwrapped messages have parts that represent
individual elements. Unlike wrapped messages,
unwrapped messages can have multiple parts
and are not allowed by the WS-I.

-r reference-schema-fileSpecify the pathname of the schema file
imported to define the Reference type. If the -r
option is not given, the idl compiler gets the
schema file pathname from
ReferenceSchemaFile setting in etc/idl.cfg.
187

APPENDIX 12 | CORBA Utilities in Artix
-L logical-wsdl-file Specifies that the logical portion of the
generated WSDL specification into is written to
logical-wsdl-file. The logical-wsdl-file is
then imported into the default generated file.

-P physical-wsdl-filen Specifies that the physical portion of the
generated WSDL specification into is written to
physical-wsdl-file. The physical-wsdl-file
is then imported into the default generated file.

-T schema-file-name Specifies that the schema types are to be
generated into a separate file. The schema file is
included in the generated contract using an
import statement. This option cannot be used
with the -n option.

-fasttrack Provides a fast way of generating a router
contract for a router that converts incoming
SOAP/HTTP messages into CORBA invocations.

The -interface option must always be specified
when -fasttrack is used.

-interface
interface-name

Used in combination with the -fasttrack
option to specify the IDL interface that is
exposed through the generated router contract.

-soapaddr
soap-port-address

Used in combination with the -fasttrack
option to specify the address of the generated
SOAP port. The address is specified in the
format Host:Port.

-qualified Generate the schemas in the WSDL contract
with the elementFormDefault and
attributeFormDefault attributes set to
qualified. This implies that elements and
attributes appearing in instance documents
must be explicitly qualified by a namespace.

-inline Normally, when you specify a schema file using
the -n option, the schema is imported by a
generated xsd:import element, which sets the
schemaLocation attribute.

If you specify the -inline option, however, the
schema is included directly in the generated
WSDL contract and the generated xsd:import
element omits the schemaLocation attribute.
 188

Converting OMG IDL to WSDL
Orbix 3 legacy compatibility To address some issues associated with Orbix 3 migration, the Artix IDL
compiler supports a -3 option, which causes the following behavior in the
idltowsdl utility:

� Case sensitivity is activated�this means that name lookup during
parsing is case sensitive. While technically incorrect according to the
CORBA specification, some legacy IDL files might require case
sensitivity. The IDL compiler issues warnings, if case sensitivity rules
are broken.

� New IDL keywords added since CORBA 2.3 (for example, factory and
local) are treated as ordinary identifiers, but warnings are issued.

� If a different spelling of the keyword Object is encountered (for
example, object, OBJECT, or oBjEcT), it is treated as an identifier, and
a warning is issued.

� All IDL is preprocessed with the additional flag
-DIT_ORBIX3IDL_COMPATIBILITY. This allows IDL definitions to make
use of this macro in #ifdefs to help with migration issues.

� Unscoped types from the CORBA module�legacy IDL often uses
TypeCode as a global type, whereas the IDL specification requires it to
be properly scoped to the CORBA module. To deal with this issue, you
could use the following #ifdef to bring TypeCode into global scope, if
required:
#ifdef IT_ORBIX3IDL_COMPATIBILITY
typedef CORBA::TypeCode TypeCode;

-e xml-encoding-type Use the specified WSDL encoding for the value
of the encoding attribute in the generated
<?xml ... ?> tag. The default is UTF-8.

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the
utility is running.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.
189

APPENDIX 12 | CORBA Utilities in Artix
#endif

� Semicolons are tolerated in #include statements. The IDL compiler
removes the semicolons and issues a warning.

� Opaque types�there are no easy migration solutions for opaque types.
The IDL compiler does not recognize the opaque keyword. If you have
legacy IDL that uses opaque types, you should consider migrating
them to something like a valuetype instead.

Note: TypeCode originally was a global type in CORBA, but the
CORBA module was added around 1992/1993 to scope such types.)
 190

APPENDIX 13

Mapping CORBA
Exceptions
To facilitate interoperability between CORBA applications and
Artix applications, Artix automatically maps between CORBA
system exceptions and Artix faults.

In this appendix This appendix discusses the following topics:

Mapping from CORBA System Exceptions page 192

Mapping from Fault Categories page 194

Mapping of Completion Status page 195
191

APPENDIX 13 | Mapping CORBA Exceptions
Mapping from CORBA System Exceptions

Overview When a CORBA system exception is returned from a CORBA server to an
Artix client, Artix automatically converts the CORBA system exception to a
fault category.

Map from CORBA system
exceptions to fault categories

Table 5 shows how each of the major CORBA system exceptions map to
Artix fault categories.

Table 1: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category

CORBA::BAD_CONTEXT IT_Bus::FaultCategory::INTERNAL

CORBA::BAD_INV_ORDER IT_Bus::FaultCategory::INTERNAL

CORBA::BAD_OPERATION IT_Bus::FaultCategory::BAD_OPERATION

CORBA::BAD_TYPECODE IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::BAD_QOS IT_Bus::FaultCategory::INTERNAL

CORBA::CODESET_INCOMPATIBLE IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::COMM_FAILURE IT_Bus::FaultCategory::CONNECTION_FAILURE

CORBA::DATA_CONVERSION IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::FREE_MEM IT_Bus::FaultCategory::MEMORY

CORBA::IMP_LIMIT IT_Bus::FaultCategory::INTERNAL

CORBA::INITIALIZE IT_Bus::FaultCategory::UNKNOWN

CORBA::INTERNAL IT_Bus::FaultCategory::INTERNAL

CORBA::INTF_REPOS IT_Bus::FaultCategory::INTERNAL

CORBA::INV_FLAG IT_Bus::FaultCategory::INTERNAL

CORBA::INV_IDENT IT_Bus::FaultCategory::NOT_EXIST
 192

Mapping from CORBA System Exceptions
CORBA::INV_OBJREF IT_Bus::FaultCategory::INVALID_REFERENCE

CORBA::INV_POLICY IT_Bus::FaultCategory::INTERNAL

CORBA::INVALID_TRANSACTION IT_Bus::FaultCategory::INTERNAL

CORBA::MARSHAL IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::NO_IMPLEMENT IT_Bus::FaultCategory::NOT_IMPLEMENTED

CORBA::NO_MEMORY IT_Bus::FaultCategory::MEMORY

CORBA::NO_PERMISSION IT_Bus::FaultCategory::NO_PERMISSION

CORBA::NO_RESOURCES IT_Bus::FaultCategory::INTERNAL

CORBA::NO_RESPONSE IT_Bus::FaultCategory::INTERNAL

CORBA::OBJ_ADAPTER IT_Bus::FaultCategory::INTERNAL

CORBA::OBJECT_NOT_EXIST IT_Bus::FaultCategory::NOT_EXIST

CORBA::PERSIST_STORE IT_Bus::FaultCategory::INTERNAL

CORBA::REBIND IT_Bus::FaultCategory::INTERNAL

CORBA::TIMEOUT IT_Bus::FaultCategory::TIMEOUT

CORBA::TRANSACTION_MODE IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_REQUIRED IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_ROLLEDBACK IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_UNAVAILABLE IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSIENT IT_Bus::FaultCategory::TRANSIENT

Table 1: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category
193

APPENDIX 13 | Mapping CORBA Exceptions
Mapping from Fault Categories

Overview When a fault (that is, a built-in exception) is returned from an Artix server to
a CORBA client, Artix automatically converts the fault category to a CORBA
system exception.

Map from CORBA system
exceptions to fault categories

Table 6 shows how each of the Artix fault categories map to major CORBA
system exceptions.

Table 2: Map from CORBA System Exceptions to Fault Categories

Fault Category CORBA System Exception

IT_Bus::FaultCategory::BAD_OPERATION CORBA::BAD_OPERATION

IT_Bus::FaultCategory::CONNECTION_FAILURE CORBA::COMM_FAILURE

IT_Bus::FaultCategory::INTERNAL CORBA::INTERNAL

IT_Bus::FaultCategory::INVALID_REFERENCE CORBA::INV_OBJREF

IT_Bus::FaultCategory::LICENSE CORBA::NO_IMPLEMENT

IT_Bus::FaultCategory::MARSHAL_ERROR CORBA::MARSHAL

IT_Bus::FaultCategory::MEMORY CORBA::NO_MEMORY

IT_Bus::FaultCategory::NO_PERMISSION CORBA::NO_PERMISSION

IT_Bus::FaultCategory::NOT_EXIST CORBA::OBJECT_NOT_EXIST

IT_Bus::FaultCategory::NOT_IMPLEMENTED CORBA::NO_IMPLEMENT

IT_Bus::FaultCategory::NOT_UNDERSTOOD CORBA::BAD_PARAM

IT_Bus::FaultCategory::TIMEOUT CORBA::TIMEOUT

IT_Bus::FaultCategory::TRANSIENT CORBA::TRANSIENT

IT_Bus::FaultCategory::UNKNOWN CORBA::INITIALIZE

IT_Bus::FaultCategory::VERSION_ERROR CORBA::BAD_PARAM
 194

Mapping of Completion Status
Mapping of Completion Status

Overview The CORBA completion status flag and the Artix fault completion status flag
have exactly the same semantics and are thus effectively equivalent. In
other words, a YES completion status implies that the remote operation
completed its work; a NO completion status implies that the remote
operation was never called; and a MAYBE completion status implies that it is
impossible to say whether or not the remote operation completed its work.

Completion status mapping Table 7 shows the mapping between CORBA completion status values and
fault completion status values.

Table 3: Completion Status Mapping

CORBA Completion Status Fault Completion Status

CORBA::COMPLETED_YES IT_Bus::FaultCompletionStatus::YES

CORBA::COMPLETED_NO IT_Bus::FaultCompletionStatus::NO

CORBA::COMPLETED_MAYBE IT_Bus::FaultCompletionStatus::MAYBE
195

APPENDIX 13 | Mapping CORBA Exceptions
 196

Index

A
abstract interface type 85
Address specification

CORBA 178
anonymous types

avoiding 121
architecture, Artix overview 2
attributes

mapping 119

B
binding:client_binding_list configuration variable 21
bindings 3
boolean 103
bounded sequences 92
boxed value type 85

C
char 103
checked facets 110
complex types

deriving 125
nesting 121

containers 4
CORBA

abstract interface 85
any 86
basic types 86
boolean 86
boxed value 85
char 86
enum type 88
exception type 93
fixed 86
forward-declared interfaces 85
local interface type 85
Object 86
sequence type 91
string 86
struct type 90
typedef 95
union type 89, 92
value type 85
wchar 86
wstring 86

corba:address 178
corba:address element 17
corba:policy 179
CORBA bindings

generating 16
CORBA endpoints

generating 17
CORBA ports

generating 17

D
derivation

complex type from complex type 125
double 103
duration 114

E
embedded router 8
ENTITIES 114
ENTITY 114
enumeration facet 110
enum type 88
exception handling

CORBA mapping 94
exception type 93

F
facets 110

checked 110
fixed 104
fixed ports

host 76
IIOP/TLS listen_addr 76
IIOP/TLS port 76

float 103
forward-declared interfaces 85
fractionDigits facet 110
197

INDEX
G
get_discriminator() 90
get_discriminator_as_uint() 90
giop plug-in 21
GIOP Snoop 161

I
IDL

bounded sequences 92
enum type 88
exception type 93
object references 97
oneway operations 99
sequence type 91
struct type 90
typedef 95
union type 89, 92

IDL attributes
mapping to C++ 99

IDL basic types 86
IDL interfaces

mapping to C++ 96
IDL modules

mapping to C++ 96
IDL operations

mapping to C++ 98
parameter order 99
return value 99

IDL readonly attribute 100
IDL-to-C++ mapping

Artix and CORBA 84
IDL types

unsupported 85
idl utility 84
IDREF 114
IDREFS 114
IIOP/TLS

host 76
IIOP/TLS listen_addr 76
IIOP/TLS port 76
iiop plug-in 21
iiop_profile plug-in 21
inheritance relationships

between complex types 125
inout parameters 99
in parameters 99
IOR specification 178
IT_Bus::Boolean 131
 198
it_container command 4

J
JAX-RPC mapping 3

L
length facet 110
local interface type 85
LocateReply 166
LocateRequest 166
long 103
long long 103

M
mapping

IDL attributes 99
IDL interfaces 96
IDL modules 96
IDL operations 98
IDL to C++ 84

maxExclusive facet 110
maxInclusive facet 110
maxLength facet 110
maxOccurs 128, 132
minExclusive facet 110
minInclusive facet 110
minLength facet 110
minOccurs 132

N
nesting complex types 121
nillable types

syntax 134
NOTATION 114

O
object references

mapping to C++ 97
occurrence constraints

overview of 132
octet 103
oneway operations

in IDL 99
orb_plugins 163
out parameters 99

INDEX
P
parameters

in IDL-to-C++ mapping 99
pattern facet 110
plugins:giop_snoop:filename 165
plugins:giop_snoop:rolling_file 165
plugins:giop_snoop:shlib_name 163
plugins:giop_snoop:verbosity 164
ports 3

activating 20
port types 2
protocol bridge 4

R
references

CORBA mapping 97
Reply 166
Request 166
router plug-in 4
routers 4
routes, configuring 5

S
sequence complex types

and arrays 128
sequence type 91
servant objects 3
servants

registering 20
short 103
Specifying POA policies 179
standalone router 7, 12

CORBA-to-SOAP 24
string 103, 104
struct type 90
stub code 3
stub files 21

T
TimeBase::UtcT 104
totalDigits facet 110
transports 3
typedef 95

U
union type 89, 92
unsigned long 103
unsigned long long 103
unsigned short 103
unsupported IDL types 85

V
value type 85

W
wchar type 85
Web Services Definition Language 2
whiteSpace facet 110
wildcarding types 131
WSDL

attributes 119
WSDL contract 2
WSDL facets 110
WSDL faults 94
wsdltocorba command

generating a CORBA binding 16
generating IDL 18

wsdltocpp command 3
wsdltocpp utility 84
WSDL-to-IDL conversion 16
wsdltojava command 3
wsdltoservice command 18
ws_orb plug-in 21
wstring type 85

X
XML schema

wildcarding types 131
xsd:duration 114
xsd:ENTITIES 114
xsd:ENTITY 114
xsd:IDREF 114
xsd:IDREFS 114
xsd:NOTATION 114
199

INDEX
 200

	Artix for CORBA
	List of Figures
	Preface
	Introduction to CORBA Web Services
	Artix Architecture
	Integrating a CORBA Server with Web Services
	Accessing the CORBA Server through a Standalone Router
	Accessing the CORBA Server through an Embedded Router
	Replacing the WS Client by an Artix Client
	Replacing the CORBA Server by an Artix Server

	Integrating a CORBA Client with Web Services
	Accessing the WS Server through a Standalone Router
	Replacing the CORBA Client by an Artix Client
	Replacing the WS Server by an Artix Server

	Exposing a Web Service as a CORBA Service
	Converting WSDL to IDL
	Exposing an Artix Web Service as a CORBA�Service
	Exposing a Non-Artix Web Service as a CORBA�Service
	Standalone CORBA-to-SOAP Router Scenario
	Configuring and Running a Standalone CORBA-to-SOAP Router

	Using an Orbix 3.3 Client to Access an Artix�Server

	Exposing a CORBA Service as a Web Service
	Converting IDL to WSDL
	Embedding Artix in a CORBA Service
	Embedded Router Scenario
	Embedding a Router in the CORBA Server

	Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
	Standalone SOAP-to-CORBA Router Scenario
	Configuring and Running a Standalone SOAP-to-CORBA Router

	Integrating the CORBA Naming Service with Artix
	How an Artix Client Resolves a Name
	How an Artix Server Binds a Name
	Artix Client Integrated with a CORBA Server
	CORBA Server Implementation
	Artix Client Configuration

	Advanced CORBA Port Configuration
	Configuring Fixed Ports and Long-Lived IORs
	CORBA Timeout Policies
	Retrying Invocations and Rebinding

	Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Artix WSDL-to-IDL Mapping
	Simple Types
	Atomic Types
	String Type
	Date and Time Types
	Deriving Simple Types by Restriction
	List Type
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Arrays

	Wildcarding Types
	Occurrence Constraints
	Nillable Types

	Security Interoperability
	SOAP-to-CORBA Scenario
	Overview of the Secure SOAP-to-CORBA Scenario
	SOAP Client
	SOAP-to-CORBA Router
	CORBA Server

	Single Sign-On SOAP-to-CORBA Scenario
	Overview of the Secure SSO SOAP-to-CORBA Scenario
	SSO SOAP Client
	SSO SOAP-to-CORBA Router

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Configuring a CORBA Binding
	Configuring a CORBA Port
	CORBA Utilities in Artix
	Generating a CORBA Binding
	Converting WSDL to OMG IDL
	Converting OMG IDL to WSDL

	Mapping CORBA Exceptions
	Mapping from CORBA System Exceptions
	Mapping from Fault Categories
	Mapping of Completion Status

	Index

