
Command Line Reference
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 30-Mar-2006

Contents

Preface v

Generating WSDL 1
Generating from Java Classes 2
Generating from CORBA IDL 4
Generating from a COBOL Copybook 7
Generating from an XMLSchema Document 10
Generating from an Artix Database Configuration Document 12

Adding Bindings 15
Adding a SOAP Binding 16
Adding a CORBA Binding 18

Adding Endpoints 21
Adding an HTTP Endpoint 22
Adding a CORBA Endpoint 27
Adding an IIOP Endpoint 28
Adding a WebSphere MQ Endpoint 30
Adding a JMS Endpoint 35
Adding a Tibco Endpoint 37
Adding a Tuxedo Service 41

Adding Routes 43

Validating WSDL 45

Transforming XML 47

Generating Code from WSDL 49
C++ Code Generation 50
Java Code Generation 54
Database Intermediary Generation 58
iii

CONTENTS
Tools for Generating Support Files 59
Generating IDL from WSDL 60
Generating a Deployment Descriptor 62
Generating an ACL File 64

Index 67
 iv

Preface
What is Covered in this Book
The Artix Command Line Reference provides a reference guide to the

command line tools provided with Artix.

Who Should Read this Book
The Artix Command Line Reference is intended for Artix programmers. This

guide assumes that the reader is familiar with the basics of WSDL and XML

schemas. A basic knowledge of Artix concepts is presumed.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing and Developing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.
v

../release_notes/index.htm
../install_guide/index.htm

PREFACE
• Getting Started with Artix describes basic Artix and WSDL concepts.

• Using Artix Designer describes how to use Artix Designer to build Artix

solutions.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview

of service-oriented architectures and describes how they can be

implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix

contract. Special attention is paid to the WSDL extensions used to

define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical

aspects of implementing advanced plug-ins (for example, interceptors)

using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure

and deploy Artix-enabled systems, and provides examples of typical

use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session

manager.
 vi

../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm

PREFACE
• Artix Transactions Guide, C++ explains how to enable Artix C++

applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java

applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to use Artix as a bridge between

other middleware technologies and service-oriented middleware

technologies.

• Artix for CORBA provides information on using Artix in a CORBA

environment.

• Artix for J2EE provides information on using Artix to integrate with

J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the

documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC

Patrol.

• CA WSDM Integration Guide explains how to integrate Artix with CA’s

WSDM product.

Reference Documentation

These books provide detailed reference information about specific Artix

APIs, WSDL extensions, configuration variables, command-line tools, and

terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference
vii

../transactions_cxx/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../transactions_java/index.htm

PREFACE
• Artix Glossary

Getting the Latest Version
The latest updates to the Artix documentation can be found at

http://www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive

online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix

Designer and the Artix Management Console appear in the contents

panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select

Help|Cheat Sheets.
 viii

../glossary/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
Artix Glossary
The Artix Glossary provides quick definitions and is a comprehensive

reference for Artix terms. All terms are defined in the context of the

development and deployment of Web services using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts

about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA

products.

If you need help with this or any other IONA product, go to IONA Online

Support.

Comments, corrections, and suggestions on IONA documentation can be

sent to .

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the IT_Bus::AnyType

class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.
ix

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 x

CHAPTER 1

Generating WSDL
Artix provides a number of command line tools for generating
WSDL.

In this chapter This chapter discusses the following topics:

Generating from Java Classes page 2

Generating from CORBA IDL page 4

Generating from a COBOL Copybook page 7

Generating from an XMLSchema Document page 10

Generating from an Artix Database Configuration Document page 12
1

CHAPTER 1 | Generating WSDL
Generating from Java Classes

Overview Artix supplies a command line tool, javatowsdl, that generates the logical

portion of an Artix contract for existing Java class files. javatowsdl uses the

mapping rules described in Sun’s JAX-RPC 1.1 specification.

JAVATOWSDL

Synopsis javatowsdl [-t namespace][-x namespace][-i porttype][-o
file][-useTypes][-qualified][-v][-h][-L file][q][-verbose]
ClassName

Options The command has the following options:

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XMLSchema
information generated to represent the data types inside
the WSDL document.By default, the generated target
namespace of the XMLSchema will be
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated <portType> in the
WSDL document. By default the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

-useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold method
parameters.

-qualified Specifies that the generated WSDL is fully qualified.

-v Displays the tool’s version.

-h Displays the tool’s usage statement.
 2

Generating from Java Classes
The generated WSDL will not contain any physical details concerning the

payload formats or network transports that will be used when exposing the

service. You will need to add this information manually.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

Note: When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.
3

CHAPTER 1 | Generating WSDL
Generating from CORBA IDL

Overview IONA’s IDL compiler supports several command line flags that specify how

to create a WSDL file from an IDL file. The default behavior of the tool is to

create WSDL file that uses wrapped doc/literal style messages. Wrapped

doc/literal style messages have a single part, defined using an element, that

wraps all of the elements in the message.

IDLTOWSDL

Synopsis idltowsdl [-useypes][-unwrap][-a address][-f file][-o dir][-s
type][-r file][-L file][-P file][-w namespace][-x namespace][-t
namespace][-T file][-n file][-b][-I
idlDir][-qualified][-inline][-3][-fasttrack][-interface
name][-soapaddr port][-e encoding][-L
file][-quiet][-h][-verbose][-v] idlfile

Options The command has the following options:

-usetypes Generate rpc style messages. rpc style messages have
parts defined using XMLSchema types instead of XML
elements.

-unwrap Generate unwrapped doc/literal messages. Unwrapped
messages have parts that represent individual elements.
Unlike wrapped messages, unwrapped messages can
have multiple parts and are not allowed by the WS-I.

-a address Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

-f file Specifies a file containing a string representation of an
object reference. The object reference is placed in the
corba:address element in the port definition of the
generated service. The file must exist when you run the
IDL compiler.

-o dir Specifies the directory into which the WSDL file is
written.
 4

Generating from CORBA IDL
-s type Specifies the XMLSchema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.

-r file Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

-L file Specifies that the logical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-P file Specifies that the physical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-w namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/idl_name.

-x namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/idl_name.

-t namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/idl_name.

-T file Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the -n option.

-n file Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This option
cannot be used with the -T option.

-b Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

-I idlDir Specify a directory to be included in the search path for
the IDL preprocessor. You can use this flag multiple
times.

-qualified Generates fully qualified WSDL.
5

CHAPTER 1 | Generating WSDL
-inline Generates a contract that includes all imported
documents in-line. This overrides all options that specify
that a section of the contract is to be imported.

-3 Use relaxed IDL grammar checking semantics to allow
IDL used by Orbix 3 to be parsed.

-fasttrack Use the fasttrack wizard. You must also use the
-interface and -soapaddr flags with this option. This
option also adds a SOAP port and a route between the
generated CORBA port and the generated SOAP port.

-interface name Specifies the IDL interface for which WSDL will be
generated by the fastrack wizard.

-soapaddr port Specifies the SOAP address to use in the generated port
element when using the fasttrack wizard.

-e encoding Specifies the value for the generated WSDL document’s

xml encoding attribute. The default is UTF-8.

-L file Specifies the location of your license file. The default is

IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-h Displays the tool’s usage message.

-verbose Specifies that the tool runs in verbose mode.

-v Displays the tool’s version.
 6

Generating from a COBOL Copybook
Generating from a COBOL Copybook

Overview Artix provides a command line tool, colboltowsdl, that will import COBOL

copybook data and generate an Artix contract containing a fixed binding to

define the COBOL interface for Artix applications.

COLBOLTOWSDL

Synopsis coboltowsdl -b binding -op operation -im [inmessage:]incopybook [-om
[outmessage:]outcopybook][-fm [faultmessage:]faultbook][-i
portType][-t target][-x
schema_name][-useTypes][-oneway][-qualified][-o file][-L
file][-quiet][-h][-v][-verbose]

Parameters The command has the following required parameters:

Options The command has the following options:

-b binding Specifies the name for the generated binding.

-op operation Specifies the name for the generated
operation.

-im
 [inmessage:]incopybook

Specifies the name of the input message and
the copybook file from which the data
defining the message is taken. The input
message name, inmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

-om
 [outmessage:]outcopybook

Specifies the name of the output message
and the copybook file from which the data
defining the message is taken. The output
message name, outmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.
7

CHAPTER 1 | Generating WSDL
-fm
[faultmessage:]faultbook

Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, faultmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

-i portType Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortType.a

-t target Specifies the target namespace for the
generated WSDL. Defaults to
http://www.iona.com/binding.

-x schema_name Specifies the namespace for the schema in
the generated WSDL. Defaults to
http://www.iona.com/binding/types.

-useTypes Specifies that the generated WSDL will use
type elements. Default is to generate element
elements for schema types.

-oneway Specifies that the operation does not have a
response message.

-qualified Specifies that the schema element in the
generated WSDL has its elementFormDefault
and attributeFormDefault attributes set to
qualified.

-o file Specifies the name of the generated WSDL
file. Defaults to binding.wsdl.

-L file Specifies the location of your Artix license
file. The default is
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode. No

output will be shown on the console. This

includes error messages.

-h Specifies that the tool will display a usage

message.

-v Displays the version of the tool.

-verbose Specifies that the tool runs in verbose mode.
 8

Generating from a COBOL Copybook
Once the new contract is generated, you will still need to add the port

information before you can use the contract to develop an Artix solution.

a. If binding ends in Binding or binding, it is stripped off before being used
in any of the default names.
9

CHAPTER 1 | Generating WSDL
Generating from an XMLSchema Document

Overview Artix provides a command line tool, xsdtowsdl, that will import an

XMLSchema document and generate an Artix contract containing a types

element populated by the types defined in the XMLSchema document. The

rest of the contract will be empty.

XDSTOWSDL

Synopsis xsdtowsdl [-t namespace][-n name][-d dir][-o
file][-?][-v][-verbose][-L file][-quiet][-h][-verbose][-v] xsdurl

Options The command has the following options:

-t namespace Specifies the target namespace for the
generated contract. The default is to use the
Artix target namespace.

-n name Specifies the name for the generated contract
and is the value of the name attribute in the
contract’s root definitions element. The
default is to use the schema document’s file
name.

-d dir Specifies the output directory for the
generated contract.

-o file Specifies the filename for the generated
contract. Defaults to the filename of the
imported schema document. For example, if
the imported schema document is stored in
maxwell.xsd the resulting contract will be
maxwell.wsdl.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-h Displays the tool’s usage message.

-verbose Specifies that the tool runs in verbose mode.
 10

Generating from an XMLSchema Document
-v Displays the tool’s version.
11

CHAPTER 1 | Generating WSDL
Generating from an Artix Database
Configuration Document

Overview Artix provides a command line tool, dbconfigtowsdl, that will import an

Artix database configuration document and generate an Artix contract

defining a service that represents the database operations defined in the

document.

DBCONFIGTOWSDL

Synopsis dbconfigtowsdl [-t bindingAddress][-fasttrack][-plugin][-d
dir][-source dir][-h][-v][-verbose][-quiet] dbconfigurl

Options The command has the following options:

-t bindingAddress Specifies the address to use in the port
element of the generated WSDL. This flag is
only valid when -fasttrack is also used. The
default is
http://localhost:9000/DBConnection.

-fasttrack Specifies that the tool will generate a default
SOAP binding and HTTP endpoint for the
database operations. In addition, the tool will
generate the code for the intermediary
required to expose the operations as a
service.

-plugin Specifies that the intermediary is generated
as an Artix plug-in. This flag is only valid
when -fastttrack is also used.

-d dir Specifies the output directory for the
generated WSDL file. The default is the local
directory. When -fasttrack is used, the
default is etc.

-source dir Specifies the output directory for the
generated code. This flag is only valid when
-fasttrack is also used. The default is java.
 12

Generating from an Artix Database Configuration Document
-h Displays the tool’s usage statement.

-v Displays the tool’s version.

-verbose Specifies that the tool runs in verbose mode.

-quiet Specifies that the tool runs in quiet mode.
13

CHAPTER 1 | Generating WSDL
 14

CHAPTER 2

Adding Bindings
Artix provides a tools for adding bindings to WSDL.

In this chapter This chapter discusses the following topics:

Adding a SOAP Binding page 16

Adding a CORBA Binding page 18
15

CHAPTER 2 | Adding Bindings
Adding a SOAP Binding

Overview Artix provides a tool, wsdltosoap, that will generate a SOAP binding from an

existing logical interface defined in a WSDL <portType>. The tool will

generate a new contract which includes the generated SOAP binding.

WSDLTOSOAP

Synopsis wsdltosoap -i portType -n namespace wsdl_file [-b binding][-d
dir][-o file][-style {document|rpc}][-use {literal|encoded}][-L
file][-quiet][-h][-verbose][-v]

Parameters The command has the following required parameters:

Options The command has the following options:

-i portType Specifies the name of the port type being mapped to a
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

wsdl_file Specifies the WSDL file in which the logical binding is
defined.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-h Displays the tool’s usage message.

-v Displays the tool’s version.
 16

Adding a SOAP Binding
Notes wsdltosoap does not support the the generatoin of document/encoded SOAP

bindings.

-verbose Specifies that the tool runs in verbose mode.
17

CHAPTER 2 | Adding Bindings
Adding a CORBA Binding

Overview The wsdltocorba tool adds CORBA binding information to an existing Artix

contract. The generated WSDL file will also contain a CORBA port with no

address specified.

WSDLTOCORBA

Synopsis wsdltocorba -corba -i portType [-d dir][-b binding][-o file][-props
namespace][-wrapped][-L file][-quiet][-verbose][-h][-v] wsdl_file

Parameters The command has the following required parameters:

Options The command has the following options:

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

wsdl_file Specifies the name of the WSDL file containing the
logical interface to which the CORBA binding is mapped.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-props namespaceSpecifies the namespace to use for the generated CORBA
typemap

-wrapped Specifies that the generated CORBA binding uses
wrapper types.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.
 18

Adding a CORBA Binding
Notes By combining the -idl and -corba flags with wsdltocorba, you can generate

a CORBA binding for a logical operation and then generate the IDL for the

generated CORBA binding. When doing so, you must also use the -i portType

flag to specify the port type from which to generate the binding and the -b

binding flag to specify the name of the binding to from which to generate the

IDL.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
19

CHAPTER 2 | Adding Bindings
 20

CHAPTER 3

Adding Endpoints
Artix provides a tools for adding endpoint definitions to WSDL.

In this chapter This chapter discusses the following topics:

Adding an HTTP Endpoint page 22

Adding a CORBA Endpoint page 27

Adding an IIOP Endpoint page 28

Adding a WebSphere MQ Endpoint page 30

Adding a JMS Endpoint page 35

Adding a Tibco Endpoint page 37

Adding a Tuxedo Service page 41
21

CHAPTER 3 | Adding Endpoints
Adding an HTTP Endpoint

Overview The Artix wsdltoservice tool can generate an HTTP endpoint from an

existing logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport http/soap

Synopsis wsdltoservice -transport soap/http [-e service][-t port][-b binding]
[-a address][-hssdt serverSendTimeout][-hscvt
serverReceiveTimeout][-hstrc trustedRootCertificates][-hsuss
useSecureSockets][-hsct contentType][-hscc
serverCacheControl][-hsscse supressClientSendErrors][-hsscre
supressClientReceiveErrors][-hshka honorKeepAlive][-hsmps
serverMultiplexPoolSize][-hsrurl redirectURL][-hscl
contentLocation][-hsce contentEncoding][-hsst serverType][-hssc
serverCentificate][-hsscc serverCentificateChain][-hsspk
serverPrivateKey][-hsspkp serverPrivateKeyPassword][-hcst
clientSendTimeout][-hccvt clientReceiveTimeout][-hctrc
trustedRootCertificates][-hcuss useSecureSockets][-hcct
contentType][-hccc clientCacheControl][-hcar autoRedirect][-hcun
userName][-hcp password][-hcat clientAuthorizationType][-hca
clientAuthorization][-hca accept][-hcal acceptLanguage][-hcae
acceptEncoding][-hch host][-hccn clientConnection][-hcck
cookie][-hcbt browserType][-hcr referer][-hcps proxyServer][-hcpun
proxyUserName][-hcpp proxyPassword][-hcpat proxyAuthorizationType]
[-hcpa proxyAuthorization][-hccce clientCertificate][-hcccc
clientCertificateChain][-hcpk clientPrivateKey][-hcpkp
clientPrivateKeyPassword][-o file][-d dir][-L
file][-quiet][-verbose][-h][-v] wsdlurl

Options The command has the following options:

-transport
 soap/http

If the payload being sent over the wire is
SOAP, use -transport soap. For all other
payloads use -transport http.

-e service Specifies the name of the generated service.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which
the service is generated.
 22

Adding an HTTP Endpoint
-a address Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout Specifies the number if milliseconds that the
server can continue to try to send a response
to the client before the connection is timed
out.

 -hscvt
 serverReceiveTimeout

Specifies the number of milliseconds that the
server can continue to try to receive a request
from the client before the connection is timed
out.

-hstrc
trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hsuss useSecureSockets Specifies if the server uses secure sockets.
Valid values are true or false.

-hsct contentType Specifies the media type of the information
being sent in a server response.

-hscc
 serverCacheControl

Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hsscse
supressClientSendErrors

Specifies whether exceptions are thrown when
an error is encountered on receiving a client
request. Valid values are true or false.

-hsscre
supressClientReceiveError

s

Specifies whether exceptions are thrown when
an error is encountered on sending a response
to a client. Valid values are true or false.

-hshka honorKeepAlive Specifies if the server honors client keep-alive
requests. Valid values are true or false.

-hsmps
serverMultiplexPoolSize

 -hsrurl redirectURL Specifies the URL to which the client request
should be redirected if the URL specified in
the client request is no longer appropriate for
the requested resource.

-hscl contentLocation Specifies the URL where the resource being
sent in a server response is located.
23

CHAPTER 3 | Adding Endpoints
-hsce contentEncoding Specifies what additional content codings
have been applied to the information being
sent by the server, and what decoding
mechanisms the client therefore needs to
retrieve the information.

-hsst serverType Specifies what type of server is sending the
response to the client.

-hssc serverCentificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
server.

-hsscc
serverCentificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hsspk serverPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by serverCertificate.

-hsspkp
serverPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-hcst clientSendTimeout Specifies the number of milliseconds that the
client can continue to try to send a request to
the server before the connection is timed out.

-hccvt
 clientReceiveTimeout

Specifies the number of milliseconds that the
client can continue to try to receive a response
from the server before the connection is timed
out.

-hctrc
trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hcuss ueSecureSockets Specifies if the client uses secure sockets.
Valid values are true or false.

-hcct contentType Specifies the media type of the data being
sent in the body of the client request.

-hccc clientCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hcar autoRedirect Specifies if the server should automatically
redirect client requests.

-hcun userName Specifies the username the client uses to
register with servers.
 24

Adding an HTTP Endpoint
-hcp password Specifies the password the client uses to
register with servers.

-hcat
 clientAuthorizationType

Specifies the authorization mechanisms the
client uses when contacting servers.

-hca clientAuthorization Specifies the authorization credentials used to
perform the authorization.

-hca accept Specifies what media types the client is
prepared to handle.

-hcal acceptLanguage Specifies what language the client prefers for
the purposes of receiving a response

-hcae acceptEncoding Specifies what content codings the client is
prepared to handle.

-hch host Specifies the internet host and port number of
the resource on which the client request is
being invoked.

-hccn clientConnection Specifies if the client will open a new
connection for each request or if it will keep
the original one open. Valid values are close
and Keep-Alive.

-hcck cookie Specifies a static cookie to be sent to the
server.

-hcbt browserType Specifies information about the browser from
which the client request originates.

-hcr referer Specifies the value for the client’s referring
entity.

-hcps proxyServer Specifies the URL of the proxy server, if one
exists along the message path.

-hcpun proxyUserName Specifies the username that the client uses to
authorize with proxy servers.

-hcpp proxyPassword Specifies the password that the client uses to
authorize with proxy servers.

-hcpat
proxyAuthorizationType

Specifies the authorization mechanism the
client uses with proxy servers.

-hcpa proxyAuthorization Specifies the actual data that the proxy server
should use to authenticate the client.
25

CHAPTER 3 | Adding Endpoints
-hccce clientCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
client.

-hcccc
 clientCertificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hcpk clientPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by clientCertificate.

-hcpkp
 clientPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-o file Specifies the filename for the generated
contract. The default is to append -service to
the name of the imported contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 26

Adding a CORBA Endpoint
Adding a CORBA Endpoint

Overview The Artix wsdltoservice tool can generate a CORBA endpoint from an

existing logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport corba

Synopsis wsdltoservice -transport corba [-e service][-t port][-b binding][-a
address][-poa poaName][-sid serviceId][-pst persists][-o file][-d
dir][-L file][-quiet][-verbose][-h][-v] wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated CORBA service.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the service is
generated.

-a address Specifies the value used in the corba:address element of
the port.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
27

CHAPTER 3 | Adding Endpoints
Adding an IIOP Endpoint

Overview The Artix wsdltoservice tool can generate an IIOP endpoint from an

existing logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport iiop

Synopsis wsdltoservice -transport iiop [-e service][-t port][-b binding][-a
address][-poa poaName][-sid serviceId][-pst persists][-paytype
payload][-o file][-d dir][-L file][-quiet][-verbose][-h][-v]
wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated IIOP service.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the service is
generated.

-a address Specifies the value used in the <iiop:address> element
of the port.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-paytype payloadSpecifies the type of data being sent in the message
payloads. Valid values are string, octets, imsraw,
imsraw_binary, cicsraw, and cicsraw_binary.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
 28

Adding an IIOP Endpoint
-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
29

CHAPTER 3 | Adding Endpoints
Adding a WebSphere MQ Endpoint

Overview The Artix wsdltoservice tool can generate a WebSphere MQ endpoint from

an existing logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport mq

Synopsis wsdltoservice -transport mq [-e service][-t port][-b binding][-sqm
queueManager][-sqn queue][-srqm queueManager][-srqn queue][-smqn
modelQueue][-sus usageStyle][-scs correlationStyle][-sam
accessMode][-sto timeout][-sme expiry][-smp priority][-smi
messageId][-sci correlationId][-sd delivery][-st
transactional][-sro reportOption][-sf format][-sad
applicationData][-sat accountingToken][-scn connectionName][-sc
convert][-scr reusable][-scfp fastPath][-said idData][-saod
originData][-cqm queueManager][-cqn queue][-crqm
queueManager][-crqn queue][-cmqn modelQueue][-cus usageStyle][-ccs
correlationStyle][-cam accessMode][-cto timeout][-cme expiry][-cmp
priority][-cmi messageId][-cci correlationId][-cd delivery][-ct
transactional][-cro reportOption][-cf format][-cad
applicationData][-cat accountingToken][-ccn connectionName][-cc
convert][-ccr reusable][-ccfp fastPath][-caid idData][-caod
originData][-caqn queue][-cui userId][-o file][-d dir][-L
file][-quiet][-verbose][-h][-v] wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated service.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the
service is generated.

-sqm queueManager Specifies the name of the server’s queue
manager.

-sqn queue Specifies the name of the server’s request queue.

-srqm queueManager Specifies the name of the server’s reply queue
manager.

-srqn queue Specifies the name of the server’s reply queue.
 30

Adding a WebSphere MQ Endpoint
-smqn modelQueue Specifies the name of the server’s model queue.

-sus usageStyle Specifies the value of the server’s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.

-scs correlationStyle Specifies the value of the server’s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-sam accessMode Specifies the value of the server’s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-sto timeout Specifies the value of the server’s Timeout
attribute.

-sme expiry Specifies the value of the server’s MessageExpiry
attribute.

-smp priority Specifies the value of the server’s
MessagePriority attribute.

-smi messageId Specifies the value of the server’s MessageId
attribute.

-sci correlationId Specifies the value of the server’s CorrelationId
attribute.

-sd delivery Specifies the value of the server’s Delivery
attribute.

-st transactional Specifies the value of the server’s Transactional
attribute. Valid values are none, internal, or xa.

-sro reportOption Specifies the value of the server’s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-sf format Specifies the value of the server’s Format
attribute.

-sad applicationData Specifies the value of the server’s
ApplicationData attribute.

-sat accountingToken Specifies the value of the server’s
AccountingToken attribute.

-scn connectionName Specifies the name of the connection by which
the adapter connects to the queue.
31

CHAPTER 3 | Adding Endpoints
-sc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-scr reusable Specifies the value of the server’s
ConnectionReusable attribute. Valid values are
true or false.

-scfp fastPath Specifies the value of the server’s
ConnectionFastPath attribute. Valid values are
true or false.

-said idData Specifies the value of the server’s
ApplicationIdData attribute.

-saod originData Specifies the value of the server’s
ApplicationOriginData attribute.

-cqm queueManager Specifies the name of the client’s queue manager.

-cqn queue Specifies the name of the client’s request queue.

-crqm queueManager Specifies the name of the client’s reply queue
manager.

-crqn queue Specifies the name of the client’s reply queue.

-cmqn modelQueue Specifies the name of the client’s model queue.

-cus usageStyle Specifies the value of the client’s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.

-ccs correlationStyle Specifies the value of the client’s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-cam accessMode Specifies the value of the client’s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-cto timeout Specifies the value of the client’s Timeout
attribute.

-cme expiry Specifies the value of the client’s MessageExpiry
attribute.

-cmp priority Specifies the value of the client’s
MessagePriority attribute.

-cmi messageId Specifies the value of the client’s MessageId
attribute.
 32

Adding a WebSphere MQ Endpoint
-cci correlationId Specifies the value of the client’s CorrelationId
attribute.

-cd delivery Specifies the value of the client’s Delivery
attribute.

-ct transactional Specifies the value of the client’s Transactional
attribute. Valid values are none, internal, or xa.

-cro reportOption Specifies the value of the client’s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-cf format Specifies the value of the client’s Format attribute.

-cad applicationData Specifies the value of the client’s
ApplicationData attribute.

-cat accountingToken Specifies the value of the client’s
AccountingToken attribute.

-ccn connectionName Specifies the name of the connection by which
the adapter connects to the queue.

-cc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-ccr reusable Specifies the value of the client’s
ConnectionReusable attribute. Valid values are
true or false.

-ccfp fastPath Specifies the value of the client’s
ConnectionFastPath attribute. Valid values are
true or false.

-caid idData Specifies the value of the client’s
ApplicationIdData attribute.

-caod originData Specifies the value of the client’s
ApplicationOriginData attribute.

-caqn queue Specifies the remote queue to which a server will
put replies if its queue manager is not on the
same host as the client’s local queue manager.

-cui userId Specifies the value of the client’s
UserIdentification attribute.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name of
the imported contract.
33

CHAPTER 3 | Adding Endpoints
-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.

-d dir Specifies the output directory for the generated
contract.
 34

Adding a JMS Endpoint
Adding a JMS Endpoint

Overview The Artix wsdltoservice tool can generate a JMS endpoint from an existing

logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport jms

Synopsis wsdltoservice -transport jms [-e service][-t port][-b binding][-o
file][-d dir][-jnp propName:propVal]*[-jds (queue/topic)][-jnf
connectionFactoryName][-jdn destinationName][-jrdn
replyDesinationName][-jcun username][-jcp password][-jmt
(text/binary)][-jms messageSelector][-jumi (true/false)][-jtr
(true/false)][-jdsn durableSubscriber][-L
file][-quiet][-verbose][-h][-v] wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated
service element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-jnp propName:propVal Specifies any optional Java properties to
use in connecting to the JNDI provider.
This information is used to populate a
JMSNamingProperty element. You can use
this flag multiple times.

-jds (queue/topic) Specifies if the JMS destination is a JMS
queue or a JMS topic.
35

CHAPTER 3 | Adding Endpoints
-jfn connectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

-jdn destinationName Specifies the JNDI name of the JMS
destination to which Artix connects.

-jrdn replyDestinationName Specifies the JNDI name of the JMS
destination used for replies.

-jcun username Specifies the username used to connect to
the JMS broker.

-jcp password Specifies the password used to connect to
the JMS broker.

-jmt (text/binary) Specifies how the message data will be
packaged as a JMS message.

-jms messageSelector Specifies a message selector to use when
pulling messages from the JMS
destination.

-jumi (true/false) Specifies if the JMS message id should be
used as the correlation id.

-jtr (true/false) Specifies if the services uses local JMS
transactions when processing requests.

-jdsn durableSubscriber Specifies the name of the durable
subscription to use.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose

mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 36

Adding a Tibco Endpoint
Adding a Tibco Endpoint

Overview The Artix wsdltoservice tool can generate a Tibco endpoint from an existing

logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport tibrv

Synopsis wsdltoservice -transport tibrv [-e service][-t port][-b
binding][-tss subject][-tcst subject][-tbt bindingType][-tcl
callbackLevel][-trdt timeout][-tts transportService][-ttn
transportNetwork][-ttbm batchMode][-tqp priority][-tqlp
queueLimitPolicy][-tqme queueMaxEvents][-tqda
queueDiscardAmount][-tcs cmSupport][-tctsn
cmTransportServerName][-tctcn cmTransportClientName][-tctro
cmTransportRequestOld][-tctln cmTransportLedgerName][-tctsl
cmTransportSyncLedger][-tctra cmTransportRelayAgent][-tctdtl
cmTransportDefaultTimeLimit][-tclca
cmListenerCancelAgreements][-tcqtsn
cmQueueTransportServerName][-tcqtcn
cmQueueTransportClientName][-tcqtww
cmQueueTransportWorkerWeight][-tcqtws
cmQueueTransportWorkerTasks][-tcqtsw
cmQueueTransportSchedulerWeight][-tcqtsh
cmQueueTransportSchedulerHeartbeat][-tcqtsa
cmQueueTransportSchedulerActivation][-tcqtct
cmQueueTransportCompleteTime][-tmnfv messageNameFieldValue][-tmnfp
messageNameFieldPath][-tbfi bindingFieldId][-tbfn
bindingFieldName][-o file][-d dir][-L
file][-quiet][verbose][-h][-v] wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-tss subject Specifies the subject to which the server
listens.
37

CHAPTER 3 | Adding Endpoints
-tbt bindingType Specifies the message binding type. Valid
vales are msg, xml, opaque, or string.

-tcl callbackLevel Specifies the server-side callback level
when TIB/RV system advisory messages
are received. Valid values are INFO, WARN,
or ERROR.

-trdt timeout Specifies the client-side response receive
dispatch time-out.

-tts transportService Specifies the UDP service name or port for
TibrvNetTransport.

-ttn transportNetwork Specifies the binding network addresses
for TibrvNetTransport.

-ttbm batchMode Specifies if the TIB/RV transport uses
batch mode to send messages. Valid
values are DEFAULT_BATCH and
TIMER_BATCH.

-tqp priority Specifies the queue priority.

-tqlp queueLimitPolicy Valid values are DISCARD_NONE,
DISCARD_NEW, DISCARD_FIRST, or
DISCARD_LAST.

-tqme queueMaxEvents Specifies the queue max events.

-tqda queueDiscardAmount Specifies the queue discard amount.

-tcs cmSupport Specifies if Certified Message Delivery
support is enabled. Valid values are true
or false.

-tctsn cmTransportServerName Specifies the server’s TibrvCmTransport
correspondent name.

-tctcn cmTransportClientName Specifies the client TibrvCmTransport
correspondent name.

-tctro cmTransportRequestOld Specifies if the endpoint can request old
messages on start-up. Valid values are
true or false.

-tctln cmTransportLedgerName Specifies the TibrvCmTransport ledger file.

-tctsl cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. Valid values are true
or false.
 38

Adding a Tibco Endpoint
-tctra cmTransportRelayAgent Specifies the endpoint’s TibrvCmTransport
relay agent.

-tctdtl
 cmTransportDefaultTimeLimit

Specifies the default time limit for a
Certified Message to be delivered.

-tclca
 cmListenerCancelAgreements

Specifies if Certified Message agreements
are canceled when the endpoint
disconnects. Valid values are true or
false.

-tcqtsn
 cmQueueTransportServerName

Specifies the server’s
TibrvCmQueueTransport correspondent
name.

-tcqtcn
 cmQueueTransportClientName

Specifies the client’s
TibrvCmQueueTransport correspondent
name.

-tcqtww
 cmQueueTransportWorkerWeight

Specifies the endpoint’s
TibrvCmQueueTransport worker weight.

-tcqtws
 cmQueueTransportWorkerTasks

Specifies the endpoint’s
TibrvCmQueueTransport worker tasks
parameter.

-tcqtsw
cmQueueTransportSchedulerWeig

ht

Specifies the TibrvCmQueueTransport
scheduler weight parameter.

-tcqtsh
cmQueueTransportSchedulerHear

tbeat

Specifies the endpoint’s
TibrvCmQueueTransport scheduler
heartbeat parameter.

-tcqtsa
cmQueueTransportSchedulerActi

vation

Specifies the TibrvCmQueueTransport
scheduler activation parameter.

-tcqtct
cmQueueTransportCompleteTime

Specifies the TibrvCmQueueTransport
complete time parameter.

-tmnfv
 messageNameFieldValue

Specifies the message name field value.

-tmnfp messageNameFieldPath Specifies the message name field path.

-tbfi bindingFieldId Specifies the binding field id.

-tbfn bindingFieldName Specifies the binding field name.
39

CHAPTER 3 | Adding Endpoints
-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose

mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 40

Adding a Tuxedo Service
Adding a Tuxedo Service

Overview The Artix wsdltoservice tool can generate a Tuxedo service from an existing

logical interface defined in a WSDL portType element.

WSDLTOSERVICE -transport tuxedo

Synopsis wsdltoservice -transport tuxedo [-e service][-t port][-b
binding][-tsn tuxService][-tfn tuxService:tuxFunction][-ton
tuxService:operation][-o file][-d dir][-L
file][-quiet][-verbose][-h][-v] wsdlurl

Options The command has the following options:

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-tsn tuxService Specifies the name of the Tuxedo bulletin
board to which Artix connects.

-tsn tuxService:tuxFunction Specifies the name of the function to be
used on the specified Tuxedo bulletin
board.

-ton tuxService:operation Specifies the WSDL operation that is
handled by the specified Tuxedo endpoint.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.
41

CHAPTER 3 | Adding Endpoints
-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose

mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 42

CHAPTER 4

Adding Routes
You can add routes to your Artix contracts from the command
line.

Overview Artix includes a command line tool, wsdltorouting, for adding routes to

Artix contracts.

WSDLTOROUTING

Synopsis wsdltorouting [-rn name][-ssn service][-spn port][-dsn
service][-dpn port][-on operation][-ta attribute] [-d dir][-o
file][-L file][-quiet][-verbose][-h][-v] wsdlurl

Options You can supply the following optional parameters:

-rn name Specifies the name of the generated route. If no name is
given a unique name will be generated for the route.

-ssn service Specifies the name of the service to use as the source of
the route.

-spn port Specifies the name of the port to use as the source of the
route. The port must correspond to a port element in the
specified service.

-dsn service Specifies the name of the service to use as the
destination of the route.

-dpn port Specifies the name of the port to use as the destination of
the route. The port must correspond to a port element in
the specified service.
43

CHAPTER 4 | Adding Routes
-on operation Specifies the name of the operation to use for the route. If
the route is port-based, you do not need to use this flag.

-ta attribute Specifies a transport attribute to use in defining the route.
For details on how to specify the transport attributes.

-d dir Specifies the output directory for the generated contract.

-o file Specifies the filename of the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 44

CHAPTER 5

Validating WSDL
Artix can validate your contracts to see if they are well-formed
WSDL documents. In addition, Artix can validate your contract
against the WS-I Basic Profile.

Overview Artix includes a command line tool, schemavalidator, for validating Artix

contracts.

SCHEMAVALIDATOR

Synopsis schemavalidator [-d schema-directory]* [-s schema-url]* [-w
WSDL_XSD_URL][-deep][-wsi][-wh wsi-test-tools.home][-tad
BasicProfileAssertions][-L file][-quiet][-verbose][-h][-v]

Parameters You must specify the location of a WSDL contract file, WSDL_XSD_URL, for the

schema validator to work.

Options You can supply the following optional parameters:

-d schema-directory Specifies the directory used to search for
schemas. This switch can appear multiple
times.

-s schema-url Specifies the URL of a user specific
schema to be included in the validation of
the contract. This switch can appear
multiple times.
45

CHAPTER 5 | Validating WSDL
-deep Specifies that the validator is to check all
WSDL imports and all WSDL semantics.
When using this switch, the tool will also
validate the imported WSDL.

-wsi Specifies that the tool is to use the
wsi-test-tools from wsi.org to validate the
contract.

-wh wsi-test-tools.home Specifies the base directory of
wsi-test-tools.

-tad BasicProfileAssertions Specifies the URL of the of
BasicProfileTestAssertions.xml used in
wsi-test-tools.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose

mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 46

CHAPTER 6

Transforming XML
Artix includes a command line driven XSLT processor for
transforming XML documents.

Overview Artix includes a command line tool, xslttransform, for transforming XML

documents.

XSLTTRANSFORM

Synopsis xslttransform -IN inputXMLURL -OUT outputXMLURL -XS XSLTURL [-PARAM
name value]*

Parameters The command has the following parameters:

Options You can suppy any number of optional parameters using the -PARAM flag.

Parameters are specified as name value pairs. The parameter’s name must

coorespond to variables in the XSLT stylesheet. The parameter’s value is

substituted for the variable when the stylesheet is processed.

-IN inputXMLURL Specifies the URL of the source XML
document.

-OUT outputXMLURL Specifies the URL of the transformed XML
document.

-XS XSLTURL Specifies the URL of the XSLT stylesheet.
47

CHAPTER 6 | Transforming XML
Examples To use the transformer to add an ActiveMQ configured JMS endpoint to an

Artix contract you would use a command similar to Example 1.

Example 1: Using the Transformer

xsltp -XSL oldjmswsdl_to_newjmswsdl.xsl -IN my_old.wsdl -OUT my_new.wsdl -PARAM updateToActiveMQ
true -PARAM userDefDestinationName dynamicQueues/test.artix.myotherjmstransport
 48

CHAPTER 7

Generating Code
from WSDL
Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

In this chapter This chapter discusses the following topics:

C++ Code Generation page 50

Java Code Generation page 54

Database Intermediary Generation page 58
49

CHAPTER 7 | Generating Code from WSDL
C++ Code Generation

Overview Artix includes a command line tool, wsdltocpp, for generating Artix C++

skeletons for the services defined in an Artix contract. It can also generate

starting point code for your server and client applications.

WSDLTOCPP

Synopsis wsdltocpp [options] { WSDL-URL | SCHEMA-URL } [-e
web_service_name[:port_list]][-b binding_name][-i port_type]* [-d
output-dir][-n URI=C++namespace]* [-nexclude URI[=C++namespace]]*
[-ninclude URI[=C++namespace]]* [-nimport C++namespace][-impl][-m
{NMAKE | UNIX}:[executable|library]][-libv version][-jp
plugin_class][-f][-server][-client][-sample][-plugin[:plugin_name
]][-deployable][-global][-license][-declspec
declspec][-all][-flags][-upper|-lower|-minimal|-mapper
class][-reflect][-L file][-quiet][-verbose][-h][-v]

Parameters You must specify the location of a valid WSDL contract file, WSDL-URL, for the

code generator to work.

Options You can supply the following optional parameters:

-i port_type Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract. This switch can appear
multiple times.

-e web_service_nam
[:port_list]

Specifies the name of the service for which the tool
will generate code. The default is to use the first
service listed in the contract. You can optionally
specify a comma separated list of port names to
activate. The default is to activate all of the service’s
ports.

-b binding_name Specifies the name of the binding to use when
generating code. The default is the first binding listed
in the contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.
 50

C++ Code Generation
-n
 [URI=]C++namespace

Maps an XML namespace to a C++ namespace. The
C++ stub code generated from the XML namespace,
URI, is put into the specified C++ namespace,
C++namespace. This switch can appear multiple
times.

-nexclude
 URI[=C++namespace]

Do not generate C++ stub code for the specified XML
namespace, URI. You can optionally map the XML
namespace, URI, to a C++ namespace,
C++namespace, in case it is referenced by the rest of
the XML schema/WSDL contract. This switch can
appear multiple times.

-ninclude
 URI[=C++namespace]

Generates C++ stub code for the specified XML
namespace, URI. You can optionally map the XML
namespace, URI, to a C++ namespace,
C++namespace. This switch can appear multiple
times.

-nimport
C++namespace

Specifies the C++ namespace to use for the code
generated from imported schema.

-impl Generates the skeleton code for implementing the
server defined by the contract.

-m {NMAKE | UNIX}
:[executable |
library]

Used in combination with -impl to generate a
makefile for the specified platform (NMAKE for
Windows or UNIX for UNIX). You can specify that the
generated makefile builds an executable, by
appending :executable, or a library, by appending
:library. For example, the options, -impl -m
NMAKE:executable, would generate a Windows
makefile to build an executable.

-libv version Used in combination with either -m NAME:library or
-m UNIX:library to specify the version number of the
library built by the makefile. This version number is
for your own convenience, to help you keep track of
your own library versions.

-f Deprecated—No longer used (was needed to support
routing in earlier versions.

-server Generates code for a sample implementation of a
server.

-client Generates code for a sample implementation of a
client.
51

CHAPTER 7 | Generating Code from WSDL
-sample Generates code for a sample implementation of a
client and a server (equivalent to -server -client).

-plugin
[:plugin_name]

Generates servant registration code as a Bus plug-in.
You can optionally specify the plug-in name by
appending :plugin_name to this option. If no plug-in
name is specified, the default name is
<ServiceName><PortTypeName>. The service name,
<ServiceName>, is specified by the -e option.

-deployable (Used with -plugin.) Generates a deployment
descriptor file, deploy<ServiceName>.xml, which is
needed to deploy a plug-in into the Artix container.

-global (Used with -plugin.) In the generated plug-in code,
instantiate the plug-in using a GlobalBusORBPlugIn
object instead of a BusORBPlugIn object.

A GlobalBusORBPlugIn initializes the plug-in
automatically, as soon as it is constructed (suitable
approach for plug-ins that are linked directly with
application code).

A BusORBPlugIn is not initialized unless the plug-in is
either listed in the orb_plugins list or deployed into
an Artix container (suitable approach for dynamically
loading plug-ins).

-license Displays the currently available licenses.

-declspec declspec Creates Visual C++ declaration specifiers for
dllexport and dllimport. This option makes it
easier to package Artix stubs in a DLL library.

-all Generate stub code for all of the port types and the
types that they use. This option is useful when
multiple port types are defined in a WSDL contract.

-flags Displays detailed information about the options.

-reflect Enables reflection on generated data classes.

-wrapped When used with document/literal wrapped style,
generates function signatures with wrapped
parameters, instead of unwrapping into separate
parameters.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.
 52

C++ Code Generation
Generated files The code generator produces a number of stub files from the Artix contract.

They are named according to the port type name, PortTypeName, specified

in the logical portion of the Artix contract. If the contract specifies more than

one port type, code will be generated for each one.

The following stub files are generated:

PortTypeName.h defines the superclass from which the client and server are

implemented. It represents the API used by the service defined in the

contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side

skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side

stubs for implementing a client to use the service defined by the contract.

PortTypeName_wsdlTypes.h and PortTypeName_wsdlTypes.cxx define the

complex datatypes defined in the contract (if any).

PortTypeName_wsdlTypesFactory.h and

PortTypeName_wsdlTypesFactory.cxx define factory classes for the

complex datatypes defined in the contract (if any).

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
53

CHAPTER 7 | Generating Code from WSDL
Java Code Generation

Overview wsdltojava generates JAX-RPC compliant Java code stubs and skeletons for

the services defined in the specified Artix contract. It can also generate

starting point code for your server and client applicaitons. The default

behavior of wsdltojava is to generate all of the java code needed to develop

a client and server.

WSDLTOJAVA

Synopsis wsdltojava [-e service:port][-b binding][-i portType][-d
output_dir][-p
[namespace=]package][-impl][-server][-client][-plugin][-servlet][
-types][-call][-interface][-sample][-all][-ant][-datahandlers][-m
erge][-deployable][-nexclude namespace[=package]][-ninclude
namespace[=package]][-ser][-L file][-quiet][verbose][-h][-v]
artix-contract

Description You must specify the location of a valid Artix contract for the code generator

to work. The default behavior of wsdltojava is to generate all of the java code

needed to develop a client and server.

Options You can supply the following optional parameters to control the portions of

the code generated:

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.
 54

Java Code Generation
-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-impl Generates the skeleton class for implementing the
server defined by the contract.

-server Generates a simple main class for the server.

-client Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

-plugin Generate a bus plug-in with the appropriate
servant registration code for the generated service
implementation.

-servlet Generates a bus plug-in with the additional
information needed to deploy it as a servlet.

-types Generates the code to implement the complex
types defined by the contract.

-call Generates a sample client the uses the Call
interface to invoke on the remote service.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test
your Java server.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.
55

CHAPTER 7 | Generating Code from WSDL
Generated files The Artix code generator produces a number of files from the Artix contract.

They are named according to the port name specified when the code was

generated. The files include:

portTypeName.java defines the Java interface that both the client and

server implement.

portTypeNameImpl.java defines the class used to implement the server.

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax..activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification.

-merge Merge any user changes into the generated code.

-deployable Generate a deployment descriptor to deploy the
generated plug-in into an Artix container. For
more information see Deploying and Managing
Artix Solutions.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XMLSchema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XMLSchema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

-ser Specifies that the generated classes for the types
defined in a contract should be serializable.

-stub Specifies that the tool will generate the stub code
for a client and a server.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 56

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Java Code Generation
portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each

named schema type defined in the Artix contract. These files are named

according to the type name they are given in the contract and contain the

helper functions needed to use the data types. The naming convention for

the helper type functions conforms to the JAX-RPC specification.

Generated type packages The generated types are generated into a single package which must be

imported for any methods using them. By default, the package name will be

mapped from the target namespace of the schema describing the types. The

default package name is created following the algorithm specified in the

JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for

example it ends in .com or .gov, the leading www. is stripped off the

string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the

pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting

string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace

http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped

to the Java package name com.widgetvendor.types.widgettypes.

Exceptions If you generate code from a WSDL file that contains multiple portTypes,

multiple bindings, multiple services, or multiple ports wsdltojava will

generate a warning message informing you that it is using the first instance

of each to use for generating code. If you use the command line flags to specify

which instances to use, the warning message is not displayed.
57

CHAPTER 7 | Generating Code from WSDL
Database Intermediary Generation

Overview The wsdltodbservice tool takes a WSDL document and an Artix database

configuration document and generates the code for the intermediary used

expose the database operations. The generated Java code will need to be

compiled before it can be deployed.

WSDLTODBSERVICE

Synopsis wsdltodbservice [-d dir][-source
dir][-plugin][-h][-v][-quiet][verbose] dbconfig wsdl

Options The tool has the following options:

-d dir Specifies the output directory for the generated DB service.

-source dir Specifies the output directory for the generated source code.
The default is java.

-plugin Specifies that the DB service is to be generated as a plug-in
for deployment into an Artix container.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.
 58

CHAPTER 8

Tools for
Generating
Support Files
Artix provides a tools to generate a number of support files
that can be used in conjunction with Artix solutions.

In this chapter This chapter discusses the following topics:

Generating IDL from WSDL page 60

Generating a Deployment Descriptor page 62

Generating an ACL File page 64
59

CHAPTER 8 | Tools for Generating Support Files
Generating IDL from WSDL

Overview The wsdltocorba tool compiles Artix contracts containing a CORBA binding

and generates IDL for the specified binding and port type.

WSDLTOCORBA

Synopsis wsdltocorba -idl -b binding [-corba] [-i portType] [-d dir] [-o
file][-L file][-quiet][-verbose][-h][-v] wsdl_file

Parameters The command has the following required parameters:

Options The command has the following options:

Notes By combining the -idl and -corba flags with wsdltocorba, you can generate

a CORBA binding for a logical operation and then generate the IDL for the

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

wsdl_file Specifies the WSDL file to process.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
 60

Generating IDL from WSDL
generated CORBA binding. When doing so, you must also use the -i portType

flag to specify the port type from which to generate the binding and the -b

binding flag to specify the name of the binding to from which to generate the

IDL.
61

CHAPTER 8 | Tools for Generating Support Files
Generating a Deployment Descriptor

Overview The wsdd tool generates a deployment descriptor that can be used to deploy

and Artix plug-in into the Artix container.

WSDD

Synopsis wsdd -service QName -pluginName name -pluginType {Cxx|Java}
[-pluginImpl name][-pluginURL dir][-wsdlurl URL][-provider
namespace][-file file][-d dir][-verbose][-q][-h][-v]

Parameters The command has the following required parameters:

Options The command has the following options:

-service QName Specifies the QName of the plug-in’s service as given in
its contract.

-pluginName nameSpecifies the name of the plug-in as specified in the Artix
configuration file.

-pluginType
{Cxx|Java}

Specifies if the plug-in is implemented in C++ or Java.

-pluginImpl name Specifies the library/class name of the plug-in’s
implementation.

-pluginURL dir Specifies the directory where the plug-in’s
implementation is located.

-wsdlurl URL Specifies the location of the contract defining the
service implemented by the plug-in.

-provider
namespace

Specifies the namespace under which your plug-in’s
ServantProvider is registered with the bus.

-file file Specifies the name of the generated deployment
descriptor.

-d dir Specifies the directory where the generated file will be
written.

-verbose Specifies that the tool runs in verbose mode.

-quiet Specifies that the tool runs in quiet mode.
 62

Generating a Deployment Descriptor
-h Displays the tool’s usage message.

-v Displays the tool’s version.
63

CHAPTER 8 | Tools for Generating Support Files
Generating an ACL File

Overview The wsdltoacl tool generates an ACL file for the operation for which the

default role name is not sufficient. It takes a WSDL file and generates an

appropriate ACL file. You will need to add information specific to your

deployment to this file.

WSDLTOACL

Synopsis wsdltoacl -s server WSDL-URL [-i interface][-r default_role][-d
output_dir][-o output_file][-props props_file][-L
file][-quiet][-verbose][-h][-v]

Parameters The command has the following required parameters:

Options The command has the following options:

-s server Specifies the name of the server. Typically this is the
ORB name of the server.

WSDL-URL Specifies the name of the WSDL file from which the ACL
file is generated.

-i interface Specifies the <portType> for which ACL data will be
generated. The default is to generate information for all
port types defined in the contract.

-r default_role Specifies the role name to use in the generated ACL
document. The default is IONAUserRole.

-d output_dir Specifies the directory where the generated file will be
written.

-o output_file Specifies the name of the generated ACL file. The
default is to use the name of the WSDL file with a .acl
extension.

-props props_fileSpecifies the properties file listing the roles for each
operation.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.
 64

Generating an ACL File
-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.
65

CHAPTER 8 | Tools for Generating Support Files
 66

Index

B
binding name

specifying to code generator 50, 54

C
client

stub code, files 53
coboltowsdl 7
code generator

files generated 56
complex datatypes

generated files 53

D
dbconfigtowsdl 12
DLL library

building Artix stubs in a 52
document/literal wrapped style

-wrapped flag 52

I
idltowsdl 4
imported schema

C++ namespace for 51

J
javatowsdl 2

L
license

display current 52

M
makefile

generating with wsdltocpp 51

N
namespace

for generated C++ code 51
namespace URI
exclude from code generation 51
include in code generation 51

nmake
generating makefile for 51

O
output directory

specifying to code generator 50

P
plug-in

servant registration code 52
port name

specifying to code generator 54
portType 55
port type

specifying to code generator 50

R
-reflect flag 52
reflection

-reflect flag 52

S
sample client implementation

generating with wsdltocpp 51
sample server implementation

generating with wsdltocpp 51
schemavalidator 45
servant

registration in plug-in 52
server

skeleton code, files 53
service name

specifying to code generator 50, 54
skeleton code

files 53
generating with wsdltocpp 51
generating with wsdltojava 55

stub code
files 53

stubs
67

INDEX
DLL library, packaging as 52

W
-wrapped flag 52
wrapped parameters

-wrapped flag 52
wsdd 62
wsdltoacl 64
wsdltocorba 18, 60
wsdltocpp 50
wsdltodbservice 58
wsdltojava 54

files generated 56
wsdltorouting 43
wsdltoservice

corba 27
http 22
iiop 28
jms 35
mq 30
tibrv 37
tuxedo 41

wsdltosoap 16

X
xsdtowsdl 10
xslttransform 47
 68

	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Generating WSDL
	Generating from Java Classes
	Generating from CORBA IDL
	Generating from a COBOL Copybook
	Generating from an XMLSchema Document
	Generating from an Artix Database Configuration Document

	Adding Bindings
	Adding a SOAP Binding
	Adding a CORBA Binding

	Adding Endpoints
	Adding an HTTP Endpoint
	Adding a CORBA Endpoint
	Adding an IIOP Endpoint
	Adding a WebSphere MQ Endpoint
	Adding a JMS Endpoint
	Adding a Tibco Endpoint
	Adding a Tuxedo Service

	Adding Routes
	Validating WSDL
	Transforming XML
	Generating Code from WSDL
	C++ Code Generation
	Java Code Generation
	Database Intermediary Generation

	Tools for Generating Support Files
	Generating IDL from WSDL
	Generating a Deployment Descriptor
	Generating an ACL File

	Index

