
Getting Started with Artix
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 08-May-2006

Contents

List of Figures v

Preface vii
What is Covered in this Book vii
Who Should Read this Book vii
Organization of this Book vii
The Artix Library vii
Getting the Latest Version x
Searching the Artix Library x
Artix Online Help xi
Artix Glossary xi
Additional Resources xi
Document Conventions xii

Chapter 1 Introduction 1
What is Artix? 2
Solving Problems with Artix 7
Using the Artix Documentation 9

Chapter 2 Artix Concepts 13
The Artix Runtime Components 14
The Artix Bus 15
Artix Endpoints 16
Artix Contracts 17
Artix Services 19

Chapter 3 Understanding WSDL 21
WSDL Basics 22
Abstract Data Type Definitions 25
Abstract Message Definitions 28
Abstract Interface Definitions 31
Mapping to the Concrete Details 34
iii

CONTENTS
Chapter 4 Using Artix Designer 35
Introduction 36
Creating Artix Designer Projects 42
Creating a WSDL File 44
Defining the WSDL Elements 46

Defining Types 47
Defining Messages 52
Defining Port Types 55
Defining Bindings 59
Defining a Service 63

Developing the Applications 67
Creating code generation configurations 68

Adding Logic to the Code 74
The Java Code 75
The C++ Code 77

Running the Applications 80

Index 83
 iv

List of Figures

Figure 1: Artix High-Performance Architecture 4

Figure 2: Artix Runtime Components 14

Figure 3: The Empty JavaHello Project in the Navigator View 43

Figure 4: The CppHello Project With a Link to the HelloWorld.wsdl File 45

Figure 5: The Select Source Resources Panel 48

Figure 6: The Define Type Properties Panel 49

Figure 7: The Define Element Data Panel 50

Figure 8: Define Message Properties panel 52

Figure 9: The Define Message Parts panel 53

Figure 10: The Define Message Parts panel, after clicking Add 53

Figure 11: The Define Port Type Properties panel 56

Figure 12: The Define Port Type Operations panel 56

Figure 13: The Define Operation Messages Panel 57

Figure 14: The Select Binding Type Panel 60

Figure 15: The Set Binding Defaults Panel 61

Figure 16: Edit Operation panel 61

Figure 17: Edit Operation panel, sayHi node selected 62

Figure 18: The Define Service Panel 63

Figure 19: The Define Port panel 64

Figure 20: The Define Port Properties panel 64

Figure 21: The Artix Tools panel 69

Figure 22: Artix Tools panel, General tab 70

Figure 23: Artix Tools panel, Generation tab 71

Figure 24: Artix Tools panel, WSDL Details tab 72

Figure 25: Eclipse Console View toolbar 81
v

LIST OF FIGURES
 vi

Preface
What is Covered in this Book
Getting Started with Artix provides an introduction to IONA’s Artix
technology. It gives a brief overview of the architecture and functionality of
Artix, and an introduction to Web Services Description Language (WSDL).

This book takes you through the process of creating a WSDL file and
generating starting point code in both C++ and Java using the Artix
Designer development tool.

This book also provides guidance for finding your way around the Artix
product library.

Who Should Read this Book
Getting Started with Artix is for anyone who needs to understand the
concepts and terms used in IONA’s Artix product.

Organization of this Book
This book contains conceptual information about Artix and WSDL:

• “Introduction” on page 1 introduces the Artix product and the types of
problems it is designed to solve, and provides an introduction
walkthrough of the Artix documentation library.

• “Artix Concepts” on page 13 explains the main concepts used in Artix.

• “Understanding WSDL” on page 21 explains the basics of WSDL.

• “Using Artix Designer” on page 35 explains the basics of using the
Artix GUI to edit Artix contracts and other Artix project artifacts.

The Artix Library
The Artix documentation library is organized in the following sections:
vii

PREFACE
• Getting Started

• Designing and Developing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

• Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

• Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how Artix uses WSDL to define services,
and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.
 viii

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm

PREFACE
• Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure
and deploy Artix-enabled systems, and provides examples of typical
use cases.

Using Artix Services

The books in this section describe how to use the services provided with
Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session
manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies:

• Artix for CORBA provides information on using Artix in a CORBA
environment.

• Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the
documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.
ix

../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm

PREFACE
• BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

• CA WSDM Integration Guide explains how to integrate Artix with CA
WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.
 x

../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
Artix Online Help
Artix Designer and the Artix Management Console include comprehensive
online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer. To access these, select
Help|Cheat Sheets.

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .
xi

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 xii

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xiii

PREFACE
 xiv

CHAPTER 1

Introduction
This chapter introduces the main features of Artix, and
describes where to look in the documentation for further
information.

In this chapter This chapter discusses the following topics:

What is Artix? page 2

Solving Problems with Artix page 7

Using the Artix Documentation page 9
1

CHAPTER 1 | Introduction
What is Artix?

Overview Artix is an extensible enterprise service bus (ESB). It provides the tools for
rapid application integration that exploits the middleware technologies and
the products already present within your enterprise.

The approach taken by Artix relies on existing Web service standards and
extends these standards to provide rapid integration solutions that increase
operational efficiencies, capitalize on existing infrastructure, and enable the
adoption or extension of a service-oriented architecture (SOA).

Web services and SOAs The information services community generally regards Web services as
application-to-application interactions that use SOAP over HTTP.

Web services have the following advantages:

• The data encoding scheme and transport semantics are based on
standardized specifications.

• The XML message content is human readable.

• The contract defining the service is XML-based and can be edited by
any text editor.

• They promote loosely coupled architectures.

Service-oriented architectures take the Web services concept and extend it
to the entire enterprise. Using a service-oriented architecture, your
infastructure becomes a collection of loosely coupled services. Each service
becomes an endpoint defined by a contract written in Web Services
Description Language (WSDL). Clients, or service consumers, can then
access the services by reading a service’s contract.

Artix and services Using IONA’s proven Adaptive Runtime Technology (ART), Artix extends the
Web service standards to include more than just SOAP over HTTP. Thus,
Artix allows organizations to define their existing applications as services
without worrying about the underlying middleware. It also provides the
ability to expose those applications across a number of middleware
technologies without writing any new code.
 2

What is Artix?
Artix also provides developers with the tools to write new applications in
C++ or Java that can be exposed as middleware-neutral services. These
tools aid in the definition of the new service in WSDL and in the generation
of stub and skeleton code.

Just like the WSDL contracts used to define a service, the code that Artix
generates adheres to industry standards.

Benefits of Artix Artix’s extensible nature provides a number of benefits compared to other
ESB products and older enterprise application integration (EAI) products.
Chief among these is its speed and flexibility. In addition, Artix provides
enterprise levels of service such as session management, service discovery,
security, and cross-middleware transaction propagation.

EAI products typically use a proprietary, canonical message format in a
centralized EAI hub. When the hub receives a message, it transforms the
message to this canonical format and then transforms the message to the
format of the target application before sending it to its destination. Each
application requires two adapters that are typically proprietary and that
translate to and from the canonical format.

By contrast, the Artix bus does not require a hub architecture, nor does it
use any intermediate message format. When a message is received by the
bus, it is transformed directly into the target application’s message format.

Because Artix uses a standardized means of defining its services, the
plug-ins used to connect applications to the bus are reusable.
3

CHAPTER 1 | Introduction
Figure 1 shows an example Artix integration between BEA Tuxedo and IBM
WebSphere MQ.

Because Artix is built on top of ART, it is modular in nature. This means that
it is highly configurable and that it is easily extendable. You can configure
Artix to only load the pieces you need for the functionality you require. If
Artix does not provide a transport or message format you need, you can
easily develop your own plug-in, extend the contract definitions, and
configure Artix to load it.

Using Artix There are two ways to use Artix in your enterprise:

• You can use Artix to develop new applications using the Artix
Application Programming Interface (API). In this situation, developers
generate Artix stubs and skeletons from an Artix contract and Artix
becomes a part of your development environment.

• You can use the Artix bus to integrate two existing applications, built
on different middleware technologies, into a single application. In this
situation, developers simply create an Artix contract defining the
integration of the systems. In most cases, no new code is needed.

Figure 1: Artix High-Performance Architecture
 4

What is Artix?
Becoming proficient with Artix To become an effective Artix developer you need an understanding of the
following:

1. The syntax for WSDL files and the Artix extensions to the WSDL
specification.

2. The relationship between Artix WSDL extensions, ART plug-ins, and
setting configuration entries.

3. The Artix APIs that you can use in your application.

4. Artix Designer, a GUI tool that enables you to write, generate, and edit
WSDL files, and to generate, compile, and run code.

This book introduces these four concepts. The other books in the Artix
documentation library covers the same technologies in greater detail.

Artix features Artix includes the following unique features:

• Support for multiple transports and message data formats

• C++ and Java development

• Message routing

• Cross-middleware transaction support

• Asynchronous Web services

• Deployment of services as plug-ins via the Artix container

• Role-based security, single sign-on, and security integration

• Session management and stateful Web services

• Look-up services

• Load-balancing

• High-availability service clustering

• Integration with EJBs

• Easy-to-use development tools

• Support for Microsoft .NET

• Integration with enterprise management tools such as IBM Tivoli and
BMC Patrol

• Support for XSLT-based message transformation

• No need to hard code WSDL references into applications
5

CHAPTER 1 | Introduction
Supported transports and
protocols

A transport is an on-the-wire format for messages; whereas a protocol is a
transport that is defined by an open specification. For example, MQ and
Tuxedo are transports, while HTTP and IIOP are protocols.

In Artix, both protocols and transports are referred to as transports. Artix
supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ (formerly MQSeries)

• TIBCO Rendezvous™

• IIOP

• CORBA

• Java Messaging Service

Supported payload formats A payload format defines the layout of a message delivered over a transport.
Artix can automatically transform between the following payload formats:

• CORBA Common Data Representation (CDR)

• G2++

• Fixed record length (FRL)

• SOAP

• Pure XML

• Tagged (variable record length)

• TibrvMsg (a TIBCO Rendezvous format)

• Tuxedo’s Field Manipulation Language (FML)

Further information For more information about supported transports and payload formats, see
Designing Artix Solutions.

For information about Artix mainframe support, see the documentation for
Artix for z/OS, available at http:/www.iona.com/support/docs/index.xml.
 6

http://www.iona.com/support/docs/index.xml
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Solving Problems with Artix
Solving Problems with Artix

Overview Artix enables you to easily solve problems arising from the integration of
existing back-end systems using a service-oriented approach. Artix enables
you to develop new services using C++ or Java, and to retain all of the
enterprise levels of service that you require.

In general, there are three phases to an Artix project:

1. The design phase, where you define your services and define how they
are integrated using Artix contracts.

2. The development phase, where you write the application code
required to implement new services.

3. The deployment phase, where you configure and deploy your Artix
solution.

Design phase In the design phase, you define the logical layout of your system in an Artix
contract. The logical or abstract definition of a system includes: the services
that it contains, the operations each service offers, and the data the services
will use to exchange information.

Once you have defined the logical aspects of your system, you then add the
physical network details to the contracts.

The physical details of your system include the transports and payload
formats used by your services, as well as any routing schemes needed to
connect services that use different transports or payload formats.

Artix Designer and the Artix command-line tools automate the mapping of
your service descriptions into WSDL-based Artix contracts. These tools
enable you to:

• Import existing WSDL documents

• Create Artix contracts from scratch

• Generate Artix contracts from:

♦ CORBA IDL

♦ A description of tagged data

♦ A description of fixed record length data

♦ A COBOL copybook
7

CHAPTER 1 | Introduction
♦ A Java class

• Add the following bindings to an Artix contract:

♦ CORBA

♦ Fixed record length

♦ SOAP

♦ Tagged data

♦ XML

Development phase You need to write Artix application code if your solution involves creating
new applications or a custom router, or involves using the locator or session
management features. The first step in writing Artix code is to generate
client stub code and server skeleton code from the Artix contracts that you
created in the design phase. You can generate this code using Artix Designer
or the Artix command-line tools.

After you have generated the client stub code and server skeleton code, you
can develop the code that implements the business logic you require. For
most applications, Artix-generated code allows you to stick to using
standard C++ or Java code for writing business logic.

Artix Designer is integrated with the open-source Eclipse application
framework, but you are not required to use Eclipse for the whole project.
Once the stub code is generated, you can switch to your favorite
development environment to develop and debug the application code.

Artix also provides advanced APIs for directly manipulating messages, for
writing message handlers, and for other advanced features your application
might require. These can be plugged into the Artix runtime for customized
processing of messages.

Deployment phase In the deployment phase, you configure the Artix runtime to fine-tune the
Artix bus for your new Artix system. This involves modifying the Artix
configuration files and editing the Artix contracts that describe your solution
to fit the exact circumstances of your deployment environment.

This phase also includes the managing of the deployed system. This might
involve, for example, using an enterprise management tool such as Tivoli
along with the Artix command interface. These tools allow you to further
fine-tune your system.
 8

Using the Artix Documentation
Using the Artix Documentation

Overview The Artix library consists of a number of guides to help you use Artix. The
guides are organized in groups that reflect the three phases of Artix problem
solving. This section gives a brief overview of each guide and suggests an
order in which to read the library.

If you are new to Artix If you are approaching Artix for the first time, work through the library in the
following order:

1. Getting Started with Artix (this book)

2. Using Artix Designer

3. Artix Technical Use Cases

4. Building Service Oriented Infrastructures with Artix

5. Understanding Artix Contracts

6. Developing Artix Applications in C++, or
Developing Artix Applications in Java

7. Deploying and Managing Artix Solutions

In addition, the following publications provide useful background
information:

• Understanding Web Services: XML, WSDL, SOAP, and UDDI, by Eric
Newcomer

• Understanding SOA with Web Services, by Eric Newcomer and Greg
Lomow

• The W3C XML Schema page at www.w3.org/XML/Schema

• THE W3C WSDL specification at www.w3.org/TR/wsdl

Designing Artix solutions The design and planning section of the library has two guides:

• Building Service Oriented Infrastructures with Artix

• Understanding Artix Contracts
9

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
http://www.iona.com/support/docs/artix/4.0/designer/index.htm
http://www.iona.com/support/docs/artix/4.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/4.0/soa/index.htm
http://www.iona.com/support/docs/artix/4.0/deploy/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/soa/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/deploy/index.htm
http://www.iona.com/support/docs/artix/4.0/contract/index.htm

CHAPTER 1 | Introduction
Building Service Oriented Infrastructures with Artix introduces service
oriented architectures (SOA), and provides an overview of the ways Artix can
faciltate the deployment of an entreprise quality SOA. It uses concrete use
cases to illuminate the value of a SOA, then provides a bird’s eye view of the
distributed, extensible architecture of Artix.

Understanding Artix Contracts discusses how to describe your services and
their integration using Artix contracts, and describes in detail the Artix
extensions to WSDL that are used to describe non-SOAP payload formats,
transports, and routing rules.

Developing Artix applications The Artix documentation suite includes three primary development guides:

• Developing Artix Applications in C++

• Developing Artix Applications in Java

• Developing Advanced Artix Plug-Ins in C++

Both of the Developing Artix Applications guides describe how to develop
clients, servers, and container plug-ins using the Artix APIs. They discuss
how the Artix code generators map XML Schema types to code and show
how to work with the generated types.

The Java guide also explains how to develop message handlers, plug-ins,
and custom message transports. For C++ developers, this material is
covered in the Developing Advanced Artix Plug-Ins guide.

In addition to the primary developer guides, the Artix documentation suite
includes:

• Java API reference material in JavaDoc format

• C++ API reference material in Doxygen format

• Microsoft .NET documentation in Ndoc format

Deploying and managing Artix
solutions

Configuring and Deploying Artix Solutions explains how to configure and
deploy and Artix services in a runtime environment. It describes the Artix
configuration file, where to locate the contracts that control your Artix
services, and how to start and run Artix applications.

The Artix Configuration Reference provides a comprehensive reference for
the configuration variables in an Artix configuration domain.

In addition, the IONA Tivoli Integration Guide, the IONA BMC Patrol
Integration Guide, and the Artix CA WSDM Integration Guide explain Artix
integration with with third-pary enterprise management systems.
 10

http://www.iona.com/support/docs/artix/4.0/ca_wsdm/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/4.0/bmc/index.htm
http://www.iona.com/support/docs/artix/4.0/bmc/index.htm
http://www.iona.com/support/docs/artix/4.0/deploy/index.htm
http://www.iona.com/support/docs/artix/4.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/4.0/javadoc/index.html
http://www.iona.com/support/docs/artix/4.0/cppdoc/index.html
http://www.iona.com/support/docs/artix/4.0/ndoc/index.html

Using the Artix Documentation
Lastly, Artix provides the Artix Security Guide for security configuration and
management.

Latest updates The latest updates to the Artix 4.0 documentation can be found at: http://
www.iona.com/support/docs/artix/4.0/index.xml.
11

http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs/artix/4.0/security/index.htm

CHAPTER 1 | Introduction
 12

CHAPTER 2

Artix Concepts
This chapter introduces the key concepts used in the Artix
product.

In this chapter This chapter discusses the following topics:

The Artix Runtime Components page 14

The Artix Bus page 15

Artix Endpoints page 16

Artix Contracts page 17

Artix Services page 19
13

CHAPTER 2 | Artix Concepts
The Artix Runtime Components

How it fits together Artix is comprised of a group of components that are built on the Adaptive
Runtime Technology (ART) platform:

• The Artix Bus is at the core of Artix, and provides the transport and
payload format support.

• Artix Contracts describe your applications in such a way that they
become services that can be deployed as Artix Endpoints.

• Artix Services include a number of advanced services, such as the
locator and session manager. Each Artix service is defined with an Artix
contract and can be deployed as an Artix endpoint.

Figure 2 illustrates how the Artix elements fit together.

Plugability Because Artix is built on ART, all Artix services are implemented as plug-ins.
You can also deploy your own services as plug-ins. This means that you can
host any Artix service either as a standalone application or as a plug-in to
another Artix application.

Each separate service, regardless of how it is deployed, becomes a separate
endpoint.

Figure 2: Artix Runtime Components

Artix Bus

Client Server

Endpt
contract

Endpt
contract
 14

The Artix Bus
The Artix Bus

Overview The Artix bus is at the heart of the Artix architecture. It is the component
that hosts the services that you create and connects your applications to
those services.

The bus is also responsible for translating data from one format into
another. This translation process works as follows:

1. Reader plug-ins accept incoming data in one format.

2. The Artix bus directly translates the data into another format.

3. Writer plug-ins write the data back out to the wire in the new format.

In this way, Artix enables all of the services in your company to
communicate, without needing to communicate in the same way. It also
means that clients can contact services without understanding the native
language of the server handling requests.

Benefits While other products provide some ability to expose applications as
services, they frequently require a good deal of coding. The Artix bus
eliminates the need to modify your applications or write code by directly
translating the application’s native communication protocol into any of the
other supported protocols.

For example, by deploying an Artix instance with a SOAP-over-WebSphere
MQ endpoint and a SOAP-over-HTTP endpoint, you can expose a
WebSphere MQ application directly as a Web service. The WebSphere MQ
application does not need to be altered or made aware that it was being
exposed using SOAP over HTTP.

The Artix bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI products, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing overhead and increases the speed at which messages are
transmitted.
15

CHAPTER 2 | Artix Concepts
Artix Endpoints

Overview An Artix endpoint is where a service or a service consumer connects to the
Artix bus. Endpoints are described by a contract describing the services
offered and the physical representation of the data on the network.

Reconfigurable connection An Artix endpoint provides an abstract connection point between
applications, as shown in Figure 2 on page 14. The benefit of using this
abstract connection is that it allows you to change the underlying
communication mechanisms without recoding any of your applications. You
simply need to modify the contract describing the endpoint.

For example, if one of your back-end service providers is a Tuxedo
application and you want to swap it for a CORBA implementation, you
simply change the endpoint’s contract to contain a CORBA connection to
the Artix bus. The clients accessing the back-end service provider do not
need to be aware of the change.
 16

Artix Contracts
Artix Contracts

Overview Artix contracts are written in WSDL. In this way, a standard language is
used to describe the characteristics of services and their associated Artix
endpoints. By defining characteristics such as service operations and
messages in an abstract way—independent of the transport or protocol used
to implement the endpoint—these characteristics can be bound to a variety
of protocols and formats.

Artix allows an abstract definition to be bound to multiple specific protocols
and formats. This means that the same definitions can be reused in multiple
implementations of a service. Artix contracts define the services exposed by
a set of systems, the payload formats and transports available to each
system, and the rules governing how the systems interact with each other.
The simplest Artix contract defines a pair of systems with a shared interface,
payload format, and transport. Artix contracts, however, can define very
complex integration scenarios.

WSDL elements Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL elements are as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with a defined type.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations defined in
a portType.

A WSDL port specifies the transport details for a binding, and defines a
single communication endpoint.

A WSDL service specifies a set of related ports.
17

CHAPTER 2 | Artix Concepts
The Artix contract An Artix contract is specified in WSDL and is conceptually divided into
logical and physical components.

The logical contract

The logical contract specifies components that are independent of the
underlying transport and wire format. It fully specifies the data structure and
the possible operations or interactions with the interface. It enables Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (transport and wire format).

The logical contract includes the types, message, operation, and portType
elements of the WSDL file.

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details. For example:

• The wire format, middleware transport, and service groupings

• The connection between the portType operations and wire formats

• Buffer layout for fixed formats

• Artix extensions to WSDL

The physical contract includes the binding, port, and service elements of
the WSDL file.
 18

Artix Services
Artix Services

Overview In addition to the core Artix components, Artix also provides the following
services:

• Container

• Locator

• Session manager

• Transformer

• Accessing contracts and references

These services provide advanced functionality that Artix deployments can
use to gain even more flexibility.

Container The Artix container provides a consistent mechanism for deploying and
managing Artix services. It allows you to write Web service implementations
as Artix plug-ins and then deploy your services into the Artix container.

Using the container eliminates the need to write your own C++ or Java
server mainline. Instead, you can deploy your service by simply passing the
location of a generated deployment descriptor to the Artix container's
administration client.

IONA strongly recommends that all new client and server Artix
implementations be implemented and deployed in an Artix container.

Locator The Artix locator provides service look-up and load balancing functionality to
an Artix deployment. It isolates clients from changes in a server's contact
information.

The Artix WSDL contract defines how the client contacts the server, and
contains the address of the Artix locator. The locator provides the client with
a reference to the server.

Servers are automatically registered with the locator when they start, and
service endpoints are automatically made available to clients without the
need for additional coding.
19

CHAPTER 2 | Artix Concepts
Session manager The Artix session manager is a group of plug-ins that work together to
manage the number of concurrent clients that access a group of services.
This enables you to control how long each client can use the services in the
group before having to check back with the session manager.

In addition, the session manager has a pluggable policy callback
mechanism that enables you to implement your own session management
policies.

Transformer The Artix transformer provides Artix with a way to transform operation
parameters on the wire using rules written in Extensible Style Sheet
Transformation (XSLT) scripts. The transformer can be used to provide a
simple means of transforming data. For example, it can be used to develop
an application that accepts names as a single string and returns them as
separate first and last name strings.

The transformer can also be placed between two applications where it can
transform messages as they pass between the applications. This
functionality allows you to connect applications that do not use exactly the
same interfaces and still realize the benefits of not using a canonical format
without rewriting the underlying applications.

Accessing contracts and
references

Accessing contracts and references in Artix refers to enabling client and
server applications to find WSDL service contracts and references. Using the
techniques and conventions of Artix avoids the need to hard code WSDL into
your client and server applications.

For more information For more information on Artix services, see Configuring and Deploying Artix
Solutions.
 20

http://www.iona.com/support/docs/artix/4.0/deploy/index.htm
http://www.iona.com/support/docs/artix/4.0/deploy/index.htm

CHAPTER 3

Understanding
WSDL
Artix contracts use WSDL documents to describe services and
the data they use.

In this chapter This chapter discusses the following topics:

WSDL Basics page 22

Abstract Data Type Definitions page 25

Abstract Message Definitions page 28

Abstract Interface Definitions page 31

Mapping to the Concrete Details page 34
21

CHAPTER 3 | Understanding WSDL
WSDL Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website at www.w3.org/TR/wsdl.

Elements of a WSDL document A WSDL document is made up of the following elements:

• import allows you to import another WSDL or XSD file.

• Logical contract elements:

♦ types

♦ message

♦ operation

♦ portType

• Physical contract elements:

♦ binding

♦ port

♦ service

These elements are described in “WSDL elements” on page 17.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Alternatively, one WSDL document could be used to define
several services that use the same abstract messages.

The portType A portType is a collection of abstract operations that define the actions
provided by an endpoint.
 22

http://www.w3.org/TR/wsdl

WSDL Basics
Concrete details When a portType is mapped to a concrete data format, the result is a
concrete representation of the abstract definition, in the form of reusable
binding. A port is defined by associating a network address with a reusable
binding, in the form of an endpoint. A collection of ports (or endpoints)
define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the definition
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

Example Example 1 shows a simple WSDL document.

Example 1: Simple WSDL example

<definitions name="HelloWorld.wsdl"
 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/HelloWorld"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema
 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
 </types>
23

CHAPTER 3 | Understanding WSDL
 <message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
 </message>
 <message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
 </message>
 <portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage"
 name="sayHiRequest"/>
 <output message="tns:ResponseMessage"
 name="sayHiResponse"/>
 </operation>
 </portType>
 <binding name="HelloWorldPTSOAPBinding"
 type="tns:HelloWorldPT">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPTSOAPBinding"
 name="HelloWorldPort">
 <soap:address
location="http://localhost:9000/HelloWorldService/

HelloWorldPort"/>
 </port>
 </service>
</definitions>

Example 1: Simple WSDL example (Continued)
 24

Abstract Data Type Definitions
Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex data types using a combination of
schema types defined in referenced external XML schema documents and
complex types described in types elements.

Complex type definitions Complex data types are described in a types element. The W3C
specification states that XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo structure

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

25

CHAPTER 3 | Understanding WSDL
Example 3 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 2.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"

xmlns:xsd1="http://iona.com/personal/schema" xmlns="http://
www.w3.org/2000/10/XMLSchema"/>

 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor" type="xsd1:hairColorType"/>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"

xmlns:xsd1="http://iona.com/personal/schema" xmlns="http://
www.w3.org/2000/10/XMLSchema"/>

 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 26

Abstract Data Type Definitions
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo (Continued)
27

CHAPTER 3 | Understanding WSDL
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages described in message elements.

Each abstract message consists of one or more parts, defined in part
elements.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and only one output message, the representation of the data returned by
the operation.

In the abstract message definition, you cannot directly describe a message
that represents an operation's return value. Therefore, any return value must
be included in the output message.

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of part elements that represent one element in a
parameter list.

Therefore, all of the input parameters for a method call are defined in one
message and all of the output parameters, including the operation’s return
value, are mapped to another message.

Example For example, imagine a server that stores personal information as defined in
Example 2 on page 25 and provides a method that returns an employee’s
data based on an employee ID number.
 28

Abstract Message Definitions
The method signature for looking up the data would look similar to
Example 5.

This method signature could be mapped to the WSDL fragment shown in
Example 6.

Message naming Each message in a WSDL document must have a unique name within its
namespace. Choose message names that show whether they are input
messages (requests) or output messages (responses).

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name attribute and by either a type or an element
attribute that specifies its data type. The data type attributes are listed in
Table 1.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, which is passed by reference or is an in/out, it can be a part
in both the request message and the response message. An example of
parameter reuse is shown in Example 7.

Example 5: Method for Returning an Employee’s Data

personalInfo lookup(long empId)

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an
element called elem_name.
29

CHAPTER 3 | Understanding WSDL
Example 7: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>
 30

Abstract Interface Definitions
Abstract Interface Definitions

Overview WSDL portType elements define, in an abstract way, the operations offered
by a service. The operations defined in a port type list the input, output, and
any fault messages used by the service to complete the transaction the
operation describes.

Port types A portType can be thought of as an interface description. In many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the portType element in a WSDL document.
Each port type in a WSDL document must have a unique name, specified
using the name attribute, and is made up of a collection of operations,
described in operation elements. A WSDL document can describe any
number of port types.

Operations Operations, described in operation elements in a WSDL document, are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the required name attribute.

Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

 The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description

input Specifies a message that is received from another endpoint.
This element can occur at most once for each operation.
31

CHAPTER 3 | Understanding WSDL
An operation is required to have at least one input or output element. The
elements are defined by two attributes listed in Table 3.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name.

If only one element is used in the operation, the element name defaults to
the name of the operation. If both an input and an output element are
used, the element name defaults to the name of the operation with Request
or Response respectively appended to the name.

Return values Because the port type is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value, it is mapped into the output message
as the last part of that message. The concrete details of how the message
parts are mapped into a physical representation are described in “Bindings”
on page 34.

output Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

fault Specifies a message used to communicate an error condition
between the endpoints. This element is not required and can
occur an unlimited number of times.

Table 2: Operation Message Elements (Continued)

Element Description

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when mapping
the operation to a concrete data format. The name must be
unique within the enclosing port type.

message Specifies the abstract message that describes the data being
sent or received. The value of the message attribute must
correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
 32

Abstract Interface Definitions
Example For example, in implementing a server that stores personal information in
the structure defined in Example 2 on page 25, you might use an interface
similar to the one shown in Example 8.

This interface could be mapped to the port type in Example 9.

Example 8: personalInfo Lookup Interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 9: personalInfo Lookup Port Type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </operation>
</portType>
33

CHAPTER 3 | Understanding WSDL
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions
discussed in the previous section must be mapped to concrete
representations of the data passed between applications. The details
describing the network protocols in use must also be added.

This is accomplished in the WSDL bindings and ports elements. WSDL
binding and port syntax is not tightly specified by the W3C. A specification
is provided that defines the mechanism for defining these syntaxes.
However, the syntaxes for bindings other than SOAP and for network
transports other than HTTP are not defined in a W3C specification.

Bindings Bindings describe the mapping between the abstract messages defined for
each port type and the data format used on the wire. Bindings are described
in binding elements in the WSDL file. A binding can map to only one port
type, but a port type can be mapped to any number of bindings.

It is within the bindings that you specify details such as parameter order,
concrete data types, and return values. For example, a binding can reorder
the parts of a message to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services To define an endpoint that corresponds to a running service, the port
element in the WSDL file associates a binding with the concrete network
information needed to connect to the remote service described in the file.
Each port specifies the address and configuration information for connecting
the application to a network.

Ports are grouped within service elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.
 34

CHAPTER 4

Using Artix
Designer
This chapter introduces Artix Designer, and outlines how you
can use it to build a WSDL file and to generate starting point
code.

In this chapter This chapter discusses the following topics:

Introduction page 36

Creating Artix Designer Projects page 42

Creating a WSDL File page 44

Defining the WSDL Elements page 46

Developing the Applications page 67

Adding Logic to the Code page 74

Running the Applications page 80
35

CHAPTER 4 | Using Artix Designer
Introduction

Overview Artix Designer is a GUI development tool that ships as a series of plug-ins to
the Eclipse platform. Eclipse is an open source development platform and
application framework for building software, as described at eclipse.org.

Artix Designer enables you to write and edit the WSDL files that describe
Artix resources and their integration, and to generate starting point code for
a Web service. Artix Designer also includes perspectives that enable you to
work with Artix for z/OS and Artix database projects, and to use the Artix
Management Console to manage deployed Artix services.

Generating WSDL Artix Designer features a number of wizards that enable you to create WSDL
files based on:

• CORBA IDL files

• Java classes

• XSD schemas

• Fixed record-length data

• Tagged data

• COBOL copybook files

Using the WSDL editor Although there are other XML editors that you can use to write WSDL, Artix
Designer has an understanding of the Artix WSDL extensions and provides
an automated way to write the WSDL files used in an Artix application. For
example, Artix Designer automatically adds the required namespace
declarations and prefix definitions when you build Artix applications that
involve other data marshalling schemas, transport protocols, or routing.

The Artix Designer WSDL editor provides a number of wizards that take you
through the process of creating and editing type, message, portType,
binding, service, and route elements in your WSDL files.

See “Defining the WSDL Elements” on page 46 for more on using the WSDL
editing wizards.
 36

http://www.eclipse.org

Introduction
Generating code Artix Designer’s code generation tool is integrated with the Artix
command-line tools, such as wsdltocpp and wsdltojava, so that you can
use it to generate starting point code in C++ and Java based on your WSDL
files.

In addition, integration with the Eclipse Java Development Tools (JDT) and
C/C++ Development Tools (CDT) means that any code you create is
compiled automatically after you generate it, and is recompiled when you
make any changes to your source.

The Artix code generator allows you to create a variety of code generation
configurations, which you can save and reuse. For example, you can create
configurations for:

• client and server applications

• Artix switch applications

• CORBA IDL

• Artix service plug-ins

• Container applications for hosting service plug-ins

See “Developing the Applications” on page 67 for an example of the Artix
code generator at work.

Artix for z/OS Off-Host
Components

Starting with Artix 4.0, the off-host components of the Artix for z/OS product
are included with the base configuration of Artix Designer. These off-host
components are designed to be used in conjunction with the mainframe
components of Artix for z/OS, which are separately licensed.

Launching Artix Designer To launch Artix Designer in Windows, select Start|(All)
Programs|IONA|Artix 4.0|Artix Designer.

To launch Artix Designer in Linux:

1. Change to the following directory:

Note: The Build Automatically option must be enabled in the Eclipse
Project menu for code to be compiled automatically.

InstallDir/artix/4.0/bin
37

CHAPTER 4 | Using Artix Designer
2. Run the following command:

The Eclipse platform launches with the Artix Designer plug-ins loaded.

Artix Designer project types In Eclipse, all development is performed within a project. Artix Designer
provides the following project types:

• Basic Web services projects, either empty or template-based

• CORBA Web services projects

• Database Web services projects

• Web services projects from EJB

• z/OS Web services projects starting from an application

• z/OS Web services projects starting from WSDL

A CORBA Web services project creates a WSDL file and a switch
configuration based on a CORBA IDL data source.

Artix Designer project templates Artix Designer requires you to specify a template when creating a new Web
services project. The template sets up files and a directory structure for you.

The empty project template creates an Eclipse .project file and the
directory structure that you are likely to use when developing your Web
services project.

The other project templates create all the starting point code and
configuration information needed for your Web services application.

Artix Designer provides the following templates:

• Empty project

• Artix router

• C++ client

• C++ client and container

• C++ client and server

• C++ container

./start_eclipse

Note: You can install Artix Designer into an existing Eclipse 3.1.x
installation, as described in “Configuring Eclipse for Artix Designer” in the
Artix 4.0 Installation Guide.
 38

http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm

Introduction
• C++ server

• Java client

• Java client and container

• Java client and server

• Java container

• Java server

Artix-related perspectives In the Eclipse development framework, a perspective is a predefined layout
of the windows, views, menus, and tools in the Eclipse window. The
following Artix-related perspectives are shipped with Artix Designer:

• The Artix perspective is associated with basic Web services projects,
as well as CORBA and EJB projects.

• The Artix for z/OS perspective is associated with Artix for z/OS projects.

• The Artix Database perspective is associated with Artix database
projects.

• The Artix Management perspective is associated with the container
deployment configuration, and is also available from the standalone
Management Console application.

The Artix perspective When you create an empty Artix Designer Web services project, Eclipse
automatically switches to the Artix perspective.

The Artix perspective provides you with the tools that you need to develop
an Artix project in Eclipse. It includes the following features:

• The Artix toolbar

• The Navigator view

• The Outline view

Note: You must have a valid WSDL file ready before you can create a Web
services project from a template other than the empty project template.
39

CHAPTER 4 | Using Artix Designer
Using the Artix toolbar The Artix toolbar gives you quick access to the primary Artix Designer
functionality. It contains the following buttons:

Table 4: Artix Designer toolbar buttons

Button Description

Run latest Artix Tools configuration.a

Import Artix demos into Artix Designer.

Export Artix for z/OS project
(active in the Artix for z/OS perspective).

Create a BIM file from the current WSDL file
(active in the Artix for z/OS perspective).

Validate selected WSDL for Artix for z/OS
(active in the Artix for z/OS perspective).

Add import element to currently selected WSDL file.

Add type element to currently selected WSDL file.

Add message element to currently selected WSDL file.

Add portType element to currently selected WSDL file.

Add binding element to currently selected WSDL file.

Add service element to currently selected WSDL file.

Add route element to currently selected WSDL file.

Define an access control list (ACL) to apply to a port type or
an operation.

CORBA-enable the current WSDL file after it has a fully
defined interface.
 40

Introduction
Cheat sheets The Eclipse environment provides an online documentation type that it calls
cheat sheets. Cheat sheets are interactive tutorials that guide you step by
step through common tasks.

Artix Designer ships with serveral Artix-related cheat sheets to help you:

• Create an Artix Designer project

• Generate a client-server application

• Create a WSDL file’s logical and physical elements

• Generate code for a services plug-in and deploy it in an Artix container

Each cheat sheet lists the steps required to complete a particular task. As
you progress from one step to the next, the cheat sheet automatically
launches the required tools for you.

Artix Designer also provides cheat sheets to help you learn to use the Artix
Management Console, the Artix for z/OS off-host components, and Artix
database services.

To view the available Artix Designer cheat sheets, select Help|Cheat
Sheets.

Online Help Help on Artix Designer is available from within the Eclipse online Help
system.

Select Help|Help Contents to view the Eclipse Help. The Artix Designer
Help section is listed in the table of contents frame on the left.

In addition, you can access context-sensitive Help from within the Artix
Designer wizards and the Artix Generator window by pressing F1.

SOAP-enable the current WSDL file after it has a fully defined
interface.

a. If a code generation configuration already exists, clicking this button
launches the last-used configuration. Click the down arrow next to
this button to run other configurations, or to open the Artix Tools
dialog.

Table 4: Artix Designer toolbar buttons (Continued)

Button Description
41

CHAPTER 4 | Using Artix Designer
Creating Artix Designer Projects

Overview This section begins a tutorial on creating and using Artix Designer projects in
Eclipse. The tutorial walks you through the steps to create two empty, basic
Web services projects, one for your Java code and one for your C++ code.

Creating the Web services
projects

To create a basic Web services project:

1. In Eclipse, select File|New|Project.

2. In the New Project dialog box, expand the IONA Artix Designer folder.

3. Select Basic Web Services Project and then click Next.

4. In the New Basic Web Service Project panel:

i. Type JavaHello in the Project name text box.

ii. Leave the Use default checkbox checked (unless you want to
store the project somewhere other than your current Eclipse
workspace).

iii. Select Empty project in the Project Templates area.

iv. Click Finish.

5. If is not currently open, Eclipse automatically switches to the Artix
perspective.

Note: You must keep your C++ and Java code in separate projects,
because Eclipse does not support the use of the JDT and the CDT in the
same project.
 42

Creating Artix Designer Projects
An empty project name JavaHello, containing a number of empty folders, is
added to the Navigator view in Eclipse.

Now create a second empty, basic Web services project and name it
CppHello.

Your Eclipse workspace now displays two Artix projects in the Navigator
view:

• CppHello

• JavaHello

Figure 3: The Empty JavaHello Project in the Navigator View
43

CHAPTER 4 | Using Artix Designer
Creating a WSDL File

Overview This section shows how to use Artix Designer to create a simple WSDL file
that forms the basis of your Web services application. The same WSDL file
is used to generate both Java and C++ versions of an application.

Creating an empty WSDL file To create an empty WSDL file:

1. Make sure the Artix perspective is currently active in the Eclipse
workspace.

2. Select File|New|WSDL File.

3. In the WSDL File panel, select the JavaHello project folder. This
specifies where the WSDL file is to be stored.

4. In the File name text box, type HelloWorld.

5. Click Finish.

The HelloWorld.wsdl file opens in the WSDL Editor.

Linking to the WSDL file from
CppHello

To generate the C++ client and server code from the same
HelloWorld.wsdl WSDL file, link to the Java project’s file from the CppHello
project:

1. In the Eclipse workspace, select File|New|WSDL File.

2. In the WSDL File panel, select the CppHello project folder.

3. In the File name text box, type HelloWorld.

4. Click the Advanced button.

5. Select the Link to file in the file system checkbox and click Browse.

6. Browse to the EclipseWorkspace\JavaHello directory, select the
HelloWorld.wsdl file, and click Open.

7. Click Finish.

Note: You specified the location of your EclipseWorkspace directory when
you first started Eclipse. The default location for Windows users is in your
My Documents directory. The default location for UNIX/Linux users is
ArtixInstallDir/artix/4.0/eclipse/workspace
 44

Creating a WSDL File
The HelloWorld.wsdl file now appears as a link in the CppHello project.

Figure 4: The CppHello Project With a Link to the HelloWorld.wsdl File

Note: When you use a link to a file (instead of a copy of the file), the same
file is used by both the CppHello and JavaHello projects.

It is also possible to import the WSDL file into the CppHello project by
selecting File|Import. However, this would create a separate physical file,
and any changes you made to one WSDL file would not be replicated in
the other.
45

CHAPTER 4 | Using Artix Designer
Defining the WSDL Elements

Overview Next, add the elements to make the WSDL file a valid Artix contract.

Artix Designer provides a series of wizards that allow you to create each of
these elements.

This section guides you through the task of creating the contract elements in
the following topics:

• “Defining Types” on page 47

• “Defining Messages” on page 52

• “Defining Port Types” on page 55

• “Defining Bindings” on page 59

• “Defining a Service” on page 63
 46

Defining the WSDL Elements
Defining Types

Overview The types element of the WSDL file contains all the data types used
between the client and server.

In this simple example, we will create two element types of type string:

• InElement, which maps to the in part of the request message that you
will create later

• OutElement, which maps to the out part of the response message.

Defining element types To define the InElement type:

1. Open the HelloWorld.wsdl file from either the JavaHello or the
CppHello project.

2. Click the Diagram tab at bottom of the WSDL Editor view.

3. In the Diagram view, right-click the Types node.

4. Select New Type from the pop-up menu. The New Type wizard opens.

Note: You can also add elements to a WSDL file from the Artix
Designer menu, or by clicking the appropriate icon in the Artix
toolbar. See Table 4 on page 40 for more on the available icons.
47

CHAPTER 4 | Using Artix Designer
5. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

6. Click Next to display the Define Type Properties panel.

7. In the Define Type Properties panel:

i. Type InElement in the Name text box.

ii. Accept the default target namespace provided.

iii. Select the element radio button.

Figure 5: The Select Source Resources Panel
 48

Defining the WSDL Elements
iv. Click Next.

8. In the Define Element Data panel:

i. Select the Pre-declared Type button.

ii. Select string from the drop-down list.

Figure 6: The Define Type Properties Panel
49

CHAPTER 4 | Using Artix Designer
iii. Leave the other controls blank.

9. Click Next to display the View Type Summary panel, then click Finish.

To define the OutElement type:

1. Repeat steps 2 to 6 above.

2. In the Define Type Properties panel:

i. Enter OutElement in the Name field.

ii. Select the element radio button

iii. Click Next.

3. In the Define Element Data panel:

i. Select Pre-declared Type

ii. Select string from the drop-down list.

iii. Click Next.

4. In the View Type Summary panel, click Finish.

Save your WSDL file by selecting File|Save from the menu bar or right-click
in the Source view and select Save.

Figure 7: The Define Element Data Panel
 50

Defining the WSDL Elements
Review Click the Source tab at the bottom of the WSDL Editor view to look over the
WSDL file created so far.

In the Outline view in the lower left of the Eclipse window, open the Types
node. Click the name of a types element to jump to that element in the
WSDL Editor view.

<types>
 <schema targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
</types>
51

CHAPTER 4 | Using Artix Designer
Defining Messages

Overview Now that you have created the WSDL types, you can define the request and
response messages for your Web service.

You will use your types as the message parts.

Defining messages To define the request message:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Messages node.

2. Select New Message from the pop-up menu. The New Message wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.

5. In the the Define Message Properties panel:

i. Type RequestMessage in the Name text box.

ii. Click Next.

6. In the Define Message Parts panel:

i. Type InPart in the Name text box.

ii. Select InElement from the Type drop-down list.

Figure 8: Define Message Properties panel
 52

Defining the WSDL Elements
iii. Click Add to add the message part to the Part List section.

7. Click Next to display the View Message Summary panel.

8. Click Finish.

To define the response message:

1. Repeat steps 1 to 4 above.

2. In the Define Message Properties panel:

i. Type ResponseMessage in the Name text box

ii. Click Next.

3. In the Define Message Parts panel:

i. Type OutPart in the Name text box

ii. Select OutElement from the Type drop-down list.

Figure 9: The Define Message Parts panel

Figure 10: The Define Message Parts panel, after clicking Add
53

CHAPTER 4 | Using Artix Designer
iii. Click Add to add the message part to the Part List section.

4. Click Next to display the View Message Summary panel.

5. Click Finish.

6. Save the WSDL file.

Review You have now added request and response messages to your WSDL file.

The request message includes an in part that maps to the InElement type,
and the response message includes an out part that maps to the OutElement
type.

For a thorough explanation of creating messages, see Understanding Artix
Contracts.

<message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
</message>
<message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
</message>
 54

http://www.iona.com/support/docs/artix/4.0/contract/index.htm
http://www.iona.com/support/docs/artix/4.0/contract/index.htm

Defining the WSDL Elements
Defining Port Types

Overview The portType element contains operations, which are composed of one or
more messages:

• A one-way operation includes only an input message; the client
application does not receive a response from the Web service.

• A request-response operation includes an input message, an output
message, and zero or more fault messages1.

In this example, you will define a port type that includes one
request-response operation called sayHi which uses RequestMessage as its
input and ResponseMessage as its output.

There is nothing significant about the names assigned to the messages or
parts; name assignments are to assist the developer. Artix does not care
what names are used.

Defining a port type To define a port type:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Port Types node.

2. Select New Port Type from the pop-up menu. The New Port Type
wizard opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.

1. Defining and coding fault messages is discussed in “Creating User-Defined
Exceptions” in both Developing Artix Applications in C++ and Developing Artix
Applications in Java.
55

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 4 | Using Artix Designer
5. In the Define Port Type Properties panel:

i. Type HelloWorldPT in the Name text box.

ii. Click Next.

6. In the Define Port Type Operations panel:

i. Type sayHi in the Name text box.

ii. Select Request-response from the Style drop-down list.

7. Click Next.

Figure 11: The Define Port Type Properties panel

Figure 12: The Define Port Type Operations panel
 56

Defining the WSDL Elements
8. In the Define Operation Messages panel:

i. In the Type drop-down list, select input.

ii. In the Message drop-down list, select RequestMessage.

The name SayHiRequest appears in the Name text box. You can
change this to something more meaningful for your application if
you prefer. For this tutorial, leave the suggested name as is.

iii. Click Add to add the operation to the Operation Messages
section.

iv. Expand the Type drop-down list again. Note that input no longer
appears in the list, because an operation can have only one input
message.

v. Select output from the Type list and ResponseMessage from the
Message list.

The name sayHiResponse appears in the Name text box. Leave
the suggested name as is.

vi. Click Add to add the operation to the Operation Messages
section.

Figure 13: The Define Operation Messages Panel
57

CHAPTER 4 | Using Artix Designer
9. Click Next to display the Port Type Summary panel.

10. Click Finish to close the wizard.

11. Save the WSDL file.

Review You have now added the following portType element to your WSDL file.

Note: Expand the Type drop-down list again and notice that the
output entry no longer appears in the list. This is because an
operation can have only one output message.

Although this example does not include any fault messages, you can
add one or more fault messages to each operation.

<portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
 58

Defining the WSDL Elements
Defining Bindings

Overview The binding element in a WSDL file defines the message format and
protocol details for each port. Each binding is associated with a single
portType element, although the same portType can be associated with
multiple bindings.

In this example, you will specify the document/literal binding style, which is
required when message parts are element types.

Defining a binding To define a binding:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Bindings node.

2. Select New Binding from the pop-up menu. The New Binding wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.
59

CHAPTER 4 | Using Artix Designer
5. In the Select Binding Type panel:

i. Select SOAP from the list of binding types.

ii. Click Next.

6. In the Set Binding Defaults panel:

i. Select HelloWorldPT from the Port Type drop-down list.

In this case, your WSDL file contains only one portType element.
If there were multiple port types, you would select one from the
drop-down list.

ii. In the Additional Settings section, select document from the
Style drop-down list.

iii. Select literal from the Use drop-down list.

Figure 14: The Select Binding Type Panel

Note: A name is already entered in the Binding text box. You can
change this entry, but be sure to give each binding in the WSDL file a
unique name.
 60

Defining the WSDL Elements
iv. Click Next.

7. In the Edit Operation panel:

i. In the Operations Editor on the left, expand the Operations node.

ii. Click each sayHi operation node to review its binding details.

Figure 15: The Set Binding Defaults Panel

Figure 16: Edit Operation panel
61

CHAPTER 4 | Using Artix Designer
8. Click Next to display the View Binding Summary panel.

9. Click Finish to close the wizard.

10. Save the WSDL file.

Review You have now added the following binding element to your WSDL file.

Figure 17: Edit Operation panel, sayHi node selected

<binding name="HelloWorldPTSOAPBinding” type="tns:HelloWorldPT">
 <soap:binding style="document" transport="http://

schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
 62

Defining the WSDL Elements
Defining a Service

Overview The service element of a WSDL file provides transport-specific information.
Each service element can include one or more port elements. Each port
element must be uniquely identified by the value of its name attribute.

Each port element is associated with a single binding element, although
the same binding element can be associated with one or more port
elements. In addition, a WSDL file can contain multiple service elements.

In this example, the WSDL file contains one service element, which
contains a single port element.

Defining a service To define a service:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Services node.

2. Select New Service from the pop-up menu. The New Service wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.

5. In the Define Service panel:

i. Type HelloWorldService in the Name text box.

ii. Click Next.

Figure 18: The Define Service Panel
63

CHAPTER 4 | Using Artix Designer
6. In the Define Port panel:

i. Type HelloWorldPort in the Name text box.

ii. Select HelloWorldPTSOAPBinding from the Binding drop-down
list.

iii. Click Next.

7. In the Define Port Properties panel:

i. From the Transport Type drop-down list, select SOAP/HTTP.

ii. In the Address section, click below the Value header and type the
following as the value for the location attribute:

Figure 19: The Define Port panel

http://localhost:9000/HelloWorldService/HelloWorldPort

Figure 20: The Define Port Properties panel
 64

Defining the WSDL Elements
8. Click Next to display the View Service and Port Summary panel.

9. Click Finish to close the wizard.

10. Save the WSDL file.

Review You have now completed your WSDL contract and are ready to use it to
develop an application.

Click the Source tab in the WSDL Editor to review the WSDL that you have
created. It should look like the following:

Example 10:The completed HelloWorld.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--Created by IONA Artix Designer-->
<definitions name="HelloWorld.wsdl"
 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/HelloWorld"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema

 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
 </types>
 <message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
 </message>
 <message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
 </message>
 <portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/

>
 </operation>
 </portType>
65

CHAPTER 4 | Using Artix Designer
 <binding name="HelloWorldPTSOAPBinding"
type="tns:HelloWorldPT">

 <soap:binding style="document" transport="http://
schemas.xmlsoap.org/soap/http"/>

 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPTSOAPBinding"

 name="HelloWorldPort">
 <soap:address location="http://localhost:9000/

HelloWorldService/HelloWorldPort"/>
 </port>
 </service>
</definitions>

Example 10:The completed HelloWorld.wsdl file (Continued)
 66

Developing the Applications
Developing the Applications

Overview In this section, you will develop client and server applications in both Java
and C++ based on the HelloWorld.wsdl file.

To do this, you will use the Artix Tools to generate the code and any other
necessary configuration files.

Compiling the code automatically Because the Artix Tools are integrated with the Eclipse JDT and CDT, you
can ensure that your code is compiled automatically as soon as it is
generated. In addition, any changes you make to a Java or C++ file will be
recompiled as soon as you save the file.

To make sure your code is compiled automatically, select Build
Automatically from the Project menu in Eclipse.
67

CHAPTER 4 | Using Artix Designer
Creating code generation configurations

Artix Tools The Artix Tools allow you to create and manage code generation
configurations, and to generate code.

In this example, we will create separate code generation configurations for a

• Java client and server

• C++ client and server
 68

Developing the Applications
Creating the Java client and server To create the Java client and server configuration:

1. From the Artix Designer menu, select Artix Tools | Artix Tools.

2. In the Artix Tools panel, select Artix Code Generation and click New to
create a configuration.

3. In the Name text box, replace the default name with something more
meaningful, such as JavaHello.

4. In the General Details tabbed page:

i. Type a description for the configuration in the Description text
box. For example, enter Configuration for HelloWorld Java
client and server.

ii. From the Targeted Project drop-down list, select JavaHello.

Figure 21: The Artix Tools panel
69

CHAPTER 4 | Using Artix Designer
iii. From the WSDL (XSD) File drop-down list, select
HelloWorld.wsdl.

iv. Make sure the Installation Directory text box displays the path to
your Artix installation directory; for example C:\Iona.

v. Make sure the Environment File text box displays the correct path
to your artix_env script.

5. Click the Generation tab. Then:

i. In the Generation Type section, select Application.

ii. In the Application Type section, select Client and server.

iii. In the Development Language section, select Java.

Figure 22: Artix Tools panel, General tab
 70

Developing the Applications
iv. Leave the other controls in their default states.

6. Click the WSDL Details tab. Then:

i. Select the Services/ports radio button.

ii. Make sure the HelloWorldService / HelloWorldPort checkbox is
checked.

Figure 23: Artix Tools panel, Generation tab
71

CHAPTER 4 | Using Artix Designer
iii. In the Generation Options section, select all three check boxes.

7. Click Run.

The Artix Tools create all the Java classes and configuration files for your
client application. The Eclipse JDT compiles the code automatically.

The source code is stored in the following location:

The compiled bytecode is written to the following location:

Creating the C++ client and
server

Since the Java and C++ applications are so similar, you can quickly create
the C++ configuration by duplicating the Java configuration and editing it.

Figure 24: Artix Tools panel, WSDL Details tab

EclipseWorkspace\JavaHello\outputs\applications\JavaHello\src\com
\iona\artix\JavaHello

EclipseWorkspace\JavaHello\bin

Note: Make sure you have sourced the correct version of Visual C++ in
your start_eclipse script before creating the C++ configuration. See the
Installation Guide for information on setting this up.
 72

http://www.iona.com/support/docs/artix/4.0/install_guide/index.htm

Developing the Applications
To create the C++ client and server configuration:

1. In the Eclipse menu, select the Artix Designer | Artix Tools | Artix
Tools menu.

2. In the Artix Tools window, in the Configurations tree on the left,
right-click the JavaHello configuration and select Duplicate from the
context menu.

3. In the Name text box, change the name to CppHello.

4. In the General tabbed page:

i. Edit the description.

ii. From the Targeted Project drop-down list, select CppHello.

iii. From the WSDL (XSD) File drop-down list, select
HelloWorld.wsdl.

5. Click the Generation tab. Then:

i. In the Generation Type section, select Application.

ii. In the Application Type section, select Client and server.

iii. In the Development Language section, select C++.

iv. In the C++ Code Generation section, select the Generate a make
file checkbox.

6. Click the WSDL Details tab. Then:

i. Select the Services/ports radio button.

ii. Make sure the HelloWorldService / HelloWorldPort checkbox is
checked.

iii. In the Generation Options section, check all three options.

7. Click Run.

The Artix Tools create all the C++ source and header files for your client
and server applications in the following location:

EclipseWorkspace\CppHello\outputs\applications\CppHello\src
73

CHAPTER 4 | Using Artix Designer
Adding Logic to the Code

Overview Through the code generation process, you have generated client and server
application code in both C++ and Java.

All of these applications compile and run. However, because there is no
business logic in the server implementation, and because the C++ client
code does not actually make a request against the Web service, running the
applications does not produce output.

You must complete the coding in the files representing the C++ and Java
implementation objects and in the C++ client mainline file. The Java client
mainline file is a complete but very basic application, and thereby needs no
modification.

In this section This section contains the following topics:

• “The Java Code” on page 75

• “The C++ Code” on page 77
 74

Adding Logic to the Code
The Java Code

Overview The code generation produced several files. This subsection explains the
purpose of each of these files. The files are:

• “HelloWorldPTServer.java”

• “HelloWorldPTImpl.java”

• “HelloWorldPT.java”

• “HelloWorldPTTypeFactory.java”

• “HelloWorldPTDemo.java”

HelloWorldPTServer.java This file contains starting point code for a server mainline application. For
this simple example, the generated code in this file represents a fully
functional application. With a more involved application, you might extend
the generated code.

You may want to add the following line to the main() method, before the
bus.run(); statement, so that something appears in the Eclipse Console
view when the server runs:

The Eclipse JDT automatically recompiles the bytecode with your changes.

HelloWorldPTImpl.java This file contains the starting point code for your Web service’s
implementation class. For this example, you need to modify the sayHi
method.

To complete the sayHi method:

1. Open the file HelloWorldPTImpl.java.

2. Add the following code to the sayHi method body:

Save the file.

System.out.println("Starting server ...");

return "Hello " + inPart;
75

CHAPTER 4 | Using Artix Designer
HelloWorldPT.java This file represents the interface definition common to both the client and
server applications. This interface defines the operation offered by the Web
service.

HelloWorldPTTypeFactory.java Definition of the classes that create and manage any types defined in your
WSDL file.

HelloWorldPTDemo.java This file represents the client mainline application. For this simple example,
the generated code in this file represents a fully functioning application.
With a more involved application, you would use this code as a template for
writing a more complex client application.

public String sayHi(String inPart) throws RemoteException
 76

Adding Logic to the Code
The C++ Code

Overview The code generation wizard produces several files. This subsection explains
the purpose of each of these files. The files are:

• “HelloWorldPTClientSample.cxx”

• “HelloWorldPT.h” on page 78

• “HelloWorldPTClient.h/.cxx” on page 78

• “HelloWorld_wsdlTypesFactory.h/.cxx” on page 78

• “HelloWorldPTServer.h/.cxx” on page 78

• “HelloWorldPTServerSample.cxx” on page 78

• “HelloWorldPTImpl.h/.cxx” on page 79

HelloWorldPTClientSample.cxx The only file you need to edit is HelloWorldPTClientSample.cxx.

The code generation process produces a simple invocation of the sayHi
method, but the code is commented out, there is no value assigned to the
InPart string, and there is no output statement.

To add these features, complete the following steps:

1. Open the HelloWorldPTClientSample.cxx file, look for the phrase
"Sample invocation calls," and add the following code:

2. Save and exit the file.

The Eclipse CDT automatically recompiles the code with your changes.

IT_Bus::String InPart="Artix User";
IT_Bus::String OutPart;
client->sayHi(InPart, OutPart);
cout << OutPart << endl;
77

CHAPTER 4 | Using Artix Designer
HelloWorldPT.h This header file is common to both the client and server applications. It
contains the signatures for each of the Web service operations. Open this file
and review the signature for the sayHi method.

HelloWorldPTClient.h/.cxx These files represent the client proxy class. Your client mainline code must
instantiate an instance of this class to invoke on the Web service. The proxy
class includes multiple constructors, a destructor, and a method for each of
the Web service’s operations.

In this simple application, your client code uses the no argument
constructor. Alternative constructors allow you to change the WSDL file,
service name, or port name initialization values. One constructor allows
initialization from an Artix reference.

HelloWorld_wsdlTypesFactory.h/
.cxx

These files are common to both the client and server applications and
include definitions and implementations for the factory methods required if
your application-specific types includes the anyType.

For this tutorial, you do not need to be concerned with the contents of these
files.

HelloWorldPTServer.h/.cxx These files represent the server stub class. Your code does not directly use
this class. Rather, the implementation class is a subclass of the
HelloWorldPTServer class.

For this tutorial, you do not need to be concerned with the contents of these
files.

HelloWorldPTServerSample.cxx This file represents the server mainline application. For this tutorial, you do
not need to edit the contents of this file. The server mainline instantiates an
instance of the implementation class and registers it with the Artix runtime.
The process then enters an event loop to process incoming requests.

virtual void
 sayHi(
 const IT_Bus::String &InPart,
 IT_Bus::String &OutPart
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
 78

Adding Logic to the Code
HelloWorldPTImpl.h/.cxx These files represent your Web service’s implementation class. The
HelloWorldPTImpl.cxx file contains compilable code, including basic
processing logic in the method bodies.
79

CHAPTER 4 | Using Artix Designer
Running the Applications

Overview You are now ready to run the client and server applications in both C++
and Java.

You can launch Java and C++ applications from within the Eclipse
environment, although the procedures for each are different.

Running the Java applications To run the Java server:

1. Right-click the JavaHello project folder and select Run As|Run from
the context menu (or invoke Run | Run from the main Eclipse menu).

2. In the Run dialog, select JavaHello_HelloWorldPTServer_server from
the Configurations tree on the left.

3. Click Run.

The server process starts running in the Eclipse Console view. After a
moment, the words "Server Ready" appear in the Eclipse Console view.

To run the Java client:

1. Right-click the JavaHello project folder and select Run As|Run from
the context menu.

2. Select JavaHello_HelloWorldPTDemo_client from the Configurations
tree on the left.

3. Click the Arguments tab.

4. In the Program Arguments text box, add the following to the end of the
argument:

5. Click Apply.

6. Click Run.

The words “Hello Artix User” appear in the Eclipse Console view.

Stopping applications started
within Eclipse

You can stop applications that you started within Eclipse by using the
toolbar buttons above the Eclipse Console view.

sayHi "Artix User"
 80

Running the Applications
To clear the client output, click the Remove All Terminated Launches
button on the Console view’s toolbar.

To stop the server process, click the Terminate button.

Click the Remove All Terminated Launches button again to clear the server
output.

Running the C++ applications To run the C++ client against the C++ server:

1. From the Eclipse menu bar, select Run | External Tools | External
Tools.

2. In the External Tools window, expand the Program node in the
Configurations tree on the left.

3. Select the launch configuration entry for CppHelloServer.

4. Click Run.

5. Select the launch configuration entry for CppHelloClient.

6. Click Run.

Cancel and clear the C++ applications as described in “Stopping
applications started within Eclipse” on page 80.

Command-line alternatives When you use an Artix Designer code generation configuration to create an
Artix application, start and stop scripts are added to the project’s bin
directory.

You can launch both Java and C++ applications by running the appropriate
start script from the command prompt.

Figure 25: Eclipse Console View toolbar

Remove All Terminated LaunchesTerminate

Note: If an application takes any arguments, you must edit its start script
accordingly.
81

CHAPTER 4 | Using Artix Designer
To run your C++ application from the command line:

1. Open a command prompt and change to the following directory:

2. Run the start_service_HelloWorldPTServer script.

The server application launches in a new command window.

3. Run the start_client_HelloWorldPTClient script.

The client application launches and displays the words “Hello Artix
User.”

Press Ctrl+C to close the client and server command windows, in that
order.

EclipseWorkspace\CppHello\outputs\applications\CppHello\bin
 82

Index

A
Adaptive Runtime Technology, see ART
applications

developing 67
running 80

ART 2, 4, 14
Artix

bus 15
contracts 17, 18, 46
documentation 9
features 5
locator 19
session manager 20
transformer 20

Artix Designer
projects 38, 42
using 35–??

Artix Generator 67

B
BEA Tuxedo 4
bindings 17, 34, 59
bus 15

C
C/C++ Development Tools, see CDT
CDR 6
CDT 37, 42, 67, 77
COBOL 36
code

adding logic to 74
generating 67

Common Data Representation, see CDR
contracts 17, 18, 46
CORBA 6, 38
CORBA IDL 7, 36

D
deployment phase 8
design phase 7
development phase 8
E
EAI 3
Eclipse 8, 36, 37, 38, 39, 41, 42, 43, 44, 51, 67,

72, 73, 75, 77, 80
console view 75, 80
help system 41

endpoints 14
enterprise application integration, see EAI
enterprise service bus, See ESB
ESB 2

F
Field Manipulation Language, see FML
Fixed 6
fixed record length, see FRL
FML 6
FRL 6

G
G2 6
generating code 67

H
HTTP 6

I
IDL 7
IIOP 6

J
Java Development Tools, see JDT
Java Messaging Service 6
JDT 37, 42, 67, 72, 75

L
locator 19

M
messages 17, 52
MQSeries 6
83

INDEX
O
operations 17, 31

P
payload formats 6
plug-ins 14
ports 17
portTypes 17, 22, 31, 55
protocols 6

S
service 63
service-oriented architecture, see SOA
services 17, 34
session manager 20
SOA 2
SOAP 2, 6

T
TIBCO 6
TibrvMsg 6
transformer 20
transports 6
Tuxedo 6
types 17, 47

V
VRL 6

W
W3C 22
Web Services Description Language, see WSDL
WebSphere MQ 4
World Wide Web Consortium, see W3C
WSDL 9, 17, 21–34

defined 22
WSDL files

adding elements to 46
creating 44

X
XML 6
XML Schema Definition, see XSD
XSD 25, 36
 84

	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	Organization of this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction
	What is Artix?
	Solving Problems with Artix
	Using the Artix Documentation

	Artix Concepts
	The Artix Runtime Components
	The Artix Bus
	Artix Endpoints
	Artix Contracts
	Artix Services

	Understanding WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Using Artix Designer
	Introduction
	Creating Artix Designer Projects
	Creating a WSDL File
	Defining the WSDL Elements
	Defining Types
	Defining Messages
	Defining Port Types
	Defining Bindings
	Defining a Service

	Developing the Applications
	Creating code generation configurations

	Adding Logic to the Code
	The Java Code
	The C++ Code

	Running the Applications

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

