
Developing Advanced Artix
Plug-Ins in C++
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photo- copying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2005–2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 23-Mar-2006

iii

Contents
List of Figures v

Preface vii

Chapter 1 Basic Plug-In Implementation 1
Overview of a Basic Artix Plug-In 2
Developing an Artix Plug-In 6

Development Steps 7
Implementing a BusPlugInFactory Class 8
Implementing a BusPlugIn Class 11
Creating Static Instances 15

Chapter 2 Request Interceptors 17
Overview of Request Interceptors 18

Client Request Interceptors 19
Server Request Interceptors 23

Sending and Receiving Header Contexts 31
SOAP Header Context Example 32
Sample Context Schema 34
Implementation of the Client Request Interceptor 37
Implementation of the Server Request Interceptor 44
Implementation of the Interceptor Factory 50

Accessing and Modifying Parameters 59
Reflection Example 60
Implementation of the Client Request Interceptor 63
Implementation of the Server Request Interceptor 68

Raising Exceptions 73

Chapter 3 WSDL Extension Elements 77
WSDL Structure 78
WSDL Parse Tree 80
How to Extend WSDL 84
Extension Elements for the Stub Plug-In 87

CONTENTS

 iv

Implementing an Extension Element Base Class 88
Implementing the Extension Element Classes 92
Implementing the Extension Factory 97
Registering the Extension Factory 105

Chapter 4 Artix Transport Plug-Ins 107
The Artix Transport Layer 108

Architecture Overview 109
Artix Transport Classes 111

Transport Threading Models 114
Threading Introduction 115
MESSAGING_PORT_DRIVEN and MULTI_INSTANCE 117
MESSAGING_PORT_DRIVEN and MULTI_THREADED 119
MESSAGING_PORT_DRIVEN and SINGLE_THREADED 122
EXTERNALLY_DRIVEN 124

Dispatch Policies 126
Dispatch Policy Overview 127
RPC-Style Dispatch 129
Messaging-Style Dispatch 132

Accessing Contexts 135
Oneway Semantics 140
Stub Transport Example 143

Implementing the Client Transport 144
Implementing the Server Transport 151
Implementing the Transport Factory 158
Registering and Packaging the Transport 165

Chapter 5 Artix Logging Reference 167
Using Artix TRACE Macros 168

Index 173

v

List of Figures
Figure 1: Loading a Plug-In 3

Figure 2: Initializing a Plug-In 5

Figure 3: A Client Request Interceptor Chain 19

Figure 4: Server Request Interceptor Chain 23

Figure 5: Server Request Interceptors Using intercept_around_dispatch() 24

Figure 6: Overview of the Custom SOAP Header Demonstration 32

Figure 7: WSDL Parse Tree Inheritance Hierarchy 81

Figure 8: Factory Pattern for WSDL Extension Elements 85

Figure 9: Extension Element Classes 86

Figure 10: Artix Transport Architecture 109

Figure 11: Overview of the Artix Transport Classes 111

Figure 12: MESSAGING_PORT_DRIVEN and MULTI_INSTANCE Threading Model 117

Figure 13: MESSAGING_PORT_DRIVEN and MULTI_THREADED Threading Model 119

Figure 14: MESSAGING_PORT_DRIVEN and SINGLE_THREADED Threading Model 122

Figure 15: EXTERNALLY_DRIVEN Threading Model 124

Figure 16: Overview of RPC-Style Dispatch 129

Figure 17: Overview of Messaging-Style Dispatch 132

LIST OF FIGURES

 vi

vii

Preface
What is Covered in this Book
Artix is built on top of IONA's ART (Adaptive Runtime Technology), which

uses dynamic linking to load Artix plug-ins at runtime. This book explains

how to write your own plug-ins for the ART framework. Two major areas are

covered: implementing Artix interceptors, which enables you to access

request and reply messages as they pass through the stack; and

implementing Artix transports, which enables you to implement custom

transport protocols.

Who Should Read this Book
This book is aimed at experienced Artix developers who need to customize

the behavior of their Artix applications using advanced APIs.

If you would like to know more about WSDL concepts, see the Introduction

to WSDL in Learning about Artix.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing and Developing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

PREFACE

 viii

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

• Using Artix Designer describes how to use Artix Designer to build Artix

solutions.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview

of service-oriented architectures and describes how they can be

implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix

contract. Special attention is paid to the WSDL extensions used to

define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical

aspects of implementing advanced plug-ins (for example, interceptors)

using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure

and deploy Artix-enabled systems, and provides examples of typical

use cases.

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm

PREFACE

ix

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session

manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++

applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java

applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies:

• Artix for CORBA provides information on using Artix in a CORBA

environment.

• Artix for J2EE provides information on using Artix to integrate with

J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the

documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC

Patrol.

• CA WSDM Integration Guide explains how to integrate Artix with CA

WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix

APIs, WSDL extensions, configuration variables, command-line tools, and

terminology. The reference documentation includes:

• Artix Command Line Reference

../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm

PREFACE

 x

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive

online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix

Designer and the Artix Management Console appear in the contents

panel of the Eclipse help browser.

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

xi

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select

Help|Cheat Sheets.

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.

It provides quick definitions of the main Artix components and concepts. All

terms are defined in the context of the development and deployment of Web

services using Artix.

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/

index.xml) contains helpful articles written by IONA experts about Artix and

other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)

contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online

Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be

sent to .

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

 xii

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the IT_Bus::AnyType

class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/ YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

PREFACE

xiii

Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).

PREFACE

 xiv

1

CHAPTER 1

Basic Plug-In
Implementation
This chapter describes how to implement the core classes of
an Artix plug-in, IT_Bus::BusPlugInFactory and
IT_Bus::BusPlugIn.

In this chapter This chapter discusses the following topics:

Overview of a Basic Artix Plug-In page 2

Developing an Artix Plug-In page 6

CHAPTER 1 | Basic Plug-In Implementation

 2

Overview of a Basic Artix Plug-In

Overview This section describes the basic features of an Artix plug-in:

• Artix plug-ins.

• Plug-in packaging.

• Configuration.

• Loading the plug-in.

• Initializing the plug-in.

• BusPlugInFactory object.

• BusPlugIn object.

Artix plug-ins An Artix plug-in is a well-defined component that can be independently

loaded into an application. Artix defines a platform-independent framework

for loading plug-ins dynamically, based on the dynamic linking capabilities

of modern operating systems (that is, using shared libraries or DLLs).

Plug-in packaging Plug-ins are packaged in a form that is compatible with the dynamic linking

capabilities of the particular platform on which they are deployed: a shared

library, a DLL, or a JAR file.

For example, version 5 of a tunnel plug-in implemented in C++ for the

Visual C++ 6.0 compiler on the Windows platform would be packaged as a

.dll file and a .dps file (ART-specific dependencies file), as follows:

it_tunnel5_vc60.dll
it_tunnel5_vc60.dps

Configuration The plug-ins that an application should load are specified by the

orb_plugins configuration variable, which contains a list of plug-in names.

In addition, for each plug-in that is to be loaded, you need to identify the

whereabouts of the plug-in. For C++ applications, you specify the root

name of the corresponding shared library using the

plugins: <plugin_name>:shlib_name configuration variable.

Overview of a Basic Artix Plug-In

3

For example, the following extract shows how to configure an application,

whose ORB name is plugin_example , to load a single plug-in,

sample_artix_interceptor .

Loading the plug-in Figure 1 show how a plug-in is loaded by an application as the application

starts up.

Artix domain configuration file
...
plugin_example {
 orb_plugins = ["sample_artix_interceptor"];

 plugins:sample_artix_interceptor:shlib_name =
"it_sample_artix_interceptor";

};

Figure 1: Loading a Plug-In

> app -ORBname plugin_example

Config
File

Plug-In

Load plug-in3

Launch1

Application

Read2

CHAPTER 1 | Basic Plug-In Implementation

 4

The steps to load the plug-in are as follows:

1. The user launches the application, app, specifying the ORB name as

plugin_example at the command line.

2. As the application starts up, it scans the Artix configuration file to

determine which plug-ins to load. Priority is given to the configuration

settings in the plugin_example configuration scope (that is, the ORB

name determines which configuration scopes to search).

3. The Artix core loads the plug-ins specified by the application’s

configuration.

Overview of a Basic Artix Plug-In

5

Initializing the plug-in Plug-ins are usually initialized when the main application code calls

IT_Bus::init() . Figure 2 shows the plug-in initialization sequence, which

proceeds as follows:

1. The main application code calls IT_Bus::init() .

2. The Artix core iterates over all of the plug-ins in the orb_plugins list,

calling IT_Bus::BusPlugInFactory::create_bus_plugin() on each

one.

3. The BusPlugInFactory object creates an IT_Bus::BusPlugIn object,

which initializes the state of the plug-in for the current Bus instance.

4. After all of the BusPlugIn objects have been created, the Artix core

calls bus_init() on each BusPlugIn object.

BusPlugInFactory object A BusPlugInFactory object provides the basic hook for initializing an Artix

plug-in. A single static instance of the BusPlugInFactory object is created

when the plug-in is loaded into an application. See “Implementing a

BusPlugInFactory Class” on page 8 for more details.

BusPlugIn object A BusPlugIn object caches the state of the plug-in for the current Bus

instance (an application can create multiple Bus instances). Typically, the

BusPlugIn object is responsible for performing most of the plug-in

initialization and shutdown tasks.

Figure 2: Initializing a Plug-In

BusPlugIn

IT_Bus::init()1

Application

BusPlugInFactory

create_bus_plugin()2 bus_init()4

3

CHAPTER 1 | Basic Plug-In Implementation

 6

Developing an Artix Plug-In

Overview This section describes how to develop the basic classes for the

sample_artix_interceptor plug-in. The objects described here, of

IT_Bus::BusPlugInFactory and IT_Bus::BusPlugIn type, are the basic

objects needed by every Artix plug-in, enabling a plug-in to initialize and

register with the Artix core.

In this section This section contains the following subsections:

Development Steps page 7

Implementing a BusPlugInFactory Class page 8

Implementing a BusPlugIn Class page 11

Creating Static Instances page 15

Developing an Artix Plug-In

7

Development Steps

How to implement To implement an Artix plug-in, perform the following steps:

Step Action

1 Implement a class that inherits from the
IT_Bus::BusPlugInFactory base class. This class should:

• Implement create_bus_plugin() to return a new

IT_Bus::BusPlugIn object.

• Implement destroy_bus_plugin() to clean up the

allocated BusPlugIn object at shutdown time.

2 Implement a class that inherits from the IT_Bus::BusPlugIn
base class. This class should:

• Implement bus_init() to perform various actions at

initialization time.

• Implement bus_shutdown() to perform various actions at

shutdown time.

3 Create the following static instances:

• A static instance of the newly implemented

BusPlugInFactory class.

• Either of the following static instances:

♦ A static instance of the IT_Bus::BusORBPlugIn class

(for plug-ins packaged as a shared library), or

♦ A static instance of the

IT_Bus::GlobalBusORBPlugIn class (for plug-ins

linked directly to the application).

The static instances are created when the library containing the
plug-in is loaded.

CHAPTER 1 | Basic Plug-In Implementation

 8

Implementing a BusPlugInFactory Class

Overview This section describes how to implement a BusPlugInFactory class for the

sample_artix_interceptor plug-in.

An BusPlugInFactory object is the most fundamental constituent of a

plug-in and is responsible for bootstrapping the rest of the plug-in

functionality. A typical BusPlugInFactory implementation does not do very

much. Usually it just creates a new BusPlugIn object in response to an

invocation of the create_bus_plugin() operation.

C++ BusPlugInFactory header Example 1 shows the C++ header for the SampleBusPlugInFactory class,

which is an example of an IT_Bus::BusPlugInFactory class.

Example 1: C++ Header for the BusPlugInFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin_factory.h>

// In namespace, IT_SampleArtixInterceptor
2 class SampleBusPlugInFactory :

 public IT_Bus::BusPlugInFactory
{
 public:
 SampleBusPlugInFactory();
 virtual ~SampleBusPlugInFactory();

 virtual IT_Bus::BusPlugIn*
 create_bus_plugin(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 destroy_bus_plugin(
 IT_Bus::BusPlugIn* bus_plugin
);

 private:
 SampleBusPlugInFactory(const SampleBusPlugInFac tory&);

Developing an Artix Plug-In

9

The preceding header file can be described as follows:

1. Include it_bus_pdk/bus_plugin_factory.h , which is the header file

for the IT_Bus::BusPlugInFactory class.

2. The plug-in factory class, SampleBusPlugInFactory , inherits from

IT_Bus::BusPlugInFactory , which is the base class for all plug-in

factories.

C++ SampleBusPlugInFactory

implementation

Example 2 shows the C++ implementation of the SampleBusPlugInFactory

class, which is an example of an IT_Bus::BusPlugInFactory class.

 SampleBusPlugInFactory&
 operator=(const SampleBusPlugInFactory&);
};

Example 1: C++ Header for the BusPlugInFactory Class

Example 2: C++ Implementation of the SampleBusPlugInFactory Class

// C++

// SampleBusPlugInFactory
//

SampleBusPlugInFactory::SampleBusPlugInFactory()
{
 // complete
}

SampleBusPlugInFactory::~SampleBusPlugInFactory()
{
 // complete
}

IT_Bus::BusPlugIn*
1 SampleBusPlugInFactory::create_bus_plugin(

 IT_Bus::Bus* bus
) IT_THROW_DECL((IT_Bus::Exception))
{
 return new SampleBusPlugIn(bus);
}

CHAPTER 1 | Basic Plug-In Implementation

 10

The preceding implementation can be described as follows:

1. The SampleBusPlugInFactory::create_bus_plugin() creates an

instance of an IT_Bus::BusPlugIn object.

The create_bus_plugin() operation is automatically called whenever

a new Bus instance is created (for example, whenever you call

IT_Bus::init()). Because you are allowed to create more than one

Bus instance, the plug-in must keep track of its state for each Bus—

hence the need for a separate BusPlugIn object.

2. The SampleBusPlugInFactory::destroy_bus_plugin() cleans up Bus

plug-in objects at shutdown time.

void
2 SampleBusPlugInFactory::destroy_bus_plugin(

 IT_Bus::BusPlugIn* bus_plugin
)
{
 delete bus_plugin;
}

Example 2: C++ Implementation of the SampleBusPlugInFactory Class

Developing an Artix Plug-In

11

Implementing a BusPlugIn Class

Overview This section describes how to implement a BusPlugIn class for the

sample_artix_interceptor plug-in.

BusPlugIn objects are typically responsible for the following tasks:

• Registering factory objects that extend Artix functionality.

• Coordinating the plug-in’s initialization and shutdown tasks.

• Caching the plug-in’s per-Bus data and object references.

C++ BusPlugIn header Example 3 shows the C++ header for the SampleBusPlugIn class, which is

an example of an IT_Bus::BusPlugIn class.

Example 3: C++ Header for the BusPlugIn Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin.h>

// In namespace IT_SampleArtixInterceptor

2 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
{
 public:
 // IT_Bus::BusPlugIn
 //
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

 virtual void
 bus_init() IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 bus_shutdown() IT_THROW_DECL((IT_Bus::Exception));

CHAPTER 1 | Basic Plug-In Implementation

 12

The preceding C++ header can be described as follows:

1. Include it_bus_pdk/bus_plugin.h , which is the header file for the

IT_Bus::BusPlugIn class.

2. The plug-in class, SampleBusPlugIn , inherits from two base classes:

♦ IT_Bus::BusPlugIn —the base class for all plug-in classes.

♦ IT_Bus::InterceptorFactory —the base class for an interceptor

factory. You only need this class, if you are implementing Artix

interceptors (the code here is taken from an Artix interceptor

demonstration).

C++ BusPlugIn implementation Example 4 shows the C++ implementation of the SampleBusPlugIn class,

which is an example of an IT_Bus::BusPlugIn class.

 // IT_Bus::InterceptorFactory
 //
 ... // (not shown)

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

 IT_Bus::String m_name;
};

Example 3: C++ Header for the BusPlugIn Class

Example 4: C++ Implementation of the BusPlugIn Class

// C++

// In namespace IT_SampleArtixInterceptor

1 SampleBusPlugIn::SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :

2 BusPlugIn(bus),
3 m_name("artix_interceptor")

{

Developing an Artix Plug-In

13

 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn()
{
 // complete
}

void
4 SampleBusPlugIn::bus_init(

) IT_THROW_DECL((IT_Bus::Exception))
{

5 IT_Bus::Bus_ptr bus = get_bus();

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory _manager();

6 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

void
 7 SampleBusPlugIn::bus_shutdown(

) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory _manager();

8 factory_manager.unregister_interceptor_factory(
 this
);
}

Example 4: C++ Implementation of the BusPlugIn Class

CHAPTER 1 | Basic Plug-In Implementation

 14

The preceding C++ implementation can be described as follows:

1. The BusPlugIn constructor typically does not do much, apart from

initializing a couple of member variables.

2. You must always pass the bus instance to the base constructor,

IT_Bus::BusPlugIn() , which caches the reference and makes it

available through the IT_Bus::BusPlugIn::get_bus() accessor.

3. The m_name member variable caches the name of the interceptor

factory for later use. The interceptor name is used in the following

contexts:

♦ When registering the interceptor factory with the bus.

♦ To enable the interceptor, by adding the interceptor name to the

relevant lists of interceptors in the artix.cfg file.

4. Artix calls bus_init() after all of the plug-ins have been created by

calls to create_bus_plugin() . The bus_init() function is where most

of the plug-in initialization actually occurs. Typical tasks performed in

bus_init() include:

♦ Reading configuration information from the artix.cfg

configuration file.

♦ Registering special kinds of objects, such as interceptor factories,

transport factories, binding factories, and so on.

♦ Logging.

5. The BusPlugIn::get_bus() function accesses the Bus reference that

was cached by the BusPlugIn base class constructor.

6. Because this code is from an interceptor demonstration, the

bus_init() implementation registers an interceptor factory. The

register function takes the interceptor name, m_name, and the

interceptor factory instance, this , as arguments.

7. Artix calls bus_shutdown() as the Bus is being shut down. This is a the

place to clean up any resources used by the plug-in implementation.

Typically, you would also unregister objects that were registered in

bus_init() .

8. Because this code is from an interceptor demonstration, unregister the

interceptor factory.

Developing an Artix Plug-In

15

Creating Static Instances

Overview The mechanism for bootstrapping a plug-in is based on declaring two static

objects, as follows:

• A static instance of the plug-in factory (a subtype of

IT_Bus::BusPlugInFactory).

• Either of the following static instances:

♦ BusORBPlugIn static instance.

♦ GlobalBusORBPlugIn static instance.

BusORBPlugIn static instance Create a static instance of IT_Bus::BusORBPlugIn type, if you intend to

package your plug-in as a shared library. The BusORBPlugIn constructor has

the following characteristics:

• The constructor registers the Bus plug-in factory with the Bus core.

• The constructor does not call create_bus_plugin() on the factory.

If a plug-in is packaged as a shared library, you must list the plug-in name

in the orb_plugins list in the Artix configuration file. For each of the

plug-ins listed in orb_plugins , Artix does the following:

• Artix attempts to load the relevant shared library (dynamic loading).

• Artix calls create_bus_plugin() on the factory.

GlobalBusORBPlugIn static

instance

Create a static instance of IT_Bus::GlobalBusORBPlugIn type, if you intend

to link the plug-in code directly into your application. The

GlobalBusORBPlugIn constructor has the following characteristics:

• The constructor registers the Bus plug-in factory with the Bus core.

• The constructor calls create_bus_plugin() on the factory.

A side effect of using GlobalBusORBPlugIn is that you can have only one

IT_Bus::BusPlugIn object for each application (instead of one

IT_Bus::BusPlugIn object for each Bus object).

If a plug-in is linked directly with your application, there is no need to add

the plug-in name to the orb_plugins list in the Artix configuration.

CHAPTER 1 | Basic Plug-In Implementation

 16

C++ static instances Static instances, of SampleBusPlugInFactory and IT_Bus::BusORBPlugIn

type, are created by the following lines of code.

The preceding code can be explained as follows:

1. Define the plug-in name to be sample_artix_interceptor . This is the

name that must be added to the orb_plugins list in the artix.cfg file

in order to load the plug-in.

2. Create a static SampleBusPlugInFactory instance,

und_sample_plugin_factory . This static instance is created

automatically, as soon as the sample_artix_interceptor plug-in is

loaded.

3. Create a static IT_Bus::BusORBPlugIn instance,

und_sample_interceptor_plugin , taking the plug-in name,

und_sample_plugin_name , and the plug-in factory,

und_sample_plugin_factory , as arguments.

This line is of critical importance because it bootstraps the entire

plug-in functionality. When the static BusORBPlugIn constructor is

called, it automatically registers the plug-in factory with the Bus.

Example 5: Creating Static Objects for a Plug-In

// C++
namespace IT_SampleArtixInterceptor
{

1 const char* const und_sample_plugin_name =
"sample_artix_interceptor";

2 SampleBusPlugInFactory und_sample_plugin_factor y;

3 IT_Bus::BusORBPlugIn und_sample_interceptor_plu gin(
 und_sample_plugin_name,
 und_sample_plugin_factory
);
}

17

CHAPTER 2

Request
Interceptors
Artix request interceptors enable you to intercept operation
requests and replies, where the request and reply data are
accessible in a high-level format. This chapter describes how
to access and modify header data and parameter data from
within a request interceptor.

In this chapter This chapter discusses the following topics:

Overview of Request Interceptors page 18

Sending and Receiving Header Contexts page 31

Accessing and Modifying Parameters page 59

Raising Exceptions page 73

CHAPTER 2 | Request Interceptors

 18

Overview of Request Interceptors

Overview This section provides a high-level overview of the architecture of request

interceptors in Artix.

In this section This section contains the following subsections:

Client Request Interceptors page 19

Server Request Interceptors page 23

Overview of Request Interceptors

19

Client Request Interceptors

Overview Client request interceptors are used to intercept requests (and replies) on the

client side, between the proxy object and the binding. Figure 3 shows the

architecture of a client request interceptor chain.

Interceptor chaining A client request interceptor chain is arranged as a singly-linked list: each

interceptor in the chain stores a pointer to the next and the chain is

terminated by a binding object.

Client request interceptor chains are created dynamically. The Artix core

reads the relevant configuration variables as it starts up and initializes a

chain of interceptors that link together in the specified order.

ClientRequestInterceptor class A client request interceptor is represented by an instance of

IT_Bus::ClientRequestInterceptor type. The ClientRequestInterceptor

class has the following members:

• m_next_interceptor member variable.

Stores the pointer to the next ClientRequestInterceptor in the chain.

The m_next_interceptor variable is automatically initialized by Artix

when it constructs the chain.

Figure 3: A Client Request Interceptor Chain

intercept_invoke()

Binding

Request-level
interceptors

Stub
Code

Proxy

invoke()

CHAPTER 2 | Request Interceptors

 20

• intercept_invoke() member function.

This is the main interceptor function. You implement this function to

implement new features with interceptors.

intercept_invoke() function Example 6 shows the basic outline of how to implement the

intercept_invoke() function.

The typical implementation of intercept_invoke() has three main parts:

• Pre-invoke processing—put any code here that you would want to

execute before the request is dispatched to the remote server. At this

point, the input parts are already initialized. You can examine or

replace input parts.

• Call the next interceptor in the chain—you must always call

intercept_invoke() on the next interceptor, as shown here.

• Post-invoke processing—put any code here that you would want to

execute after the reply is received from the remote server. At this point,

both the input and output parts are initialized. You can examine or

modify the output parts. Replacing parts has no effect.

Example 6: Outline of intercept_invoke() Function

// C++
using namespace IT_Bus;

void
CustomCltReqInterceptor::intercept_invoke(ClientOperation& data)
{
 // PRE-INVOKE processing
 // ...

 m_next_interceptor->intercept_invoke(data);

 // POST-INVOKE processing
 // ...
}

Overview of Request Interceptors

21

ClientOperation class The data object that passes along the client request interceptor chain is an

instance of the IT_Bus::ClientOperation class. The ClientOperation

class encapsulates all of the request and reply data.

The most important member functions of the ClientOperation class are as

follows:

• get_name()

Returns an IT_Bus::String that holds the name of the operation that

is being invoked.

• get_input_message()

Returns an IT_Bus::WritableMessage object that contains the input

parts. The simplest way to obtain the input parts list is to call

get_input_message().get_parts() .

• get_output_message()

Returns an IT_Bus::ReadableMessage object that contains the output

parts. The simplest way to obtain the output parts list is to call

get_output_message().get_parts() .

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

request contexts. You can use this object to write or read headers in

the request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

reply contexts. You can use this object to write or read headers in the

reply message.

Configuring a client request

interceptor

To configure Artix to use a client request interceptor, you must update the

client request interceptor list in the Artix configuration file. The client request

interceptor list consists of a list of alternative chain configurations, as

follows:

binding:artix:client_request_interceptor_list = [" Chain01",
" Chain02", " Chain03", ...];

The Artix core first attempts to construct an interceptor chain according to

pattern in Chain01. If this attempt fails (for example, if one of the

interceptors in the chain is unavailable) Artix attempts to use the next chain

configuration, Chain02, instead.

CHAPTER 2 | Request Interceptors

 22

Each chain configuration is specified in the following format:

" InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is the

name of interceptor B and so on. An interceptor name is the name under

which the interceptor factory is registered with the

IT_Bus::InterceptorFactoryManager .

Configuring an interceptor in an

Artix router

If an interceptor is meant to be used within an Artix router process, you

might need to configure the router to ensure the interceptor is not bypassed.

Specifically, if you configure a route that maps messages between two

bindings of the same type (for example, CORBA-to-CORBA), the router

bypasses interceptors by default. This is often a useful optimization, but is

unsuitable for some applications.

To force all routed messages to pass through the interceptors in the router,

you should add the following line to the router’s configuration:

plugins:routing:use_pass_through = "false";

Overview of Request Interceptors

23

Server Request Interceptors

Overview Server request interceptors are used to intercept requests (and replies) on

the server side, between the binding and the servant object. Figure 4 shows

the architecture of a server request interceptor chain.

Interceptor chaining A server request interceptor chain is arranged as a doubly-linked list: each

interceptor in the chain stores pointers to the next one and the previous one.

Server request interceptor chains are created dynamically. The Artix core

reads the relevant configuration variables as it starts up and initializes a

chain of interceptors that link together in the specified order.

Figure 4: Server Request Interceptor Chain

Binding

Request-level
interceptors

Servant

operation()

intercept_pre_dispatch()

intercept_post_dispatch()

CHAPTER 2 | Request Interceptors

 24

Alternative interceptor model Server request interceptors support an alternative interceptor model, which

requires you to implement a single interceptor function,

intercept_around_dispatch() , as shown in Figure 5.

The intercept_around_dispatch() is called at the very start of the dispatch

process (before intercept_pre_dispatch()) and returns at the very end of

the dispatch process (after interceptor_post_dispatch()).

ServerRequestInterceptor class A server request interceptor is represented by an instance of

IT_Bus::ServerRequestInterceptor type. The ServerRequestInterceptor

class has the following members:

• m_next_interceptor member variable.

Stores the pointer to the next ServerRequestInterceptor in the chain.

The m_next_interceptor variable is automatically initialized by Artix.

• m_prev_interceptor member variable.

Stores the pointer to the preceding ServerRequestInterceptor in the

chain. The m_prev_interceptor variable is automatically initialized by

Artix.

• intercept_around_dispatch() member function.

An intercept point that is called at the very start of the dispatch

process (before the input parts have been unmarshalled); and returns

Figure 5: Server Request Interceptors Using intercept_around_dispatch()

intercept_around_dispatch()

Binding

Request-level
interceptors

Servant

operation()

Overview of Request Interceptors

25

at the very end of the dispatch process (after the output parts have

been marshalled).

If you don’t want to implement this function, you can inherit the

default implementation from IT_Bus::ServerRequestInterceptor ,

which simply calls the next interceptor in the chain.

• intercept_pre_dispatch() member function.

Called after the input parts have been unmarshalled, but before

dispatching to the servant.

If you don’t want to implement this function, you can inherit the

default implementation from IT_Bus::ServerRequestInterceptor ,

which simply calls the next interceptor in the chain.

• intercept_post_dispatch() member function.

Called after dispatching to the servant, but before marshalling the

output parts.

If you don’t want to implement this function, you can inherit the

default implementation from IT_Bus::ServerRequestInterceptor ,

which simply calls the next interceptor in the chain.

Combining the interceptor models If necessary, you can combine the two interceptor models by implementing

all of the intercept functions from the ServerRequestInterceptor class. In

this case, the sequence of interceptor calls is as follows:

1. Artix calls intercept_around_dispatch() on the first interceptor,

which calls intercept_around_dispatch() on the second interceptor,

and so on to the end of the chain.

2. Inside the call to intercept_around_dispatch() , Artix calls the first

interceptor’s intercept_pre_dispatch() function, which calls the

second interceptor’s intercept_pre_dispatch() function, and so on to

the end of the chain. The last interceptor returns, then the next-to-last

interceptor, and then all the way back to the first interceptor.

3. Artix calls the application code.

4. Artix calls the last interceptor’s intercept_post_dispatch() function,

which calls the next-to-last interceptor's intercept_post_dispatch()

function and so on. The first interceptor returns all the way back to the

last.

CHAPTER 2 | Request Interceptors

 26

5. The last interceptor’s call to intercept_around_dispatch() returns, all

the way back to the first interceptor.

Sample call sequence To illustrate the sequence of calls that results when the intercept functions

are all used together, consider the chain of three interceptors, A, B, and C,

where A is the first interceptor in the chain, and C is the last. Example 7

shows the sequence of events, where >> denotes entering a function and <<

denotes leaving a function.

intercept_around_dispatch()

function

Example 8 shows the basic outline of how to implement the

intercept_around_dispatch() function.

Example 7: Sample Server Interceptor Call Sequence

A >> interceptor_around_dispatch()
 B >> interceptor_around_dispatch()
 C >> interceptor_around_dispatch()
 A >> interceptor_pre_dispatch()
 B >> interceptor_pre_dispatch()
 C >> interceptor_pre_dispatch()
 C << interceptor_pre_dispatch()
 B << interceptor_pre_dispatch()
 A << interceptor_pre_dispatch()
 Application >> invoke()
 Application << invoke()
 C >> interceptor_post_dispatch()
 B >> interceptor_post_dispatch()
 A >> interceptor_post_dispatch()
 A << interceptor_post_dispatch()
 B << interceptor_post_dispatch()
 C << interceptor_post_dispatch()
 C << interceptor_around_dispatch()
 B << interceptor_around_dispatch()
A << interceptor_around_dispatch()

Example 8: Outline of intercept_around_dispatch() Function

// C++
using namespace IT_Bus;

void

Overview of Request Interceptors

27

The typical implementation of intercept_around_dispatch() has three

main parts:

• Pre-unmarshal processing—put any code here that you would want to

execute before the request is dispatched to the servant object. At this

point, the input parts are not yet unmarshalled. Therefore, you cannot

access the input parts.

• Call the next interceptor in the chain—you must always call

intercept_around_dispatch() on the next interceptor, as shown here.

• Post-marshal processing—put any code here that you would want to

execute after the servant code has executed. At this point, both the

input and output parts are available. You can examine or modify the

output parts. Replacing parts has no effect.

intercept_pre_dispatch() function Example 9 shows the basic outline of how to implement the

intercept_pre_dispatch() function.

CustomSrvrReqInterceptor::intercept_around_dispatch(
 ServerOperation& data
)
{
 // PRE-UNMARSHAL processing
 // ...

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispat ch(data);
 }

 // POST-MARSHAL processing
 // ...
}

Example 8: Outline of intercept_around_dispatch() Function

Example 9: Outline of intercept_pre_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_pre_dispatch(
 ServerOperation& data
)

CHAPTER 2 | Request Interceptors

 28

The typical implementation of intercept_pre_dispatch() has two main

parts:

• Pre-dispatch processing—put any code here that you would want to

execute before the request is dispatched to the servant object. At this

point, the input parts are unmarshalled. You can access or modify (but

not replace) the input parts.

• Call the next interceptor in the chain—you must always call

intercept_pre_dispatch() on the next interceptor, as shown here.

intercept_post_dispatch()

function

Example 10 shows the basic outline of how to implement the

intercept_post_dispatch() function.

The typical implementation of intercept_post_dispatch() has two main

parts:

{
 // PRE-DISPATCH processing
 // ...

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

Example 9: Outline of intercept_pre_dispatch() Function

Example 10:Outline of intercept_post_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_post_dispatch(
 ServerOperation& data
)
{
 // POST-DISPATCH processing
 // ...

 if (m_prev_interceptor != 0) {
 m_prev_interceptor->intercept_post_dispatch (data);
 }
}

Overview of Request Interceptors

29

• Post-dispatch processing—put any code here that you would want to

execute after the request is dispatched to the servant object. At this

point, the output parts are initialized. You can access or replace the

output parts.

• Call the previous interceptor in the chain—you must always call

intercept_post_dispatch() on the previous interceptor, as shown

here.

ServerOperation class The data object that passes along the server request interceptor chain is an

instance of the IT_Bus::ServerOperation class. The ServerOperation

class encapsulates the request and reply data.

The most important member functions of the ServerOperation class are as

follows:

• get_name()

Returns an IT_Bus::String that holds the name of the operation that

is being dispatched.

• get_input_message()

Returns an IT_Bus::ReadableMessage object that contains the input

parts. The simplest way to obtain the input parts list is to call

get_input_message().get_parts() .

• get_output_message()

Returns an IT_Bus::WritableMessage object that contains the output

parts. The simplest way to obtain the output parts list is to call

get_output_message().get_parts() .

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

request contexts. You can use this object to write or read headers in

the request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

reply contexts. You can use this object to write or read headers in the

reply message.

CHAPTER 2 | Request Interceptors

 30

Configuring a server request

interceptor

To configure Artix to use a server request interceptor, you must update the

server request interceptor list in the Artix configuration file. The server

request interceptor list consists of a list of alternative chain configurations,

as follows:

binding:artix:server_request_interceptor_list = [" Chain01",
" Chain02", " Chain03", ...];

The Artix core first attempts to construct an interceptor chain according to

pattern in Chain01. If this attempt fails (for example, if one of the

interceptors in the chain is unavailable) Artix attempts to use the next chain

configuration, Chain02, instead.

Each chain configuration is specified in the following format:

" InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is the

name of interceptor B and so on. An interceptor name is the name under

which the interceptor factory is registered with the

IT_Bus::InterceptorFactoryManager .

Configuring an interceptor in an

Artix router

If an interceptor is meant to be used within an Artix router process, you

might need to configure the router to ensure the interceptor is not bypassed.

Specifically, if you configure a route that maps messages between two

bindings of the same type (for example, CORBA-to-CORBA), the router

bypasses interceptors by default. This is often a useful optimization, but is

unsuitable for some applications.

To force all routed messages to pass through the interceptors in the router,

you should add the following line to the router’s configuration:

plugins:routing:use_pass_through = "false";

Sending and Receiving Header Contexts

31

Sending and Receiving Header Contexts

Overview You can use Artix interceptors to send and receive header contexts to

transmit with operation request and replies. While it is also possible to

program header contexts at the application level, there are significant

advantages to writing this code at the interceptor level. Header contexts are

typically used to send security credentials and other out-of-band data that

are not specific to any port type. By putting this common code into an

interceptor, you can avoid cluttering your servant code and client code.

In this section This section contains the following subsections:

SOAP Header Context Example page 32

Sample Context Schema page 34

Implementation of the Client Request Interceptor page 37

Implementation of the Server Request Interceptor page 44

Implementation of the Interceptor Factory page 50

CHAPTER 2 | Request Interceptors

 32

SOAP Header Context Example

Overview The examples in this section are based on the shared library demonstration,

which is located in the following Artix directory:

ArtixInstallDir/artix/ Version/demos/advanced/shared_library

Figure 6 shows an overview of the shared library demonstration, showing

how the client piggybacks context data along with an invocation request that

is invoked on the sayHi operation.

Figure 6: Overview of the Custom SOAP Header Demonstration

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2

3

4

Context

Context
Context

XSD

XSD File

HelloWorld
Contract

SOAPHeaderInfo
Schema

HelloWorld
Contract

Register context

Initialize context data

Register context

Application

Plug-In Plug-In

5

XSD

XSD File

WSDL

WSDL File

SOAPHeaderInfo
Schema

Application

Sending and Receiving Header Contexts

33

Transmission of context data As illustrated in Figure 6, SOAP context data is transmitted as follows:

1. The client registers the context type, SOAPHeaderInfo , with the Bus.

2. The client interceptor initializes the context data instance.

3. The client invokes the sayHi() operation on the server.

4. As the server starts up, it registers the SOAPHeaderInfo context type

with the Bus.

5. When the sayHi() operation request arrives on the server side, the

sayHi() operation implementation extracts the context data from the

request.

HelloWorld WSDL contract The HelloWorld WSDL contract defines the contract implemented by the

server in this demonstration. In particular, the HelloWorld contract defines

the Greeter port type containing the sayHi WSDL operation.

SOAPHeaderInfo schema The SOAPHeaderInfo schema (in the

demos/advanced/shared_library/etc/contextTypes.xsd file) defines the

custom data type used as the context data type. This schema is specific to

the shared library demonstration.

CHAPTER 2 | Request Interceptors

 34

Sample Context Schema

Overview This subsection describes how to define an XML schema for a context type.

In this example, the SOAPHeaderInfo type is declared in an XML schema.

The SOAPHeaderInfo type is then used by the shared library demonstration

to send custom data in a SOAP header.

SOAPHeaderInfo XML declaration Example 11 shows the schema for the SOAPHeaderInfo type, which is

defined specifically for the shared library demonstration to carry some

sample data in a SOAP header. Note that Example 11 is a pure schema

declaration, not a WSDL declaration.

The SOAPHeaderInfo complex type defines two member elements, as

follows:

• originator —holds an arbitrary client identifier.

• message—holds an arbitrary example message.

Example 11:XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/ context"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:annotation>
 <xs:documentation>
 Content to be added to a SOAP heade r
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="originator" type="xs: string"/>
 <xs:element name="message" type="xs:str ing"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Sending and Receiving Header Contexts

35

Target namespace You can use any target namespace for a context schema (as long as it does

not clash with an existing namespace). This demonstration uses the

following target namespace:

http://schemas.iona.com/types/context

Compiling the SOAPHeaderInfo

schema

To compile the SOAPHeaderInfo schema, invoke the wsdltocpp compiler

utility at the command line, as follows:

wsdltocpp -n custom_interceptor contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from

Example 11. This command generates the following C++ stub files:

contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes.cxx
contextTypes_xsdTypesFactory.cxx

SOAPHeaderInfo C++ mapping Example 12 shows how the schema from Example 11 on page 34 maps to

C++, to give the custom_interceptor::SOAPHeaderInfo C++ class.

Example 12:C++ Mapping of the SOAPHeaderInfo Context Type

// C++
...
namespace custom_interceptor
{
 ...
 class SOAPHeaderInfo : public IT_Bus::SequenceC omplexType
 {
 public:
 static const IT_Bus::QName type_name;

 SOAPHeaderInfo();
 SOAPHeaderInfo(const SOAPHeaderInfo & copy) ;
 virtual ~SOAPHeaderInfo();
 ...
 IT_Bus::String & getoriginator();
 const IT_Bus::String & getoriginator() cons t;
 void setoriginator(const IT_Bus::String & v al);

 IT_Bus::String & getmessage();
 const IT_Bus::String & getmessage() const;
 void setmessage(const IT_Bus::String & val) ;
 ...

CHAPTER 2 | Request Interceptors

 36

 };
 ...
}

Example 12:C++ Mapping of the SOAPHeaderInfo Context Type

Sending and Receiving Header Contexts

37

Implementation of the Client Request Interceptor

Overview A client request interceptor performs processing on the client operation

object which passes through the client interceptor chain. You implement the

intercept_invoke() operation (called by the preceding interceptor in the

chain) to perform request processing.

The ClientRequestInterceptor

base class

Example 13 shows the declarations of the IT_Bus::Interceptor class and

the IT_Bus::ClientRequestInterceptor class, which is the base class for a

client request interceptor. The member functions that must be implemented

by derived classes are highlighted in bold font.

Example 13:The IT_Bus::ClientRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };

CHAPTER 2 | Request Interceptors

 38

The preceding code can be explained as follows:

1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.

2. The IT_Bus::ClientRequestInterceptor class, which inherits from

IT_Bus::Interceptor , is the base class for client request interceptors.

C++ client request interceptor

header

Example 14 shows the declaration of the

IT_SampleArtixInterceptor::ClientInterceptor class, which is derived

from the IT_Bus::ClientRequestInterceptor class.

2 class IT_BUS_API ClientRequestInterceptor
 : public Interceptor
 {
 public:
 ClientRequestInterceptor();
 ClientRequestInterceptor(InterceptorFactory * factory);
 virtual ~ClientRequestInterceptor();

 virtual void
 chain_assembled(ClientRequestInterceptorCha in& chain);

 virtual void
 chain_finalized(
 ClientRequestInterceptor* next_intercep tor
);

 virtual void
 intercept_invoke(ClientOperation& data);

 protected:
 ClientRequestInterceptor* m_next_intercepto r;
 };
};

Example 13:The IT_Bus::ClientRequestInterceptor Class

Example 14:Sample Client Request Interceptor Header File

// C++
// In file: demos/advanced/shared_library/
// cxx/plugin/client_ interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>

Sending and Receiving Header Contexts

39

The preceding code can be explained as follows:

1. The ClientInterceptor implementation class inherits from the

IT_Bus::ClientRequestInterceptor base class.

2. The m_bus member variable stores a reference to the Bus object.

C++ client request interceptor

implementation

Example 15 shows the implementation of the

IT_SampleArtixInterceptor::ClientInterceptor class.

#include <it_bus_pdk/interceptor.h>
#include <it_cal/cal.h>

namespace IT_SampleArtixInterceptor
{

1 class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterce ptor
 {
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(IT_Bus::ClientOperation& d ata);

 private:
 ClientInterceptor&
 operator = (const ClientInterceptor& rhs);

 ClientInterceptor(const ClientInterceptor& rhs);

2 IT_Bus::Bus_ptr m_bus;
 };
};

Example 14:Sample Client Request Interceptor Header File

Example 15:Sample Client Request Interceptor Implementation

// C++
// In file: demos/advanced/shared_library/
// cxx/plugin/client _interceptor.cxx

CHAPTER 2 | Request Interceptors

 40

// Include header files related to the soap context
#include <it_bus/operation.h>
#include <it_bus_pdk/context.h>

// Include header files representing the soap heade r content
#include "../types/contextTypes_xsdTypes.h"
#include "../types/contextTypes_xsdTypesFactory.h"

#include "client_interceptor.h"

IT_USING_NAMESPACE_STD
using namespace custom_interceptor;

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

1 ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ClientInterceptor::~ClientInterceptor() { }

void
2 ClientInterceptor::intercept_invoke(ClientOperation & data)

{
 cout << "\tClient interceptor intercept_invoke method"
 << "\tOperation called: " << data.get_name ()
 << endl;

3 // -----> PRE-INVOKE processing comes here <--- --
 // For the sayHi operation, change the originat or and message

4 if (data.get_name() == "sayHi")
 {
 // Obtain a pointer to the bus
 Bus_var bus = Bus::create_reference();

 // Use the bus to obtain a pointer to the C ontextRegistry
 // created by the soap plugin
 ContextRegistry* context_registry =
 bus->get_context_registry();

Example 15:Sample Client Request Interceptor Implementation

Sending and Receiving Header Contexts

41

 // Create QName objects needed to define a context
 const QName principal_ctx_name(
 "",
 "SOAPHeaderInfo",
 ""
);

 // Obtain a pointer to the RequestContextCo ntainer
5 ContextContainer* context_container =

 data.request_contexts();

 // Obtain a reference to the context
6 AnyType* info = context_container->get_cont ext(

 principal_ctx_name,
 true
);

 if (0 == info)
 {
 throw Exception("Could not access Conte xt");
 }

 // Cast the context into a SOAPHeaderInfo o bject
7 SOAPHeaderInfo* header_info =

 dynamic_cast<SOAPHeaderInfo*> (info);

 if (0 == header_info)
 {
 throw Exception("Could not cast Context ");
 }

 // Create the content to be added to the he ader
 const String originator("Artix Engineering");
 const String message("We are Great!");

 // Add the header content
 cout << "\tSetting SOAP header with origina tor: "
 << originator << " and message: " << mes sage << endl;

8 header_info->setoriginator(originator);
 header_info->setmessage(message);
 }

 if (ClientRequestInterceptor::m_next_intercepto r != 0)
 {

Example 15:Sample Client Request Interceptor Implementation

CHAPTER 2 | Request Interceptors

 42

The preceding code can be explained as follows:

1. The ClientInterceptor constructor is called by the interceptor factory

at the time the interceptor chain is constructed (see “Implementation

of the Interceptor Factory” on page 50). Here you should initialize a

local reference to the Bus, m_bus, and the interceptor name, m_name.

2. The intercept_invoke() function is the key function in the client

request interceptor. This is the point at which you can intercept and

affect an operation invocation.

3. At this point (prior to invoking intercept_invoke() on the next

interceptor), you can add in any processing that needs to complete

before invoking the WSDL operation.

4. The interceptor modifies the context only for the sayHi operation from

the Greeter port type.

5. The interceptor obtains a reference to the context container for

outgoing requests.

6. Get a pointer to the context identified by the SOAPHeaderInfo QName.

If an instance of this context does not already exist, the get_context()

function creates a new one (indicated by setting the second parameter

to true).

7. Cast the IT_Bus::AnyType* variable from the previous step, info , to

the SOAPHeaderInfo* variable, header_info .

8. Set the originator and message attributes on the SOAPHeaderInfo

instance, header_info .

9. Invoke intercept_invoke() on the next interceptor in the chain. This

step is mandatory for almost all interceptors (a possible exception

being a security interceptor that decides to prevent an invocation from

proceeding).

9
ClientRequestInterceptor::m_next_interceptor->inter cept_invok
e(data);

 }
10 // -----> POST-INVOKE processing comes here <-- ---

}

Example 15:Sample Client Request Interceptor Implementation

Sending and Receiving Header Contexts

43

10. At this point (after invoking intercept_invoke() on the next

interceptor), you can add in any processing that needs to occur after

invoking the WSDL operation.

CHAPTER 2 | Request Interceptors

 44

Implementation of the Server Request Interceptor

Overview A server request interceptor performs processing on the server operation

object which passes through the server interceptor chain. You must

implement the following functions to intercept incoming requests:

• intercept_pre_dispatch()

• intercept_post_dispatch()

The ServerRequestInterceptor

base class

Example 16 shows the declarations of the IT_Bus::Interceptor class and

the IT_Bus::ServerRequestInterceptor class, which is the base class for a

server request interceptor. The member functions that must be implemented

by derived classes are highlighted in bold font.

Example 16:The IT_Bus::ServerRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };

2 class IT_BUS_API ServerRequestInterceptor
 : public Interceptor

Sending and Receiving Header Contexts

45

The preceding code can be explained as follows:

1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.

2. The IT_Bus::ServerRequestInterceptor class, which inherits from

IT_Bus::Interceptor , is the base class for server request interceptors.

3. The server request interceptor stores references both to the next

interceptor and the previous interceptor in the chain. A server request

interceptor chain is thus a doubly linked list.

 {
 public:
 ServerRequestInterceptor();
 ServerRequestInterceptor(InterceptorFactory* factor y);
 virtual ~ServerRequestInterceptor();

 virtual void
 chain_assembled(ServerRequestInterceptorCha in& chain);

 virtual void
 chain_finalized(
 ServerRequestInterceptor* next_intercep tor
);

 virtual void
 intercept_pre_dispatch(ServerOperation& dat a);

 virtual void
 intercept_post_dispatch(ServerOperation& da ta);

 virtual void
 intercept_around_dispatch(ServerOperation& data);

 protected:
3 ServerRequestInterceptor* m_next_intercepto r;

 ServerRequestInterceptor* m_prev_intercepto r;
 };
};

Example 16:The IT_Bus::ServerRequestInterceptor Class

CHAPTER 2 | Request Interceptors

 46

C++ server request interceptor

header

Example 17 shows the declaration of the

IT_SampleArtixInterceptor::ServerInterceptor class, which is derived

from the IT_Bus::ServerRequestInterceptor class.

Example 17:Sample Server Request Interceptor Header File

// C++
// In file: demos/advanced/shared_library/
// cxx/plugin/serve r_interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

namespace IT_SampleArtixInterceptor
{

1 class ServerInterceptor :
 public virtual IT_Bus::ServerRequestInterce ptor
 {
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(IT_Bus::ServerOperat ion& data);

 virtual void
 intercept_post_dispatch(IT_Bus::ServerOpera tion& data);

 private:
 ServerInterceptor&
 operator = (const ServerInterceptor& rhs);

 ServerInterceptor(const ServerInterceptor& rhs);

2 IT_Bus::Bus_ptr m_ bus;
 };
};

Sending and Receiving Header Contexts

47

The preceding code can be explained as follows:

1. The ServerInterceptor implementation class inherits from the

IT_Bus::ServerRequestInterceptor base class.

2. The m_bus member variable stores a reference to the Bus object.

C++ server request interceptor

implementation

Example 18 shows the implementation of the

IT_SampleArtixInterceptor::ServerInterceptor class.

Example 18:Sample Server Request Interceptor Implementation

// C++
// In file: demos/advanced/custom_interceptor/
//

cxx/plugin/server_interceptor.cxx
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

IT_USING_NAMESPACE_STD

1 ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ServerInterceptor::~ServerInterceptor() { }

void
2 ServerInterceptor::intercept_pre_dispatch(

 IT_Bus::ServerOperation& data
)
{

3 cout << "\tServer interceptor intercept_pre_dis patch invoked"
 << "\tOperation called: " << data.get_name () << endl;

4 // -----> PRE-INVOKE processing comes here <--- --

 if (ServerRequestInterceptor::m_next_intercepto r != 0)
 {

5 ServerRequestInterceptor::m_next_interceptor->inter cept_pre_disp
atch(data);

CHAPTER 2 | Request Interceptors

 48

The preceding code can be explained as follows:

1. The ServerInterceptor constructor is called by the interceptor factory

at the time the interceptor chain is constructed (see “Implementation

of the Interceptor Factory” on page 50). Here you should initialize a

local reference to the Bus, m_bus, and the interceptor name, m_name.

2. The intercept_pre_dispatch() function is called before the incoming

request has been dispatched to the service endpoint. This key function

gives you a chance to access the request before it is executed on the

server side.

3. Print the name of the invoked WSDL operation to standard output. For

simplicity, in this demonstration the operation name is printed using

cout . In general, however, it is better practice to use the Artix logging

feature.

4. At this point (prior to invoking intercept_pre_dispatch() on the next

interceptor), you can add any processing that needs to complete before

invoking the WSDL operation.

 }
}

void
6 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 cout << "\tServer interceptor intercept_post_di spatch "
 << "invoked \tReturn from operation: "
 << data.get_name() << endl;

7 // -----> POST-INVOKE processing comes here <-- ---

 if (ServerRequestInterceptor::m_prev_intercepto r != 0)
 {

8 ServerRequestInterceptor::m_prev_interceptor->inter cept_post_dis
patch(data);

 }
}

Example 18:Sample Server Request Interceptor Implementation

Sending and Receiving Header Contexts

49

5. Invoke intercept_pre_dispatch() on the next interceptor in the

chain. This step is mandatory for almost all interceptors (a possible

exception being a security interceptor that decides to prevent an

invocation from proceeding).

6. The intercept_post_dispatch() function is called after the incoming

request has been dispatched to the service endpoint, but before the

output parts have been marshalled.

7. The post-invoke processing should precede the call on the next

interceptor in the chain.

8. Invoke intercept_post_dispatch() on the previous interceptor in the

chain. This step is mandatory.

CHAPTER 2 | Request Interceptors

 50

Implementation of the Interceptor Factory

Overview Artix uses a factory pattern to manage the lifecycle of interceptor objects. To

install a set of interceptors, you must implement an interceptor factory and

register an instance of this factory with the interceptor factory manager

object. The interceptor factory exposes functions that the Artix runtime can

then call to create new interceptor instances.

Request interceptors are created by the following functions:

• get_client_request_interceptor()

• get_server_request_interceptor()

Message interceptors are created by the following functions:

• get_client_message_interceptor()

• get_server_message_interceptor()

If a particular kind of interceptor is not implemented, you can indicate this

with a return value of 0. The interceptor is then omitted from the chain.

The InterceptorFactory base class Example 19 shows the declarations of the IT_Bus::InterceptorFactory

class, which is the base class for an interceptor factory.

Example 19:The IT_Bus::InterceptorFactory Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 class IT_BUS_API InterceptorFactory
 {
 public:
 virtual ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_client_message_interce ptor(
 ClientMessageInterceptor * message_inte rceptor
);

Sending and Receiving Header Contexts

51

C++ interceptor factory header Example 20 shows the declaration of the

IT_SampleArtixInterceptor::SampleBusPlugIn class, which implements

the IT_Bus::InterceptorFactory class.

 virtual ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_client_request_interce ptor(
 ClientRequestInterceptor * request_inte rceptor
);

 virtual ServerMessageInterceptor*
 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_server_message_interce ptor(
 ServerMessageInterceptor* message_inter ceptor
);

 virtual ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_server_request_interce ptor(
 ServerRequestInterceptor* request_inter ceptor
);

 virtual const String& name() = 0;

 protected:
 ...
 };
};

Example 19:The IT_Bus::InterceptorFactory Class

Example 20:Sample Interceptor Factory Header File

// C++
// In file: demos/advanced/shared_library/
// cxx/plugin/plugi n.cxx

CHAPTER 2 | Request Interceptors

 52

...
namespace IT_SampleArtixInterceptor
{

1 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
 {
 public:
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

2 // IT_Bus::BusPlugIn
 //
 ... // Not shown.

3 //IT_Bus::InterceptorFactory
 //
 virtual IT_Bus::ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_client_message_interce ptor(
 IT_Bus::ClientMessageInterceptor* messa ge_interceptor
);

 virtual IT_Bus::ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_client_request_interce ptor(
 IT_Bus::ClientRequestInterceptor * reque st_interceptor
) ;

 virtual IT_Bus::ServerMessageInterceptor*
 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

Example 20:Sample Interceptor Factory Header File

Sending and Receiving Header Contexts

53

The preceding code can be explained as follows:

1. In this example, the IT_Bus::InterceptorFactory base class is

implemented by the plug-in class, SampleBusPlugIn . If you prefer, you

could implement IT_Bus::InterceptorFactory using a separate class

instead.

2. The implementation of the functions inherited from the

IT_Bus::BusPlugIn base class is discussed in another chapter—see

“Basic Plug-In Implementation” on page 1.

3. From this point on, all of the functions shown are inherited from

IT_Bus::InterceptorFactory .

4. The m_name variable is used to store the interceptor name.

 virtual void destroy_server_message_interce ptor(
 IT_Bus::ServerMessageInterceptor* messa ge_interceptor
);

 virtual IT_Bus::ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_nod e = 0
);

 virtual void destroy_server_request_interce ptor(
 IT_Bus::ServerRequestInterceptor* reque st_interceptor
);

 virtual const IT_Bus::QName& name();

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

4 IT_Bus::String m_name;
 };
};

Example 20:Sample Interceptor Factory Header File

CHAPTER 2 | Request Interceptors

 54

C++ interceptor factory

implementation

Example 21 shows the implementation of the

IT_SampleArtixInterceptor::SampleBusPlugIn class.

Example 21:Sample Interceptor Factory Implementation

// C++

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

// SampleBusPlugIn
//

SampleBusPlugIn:: SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :
 BusPlugIn(bus),
 m_name("artix_shlib_interceptor")
{
 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn() { }

// IT_Bus::BusPlugIn functions
//
void
SampleBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

1 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory _manager();

2 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

Sending and Receiving Header Contexts

55

void
SampleBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory _manager();

3 factory_manager.unregister_interceptor_factory(
 this
);
}

// IT_Bus::InterceptorFactory functions
//
ClientMessageInterceptor *

4 SampleBusPlugIn::get_client_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
5 SampleBusPlugIn::destroy_client_message_interceptor (

 ClientMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ClientRequestInterceptor *
6 SampleBusPlugIn::get_client_request_interceptor(

 const WSDLNode* const
)
{
 return new ClientInterceptor(get_bus());
}

void
7 SampleBusPlugIn::destroy_client_request_interceptor (

 ClientRequestInterceptor * request_interceptor
)

Example 21:Sample Interceptor Factory Implementation

CHAPTER 2 | Request Interceptors

 56

{
 delete request_interceptor;
}

ServerMessageInterceptor*
SampleBusPlugIn::get_server_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
SampleBusPlugIn::destroy_server_message_interceptor (
 ServerMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ServerRequestInterceptor*
8 SampleBusPlugIn::get_server_request_interceptor(

 const WSDLNode* const
)
{
 return new ServerInterceptor(get_bus());
}

void
9 SampleBusPlugIn::destroy_server_request_interceptor (

 ServerRequestInterceptor* request_interceptor
)
{
 delete request_interceptor;
}

const String&
10 SampleBusPlugIn::name()

{
 return m_name;
}

Example 21:Sample Interceptor Factory Implementation

Sending and Receiving Header Contexts

57

The preceding code can be explained as follows:

1. The IT_Bus::InterceptorFactoryManager object stores a list of all

interceptor factories. It is implemented by the Artix runtime.

2. You must register the interceptor factory instance with the interceptor

factory manager, as shown here. The register function takes the

interceptor name, m_name, and the interceptor factory instance, this ,

as arguments.

3. You usually unregister the interceptor factory in the body of the

IT_Bus::BusPlugIn::bus_shutdown() function to ensure a clean

shutdown of the Artix Bus.

4. You would implement the get_client_message_interceptor()

function to install a client message interceptor. In this example, the

function returns 0 to indicate that a client message interceptor is not

available.

5. The destroy_client_message_interceptor() function would be

called by the Artix runtime to clean up resources associated with the

client message interceptor.

6. The Artix runtime calls get_client_request_interceptor() in the

course of constructing a new interceptor chain to obtain a client

request interceptor instance.

The get_client_request_interceptor() function takes the following

arguments:

♦ wsdl_node —(defaults to 0).

In this example, the implementation of

get_client_request_interceptor() simply returns a new client

interceptor object.

7. The destroy_client_request_interceptor() function is called by the

Artix runtime to clean up resources associated with the client request

interceptor.

8. The Artix runtime calls get_server_request_interceptor() in the

course of constructing a new interceptor chain to obtain a server

request interceptor instance.

CHAPTER 2 | Request Interceptors

 58

The get_server_request_interceptor() function takes the following

arguments:

♦ wsdl_node —(defaults to 0).

In this example, the implementation of

get_server_request_interceptor() simply returns a new server

interceptor object.

9. The destroy_server_request_interceptor() function is called by the

Artix runtime to clean up resources associated with the server request

interceptor.

10. The name() function returns the interceptor name.

Accessing and Modifying Parameters

59

Accessing and Modifying Parameters

Overview Artix interceptors enable you to access and modify both input and output

parameters, as a message passes back and forth along the interceptor

chain. On the client side, the input and output parameters are accessible

from the IT_Bus::ClientOperation object. On the server side, the input

and output parameters are accessible from the IT_Bus::ServerOperation

object.

In this section This section contains the following subsections:

Reflection Example page 60

Implementation of the Client Request Interceptor page 63

Implementation of the Server Request Interceptor page 68

CHAPTER 2 | Request Interceptors

 60

Reflection Example

Overview In order to access and modify operation parameters from within an

interceptor, it is essential to use the Artix reflection API. In contrast to code

written at the application level, an interceptor must typically be able to

process any port type or operation. Hence, an interceptor implementation

must be able to parse any parameter type; this capability is provided by the

Artix reflection API.

To access operation parameters from within an interceptor, you would

typically need to use the following APIs:

• Part list type.

• Reflection API.

Part list type Given either an IT_Bus::ClientOperation instance or an

IT_Bus::ServerOperation instance, data , you can access the input parts

and the output parts as follows:

• To obtain a reference to the input part list, call:

data.get_input_message().get_parts()

• To obtain a reference to the output part list, call:

data.get_output_message().get_parts()

The returned part list (of IT_Bus::PartList& type) is essentially a vector of

(IT_Bus::QName, IT_Bus::AnyType*) pairs.

Reflection API The reflection API enables you to parse any Artix data type and to process

the data without any advance knowledge of its type. For the example

described in this section, you need only the following classes:

• IT_Reflect::Reflection class—the base class for all reflection types.

• IT_Reflect::Value<IT_Bus::String> class—the reflection type that

represents a string.

• IT_Bus::Var< T> template—a smart pointer template type that ensures

that the referenced data is not leaked.

Accessing and Modifying Parameters

61

Reflection interceptor

demonstration

The sample code in this section is taken from the following Artix

demonstration:

ArtixInstallDir/artix/ Version/demos/reflection/interceptor

Example 22 shows the WSDL definition of the Greeter port type that is

used in this demonstration.

Example 22:The Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 name="HelloWorld"
 targetNamespace="http://www.iona.com/reflect_in terceptor"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.iona.com/reflect_intercep tor"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" .. .>
 <wsdl:types>
 <schema

targetNamespace="http://www.iona.com/reflect_interc eptor"
 xmlns="http://www.w3.org/2001/XMLSchema ">
 <element name="responseType" type="xsd: string"/>
 <element name="requestType" type="xsd:s tring"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest"/>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="tns:responseType"

name="theResponse"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="tns:requestType" name=" me"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="tns:responseType"

name="theResponse"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest"
 name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse "
 name="sayHiResponse"/>
 </wsdl:operation>

CHAPTER 2 | Request Interceptors

 62

 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest "
 name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeRespon se"
 name="greetMeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Example 22:The Greeter Port Type

Accessing and Modifying Parameters

63

Implementation of the Client Request Interceptor

Overview This subsection describes how to implement a client request interceptor that

uses reflection to modify an operation’s input and output parameters.

C++ client request interceptor

header

Example 23 shows the header for the ClientInterceptor class, which is

derived from the IT_Bus::ClientRequestInterceptor base class.

Note: This example is only intended to be used in conjunction with the
Greeter port type, as defined in Example 22 on page 61.

Example 23:Client Interceptor Header for Reflection Example

// C++
#include <it_bus/bus.h>
#include <it_bus/qname.h>
#include <it_bus_pdk/interceptor.h>

class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterceptor
{
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(
 IT_Bus::ClientOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};

CHAPTER 2 | Request Interceptors

 64

C++ client request interceptor

implementation

Example 24 shows the implementation of the ClientInterceptor class.

Example 24:Client Interceptor Implementation for Reflection Example

// C++
#include "client_interceptor.h"
#include <it_bus/operation.h>
#include <it_bus/part_list.h>
#include <it_bus/reflect/value.h>
#include <it_cal/iostream.h>

IT_USING_NAMESPACE_STD;
using namespace IT_Bus;

ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete
}

ClientInterceptor::~ClientInterceptor()
{
 // Complete
}

void
1 ClientInterceptor::intercept_invoke(

 ClientOperation& data
)
{
 // Get the value of the input part using reflec tion.
 // Client-side input parts are "serializable" t hat is they
 // will be serialized to the underlying transpo rt.
 // Serializable parts are read-only.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<const IT_Reflect::Reflection> r =

 input_parts[0].get_const_value().get_re flection();
5 Var<const IT_Reflect::Value<String> > input _reflection =

 dynamic_cast_var<const IT_Reflect::Value <String> >(r);
 assert(input_reflection.get());

Accessing and Modifying Parameters

65

 String input_string = input_reflection->get _value();

 // Print a message
 //

6 String replace_input = input_string + ",1";
 cout << "[Client pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]" <<

endl;

 // Replace the part before calling next int erceptor.
 //

7 set_const_value(input_parts[0], replace_inp ut);
 }

 // Call the next interceptor
 //

8 m_next_interceptor->intercept_invoke(data);

 // Get the value of the output string using ref lection.
 //
 PartList& output_parts =

data.get_output_message().get_parts();
9 if (output_parts.size() == 1)

 {
 Var<IT_Reflect::Reflection> r2 =

output_parts[0].get_modifiable_value().get_reflecti on();
 Var<IT_Reflect::Value<String> > output_refl ection =
 dynamic_cast_var<IT_Reflect::Value<Stri ng> >(r2);
 assert(output_reflection.get());
 String output_string = output_reflection->g et_value();

 // Print a messsage
 //
 String replace_output = output_string + ",4 ";
 cout << "[Client post-invoke intercepted: " <<

output_string << "]"
 << endl;
 cout << "[Replacing with " << replace_outpu t << "]" <<

endl;

 // Modify the value of the output part. Thi s directly
 // modifies the underlying application data value.
 //

Example 24:Client Interceptor Implementation for Reflection Example

CHAPTER 2 | Request Interceptors

 66

The preceding interceptor implementation can be explained as follows:

1. This implementation of intercept_invoke() is designed to modify the

parameters of the sayHi and greetMe WSDL operations by adding a

short string to the input parameter and to the output parameter.

2. The returned part list, input_parts , contains all of the WSDL parts

containing input parameters for the operation. A part list is essentially

a vector of (IT_Bus::QName, IT_Bus::AnyType*) pairs. The

IT_Bus::AnyType is the base type for all WSDL types in Artix.

3. The code in this if -block uses reflection to modify the first input part.

This example is hard-coded to work only with the sayHi and greetMe

operation from the Greeter port type. The example modifies the

request message, only if it consists of a single part which is a string.

4. From the first (and only) pair in the part list, return the const

IT_Bus::AnyType value (using get_const_value()) and convert it into

a reflection object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection object to a

string reflection.

This step is only intended to work for the Greeter port type. In the

general case, you would have to use the reflection interface to figure

out the data type.

6. Define a modified string, replace_input , which adds ,1 to the original

string.

 output_reflection->set_value(replace_output);
 }
}

Example 24:Client Interceptor Implementation for Reflection Example

Accessing and Modifying Parameters

67

7. Call set_const_value() to replace the sole input part in the request.

The set_const_value() function is a convenience template, which is

used only for simple types. It is defined in it_bus/part.h as follows:

The IT_Bus::Part::set_const_value() function takes an

IT_Bus::AnyType as its first parameter. Because simple atomic types,

such as IT_Bus::String , do not inherit from AnyType , it is necessary

to wrap them in an IT_Bus::AnySimpleTypeT< T> instance, which does

inherit from AnyType .

For user-defined types (and other types that inherit from AnyType), you

can pass them directly to the IT_Bus::Part::set_const_value()

function.

8. The obligatory call to delegate to the next interceptor in the chain.

9. In the reply message, modify the output, only if it consists of a single

part containing a string (intended for the Greeter port type only).

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value), Part::AUT O_DELETE);
 }
}

CHAPTER 2 | Request Interceptors

 68

Implementation of the Server Request Interceptor

Overview This subsection describes how to implement a server request interceptor

that uses reflection to modify an operation’s input and output parameters.

C++ server request interceptor

header

Example 25 shows the header for the ServerInterceptor class, which is

derived from the IT_Bus::ServerRequestInterceptor base class.

Note: This example is only intended to be used in conjunction with the
Greeter port type, as defined in Example 22 on page 61.

Example 25:Server Interceptor Header for Reflection Example

// C++
#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

class ServerInterceptor :
 public virtual IT_Bus::ServerRequestInterceptor
{
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(
 IT_Bus::ServerOperation& data
);

 virtual void
 intercept_post_dispatch(
 IT_Bus::ServerOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};

Accessing and Modifying Parameters

69

C++ server request interceptor

implementation

Example 26 shows the implementation of the ServerInterceptor class.

Example 26:Server Interceptor Implementation for Reflection Example

// C++
#include <it_bus/operation.h>
#include <it_bus/reflect/value.h>
#include <it_bus/part_list.h>
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
IT_USING_NAMESPACE_STD

ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete.
}

ServerInterceptor::~ServerInterceptor()
{
 // Complete.
}

void
1 ServerInterceptor::intercept_pre_dispatch(

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the input string using refl ection.
 // The value points to the value unmarshalled f rom the wire.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<IT_Reflect::Reflection> r =

 input_parts[0].get_modifiable_value().get _reflection();
5 Var<IT_Reflect::Value<String> > input_refle ction =

 dynamic_cast_var<IT_Reflect::Value<Stri ng> >(r);
 assert(input_reflection.get());
 String input_string = input_reflection->get _value();

CHAPTER 2 | Request Interceptors

 70

 // Print a messsage
 //

6 String replace_input = input_string + ",2";
 cout << "[Server pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]"
 << endl;

 // Modify the value of the input part befor e the server
 // sees it.

7 input_reflection->set_value(replace_input);
 }

 if (m_next_interceptor != 0)
 {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

void
8 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the output part using refle ction.
 //
 PartList& output_parts =

data.get_output_message().get_parts();
9 if (output_parts.size() == 1)

 {
 Var<const IT_Reflect::Reflection> r =
 output_parts[0].get_const_value().get_r eflection();
 Var<const IT_Reflect::Value<String> > outpu t_reflection =
 dynamic_cast_var<const IT_Reflect::Valu e<String>

>(r);
 assert(output_reflection.get());
 String output_string = output_reflection->g et_value();

 // Print a messageppp
 //
 String replace_output = output_string + ",3 ";
 cout << "[Server post-invoke intercepted: "
 << output_string << "]" << endl;
 cout << "[Replacing with " << replace_outpu t << "]" <<

endl;

Example 26:Server Interceptor Implementation for Reflection Example

Accessing and Modifying Parameters

71

The preceding interceptor implementation can be explained as follows:

1. The implementation of intercept_pre_dispatch() is designed to

modify the input parameter of the sayHi and greetMe WSDL

operations by appending a short string.

2. The returned part list, input_parts , contains all of the WSDL parts

containing input parameters for the operation. A part list is essentially

a vector of (IT_Bus::QName, IT_Bus::AnyType*) pairs. The

IT_Bus::AnyType is the base type for all WSDL types in Artix.

3. The code in this if -block uses reflection to modify the first input part.

This example is hard-coded to work only with the sayHi and greetMe

operation from the Greeter port type. The example modifies the

request message, only if it consists of a single part which is a string.

4. From the first (and only) pair in the part list, return the

IT_Bus::AnyType value (using get_modifiable_value()) and convert

it into a reflection object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection object to a

string reflection.

This step is only intended to work for the Greeter port type. In the

general case, you would have to use the reflection interface to figure

out the data type.

6. Define a modified string, replace_input , which adds ,2 to the original

string.

7. Call IT_Reflect::Value<String>::set_value() to modify the input

part in the request.

 // Replace the value before calling next in terceptor.
 //

10 set_const_value(output_parts[0], replace_ou tput);
 }

 if (m_prev_interceptor != 0)
 {
 m_prev_interceptor->intercept_post_dispatch (data);
 }
}

Example 26:Server Interceptor Implementation for Reflection Example

CHAPTER 2 | Request Interceptors

 72

8. The implementation of intercept_post_dispatch() is designed to

modify the output parameter of the sayHi and greetMe WSDL

operations by appending a short string.

9. In the reply message, modify the output, only if it consists of a single

part containing a string (intended for the Greeter port type only).

10. Call set_const_value() to replace the sole output part in the request.

The set_const_value() function is a convenience template, which

sets the part value to a simple type. It is defined in it_bus/part.h as

follows:

The IT_Bus::Part::set_const_value() function takes an

IT_Bus::AnyType as its first parameter. Because simple atomic types,

such as IT_Bus::String , do not inherit from AnyType , it is necessary

to wrap them in an IT_Bus::AnySimpleTypeT< T> instance, which does

inherit from AnyType .

For user-defined types (and other types that inherit from AnyType), you

can pass them directly to the IT_Bus::Part::set_const_value()

function.

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value), Part::AUT O_DELETE);
 }
}

Raising Exceptions

73

Raising Exceptions

Overview Artix allows you to raise exceptions in request interceptors, but you must

raise the exception at the appropriate place.

Where to raise an exception There are specific places in the interceptor code where you can raise

exceptions, as follows:

• Client request interceptor—in the body of the intercept_invoke()

function, either before or after the follow-on invocation to the next

interceptor.

• Server request interceptor—in the body of the

intercept_around_dispatch() function, either before or after the

follow-on invocation to the next interceptor. In particular, you cannot

raise an exception in the body of an intercept_pre_dispatch() or

intercept_post_dispatch() function.

Type of exceptions you can raise You can raise the following types of exception in an interceptor:

• IT_Bus::FaultException (standard Artix exceptions),

• IT_Bus::UserFaultException (user-defined custom exceptions).

Examples of exception raising The following examples show how to raise an IT_Bus::FaultException in

an interceptor:

• Raising a fault exception in a client interceptor.

• Raising a fault exception in a server interceptor.

CHAPTER 2 | Request Interceptors

 74

Raising a fault exception in a

client interceptor

Example 27 shows how to raise a NO_PERMISSION fault exception in the

body of a client interceptor’s intercept_invoke() function.

The preceding code fragment can be explained as follows:

1. The IT_Bus::FaultException type is the appropriate type of exception

to raise for the typical errors that occur during an operation invocation.

The constructor takes three arguments, as follows:

♦ Fault category—faults must be classified into one of the standard

categories, which are enumerated in the

it_bus/fault_exception.h header file.

♦ Namespace URI—it is recommended to use a custom namespace

for your fault exceptions (for example,

http://schemas. YourCompany.com/exceptions). This enables

Example 27:Raising a Fault Exception in a Client Interceptor

// C++
void
ClientInterceptor::intercept_invoke(
 ClientOperation& data
)
{
 if (...) // If some error condition occurs.. .
 {
 IT_Bus::String error = "You don’t have perm ission!";

1 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::NO_PERMISSION,
 "http://schemas. YourCompany.com/exceptions",
 error
);

2 exc.set_description(error);
3 exc.set_completion_status(

 IT_Bus::FaultCompletionStatus::NO
);

4 exc.set_source(IT_Bus::FaultSource::CLIENT) ;
5 throw exc;

 }

 // Call the next interceptor
 m_next_interceptor->intercept_invoke(data);

}

Raising Exceptions

75

you to distinguish your fault exceptions from the Artix fault

exceptions (which conventionally belong to the

http://schemas.iona.com/exceptions namespace).

♦ Error code—a string code. This is typically a description of the

error condition.

2. The description is identical to the error code.

3. The completion status is NO, because this exception is raised before the

operation is invoked.

4. The source is set to CLIENT, because the exception is raised on the

client side.

5. Use the standard C++ throw mechanism to raise the exception.

Raising a fault exception in a

server interceptor

Example 28 shows how to raise a TIMEOUT fault exception in the body of a

server interceptor’s intercept_around_dispatch() function.

Example 28:Raising a Fault Exception in a Client Interceptor

// C++
using namespace IT_Bus;

void
ServerInterceptor::intercept_around_dispatch(
 ServerOperation& data
)
{
 // PRE-UNMARSHAL processing
 // ...

 if (...) // If some error condition occurs.. .
 {
 IT_Bus::String error = "Something took too long!";
 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::TIMEOUT,
 "http://schemas. YourCompany.com/exceptions",
 error
);
 exc.set_description(error);

1 exc.set_completion_status(
 IT_Bus::FaultCompletionStatus::NO
);

2 exc.set_source(IT_Bus::FaultSource::SERVER) ;
3 throw exc;

CHAPTER 2 | Request Interceptors

 76

The preceding code fragment can be explained as follows:

1. The completion status is NO, because this exception is raised before the

operation is invoked.

2. The source is set SERVER, because this exception is raised on the server

side.

3. Use the standard C++ throw mechanism to raise the exception.

 }

 // Call the next interceptor
 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispat ch(data);
 }

 // POST-MARSHAL processing
 // ...

}

Example 28:Raising a Fault Exception in a Client Interceptor

77

CHAPTER 3

WSDL Extension
Elements
If you implement your own transport or binding plug-in, you
would typically configure it by defining a custom tag (or tags)
in the WSDL contract. This chapter describes how to add a
custom tag—that is, a WSDL extension element—to the Artix
WSDL parser.

In this chapter This chapter discusses the following topics:

WSDL Structure page 78

WSDL Parse Tree page 80

How to Extend WSDL page 84

Extension Elements for the Stub Plug-In page 87

CHAPTER 3 | WSDL Extension Elements

 78

WSDL Structure

Overview This section describes some basic features of the WSDL language that are

important for WSDL parsing. The following topics are discussed:

• WSDL Example.

• Standard elements.

• Extensibility/extension elements.

WSDL Example Example 29 shows the outline of a typical WSDL file, including the

important high-level elements that you would find in most WSDL files.

Standard elements The core of WSDL defines many standard XML elements (in Example 29 on

page 78, these tags appear without any prefix before their names). For

example, portType , binding , and service . These elements belong to the

base WSDL specification.

Example 29:WSDL Contract with Extensibility Elements

<wsdl:definitions name="nmtoken"? targetNamespace=" uri"?>
 <wsdl:types> ?
 <xsd:schema />*
 <-- extensibility element --> *
 </wsdl:types>

 <wsdl:binding name="nmtoken" type="qname">*
 <-- extensibility element --> *
 <wsdl:operation />*
 </wsdl:binding>
 <wsdl:service name="nmtoken"> *
 <wsdl:port name="nmtoken" binding="qname"> *
 <-- extensibility element -->
 </wsdl:port>
 <-- extensibility element -->
 </wsdl:service>
 <-- extensibility element --> *
</wsdl:definitions>

WSDL Structure

79

Extensibility/extension elements In addition to the standard elements, the WSDL standard allows you to

extend the language by adding new WSDL elements known as extensibility

elements or extension elements.

The WSDL standard does impose some restrictions, however, on where you

can add these extension elements (see appendix 3 of the WSDL

specification, http://www.w3.org/TR/wsdl).

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

CHAPTER 3 | WSDL Extension Elements

 80

WSDL Parse Tree

Overview When an Artix application reads a WSDL file, the complete contents of the

file are parsed and analyzed into a linked tree of objects, the WSDL parse

tree. There are, in fact, two views of this tree, as follows:

• XML view—this view of the parse tree is provided by the

IT_Bus::XMLNode base class. This view of the parse tree provides XML

parsing support, but has no awareness of WSDL features.

• WSDL view—this view of the parse tree is provided by classes that

inherit from IT_WSDL::WSDLNode. This view of the parse tree provides

support for WSDL features.

This section focuses exclusively on the WSDL view of the parse tree. You

should be aware, however, that you might also encounter the parse tree

through the XML view. An IT_Bus::XMLNode object and an

IT_WSDL::WSDLNode object can both refer to the same underlying node in the

parse tree.

WSDL Parse Tree

81

Parse tree classes Figure 7 shows part of the inheritance hierarchy for the classes in a WSDL

parse tree. The WSDL nodes are classified into two main types:

• IT_WSDL::WSDLExtensibleNode nodes—base class for standard

elements.

• IT_WSDL::WSDLExtensionElement nodes—base class for extension

elements.

WSDLNode The IT_WSDL::WSDLNode class is the base class for all nodes of the WSDL

parse tree. It defines the following public member functions:

// C++
IT_WSDL::NodeType get_node_type();

// Get the QName of this element node
const IT_Bus::QName & get_element_name();

// Get the namespace URI for this element node
const IT_Bus::String & get_target_namespace();

Figure 7: WSDL Parse Tree Inheritance Hierarchy

IT_WSDL::WSDLNode

IT_WSDL::WSDLExtensionElementIT_WSDL::WSDLExtensibleNode

IT_WSDL::WSDLPort

IT_WSDL::WSDLService

IT_WSDL::WSDLMessage

IT_WSDL::WSDLOperation

IT_WSDL::WSDLDefinitions IT_WSDL::WSDLPortType

IT_WSDL::WSDLTypes

CustomExtensionElement

CHAPTER 3 | WSDL Extension Elements

 82

WSDLExtensibleNode The IT_WSDL::WSDLExtensibleNode class is used as the base class for the

standard elements in WSDL. The nodes that inherit from

WSDLExtensibleNode are extensible, in the sense that they may contain

extension elements as sub-elements. In addition to the functions inherited

from IT_WSDL::WSDLNode, the WSDLExtensibleNode base class defines the

following public member functions:

// C++
IT_WSDL::WSDLExtensionElementList & get_extension_e lements();

IT_WSDL::WSDLExtensionElement *
find_extension_element(
 const IT_Bus::QName &extension_element
);

IT_WSDL::WSDLExtensionElement *
create_extension_element(
 const IT_Bus::QName &extension_element
);

void
add_extension_element(
 IT_WSDL::WSDLExtensionElement *extension_elemen t
);

WSDLPort The IT_WSDL::WSDLPort extensible node represents the WSDL port

element. This WSDL node type is important for Artix transports, because it

encapsulates all of the information required either to open a connection

(client side) or to listen for a connection (server side). The WSDLPort class

defines the following member functions:

// C++
const IT_Bus::String & get_name ()
const IT_WSDL::WSDLService & get_service ()
const IT_WSDL::WSDLBinding * get_binding ()

WSDLBinding The IT_WSDL::WSDLBinding extensible node represents the WSDL binding

element. This WSDL node type (together with a WSDL port) encapsulates

the information that is needed to establish a WSDL binding. The

WSDLBinding class defines the following member functions:

// C++
IT_WSDL::WSDLDefinitions & get_defin itions();
const IT_WSDL::WSDLDefinitions & get_defin itions();

WSDL Parse Tree

83

const IT_WSDL::IT_Bus::QName & get_name();
const IT_WSDL::WSDLBindingOperationMap & get_opera tions();
IT_WSDL::WSDLBindingOperationMap & get_opera tions();
const IT_WSDL::IT_Bus::QName & get_port_ type_name();
const IT_WSDL::WSDLPortType * get_port_ type();

const IT_WSDL::WSDLBindingOperation *
get_binding_operation (
 const IT_Bus::String &operation_name
);

const IT_Bus::String& get_binding_namespace() cons t;

WSDLExtensionElement The IT_WSDL::WSDLExtensionElement is the base class for custom extension

elements. If you want to implement your own extension element class, you

should make it inherit from WSDLExtensionElement . In your own extension

element implementation, you must override the following member functions:

// C++
IT_WSDL::WSDLExtensionFactory & get_extension_fact ory();

bool parse(
 const XMLIterator &port_type_iter,
 const IT_Bus::XMLNode &parent_node,
 IT_WSDL::WSDLErrorHandler &error_handler
);

CHAPTER 3 | WSDL Extension Elements

 84

How to Extend WSDL

Overview This section provides a high-level overview of how you can extend the

parsing capabilities of WSDL by adding extension elements.

Sample WSDL extensions For example, consider the MessageQueue (MQ) plug-in for Artix, which

introduces two new extension elements, mq:client and mq:server , to

WSDL. These new extension elements belong to the

http://schemas.iona.com/transports/mq namespace. Example 30 shows

a WSDL extract with the MQ extension elements.

Example 30:WSDL Extract with MQ Extension Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mq="http://schemas.iona.com/transports/mq "
 ...
 >
 ...
 <service name="MQBaseService">
 <port ... >
 <mq:client ... />
 <mq:server ... />
 </port>
 </service>
</definitions>

How to Extend WSDL

85

Factory pattern The scheme for extending the WSDL parser is based on a factory pattern.

The programmer registers an extension factory, which is then responsible for

creating instances of the extension elements on demand. Figure 8 illustrates

the process of creating extension elements.

Factory pattern stages The factory pattern for creating extension elements, as shown in Figure 8 on

page 85, operates as follows:

Figure 8: Factory Pattern for WSDL Extension Elements

register_extension_factory()

IT_WSDL::WSDLExtensionFactory

IT_WSDL::WSDLExtensionElement

IT_WSDL::WSDLFactory

create_extension_element()

1

2

3 create element

Stage Description

1 The programmer registers a custom WSDL extension factory by
calling register_extension_factory() on the
IT_WSDL::WSDLFactory object.

In this example, the extension factory is registered against the
http://schemas.iona.com/transports/mq namespace URI.

2 Whenever the WSDL parser encounters an element belonging
to the http://schemas.iona.com/transports/mq namespace,
it calls create_extension_element() on the extension factory.

3 The extension factory figures out which type of extension
element to create by examining the local part of the supplied
QName and then returns a new instance of this extension
element type.

CHAPTER 3 | WSDL Extension Elements

 86

Classes to implement Figure 9 shows an outline of the inheritance hierarchy for the classes you

would need to write in order to extend WSDL. There are typically three

different kinds of class to implement:

• Extension factory—inherits from IT_WSDL::WSDLExtensionFactory .

• Extension element base class—inherits from

IT_WSDL::WSDLExtensionElement .

• Extension elements (one or more of)—inherit from the extension

element base class.

Figure 9: Extension Element Classes

Extension Element Base

Extension Element 1 Extension Element N

Extension Factory

IT_WSDL::WSDLExtensionElement IT_WSDL::WSDLExtensionFactory

...

Extension Elements for the Stub Plug-In

87

Extension Elements for the Stub Plug-In

Overview This section describes how to extend WSDL, by implementing an extension

element class and an extension factory class for the stub plug-in. Although

the particular example shown here is based on a transport plug-in, this

section is relevant for binding plug-ins as well.

In this section This section contains the following subsections:

Implementing an Extension Element Base Class page 88

Implementing the Extension Element Classes page 92

Implementing the Extension Factory page 97

Registering the Extension Factory page 105

CHAPTER 3 | WSDL Extension Elements

 88

Implementing an Extension Element Base Class

Overview This subsection describes how to implement an extension element base

class for the stub transport. Although it is not strictly necessary to define an

extension element base class, if you have just one extension element, it is

nevertheless good coding practice. Once you have defined a base class for

your custom extension elements, it is relatively easy to add new extension

elements as needed.

Extension element base header Example 31 shows the header for the stub plug-in’s extension element base

class.

Example 31:Header for the StubTransportWSDLExtensionElement Class

// C++
#include <it_wsdl/wsdl_extension_element.h>
#include <it_wsdl/wsdl_port.h>

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionElement :
 public IT_WSDL::WSDLExtensionElement,
 public IT_Bus::XMLNode
 {
 public:
 StubTransportWSDLExtensionElement(
 IT_WSDL::WSDLExtensibleNode* the_node
);

 virtual const IT_Bus::QName &
2 get_element_name() const;

 virtual const IT_Bus::String &
 get_target_namespace() const;

 virtual
 IT_WSDL::WSDLExtensionFactory &

3 get_extension_factory();

 virtual ~StubTransportWSDLExtensionElement();

 virtual void

Extension Elements for the Stub Plug-In

89

 read(
 const IT_Bus::QName& name,
 IT_Bus::ComplexTypeReader & reader
) IT_THROW_DECL((IT_Bus::DeserializationExc eption))
 {
 throw IT_Bus::IOException("Not Supporte d");
 }

 virtual void
 write(
 const IT_Bus::QName& element_name,
 IT_Bus::ComplexTypeWriter & writer
) const IT_THROW_DECL((IT_Bus::Serializatio nException))
 {
 // complete
 }

 virtual void
 write(
 IT_Bus::XMLOutputStream & stream
) const IT_THROW_DECL((IT_Bus::IOException))
 {
 // complete
 }

 virtual
 IT_Bus::AnyType&
 copy(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

 protected:
4 IT_WSDL::WSDLExtensibleNode * m_wsdl_exten sible_node;

 private:
 ...
 };
};

Example 31:Header for the StubTransportWSDLExtensionElement Class

CHAPTER 3 | WSDL Extension Elements

 90

The preceding header file can be explained as follows:

1. The extension element base class must inherit from

IT_WSDL::WSDLExtensionElement and IT_Bus::XMLNode .

2. The get_element_name() and get_target_namespace() functions are

inherited from the IT_WSDL::WSDLNode base class, by way of the

IT_WSDL::WSDLExtensionElement class.

3. The get_extension_factory() element is inherited from the

IT_WSDL::WSDLExtensionElement class.

4. The m_wsdl_extensible_node is used to store a pointer to the parent

node (that is, a pointer to the WSDLExtensibleNode instance that

contains this node).

Extension element base

implementation

Example 32 shows the implementation of the stub plug-in’s extension

element base class.

Example 32: Implementation of StubTransportWSDLExtensionElement

// C++
#include "stub_transport_wsdl_extension_element.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 StubTransportWSDLExtensionElement::StubTransportWSD LExtensionEle
ment(

 IT_WSDL::WSDLExtensibleNode* the_node
) : m_wsdl_extensible_node(the_node)
{
 // complete
}

StubTransportWSDLExtensionElement::~StubTransportWS DLExtensionEl
ement()

{
 // complete
}

WSDLExtensionFactory &
2 StubTransportWSDLExtensionElement::get_extension_fa ctory()

{

Extension Elements for the Stub Plug-In

91

The preceding implementation class can be described as follows:

1. The sole constructor argument, the_node , is a pointer to the parent

extensible element node (an extensible element node is a node that

can contain other element nodes).

2. The get_extension_factory() function returns a reference to the

extension factory that is responsible for creating all of the WSDL

extension elements that inherit from this extension element base class.

3. The implementation of get_tag_name() is inherited from the

IT_Bus::XMLNode base class. It returns the QName of the current

element.

4. The implementation of get_target_namespace() simply calls the

implementation from the IT_Bus::XMLNode base class.

 return StubTransportWSDLExtensionFactory::get_i nstance();
}

const IT_Bus::QName &
3 StubTransportWSDLExtensionElement::get_element_name () const

{
 return get_tag_name();
}

const IT_Bus::String &
4 StubTransportWSDLExtensionElement::get_target_names pace() const

{
 return XMLNode::get_target_namespace();
}

Example 32: Implementation of StubTransportWSDLExtensionElement

CHAPTER 3 | WSDL Extension Elements

 92

Implementing the Extension Element Classes

Overview This subsection describes how to implement the stub extension element

class (there is only one extension element in the stub transport plug-in). This

class must be capable of parsing the stub extension element.

Stub extension element The stub plug-in adds a single extension element to WSDL, as shown in

Example 33. The stub extension element name is

NamespacePrefix:address , with a single attribute, location . In

Example 33, the NamespacePrefix is defined as stub .

Extension element header Example 34 shows the header file for the stub extension element class.

Example 33:Sample WSDL with Stub Extension Element

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...
 targetNamespace = ...
 xmlns = "http://schemas.xmlsoap.org/wsdl/ "
 xmlns:stub= "http://schemas.iona.com/transports /stub"
 ...
 >
 ...
 <service ... >
 <port ... >
 <stub:address
 location="local_0001"
 />
 </port>
 </service>
</definitions>

Example 34:Header for the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLAddress :
 public StubTransportWSDLExtensionElement

Extension Elements for the Stub Plug-In

93

 {
 public:

 StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
);
 StubTransportWSDLAddress();
 virtual ~StubTransportWSDLAddress();

 IT_WSDL::WSDLExtensionElement*
 clone() const;

 virtual bool
 parse(
 const IT_Bus::XMLIterator & element_ite rator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handl er
);

 const IT_Bus::String&
2 get_location() const;

 virtual void
 set_location(
 const IT_Bus::String & location
);

 virtual
 IT_Bus::AnyType&
 operator=(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

3 static const IT_Bus::String ELEMENT_NAME;
 static const IT_Bus::String TYPE_ATTRIBUTE_ NAME;

 private:

4 IT_Bus::String m_location;
 IT_Bus::String m_target_namespace;
 ...
 };

Example 34:Header for the StubTransportWSDLAddress Class

CHAPTER 3 | WSDL Extension Elements

 94

The preceding header file can be described as follows:

1. The stub extension element inherits from the stub extension element

base class, StubTransportWSDLExtensionElement .

2. The get_location() and set_location() functions are not inherited.

They are specific to the StubTransportWSDLAddress class.

3. Two convenient constants are declared here: ELEMENT_NAME is the local

part of the extension element QName, which is address ;

TYPE_ATTRIBUTE_NAME is the name of the attribute, location .

4. The m_location variable stores the value of the location attribute,

(which is, essentially, all of the useful information that is contained in

the address element).

Extension element

implementation

Example 35 shows the implementation of the stub extension element class.

};

Example 34:Header for the StubTransportWSDLAddress Class

Example 35: Implementation of the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_address.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 const String StubTransportWSDLAddress::ELEMENT_NAME = "address";
const String StubTransportWSDLAddress::TYPE_ATTRIBU TE_NAME =

"location";

2 StubTransportWSDLAddress::StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
)
 : StubTransportWSDLExtensionElement(the_node)
{
 // complete

Extension Elements for the Stub Plug-In

95

}

3 StubTransportWSDLAddress::StubTransportWSDLAddress()
 : StubTransportWSDLExtensionElement(0)
{
 set_tag_name(
 StubTransportWSDLAddress::ELEMENT_NAME.c_st r(),
 StubTransportWSDLExtensionFactory::SCHEMA_U RL.c_str(),
 0
);
}

StubTransportWSDLAddress::~StubTransportWSDLAddress ()
{
 // complete
}

IT_WSDL::WSDLExtensionElement*
4 StubTransportWSDLAddress::clone() const

{
 StubTransportWSDLAddress* clone =
 new StubTransportWSDLAdd ress();
 clone->set_location(this->get_location());
 return clone;
}

bool
5 StubTransportWSDLAddress::parse(

 const XMLIterator & element_iterator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handler
)
{

6 XMLNode::operator =(element);
7 m_location = element_iterator.get_field_as_stri ng(

 TYPE_ATTRIBUTE_NAME
);
 return true;
}

const String&
8 StubTransportWSDLAddress::get_location() const

{
 return m_location;

Example 35: Implementation of the StubTransportWSDLAddress Class

CHAPTER 3 | WSDL Extension Elements

 96

The preceding class implementation can be explained as follows:

1. The ELEMENT_NAME and TYPE_ATTRIBUTE_NAME constants are defined

here.

2. This form of the constructor takes a pointer to the parent extensible

element. This is the form of constructor called by the stub plug-in’s

WSDL extension factory.

3. The default constructor sets the QName of this element by calling the

set_tag_name() function, which is inherited from the

IT_Bus::XMLNode class.

4. The clone() method makes a copy of the WSDL extension element.

5. The parse() function is automatically called by the Artix core as it

constructs the in-memory WSDL model of the application’s WSDL

contract.

6. This call to XMLNode::operator=() copies the contents of the element

parameter into the current element. The unusual syntax ensures that

only the XMLNode version of the assignment operator is used (as

opposed to an assignment operator defined lower down the inheritance

hierarchy).

7. The call to XMLIterator::get_field_as_string() searches the node

for the value of the location attribute (in this context, field means an

attribute value).

8. The get_location() function can be called by other components of

the stub plug-in to access the value of the location attribute from the

address element.

}

void
StubTransportWSDLAddress::set_location(
 const String & location
)
{
 m_location = location;
}

Example 35: Implementation of the StubTransportWSDLAddress Class

Extension Elements for the Stub Plug-In

97

Implementing the Extension Factory

Overview This subsection describes how to write the stub extension factory class. An

extension factory must be capable of creating all types of extension element

that belong to a specific namespace (identified by a namespace URI).

In particular, the stub extension factory must be capable of creating all

WSDL extension elements belonging to the

http://schemas.iona.com/transports/iiop_stub namespace. There is, in

fact, only one such extension element: stubPrefix:address .

Stub extension factory header Example 36 shows the header file for the stub extension factory class.

Example 36:Header for the StubTransportWSDLExtensionFactory Class

// C++
#include <it_wsdl/wsdl_extension_factory.h>
#include <it_bus/bus.h>
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionFactory
 : public IT_WSDL::WSDLExtensionFactory
 {
 public:
 virtual
 IT_WSDL::WSDLExtensionElement *
 create_extension_element(
 IT_WSDL::WSDLExtensibleNode& parent,
 const IT_Bus::QName& extension_element
) const;

 virtual IT_Bus::AnyType *
 create_type(
 const IT_Bus::QName& extension_element
) const;

 virtual void
 destroy_type(
 IT_Bus::AnyType * element
) const;

CHAPTER 3 | WSDL Extension Elements

 98

The preceding header file can be explained as follows:

1. The extension factory must inherit from the

IT_WSDL::WSDLExtensionFactory base class.

2. The get_extension_element() function is not inherited. It is specific

to the stub WSDL extension factory.

3. The SCHEMA_URL is a convenient string constant that stores the

namespace URI for this extension factory. It is initialized to be

http://schemas.iona.com/transports/stub .

Stub extension factory

implementation

Example 37 shows the implementation of the stub extension factory class.

 static StubTransportWSDLExtensionFactory &
 get_instance();

 static StubTransportWSDLExtensionElement*
2 get_extension_element(

 const IT_WSDL::WSDLPort& wsdl_port,
 const IT_Bus::String& element_name
);

 StubTransportWSDLExtensionFactory();
 virtual ~StubTransportWSDLExtensionFactory();

3 static const IT_Bus::String SCHEMA_URL;

 private:
 ...
 };
};

Example 36:Header for the StubTransportWSDLExtensionFactory Class

Example 37: Implementation of the StubTransportWSDLExtensionFactory

// C++
#include "stub_transport_wsdl_address.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_WSDL;
using namespace IT_Bus;
using namespace IT_Transport_Stub;

Extension Elements for the Stub Plug-In

99

1 const String StubTransportWSDLExtensionFactory::SCH EMA_URL =
"http://schemas.iona.com/transports/stub";

StubTransportWSDLExtensionFactory::StubTransportWSD LExtensionFac
tory()

{
 // complete
}

StubTransportWSDLExtensionFactory::~StubTransportWS DLExtensionFa
ctory()

{
 // complete
}

IT_Bus::AnyType *
2 StubTransportWSDLExtensionFactory::create_type(

 const QName& extension_element
) const
{
 return 0;
}

WSDLExtensionElement *
3 StubTransportWSDLExtensionFactory::create_extension _element(

 WSDLExtensibleNode& parent,
 const QName& extension_element
) const
{
 String local_part = extension_element.get_local _part();

4 if (local_part == StubTransportWSDLAddress::ELE MENT_NAME)
 {
 return new StubTransportWSDLAddress(&parent);
 }

5 return 0;
}

void
StubTransportWSDLExtensionFactory::destroy_type(
 IT_Bus::AnyType * element
) const
{
 delete IT_DYNAMIC_CAST(

Example 37: Implementation of the StubTransportWSDLExtensionFactory

CHAPTER 3 | WSDL Extension Elements

 100

 StubTransportWSDLExtensionElement *,
 element
);
}

6 StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_insta nce;

StubTransportWSDLExtensionFactory &
StubTransportWSDLExtensionFactory::get_instance()
{
 return

it_glob_stub_transport_wsdl_extension_factory_insta nce;
}

StubTransportWSDLExtensionElement*
7 StubTransportWSDLExtensionFactory::get_extension_el ement(

 const WSDLPort& wsdl_port,
 const String& element_name
)
{
 StubTransportWSDLExtensionElement* extension_el ement = 0;

8 const WSDLExtensionElementList & port_children_ nodes =
 wsdl_port.get_extension_elements();

9 WSDLExtensionElementList::const_iterator node_i ter =
 port_children_nodes.begin();

 QName element_qname("", element_name, SCHEMA_UR L);

 while (node_iter != port_children_nodes.end())
 {
 const QName & curr_qname =
 (*node_iter)->get_element_ name();

 if (element_qname == curr_qname)
 {
 extension_element = IT_DYNAMIC_CAST(
 StubTransportWSDLExtensionElement * ,
 (*node_iter)
);
 }
 node_iter++;
 }

Example 37: Implementation of the StubTransportWSDLExtensionFactory

Extension Elements for the Stub Plug-In

101

1 const String StubTransportWSDLExtensionFactory::SCH EMA_URL =
"http://schemas.iona.com/transports/stub";

StubTransportWSDLExtensionFactory::StubTransportWSD LExtensionFac
tory()

{
 // complete
}

StubTransportWSDLExtensionFactory::~StubTransportWS DLExtensionFa
ctory()

{
 // complete
}

IT_Bus::AnyType *
2 StubTransportWSDLExtensionFactory::create_type(

 const QName& extension_element
) const
{
 return 0;
}

WSDLExtensionElement *
3 StubTransportWSDLExtensionFactory::create_extension _element(

 WSDLExtensibleNode& parent,
 const QName& extension_element
) const
{
 String local_part = extension_element.get_local _part();

4 if (local_part == StubTransportWSDLAddress::ELE MENT_NAME)
 {
 return new StubTransportWSDLAddress(&parent);
 }

5 return 0;
}

void
StubTransportWSDLExtensionFactory::destroy_type(
 IT_Bus::AnyType * element
) const
{
 delete IT_DYNAMIC_CAST(

Example 37: Implementation of the StubTransportWSDLExtensionFactory

CHAPTER 3 | WSDL Extension Elements

 102

 StubTransportWSDLExtensionElement *,
 element
);
}

6 StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_insta nce;

StubTransportWSDLExtensionFactory &
StubTransportWSDLExtensionFactory::get_instance()
{
 return

it_glob_stub_transport_wsdl_extension_factory_insta nce;
}

StubTransportWSDLExtensionElement*
7 StubTransportWSDLExtensionFactory::get_extension_el ement(

 const WSDLPort& wsdl_port,
 const String& element_name
)
{
 StubTransportWSDLExtensionElement* extension_el ement = 0;

8 const WSDLExtensionElementList & port_children_ nodes =
 wsdl_port.get_extension_elements();

9 WSDLExtensionElementList::const_iterator node_i ter =
 port_children_nodes.begin();

 QName element_qname("", element_name, SCHEMA_UR L);

 while (node_iter != port_children_nodes.end())
 {
 const QName & curr_qname =
 (*node_iter)->get_element_ name();

 if (element_qname == curr_qname)
 {
 extension_element = IT_DYNAMIC_CAST(
 StubTransportWSDLExtensionElement * ,
 (*node_iter)
);
 }
 node_iter++;
 }

Example 37: Implementation of the StubTransportWSDLExtensionFactory

Extension Elements for the Stub Plug-In

103

The preceding implementation class can be explained as follows:

1. This line sets the SCHEMA_URL to

http://schemas.iona.com/transports/stub , which is the namespace

URI that identifies this WSDL extension factory.

2. A WSDL extension factory can also be used to define new XML schema

types, which can be instantiated using the create_type() function.

Because the stub plug-in’s schema does not define any new types, this

function has a dummy implementation.

3. The create_extension_element() function is called by the Artix core

while it is creating the in-memory WSDL parse tree. When the WSDL

parser encounters an element that belongs to the stub plug-in’s

namespace URI, it delegates creation of the element to this extension

factory. The create_extension_element() function is responsible for

creating all of the different kinds of elements that belong to the

http://schemas.iona.com/transports/stub namespace URI.

4. Because there is only one extension element defined by the stub

plug-in (that is, address), it is only necessary to check if the local part

of the QName equals address before creating a

StubTransportWSDLAddress instance.

In general, however, an implementation of

create_extension_element() would typically have to compare the

value of local_part with several different extension element names to

select the right type of element.

5. A return value of 0 indicates that create_extension_element() could

not create the requested element type.

6. This line creates a single global instance of the stub plug-in’s WSDL

extension factory.

 return extension_element;
}

Example 37: Implementation of the StubTransportWSDLExtensionFactory

Note: You do not necessarily have to create this factory as a global
static object. Any variation of a singleton implementation pattern
would do here.

CHAPTER 3 | WSDL Extension Elements

 104

7. The get_extension_element() function is specific to this extension

factory implementation. It searches a WSDL port element, wsdl_port ,

for a sub-element with the given name, element_name . The transport

code uses this function to extract configuration details from the WSDL

port.

8. The get_extension_elements() function returns a list of all the

sub-elements contained in the WSDL port.

9. The extension element list is modelled on the C++ Standard Template

Library list type, std::list . Hence, you can use an iterator to search

through the WSDL port’s sub-elements.

Extension Elements for the Stub Plug-In

105

Registering the Extension Factory

Overview The final step is to register the stub extension factory, so that the extensions

become available to the overall WSDL parse tree. Registration is performed

by calling the register_extension_factory() function on the WSDL

factory object.

WSDL factory The WSDL factory is an object of IT_WSDL::WSDLFactory type that

maintains a registry of all WSDL extension factory classes. The following

IT_WSDL::WSDLFactory member functions manage the extension factory

registry:

// C++
void register_extension_factory(
 const IT_Bus::String &extension_namespace,
 const WSDLExtensionFactory &factory
);

void deregister_extension_factory(
 const IT_Bus::String &extension_namespace
);

Namespace URI Registration associates a specific namespace URI with an extension factory.

While parsing a WSDL file, the WSDL factory will call on the extension

factory whenever it encounters elements from this namespace.

In the case of the stub extension factory, the namespace URI is:

http://schemas.iona.com/transports/stub

CHAPTER 3 | WSDL Extension Elements

 106

Example Example 38 shows how to register a stub extension factory with the

IT_WSDL::WSDLFactory object. For the stub plug-in, registration is

performed by the TransportFactory object—see “Implementing the

Transport Factory” on page 158.

Example 38:Registering a WSDL Extension Factory Instance

// C++
...
using namespace IT_Bus;
using namespace IT_WSDL;
...
void
IT_Transport_Stub::StubTransportFactory::register_w sdl_extension

_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_facto ry_instance
);
}

void
IT_Transport_Stub::StubTransportFactory::deregister _wsdl_extensi

on_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.deregister_extension_factory(
 "http://schemas.iona.com/transports/stub"
);
}

107

CHAPTER 4

Artix Transport
Plug-Ins
This chapter describes how to implement an Artix transport
plug-in, which enables you to integrate Artix with any transport
protocol.

In this chapter This chapter discusses the following topics:

The Artix Transport Layer page 108

Transport Threading Models page 114

Dispatch Policies page 126

Accessing Contexts page 135

Oneway Semantics page 140

Stub Transport Example page 143

CHAPTER 4 | Artix Transport Plug-Ins

 108

The Artix Transport Layer

Overview This section provides an overview of the architecture and API for the Artix

transport layer.

In this section This section contains the following subsections:

Architecture Overview page 109

Artix Transport Classes page 111

The Artix Transport Layer

109

Architecture Overview

Transport architecture Figure 10 gives a high-level overview of the Artix transport architecture.

WSDL port The WSDL port, as shown in Figure 10, refers to the WSDL port element

that specifies the connection parameters for this transport instance. For

example, the WSDL port for a TCP/IP-based transport would specify values

for the server’s host and IP port.

In the general case, a WSDL port can specify connection parameters for

both client and server.

Figure 10: Artix Transport Architecture

Artix Client
Transport

Artix
Binding

Artix Client

request response

send() receive()

Artix Server
Transport

Artix
Binding

Artix Server

request response

request

response

WSDL Port
<service ...>
 <port ...>
 ...
 </port>
</service>

initialize() initialize()

CHAPTER 4 | Artix Transport Plug-Ins

 110

Client transport A client transport is an object of IT_Bus::ClientTransport type, which can

be implemented by an Artix plug-in developer. The main functions

supported by the client transport class are, as follows:

• initialize() —configure the client connection (usually based on the

parameters read from the WSDL port).

• connect() /disconnect() —open/close a connection to the remote host.

• invoke() /invoke_oneway() —send and receive messages in raw binary

format.

Server transport A server transport is an object of IT_Bus::ServerTransport type, which can

be implemented by an Artix plug-in developer. The main functions

supported by the server transport class are, as follows:

• activate() —begin listening for client connection attempts and

incoming request messages. Typically, the implementation of this

function spawns a new thread to listen for incoming messages.

• deactivate() —stop listening for client connection attempts and

incoming request messages.

• get_configuration() —return a reference to the WSDL extension

element that configures this transport.

• shutdown() —notifies the server transport that the Bus is shutting

down.

• send() —a callback to send reply messages back to the client. This

function is called, only if you select an asynchronous style of message

dispatch (which is indicated by enabling the requires stack unwind

policy).

• run() —for a certain combination of policies, this function contains the

code that listens for incoming requests. If you select the

MESSAGING_PORT_DRIVEN threading resources policy in combination

with the MULTI_THREADED messaging port threading policy, the run()

function is called concurrently by multiple messaging port threads.

The Artix Transport Layer

111

Artix Transport Classes

Overview Figure 11 shows an overview of the main classes that are relevant to the

implementation of an Artix transport. A brief description of each of these

classes is provided in this subsection.

TransportFactory Class The IT_Bus::TransportFactory is responsible for creating the basic objects

in a transport implementation.When implementing a transport, you must

implement a class that derives from TransportFactory and then register an

instance of the transport factory implementation with the Artix Bus.

ClientTransport Class For the client side of a transport, you must define and implement a class

that derives from the IT_Bus::ClientTransport class. The client transport

must be capable of opening a connection to a remote service, as well as

sending and receiving binary buffers through the transport.

Figure 11: Overview of the Artix Transport Classes

cr
ea

te
s creates

cr
ea

te
s

IT_Bus::TransportPolicyList

IT_Bus::TransportFactory

IT_Bus::ClientTransport IT_Bus::ServerTransport IT_Bus::TransportCallback

IT_Bus::DispatchInfo

cr
ea

te
s

CHAPTER 4 | Artix Transport Plug-Ins

 112

ServerTransport Class For the server side of a transport, you must define and implement a class

that derives from the IT_Bus::ServerTransport class. The server transport

implementation should be capable of listening for incoming request

messages (in binary format) from the transport layer and dispatching these

messages up the call stack.

Requests are dispatched by calling the

IT_Bus::TransportCallback::dispatch() function.

TransportCallback Class The IT_Bus::TransportCallback class is provided by the Artix runtime; you

do not need to implement this class. The most important member of

TransportCallback is the dispatch() function, which the server code uses

to dispatch a request message up the call stack.

The TransportCallback class acts as an observer for the ServerTransport

class. The TransportCallback functions must be called from within a

ServerTransport object as follows:

• TransportCallback::transport_activated() —called from within

ServerTransport::activate() , after the transport is activated.

• TransportCallback::transport_deactivated() —called from within

ServerTransport::deactivate() , after the transport is deactivated.

• TransportCallback::transport_shutdown() —called from within

ServerTransport::shutdown() , after the transport has been shut

down.

DispatchInfo Class The IT_Bus::DispatchInfo class is provided by the Artix runtime. You can

obtain a DispatchInfo object by calling the

TransportCallback::get_dispatch_context() function. On the server

side, a DispatchInfo object is used to encapsulate additional information

about the current message.

For example, the DispatchInfo object is used to hold incoming and

outgoing context data. You can also use the

DispatchInfo::get_correlation_id() function to obtain an ID that lets

you match incoming requests to outgoing replies.

The Artix Transport Layer

113

TransportPolicyList Class The IT_Bus::TransportPolicyList holds a collection of policy options that

affect the semantics of the server side of the transport. You can customize

the interaction between the Artix runtime and the server transport by setting

the appropriate policies on a TransportPolicyList instance and returning

this instance from the TransportFactory::get_policies() function.

CHAPTER 4 | Artix Transport Plug-Ins

 114

Transport Threading Models

Overview Artix provides a variety of threading models for server transports. For a

relatively simple server transport implementation, you can take advantage of

the messaging port thread pool, which makes it unnecessary to write the

threading code yourself. Alternatively, if you need more flexibility, you can

use the externally driven threading model, which allows you to implement a

custom threading model.

In this section This section contains the following subsections:

Threading Introduction page 115

MESSAGING_PORT_DRIVEN and MULTI_INSTANCE page 117

MESSAGING_PORT_DRIVEN and MULTI_THREADED page 119

MESSAGING_PORT_DRIVEN and SINGLE_THREADED page 122

EXTERNALLY_DRIVEN page 124

Transport Threading Models

115

Threading Introduction

Overview The server transport threading model is selected by setting threading

policies on an IT_Bus::TransportPolicyList object. This section provides

a brief overview of the various threading policy combinations. The chosen

threading policy combination affects the transport in two ways:

• It dictates a particular programming model for the server transport and

• It regulates the interaction between the Artix runtime and the server

transport.

Threading resources policy The threading resources policy is used to tell the Artix runtime where the

server transport’s threading resources must come from:

• MESSAGING_PORT_DRIVEN policy value—the threads used to read

incoming request messages are supplied from the messaging port

thread pool. This policy setting can be combined with one of the

following messaging port threading policies:

♦ MULTI_INSTANCE,

♦ MULTI_THREADED,

♦ SINGLE_THREADED.

• EXTERNALLY_DRIVEN policy value—the reader threads are either created

by the server transport itself or provided from some other external

source.

Messaging port threading model

policy

If you have selected the MESSAGING_PORT_DRIVEN threading resources policy,

you can combine it with a messaging port threading model policy. The

following policy values are supported:

• MULTI_INSTANCE policy value—the Artix runtime creates multiple

instances of the ServerTransport class and each instance consumes a

single thread from the messaging port thread pool.

• MULTI_THREADED policy value—the Artix runtime creates a single

instance of the ServerTransport class and this single instance

consumes multiple threads from the messaging port thread pool.

CHAPTER 4 | Artix Transport Plug-Ins

 116

• SINGLE_THREADED policy value—the Artix runtime creates a single

instance of the ServerTransport class and this instance consumes a

single thread from the messaging port thread pool.

Setting the server transport

threading policies

To set the server threading policies, create an

IT_Bus::TransportPolicyList instance, initialize it with the relevant policy

values, and return the policy list from the

TransportFactory::get_policies() function.

When the Artix runtime is about to activate a service, it calls the

get_policies() function to discover what kind of policies should govern the

server transport. This includes the settings for the threading model.

Transport Threading Models

117

MESSAGING_PORT_DRIVEN and MULTI_INSTANCE

Overview By combining the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policy

values, you obtain the threading model shown in Figure 12. When the

service is activated, Artix creates multiple ServerTransport instances to

service the incoming requests. Each of the ServerTransport instances

consumes a thread from the messaging port thread pool.

The implementation of the activate() function incorporates a while loop

which continuously reads request messages from the transport layer and

dispatches these requests to a TransportCallback object. It is this blocked

activate() function which consumes a messaging port thread.

How it works The MESSAGING_PORT_DRIVEN and MULTI_INSTANCE threading model shown

in Figure 12 works as follows

Figure 12: MESSAGING_PORT_DRIVEN and MULTI_INSTANCE Threading

Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

while(...) {
 ...
}

activate()

dispatch()

1
2

Stage Description

1 Each of the threads in the messaging port thread pool calls
activate() on a separate IT_Bus::ServerTransport instance.
The activate() function remains blocked for as long as the
service is active (the activate() implementation typically
contains a while loop).

CHAPTER 4 | Artix Transport Plug-Ins

 118

Setting the policies To set the server threading policies, create an

IT_Bus::TransportPolicyList instance, initialize it with the relevant policy

values, and return the policy list from the

TransportFactory::get_policies() function.

Example 39 shows how to set the MESSAGING_PORT_DRIVEN and

MULTI_INSTANCE policy values.

Configuring the thread pool To configure the thread pool for a transport that uses a combination of the

MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policies, set the following

variable in the Artix configuration file:

policy:messaging_transport:min_threads

This variable specifies the number of threads in the messaging port’s thread

pool, when the multi-instance policy is in effect. The default is 1.

2 Each of the ServerTransport objects calls dispatch() on a
separate IT_Bus::TransportCallback instance.

Stage Description

Example 39:Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_l ist();
 m_transport_policylist->set_policy_threading_res ources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_por t_threading(
 IT_Bus::MULTI_INSTANCE
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Transport Threading Models

119

MESSAGING_PORT_DRIVEN and MULTI_THREADED

Overview By combining the MESSAGING_PORT_DRIVEN and MULTI_THREADED policy

values, you obtain the threading model shown in Figure 13. When the

service is activated, Artix creates a single ServerTransport instance to

service the incoming requests. The activate() function is responsible for

initializing the transport and the run() function, which is called concurrently

by multiple threads, is responsible for processing incoming requests.

The implementation of the run() function incorporates a while loop which

continuously reads request messages from the transport layer and

dispatches these requests to the TransportCallback object.

How it works The MESSAGING_PORT_DRIVEN and MULTI_THREADED threading model shown

in Figure 13 works as follows

Figure 13: MESSAGING_PORT_DRIVEN and MULTI_THREADED Threading

Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3

run()

dispatch()

2
run()

Stage Description

1 A thread from the messaging port thread pool calls activate()
on the sole IT_Bus::ServerTransport instance. The
activate() function puts the transport layer into a state where
it is ready to receive request messages, but the function does
not process any messages and returns immediately.

CHAPTER 4 | Artix Transport Plug-Ins

 120

Setting the policies To set the server threading policies, create an

IT_Bus::TransportPolicyList instance, initialize it with the relevant policy

values, and return the policy list from the

TransportFactory::get_policies() function.

Example 40 shows how to set the MESSAGING_PORT_DRIVEN and

MULTI_THREEADED policy values.

2 A number of threads from the thread pool call run() on the
sole IT_Bus::ServerTransport instance. The run() function is
responsible for reading request messages from the transport
and dispatching them to the TransportCallback object.
Hence, the calls to run() remain blocked for as long as the
service is active.

3 Within each of the concurrent run() calls, the implementation
code calls dispatch() on the IT_Bus::TransportCallback
instance whenever a request message is received on the
transport.

Stage Description

Example 40:Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_l ist();
 m_transport_policylist->set_policy_threading_res ources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_por t_threading(
 IT_Bus::MULTI_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Transport Threading Models

121

Thread safety When you use the MULTI_THREADED policy value, there is only a single

instance of the ServerTransport , but the instance’s run() function is called

concurrently from multiple threads. It follows that you must take care to

make the implementation of run() completely thread-safe.

For example, member variables of the ServerTransport class must be

protected by a mutex lock whenever they are accessed from within the

run() function.

Configuring the thread pool To configure the thread pool for a transport that uses a combination of the

MESSAGING_PORT_DRIVEN and MULTI_THREADED policies, set the following

variable in the Artix configuration file:

policy:messaging_transport:concurrency

This variable specifies the number of threads in the messaging port’s thread

pool, when the multi-threaded policy is in effect. The default is 1.

CHAPTER 4 | Artix Transport Plug-Ins

 122

MESSAGING_PORT_DRIVEN and SINGLE_THREADED

Overview By combining the MESSAGING_PORT_DRIVEN and SINGLE_THREADED policy

values, you obtain the threading model shown in Figure 14. When the

service is activated, Artix creates a single ServerTransport instance to

service the incoming requests. The ServerTransport instance consumes a

single thread from the messaging port thread pool.

The implementation of the activate() function incorporates a while loop

which continuously reads request messages from the transport layer and

dispatches these requests to the TransportCallback object.

How it works The MESSAGING_PORT_DRIVEN and SINGLE_THREADED threading model shown

in Figure 14 works as follows

Figure 14: MESSAGING_PORT_DRIVEN and SINGLE_THREADED

Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

Stage Description

1 A single thread in the messaging port thread pool calls
activate() on a single IT_Bus::ServerTransport instance.
The activate() function remains blocked for as long as the
service is active (the activate() implementation typically
contains a while loop).

2 The ServerTransport object calls dispatch() on the
IT_Bus::TransportCallback instance.

Transport Threading Models

123

Setting the policies To set the server threading policies, create an

IT_Bus::TransportPolicyList instance, initialize it with the relevant policy

values, and return the policy list from the

TransportFactory::get_policies() function.

Example 41 shows how to set the MESSAGING_PORT_DRIVEN and

SINGLE_THREADED policy values.

Example 41:Setting Policies for MESSAGING_PORT_DRIVEN and

SINGLE_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_l ist();
 m_transport_policylist->set_policy_threading_res ources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_por t_threading(
 IT_Bus::SINGLE_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

CHAPTER 4 | Artix Transport Plug-Ins

 124

EXTERNALLY_DRIVEN

Overview By selecting the EXTERNALLY_DRIVEN policy value, you obtain the threading

model shown in Figure 15. When the service is activated, Artix creates a

single ServerTransport instance to service the incoming requests. The

ServerTransport instance does not consume any threads from the

messaging port thread pool. That is, the call to activate() must be

non-blocking.

The essence of the EXTERNALLY_DRIVEN thread model is that it does not

consume any messaging port threads. This model is useful if you use a

transport library that has its own threading capabilities.

How it works The EXTERNALLY_DRIVEN threading model shown in Figure 15 works as

follows

Figure 15: EXTERNALLY_DRIVEN Threading Model

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3
External Thread

Create T
hread

2

Stage Description

1 A single thread in the messaging port thread pool calls
activate() on an IT_Bus::ServerTransport instance. The
activate() function puts the transport layer into a state where
it is ready to receive request messages, but it does not process
any messages.

Transport Threading Models

125

Setting the policies To set the server threading policies, create an

IT_Bus::TransportPolicyList instance, initialize it with the relevant policy

values, and return the policy list from the

TransportFactory::get_policies() function.

Example 42 shows how to set the EXTERNALLY_DRIVEN policy value.

2 Before returning, the activate() function either obtains a
thread from an external source or creates a new thread to
process the incoming request messages.

The request processing code could be put into a private
member function of ServerTransport or it could belong to a
different object altogether.

3 The request processing code, which is running in the external
thread, calls dispatch() on the IT_Bus::TransportCallback
instance.

Stage Description

Example 42:Setting Policies for EXTERNALLY_DRIVEN Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_l ist();
 m_transport_policylist->set_policy_threading_res ources(
 IT_Bus::EXTERNALLY_DRIVEN
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

CHAPTER 4 | Artix Transport Plug-Ins

 126

Dispatch Policies

Overview Dispatching refers to the stage just after the server transport obtains the

request message in the form of a raw buffer. The server transport calls the

dispatch() function to pass the request message up to the next layer in the

stack, where it is processed and ultimately routed to the appropriate servant

object.

The dispatch policies enable you to control the degree to which dispatching

is synchronized with the transport layer. Broadly speaking, the two main

options are synchronous call semantics (RPC-style dispatch) or

asynchronous call semantics (messaging-style dispatch).

In this section This section contains the following subsections:

Dispatch Policy Overview page 127

RPC-Style Dispatch page 129

Messaging-Style Dispatch page 132

Dispatch Policies

127

Dispatch Policy Overview

Overview On the server side, the manner in which a request message is dispatched to

the upper layers of an application can be influenced by a number of policies,

as follows:

• Stack unwind policy.

• Asynchronous dispatch policy.

Stack unwind policy The stack unwind policy can be set or read from a TransportPolicyList

object using the following API functions:

The stack unwind policy selects between an RPC-style dispatch and a

messaging-style dispatch.

If the stack unwind policy is true , you must call the

DispatchInfo::provide_response_buffer() function to provide a reply

buffer reference and the TransportCallback::dispatch() function blocks

until the reply buffer is written.

If the stack unwind policy is false , you must call the

TransportCallback::dispatch() function to dispatch a request buffer. The

reply buffer is passed back to the ServerTransport through a callback on

the ServerTransport::send() function. In this case also, the dispatch()

function blocks until the reply buffer is written.

The default is false .

// C++
namespace IT_Bus {
 class IT_BUS_API TransportPolicyList
 {
 public:
 ...
 virtual void
 set_policy_requires_stack_unwind(const bool policy) = 0;

 virtual const bool
 get_policy_requires_stack_unwind() const = 0;
};

CHAPTER 4 | Artix Transport Plug-Ins

 128

Asynchronous dispatch policy The asynchronous dispatch policy can be set on a per-request basis and is

set by passing a boolean value into the optional parameter of the

TransportCallback::dispatch() function, which has the following

signature:

The asynchronous dispatch policy is an optimization that enables you to

decouple the reader thread from the dispatch processing.

If the asynchronous dispatch policy is true , the dispatch() function returns

immediately after adding the request message to a work queue.

If the asynchronous dispatch policy is false , the dispatch() function

remains blocked until the dispatch processing is complete.

// C++
namespace IT_Bus {
 class IT_BUS_API TransportCallback
 {
 public:
 ...
 virtual void
 dispatch(
 BinaryBuffer& request_message,
 DispatchInfo& dispatch_context,
 bool dispatch_acynchronously_i f_possible = 0
) = 0;
};

Note: As of Artix 3.0.2, the asynchronous dispatch policy has not yet
been implemented. That is, the dispatch() function always blocks. The
non-blocking functionality will be implemented in a later release.

Dispatch Policies

129

RPC-Style Dispatch

Overview Some implementations of a server transport could be layered over a Remote

Procedure Call (RPC) transport infrastructure. For this kind of transport, it is

more convenient if the upcall blocks until the reply buffer becomes available

(synchronous invocation). Figure 16 shows an overview of an RPC-style

dispatch call.

Dispatch steps The stages shown in Figure 16 can be described as follows:

Figure 16: Overview of RPC-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

3

2

4

Request Buffer

Reply Buffer

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the
request buffer.

2 The TransportCallback object processes the request message,
resulting in an upcall to the relevant servant object.

3 After processing the request, the TransportCallback writes the
reply data into the reply buffer.

Note: The reply buffer must be supplied to the
TransportCallback object in advance, using the
DispatchInfo::provide_response_buffer() function. For
details, see Example 44 on page 131.

CHAPTER 4 | Artix Transport Plug-Ins

 130

Setting the requisite policies To set the transport policies, create an IT_Bus::TransportPolicyList

instance, initialize it with the relevant policy values, and then return the

policy list from the TransportFactory::get_policies() function.

Example 43 shows how to implement a transport factory with the policies

required for RPC-style dispatch.

Implementation example The code fragment in Example 44 shows how to make an upcall into the

Artix application using RPC-style dispatch. This code fragment could appear

in the body of the ServerTransport::activate() function, in the body of

4 The dispatch() call remains blocked until the reply buffer is
written. After dispatch() returns, therefore, the reply buffer is
available and ready to be sent back to the client.

Stage Description

Example 43:Setting Policies for RPC-Style Dispatch

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_l ist();
 m_transport_policylist->set_policy_requires_stac k_unwind(
 true
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Dispatch Policies

131

the ServerTransport::run() function, or in a completely different object,

depending on the type of threading model that is used (see “Transport

Threading Models” on page 114).

Example 44:Making an Upcall Using RPC-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.

CHAPTER 4 | Artix Transport Plug-Ins

 132

Messaging-Style Dispatch

Overview The default style of dispatching used by the Artix server transport is

messaging-style dispatch, which is suitable for message-oriented transports

such as the MQ-Series transport. For this kind of transport, the upcall

returns as soon as it has dispatched the request buffer. The reply buffer is

returned asynchronously, through a callback on the

ServerTransport::send() function. Figure 17 shows an overview of a

messaging-style dispatch call.

Dispatch steps The stages shown in Figure 17 can be described as follows:

Figure 17: Overview of Messaging-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

4

2

3

Request Buffer

Reply Buffer

5
send()

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the
request buffer.

2 The TransportCallback object processes the request message,
resulting in an upcall to the relevant servant object.

3 The dispatch() call returns directly after dispatching the
request message.

Dispatch Policies

133

Setting the requisite policies Normally, there is no need to set transport policies explicitly for

messaging-style dispatch, because it is the default. If you do set some

transport policies, however, you must be sure that the value of the requires

stack unwind policy is false (the default).

Implementation example The code fragment in Example 45 shows how to make an upcall into the

Artix application using messaging-style dispatch. This code fragment could

appear in the body of the ServerTransport::activate() function, in the

body of the ServerTransport::run() function, or in a completely different

object, depending on the type of threading model that is used (see

“Transport Threading Models” on page 114).

4 After processing the request, the TransportCallback writes the
reply data into the reply buffer.

5 The Artix runtime calls send() on the ServerTransport object,
passing in a reference to the reply buffer.

Stage Description

Example 45:Making an Upcall Using Messaging-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.

CHAPTER 4 | Artix Transport Plug-Ins

 134

In addition to dispatching the request buffer, you must implement the

ServerTransport::send() function to receive the callback containing the

reply buffer. Example 46 shows an outline implementation of the send()

function, which is suitable for message-style dispatch.

Example 46: Implementation of send() for Message-Style Dispatch

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 // Send the reply_message over the transport la yer
 // back to the client.
 ... // (transport-specific details)
}

Accessing Contexts

135

Accessing Contexts

Overview Contexts are an Artix mechanism that enables application code to

communicate with plug-ins. Contexts are typically used by transports for the

following purposes:

• Setting connection parameters (for example, timeouts).

• Sending data in message headers (either as part of a request message

or a reply message).

This section describes how to access and use contexts from within a

transport implementation.

Accessing contexts on the client

side

The following extract from the IT_Bus::ClientTransport class shows how

you can access Artix contexts from the connect() , invoke_oneway() , and

invoke() functions.

Note: Although Artix contexts are accessible from the transport, in many
cases it is more appropriate to access contexts from within an interceptor.
The use of interceptors makes your code more modular: you can load
individual interceptors independently of the transport.

// C++
namespace IT_Bus
{
 class IT_BUS_API ClientTransport
 {
 public:
 virtual void
 connect(
 ContextContainer* out_context_container
) = 0;
 ...
 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 const BinaryBuffer& request_b uffer,
 ContextContainer* out_conta iner,
 ContextContainer* in_contai ner
) = 0;

CHAPTER 4 | Artix Transport Plug-Ins

 136

In each of these functions, the contexts are used as follows:

• connect() function—the outgoing context container could contain

settings that influence the transport connection (for example,

connection timeouts). You can define your own context type

specifically for this purpose.

• invoke_oneway() function—contexts can be used to send and receive

header information across a transport protocol, as follows:

♦ If there is outgoing data to send in a header, the transport

implementation reads it from the relevant outgoing context

(obtained from out_container) and inserts it into a request

message header.

♦ If there is incoming data to receive from a header, the transport

implementation extracts it from the reply message and writes it

into the relevant incoming context (obtained from in_container).

• invoke() function—both outgoing contexts and incoming contexts are

available, just as for the invoke_oneway() function.

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 const BinaryBuffer& request_b uffer,
 BinaryBuffer& response_ buffer,
 ContextContainer* out_conta iner,
 ContextContainer* in_contai ner
) = 0;
 ...
 };
};

Note: Incoming reply contexts (read from incoming reply messages)
are supported, even though this is a oneway WSDL operation.
Oneway operations are not necessarily implemented as oneways by
the transport layer. Sometimes, it is necessary to extract context data
from reply messages, even for oneway operations.

Accessing Contexts

137

Accessing contexts with RPC-style

dispatch

On the server side, incoming contexts and outgoing contexts are accessible

through the current IT_Bus::DispatchInfo object. For example, the code

for accessing contexts within an RPC-style dispatch would have the

following general outline:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the inc oming request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

ContextContainer& outgoing_container =
dispatch_context.get_outgoing_context_container();

// Process each outgoing context as follows:
// 1. Obtain the relevant context instance from the
// outgoing_container.
// 1. Read the context data from the context instan ce.
// 3. Marshal the context data into an outgoing rep ly header.

CHAPTER 4 | Artix Transport Plug-Ins

 138

Accessing contexts with

messaging-style dispatch

With messaging-style dispatch, there are two different points in the code

where you access contexts. Firstly, to access incoming contexts, you need to

insert some code before the TransportCallback::dispatch() call, as

follows:

Next, to access outgoing contexts, you need to insert some code into the

ServerTransport::send() function, as follows:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the inc oming request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// C++
void
ServerTransportImpl:: send (
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 ...
 ContextContainer& outgoing_container =
 dispatch_context.get_outgoing_context_conta iner();

 // Process each outgoing context as follows:
 // 1. Obtain the relevant context instance from the
 // outgoing_container.
 // 1. Read the context data from the context in stance.

Accessing Contexts

139

 // 3. Marshal the context data into an outgoing reply header.
 ...
}

CHAPTER 4 | Artix Transport Plug-Ins

 140

Oneway Semantics

Overview WSDL syntax allows you to define two different kinds of operations:

• Normal operations—which include one or more output messages.

• Oneway operations—which include only input messages.

In general, the remote invocation of a oneway operation can be optimized so

that it consists only of a request message; there is no need to wait for a

reply message, because no data is expected in the reply. This is a valuable

optimization, which is supported by Artix.

Oneway semantics on the client

side

When it comes to implementing oneway semantics on a specific transport,

however, there can be a mismatch between the WSDL notion of a oneway

and the semantics supported by the underlying transport protocol. For

example, the HTTP protocol requires that you must always send an

acknowledgment reply (HTTP 202 OK reply), even if there is no reply data.

To give you sufficient flexibility to implement oneways, therefore, the

ClientTransport class requires you to implement separate functions for

handling normal operations and oneway operations, as follows:

• ClientTransport::invoke() function—called when the WSDL

operation includes one or more output messages.

• ClientTransport::invoke_oneway() function—called when the WSDL

operation includes only input messages.

Oneway semantics with RPC-style

dispatch

Within the section of code that implements an RPC-style dispatch on the

server side, you can check whether a WSDL operation is oneway by calling

the DispatchInfo::is_oneway() function. If the operation is oneway, you

should handle it in the appropriate way for the particular transport protocol.

For example, the code for performing an RPC-style dispatch would have the

following general outline:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(

Oneway Semantics

141

Oneway semantics with

messaging-style dispatch

Within the implementation of the IT_Bus::ServerTransport::send()

function (which is responsible for sending replies back to the client), you

can check whether a WSDL operation is oneway by calling the

DispatchInfo::is_oneway() function. If the operation is oneway, you

should handle it in the appropriate way for the particular transport protocol.

For example, an implementation of ServerTransport::send() would have

the following general outline:

 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send vvReceiveBuffer reply to client.
}
else {
 // Oneway WSDL operation
 // (vvReceiveBuffer is empty in this case)

 // HTTP protocol example: send an acknowledgmen t.

 // MQ-Series example: do not send any reply.
}

// C++
void
ServerTransportImpl:: send (
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send reply_message back to client.
 }
 else {
 // Oneway WSDL operation

CHAPTER 4 | Artix Transport Plug-Ins

 142

 // HTTP protocol example: send an acknowled gment
 // before returning.

 // MQ-Series example: return immediately.
 }
}

Stub Transport Example

143

Stub Transport Example

Overview The stub transport is a very simple transport that facilitates communication

between a client and a server that are colocated in the same process. The

client transport object holds a pointer that points directly at the server

transport object. When the client has a message to send to the server, it

simply invokes a dispatch function directly on the server transport object.

For this transport to work, the client and server must be colocated. This

transport is potentially useful as a diagnostic tool: it enables you to send

messages through the binding layers, without doing any significant work at

the transport layer.

In this section This section contains the following subsections:

Implementing the Client Transport page 144

Implementing the Server Transport page 151

Implementing the Transport Factory page 158

Registering and Packaging the Transport page 165

CHAPTER 4 | Artix Transport Plug-Ins

 144

Implementing the Client Transport

Overview This subsection describes how to make a custom implementation of the

IT_Bus::ClientTransport class, using the stub client transport as an

example. The purpose of the client transport class is to manage connections

and send/receive messages in binary format.

Sequence of call Artix calls back on the client transport functions in the following sequence:

1. initialize() —called once, to configure the port.

2. connect() —called once, to establish a connection to the remote host.

The connect() function should be non-blocking.

3. invoke() /invoke_oneway() —called for each WSDL operation

invocation, depending on whether it is a normal operation or a oneway

operation.

4. disconnect() —called once, to close the connection to the remote

host.

Client transport header Example 47 shows the header file for the stub plug-in’s client transport

class.

Example 47:Header for the StubClientTransport Class

// C++
#include <it_bus_sys/bus_context.h>
#include <it_bus_pdk/messaging_transport.h>
#include "stub_transport_factory.h"
#include "stub_transport_wsdl_address.h"

namespace IT_Transport_Stub
{

1 class StubClientTransport : public IT_Bus::Clie ntTransport
 {
 public:
 StubClientTransport(

2 ServerTransportMap & server_transport_m ap
);
 virtual ~StubClientTransport();

Stub Transport Example

145

3 virtual void
 initialize(const IT_WSDL::WSDLPort& Configu ration);

 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void
 connect(IT_Bus::ContextContainer* out_conte xt_container);

 virtual void disconnect();

 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 const IT_Bus::BinaryBuffer& request_b uffer,
 IT_Bus::ContextContainer* out_conta iner,
 IT_Bus::ContextContainer* in_contai ner
);

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 const IT_Bus::BinaryBuffer& request_b uffer,
 IT_Bus::BinaryBuffer& response_ buffer,
 IT_Bus::ContextContainer* out_conta iner,
 IT_Bus::ContextContainer* in_contai ner
);

 protected:
4 ServerTransportMap & m_server_transpo rt_map;
5 StubServerTransport * m_server_transpo rt;
6 StubTransportWSDLAddress * m_address_elemen t;
7 IT_Bus::BinaryBuffer m_received;

 private:
 virtual void send(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 const IT_Bus::BinaryBuffer& vvSendBuffe r,
 IT_Bus::ContextContainer* out_context_ container
);

 virtual void receive(
 const IT_WSDL::WSDLOperation& wsdl_oper ation,
 IT_Bus::BinaryBuffer& vvReceiveBuffer,
 IT_Bus::ContextContainer* in_context_c ontainer

Example 47:Header for the StubClientTransport Class

CHAPTER 4 | Artix Transport Plug-Ins

 146

The preceding transport class header can be explained as follows:

1. The tunnel client transport class must inherit from

IT_Bus::ClientTransport .

2. The IT_Transport_Stub::ServerTransportMap type is a typedef of

IT_Bus::StringMap<StubServerTransport *> , defined in the stub

plug-in’s transport factory header. The ServerTransportMap class is a

hash table that uses a string as the key to retrieve a server transport

instance. This hash table is the discovery mechanism used by the stub

plug-in to find a colocated server transport instance.

3. The following functions, initialize() , get_configuration() ,

connect() , disconnect() , send() , and receive() , are all inherited

from the IT_Bus::ClientTransport base class.

4. The m_server_transport_map variable stores a reference to the

ServerTransportMap instance passed into the constructor.

5. The m_server_transport variable stores a pointer to the target server

transport instance.

6. The m_address_element variable stores a pointer to the stub:address

WSDL element that defines the location of the server transport.

7. The m_received binary buffer is used to store received messages

temporarily.

Client transport implementation Example 48 shows the implementation of the client transport class.

);
 };
};

Example 47:Header for the StubClientTransport Class

Example 48: Implementation of the StubClientTransport Class

// C++
#include "stub_client_transport.h"
#include "stub_transport_wsdl_extension_factory.h"
#include "stub_server_transport.h"

using namespace IT_Bus;
using namespace IT_WSDL;

Stub Transport Example

147

IT_Transport_Stub::StubClientTransport::StubClientT ransport(
 ServerTransportMap & server_transport_map
)
: m_server_transport_map(server_transport_map)
{
 m_server_transport = 0;
 m_address_element = 0;

}

IT_Transport_Stub::StubClientTransport::~StubClient Transport()
{
}

void
1 IT_Transport_Stub::StubClientTransport::initialize(

 const IT_WSDL::WSDLPort& wsdl_port
)
{
 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_exte nsion_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *,

wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_WSDL::WSDLExtensionElement&
3 IT_Transport_Stub::StubClientTransport::get_configu ration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;

Example 48: Implementation of the StubClientTransport Class

CHAPTER 4 | Artix Transport Plug-Ins

 148

}

void
4 IT_Transport_Stub::StubClientTransport::connect(

 ContextContainer* out_context_container
)
{

5 String location = m_address_element->get_locati on();

6 ServerTransportMap::iterator iter =
 m_server_transport_map.find(location);

 if (iter == m_server_transport_map.end())
 {
 throw Exception(
 "Couldn't find server for stub transpor t address",
 location.c_str()
);
 }

 m_server_transport = (*iter).second;
}

void
7 IT_Transport_Stub::StubClientTransport::disconnect()

{
}

void
IT_Transport_Stub::StubClientTransport::invoke_onew ay(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 ContextContainer* out_container,
 ContextContainer* //in_container
)
{
 send(
 wsdl_operation,
 request_buffer,
 out_container
);
}

Example 48: Implementation of the StubClientTransport Class

Stub Transport Example

149

void
IT_Transport_Stub::StubClientTransport::invoke(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 BinaryBuffer& response_buffer,
 ContextContainer* out_container,
 ContextContainer* in_container
)
{
 send(
 wsdl_operation,
 request_buffer,
 out_container
);

 receive(
 wsdl_operation,
 response_buffer,
 in_container
);
}

void
8 IT_Transport_Stub::StubClientTransport::send(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& vvSendBuffer,
 ContextContainer* out_context_container
)
{
 BinaryBuffer send_buffer(vvSendBuffer);

9 m_server_transport->dispatch(send_buffer, m_rec eived);
}

void
10 IT_Transport_Stub::StubClientTransport::receive(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 BinaryBuffer& vvReceiveBuffer,
 ContextContainer* in_context_container
)
{
 vvReceiveBuffer.attach(m_received);
}

Example 48: Implementation of the StubClientTransport Class

CHAPTER 4 | Artix Transport Plug-Ins

 150

The preceding client transport implementation can be explained as follows:

1. The main purpose of the initialize() function is to initialize the

configuration of the client transport port. The wsdl_port parameter is

an object of IT_WSDL::WSDLPort type, which is a parse-tree node

containing the data from a WSDL <port ... > </port> element.

2. The get_extension_element() static function searches the WSDL port

node to find a StubPrefix:address sub-element, which is then stored

in m_address_element . See “Implementing the Extension Element

Classes” on page 92 for details.

3. The get_configuration() function has a dummy implementation.

4. The connect() function is responsible for establishing a connection to

a service endpoint. In the case of the stub transport, it attempts to find

the colocated server transport instance identified by the location

attribute from the <StubPrefix:address> tag.

5. The get_location() function returns the value of the location

attribute from the <StubPrefix:address> tag.

6. Search the server transport map, using the location attribute as a key,

in order to find a colocated StubServerTransport instance.

The entries in the ServerTransportMap hash table are created by one

or more colocated StubServerTransport instances.

7. The disconnect() function has a dummy implementation. No action is

needed to disconnect from a stub server transport.

8. The send() function transmits a WSDL request in the form of a binary

buffer, request_buffer .

9. For the stub transport, the implementation of send() is trivial: you

invoke dispatch() directly on the colocated stub server transport

instance.

10. The receive() function returns the binary buffer, m_received , that

was stored from the previous call to send() .

Stub Transport Example

151

Implementing the Server Transport

Overview This subsection describes how to make a custom implementation of the

IT_Bus::ServerTransport class, using the stub server transport as an

example. The purpose of the server transport class is to listen for client

connection attempts, listen for incoming messages and to dispatch

incoming messages up to the Artix binding layer.

Server transport header Example 49 shows the stub plug-in’s server transport class:

Example 49:Header for the StubServerTransport Class

// C++
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus_sys/bus_context.h>
#include "stub_transport_wsdl_address.h"
#include "stub_transport_factory.h"

namespace IT_Transport_Stub
{

1 class StubServerTransport : public IT_Bus::Serv erTransport
 {
 public:
 StubServerTransport(
 ServerTransportMap & server_transport_m ap,
 const IT_WSDL::WSDLPort& wsdl_port
);
 virtual ~StubServerTransport();

2 virtual void
 activate(
 IT_Bus::TransportCallback& callback,
 IT_WorkQueue::WorkQueue_ptr work_queue = 0
);

 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void deactivate();

 virtual void shutdown();

 virtual void

CHAPTER 4 | Artix Transport Plug-Ins

 152

The preceding server transport header can be described as follows:

1. The tunnel server transport class must inherit from

IT_Bus::ServerTransport .

2. The following functions, activate() , get_configuration() ,

deactivate() , shutdown() , send() , and dispatch() , are all inherited

from the IT_Bus::ServerTransport base class.

3. The m_address_element variable stores a pointer to the

<StubPrefix:address> WSDL element that defines the location of the

server transport.

4. The m_callback variable stores a pointer to the TransportCalback

object, which is used to dispatch requests to the next layer on the

server side.

5. The m_server_transport_map variable stores a reference to the

ServerTransportMap instance, which holds a hash table consisting of

pairs of location attribute string and pointer to StubServerTransport .

Server transport implementation Example 50 shows the implementation of the server transport class.

 send(
 IT_Bus::BinaryBuffer& reply_message,
 IT_Bus::DispatchInfo& dispatch_context
);

 void dispatch(
 IT_Bus::BinaryBuffer& vvSendBuffer,
 IT_Bus::BinaryBuffer& vvReceiveBuffer
);

 protected:
3 StubTransportWSDLAddress * m_address_eleme nt;
4 IT_Bus::TransportCallback * m_callback;
5 ServerTransportMap & m_server_transp ort_map;

 };
};

Example 49:Header for the StubServerTransport Class

Example 50: Implementation of the StubServerTransport Class

// C++

Stub Transport Example

153

#include "stub_server_transport.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;

1 IT_Transport_Stub::StubServerTransport::StubServerT ransport(
 ServerTransportMap & server_transport_map,
 const WSDLPort& wsdl_port
)
: m_server_transport_map(server_transport_map)
{
 m_callback = 0;
 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_exte nsion_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *, wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_Transport_Stub::StubServerTransport::~StubServer Transport()
{
}

void
3 IT_Transport_Stub::StubServerTransport::activate(

 IT_Bus::TransportCallback & callback,
 IT_WorkQueue::WorkQueue_ptr work_queue
)
{
 m_callback = &callback;

Example 50: Implementation of the StubServerTransport Class

CHAPTER 4 | Artix Transport Plug-Ins

 154

4 m_server_transport_map.insert(
 ServerTransportMap::value_type(
 m_address_element->get_location(),
 this
)
);

5 m_callback->transport_activated();
}

IT_WSDL::WSDLExtensionElement&
6 IT_Transport_Stub::StubServerTransport::get_configu ration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;
}

void
7 IT_Transport_Stub::StubServerTransport::deactivate()

{
 // Note: It is impossible to deactivate the stu b transport
 // m_callback->transport_deactivated();
}

void
8 IT_Transport_Stub::StubServerTransport::shutdown()

{
 ServerTransportMap::iterator iter =
 m_server_transport_map.find(m_address_element->get _location());

 if (iter != m_server_transport_map.end())
 {
 m_server_transport_map.erase(iter);
 }

9 m_callback->transport_shutdown_complete();
}

void
10 IT_Transport_Stub::StubServerTransport::send(

 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 assert(0);

Example 50: Implementation of the StubServerTransport Class

Stub Transport Example

155

The preceding server transport implementation can be described as follows:

1. The StubServerTransport constructor receives two parameters from

the transport factory:

♦ server_transport_map —a String to StubServerTransport*

map, which is used to advertize the availability of stub server

transports to stub client transports.

♦ wsdl_port —an object of IT_WSDL::WSDLPort type, which is a

parse-tree node containing the data from a WSDL <port ... >

</port> element.

2. The get_extension_element() static function searches the WSDL port

node to find a StubPrefix:address sub-element, which is then stored

in m_address_element . See “Implementing the Extension Element

Classes” on page 92 for details.

3. The activate() function is called by the Artix core to start up the

server transport. It takes the following arguments:

}

void
11 IT_Transport_Stub::StubServerTransport::dispatch(

 BinaryBuffer& vvSendBuffer,
 BinaryBuffer& vvReceiveBuffer
)
{
 DispatchInfo& dispatch_context =
 m_callback->get_dispatch_context();

12 dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

13 m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);
}

Example 50: Implementation of the StubServerTransport Class

CHAPTER 4 | Artix Transport Plug-Ins

 156

♦ callback —the TransportCallback object is used to

communicate with the Artix core. In particular,

TransportCallback::dispatch() is used to dispatch requests up

to the application code.

♦ work_queue —this is a NULL pointer, unless you choose the

BORROWS_WORKQUEUE_SELF_DRIVEN threading resources policy.

The deactivate() and activate() functions can be used to pause and

resume the server transport. The activate() function must be

non-blocking.

4. Advertise this StubServerTransport instance by adding an entry to the

server transport map. Because the colocated stub client transports

have a reference to the same server transport map instance, they will

be able to find the stub server transport by supplying the relevant

location value as a key.

5. Before exiting the body of the activate() function, you must notify the

Artix core of the current activation status by calling back on the

IT_Bus::TransportCallback object. There are two alternatives:

♦ TransportCallback::transport_activated() —call this, if the

transport activation is successfull.

♦ TransportCallback::transport_activation_failed() —call

this, if the transport activation fails.

6. The get_configuration() function has a dummy implementation.

7. The deactivate() function is called in order to deactivate the server

transport temporarily. It can be used in combination with activate()

to pause and resume the server transport.

Before exiting the body of the deactivate() function, you must notify

the Artix core by calling

TransportCallback::transport_deactivated() .

8. The shutdown() function is called by the Artix core while the Bus shuts

down. At this point, you should shut down the server transport and

perform whatever cleanup is necessary.

Note: The stub server transport is a special case, however, because
it is not possible to deactivate it. Strictly speaking, therefore, we
ought not to include the transport_deactivated() call here.

Stub Transport Example

157

9. Before exiting the body of the shutdown() function, you must notify the

Artix core by calling

TransportCallback::transport_shutdown_complete() .

10. The send() function is called, only if you have configured the server

transport to use the asynchronous dispatch model. Because the stub

transport uses the synchronous dispatch model, the send() function is

left unimplemented.

The choice between a synchronous or an asynchronous dispatch model

is selected by the requires stack unwind policy. If the policy is true ,

the synchronous model is selected; if false , the asynchronous model

is selected. For more details see “Implementing the Transport Factory”

on page 158.

11. This dispatch() function is not inherited from

IT_Bus::ServerTransport . It is specific to the stub transport. The

dispatch() function represents a simple mechanism for stub client

transports to send a request and receive a reply from the stub server

transport: the client transport simply makes a colocated call on the

StubServerTransport::dispatch() function.

12. Because this server transport uses the synchronous dispatch model,

you must call DispatchInfo::provide_response_buffer() to provide

a buffer into which the reply message will be written.

13. Call TransportCallback::dispatch() to dispatch the request message

to the next stage. Because the transport uses the synchronous dispatch

model, the reply message is available in the buffer, vvReceiveBuffer ,

as soon as the TransportCallback::dispatch() call returns.

CHAPTER 4 | Artix Transport Plug-Ins

 158

Implementing the Transport Factory

Overview You must implement a transport factory as part of the stub transport

implementation. The Artix core calls functions on the transport factory to

create IT_Bus::ClientTransport and IT_Bus::ServerTransport instances

as needed.

Transport factory header Example 51 shows the stub plug-in’s transport factory header.

Example 51:Header for the StubTransportFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus/string_map.h>

namespace IT_Transport_Stub
{
 class StubServerTransport;

1 typedef IT_Bus::StringMap<StubServerTransport * >
 ServerTransportMap;

2 class StubTransportFactory : public IT_Bus::Tra nsportFactory
 {
 public:
 StubTransportFactory();
 virtual ~StubTransportFactory();

 virtual IT_Bus::ClientTransport *
 create_client_transport();

 virtual void destroy_client_transport(
 IT_Bus::ClientTransport * transport
);

 virtual IT_Bus::ServerTransport*
 create_server_transport(
 const IT_WSDL::WSDLPort& configuration
);

 virtual void
 destroy_server_transport(

Stub Transport Example

159

The preceding header file can be explained as follows:

1. The ServerTransportMap type is defined to be a hash table that uses a

string key to find pointers to StubServerTransport instances. The

server transport map is the endpoint discovery mechanism for the stub

transport.

2. The StubTransportFactory class inherits from the

IT_Bus::TransportFactory base class.

3. The m_server_transport_map variable is the concrete server transport

map instance, which is referenced by the client transport objects and

the server transport objects.

 IT_Bus::ServerTransport* transport
);

 virtual IT_Bus::ThreadingModel
 get_client_threading_model();

 virtual void
 register_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual void
 deregister_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual const IT_Bus::TransportPolicyList*
 get_policies();

 void
 initialize(
 IT_Bus::Bus_ptr bus
);

 protected:
 ...

3 ServerTransportMap m_server_trans port_map;
4 IT_Bus::TransportPolicyList* m_transport_po licylist;

 };
};

Example 51:Header for the StubTransportFactory Class

CHAPTER 4 | Artix Transport Plug-Ins

 160

4. The m_transport_policylist variable stores a pointer to an object

that encapsulates the stub transport’s threading policies.

Transport factory implementation Example 52 shows the transport factory implementation.

Example 52: Implementation of the StubTransportFactory Class

// C++
#include <it_bus_pdk/pdk_bus.h>
#include "stub_transport_factory.h"
#include "stub_client_transport.h"
#include "stub_server_transport.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;

IT_Transport_Stub::StubTransportFactory::StubTransp ortFactory()
{
}

IT_Transport_Stub::StubTransportFactory::~StubTrans portFactory()
{
 delete m_transport_policylist;
}

IT_Bus::ClientTransport *
1 IT_Transport_Stub::StubTransportFactory::create_cli ent_transport

()
{
 return new

IT_Transport_Stub::StubClientTransport(m_server_tra nsport_map
);

}

void
2 IT_Transport_Stub::StubTransportFactory::destroy_cl ient_transpor

t(
 IT_Bus::ClientTransport * transport
)
{
 delete transport;
}

IT_Bus::ServerTransport*

Stub Transport Example

161

3 IT_Transport_Stub::StubTransportFactory::create_ser ver_transport
(
 const IT_WSDL::WSDLPort& wsdl_port
)
{
 return new IT_Transport_Stub::StubServerTranspo rt(
 m_server_transport_map,
 wsdl_port
);
}

void
4 IT_Transport_Stub::StubTransportFactory::destroy_se rver_transpor

t(
 IT_Bus::ServerTransport* transport
)
{
 delete transport;
}

IT_Bus::ThreadingModel
5 IT_Transport_Stub::StubTransportFactory::get_client _threading_mo

del()
{
 return IT_Bus::MULTI_INSTANCE;
}

6 extern IT_Transport_Stub::StubTransportWSDLExtensio nFactory
it_glob_stub_transport_wsdl_extension_factory_insta nce;

void
7 IT_Transport_Stub::StubTransportFactory::register_w sdl_extension

_factories(
 IT_WSDL::WSDLFactory & factory
) const
{

8 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_facto ry_instance
);
}

void
9 IT_Transport_Stub::StubTransportFactory::deregister _wsdl_extensi

on_factories(

Example 52: Implementation of the StubTransportFactory Class

CHAPTER 4 | Artix Transport Plug-Ins

 162

The preceding transport factory implementation can be explained as follows:

1. The create_client_transport() function is called by the Artix core

whenever a new StubClientTransport instance is needed. The

StubClientTransport constructor takes on parameter: a reference to

the server transport map, which enables the stub client transport to

discover stub service endpoints.

2. The destroy_client_transport() function is normally implemented

exactly as shown here.

3. The create_server_transport() function is called by the Artix core

whenever a new StubServerTransport instance is needed. The

StubServerTransport constructor takes two parameters:

♦ A reference to the server transport map, which enables the stub

server transport to advertise its existence to colocated clients.

 IT_WSDL::WSDLFactory & factory
) const
{
}

const TransportPolicyList*
10 IT_Transport_Stub::StubTransportFactory::get_polici es()

{
 return m_transport_policylist;
}

void
11 IT_Transport_Stub::StubTransportFactory::initialize (

 Bus_ptr bus
)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy _list();

12 m_transport_policylist->set_policy_threading_resour ces(EXTERNALL
Y_DRIVEN);

13 m_transport_policylist->set_policy_requires_concurr ent_dispatch(
true);

14 m_transport_policylist->set_policy_requires_stack_u nwind(true);
}

Example 52: Implementation of the StubTransportFactory Class

Stub Transport Example

163

♦ A reference to the WSDL port that contains a description of this

service endpoint.

4. The destroy_server_transport() function is normally implemented

exactly as shown here.

5. The get_client_threading_model() is implemented to select the

MULTI_INSTANCE client threading model.

6. This variable references a global static instance of the stub plug-in’s

WSDL extension factory.

7. The register_wsdl_extension_factories() function is called by the

Artix core while the stub plug-in is initializing. It gives you an

opportunity to register one or more WSDL extension factories with the

Bus.

8. This line registers the stub plug-in’s WSDL extension factory,

associating it with the http://schemas.iona.com/transports/stub

namespace URI. This is the namespace that can be associated with

the StubPrefix to let you configure the StubPrefix:address element

in your WSDL contract.

9. As the stub plug-in shuts down, it calls

deregister_wsdl_extension_factories() .

10. As the stub plug-in starts up, the Artix core calls get_policies() to

discover what policies are to be used with this transport plug-in (the

policies are mostly concerned with server threading).

11. If you need to customize the transport policy list, you can do this in the

body of the initialize() function.

12. Usually, when the server transport’s threading policy is set to

EXTERNALLY_DRIVEN, it would imply that the server transport code

creates its own reader threads to process incoming requests. In this

case, because the stub transport is a colocated transport, the situation

is somewhat exceptional. The reader thread is actually provided by the

client side—the client transport simply calls the server transport’s

dispatch() function directly.

13. The server’s concurrent dispatch policy is set to true . This indicates to

the Artix core that the stub server transport is liable to make concurrent

dispatches to the server-side binding (by calling

TransportCallback::dispatch() from multiple threads).

CHAPTER 4 | Artix Transport Plug-Ins

 164

14. The requires stack unwind policy is set to true . This selects a

synchronous approach to dispatching requests on the server side. If

you enable the stack unwind policy, you must implement your server

transport according to the following pattern:

♦ Do not implement ServerTransport::send() (this function is

only used to receive replies asynchronously).

♦ In the implementation of ServerTransport::dispatch() , prior to

calling TransportCallback::dispatch() , call

DispatchContext::provide_response_buffer() to specify a

buffer into which the result will be written.

♦ As soon as TransportCallback::dispatch() returns, the

response buffer contains the reply.

Stub Transport Example

165

Registering and Packaging the Transport

Stub plug-in name Example 53 shows how to register the stub transport plug-in by creating a

static instance of IT_Bus::BusORBPlugIn type. The constructor registers the

plug-in under the specified name, stub_transport .

Registering the stub transport

factory with the Bus

Example 54 shows how to register the stub transport factory with the Bus.

Example 53:Registering the Stub Transport Plug-In

// C++
namespace IT_Bus {
 ...
 const char* const und_stub_transport_plugin_nam e =

" stub_transport ";

 StubTransportBusPlugInFactory
und_stub_transport_plugin_factory;

 IT_Bus::BusORBPlugIn und_stub_transport_plugin(
 und_stub_transport_plugin_name,
 und_stub_transport_plugin_factory
);
}

Example 54:Registering the Stub Transport Factory

// C++
void
StubTransportBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 m_transport_factory.initialize(bus);
 bus->get_pdk_bus()->register_transport_factory(
 "http://schemas.iona.com/transports/stub",
 &m_transport_factory
);
}

CHAPTER 4 | Artix Transport Plug-Ins

 166

To register the transport factory, perform the following steps:

1. Call the IT_Bus::TransportFactory::initialize() function to

initialize the transport factory.

2. Call the IT_Bus::PDKBus::register_transport_factory() factory to

register the transport factory.

Configuring the stub transport

plug-in

To configure an application to use the stub transport plug-in, you must add

the plug-in name, stub_transport , to the orb_plugins list, as follows:

void
StubTransportBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 bus->get_pdk_bus()->deregister_transport_factor y(
 "http://schemas.iona.com/transports/stub"
);
}

Example 54:Registering the Stub Transport Factory

Example 55:Configuring the Stub Transport Plug-In

Artix Configuration File

ApplicationScope {
 orb_plugins = [..., "stub_transport"];
 ...
};

167

CHAPTER 5

Artix Logging
Reference
This chapter explains how to use Artix TRACE macros, and
explains the Artix logging APIs.

In this chapter This chapter includes the following sections:

Using Artix TRACE Macros page 168

CHAPTER 5 | Artix Logging Reference

 168

Using Artix TRACE Macros

Overview This section describes how to use TRACE macros in your own code in order

to send logging messages to the Artix event log. The output from this Artix

logging mechanism can then be controlled using the configuration settings

described in Deploying and Managing Artix Solutions.

This section describes the following aspects of using Artix TRACE macros:

• Header file.

• Initializing the Bus logger.

• Artix subsystem scope.

• Artix trace levels.

• Passing in arguments.

• Creating your own output.

Header file To use the Artix TRACE macros, you must include the it_bus/bus_logger.h

header as follows:

#include <it_bus/bus_logger.h>

Note: In versions prior to Artix 3.0.2, the it_bus/logging_support.h
header was used instead. This header is now deprecated, but it can be
used to support legacy logging code.

Using Artix TRACE Macros

169

Initializing the Bus logger In order to control logging independently for each Bus, it is necessary to

initialize a Bus logger object and associate it with a particular Bus instance.

The Bus logger must be initialized before you can perform any tracing.

The normal way to initialize a Bus logger instance is to define it as a

member of the class you happen to be implementing. For example, you can

define and initialize a Bus logger instance in a class, MyClass , as follows:

1. Declare a BusLogger pointer by inserting the

IT_DECLARE_BUS_LOGGER_MEM macro as a protected member in the

class header file:

2. In the class constructor, call the IT_INIT_BUS_LOGGER_MEM macro to

initialize the BusLogger instance, passing a valid Bus instance to the

macro argument:

3. In the class destructor, call the IT_FINALISE_BUS_LOGGER_MEM macro to

clean up the BusLogger instance.

The Bus pointer passed to the macro in the destructor must be the

same as the one passed to the macro in the constructor.

// C++
class myClass {
 ...
 protected:
 IT_DECLARE_BUS_LOGGER_MEM
};

// C++
myClass::myClass(IT_Bus::Bus_ptr bus) : m_bus(bus)
{
 IT_INIT_BUS_LOGGER_MEM(m_bus)
}

// C++
myClass::~myClass()
{
 IT_FINALISE_BUS_LOGGER_MEM(m_bus)
}

CHAPTER 5 | Artix Logging Reference

 170

Artix subsystem scope Artix uses a hierarchy of subsystem scopes that enables you to filter the

messages that go into the event log. Artix uses several different subsystem

scopes internally, for example:

You can then define an event log filter in the Artix configuration file to

control the level of logging from each of the subsystems. For example:

The default subsystem scope for any TRACE macros in your code is IT_BUS.

Instead of using the default, however, it is better to specify a subsystem

scope explicitly by defining the _IT_SUBSYSTEM_SCOPE macro in your code.

For example, if you are generating logging messages from a custom

transport, you could define the subsystem scope as follows:

You can define the subsystem scope to be any identifier consisting of

alphanumerics and the . character. The . character is used as a delimiter to

separate the subsystem levels.

IT_BUS.CORE
IT_BUS.TRANSPORT.HTTP
IT_BUS.BINDING.SOAP
IT_BUS.BINDING.CORBA
IT_BUS.BINDING.CORBA.RUNTIME

Artix Configuration File
event_log:filters=["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL +ERROR"];

// C++
// Class implementation file.

// Header files:
#include <it_bus/bus_logger.h>
...

// Define the _IT_SUBSYSTEM_SCOPE *after* including the headers.
#define _IT_SUBSYSTEM_SCOPE IT_BUS.TRANSPORT

Using Artix TRACE Macros

171

Artix trace levels When the event log filter and log stream are properly configured, the Artix

logging output from the TRACE macros is sent to the event log.

When using TRACE macros, the most important concept is the trace level,

which is an enum that lets you filter events. Trace levels are defined in the

InstallDir/artix/ Version/include/it_bus/logging_defs.h file:

The simplest trace statement emits a constant string at level IT_TRACE. For

example:

Passing in arguments Several versions of the macro allow using a C printf format string, and

passing in some arguments. Because you cannot have variable argument

lists for macros, there are several defined according to how many arguments

are allowed:

Both the zero argument and the multiple argument versions have a setting

that allows a trace level to be passed in, instead of level IT_TRACE. For

example:

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass() ");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);

CHAPTER 5 | Artix Logging Reference

 172

Creating your own output If you need to create your own output using iostreams or another expensive

process that is not supported by the macro, use the trace guard block. This

ensures that the trace level test prevents your trace creation code from

running when it does not produce output. For example:

To create binary output (for instance, a hex dump of the buffer), use

TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the process trace

level, the entry is written to disk. The default log file name is it_bus.log .

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + dat a_item[i] + "

";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.Get Size())

173

Index
A
activate() function 110, 117

and EXTERNALLY_DRIVEN scenario 124
and messaging-style dispatch 133
and single-threaded scenario 122
MULTI_THREADED scenario 119

architecture
of Artix transport 109

asynchronous dispatch policy 128

C
ClientTransport

connect() function 110
disconnect() function 110
initialize() function 110
invoke() function 110
invoke_oneway() function 135

ClientTransport class
accessing contexts in 135
connect() function 135
description 111
invoke() function 135
overview 110

ClientTransport invoke_oneway() function 110
compiling a context schema 35
connect() function 110, 135
contexts

and trasnports 135
sample schema 34
scenario description 33
schema, target namespace 35

D
deactivate() function 110
disconnect() function 110
dispatch() function 127

and asynchronous dispatch 128
DispatchInfo

get_correlation_id() function 112
DispatchInfo class

and accessing contexts on the server side 137
description 112

is_oneway() function 140
provide_response_buffer() function 127, 129

dispatching
messaging-style dispatch 132
RPC-style dispatch 127, 129

E
EXTERNALLY_DRIVEN policy value 115, 124

G
get_configuration() function 110
get_correlation_id() function 112
get_policies() function 113, 116

and MULTI_THREADED policy value 120
and RPC-style dispatch 130
and the EXTERNALLY_DRIVEN policy value 125
and the SINGLE_THREADED policy value 123
example 118

H
header contexts

sample schema type 34

I
initialize() function 110
invoke() function 110, 135
invoke_oneway() function 110, 135
iostreams 172
is_oneway() function 140
IT_TRACE 171

M
MESSAGING_PORT_DRIVEN and

MULTI_INSTANCE scenario 117
MESSAGING_PORT_DRIVEN and

MULTI_THREADED scenario 119
MESSAGING_PORT_DRIVEN and

SINGLE_THREADED scenario 122
MESSAGING_PORT_DRIVEN policy

and run() function 110
MESSAGING_PORT_DRIVEN policy value 115

INDEX

 174

messaging port threading policy
EXTERNALLY_DRIVEN policy value 124
MULTI_INSTANCE policy value 115
MULTI_THREADED policy value 115
SINGLE_THREADED policy value 116

messaging-style dispatch 132
MULTI_INSTANCE policy value 115
MULTI_THREADED policy

and run() function 110
MULTI_THREADED policy value 115

O
oneway operations

overview 140
oneway semantics

messaging-style dispatch 141
oneways functions

and RPC-style dispatch 140
ORB plug-ins

bootstrapping 15
creating a static instance 15

P
plug-ins

bootstrapping 15
policies

asynchronous dispatch policy 128
stack unwind policy 127

policy:messaging_transport:concurrency
configuration variable 121

policy:messaging_transport:min_threads
configuration variable 118

port
in transport architecture 109

printf 171
provide_response_buffer() function 127, 129

R
requires stack unwind policy

and messaging-style dispatch 133
RPC-style dispatch 127, 129

and oneway semantics 140
run() function 110

and thread safety 121
MULTI_THREADED scenario 119

S
sample context schema 34
schemas

context, example 34
send() function 110, 127

accessing contexts 138
and messaging-style dispatch 132, 141
implementing 134

ServerTransport
activate() function 110, 119
deactivate() function 110
get_configuration() function 110
run() function 110, 119
send() function 110
shutdown() function 110

ServerTransport class 110
activate() function 117, 122, 124
description 112
run() function 121
send() function 127

shutdown() function 110
SINGLE_THREADED policy value 116
SOAPHeaderInfo type 34
stack unwind policy 127

T
target namespace

for a context schema 35
threading policies

setting 118
threading resources policy

EXTERNALLY_DRIVEN policy value 115
MESSAGING_PORT_DRIVEN policy value 115

thread pool
configuring for a MULTI_INSTANCE

transport 118
configuring for MULTI_THREADED tranports 121

thread safety 121
trace level 171
TRACELOGBUFFER 172
TRACE macros 171
transport_activated() function 112
transport architecture 109
TransportCallback

dispatch() function 128
transport_activated() function 112
transport_deactivated() function 112
transport_shutdown() function 112

INDEX

175

TransportCallback class
description 112
dispatch() function 127

transport_deactivated() function 112
TransportFactory

get_policies() function 113
TransportFactory class

description 111
get_policies() function 116, 120

TransportPolicyList class
and threading policies 115
description 113
setting policies 127

transport_shutdown() function 112

W
wsdltocpp compiler 35

INDEX

 176

	Developing Advanced Artix Plug-Ins in C++
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Basic Plug-In Implementation
	Overview of a Basic Artix Plug-In
	Developing an Artix Plug-In
	Development Steps
	Implementing a BusPlugInFactory Class
	Implementing a BusPlugIn Class
	Creating Static Instances

	Request Interceptors
	Overview of Request Interceptors
	Client Request Interceptors
	Server Request Interceptors

	Sending and Receiving Header Contexts
	SOAP Header Context Example
	Sample Context Schema
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor
	Implementation of the Interceptor Factory

	Accessing and Modifying Parameters
	Reflection Example
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor

	Raising Exceptions

	WSDL Extension Elements
	WSDL Structure
	WSDL Parse Tree
	How to Extend WSDL
	Extension Elements for the Stub Plug-In
	Implementing an Extension Element Base Class
	Implementing the Extension Element Classes
	Implementing the Extension Factory
	Registering the Extension Factory

	Artix Transport Plug-Ins
	The Artix Transport Layer
	Architecture Overview
	Artix Transport Classes

	Transport Threading Models
	Threading Introduction
	MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
	MESSAGING_PORT_DRIVEN and MULTI_THREADED
	MESSAGING_PORT_DRIVEN and SINGLE_THREADED
	EXTERNALLY_DRIVEN

	Dispatch Policies
	Dispatch Policy Overview
	RPC-Style Dispatch
	Messaging-Style Dispatch

	Accessing Contexts
	Oneway Semantics
	Stub Transport Example
	Implementing the Client Transport
	Implementing the Server Transport
	Implementing the Transport Factory
	Registering and Packaging the Transport

	Artix Logging Reference
	Using Artix TRACE Macros

	Index

