
Building Service Oriented
Infrastructures with Artix

Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 28-Apr-2006

Contents

List of Figures iii

Preface v
What is Covered in this Book v
Who Should Read this Book v
How to Use this Book v
The Artix Library vi
Getting the Latest Version viii
Searching the Artix Library viii
Artix Online Help ix
Artix Glossary ix
Additional Resources ix
Document Conventions x

Chapter 1 Service Oriented Architecture 1
What is a Service Oriented Architecture? 2
What is an Enterprise Service Bus? 10
How Does Artix Fit into a SOA Strategy? 15

Chapter 2 Artix�s High-Level Architecture 17
Artix as a Deployed ESB 18
Artix in a Service Endpoint 20
Artix in a Consumer Endpoint 25
Artix in an Intermediary 30

Chapter 3 Services Provided with Artix 35
The Artix Container 36
The Artix Router 38
Security 41
The Artix Locator 43
The Artix Session Manager 46
Reliable Messaging 49
Transactions 53
i

CONTENTS
The Artix Transformer 54
The Artix Chain Builder 57

Index 59
 ii

List of Figures

Figure 1: Procedure Oriented Bank Account Application 3

Figure 2: Object Oriented Bank Account 4

Figure 3: Distributed Bank Account Application 5

Figure 4: Separate Billing Systems 7

Figure 5: Billing Systems in SOA 8

Figure 6: Billing System SOA with an ESB 11

Figure 7: Distributed Nature of an ESB 13

Figure 8: Artix and the Virtual Bus 18

Figure 9: High-level View of a Service Endpoint 21

Figure 10: High-level View of a Consumer Endpoint 26

Figure 11: High-level View of an Intermediary 33

Figure 12: Overview of the Artix Container 36

Figure 13: Overview of the Artix Router 38

Figure 14: Overview of the Artix Security Architecture 41

Figure 15: Overview of the Artix Locator 44

Figure 16: Overview of the Artix Session Manager 47

Figure 17: Overview of WS-RM Architecture 50

Figure 18: Overview of the Artix Transformer 55

Figure 19: Overview of the Artix Chain Builder 57
iii

LIST OF FIGURES
 iv

Preface
What is Covered in this Book
This book discusses what makes a service oriented architecture (SOA), the
advantages of SOA to integration, and how Artix facilitates the deployment
of an enterprise quality SOA. It illuminates the value of a SOA. It shows how
an ESB such as Artix plays a key role in developing a SOA and how Artix, in
particular, provides the features required to build a distributed, robust
collection of services.

The book then goes on to provide a detailed look at the distributed,
extensible architecture of Artix. It discusses how Artix endpoints implement
services. This discussion includes a discussion of how the plug-in
architecture makes it easy to add functionality to an endpoint. It also
provides a detailed discussion of many of the internal components of the
Artix runtime.

Who Should Read this Book
While this book does contain some highly technical discussions, much of
the book is geared toward a novice reader. A basic knowledge of distributed
computing concepts is assumed.

How to Use this Book
This book is organized as follows:

� Chapter 1 provides a general description of service-oriented
architectures and how enterprise service buses make them possible. It
also discusses how Artix, in particular, fits into this picture.

� Chapter 2 provides a high-level description of Artix�s architecture. It
looks at how Artix connects endpoints to a network using its pluggable
messaging stack.
v

PREFACE
� Chapter 3 provides a high-level description of how some of the
enterprise features in Artix are implemented. It looks at what
components are used and how they are deployed.

The Artix Library
The Artix documentation library is organized in the following sections:

� Getting Started

� Designing and Developing Artix Solutions

� Configuring and Deploying Artix Solutions

� Using Artix Services

� Integrating Artix Solutions

� Integrating with Enterprise Management Systems

� Reference Documentation

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

� Getting Started with Artix describes basic Artix and WSDL concepts.

� Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how Artix uses WSDL to define services,
and how to use the Artix APIs to build new services. They include:

� Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

� Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.
 vi

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm

PREFACE
� Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

� Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

� Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

� Configuring and Deploying Artix Solutions discusses how to configure
and deploy Artix-enabled systems, and provides examples of typical
use cases.

Using Artix Services

The books in this section describe how to use the services provided with
Artix:

� Artix Locator Guide discusses how to use the Artix locator.

� Artix Session Manager Guide discusses how to use the Artix session
manager.

� Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

� Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

� Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to use Artix as a bridge between
other middleware technologies and service-oriented middleware
technologies.

� Artix for CORBA provides information on using Artix in a CORBA
environment.

� Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft�s .NET technology, see the
documentation for Artix Connect.
vii

../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../transactions_java/index.htm

PREFACE
Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise management systems. They include:

� IBM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

� BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

� CA WSDM Integration Guide explains how to integrate Artix with CA�s
WSDM product.

Reference Documentation

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

� Artix Command Line Reference

� Artix Configuration Reference

� Artix WSDL Extension Reference

� Artix Java API Reference

� Artix C++ API Reference

� Artix .NET API Reference

� Artix Glossary

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml
 viii

../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive
online help, providing:

� Step-by-step instructions on how to perform important tasks

� A full search feature

� Context-sensitive help for each screen

There are two ways that you can access the online help:

� Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

� Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer. To access these, select
Help|Cheat Sheets.

Artix Glossary
The Artix Glossary provides quick definitions and is a comprehensive
reference for Artix terms. All terms are defined in the context of the
development and deployment of Web services using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .
ix

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 x

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xi

PREFACE
 xii

CHAPTER 1

Service Oriented
Architecture
Service Oriented Architecture is a way of designing solutions
around units of functionality that are implementation agnostic.

Overview A Service Oriented Architecture (SOA) is a loosely-coupled, distributed
architecture in which services make resources available to service
consumers in a standardized way. SOA is language and protocol
independent. By providing a way of describing services that is independent
of implementation details, SOA makes it easier to develop and deploy
systems that require large amounts of integration.

A key piece of technology used in enabling service orientation is an
enterprise service bus (ESB). An ESB is the infrastructure that allows
services to interact in a distributed environment. It handles the delivery of
messages between different middleware systems, and provides
management, monitoring, and mediation services such as routing, service
discovery, or transaction processing.

In this chapter This chapter discusses the following topics:

What is a Service Oriented Architecture? page 2

What is an Enterprise Service Bus? page 10

How Does Artix Fit into a SOA Strategy? page 15
1

CHAPTER 1 | Service Oriented Architecture
What is a Service Oriented Architecture?

Overview Service Oriented Architecture (SOA) is the next logical step in the growth of
software development methodology. It takes the concepts behind
procedure-oriented design and object-oriented design and moves the layer of
abstraction one step further away from the implementation details of a piece
of atomic functionality.

It also builds on the concepts used to create distributed applications such as
CORBA. Specifically, it uses an XML-based grammar for defining abstract
interfaces. The interfaces define the messages passed between service and
consumer using XMLSchema. By using XML-based types, service definitions
make no assumptions about how the service is implemented.

Evolution of reusability in
application design

The fundamental ideas behind service orientation are not new. For as long
as people have been developing software one of the core concepts has been
reusability of functionality. To achieve this, software languages and software
design paradigms have evolved that encourage the compartmentalization of
functionality. Functionality is grouped together into small, reusable units
that can be used independently of the application for which they were
originally intended. This not only makes them reusable, but also increases
the ease with which large applications can be updated because a change to
one unit of functionality does not necessarily require changes to the whole
application.

The first leap forward in the quest for reusability was the move from
line-by-line programming languages like BASIC to procedural languages like
Pascal and C. These procedural languages brought about the
procedure-oriented design paradigm. Software began being designed as
collections of reusable procedures each of which performed discreet pieces
of functionality.

For example, a banking application may have a procedure that handled
deposits and a different procedure that handled withdrawals as shown in
Figure 1. Using this paradigm you could reuse each of the procedures if
 2

What is a Service Oriented Architecture?
needed. It also made it easier to modify one procedure with out needing to
modify the others. So if your bank needed to add a step to the withdrawal
process, only one part of the code would require updating.

The next leap forward was the arrival of object-oriented programming
languages like C++ and Java. Object-oriented languages, and
object-oriented design, made reusability easier by introducing the concept of
an object as an atomic unit of functionality. In this paradigm, an object
exposes a well-defined interface that can be called on by other objects that
need the object�s functionality. Because an object is a self-contained entity
and because its interface is well-defined it is highly reusable across many
applications.

In an object-oriented design, the deposit and withdrawal procedures may be
aggregated into an account object that has all of the methods needed for
managing a bank account. While this may seem like a step backwards, it
actually makes sense from a reuse standpoint. The individual methods of
the account object will still adhere to the concepts of procedure oriented
design and remain fairly independent. However, you now have a reusable

Figure 1: Procedure Oriented Bank Account Application
3

CHAPTER 1 | Service Oriented Architecture
component that represents a business asset. The account object can be
used in multiple applications, as shown in Figure 2, and the changes made
to any of its methods will be shared by all the applications that use it.

The problems of distributed
application development

As the code used to write applications became more modular and reusable,
applications were being broken up into pieces that were distributed across
many machines. For example, an application that allows bank tellers to

Figure 2: Object Oriented Bank Account
 4

What is a Service Oriented Architecture?
make withdrawals and deposits is broken into a client and a server portion
as shown in Figure 3. The server portion may also be broken up into several
separate parts.

Breaking applications into multiple parts and distributing them across
multiple platforms presented a new set of reusability problems. Early
distributed applications were designed so that all of the parts were tightly
coupled. The messages used to communicate between them were passed
using proprietary formats. Often there were dependencies on specific
networking hardware and protocols. One result of this tight coupling is that
pieces of functionality can not be reused because it is difficult to integrate
these islands of functionality. For example, if a bank had two systems that
needed to do credit checks, each system would need to implement that
functionality because they used different messaging styles or different
networking technologies.

Many attempts have been made to solve the reusability and integration
problems posed by distributed application development. Some solutions
include CORBA, DCOM, MOMs, and large EAI servers. Each of these
solutions got parts of the problem right, but never solved the entire problem.
CORBA and many EAI solutions increased interoperabilty and reusability by
providing abstract, implementation neutral definitions of atomic units of

Figure 3: Distributed Bank Account Application
5

CHAPTER 1 | Service Oriented Architecture
functionality that could be used as a contract between parts of a distributed
application. MOMs increased interoperabilty by defining the interaction
between parts of a distributed system by the messages that are exchanged.

None of the solutions really solved the problem because they, like
object-oriented programming languages, did not provide a way of breaking
the dependencies that bound all the parts together. CORBA required that all
of the distributed objects be CORBA objects. EAI servers required resource
heavy central hubs and proprietary networking solutions. MOMs required
that all of the parts used a particular messaging infrastructure that often
required specific APIs to be used.

How SOA breaks the dependency
chain

SOA breaks the chains of dependency by borrowing from the best ideas of
all other paradigms. From object-oriented programming, SOA borrows the
idea of atomic units of functionality with a well defined interface. From
CORBA and EAI solutions, SOA borrows the idea of an implementation
neutral interface definition language. From MOM, SOA borrows the idea of
defining applications by they messages they exchange. The result is the
concept of a service.

A service is an atomic unit of functionality defined by a set of message
exchanges that are expressed using an implementation neutral grammar. A
service, unlike an object, is an abstract entity whose implementation details
are left largely ambiguous. The only implementation details of the service
that are spelled out are the messages it exchanges. This ambiguity, coupled
with the requirement that the messages be defined by an implementation
neutral grammar make a service highly reusable and easy to integrate into a
complex system.

Using services, you can define applications based on business requirements
and not worry so much about the details of how the functionality is
implemented. This is SOA. For example, you may need a unified application
to generate customer billing for a telecommunications company that
provides VoIP, cellular, and traditional phone services to its customers. The
biggest stumbling block to this is that each department has implemented
their billing system using a different technology as shown in Figure 4.
Because none of the technologies were designed to be interoperable and
none of them expose a common interface, building a unified billing client is
 6

What is a Service Oriented Architecture?
a major integration headache. It can be solved using traditional means, but
the solution involves either adding an expensive EAI product in the middle or
developing a custom integration layer.

However, you can define a service that represents the functionality of all
three billing systems as shown in Figure 5. This service only requires one
message exchange: the user sends the customer�s account number and the
service returns the bill. You now have a common interface through which a
unified billing client can access all three systems. This makes developing
the client much simpler, will not require as much maintenance, and will
make it easier to migrate the billing systems to newer platforms if there is a

Figure 4: Separate Billing Systems
7

CHAPTER 1 | Service Oriented Architecture
business need. This approach is also much easier for a business level
person to understand and express, thereby making it easier for an IT
department to understand the requirements.

Bringing a service into reality The disconnect between SOA and real systems is that a services is just an
abstraction. It is only an idealized representation of an implemented set of
functionality and that implementation is still bound to the dependencies of
hardware, languages, and networking protocols. Several key technologies
have emerged to bridge the gap between a service and the implemented
functionality that it represents. Among these are XML and HTTP.

Figure 5: Billing Systems in SOA
 8

What is a Service Oriented Architecture?
XML is the language that allows SOA to exist. It provides the grammar used
to describe services, it provides the type system used to describe the data
passed by services, and it provides the most common format used to
package the messages used by services.

Web Service Definition Language (WSDL) is an XML grammar standardized
by W3C to describe services. Using WSDL you define all of the abstract
portions of a service including the elements that make up the messages
exchanged by the service. You then map the abstract messages exchanged
by the service to a concrete payload format that is used on a network. You
also define a physical endpoint by which the service can be accessed.

XMLSchema is the default type system for defining the messages used by a
service. Because XMLSchema is a standardized XML grammar it is platform
neutral and does not make any assumptions about how the messages are
going to be processed. It also allows for the creation of complex messages
that are built up from reusable pieces.

Simple Object Access Protocol (SOAP) is an XML-based message protocol
standardized by the W3C. It defines an XML envelope for wrapping
messages and a data model for encoding information in an XML document.
SOAP is the most common, but not the only, concrete message format used
by services. Because it is XML based, SOAP is platform independent. In
addition, it is widely used.

Hypertext Transfer Protocol (HTTP) is the most common network protocol
used in SOA. This is largely due to the fact that it is nearly ubiquitous. HTTP
is the protocol used to connect the World Wide Web and is based on an
entirely open set of standards. Its ubiquity and openness make it a perfect
backbone for connecting distributed services.
9

CHAPTER 1 | Service Oriented Architecture
What is an Enterprise Service Bus?

Overview An enterprise service bus (ESB) is the layer of technology that makes SOA
possible. It enables the abstraction by translating the messages defining the
services into data that can be manipulated by a physical process
implementing a service. An ESB also provides some QoS to the services and
provides a messaging layer for services to use. Essentially, an ESB is the
yarn that weaves a SOA together.

From service to endpoint An ESB takes the concrete details defined in the service element of a
WSDL contract and uses it to create an accessible endpoint for the service.
This information includes details on how the abstract messages are mapped
into data structured that can be manipulated and transmitted by the
service�s implementation. It also includes information about the how the
service�s implementation is to be exposed to the physical world. The
endpoint is the physical representation of the abstract service defined in a
WSDL contract.

As shown in Figure 6, the ESB sits between the service�s implementation
and any consumers that want to access the service. The ESB handles
functions such as:

� publishing the endpoint�s WSDL contract.

� translating the received messages into data the service�s
implementation can use.

� assuring that consumers have the required credentials to make
requests on the service.

� directing the request to the appropriate implementation of the service.
 10

What is an Enterprise Service Bus?
� returning the response to the consumer.

Not EAI A brief description of an ESB may trigger nightmares about EAIs. While the
concern is warranted, ESBs have several key differentiators from the
integration layers of the past:

Figure 6: Billing System SOA with an ESB
11

CHAPTER 1 | Service Oriented Architecture
� ESBs use industry standard WSDL contracts to define the endpoints
they connect.

� ESBs use XML as a native type system.

� ESBs are distributed in nature.

� ESBs do not require the use of proprietary infrastructure.

� ESBs do not require the use of proprietary adapters.

� ESBs implement QoS based on industry standard interfaces.

The use of standardized WSDL for the interface definition language and the
use of XML as a native type system make an ESB future safe and flexible. As
discussed in the previous section, both are platform and implementation
neutral which avoids vendor lock-in.

Strength in pieces The most significant differentiator between ESBs and legacy EAI systems is
an ESB�s distributed nature. EAI systems were designed as a hub-and-spoke
system. ESBs, on the other hand, are designed to be a distributed as the
components they are integrating. As shown in Figure 7, an ESB distributes
the load of data translation, routing, and other QoS tasks to the endpoints
themselves. Because the endpoints are only responsible for translating
messages that are directed to them, they can be more efficient. It also
means that they can adapt to new connectivity requirements without
 12

What is an Enterprise Service Bus?
effecting other endpoints. The fact that routing, security, and other QoS are
also distributed means that you can choose not to deploy them if they are
not needed.

The distributed nature of an ESB also means that you are not forced to drop
all of your existing infrastructure in one big bang. You can start with a very
targeted project such as service enabling a single system so that it can
interact with a new AJAX based interface. As you become more comfortable
with the technology, or as requirements demand, you can plug more
services into the ESB without disrupting the services already deployed. As
you do so, you may not even need to change any of your existing
implementations because the ESB�s translation services allow you to plug
legacy implementations into the ESB.

Figure 7: Distributed Nature of an ESB
13

CHAPTER 1 | Service Oriented Architecture
The WS standards ESBs offer a number of QoS such as transactionality, security, routing, and
reliable messaging. To ensure maximum interoperabilty between
implementations, ESBs base much of their QoS on a set of standards that
include:

� WS-Addressing

� WS-Atomic Transactions

� WS-Coordination

� WS-Security

� WS-Reliable Messaging

These standards are all maintained by the W3C and provide a common
framework on which ESBs build QoS. They were all designed around the
idea that information would be passed using SOAP/HTTP. They were also
designed so that services should be easily shared and accessed over the
Web. Therefore they, and ESBs that implement them are built to be
maximally interoperable.
 14

How Does Artix Fit into a SOA Strategy?
How Does Artix Fit into a SOA Strategy?

Overview Artix is IONA�s ESB implementation. As such, it provides a highly distributed
and easily extensible solution for implementing a SOA. Built on IONA�s
patented ART core, Artix comes with a number of plug-ins that support a
wide range of enterprise messaging platforms and provides several
enterprise QoS such as transactions and security.

How Artix is different Many ESB solutions are merely souped up versions of the same technology
that an ESB was intended to supplant. While they look like an ESB from the
outside, they are really just an old fashion messaging system with some
adapters thrown into the mix. They are not truly distributed and they do not
help you avoid vendor lock-in. In order to use most of the features offered by
these ESBs, you must make the particular ESB the backbone of your entire
enterprise. Much of the QoS, routing, and translation logic is bundled into
the messaging system. In essence they sell you a bunch of adapters that let
you connect your systems into their plumbing.

Artix, on the other hand, gives you a bunch of adapters that lets you connect
your applications into any plumbing. It does this by offering a truly
distributed ESB solution. Instead of relying on a particular messaging
system to provide the QoS, routing, and translation functionality, Artix
moves all of the functionality to discreet endpoints. If an application needs
to connect with a system that uses WebSphere MQ, the application can load
the required connector and talk directly to the WebSphere MQ system. If a
legacy system needs to be exposed as a Web service, you can place an
endpoint on the system that can route and translate messages for it.

Extensibility Because Artix is an extensible ESB, it has several distinct advantages:

� You can deploy SOA as it makes business sense because you can add
endpoints without effecting your entire organization.

� You can chose deploy only the features you need.

� If you need to add features to an endpoint, you can do so without
touching all of the deployed endpoints.

� It can easily adapt to changes in the messaging infrastructure used in
an enterprise.
15

CHAPTER 1 | Service Oriented Architecture
� Because Artix is built using a IONA�s patented ART architecture, it is
easy to write plug-ins that extend Artix�s capabilities.

Middleware support Artix integrates with the following middleware platforms:

� CORBA

� WebSphere MQ

� Tibco/Rendezvous

� Tuxedo

� Web services

� J2EE

� .Net

QoS Artix provides the following qualities of service:

� Reliable messaging based on WS-ReliableMessaging

� Security including support for WS-Security headers

� Transactions based on WS-AtomicTransactions

� High availability

� Load balancing

� Location services

� Leasing
 16

CHAPTER 2

Artix�s High-Level
Architecture
The Artix runtime, called a bus, connects applications to a
networking infrastructure through a combination of pluggable
layers.

In this chapter This chapter discusses the following topics:

Artix as a Deployed ESB page 18

Artix in a Service Endpoint page 20

Artix in a Consumer Endpoint page 25

Artix in an Intermediary page 30
17

CHAPTER 2 | Artix�s High-Level Architecture
Artix as a Deployed ESB

Overview Because Artix is an enterprise service bus it is easy to imagine Artix as a
piece of plumbing that passes messages around your enterprise like a USB
cable. While some ESBs are implemented in a way that makes them
resemble a USB cable, Artix is more like set of caps that turn any existing
networking or messaging system into a virtual bus. As shown in Figure 8,
Artix lives in the endpoints that you want to connect to your system. It uses
the network to do the message delivery and shields the endpoints from the
details.

Figure 8: Artix and the Virtual Bus
 18

Artix as a Deployed ESB
Artix ensures that the addressing information and formats are compatible
with the network infrastructure onto which the messages are placed. The
network then ensures that the messages are delivered to the proper
endpoints. Because Artix uses the existing network infrastructure to deliver
messages, Artix can capitalize on any QoS offered by the network. For
example, Artix can use the reliable messaging mechanisms offered by a JMS
queue to ensure that messages are delivered.

Endpoints Artix can be used to implement three types of endpoints in a SOA:

� Services are endpoints that implement the operations defined in a
service contract. They are similar to servers.

� Service Consumers, or consumers, are endpoints that make requests
on services. They are similar to clients.

� Intermediaries are endpoints that processes messages in a
value-added way, such as converting them from one data format to
another, or routing them to another service. An intermediary has
characteristics of both a service and a consumer.

The Artix bus Artix does have a bus, but it is internal. The Artix bus coordinates the
passage of data from user implemented business logic to the networking
system. Internally, Artix consists of the bus and a number of objects that
take the data that the business logic can work with and transforms it into a
message that can be sent on the network. There are also a number of
objects that Artix uses to provide other features such as security and session
management.

The bus is capable of coordinating and managing the messages for multiple
services or service consumers. It is also responsible for loading and
unloading the plug-in used by Artix. The details of how the bus coordinates
messages for each type of endpoint and what components are loaded are
discussed in the remaining sections of this chapter.
19

CHAPTER 2 | Artix�s High-Level Architecture
Artix in a Service Endpoint

Overview A service endpoint is an endpoint that implements the business logic
defined in a WSDL document. Using skeleton code produced by running a
WSDL document through the Artix code generators, you can create a service
endpoint that uses the Artix bus to connect to the network. The bus can load
any plug-ins needed to provide the features you desire.

For example, you could build a service endpoint to process on-line payments
from your customers. The WSDL document may specify a service that has
two operations: veiw_recent and make_payment. Each operation takes the
customer�s account number and some additional information. Because it is
going to be accessed over the Web, the WSDL document specifies that it
uses SOAP/HTTPS. Using this information, Artix will generate skeleton code
for the service implementation and load the proper plug-ins when the
service endpoint is deployed.

What makes up a service endpoint As shown in Figure 9, a service endpoint built with Artix has the following
pieces:

� a service implementation

� a binding plug-in

� a transport plug-in

Request messages are received by the transport plug-in. Once the message
is received, the bus passes the message along the messaging chain to the
binding plug-in. The binding plug-in unmarshalls the data into objects that
that are passed on to the service implementation. The service
implementation processes the message according to the business logic it
implements. If a response is generated the bus passes it back down the
messaging chain so the transport can place it back onto the network.

In addition, a service endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the WSDL document defining
the endpoint, have access to requests before the service implementation.
 20

Artix in a Service Endpoint
They also have access to the response after the service implementation
generates it. They can be used to perform functions such as encryption,
validation, or header processing.

Service implementation The service implementation is in Artix can be created using either C++ or
Java and is based on code generated from the logical portion of the service
endpoint�s WSDL document. The bus loads the object that contains the
logic for the service and creates a servant that wraps the implementation so
that it can be managed by the bus. Depending on the threading model
specified, the bus will create as many instances of the implementation
object needed to process all of the requests made against the service.

Figure 9: High-level View of a Service Endpoint
21

CHAPTER 2 | Artix�s High-Level Architecture
The implementation does not have direct access to the request messages. It
receives messages from the bus as parameters to the operations specified in
the WSDL document from which it was generated. Similarly, it returns any
responses to the bus as a return value. The marshalling of the data is
handled by the binding plug-in. For example, the make_payment() method in
your on-line billing endpoint would receive a string containing the account
number and a float containing the amount of the payment. It would return a
boolean value depending on the success or failure of the action. It has no
knowledge of how the messages are packaged.

Exceptions thrown in the implementation object are also passed to the
messaging chain by the bus. The lower layers of the messaging chain will
handle the exception as a fault message. How the exception is returned to
the consumer depends on how the service is defined in the WSDL
document. For example, services that use CORBA will use the CORBA
exception mechanism for reporting remote exceptions and services the use
SOAP/HTTP will respond with a SOAP fault containing information about
the exception.

Request-level interceptors Request-level interceptors sit between the binding and the service
implementation. They have access to the message data when it is in
between the bits received off of the wire and the objects manipulated by the
service implementation, so they can access the header values of the
message. For example, the WS-Security specification requires that a SOAP
header holding the security token be included with all requests. A
request-level handler could remove this header and authorize the consumer
before the request is passed to the implementation.

Request-level interceptors can also inspect and change the parameters of
the operation that fulfils the request. So, if the payment is amount being
passed to make_payment() is specified in Euros and the service endpoint
process values in US dollars, a request-level handler can do the conversion
before the data is passed to the implementation. Return value scan also be
inspected and changed so the transaction information returned by
view_recent() could be converted into the desired currency.

Request-level interceptors are developed as plug-ins and are loaded based
on information in the Artix configuration file. They are executed in the
sequential order specified in the configuration file. For instance, if the
configuration file specifies that the request level interceptors are called in
 22

Artix in a Service Endpoint
the order a b c that is the order they will be called when a request is
received. When a response is sent down the chain, the interceptors will be
called in the order c b a.

Exceptions thrown in request-level handlers cause the message to be
immediately dispatched to the binding. They are labeled as fault messages.
Requests will not be passed onto the service implementation.

Binding The binding is responsible for converting messages between the binary types
used by the service implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. The bus will
load the appropriate binding plug-ins based on the binding elements in the
contract defining the endpoint. For example, the on-line billing service
endpoint would load the SOAP binding plug-in.

Because the binding plug-in is not loaded by the bus until the service
endpoint is deployed, you can change the payload format used by the
service endpoint without changing the service implementation. For example,
if you wanted to expose the service endpoint to a COBOL application you
could edit the WSDL document to include a fixed record length binding and
redeploy the endpoint. The bus will then load the binding plug-in used to
process fixed record length data.

Exceptions thrown in the binding are sent back down the messaging chain
as a fault message. Requests will not be passed to the request-level
interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request comes in, interceptors have access to the binary stream holding
the message pulled off the wire. At this point, they can perform actions such
as decompression or decryption. When a response is being returned,
interceptors have access to the binary stream holding the newly packaged
message. At this point they can perform actions such as compression or
encryption.

Like request-level interceptors, message level interceptors are developed as
plug-ins and are deployed based on information in the Artix configuration
file. They are also called in the order specified in the configuration.

Exceptions in message-level handlers result in unpredictable behavior. It is
recommended that your code does not throw exceptions at this level.
23

CHAPTER 2 | Artix�s High-Level Architecture
Transport The transport is responsible for pulling requests off of the network and
placing responses back on the network. The transport plug-ins to be loaded
and their configuration are determined by the WSDL port elements included
in the contract defining the endpoint. For example, the on-line billing service
endpoint would load the HTTPS plug-in.

Because the transport plug-in is not loaded until the service endpoint is
deployed, you can change the transport used by the service endpoint
without making any change to the service implementation. For example, if
you decided that the on-line billing service needed to be accessible to
systems that used CORBA or Tibco Rendezvous, you could simply edit the
service endpoint�s contract and redeploy it. The bus will then load the
plug-ins needed for the new connections.
 24

Artix in a Consumer Endpoint
Artix in a Consumer Endpoint

Overview A consumer endpoint is an endpoint that invokes on a service endpoint to
make use of the business logic implemented by the service endpoint. Using
stub code produced by running a WSDL document through the Artix code
generators, you can create a consumer endpoint that uses the Artix bus to
load a service proxy for the service defined in the WSDL and connect to one
of the endpoints that implements that service. The bus can also load any
plug-ins needed to provide the features you desire.

For example, you could build a consumer endpoint to access an on-line
payment service. The WSDL document defining the payment service may
specify two operations: veiw_recent and make_payment. Each operation
takes the customer�s account number and some additional information. The
WSDL document specifies that the service uses SOAP/HTTPS for
communicating with consumers. Using this information, Artix will generate
stub code for the service and load the proper plug-ins when the consumer
endpoint is deployed.

What makes up a consumer
endpoint

As shown in Figure 10, a consumer endpoint using Artix has the following
pieces:

� the consumer implementation

� a service proxy

� a binding plug-in

� a transport plug-in

Requests are generated by the service proxy when it is invoked by the
consumer implementation. The request is then passed to the binding plug-in
where it is marshalled into the data format specified in the service�s WSDL
document. From the binding, the request is passed to the transport plug-in
where it placed onto the wire. If a response is expected, the transport
plug-in waits until the response arrives. When the response arrives, the
transport passes it back up the messaging chain to the binding where it is
unmarshalled. The binding passes the unmarshalled data to the service
proxy and the service proxy passes it back to the consumer implementaiton.
25

CHAPTER 2 | Artix�s High-Level Architecture
In addition, a consumer endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the a WSDL document, have
access to requests after the service proxy. They also have access to the
response before the service proxy. They can be used to perform functions
such as encryption, validation, or header processing.

Figure 10: High-level View of a Consumer Endpoint
 26

Artix in a Consumer Endpoint
Consumer implementation The consumer implementation is user-written code that provides the
business logic for the consumer. As part of the consumer implementation
you need to instantiate and register service proxies for any service endpoint
upon which the consumer will make requests. For example, the on-line
payment consumer will need to instantiate and register a proxy for the
on-line payment service endpoint upon which it will ultimately make
requests.

Service proxy The service proxy is a stub generated from logical portion of a WSDL
document defining the service upon which the consumer endpoint will make
requests. It allows a consumer endpoint to invoke the operations offered by
the service. The service proxy offers all of the operations defined in the
service�s WSDL document.

When instantiated, a service proxy provides a connection to the a service
endpoint that implements the service defined in the WSDL document from
which it was generated. As part of their instantiation, service proxies are
registered with the Artix bus so that the invocations made on the service
proxy can be properly passed along the message chain and delivered to the
proper service endpoint.

Request-level interceptors Request-level interceptors sit between the service proxy and the binding.
They have access to the parameters of the invoked operation. They can
inspect the parameters and take action based on their values. They can also
alter the value of any of the parameters. For example, when
make_payment() is invoked a request-level interceptor could be used to
check the user�s bank account balance to ensure they have the funds to
make the payment specified. If there are not enough funds, the interceptor
could also change the amount of the payment to a value that the user can
afford.

While they can change the values of the operation�s parameters,
request-level handlers cannot add or remove parameters to the operation.
For example, you could not use a request-level interceptor to split a single
parameter that contains the user�s full name into two parameters: one for
the first name and one for the last name.

Request-level handlers also have access to the message headers that are
included with the message. When requests are made, they can add a SOAP
header to the message. For example, you could write a request-level handler
27

CHAPTER 2 | Artix�s High-Level Architecture
to add a WS-Security header to all out-going requests. When a response is
received, request-level handlers can inspect the message headers before the
message is passed back into the consumer implementation. For example, a
request-level handler could check a message header to validate the data
returned in response to view_recent().

Request-level interceptors are developed as plug-ins and are loaded based
on information in the Artix configuration file. They are executed in the
sequential order specified in the configuration file. For instance, if the
configuration file specifies that the request-level interceptors are called in
the order a b c, that is the order they will be called when a request is
passed down the message chain. When a response comes up the chain, the
interceptors will be called in the order c b a.

Exceptions generated in a request-level interceptor are immediately returned
to the consumer implementation. If the exception is thrown while processing
a request, the request is not sent. The client implementation is responsible
for properly handling the exception.

Binding The binding is responsible for converting messages between the binary types
used by the client implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. The Artix bus
will load the appropriate binding plug-ins based on the binding elements in
the contract defining the service to which the client is making requests. For
example, the bus would load the SOAP binding plug-in for the on-line
payment consumer.

Because the binding plug-in is not loaded by the bus until the consumer
endpoint is deployed, you can change the payload format used by the
endpoint without changing any of the endpoint�s code. For example, if your
on-line billing service endpoint is an application that uses Tuxedo�s FML
buffers you could edit the WSDL document to include an FML binding and
redeploy the endpoint. The bus will then load the binding plug-in used to
process FML.

Exceptions in the binding are sent back up the messaging chain as a fault
message. Requests will not be passed to the message-level interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request is made, they have access to the binary data stream that contains
the newly packaged message before it is placed onto the wire. At this point
they can perform actions such as compression or encryption of the outgoing
 28

Artix in a Consumer Endpoint
request. When a response is received, the interceptors have access to the
binary stream that represents the message pulled off of the wire. At this
point, they can perform operations such as decompress the data or decrypt
it.

Like request-level interceptors, message level-interceptors are developed as
plug-ins and are deployed based on information in the Artix configuration
file. They are also called in the order specified in the configuration.

Message level interceptors return exceptions directly to the consumer
implementation. If the exception is thrown wile processing a request, the
request is not sent. If the exception is thrown when processing a response,
the message is not passed to the rest of the messaging chain.

Transport The transport is responsible for placing requests on the network and pulling
responses back off of the network. The transport plug-ins to be loaded and
their configuration are determined by the WSDL port elements in the WSDL
document that defines the service endpoint on which the consumer
endpoint is invoking. For example, the bus would load the HTTP transport
plug-in for the on-line billing consumer endpoint.

Because the transport plug-in is not loaded until the consumer endpoint is
deployed, you can change the transport by simply editing the WSDL
document used to define the endpoint. For example, if you decided that the
on-line billing service endpoints were to moved to WebSphere MQ, you
could simply edit the consumer endpoint�s WSDL document and redeploy it.
The bus will then load the plug-ins needed to connect to WebSphere MQ.
29

CHAPTER 2 | Artix�s High-Level Architecture
Artix in an Intermediary

Overview An intermediary is a special case of a service endpoint. It is a service
endpoint whose primary function is intercept messages, perform some
value-added processing, and possibly pass the message on to its intended
destination. Intermediaries have some of the characteristics of a service
endpoint and also of a consumer endpoint. They are typically defined by a
WSDL document defining all of the interfaces required by the intermediary
and that has been extended to contain the rules for how the intermediary is
to process messages. Using the extended WSDL document, you can
generate skeleton code and stub code for the endpoints with which the
intermediary will interact. Alternatively, intermediaries can use generic
interfaces that are created at runtime based on the information provided in
the contract. The bus will use the information in the contract to load the
plug-ins needed to connect the intermediary to the network.

For example, you could build an intermediary that collected statistics about
how long it took a service endpoint to process requests, the average
payment amount, how many times a particular operation was invoked, or
how many requests are processed by all of the service endpoints on your
SOA. Artix uses an intermediary to service-enable legacy systems by
performing transport and binding switching. Other uses of intermediaries are
message routing and message transformation. For more information about
the intermediaries provided with Artix see �The Artix Router� on page 38
and �The Artix Transformer� on page 54.

What makes up an intermediary As shown in Figure 11, an intermediary built using Artix has the following
pieces:

� a service-side transport plug-in

� a service-side binding plug-in

� a service implementation

� a service proxy

� a consumer-side binding plug-in

� a consumer-side transport plug-in
 30

Artix in an Intermediary
Requests are picked up from the network by the service-side transport
plug-in. The bus passes the request up the service-side message chain to
the service implementation. The service implementation performs any
message processing that is required. The service implementation invokes a
service proxy if it is appropriate. The request is then passed through the
consumer-side messaging chain to the network. When the response arrives,
the consumer-side transport plug-in passes it back up the consumer side
messaging chain to the service implementation. The service implementation
performs any message processing that is required and then passes the
response to the bus. The bus passes the response down the service-side
messaging chain to the network.
31

CHAPTER 2 | Artix�s High-Level Architecture
In addition, an intermediary can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors can be used to perform functions such as encryption,
validation, or header processing.
 32

Artix in an Intermediary
Figure 11: High-level View of an Intermediary
33

CHAPTER 2 | Artix�s High-Level Architecture
Service-side messaging chain An intermediary's service-side messaging chain functions identically to the
messaging chain of a service endpoint. It is made up of a transport,
message-level handlers, a binding, and request-level handlers. The binding
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see �Artix in a Service Endpoint� on page 20.

Service implementation An intermediary's service implementation determines the functionality of the
intermediary. For example, it may inspect the account number of a payee
and use it to route the request to a regional payment center.

The only requirement for an intermediary's service implementation is that it
continues the invocation chain for the messages it receives. For example, if
the intermediary is placed in front of a teller service, the intermediary must
pass along all incoming requests to an instance of the teller service for
which the request was intended.

Service proxies An intermediary has a service proxy for any service to which it must pass
messages. In some cases this may be a single service, but an intermediary
can also pass messages along to a number of services. For example, the
Artix router can redirect a message to any number of services.

Consumer-side messaging chain An intermediary's consumer-side messaging chain functions identically to
the messaging chain of a consumer endpoint. It is made up of request-level
handlers, a binding, message-level handlers, and a transport. The binding
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see �Artix in a Consumer Endpoint� on page 25.
 34

CHAPTER 3

Services Provided
with Artix
Artix provides a number of services that add value and
reliability to a SOA.

In this chapter This chapter discusses the following topics:

The Artix Container page 36

The Artix Router page 38

Security page 41

The Artix Locator page 43

The Artix Session Manager page 46

Reliable Messaging page 49

Transactions page 53

The Artix Transformer page 54

The Artix Chain Builder page 57
35

CHAPTER 3 | Services Provided with Artix
The Artix Container

Overview One of the key features of SOA is that its endpoints are highly dynamic. The
Artix container provides a number of features that make Artix enabled
endpoints more dynamic including:

� remote deployment

� suspension of an endpoint

� automatic reloading of an endpoint

� dynamic endpoint configuration

� monitoring of endpoint performance metrics

The container does this by hosting a light-weight administrative service
along side the endpoints hosted in the container as shown in Figure 12.

Container server The container server is a light weight process that can host a number of
Artix enabled endpoints. It contains an Artix bus that instantiates service
implementation objects, loads the binding and transport plug-ins specified
in the WSDL documents of the endpoints it is hosting, and exposes the

Figure 12: Overview of the Artix Container
 36

The Artix Container
endpoints to the network. The container�s bus coordinates the flow of
messages so that messages are placed on the proper message chains and
delivered to the appropriate service implementations.

in addition to the endpoints you deploy into a container, Artix containers
always load an instance of the container administrative service.

Administrative service The container�s administrative service is an Artix service that allows you to
manage the endpoints deployed in a container. Like all services in SOA, the
administrative service is defined by a WSDL document. By default it is
exposed as an endpoint using SOAP/HTTP and can be accessed by any
consumer endpoint that instantiates an administrative service proxy. You
can alter the networking properties of an administrative service endpoint
such that it uses any of the binding/transport combinations supported by
Artix.

The administrative service provides the following operations:

� List all endpoints deployed in the container

� Stop a running endpoint

� Start a dormant endpoint

� Remove an endpoint

� Deploy a new endpoint

� Get a reference to an endpoint

� Get the WSDL for an endpoint

� Get the URL to an endpoint's WSDL document

� Retrieve performance metrics for an endpoint

� Shut down the container
37

CHAPTER 3 | Services Provided with Artix
The Artix Router

Overview The Artix router is an intermediary whose primary role is to redirect
messages based on rules defined in its contract. As shown in Figure 13, an
Artix router has a service-side interface that receives requests from
consumer endpoints. It also has one or more consumer-side service proxies
that forward the request to service implementations on the backend of the
router.

The service-side messaging chain and consumer-side messaging chain are
defined by separate parts of the router�s WSDL document. They do not
necessarily have a common binding or transport.

Service-side The service-side of a router looks like a service endpoint to the other
endpoints on your network. It is responsible for receiving requests from
consumers that make requests on the service or services behind the router.

Figure 13: Overview of the Artix Router
 38

The Artix Router
Its interface and messaging chain is determined by a service definition in the
router�s WSDL document. It has a transport plug-in and a binding plug-in
and any optional interceptors required for QoS.

For example, a router could be used to direct messages from a .Net client
that uses SOAP/HTTP to a backend service that is implemented using
SOAP/JMS. The router would load the HTTP transport plug-in and the SOAP
binding plug-in on the service-side messaging chain. This way the router
makes the backend service look like a SOAP/HTTP endpoint.

Consumer-side The consumer-side of a router looks like a consumer endpoint to the rest of
the endpoints on your network. It consists of one or more service proxies
and their associated message chains and is responsible for forwarding
requests to the services on the backend of the router. The proxies, and their
messaging chains, are defined in the router�s WSDL document. However,
they are not instantiated until they are needed by the router. So, if one of the
destinations in the router�s WSDL document never receives a message, no
consumer-side artifacts will be created for it.

The consumer-side proxies can all have a different combination of bindings
and transports in its messaging chains. They also can have a different
combination from the service-side of the router. For example, if you wanted
to build an AJAX based client that needed to make requests on two backend
servers, you could deploy a router that presents a consolidated service
facade. The router�s service-side interface would look like a SOAP/HTTP
service endpoint that offered all of the operations of both backend services.
Its consumer-side, however, would consist of two consumer endpoints that
pass the requests along to the appropriate backend server. For example, if
one server is a CORBA server that offers a buildRobosnake operation and
the other server was a Tuxedo based server that offers a buildRobopenguin
operation, the router�s consumer-side would consist of one CORBA
consumer endpoint and one Tuxedo consumer endpoint.

Features A router provides a number of features:

� message routing

� payload format translation

� transport switching

� load balancing

� message broadcasting
39

CHAPTER 3 | Services Provided with Artix
� endpoint fail-over

More information For more information about the Artix container see Configuring and
Deploying Artix Solutions.
 40

../deploy/index.htm
../deploy/index.htm

Security
Security

Overview Artix�s security architecture is designed to be easily deployable and easily
connect to any existing security infrastructure already in use. As shown in
Figure 16, it consists of two main components:

� the Artix security plug-in

� The Artix security server

The security plug-in is responsible for getting the credentials from incoming
messages to a service endpoint and sending them to the security server. The
security server takes the credentials performs authentication and
authorization using user data stored in a credential datastore.

Security plug-in The Artix security plug-in is deployed into the message chain of any service
endpoint that uses the Artix security service. It checks incoming requests for
security credentials. Before allowing the request to be forwarded to the

Figure 14: Overview of the Artix Security Architecture
41

CHAPTER 3 | Services Provided with Artix
service implementation, it checks with the Artix security server to validate
the user and ensure that they are authorized to access the service. The
security plug-in uses mutually authenticated and encrypted channel to
communicate with the security service.

For optimization, the security plug-in has a token cache that holds on to
authorization tokens from the security server. Before sending the credentials
to the security server, the plug-in will check its cache for a valid token that
matches the credentials from the request. If a valid token is stored in the
plug-in�s cache, the plug-in will use it. If not, it will request one from the
security service.

Security server The Artix security server is a standalone server that provides the
authentication and authorization functionality for Artix service endpoints. It
is designed to use pluggable adapters that connect to a variety of credential
datastores. For example, if you are already using LDAP on your systems, the
Artix security server can leverage that data to perform it�s functions.

To ensure that the Artix security server has the following enterprise features:

� high-availability through clustering

� token federation

More information For more information about Artix security see the Artix Security Guide.
 42

../security/index.htm

The Artix Locator
The Artix Locator

Overview The Artix locator is a lightweight registry of deployed Artix endpoints. Artix
enabled service endpoints register their endpoint information with a locator
instance and consumer endpoints can use a locator instance to get
references to an endpoint that implements a given service. It uses
WS-Addressing compliant endpoint references to provide addressing
information to consumers.

As shown in Figure 15, the locator consists of three components:

� The locator service is deployed into your network as a service endpoint.

� The locator endpoint plug-in is deployed with Artix service endpoints
that want to register with a locator instance.
43

CHAPTER 3 | Services Provided with Artix
� The locator client plug-in is deployed with Artix consumer endpoints
that want to use the locator service to get the addressing information.

Locator service The locator service, like all services in SOA, is defined by a WSDL
document. Artix contains a service implementation using skeleton code
generated from this WSDL document. You can deploy an instance of the
locator service into an Artix container to create a locator service endpoint
that can respond to the following types of requests:

� service registration

� service deregistration

� service endpoint look-up

� service endpoint query

The WSDL document supplied with Artix defines a locator service endpoint
using SOAP/HTTP. You should not modify this because the peer manager
that is used to interact with the locator cannot work with other transports.

Figure 15: Overview of the Artix Locator
 44

The Artix Locator
Locator endpoint plug-in The locator endpoint plug-in is loaded into the process space of any Artix
service endpoint that intends to register with an instance of the locator. It is
responsible for registering the service with a locator instance when the
service endpoint starts up. It is also responsible for loading a peer manager
that is responsible for monitoring the health of the locator service endpoint
with which it is registered. If the associated locator service endpoint goes
down, the peer manager reregisters the service endpoint when it returns. If
the service endpoint goes down, the locator instance unregisters it.

Locator client plug-in The locator client plug-in is loaded into the process space of any Artix
consumer endpoint that wants to use the locator to get addressing
information when creating a service proxy. When it is loaded, a consumer
endpoint can automatically perform look-ups on a locator service endpoint
without creating a service proxy for the locator. The plug-in has its own
locator service proxy that is used by the Artix initial reference resolving
mechanism. The plug-in does not, however, support service endpoint
queries.

To use the locator service�s service endpoint query mechanism or to access
the locator service from a non-Artix consumer endpoint, you can create a
service proxy for the locator service. Using the proxy, consumer endpoints
can access all of the features of the locator service regardless of the platform
used to implement them.

Features The locator has the following features:

� provides references to deployed service endpoints

� load balancing among endpoints that implement the same service

� highly available

More information For more information on the Artix locator see the Artix Locator Guide.
45

../locator/index.htm

CHAPTER 3 | Services Provided with Artix
The Artix Session Manager

Overview The Artix session manager is a versatile service that provides the following
features:

� Limiting the amount of time a consumer endpoint can access a service
endpoint

� Limiting the number of concurrent consumer connections to a service
endpoint

� Stateful service endpoints

Components As shown in Figure 16, the session manager is implemented in a modular
fashion. It consists of the following components:

� the session manager service implementation

� a policy plug-in that is collocated with the service implementation

� an endpoint manager plug-in that is collocated with all managed
endpoints
 46

The Artix Session Manager
� a session token interceptor that sits in the messaging chain of all
managed endpoints

Session manager service The session manager service is defined by a WSDL document and is
implemented by a library shipped with Artix. You deploy instances of the
session manager service implementation into an Artix container to make
session manager service endpoints. These endpoints can be accessed by
any consumer endpoints that can instantiate a proxy for the session
manager service and communicate using SOAP/HTTP.

In general, consumers will request lists of registered service groups from the
session manager. The consumer will then invoke on the session manager to
request a session for one of the returned service groups. In addition,
consumers can request extensions to their sessions and request that a

Figure 16: Overview of the Artix Session Manager
47

CHAPTER 3 | Services Provided with Artix
session be ended. The other session manager components also have specific
operations that they invoke on the session manager service to provide the
service-side functionality.

Policy plug-in The session policy plug-in is deployed into the same process space as the
session manager service endpoint. It is responsible for defining rules about
the duration of sessions, rules about the number of concurrent sessions
allowed per group, and other rules about how sessions are granted. Before
the session manager grants a session to a consumer, it checks with the
policy plug-in.

Artix comes with a default policy plug-in called sm_simple_policy. This
plug-in uses information from the Artix configuration file to determine length
of sessions and the maximum number of concurrent sessions allowed. If you
need more detailed session rules, you can write your own policy plug-in.

Endpoint manager The endpoint manager plug-in is loaded into the process space of any Artix
enabled service endpoints that intends to register with a session manager
service endpoint. The endpoint manager plug-ins are in constant
communication with the session manager service endpoint to report on the
endpoint�s health, to receive information on new sessions that have been
granted to the managed service endpoints, and to check on the health of the
session manager service endpoint.

Session token interceptor The session token interceptor is placed in a service endpoint's messaging
chain when it is configured to use managed sessions. It looks for the session
token that is attached to a request. If no session token is found, the
interceptor rejects the request. If the session token is found, the token is
sent to the endpoint manager for verification. If the session token is invalid,
the interceptor rejects the request. If the session is valid, the request is
passed up the message chain.

More information For more information on the Artix session manager see the Artix Session
Manager Guide.
 48

../session_mgr/index.htm
../session_mgr/index.htm

Reliable Messaging
Reliable Messaging

Overview When being used in conjunction with a reliable transport, Artix uses the
transport to provide reliable message delivery. Artix can also use the local
transaction mechanism in JMS to ensure that messages are received
without error.

Not all transports, however, have built-in reliable messaging capabilities. To
provide reliable messaging across all transports, Artix includes an
implementation of WS-RelaibleMessaging (WS-RM) specification. WS-RM
defines a mechanism by which messages are transmitted in sequence and
both the sender and the receiver use SOAP headers to communicate about
the status of the messages that have been transmitted. Message are stored
for retransmission until the receiver confirms that it has been received.

Note: Using Artix�s WS-RM implementation requires that endpoints use
SOAP as their payload format.
49

CHAPTER 3 | Services Provided with Artix
Components As shown in Figure 17, WS-RM is implemented by plug-ins that sit in the
messaging chain just before the SOAP binding. In addition to the plug-in,
the WS-RM implementation uses an in-memory datastore to hold messages
until their successful transmission has been confirmed.

To use reliable messaging, both endpoints in a request/response sequence
must be configured to load the WS-RM plug-in. This information is not part
of the contract used to define an endpoint. It is placed in the Artix
configuration for each endpoint.

Figure 17: Overview of WS-RM Architecture
 50

Reliable Messaging
WS-RM sequences The WS-ReliableMessaging specification defines the notion of reliable
message sequences. Each message sent to between sender and receiver are
part of a numbered sequence that are tracked using a SOAP header. Using
the sequence numbers the receiver can track which messages it has
received and, if needed, request that a message be retransmitted.

In Artix, sequences span the lifetime of a service proxy. When a service
proxy is created a new message sequence is created and it is terminated
when the proxy is destroyed. So, if a proxy makes 50 requests against a
service endpoint, the sequence will consist of 50 messages. You can also
configure a maximum number of messages in a sequence.

Outgoing messages When a message, either a request or a response, is passed down the
messaging chain, the WS-RM plug-in intercepts the message before it gets
to the SOAP binding. Before the message is passed down the rest of the
messaging chain, the WS-RM plug-in makes a copy of the message and
stores it in memory. The plug-in then attaches a WS-RM header to the
message that contains the sequence number of the message. It then passes
it down the message chain.

When the recipient confirms that the message arrived, the WS-RM plug-in
discards the message. If, after a configured interval, the recipient has not
confirmed receipt of a message, the WS-RM plug-in will retransmit the
message. This process continues until the recipient confirms receipt of the
message.

Incoming messages The WS-RM plug-in inspects all messages that are received from the
network. If it intercepts a message informing it that a message is being sent
using WS-RM, it checks its sequence number and informs the sender that it
has received the message. Using the sequence number, the plug-in then
determines if the message should be passed to the implementation code or
stored for later.

The WS-RM plug-in uses the ExactlyOnceInOrder policy to determine when
a message is passed to the implementation code. This means that only one
copy of each message is passed to the implementation code and they are
delivered in the order that they were sent. For example, if a consumer
makes six requests on a service endpoint the message sequence will consist
of six messages numbered 1 through 6. If the receiver gets message 4
before it gets messages 2 and 3, it will store message 4 and wait for
51

CHAPTER 3 | Services Provided with Artix
messages 2 and 3. Once it has message 2, it will pass it to the service
implementation. If message 3 has already arrived, the WS-RM plug-in will
then pass it along. If not, the plug-in will continue to store message 4 until it
arrives. When message 3 arrives, the plug-in will pass it to the service
implementation. The plug-in will then pass message 4 along and remove it
from the message store.

More information For more information on using Artix�s reliable messaging capabilities see:

� Configuring and Deploying Artix Solutions.

� http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMes
saging.pdf
 52

../deploy/index.htm
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf

Transactions
Transactions

More information For more information on working with transactions in Artix see the Artix
Transactions Guide, C++ or the Artix Transactions Guide, Java.
53

../transactions_java/index.htm
../transactions_cxx/index.htm
../transactions_cxx/index.htm

CHAPTER 3 | Services Provided with Artix
The Artix Transformer

Overview The Artix transformer is an XSLT service. It transforms request messages
based on directions from an XSLT script and returns the results as the
response message. As shown in Figure 18, it consists of a transformer
service implementation that when deployed into an Artix container becomes
a service endpoint.
 54

The Artix Transformer
Transformer service WSDL The transformer service is a dynamic service. Unlike other services in SOA,
it does not have a single WSDL document that defines it. Instead, the
transformer service configures its interface based on a user supplied WSDL
document. The WSDL document defining an instance of the transformer
service should have one logical operation for each type of transformation the

Figure 18: Overview of the Artix Transformer
55

CHAPTER 3 | Services Provided with Artix
service can perform. Each operation�s input message should define the
XMLSchema used to define the XML data that the transformer service will
manipulate. Each operations� output message should define the
XMLSchema defining the results of the XSLT script executed when the
operation is invoked.

Transformer service processing Internally, the transformer service receives messages from the messaging
layer as XML documents that are constructed using the XMLSchema
definitions from the WSDL document. It then uses the XLAN XSLT engine to
process the XML document based on an XSLT script. The results of the
XLAN engine are placed back onto the messaging chain as the service�s
response.

More information For more information on the Artix transformer see Understanding Artix
Contracts and Configuring and Deploying Artix Solutions.
 56

../index.htm
../contracts/index.htm
../contracts/index.htm

The Artix Chain Builder
The Artix Chain Builder

Overview The Artix chain builder is an intermediary that allows you to create
composite services by linking together two or more services. As shown in
Figure 19, the chain builder has a service-side interface that is defined by a
WSDL document that defines the input and output of the composite
operations it provides. The chain builder�s consumer-side consists of one
service proxy for each of the backend services it links together to form the
composite service.

Figure 19: Overview of the Artix Chain Builder
57

CHAPTER 3 | Services Provided with Artix
Composite WSDL document A deployed chain builder uses a composite WSDL document to create its
service-side interface and consumer-side proxies. The service-side interface
is defined by a logical interface that contains at least one operation. The
logical operation�s input message must correspond to the input message of
one of the logical operations defined for the first service in the chain. The
logical operation�s output message must correspond to the output message
of one of the logical operations defined for the last service in the chain. In
addition to the logical interface, the composite WSDL document must also
contain the information required to expose the composite service as an
endpoint.

To deploy the service proxies needed by the consumer-side of the chain
builder, the composite WSDL needs to contain endpoint definitions for each
service that will be used in the chain.

Chain service Using directions entered into an Artix configuration file, the chain builder
directs the request through the chain. The request received by the chain
builder is forwarded to the first service in the chain. The response from the
first service is forwarded to the second service in the chain. The response
from the 2nd service is forwarded to the next service in the chain. This
process is repeated until the last service in the chain is reached. The chain
builder returns the response from the last service in the chain to the
consumer endpoint that made the request.

More information For more information on the Artix chain builder see Configuring and
Deploying Artix Solutions.
 58

../deploy/index.htm
../deploy/index.htm

Index

C
chain builder 57
consumer 19, 25
container 36

E
endpoint 10

consumer 25
intermediary 30
service 20
types 19

endpoint manager plug-in 48
enterprise service bus 10
ESB 10

H
HTTP 9
Hypertext Transfer Protocol 9

I
intermediary 19, 30

L
locator 43
locator client plug-in 45
locator endpoint plug-in 45
locator service 44

P
plug-in

endpoint manager 48
locator client 45
locator endpoint 45
security 41
session policy 48

R
router 38
S
security plug-in 41
security server 42
service 6, 19, 20
service consumer 19, 25
service oriented architecture 1
session manager 46
session policy plug-in 48
Simple Object Access Protocol 9
SOA 1
SOAP 9

T
transformer 54

W
Web Service Definition Language 9
WSDL 9
WS-RelaibleMessaging 49
WS-RM 49

X
XLAN 56
XMLSchema 9
XSLT 54
59

INDEX
 60

INDEX
61

INDEX
 62

INDEX
63

INDEX
 64

	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Service Oriented Architecture
	What is a Service Oriented Architecture?
	What is an Enterprise Service Bus?
	How Does Artix Fit into a SOA Strategy?

	Artix’s High-Level Architecture
	Artix as a Deployed ESB
	Artix in a Service Endpoint
	Artix in a Consumer Endpoint
	Artix in an Intermediary

	Services Provided with Artix
	The Artix Container
	The Artix Router
	Security
	The Artix Locator
	The Artix Session Manager
	Reliable Messaging
	Transactions
	The Artix Transformer
	The Artix Chain Builder

	Index

