
WSDL Extension Reference
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 24-Apr-2006

Contents

Preface ix

What is Covered in this Book ix
Who Should Read this Book ix
How to Use this Book ix
The Artix Library ix
Getting the Latest Version xii
Searching the Artix Library xii
Artix Online Help xii
Artix Glossary xiii
Additional Resources xiii
Document Conventions xiii

Part I Bindings

SOAP Binding 3
SOAP Extensions 4

soap:binding 4
soap:operation 5
soap:body 6
soap:header 8
soap:fault 9

MIME Extensions 10
Namespace 10
mime:multipartRelated 10
mime:part 10
mime:content 11

CORBA Binding and Type Map 13
CORBA Binding Extension Elements 14

Namespace 14
Primitive Type Mapping 14
corba:binding 16
i

CONTENTS
corba:operation 16
corba:param 17
corba:return 17
corba:raises 18

CORBA Type Map Extension Elements 19
corba:typeMapping 19
corba:struct 20
corba:member 20
corba:enum 21
corba:enumerator 22
corba:fixed 22
corba:union 24
corba:unionbranch 24
corba:case 25
corba:alias 26
corba:array 27
corba:sequence 28
corba:exception 29
corba:anonsequence 30
corba:anonstring 32
corba:object 33

Tuxedo FML Binding 39
Namespace 39
FML\XMLSchema Support 39
tuxedo:binding 40
tuxedo:fieldTable 40
tuxedo:field 41
tuxedo:operation 41

Fixed Binding 43
Namespace 43
fixed:binding 43
fixed:operation 44
fixed:body 44
fixed:field 45
fixed:enumeration 48
fixed:choice 49
 ii

CONTENTS
fixed:case 50
fixed:sequence 52

Tagged Binding 55
Namespace 55
tagged:binding 55
tagged:operation 57
tagged:body 57
tagged:field 58
tagged:enumeration 58
tagged:sequence 59
tagged:choice 61
tagged:case 62

TibrvMsg Binding 65
Namespace 65
TIBRVMSG to XMLSchema Type Mapping 65
tibrv:binding 67
tibrv:operation 68
tibrv:input 68
tibrv:output 70
tibrv:array 71
tibrv:msg 74
tibrv:field 75
tibrv:context 76

XML Binding 79
Namespace 79
xformat:binding 79
xformat:body 80

Part II Ports

HTTP Port 83
Standard WSDL Elements 84

http:address 84
iii

CONTENTS
soap:address 84
Artix Extension Elements 85

Namespace 85
http-conf:client 85
http-conf:server 88

Attribute Details 91
AuthorizationType 91
Authorization 91
Accept 91
AcceptLanguage 92
AcceptEncoding 93
ContentType 93
ContentEncoding 94
Host 94
Connection 95
CacheControl 95
BrowserType 98
Referer 98
ProxyServer 99
ProxyAuthorizationType 99
ProxyAuthorization 99
UseSecureSockets 100
RedirectURL 100
ServerCertificateChain 100

CORBA Port 101
Namespace 101
corba:address 101
corba:policy 102

IIOP Tunnel Port 103
Namespace 103
iiop:address 103
iiop:payload 104
iiop:policy 104

WebSphere MQ Port 107
Artix Extension Elements 108
 iv

CONTENTS
Namespace 108
mq:client 108
mq:server 110

Attribute Details 113
Server_Client 113
AliasQueueName 114
UsageStyle 116
CorrelationStyle 116
AccessMode 117
MessagePriority 118
Delivery 119
Transactional 119
ReportOption 120
Format 122

JMS Port 125
Namespace 125
jms:address 125
jms:JMSNamingProperty 126
jms:client 127
jms:server 127

Tuxedo Port 129
Namespace 129
tuxedo:server 129
tuxedo:service 129
tuxedo:input 130

Tibco/Rendezvous Port 131
Artix Extension Elements 132

Namespace 132
tibrv:port 132

Attribute Details 136
bindingType 136
callbackLevel 136
responseDispatchTimeout 137
transportService 137
transportNetwork 137
v

CONTENTS
cmTransportServerName 137
cmQueueTransportServerName 137

File Transfer Protocol Port 139
Namespace 139
ftp:port 139
ftp:properties 140
ftp:property 140

Part III Other Extensions

Routing 145
Namespace 145
routing:expression 145
routing:route 146
routing:source 146
routing:query 147
routing:destination 147
routing:transportAttribute 148
routing:equals 149
routing:greater 150
routing:less 150
routing:startswith 151
routing:endswith 151
routing:contains 152
routing:empty 152
routing:nonempty 153
Transport Attribute Context Names 153

Security 155
Namespace 155
bus-security:security 155

Codeset Conversion 159
Namespace 159
i18n-context:client 159
 vi

CONTENTS
i18n-context:server 160

Index 161
vii

CONTENTS
 viii

Preface
What is Covered in this Book
This book is a reference to all of the Artix specific WSDL extensions used in

Artix contracts.

Who Should Read this Book
This book is intended for Artix users who are familiar with Artix concepts

including:

• WSDL

• XMLSchema

• Artix interface design

In addition, this book assumes that the reader is familiar with the transports

and middleware implementations with which they are working.

How to Use this Book
This book contains the following parts:

• “Bindings”—contains descriptions for all the WSDL extensions used to

define the payload formats supported by Artix.

• “Ports”—contains descriptions for all the WSDL extensions used to

define the transports supported by Artix.

• “Other Extensions”—contains descriptions for the WSDL extensions

used by Artix to support features like routing.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing and Developing Artix Solutions
ix

PREFACE
• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

• Using Artix Designer describes how to use Artix Designer to build Artix

solutions.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview

of service-oriented architectures and describes how they can be

implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix

contract. Special attention is paid to the WSDL extensions used to

define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical

aspects of implementing advanced plug-ins (for example, interceptors)

using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.
 x

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm

PREFACE
Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure

and deploy Artix-enabled systems, and provides examples of typical

use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session

manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++

applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java

applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to use Artix as a bridge between

other middleware technologies and service-oriented middleware

technologies.

• Artix for CORBA provides information on using Artix in a CORBA

environment.

• Artix for J2EE provides information on using Artix to integrate with

J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the

documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC

Patrol.
xi

../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../transactions_java/index.htm

PREFACE
• CA WSDM Integration Guide explains how to integrate Artix with CA’s

WSDM product.

Reference Documentation

These books provide detailed reference information about specific Artix

APIs, WSDL extensions, configuration variables, command-line tools, and

terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive

online help, providing:
 xii

../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix

Designer and the Artix Management Console appear in the contents

panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select

Help|Cheat Sheets.

Artix Glossary
The Artix Glossary provides quick definitions and is a comprehensive

reference for Artix terms. All terms are defined in the context of the

development and deployment of Web services using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts

about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA

products.

If you need help with this or any other IONA product, go to IONA Online

Support.

Comments, corrections, and suggestions on IONA documentation can be

sent to .

Document Conventions
This book uses the following typographical and keying conventions
xiii

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes (for example, the User Preferences
dialog.)
 xiv

PREFACE
Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xv

PREFACE
 xvi

Part I
Bindings

In this part This part contains the following chapters:

SOAP Binding page 3

CORBA Binding and Type Map page 13

Tuxedo FML Binding page 39

Fixed Binding page 43

Tagged Binding page 55

TibrvMsg Binding page 65

XML Binding page 79

CHAPTER 1

SOAP Binding
This chapter describes the attributes that are used to define
a SOAP message binding in an Artix contract.

In this chapter This chapter discusses the following topics:

SOAP Extensions page 4

MIME Extensions page 10
3

CHAPTER 1 | SOAP Binding
SOAP Extensions

soap:binding

Synopsis <soap:binding style="..." transport="..." />

Description The soap:binding element specifies that the payload format to use is a SOAP

message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the soap:binding element.

• style

• transport

style

The value of the style attribute within the soap:binding element acts as

the default for the style attribute within each soap:operation element. It

indicates whether request/response operations within this binding are

RPC-based (that is, messages contain parameters and return values) or

document-based (that is, messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the

SOAP Body element within a SOAP message is structured.

If rpc is specified, each message part within the SOAP Body element is a

parameter or return value and will appear inside a wrapper element within

the SOAP Body element. The name of the wrapper element must match the

operation name. The namespace of the wrapper element is based on the

value of the soap:body namespace attribute. The message parts within the

wrapper element correspond to operation parameters and must appear in

the same order as the parameters in the operation. Each part name must

match the parameter name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as

follows if the style is RPC-based:

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>
 4

SOAP Extensions
If document is specified, message parts within the SOAP Body element

appear directly under the SOAP Body element as body entries and do not

appear inside a wrapper element that corresponds to an operation. For

example, the SOAP Body element of a SOAP request message is as follows if

the style is document-based:

transport

The transport attribute defaults to the URL that corresponds to the HTTP

binding in the W3C SOAP specification

(http://schemas.xmlsoap.org/soap/http). If you want to use another transport

(for example, SMTP), modify this value as appropriate for the transport you

want to use.

soap:operation

Synopsis <soap:operation style="..." soapAction="..." />

Description The soap:operation element is a child of the WSDL operation element. A

soap:operation element is used to encompass information for an operation

as a whole, in terms of input criteria, output criteria, and fault information.

Attributes The following attributes are defined within a soap:operation element:

• style

• soapAction

style

This indicates whether the relevant operation is RPC-based (that is,

messages contain parameters and return values) or document-based (that

is, messages contain one or more documents).

Valid values are rpc and document. The default value for soap:operation

style is based on the value specified for the soap:binding style attribute.

See “style” on page 4 for more details of the style attribute.

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
5

CHAPTER 1 | SOAP Binding
soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant

operation. The value must take the form of the absolute URI that is to be

used to specify the intent of the SOAP message.

soap:body

Synopsis <soap:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The soap:body element in a binding is a child of the input, output, and fault

child elements of the WSDL operation element. A <soap:body> element is

used to provide information on how message parts are to be appear inside

the body of a SOAP message. As explained in “soap:operation” on page 5,

the structure of the SOAP Body element within a SOAP message is dependent

on the setting of the soap:operation style attribute.

Attributes The following attributes are defined within a soap:body element:

• use

• encodingStyle

• namespace

• parts

use

This mandatory attribute indicates how message parts are used to denote

data types. Each message part relates to a particular data type that in turn

might relate to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding

schema whose location is referenced in the WSDL contract via an

encodingStyle attribute. In this case, types are serialized based on the set

of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL

contract itself, within a schema element within the types component of the

contract.

The following are valid values for the use attribute:

• encoded

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.
 6

SOAP Extensions
• literal

If encoded is specified, the type attribute that is specified for each message

part (within the message component of the WSDL contract) is used to

reference an abstract type defined in some remote encoding schema. In this

case, a concrete SOAP message is produced by applying encoding rules to

the abstract types. The encoding rules are based on the encoding style

identified in the soap:body encodingStyle attribute. The encoding takes as

input the name and type attribute for each message part (defined in the

message component of the WSDL contract). If the encoding style allows

variation in the message format for a given set of abstract types, the receiver

of the message must ensure they can understand all the format variations.

If literal is specified, either the element or type attribute that is specified

for each message part (within the message component of the WSDL

contract) is used to reference a concrete schema definition (defined within

the types component of the WSDL contract). If the element attribute is used

to reference a concrete schema definition, the referenced element in the

SOAP message appears directly under the SOAP Body element (if the

operation style is document-based) or under a part accessor element that

has the same name as the message part (if the operation style is

RPC-based). If the type attribute is used to reference a concrete schema

definition, the referenced type in the SOAP message becomes the schema

type of the SOAP Body element (if the operation style is documented-based)

or of the part accessor element (if the operation style is document-based).

encodingStyle

This attribute is used when the soap:body use attribute is set to encoded. It

specifies a list of URIs (each separated by a space) that represent encoding

styles that are to be used within the SOAP message. The URIs should be

listed in order, from the most restrictive encoding to the least restrictive.

This attribute can also be used when the soap:body use attribute is set to

literal, to indicate that a particular encoding was used to derive the

concrete format, but that only the specified variation is supported. In this

case, the sender of the SOAP message must conform exactly to the specified

schema.

namespace

If the soap:operation style attribute is set to rpc, each message part

within the SOAP Body element of a SOAP message is a parameter or return

value and will appear inside a wrapper element within the SOAP Body
7

CHAPTER 1 | SOAP Binding
element. The name of the wrapper element must match the operation

name. The namespace of the wrapper element is based on the value of the

soap:body namespace attribute.

parts

This attribute is a space separated list of parts from the parent input,

output, or fault element. When parts is set, only the specified parts of the

message are included in the SOAP Body element. The unlisted parts are not

transmitted unless they are placed into the SOAP header.

soap:header

Synopsis <soap:header message="..." part="..." use="..." encodingStyle="..."
namespace="..."/>

Description The soap:header element in a binding is an optional child of the input,

output, and fault elements of the WSDL operation element. A soap:header

element defines the information that is placed in a SOAP header element. You

can define any number of soap:header elements for an operation. As

explained in “soap:operation” on page 5, the structure of the SOAP header

within a SOAP message is dependent on the setting of the soap:operation

element’s style attribute.

Attributes The soap:header element has the following attributes.

message Specifies the qualified name of the message from which
the contents of the SOAP header is taken.

part Specifies the name of the message part that is placed
into the SOAP header.

use Used in the same way as the use attribute within the
soap:body element. See “use” on page 6 for more
details.

encodingStyle Used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle” on
page 7 for more details.
 8

SOAP Extensions
soap:fault

Synopsis <soap:fault name="..." use="..." encodingStyle="..." />

Description The soap:fault element is a child of the WSDL fault element within an

operation component. Only one soap:fault element is defined for a

particular operation. The operation must be a request-response or

solicit-response type of operation, with both input and output elements. The

soap:fault element is used to transmit error and status information within a

SOAP response message.

Attributes The soap:fault element has the following attributes:

namespace If the soap:operation style attribute is set to rpc, each
message part within the SOAP header of a SOAP
message is a parameter or return value and will appear
inside a wrapper element within the SOAP header. The
name of the wrapper element must match the operation
name. The namespace of the wrapper element is based
on the value of the soap:header namespace attribute.

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap:operation element’s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to the
name attribute for the fault element specified for the
corresponding operation within the portType component
of the WSDL contract.

use This attribute is used in the same way as the use
attribute within the soap:body element. See “use” on
page 6 for more details.

encodingStyle This attribute is used in the same way as the
encodingStyle attribute within the soap:body element.
See “encodingStyle” on page 7 for more details.
9

CHAPTER 1 | SOAP Binding
MIME Extensions

Namespace

The WSDL extensions used to define the MIME multipart/related messages

are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed

with mime. The entry in the WSDL defintion element to set this up is

shown in Example 1.

mime:multipartRelated

Synopsis <mime:multipartRelated>

 <mime:part ...>

 ...

 </mime:part>

 ...

</mime:multipartRelated>

Description The mime:multipartRelated element is the child of an input element or an

output element that is part of a SOAP binding. It tells Artix that the message

body is going to be a multipart message that potentially contains binary data.

mime:multipartReleated elements in Artix contain one or more mime:part

elements that describe the individual parts of the message.

mime:part

Synopsis <mime:part name="...">

 ...

</mime:part>

Example 1: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 10

MIME Extensions
Description The mime:part element is the child of a mime:multipartRelated element. It

is used to define the parts of a multi-part message. The first mime:part

element must contain the soap:body element that would normally appear in

a default SOAP binding. The remaining mime:part elements define the

attachments that are being sent in the message using a mime:content

element.

Attributes The mime:part element has a single attribute called name. name is a unique

string that is used to identify the part being described.

mime:content

Synopsis <mime:content part="..." type="..." />

Description The mime:content element is the child of a mime:part element. It defines the

binary content being passed as an attachment to a SOAP message.

Attributes The mime:content element has the following attributes:

part Specifies the name of the WSDL part element, from the
parent message definition, that is used as the content of
this part of the MIME multipart message being placed on
the wire.

type Specifies the MIME type of the data in this message part.
MIME types are defined as a type and a subtype using
the syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in the following:

• Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies

(ftp://ftp.isi.edu/in-notes/rfc2045.txt)

• Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types

(ftp://ftp.isi.edu/in-notes/rfc2046.txt).
11

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 1 | SOAP Binding
 12

CHAPTER 2

CORBA Binding
and Type Map
Artix CORBA support uses a combination of a WSDL binding
element and a corba:typeMapping element to unambiguously
define CORBA Messages.

In this chapter This chapter discusses the following topics:

CORBA Binding Extension Elements page 14

CORBA Type Map Extension Elements page 19
13

CHAPTER 2 | CORBA Binding and Type Map
CORBA Binding Extension Elements

Namespace

The WSDL extensions used for the CORBA binding and the CORBA data

mappings are defined in the namespace

http://schemas.iona.com/bindings/corba. The Artix designer adds the

following namespace declaration to any contract that uses the CORBA

binding:

Primitive Type Mapping

Most primitive IDL types are directly mapped to primitive XML Schema

types. Table 1 lists the mappings for the supported IDL primitive types.

xmlns:corba="http://schemas.iona.com/bindings/corba"

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type

Any xsd:anyType corba:any IT_Bus::AnyHolder com.iona.webservices
.reflect.types.AnyTy
pe

boolean xsd:boolean corba:boolean IT_Bus::Boolean boolean

char xsd:byte corba:char IT_Bus::Char byte

wchar xsd:string corba:wchar java.lang.String

double xsd:double corba:double IT_Bus::Double double

float xsd:float corba:float IT_Bus::Float float

octet xsd:unsignedByte corba:octet IT_Bus::Octet short

long xsd:int corba:long IT_Bus::Long int

long long xsd:long corba:longlong IT_Bus::LongLong long
 14

CORBA Binding Extension Elements
Unsupported types The following CORBA types are not supported:

• long double

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• Forward-declared interfaces

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time

zone offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

short xsd:short corba:short IT_Bus::Short short

string xsd:string corba:string IT_Bus::String java.lang.String

wstring xsd:string corba:wstring java.lang.String

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort int

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong long

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong java.math.BigInteger

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime java.util.Calendar

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 15

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type
15

CHAPTER 2 | CORBA Binding and Type Map
corba:binding

Synopsis <corba:binding repositoryID="..." bases=".." />

Description The corba:binding element indicates that the binding is a CORBA binding.

Attributes This element has two attributes:

Examples For example, the following IDL:

would produce the following corba:binding:

corba:operation

Synopsis <corba:operation name="..." >

 <corba:param ... />

 ...

 <corba:return ... />

 <corba:raises ... />

</corba:operation>

Description The corba:operation element is a child element of the WSDL operation

element and describes the parts of the operation’s messages. It has one or

more of the following children:

• corba:param

• corba:return

repositoryID A required attribute whose value is the full type ID of the
CORBA interface. The type ID is embedded in an object’s
IOR and must conform to the format
IDL:module/interface:1.0.

bases An optional attribute whose value is the type ID of the
interface from which the interface being bound inherits.

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
 16

CORBA Binding Extension Elements
• corba:raises

Attributes The corba:operation attribute takes a single attribute, name, which

duplicates the name given in operation.

corba:param

Synopsis <corba:param name="..." mode="..." idltype="..." />

Description The corba:param element is a child of corba:operation. Each part element

of the input and output messages specified in the logical operation, except

for the part representing the return value of the operation, must have a

corresponding corba:param element. The parameter order defined in the

binding must match the order specified in the IDL definition of the operation.

Attributes The corba:param element has the following required attributes:

corba:return

Synopsis <corba:return name="..." idltype="..." />

Description The corba:return element is a child of corba:operation and specifies the

return type, if any, of the operation.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract. See
“CORBA Type Map Extension Elements” on page 19.

name Specifies the name of the parameter as given in the name
attribute of the corresponding part element.
17

CHAPTER 2 | CORBA Binding and Type Map
Attributes The corba:return element has two attributes:

corba:raises

Synopsis <corba:raises exception="..." />

Description The corba:raises element is a child of corba:operation and describes any

exceptions the operation can raise. The exceptions are defined as fault

messages in the logical definition of the operation. Each fault message must

have a corresponding corba:raises element.

Attributes The corba:raises element has one required attribute, exception, which

specifies the type of data returned in the exception.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
 18

CORBA Type Map Extension Elements
CORBA Type Map Extension Elements

corba:typeMapping

Synopsis <corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...

</corba:typeMapping>

Description Because complex types (such as structures, arrays, and exceptions) require

a more involved mapping to resolve type ambiguity, the full mapping for a

complex type is described in a corba:typeMapping element at the bottom of

an Artix contract. This element contains a type map describing the metadata

required to fully describe a complex type as a CORBA data type. This metadata

may include the members of a structure, the bounds of an array, or the legal

values of an enumeration.

Attributes The corba:typeMapping element requires a targetNamespace attribute that

specifies the namespace for the elements defined by the type map. The default

URI is http://schemas.iona.com/bindings/corba/typemap.

Examples Table 2 shows the mappings from complex IDL types to Artix CORBA types.

Table 2: Complex IDL Type Mappings

IDL Type CORBA Binding Type

struct corba:struct

enum corba:enum

fixed corba:fixed

union corba:union

typedef corba:alias

array corba:array

sequence corba:sequence

exception corba:exception
19

CHAPTER 2 | CORBA Binding and Type Map
corba:struct

Synopsis <corba:struct name="..." type="..." repositoryID="..." />

 <corba:member ... />

 ...

</corba:struct>

The corba:struct element is used to represent XMLSchema types that are

defined using complexType elements. The elements of the structure are

described by a series of corba:member elements.

Attributes A corba:struct element requires three attributes:

corba:member

Synopsis <corba:member name="..." idlType="..." />

Description The corba:member element is used to define the parts of the structure

represented by the parent element. The elements must be declared in the

same order used in the IDL representation of the CORBA type.

Attributes A corba:member requires two attributes:

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.
 20

CORBA Type Map Extension Elements
Examples For example, you may have a structure, personalInfo, similar to the one in

Example 2.

It can be represented in the CORBA type map as shown in Example 3.

The idltype corbatm:hairColorType refers to a complex type that is defined

earlier in the CORBA type map.

corba:enum

Synopsis <corba:enum name="..." type="..." repositoryID="...">

 <corba:enumerator ... />

 ...

</corba:enum>

The corba:enum element is used to represent enumerations. The values for

the enumeration are described by a series of corba:enumerator elements.

Attributes A corba:enum element requires three attributes:

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 3: CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.
21

CHAPTER 2 | CORBA Binding and Type Map
corba:enumerator

Synopsis <corba:enumerator value="..." />

Description The corba:enumerator element represents the values of an enumeration. The

values must be listed in the same order used in the IDL that defines the CORBA

enumeration.

Attributes A corba:enumerator element takes one attribute, value.

Examples For example, the enumeration defined in Example 2 on page 21,

hairColorType, can be represented in the CORBA type map as shown in

Example 4:

corba:fixed

Synopsis <corba:fixed name="..." repositoryID="..." type="..." digits="..."
scale="..." />

Description Fixed point data types are a special case in the Artix contract mapping. A

CORBA fixed type is represented in the logical portion of the contract as the

XML Schema primitive type xsd:decimal. However, because a CORBA fixed

type requires additional information to be fully mapped to a physical CORBA

data type, it must also be described in the CORBA type map section of an

Artix contract using a corba:fixed element.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 4: CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>
 22

CORBA Type Map Extension Elements
Attributes A corba:fixed element requires five attributes:

Examples For example, the fixed type defined in Example 5, myFixed, would be

described by a type entry in the logical type description of the contract, as

shown in Example 6.

In the CORBA type map portion of the contract, it would be described by an

entry similar to Example 7. Notice that the description in the CORBA type

map includes the information needed to fully represent the characteristics of

this particular fixed data type.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

scale The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

Example 5: myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 6: Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 7: CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2"/>
</corba:typeMapping>
23

CHAPTER 2 | CORBA Binding and Type Map
corba:union

Synopsis <corba:union name="..." type="..." discriminator="..."

 repositoryID="...">

 <corba:unionbranch ... />

 ...

</corba:union>

Description The corba:union element is used to resolve the relationship between a union’s

discriminator and its members. A corba:union element is required for every

CORBA union defined in an IDL contract. The members of the union are

described using a series of nested corba:unionbranch elements.

Attributes A corba:union element has four mandatory attributes:

corba:unionbranch

Synopsis <corba:unionbranch name="..." idltype="..." default="...">

 <corba:case ... />

 ...

</corba:unionbranch>

Description The corba:unionbranch element defines the members of a union. Each

corba:unionbranch except for one describing the union’s default member will

have at least one corba:case element as a child.

Attributes A corba:unionbranch element has two required attributes and one optional

attribute.

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.
 24

CORBA Type Map Extension Elements
corba:case

Synopsis <corba:case label="..." />

Description The corba:case element defines the explicit relationship between the

discriminator’s value and the associated union member.

Attributes The corba:case element’s only attribute, label, specifies the value used to

select the union member described by the corba:unionbranch.

Examples For example consider the union, myUnion, shown in Example 8:

For example myUnion, Example 8, would be described with a CORBA type

map entry similar to that shown in Example 9.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 8: myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};

Example 9: myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short"

repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
25

CHAPTER 2 | CORBA Binding and Type Map
corba:alias

Synopsis <corba:alias name="..." type="..." repositoryID="..." />

Description The corba:alias element is used to represent a typedef statement in an IDL

contract.

Attributes The corba:alias element has three attributes:

Examples For example, the definition of myLong in Example 10, can be described as

shown in Example 11:

 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
 </corba:union>
</corba:typeMapping>

name The value of the name attribute from the XMLSchema
simpleType element representing the renamed type.

type The XMLSchema type for the base type.

repositoryID The fully specified repository ID for the CORBA type.

Example 10:myLong IDL

//IDL
typedef long myLong;

Example 11:myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>

Example 9: myUnion CORBA type map
 26

CORBA Type Map Extension Elements
corba:array

Synopsis <corba:array name="..." repositoryID="..." type="..."
elemtype="..." bound="..." />

Description In the CORBA type map, arrays are described using a corba:array element.

Attributes A corba:array has the following required attributes:

Examples For example, consider an array, myArray, as defined in Example 12.

 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0"

basetype="corba:long"/>
 </corba:typeMapping>
</definitions>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array’s element. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.

Example 12:myArray IDL

//IDL
typedef long myArray[10];

Example 11:myLong WSDL
27

CHAPTER 2 | CORBA Binding and Type Map
The array myArray will have a CORBA type map description similar to the

one shown in Example 13.

corba:sequence

Synopsis <corba:sequence name="..." repositoryID="..." elemtype="..."
bound="..." />

Description The corba:sequence element represents an IDL sequence.

Attributes A corba:sequence has five required attributes.

Examples For example, consider the two sequences defined in Example 14, longSeq

and charSeq.

Example 13:myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence’s elements. This type can
be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

Example 14: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;
 28

CORBA Type Map Extension Elements
The sequences described in Example 14 has a CORBA type map description

similar to that shown in Example 15.

corba:exception

Synopsis <corba:exception name="..." type="..." repositoryID="...">

 <corba:member ... />

 ...

</corba:exception>

Description The corba:exception element is a child of a corba:typeMapping element. It

describes an exception in the CORBA type map. The pieces of data returned

with the exception are described by a series of corba:member elements. The

elements must be declared in the same order as in the IDL representation of

the exception.

Attributes A corba:exception element has the following required attributes:

Examples For example, consider the exception idNotFound defined in Example 16.

Example 15:CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 16: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
29

CHAPTER 2 | CORBA Binding and Type Map
In the CORBA type map portion of the contract, idNotFound is described by

an entry similar to that shown in Example 17:

corba:anonsequence

Synopsis <corba:anonsequence name="..." bound="..." elemtype="..."
type="..." />

Description The corba:anonsequence element is used when representing recursive types.

Because XMLSchema recursion requires the use of two defined types and IDL

recursion does not, the CORBA type map uses the corba:anonsequence

element as a means of bridging the gap. When Artix generates IDL from a

contract, it will not generate new IDL types for XMLSchema types that are

used in a corba:anonsequence element.

Attributes The corba:anonsequence element has four required attributes:

Example 17:CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

bound The size of the sequence.

elemtype The name of the CORBA type map element that defines the
contents of the sequence.

type The logical type the element represents.
 30

CORBA Type Map Extension Elements
Examples Example 18 shows a recursive XMLSchema type, allAboutMe, defined using

a named type.

Example 19 shows the how Artix maps the recursive type into the CORBA

type map of an Artix contract.

Example 18:Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Example 19:Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:moreMe"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="xsd1:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>
31

CHAPTER 2 | CORBA Binding and Type Map
While the XML in the CORBA typemap does not explicitly retain the

recursive nature of recursive XMLSchema types, the IDL generated from the

typemap restores the recursion in the IDL type. The IDL generated from the

type map in Example 19 defines allAboutMe using recursion. Example 20

shows the generated IDL.

corba:anonstring

Synopsis <corba:anonstring name="..." bound="..." type="..." />

Description The corba:anonstring element is used to represent instances of anonymous

XMLSchema simple types that are derived from xsd:string. As with

corba:anonsequence elements, corba:anonstring elements do not result in

generated IDL types.

Attributes corba:anonstring elements have three attributes.

Example 20: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};

name A unique identifier used to reference the CORBA type in
the binding.

bound The maximum length of the string.

type The XMLSchema type of the base type. Typically this is
xsd:string.
 32

CORBA Type Map Extension Elements
Examples The complex type, madAttr, described in Example 21 contains a member,

style, that is an instance of an anonymous type derived from xsd:string.

madAttr would generate the CORBA typemap shown in Example 22. Notice

that style is given an IDL type defined by a corba:anonstring element.

corba:object

Synopsis <corba:object binding="..." name="..." repositoryID="..."
type="..." />

Description The corba:object element is used to represent Artix references in the CORBA

type map.

Attributes corba:object elements have four attributes:

Example 21:madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style">
 <simpleType>
 <restriction base="xsd:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="gender" type="xsd:byte"/>
 </sequence>
</complexType>

Example 22:madAttr CORBA typemap

<corba:typeMapping targetNamespace="http://schemas.iona.com/anonCat/corba/typemap/">
 <corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="xsd1:madAttr">
 <corba:member idltype="ns1:styleType" name="style"/>
 <corba:member idltype="corba:char" name="gender"/>
 </corba:struct>
 <corba:anonstring bound="3" name="styleType" type="xsd:string"/>
</corba:typeMapping>

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in
the schema, this attribute will be blank.
33

CHAPTER 2 | CORBA Binding and Type Map
Examples Example 23 shows an Artix contract fragment that uses Artix references.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the
schema, this attribute will be Object. If the annotation is
used and the binding can be found, this attribute will be
set to the name of the interface that the binding
represents.

repositoryID Specifies the repository ID of the generated IDL type. If
the annotation element is left off the reference declaration
in the schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is
used and the binding can be found, this attribute will be
set to a properly formed repository ID based on the
interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 23:Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
 34

CORBA Type Map Extension Elements
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>

Example 23:Reference Sample (Continued)
35

CHAPTER 2 | CORBA Binding and Type Map
The element named account is a reference to the interface defined by the

Account port type and the find_account operation of Bank returns an

element of type account. The annotation element in the definition of

account specifies the binding, AccountCORBABinding, of the interface to

which the reference refers.

Example 24 shows the generated CORBA typemap resulting from generating

both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file.

The first CORBA object is generated from the first pass of wsdltocorba to

generate the CORBA binding for Account. Because wsdltocorba could not

find the binding specified in the annotation, it generated a generic Object

reference. The second CORBA object, Account, is generated by the second

 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 23:Reference Sample (Continued)

Example 24:CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>
 36

CORBA Type Map Extension Elements
pass when the binding for Bank was generated. On that pass, wsldtocorba

could inspect the binding for the Account interface and generate a

type-specific object reference.

Example 25 shows the IDL generated for the Bank interface.

Example 25: IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
37

CHAPTER 2 | CORBA Binding and Type Map
 38

CHAPTER 3

Tuxedo FML
Binding
Artix supports the use of Tuxedo’s FML buffers. It uses a set
of Artix specific elements placed in the WSDL binding
element.

Namespace

The WSDL extensions used for the FML binding are defined in the

namespace http://schemas.iona.com/transports/tuxedo. Add the

following namespace declaration to any contracts that use an FML binding:

FML\XMLSchema Support

An FML buffer can only contain the data types listed in Table 3.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

Table 3: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short
39

CHAPTER 3 | Tuxedo FML Binding
Due to FML limitations, support for complex types is limited to

xsd:sequence and xsd:all.

tuxedo:binding

Synopsis <tuxedo:binding />

Description The tuxedo:binding element informs Artix that the payload being described

is an FML buffer. It is a child of the WSDL binding element and has no

children.

tuxedo:fieldTable

Synopsis <tuxedo:fieldTable type="...">

 <tuxedo:field ... />

 ...

</tuxedo:fieldTable>

Description The tuxedo:fieldTable element contains the mappings between the

elements defined in the logical section of the contract and their associated

FML fieldid.

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string

xsd:hexBinary string

Table 3: FML Type Support

XML Schema Type FML Type
 40

Attributes The tuxedo:fieldTable element has one required attribute, type, that

specifies if the FML buffer is an FML16 buffer or an FML32 buffer. Table 4

shows the values of the type attribute.

tuxedo:field

Synopsis <tuxedo:field name="..." id="..." />

Description The tuxedo:field element defines the association between an element in the

logical contract and its corresponding entry in the physical FML buffer. Each

element in a message, either a message part or an element in a complex type,

must have a corresponding tuxedo:field element in the FML binding.

Attributes The tuxedo:field element takes two attributes:

tuxedo:operation

Synopsis <tuxedo:operaiton />

Description The tuxedo:operation element is a child of the WSDL binding’s operation

element. It informs Artix that the messages used by the operation are being

passed as FML buffers.

Table 4: Values of tuxedo:fieldTable Element’s type Attribute

Value Meaning

FML The represented FML buffer is a FML16 buffer.

FML32 The represented FML buffer is an FML32 buffer.

name The value of the name attribute from the logical message
element to which this tuxedo:field element
corresponds.

id The fieldId value of the corresponding element in the
generated C++ header defining the FML buffer.
41

CHAPTER 3 | Tuxedo FML Binding
 42

CHAPTER 4

Fixed Binding
The Artix fixed binding supports mapping between
XMLSchema message definitions and messages formatted in
fixed length records.

Namespace

The IONA extensions used to describe fixed record length messages are

defined in the namespace http://schemas.iona.com/bindings/fixed. Artix

tools use the prefix fixed to represent the fixed record length extensions.

Add the following line to your contract:

fixed:binding

Synopsis <fixed:binding justification="..." encoding="..."

 padHexCode="..." />

Description The fixed:binding element is a child of the WSDL binding element. It

specifies that the binding defines a mapping between fixed record length data

and the XMLSchema representation of the data.

Attributes The fixed:binding element has three attributes:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

justification Specifies the default justification of the data contained in
the messages. Valid values are left and right. Default is
left.
43

CHAPTER 4 | Fixed Binding
The settings for the attributes on the fixed:binding element become the

default settings for all the messages being mapped to the current binding.

fixed:operation

Synopsis <fixed:operation discriminator="..." />

Description The fixed:operation element is a child element of the WSDL operation

element and specifies that the operation’s messages are being mapped to

fixed record length data.

Attributes The fixed:operation element has one attribute, discriminator, that assigns

a unique identifier to the operation. If your service only defines a single

operation, you do not need to provide a discriminator. However, if your

operation has more than one service, you must define a unique discriminator

for each operation in the service. Not doing so will result in unpredictable

behavior when the service is deployed.

fixed:body

Synopsis <fixed:body justification="..." encoding="..." padHexCode="...">

 ...

</fixed:body>

Description The fixed:body element is a child element of the input, output, and fault

messages being mapped to fixed record length data. It specifies that the

message body is mapped to fixed record length data on the wire and describes

the exact mapping for the message’s parts.

The order in which the message parts are listed in the fixed:body element

represent the order in which they are placed on the wire. It does not need to

correspond to the order in which they are specified in the WSDL message

element defining the logical message.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad the
record.
 44

The following child elements are used in defining how logical data is

mapped to a concrete fixed format message:

• fixed:field maps message parts defined using a simple type.

• fixed:sequence maps message parts defined using a sequence

complex type.

• fixed:choice maps message parts defined using a choice complex

type.

Attributes The fixed:body element has three attributes:

fixed:field

Synopsis <fixed:field name="..." "size="..." format="..." fixedValue="..."

 bindingOnly="...">

 <fixed:enumeration ... />

 ...

</fixed:field>

Description The fixed:field element is used to map simple data types to a field in a

fixed record length message. It is the child of a fixed:body element.

Attributes The fixed:field element has the following attributes:

Note: Complex types defined using all are not supported by the fixed
binding.

justification Specifies how the data in the messages are justified.
Valid values are left and right.

encoding Specifies the codeset used to encode text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

name Specifies the name of the logical message part that this
element represents. It is a required attribute.
45

CHAPTER 4 | Fixed Binding
Examples The following examples show different ways of representing data using a

fixed:field element:

• String data

• Numeric data

• Dates

• Binding only records

size Specifies the maximum number of characters in a
message part whose base type is xsd:string. Also used
to specify the number of characters in the on-wire values
used to represent the values of an enumerated type. For
more information see “fixed:enumeration” on page 48.

format Specifies how non-string data is formatted when it is
placed on the wire. For numerical data, formats are
entered using # to represent numerical fields and . to
represent decimal places. For example ##.## would be
used to represent 12.04.

Also can be used for string data that is a date. Date
formats use the standard date format syntax. For
example, mm/dd/yy would represent dates such as
02/23/04 and 11/02/98.

fixedValue Specifies the value to use for the represented logical
message part. The value of fixedValue is always the
value placed on the wire for the represented message
part. It will override any values set in the application
code.

bindingOnly Specifies if the field appears in the logical definition of
the message. The default value is false.

When set to true, this attribute signals Artix that it needs
to insert a field into the on-wire message that does not
appear in the logical message.

bindingOnly is used in conjunction with the fixedValue
attribute. The fixedValue attribute is used to specify the
data to be written into the binding-only field.
 46

String data

The logical message part, raverID, described in Example 26 would be

mapped to a fixed:field similar to Example 27.

In order to complete the mapping, you must know the length of the record

field and supply it. In this case, the field, raverID, can contain no more

than twenty characters.

Numeric data

If a field contains a 2-digit numeric value with one decimal place, it would

be described in the logical part of the contract as an xsd:float, as shown in

Example 28.

From the logical description of the message, Artix has no way of determining

that the value of rageLevel is a 2-digit number with one decimal place

because the fixed record length binding treats all data as characters. When

mapping rageLevel in the fixed binding you would specify its format with

##.#, as shown in Example 29. This provides Artix with the metadata

needed to properly handle the data.

Example 26:Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 27:Fixed String Mapping

<fixed:field name="raverID" size="20"/>

Example 28:Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 29:Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#"/>
47

CHAPTER 4 | Fixed Binding
Dates

Dates are specified in a similar fashion. For example, the format of the date

12/02/72 is MM/DD/YY. When using the fixed binding it is recommended that

dates are described in the logical part of the contract using xsd:string. For

example, a message containing a date would be described in the logical part

of the contract as shown in Example 30.

If goDate is entered using the standard short date format for US English

locales, mm/dd/yyyy, you would map it to a fixed record field as shown in

Example 31.

Binding only records

If you were sending reports that included a fixed expiration date that you did

not want exposed to the application, you could create a binding only record

called expDate. It would be mapped to the fixed field shown in Example 32.

fixed:enumeration

Synopsis <fixed:enumeration value="..." fixedValue="..." />

Description The fixed:enumeration element is a child of a fixed:body element. It is used

to represent the possible values of an enumerated type and define how those

values are represented on the wire.

Example 30:Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Example 31:Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

Example 32: fixedValue Mapping

<fixed:field name="goDate" bindingOnly="true"
 fixedValue="11/11/2112"/>
 48

Attributes The fixed:enumeration element has two required attributes:

Examples If you had an enumerated type with the values FruityTooty, Rainbow,

BerryBomb, and OrangeTango the logical description of the type would be

similar to Example 33.

When you map the enumerated type, you need to know the concrete

representation for each of the enumerated values. The concrete

representations can be identical to the logical definitions or some other

value. The enumerated type in Example 33 could be mapped to the fixed

field shown in Example 34. Using this mapping Artix will write OT to the

wire for this field if the enumerations value is set to OrangeTango.

fixed:choice

Synopsis <fixed:choice name="..." discriminatorName="...">

value Is the value of the corresponding enumeration value in
the logical description of the message part.

fixedValue Specifies the string value that will be used to represent
the logical value on the wire. The length of the string
used is determined by the value of the parent
fixed:field element’s length attribute.

Example 33: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 34:Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango" fixedValue="OT"/>
</fixed:field>
49

CHAPTER 4 | Fixed Binding
 <fixed:case ... >

 ...

 </fixed:case>

 ...

</fixed:choice>

Description The fixed:choice element is a child of a fixed:body element. It maps choice

complex types to a field in a fixed record length message. The actual values

of the choice are defined using fixed:case child elements. A fixed:choice

element must have a fixed:case child element for each possible value defined

in the choice complex type it represents.

Attributes The fixed:choice element has the following attributes:

fixed:case

Synopsis <fixed:case name="..." fixedValue="...">

 ...

</fixed:case>

Description The fixed:case element is a child of the fixed:choice element. It describes

the complete mapping for an element of a choice complex type to a field in

a fixed record length message.

To fully describe how the logical data that is represented by a fixed:case

element is mapped into a field in a fixed record length message, you need to

create a mapping for the logical element using children to the fixed:case

element. The child elements used to map the part’s type to the fixed

message are the same as the possible child elements of a fixed:body

element. fixed:field elements describe simple types. fixed:choice elements

describe choice complex types. fixed:sequence elements describe sequence

complex types.

name Specifies the name of the logical message part the
choice element is mapping. This attribute is required.

discriminatorName Specifies the name of a binding-only field that is used
as the discriminator for the union. The binding-only
field must defined as part of the parent fixed:body
element and must be capable of representing the
discriminator.
 50

Attributes The fixed:case element has the following required attributes:

Examples Example 35 shows an Artix contract fragment mapping a choice complex type

to a fixed record length message.

name Specifies the value of the name attribute of the
corresponding element in the choice complex type being
mapped.

fixedValue Specifies the discriminator value that selects this case. If
the parent fixed:choice element has its
discriminatorName attribute set, the value must conform
to the format specified for that field.

Example 35:Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
51

CHAPTER 4 | Fixed Binding
fixed:sequence

Synopsis <fixed:sequence name="..." occurs="..." counterName="...">

 ...

</fixed:field>

Description The fixed:sequence element can be a child to a fixed:body element, a

fixed:case element, or another fixed:sequence element. It maps a sequence

complex type to a field in a fixed record length message.

To fully describe how the complex type that is represented by a

fixed:sequence element is mapped into a field in a fixed record length

message, you need to create a mapping for each of the complex type’s

elements using children to the fixed:sequence element. The child elements

used to map the part’s type to the fixed message are the same as the

possible child elements of a fixed:body element. fixed:field elements

describe simple types. fixed:choice elements describe choice complex types.

fixed:sequence elements describe sequence complex types.

 <fixed:field name="disc" format="##" bindingOnly="true"/>
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 35:Mapping a Union to a Fixed Record Length Message
 52

Attributes The fixed:sequence element has the following attributes:

Examples A structure containing a name, a date, and an ID number would contain three

fixed:field elements to fully describe the mapping of the data to the fixed

record message. Example 36 shows an Artix contract fragment for such a

mapping.

name Specifies the value of the name attribute from the
corresponding logical complex type. This attribute is
required.

occurs Specifies the number of times this sequence occurs in the
message buffer. This value corresponds the value of the
maxOccurs attribute of the corresponding logical complex
type.

counterName Specifies the name of the binding-only field that is used
to store the actual number of times this sequence occurs
in the on-wire message. The corresponding fixed:field
element must have enough digits to hold the any whole
number up the value of the occurs attribute.

Example 36:Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
53

CHAPTER 4 | Fixed Binding
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

Example 36:Mapping a Sequence to a Fixed Record Length Message
 54

CHAPTER 5

Tagged Binding
The Artix tagged binding maps between XMLSchema message
definitions and self-describing, variable record length
messages.

Namespace

The IONA extensions used to describe tagged data bindings are defined in

the namespace http://schemas.iona.com/bindings/tagged. Artix tools

use the prefix tagged to represent the tagged data extensions. Add the

following line to the definitions element of your contract:

tagged:binding

Synopsis <tagged:binding selfDescribing="..." fieldSeperator="..."

 fieldNameValueSeperator="..." scopeType="..."

 flattened="..." messageStart="..." messageEnd="..."

 unscopedArrayElement="..." ignoreUnknownElement="..."

 ignoreCase="..." />

Description The tagged:binding element specifies that the binding maps logical

messages to tagged data messages.

xmlns:tagged="http://schemas.iona.com/bindings/tagged"
55

CHAPTER 5 | Tagged Binding
Attributes The tagged:binding element has the following ten attributes:

selfDescribing Specifies if the message data on the wire
includes the field names. Valid values are true
or false. If this attribute is set to false, the
setting for fieldNameValueSeparator is
ignored. This attribute is required.

fieldSeparator Specifies the delimiter the message uses to
separate fields. Supported values are
newline(\n), comma(,), semicolon(;), and
pipe(|). This attribute is required.

fieldNameValueSeparator Specifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equals(=),
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set
to true.

messageStart Specifies a special token at the start of a
message. It is used when messages that
require a special character at the start of a the
data sequence. Currently the only supported
value is star(*).

messageEnd Specifies a special token at the end of a
message. Supported values are newline(\n)
and percent(%).

unscopedArrayElement Specifies if array elements need to be scoped
as children of the array. If set to true arrays
take the form
echoArray{myArray=2;item=abc;item=def}.
If set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined element in
the message payload. Default is false.
 56

The settings for the attributes on these elements become the default settings

for all the messages being mapped to the current binding.

tagged:operation

Synopsis <tagged:operation discriminator="..." discrininatorStyle="..." />

Description The tagged:operation element is a child element of the WSDL operation

element. It specifies that the operation’s messages are being mapped to a

tagged data message.

Attributes The tagged:operation element takes two optional attributes:

tagged:body

Synopsis <tagged:body>

 ...

</tagged:body>

Description The tagged:body element is a child element of the input, output, and fault

messages being mapped to a tagged data format. It specifies that the message

body is mapped to tagged data on the wire and describes the exact mapping

for the message’s parts.

The tagged:body element will have one or more of the following child

elements:

• tagged:field

• tagged:sequence

ignoreCase Specifies if Artix ignores the case with element
names in the message payload. Default is
false.

discriminator Specifies a discriminator for identifying the
operation as it is sent down the wire by the Artix
runtime.

discriminatorStyle Specifies how the discriminator will identify data
as it is sent down the wire by the Artix runtime.
Supported values are msgname, partlist, and
fieldname.
57

CHAPTER 5 | Tagged Binding
• tagged:choice

The children describe the detailed mapping of the XMLSchema message to

the tagged data to be sent on the wire.

tagged:field

Synopsis <tagged:field name="..." alias="...">

 <tagged:enumeration ... />

 ...

</tagged:field>

The tagged:field element is a child of a tagged:body element. It maps

simple types and enumerations to a field in a tagged data message. When

describing enumerated types a tagged:field element will have one or more

tagged:enumeration child elements.

Attributes The tagged:field element has two attributes:

tagged:enumeration

Synopsis <tagged:enumeration value="..." />

Description The tagged:enumeration element is a child element of a tagged:field element.

It is used to map the value of an enumerated types to a field in a tagged data

message.

Parameters The tagged:enumeration element has one required attribute, value, that

corresponds to the enumeration value as specified in the logical description

of the enumerated type.

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.
 58

Examples If you had an enumerated type, flavorType, with the values FruityTooty,

Rainbow, BerryBomb, and OrangeTango the logical description of the type

would be similar to Example 37.

flavorType would be mapped to a tagged data field as shown in

Example 38.

tagged:sequence

Synopsis <tagged:sequence name="..." alias="..." occurs="...">

 ...

</tagged:sequence>

Description The taggeded:sequence element is a child of a tagged:body element, a

tagged:sequence element, or a tagged:case element. It maps arrays and

sequence complex types to fields in a tagged data message. A

tagged:sequence element contains one or more children to map the

corresponding logical type’s parts to fields in a tagged data message. The

child elements can be of the following types:

• tagged:field

• tagged:sequence

• tagged:choice

Example 37: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 38:Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>
59

CHAPTER 5 | Tagged Binding
Attributes The taggeded:sequence element has three attributes:

Examples A structure containing a name, a date, and an ID number would contain three

tagged:field elements to fully describe the mapping of the data to the fixed

record message. Example 39 shows an Artix contract fragment for such a

mapping.

name Specifies the name of the logical message part that is
being mapped into the tagged data message. This is a
required attribute.

alias Specifies an alias for the sequence that can be used to
identify it on the wire.

occurs Specifying the number of times the sequence appears.
This attribute is used to map arrays.

Example 39:Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
 60

tagged:choice

Synopsis <tagged:choice name="..." discriminatorName="..." alais="...">

 <tagged:case ...>

 ...

</tagged:choice>

The tagged:choice element is a child of a tagged:body element, a

tagged:sequence element, or a tagged:case element. It maps unions to a

field in a tagged data message. A tagged:choice element may contain one

or more tagged:case child elements to map the cases for the union to a field

in a tagged data message.

Parameters The tagged:choice element has three attributes:

<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

Example 39:Mapping a Sequence to a Tagged Data Format

name Specifies the name of the logical message part
being mapped into the tagged data message. This
is a required attribute.

discriminatorName Specifies the message part used as the
discriminator for the union.

alias Specifies an alias for the union that can be used
to identify it on the wire.
61

CHAPTER 5 | Tagged Binding
tagged:case

Synopsis <tagged:case value="..." />

Description The tagged:case element is a child element of a tagged:choice element. It

describes the complete mapping of a union’s individual cases to a field in a

tagged data message. A tagged:case element must have one child element

to describe the mapping of the case’s data to a field, or fields, to a tagged

data message. Valid child elements are tagged:field, tagged:sequence, and

tagged:choice.

Attributes The tagged:case element has one required attribute, name, that corresponds

to the name of the case element in the union’s logical description.

Examples Example 40 shows an Artix contract fragment mapping a union to a tagged

data format.

Example 40:Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
 62

<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 40:Mapping a Union to a Tagged Data Format
63

CHAPTER 5 | Tagged Binding
 64

CHAPTER 6

TibrvMsg Binding
The Artix TibrvMsg binding elements describe a mapping
between XMLSchema messages and the TibrvMsg messages
used by Tibco Rendevous.

Namespace

The IONA extensions used to describe TibrvMsg bindings are defined in the

namespace http://schemas.iona.com/transports/tibrv. Artix tools use

the prefix tibrv to represent the tagged data extensions. Add the following

line to the definitions element of your contract:

TIBRVMSG to XMLSchema Type Mapping

Table 5 shows how TibrvMsg data types are mapped to XMLSchema types

in Artix contracts.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte
65

CHAPTER 6 | TibrvMsg Binding
TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort

TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIMEa xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_STRING xsd:QName

TIBRVMSG_STRING xsd:nonPositiveInteger

TIBRVMSG_STRING xsd:negativeInteger

TIBRVMSG_STRING xsd:nonNegativeInteger

TIBRVMSG_STRING xsd:positiveInteger

TIBRVMSG_STRING xsd:time

TIBRVMSG_STRING xsd:date

TIBRVMSG_STRING xsd:gYearMonth

TIBRVMSG_STRING xsd:gMonthDay

TIBRVMSG_STRING xsd:gDay

TIBRVMSG_STRING xsd:gMonth

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD
 66

tibrv:binding

Synopsis <tibrv:binding stringEncoding="..." stringAsOpaque="...">

 ...

</tibrv:binding>

Description The tibrv:binding element is a child of the WSDL binding element. It

identifies that the data is to be packed into a TibrvMsg. The tibrv:binding

element can be used to set a default array policy for the TibrvMsg generated

by the binding by adding a tibrv:array child element.

The tibrv:binding element can also define binding-only message data by

including child elements. The following elements can be a child:

• tibrv:msg

• tibrv:field

• tibrv:context

Any binding-only data defined at the binding level is attached to all

messages that use the binding.

TIBRVMSG_STRING xsd:anyURI

TIBRVMSG_STRING xsd:token

TIBRVMSG_STRING xsd:language

TIBRVMSG_STRING xsd:NMTOKEN

TIBRVMSG_STRING xsd:Name

TIBRVMSG_STRING xsd:NCName

TIBRVMSG_STRING xsd:ID

a. While TIBRVMSG_DATETIME has microsecond precision, xsd:dateTime
only supports millisecond precision. Therefore, Artix rounds all times to the
nearest millisecond.

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD
67

CHAPTER 6 | TibrvMsg Binding
Attributes The tibrv:binding element has the following attributes:

tibrv:operation

Synopsis <tibrv:operation>

 ...

</tibrv:operation>

Description The tibrv:operation element is a child of a WSDL operation element. It

signifies that the messages used for this operation are mapped into a TibrvMsg

and defines any operation specific array policies and data fields.

A tibrv:operation element can specify an operation specific array policy by

adding a child tibrv:array element. This array policy overrides any array

policy set at the binding level.

A tibrv:operation element can define binding-only message data to be

inserted into all TibrvMsg messages generated by the operation by adding

children to define the data. The following elements are valid children:

• tibrv:msg

• tibrv:field

• tibrv:context

Any binding-only data defined by a tibrv:operation element is attached to

all messages generated by the operation.

tibrv:input

Synopsis <tibrv:input messageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

stringEncoding Specifies the character set used in encoding
string data included in the message. The
default value is utf-8.

stringAsOpaque Specifies how string data is passed in
messages. false, the default value, specifies
that strings data is passed as TIRBMSG_STRING.
true specifies that string data is passed as
OPAQUE.
 68

 stringAsOpaque="...">

 ...

</tibrv:input>

Description The tibrv:input element is a child of a WSDL input element. It defines the

exact mapping of the logical input message to the TibrvMsg that is used to

make requests on a service. When the tibrv:input element does not have

any children, it signifies that the default XMLSchema message to TibrvMsg

message mappings are used. If you want to define a custom mapping from

the XMLSchema message to the TibrvMsg message, want to add context

information to the TibrvMsg message, or want to add binding only elements

to the TibrvMsg message, you can add children to the tibrv:input element.

Valid child elements include:

• tibrv:msg

• tibrv:field

• tibrv:context

A tibrv:input element can specify an operation specific array policy by

adding a child tibrv:array element. This array policy overrides any array

policy set at the binding level or the operation level.

Attributes The tibrv:input element has the following attributes:

messageNameFieldPath Specifies the field path that includes the
message name. If this attribute is not specified,
the first field in the top level message will be
used as the message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified,
the value of the WSDL message element’s name
attribute will be used.

stringEncoding Specifies the character set used in encoding
string data included in the message. This value
will override the value set in tibrv:binding.

stringAsOpaque Specifies how string data is passed in the
message. false specifies that strings data is
passed as TIBRVMSG_STRING. true specifies that
string data is passed as OPAQUE. This value will
override the value set in tibrv:binding.
69

CHAPTER 6 | TibrvMsg Binding
tibrv:output

Synopsis <tibrv:outputmessageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

 stringAsOpaque="...">

 ...

</tibrv:output>

Description The tibrv:output element is a child of a WSDL output element. It defines

the exact mapping of the logical output message to the TibrvMsg that is used

when responding to requests. When the tibrv:output element does not have

any children, it signifies that the default XMLSchema message to TibrvMsg

message mappings are used. If you want to define a custom mapping from

the XMLSchema message to the TibrvMsg message, want to add context

information to the TibrvMsg message, or want to add binding only elements

to the TibrvMsg message, you can add children to the tibrv:output element.

Valid child elements include:

• tibrv:msg

• tibrv:field

• tibrv:context

A tibrv:output element can specify an operation specific array policy by

adding a child tibrv:array element. This array policy overrides any array

policy set at the binding level or the operation level.

Attributes The tibrv:output element has the following attributes:

messageNameFieldPath Specifies the field path that includes the
message name. If this attribute is not specified,
the first field in the top level message will be
used as the message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified,
the value of the WSDL message element’s name
attribute will be used.

stringEncoding Specifies the character set used in encoding
string data included in the message. This value
will override the value set in tibrv:binding.
 70

tibrv:array

Synopsis <tibrv:array elementName="..." integralAsSingleField="..."

 loadSize="..." sizeName="..." />

Description The tibrv:array element defines how arrays are mapped into elements as a

TibrvMsg message. The array mapping properties can be set at any level of

granuality by making it the child of different TibrvMsg binding elements. The

array mapping properties at lower levels always override the array mapping

properties. For example, the mapping properties defined by a tibrv:array

element that is the child of a tibrv:msg element will override the array mapping

properties defined by a tibrv:array element that is a child of the parent

tibrv:operation element.

Attributes The array mapping properties are set using the attributes of the tibrv:array

element. The tibrv:array element has the following attributes:

stringAsOpaque Specifies how string data is passed in the
message. false specifies that strings data is
passed as TIRBMSG_STRING. true specifies that
string data is passed as OPAQUE. This value will
override the value set in tibrv:binding.

elementName Specifies an expression that when evaluated
will be used as the name of the TibrvMsg field
to which array elements are mapped. The
default element naming scheme is to
concatenate the value of WSDL element
element’s name attribute with a counter. For
information on specifying naming expressions
see “Custom array naming expressions”.

integralAsSingleField Specifies how scalar array data is mapped
into TibrvMsgField instances. true, the
default, specifies that arrays are mapped into
a single TibrvMsgField. false specifies that
each member of an array is mapped into a
separate TibrvMsgField.
71

CHAPTER 6 | TibrvMsg Binding
Custom array naming expressions When specifying a naming policy for array element names you use a string

expression that combines XML properties, strings, and custom naming

functions. For example, you could use the expression

concat(xml:attr(’name’), ’_’, counter(1,1)) to specify that each

element in the array street is named street_n.

Table 6 shows the available functions for use in building array element

names.

Examples Example 41 shows an example of an Artix contract containing a TibrvMsg

binding that uses array policies. The policies are set at the binding level and:

• Force the name of the TibrvMsg containing array elements to be

named street0, street1,

loadSize Specifies if the number of elements in an array
is included in the TibrvMsg. true specifies
that the number of elements in the array is
added as a TibrvMsgField in the same
TibrvMsg as the array. false, the default,
specifies that the number of elements in the
array is not included in the TibrvMsg.

sizeName Specifies an expression that when evaluated
will be used as the name of the TibrvMsgField
to which the size of the array is written. The
default naming scheme is to concatenate the
value of WSDL element element’s name
attribute with @size. For information on
specifying naming expressions see “Custom
array naming expressions” on page 72.

Table 6: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

xml:attr(’attribute’) Inserts the value of the named
attribute.

concat(item1, item2, ...) Concatenates all of the elements
into a single string.

counter(start, increment) Adds an increasing numerical
value. The counter starts at start
and increases by increment.
 72

• Write out the number of elements in each street array.

• Force each element of a street array to be written out as a separate

field.

Example 41:TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"
 nillable="true"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="addressRequest">
 <part name="resident" type="xsd:string"/>
 </message>
 <message name="addressResponse">
 <part name="address" type="xsd1:Address"/>
 </message>
 <portType name="theFourOneOne">
 <operation name="lookUp">
 <input message="tns:addressRequest" name="request"/>
 <output message="tns:addressResponse" name="response"/>
 </operation>
 </portType>
73

CHAPTER 6 | TibrvMsg Binding
tibrv:msg

Synopsis <tibrv:msg name="..." alias="..." element="..." id="..."

 minOccurs="..." maxOccurs="...">

 ...

</tibrv:msg>

Description The tibrv:msg element instructs Artix to create an instance of a TibrvMsg.

Attributes The tibrv:msg element has the following attributes:

 <binding name="lookUpBinding" type="tns:theFourOneOne">
 <tibrv:binding>
 <tibrv:array elementName="concat(xml:attr('name'), counter(0, 1))"
 integralsAsSingleField="false"
 loadSize="true"/>
 <\tibrv:binding>
 <operation name="lookUp">
 <tibrv:operation/>
 <input name="addressRequest">
 <tibrv:input/>
 </input>
 <output name="addressResponse">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 41:TibrvMsg Binding with Array Policies Set (Continued)

name Specifies the name of the contract element which this
TibrvMsg instance gets its value. If this attribute is not
present, then the TibrvMsg is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsg
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.
 74

tibrv:field

Synopsis <tibrv:field name="..." alias="..." element="..." id="..."

 type="..." value="..." minOccurs="..." maxOccurs="..." />

Description The tibrv:field element instructs Artix to create an instance of a

TibrvMsgField.

Parameters The tibrv:field element has the following attributes:

element Used only when tibrv:msg is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsg.

id Specifies the value of the id member of the TibrvMsg
instance. The default value is 0.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in
the schema definition.

name Specifies the name of the contract element which this
TibrvMsgField instance gets its value. If this attribute is not
present, then the TibrvMsgField is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsgField
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.

element Used only when tibrv:field is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsgField.

id Specifies the value of the id member of the TibrvMsgField
instance. The default value is 0.

type Specifies the XML Schema type of the data being used to
populate the data member of the TibrvMsgField instance.

value Specifies the value inserted into the data member of the
TibrvMsgField instance when the field is a binding-only
element.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in
the schema definition.
75

CHAPTER 6 | TibrvMsg Binding
tibrv:context

Synopsis <tibrv:context>

 ...

</tibrv:context>

Description The tibrv:context element specifies that the following message parts are

populated from an Artix context. The child of a tibrv:context element can

be either:

• a tibrv:msg element if the context data is a complex type.

• a tibrv:msg element if you wanted to wrap the context data with a

TibrvMsg on the wire.

• a tibrv:field element if the context data is a native XMLSchema type.

When a tibrv:msg element or a tibrv:field element are used to insert context

information into a TibrvMsg they use the element attribute in place of the

name attribute. The element attribute specifies the QName used to register

the context data with Artix bus. It must correspond to a globally defined

XML Schema element. Also, when inserting context information you cannot

specify values for any other attributes except the alias attribute.

Examples If you were integrating with a Tibco server that used a header to correlate

messages using an ASCII correlation ID, you could use the TibrvMsg binding’s

context support to implement the correlation ID on the Artix side of the

solution. The first step would be to define an XML Schema element called

corrID for the context that would hold the correlation ID. Then in your

TibrvMsg binding definition you would include a tibrv:context element in

the tibrv:binding element to specify that all messages passing through the

binding will have the header. Example 42 shows a contract fragment

containing the appropriate entries for this scenario.

Example 42:Using Context Data in a TibrvMsg Binding

<definitions
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 ...>
 76

The context for corrID will be registered with the Artix bus using the QName

"http://widgetVendor.com/types/widgetTypes", "corrID".

See also For information on using contexts in Artix applications, see Developing Artix
Applications with C++ or Developing Artix Applications with Java.

 <types>
 <schema
 targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="corrID" type="xsd:string"/>
 ...
 </schema>
 </types>
 ...
 <portType name="correalatedService">
 ...
 </portType>
 <binding name="tibrvCorrBinding" type="correlatedService">
 <tibrv:binding>
 <tibrv:context>
 <tibrv:field element="xsd1:corrID"/>
 </tibrv:context>
 </tibrv:binding>
 ...
 </binding>
 ...
</definitions>

Example 42:Using Context Data in a TibrvMsg Binding
77

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

CHAPTER 6 | TibrvMsg Binding
 78

CHAPTER 7

XML Binding
Artix includes a binding that supports the exchange of XML
documents with the overhead of a SOAP envelope.

Namespace

The IONA extensions used to describe XML format bindings are defined in

the namespace http://celtix.objectweb.org/bindings/xmlformat. Artix

tools use the prefix xformat to represent the XML binding extensions. Add

the following line to your contracts:

xformat:binding

Synopsis <xformat:binding rootNode="..." />

Description The xformat:binding element is the child of the WSDL binding element. It

signifies that the messages passing through this binding will be sent as XML

documents without a SOAP envelope.

Attributes The xformat:binding element has a single optional attribute called rootNode.

The rootNode attribute specifies the QName for the element that serves as

the root node for the XML document generated by Artix. When the rootNode

attribute is not set, Artix uses the root element of the message part as the root

element when using doc style messages or an element using the message

part name as the root element when using RCP style messages.

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"
79

CHAPTER 7 | XML Binding
xformat:body

Synopsis <xformat:body rootNode="..." />

Description The xformat:body element is an optional child of the WSDL input element,

the WSDL output element, and the WSDL fault element. It is used to override

the value of the rootNode attribute specified in the binding’s xformat:binding

element.

Attributes The xformat:body element has a single attribute called rootNode. The

rootNode attribute specifies the QName for the element that serves as the

root node for the XML document generated by Artix. When the rootNode

attribute is not set, Artix uses the root element of the message part as the root

element when using doc style messages or an element using the message

part name as the root element when using RCP style messages.
 80

Part II
Ports

In this part This part contains the following chapters:

HTTP Port page 83

CORBA Port page 101

IIOP Tunnel Port page 103

WebSphere MQ Port page 107

JMS Port page 125

Tuxedo Port page 129

Tibco/Rendezvous Port page 131

File Transfer Protocol Port page 139

CHAPTER 9

HTTP Port
Along with the standard WSDL elements used to specify the
location of an HTTP port, Artix uses a number of extensions
for fine tuning the configuration of an HTTP port.

In this chapter This chapter discusses the following topics:

Standard WSDL Elements page 84

Artix Extension Elements page 85

Attribute Details page 91
83

CHAPTER 9 | HTTP Port
Standard WSDL Elements

http:address

Synopsis <http:address location="..." />

Description The http:address element is a child of the WSDL port element. It specifies

the address of the HTTP port of a service that is not using SOAP messages

to communicate.

Attributes The http:address element has a single required attribute called location.

The location attribute specifies the service’s address as a URL.

soap:address

Synopsis <soap:address location="..." />

Description The soap:address element is a child of the WSDL port element. It specifies

the address of the HTTP port of a service that uses SOAP messages to

communicate.

Attributes The soap:address element has a single required attribute called location.

The location attribute specifies the service’s address as a URL.
 84

Artix Extension Elements
Artix Extension Elements

Namespace

Example 43 shows the namespace entries you need to add to the

definitions element of your contract to use the Artix HTTP extensions.

http-conf:client

Synopsis <http-conf:client SendTimeout="..." RecieveTimeout="..."

 AutoRedirect="..." UserName="..."

 Password="..." AuthorizationType="..."

 Authorization="..." Accept="..."

 AcceptLanguage="..." AcceptEncoding="..."

 ContentType="..." Connection="..."

 Host="..." ConnectionAttepmts="..."

 CacheControl="..." Cookie="..."

 BrowserType="..." Refferer="..."

 ProxyServer="..." ProxyUsername="..."

 ProxyPassword="..." ProxyAuthorizationType="..."

 ProxyAuthorization="..." UseSecureSockets="..."

 ClientCertificates="..." ClientCertificateChain="..."

 ClientPrivateKey="..." ClientPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:client element is a child of the WSDL port element. It is

used to specify client-side configuration details.

Example 43:Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >
85

CHAPTER 9 | HTTP Port
Attributes The http-conf:client element has the following attributes:

SendTimeout Specifies the length of time, in
milliseconds, the client tries to send a
request to the server before the connection
is timed out. Default is 30000.

ReceiveTimeout Specifies the length of time, in
milliseconds, the client tries to receive a
response from the server before the
connection is timed out. The default is
30000.

AutoRedirect Specifies if a request should be
automatically redirected when the server
issues a redirection reply via RedirectURL.
The default is false, to let the client
redirect the request itself.

UserName Specifies the user name that the client will
use for authentication with a service. This
value is passed as an attribute in each
request’s transport header.

Password Specifies the password that the client will
use for authentication with a service. This
value is passed as an attribute in each
request’s transport header.

AuthorizationType Specifies the name of the authorization
scheme the client wishes to use.

Authorization Specifies the authorization credentials used
to perform the authorization.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client’s preferred language for
receiving responses.

AcceptEncoding Specifies what content codings the client is
prepared to handle.

ContentType Specifies the media type of the data being
sent in the body of the client request.

Host Specifies the Internet host and port number
of the resource on which the client request
is being invoked.
 86

Artix Extension Elements
Connection Specifies if the client wants a particular
connection to be kept open after each
request/response dialog.

ConnectionAttempts Specifies the number of times a client will
transparently attempt to connect to server.

CacheControl Specifies directives about the behavior that
must be adhered to by caches involved in
the chain comprising a request from a
client to a server.

Cookie Specifies a static cookie to be sent to the
server along with all requests.

BrowserType Specifies information about the browser
from which the client request originates.

Referer Specifies the URL of the resource that
directed the client to make requests on a
particular service.

ProxyServer Specifies the URL of the proxy server, if one
exists along the message path.

ProxyUserName Specifies the username to use for
authentication on the proxy server if it
requires separate authorization.

ProxyPassword Specifies the password to use for
authentication on the proxy server if it
requires separate authorization.

ProxyAuthorizationType Specifies the name of the authorization
scheme used with the proxy server.

ProxyAuthorization Specifies the authorization credentials used
to perform the authorization with the proxy
server.

UseSecureSockets Indicates if the client wants to open a
secure connection.

ClientCertificate Specifies the full path to the
PKCS12-encoded X509 certificate issued
by the certificate authority for the client.

ClientCertificateChain Specifies the full path to the file that
contains all the certificates in the chain.
87

CHAPTER 9 | HTTP Port
http-conf:server

Synopsis <http_conf:server SendTimeout="..." RecieveTimeout="..."

 SurpressClientSendErrors="..."

 SurpressClientRecieveErrors="..."

 HonnorKeepAlive="..." RedirectURL="..."

 CacheControl="..." ContentLocation="..."

 ContentType="..." ContentEncoding="..."

 ServerType="..." UseSecureSockets="..."

 ServerCertificate="..." ServerCertificateChain="..."

 ServerPrivateKey="..." ServerPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:server element is a child of the WSDL port element. It is used

to specify server-side configuration details.

Attributes The http-conf:server element has the following attributes:

ClientPrivateKey Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ClientCertificate.

ClientPrivateKeyPassword Specifies a password that is used to decrypt
the PKCS12-encoded private key.

TrustedRootCertificate Specifies the full path to the
PKCS12-encoded X509 certificate for the
certificate authority.

SendTimeout Sets the length of time, in milliseconds,
the server tries to send a response to
the client before the connection times
out. The default is 30000.

ReceiveTimeout Sets the length of time, in milliseconds,
the server tries to receive a client
request before the connection times out.
The default is 30000.
 88

Artix Extension Elements
SuppressClientSendErrors Specifies whether exceptions are to be
thrown when an error is encountered on
receiving a client request. The default is
false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be
thrown when an error is encountered on
sending a response to a client. The
default is false; exceptions are thrown
on encountering errors.

HonorKeepAlive Specifies whether the server honors
client requests for a connection to
remain open after a response has been
sent. The default is Keep-Alive;
Keep-alive requests are honored. false
specifies that keep-alive requests are
ignored.

RedirectURL Sets the URL to which the client
request should be redirected if the URL
specified in the client request is no
longer appropriate for the requested
resource.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
response from a server to a client.

ContentLocation Sets the URL where the resource being
sent in a server response is located.

ContentType Sets the media type of the information
being sent in a server response, for
example, text/html or image/gif.

ContentEncoding Specifies what additional content
codings have been applied to the
information being sent by the server.

ServerType Specifies what type of server is sending
the response to the client. Values take
the form program-name/version. For
example, Apache/1.2.5.
89

CHAPTER 9 | HTTP Port
UseSecureSockets Indicates whether the server wants a
secure HTTP connection running over
SSL or TLS.

ServerCertificate Sets the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for the
server.

ServerCertificateChain Sets the full path to the file that
contains all the certificates in the
server’s certificate chain.

ServerPrivateKey Sets the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ServerCertificate.

ServerPrivateKeyPassword Sets a password that is used to decrypt
the PKCS12-encoded private key, if it
has been encrypted with a password.

TrustedRootCertificate Sets the full path to the
PKCS12-encoded X509 certificate for
the certificate authority. This is used to
validate the certificate presented by the
client.
 90

Attribute Details
Attribute Details

AuthorizationType

Description The AuthorizationType attribute corresponds to the HTTP AuthorizationType

property. It specifies the name of the authorization scheme the client wishes

to use. This information is specified and handled at the application level. Artix

does not perform any validation on this value. It is the user’s responsibility to

ensure that the correct scheme name is specified, as appropriate.

Authorization

Description The Authorization attribute corresponds to the HTTP Authorization property.

It specifies the authorization credentials the client wants the server to use

when performing the authorization. The credentials are encoded and handled

at the application-level. Artix does not perform any validation on the specified

value. It is the user’s responsibility to ensure that the correct authorization

credentials are specified, as appropriate.

Accept

Description The Accept attribute corresponds to the HTTP Accept property. It specifies

what media types the client is prepared to handle. The value of the attribute

is specified using as multipurpose internet mail extensions (MIME) types.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.
91

CHAPTER 9 | HTTP Port
MIME type values MIME types are regulated by the Internet Assigned Numbers Authority

(IANA). They consist of a main type and sub-type, separated by a forward

slash. For example, a main type of text might be qualified as follows:

text/html or text/xml. Similarly, a main type of image might be qualified

as follows: image/gif or image/jpeg.

An asterisk (*) can be used as a wildcard to specify a group of related types.

For example, if you specify image/*, this means that the client can accept

any image, regardless of whether it is a GIF or a JPEG, and so on. A value of

/ indicates that the client is prepared to handle any type.

Examples of typical types that might be set are:

• text/xml

• text/html

• text/text

• image/gif

• image/jpeg

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• video/avi

• video/mpeg

See also See http://www.iana.org/assignments/media-types/ for more details.

AcceptLanguage

Description The AcceptLanguage attribute corresponds to the HTTP AcceptLanguage

property. It specifies what language (for example, American English) the client

prefers for the purposes of receiving a response.

Specifying the language Language tags are regulated by the International Organization for Standards

(ISO) and are typically formed by combining a language code, determined

by the ISO-639 standard, and country code, determined by the ISO-3166

standard, separated by a hyphen. For example, en-US represents American

English.

See also A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.
 92

http://www.iana.org/assignments/media-types/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm

Attribute Details
A full list of country codes is available at

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/l

ist-en1.html.

AcceptEncoding

Description The AcceptEncoding attribute corresponds to the HTTP AcceptEncoding

Property. It specifies what content encodings the client is prepared to handle.

Content encoding labels are regulated by the Internet Assigned Numbers

Authority (IANA). Possible content encoding values include zip, gzip,

compress, deflate, and identity.

The primary use of content encodings is to allow documents to be

compressed using some encoding mechanism, such as zip or gzip. Artix

performs no validation on content codings. It is the user’s responsibility to

ensure that a specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

ContentType

Description The ContentType attribute corresponds to the HTTP ContentType property. It

specifies the media type of the data being sent in the body of a message.

Media types are specified using multipurpose internet mail extensions (MIME)

types.

MIME type values MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). MIME types consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might be
qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• text/html

• text/text
93

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

CHAPTER 9 | HTTP Port
• image/gif

• image/jpeg

• video/avi

• video/mpeg.

Any content that does not fit into any type in the preceding list should be

specified as application/octet-stream.

Client settings For clients this attribute is only relevant if the client request specifies the

POST method to send data to the server for processing.

For web services, this should be set to text/xml. If the client is sending

HTML form data to a CGI script, this should be set to

application/x-www-form-urlencoded. If the HTTP POST request is bound to

a fixed payload format (as opposed to SOAP), the content type is typically

set to application/octet-stream.

See also See http://www.iana.org/assignments/media-types/ for more details.

ContentEncoding

Description The ContentEncoding attribute corresponds to the HTTP ContentEncoding

property. This property specifies any additional content encodings that have

been applied to the information being sent by the server. Content encoding

labels are regulated by the Internet Assigned Numbers Authority (IANA).

Possible content encoding values include zip, gzip, compress, deflate, and

identity.

The primary use of content encodings is to allow documents to be

compressed using some encoding mechanism, such as zip or gzip. Artix

performs no validation on content codings. It is the user’s responsibility to

ensure that a specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

Host

Description The Host attribute corresponds to the HTTP Host property. It specifies the

internet host and port number of the resource on which the client request is

being invoked. This attribute is typically not required. Typically, this attribute

does not need to be set. It is only required by certain DNS scenarios or
 94

http://www.iana.org/assignments/media-types/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

Attribute Details
application designs. For example, it indicates what host the client prefers for

clusters (that is, for virtual servers mapping to the same internet protocol (IP)

address).

Connection

Description The Connection attribute specifies whether a particular connection is to be

kept open or closed after each request/response dialog. Valid values are close

and Keep-Alive. The default, Keep-Alive, specifies that the client want to

keep its conneciton open after the initial request/response sequence. If the

server honors it, the connection is kept open until the client closes it. close

specifies that the connection to the server is closed after each

request/response sequence.

CacheControl

Description The CacheControl attribute specifies directives about the behavior of caches

involved in the message chain between clients and servers. The attribute is

used for both client and server. However, clients and servers have different

settings for specifying cache behavior.

Client-side Table 7 shows the valid settings for CacheControl in http-conf:client.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

no-store Caches must not store any part of a response or
any part of the request that invoked it.

max-age The client can accept a response whose age is no
greater than the specified time in seconds.
95

CHAPTER 9 | HTTP Port
max-stale The client can accept a response that has exceeded
its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the client can still accept that response. If
no value is assigned, it means the client can accept
a stale response of any age.

min-fresh The client wants a response that will be still be
fresh for at least the specified number of seconds
indicated.

no-transform Caches must not modify media type or location of
the content in a response between a server and a
client.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses
that need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior
 96

Attribute Details
Server-side Table 8 shows the valid values for CacheControl in http-conf:server.

Table 8: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to
satisfy subsequent client requests without first
revalidating that response with the server. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies
to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single
user. If specific response header fields are
specified with this value, the restriction applies
only to those header fields within the response. If
no response header fields are specified, the
restriction applies to the entire response.

no-store Caches must not store any part of response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or
location of the content in a response between a
server and a client.

must-revalidate Caches must revaildate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except
that it can only be enforced on shared caches
and is ignored by private unshared caches. If
using this directive, the public cache directive
must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.
97

CHAPTER 9 | HTTP Port
BrowserType

Description The BrowserType attribute specifies information about the browser from which

the client request originates. In the HTTP specification from the World Wide

Web consortium (W3C) this is also known as the user-agent. Some servers

optimize based upon the client that is sending the request.

Referer

The Referer attribute corresponds to the HTTP Referer property. It specifies

the URL of the resource that directed the client to make requests on a

particular service. Typically this HTTP property is used when a request is

the result of a browser user clicking on a hyperlink rather than typing a URL.

This can allow the server to optimize processing based upon previous task

flow, and to generate lists of back-links to resources for the purposes of

logging, optimized caching, tracing of obsolete or mistyped links, and so on.

However, it is typically not used in web services applications.

s-maxage Means the same as max-age, except that it can
only be enforced on shared caches and is ignored
by private unshared caches. The age specified by
s-maxage overrides the age specified by max-age.
If using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in
the context of a standard directive, so that
applications not understanding the extended
directive can at least adhere to the behavior
mandated by the standard directive.

Table 8: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
 98

Attribute Details
If the AutoRedirect attribute is set to true and the client request is

redirected, any value specified in the Referer attribute is overridden. The

value of the HTTP Referer property will be set to the URL of the service who

redirected the client’s original request.

ProxyServer

Description The ProxyServer attribute specifies the URL of the proxy server, if one exists

along the message path. A proxy can receive client requests, possibly modify

the request in some way, and then forward the request along the chain

possibly to the target server. A proxy can act as a special kind of security

firewall.

ProxyAuthorizationType

Description The ProxyAuthorizationType attribute specifies the name of the

authorization scheme the client wants to use with the proxy server. This name

is specified and handled at application level. Artix does not perform any

validation on this value. It is the user’s responsibility to ensure that the correct

scheme name is specified, as appropriate.

ProxyAuthorization

Description The ProxyAuthorization attribute specifies the authorization credentials the

client will use to perform authorization with the proxy server. These are

encoded and handled at application-level. Artix does not perform any

Note: Artix does not support the existence of more than one proxy server
along the message path.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.
99

CHAPTER 9 | HTTP Port
validation on the specified value. It is the user’s responsibility to ensure that

the correct authorization credentials are specified, as appropriate.

UseSecureSockets

Description The UseSecureSockets attribute indicates if the application wants to open a

secure connection using SSL or TLS. A secure HTTP connection is commonly

referred to as HTTPS. Valid values are true and false. The default is false;

the endpoint does not want to open a secure connection.

RedirectURL

Description The RedirectURL attribute corresponds to the HTTP RedirectURL property.

It specifies the URL to which the client request should be redirected if the

URL specified in the client request is no longer appropriate for the requested

resource. In this case, if a status code is not automatically set in the first line

of the server response, the status code is set to 302 and the status description

is set to Object Moved.

ServerCertificateChain

Description PKCS12-encoded X509 certificates can be issued by intermediate certificate

authorities that are not trusted by the client, but which have had their

certificates issued in turn by a trusted certificate authority. If this is the case,

you can use the ServerCertificateChain attribute to allow the certificate

chain of PKCS12-encoded X509 certificates to be presented to the client for

verification. It specifies the full path to the file that contains all the certificates

in the chain.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

Note: If the http:address element’s location attribute, or the
soap:address element’s location attribute, has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.
 100

CHAPTER 10

CORBA Port
Artix supports a robust mechanism for configuring a CORBA
endpoint.

Namespace

The namespace under which the CORBA extensions are defined is

http://schemas.iona.com/bindings/corba. If you are going to add a

CORBA port by hand you will need to add this to your contract’s definition

element as shown below.

corba:address

Synopsis <corba:address location="..."/>

Description The corba:address element is a child of a WSDL port element. It specifies

the IOR for the service’s CORBA object.

Attributes The corba:address element has one required attribute named location. The

location attribute contains a string specifying the IOR. You have four options

for specifying IORs in Artix contracts:

• Entering the object’s IOR directly into the contract using the stringified

IOR format:

xmlns:corba="http://schemas.iona.com/bindings/corba"

IOR:22342...
101

CHAPTER 10 | CORBA Port
• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will

look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the

corbaloc syntax.

corba:policy

Synopsis <corba:policy poaname="..."|persistent="..."|serviceid="..." />

Description The corba:policy element is a child of a WSDL port element. It specifies

the POA polices the Artix service will use when creating the POA for connecting

to a CORBA object. Each corba:policy element can only specify one policy.

Therefore to define multiple policies you must use multiple corba:policy

elements.

Attributes The corba:policy element uses attributes to specify the policy it is describing.

The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

poaname Specifies the POA name to use when connecting to the
CORBA object. The default POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA’s ID. By default, Artix
POAs are assigned their IDs by the ORB.
 102

CHAPTER 11

IIOP Tunnel Port
The IIOP tunnel transport allows you to send non-CORBA data
over IIOP. This allows you to use a number of the CORBA
services.

Namespace

The namespace under which the CORBA extensions are defined is

http://schemas.iona.com/bindings/iiop_tunnel. If you are going to add

a CORBA port by hand you will need to add this to your contract’s

definition element as shown below.

iiop:address

Synopsis <iiop:address location="..."/>

Description The iiop:address element is a child of a WSDL port element. It specifies

the IOR for the CORBA object created for the service.

Attributes The iiop:address element has one required attribute named location. The

location attribute contains a string specifying the IOR. You have four options

for specifying IORs in Artix contracts:

• Entering the object’s IOR directly into the contract using the stringified

IOR format:

xmlns:iiop="http://schemas.iona.com/bindings/iiop_tunnel"

IOR:22342...
103

CHAPTER 11 | IIOP Tunnel Port
• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will

look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the

corbaloc syntax.

iiop:payload

Synopsis <iiop:payload type="..." />

Description The iiop:payload element is a child of the WSDL port element. It specifies

the type of payload being passed through the IIOP tunnel. If the iiop:payload

element is set, Artix will use the information to attempt codeset negotiation

on the contents of the payload being sent through the tunnel. If you do not

want codeset negotiation attempted, do not use this element in your IIOP

Tunnel port definition.

Attributes The iiop:payload element has a single required element named type. The

type attribute specifies the type of data contained in the payload.

Examples If your payload contains string data and you want Artix to attempt codeset

negotiation you would use the following:

iiop:policy

Synopsis <iiop:policy poaname="..."|persistent="..."|serviceid="..." />

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

<iiop:payload type="string"/>
 104

Description The iiop:policy element is a child of a WSDL port element. It specifies the

POA polices the Artix service will use when creating the POA for the IIOP port.

Each iiop:policy element can only specify one policy. Therefore to define

multiple policies you must use multiple iiop:policy elements.

Attributes The iiop:policy element uses attributes to specify the policy it is describing.

The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

poaname Specifies the POA name to use when creating the IIOP
port. The default POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA’s ID. By default, Artix
POAs are assigned their IDs by the ORB.
105

CHAPTER 11 | IIOP Tunnel Port
 106

CHAPTER 12

WebSphere MQ
Port
Artix provides a number of WSDL extensions to configure a
WebSphere MQ service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 108

Attribute Details page 113
107

CHAPTER 12 | WebSphere MQ Port
Artix Extension Elements

Namespace

The WSDL extensions used to describe WebSphere MQ transport details are

defined in the WSDL namespace

http://schemas.iona.com/transports/mq. If you are going to use a

WebSphere MQ port you need to include the following in the definitions

tag of your contract:

mq:client

Synopsis <mq:client QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 AliasQueueName="..." ConnectionName="..."

 ConnectionReusable="..." ConnectionFastPath="..."

 UsageStyle="..." CorrelationStyle="..." AccessMode="..."

 Timeout="..." MessageExpiry="..." MessagePriority="..."

 Delivery="..." Transactional="..." ReportOption="..."

 Format="..." MessageId="..." CorrelationId="..."

 ApplicationData="..." AccountingToken="..."

 ApplicationIdData="..." ApplicationOriginData="..."

 UserIdentification="..." />

Description The mq:client element is used to configure a client endpoint for connecting

to WebSphere MQ. For an MQ client endpoint that receives replies you must

provide values for the QueueManager, QueueName, ReplyQueueManager, and

ReplyQueueName attributes. If the endpoint is not going to receive replies, you

do not need to supply settings for the reply queue.

Attributes The mq:client element has the following attributes:

xmlns:mq="http://schemas.iona.com/transports/mq"

QueueManager Specifies the name of the queue manager used

for making requests.
 108

Artix Extension Elements
QueueName Specifies the name of the queue used for
making requests.

ReplyQueueName Specifies the name of the queue used for
receiving responses.

ReplyQueueManager Specifies the name of the queue manager used
for receiving responses.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a
model for creating dynamic queues.

AliasQueueName Specifies the local name of the reply queue
when the reply queue manager is not on the
same host as the client’s local queue manager.

ConnectionName Specifies the name of the connection Artix uses
to connect to its queue.

ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in

process. The default is false; the queue

manager runs as a separate process.

UsageStyle Specifies if messages can be queued without

expecting a response.

CorrelationStyle Specifies what identifier is used to correlate

request and response messages.

AccessMode Specifies the level of access applications have to
the queue.

Timeout Specifies the amount of time, in milliseconds,

between a request and the corresponding reply

before an error message is generated.

MessageExpiry Specifies the value of the MQ message

descriptor’s Expiry field. It specifies the lifetime

of a message in tenths of a second. The default

value is INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message

descriptor’s Priority field.
109

CHAPTER 12 | WebSphere MQ Port
mq:server

Synopsis <mq:server QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 ConnectionName="..." ConnectionReusable="..."

 ConnectionFastPath="..." UsageStyle="..."

 CorrelationStyle="..." AccessMode="..." Timeout="..."

 MessageExpiry="..." MessagePriority="..." Delivery="..."

 Transactional="..." ReportOption="..." Format="..."

Delivery Specifies the value of the MQ message

descriptor’s Persistence field.

Transactional Specifies if transaction operations must be

performed on the messages.

ReportOption Specifies the value of the MQ message

descriptor’s Report field.

Format Specifies the value of the MQ message
descriptor’s Format field.

MessageId Specifies the value of the MQ message

descriptor’s MsgId field. A value must be

specified if CorrelationStyle is set to none.

CorrelationId Specifies the value for the MQ message

descriptor’s CorrelId field. A value must be

specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information

that needs to be set in the message header.

AccountingToken Specifies the value for the MQ message

decscriptor’s AccountingToken field.

ApplicationIdData Specifies the value for the MQ message

descriptor’s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message

descriptor’s ApplOriginData field.

UserIdentification Specifies the value for the MQ message

descriptor’s UserIdentifier field.
 110

Artix Extension Elements
 MessageId="..." CorrelationId="..." ApplicationData="..."

 AccountingToken="..." ApplicationOriginData="..."

 PropogateTransactions="..." />

Description The mq:server element is used to configure a server endpoint for connecting

to WebSphere MQ. For an MQ server endpoint you must provide values for

the QueueManager and QueueName attributes.

Attributes The mq:server element has the following attributes:

QueueManager Specifies the name of the queue manager used

for receiving requests.

QueueName Specifies the name of the queue used to receive
requests.

ReplyQueueName Specifies the name of the queue where
responses are placed. This setting is ignored if
the client specifies a ReplyToQ in a request’s
message descriptor.

ReplyQueueManager Specifies the name of the reply queue manager.
This setting is ignored if the client specifies a
ReplyToQMgr in a request’s message descriptor.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a
model for creating dynamic queues.

ConnectionName Specifies the name of the connection Artix uses
to connect to its queue.

ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in

process. The default is false; the queue

manager runs as a separate process.

UsageStyle Specifies if messages can be queued without

expecting a response.

CorrelationStyle Specifies what identifier is used to correlate

request and response messages.

AccessMode Specifies the level of access applications have to
the queue.
111

CHAPTER 12 | WebSphere MQ Port
Timeout Specifies the amount of time, in milliseconds,

between a request and the corresponding reply

before an error message is generated.

MessageExpiry Specifies the value of the MQ message

descriptor’s Expiry field. It specifies the lifetime

of a message in tenths of a second. The default

value is INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message

descriptor’s Priority field.

Delivery Specifies the value of the MQ message

descriptor’s Persistence field.

Transactional Specifies if transaction operations must be

performed on the messages.

ReportOption Specifies the value of the MQ message

descriptor’s Report field.

Format Specifies the value of the MQ message
descriptor’s Format field.

MessageId Specifies the value of the MQ message

descriptor’s MsgId field. A value must be

specified if CorrelationStyle is set to none.

CorrelationId Specifies the value for the MQ message

descriptor’s CorrelId field. A value must be

specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information

that needs to be set in the message header.

AccountingToken Specifies the value for the MQ message

decscriptor’s AccountingToken field.

ApplicationOriginData Specifies the value for the MQ message

descriptor’s ApplOriginData field.

PropogateTransactions Specifies if local MQ transactions should be

included in flowed transactions. Default is true.
 112

Attribute Details
Attribute Details

Server_Client

Description The Server_Client attribute specifies which shared libraries to load on

systems with a full WebSphere MQ installation.

Parameters Table 9 describes the settings for this attribute for each type of WebSphere

MQ installation.

Table 9: Server_Client Settings for the MQ Transport

MQ
Installation

Server_Client
Setting

Behavior

Full The server shared library (libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full server The server shared library (libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full client The client shared library (libmqic) is
loaded and the application will use
queues hosted on a remote machine.

Client The application will attempt to load the
server shared library (libmqm) before
loading the client shared
library(libmqic). The application
accesses queues hosted on a remote
machine.

Client server The application will fail because it cannot
load the server shared libraries.

Client client The client shared library (libmqic) is
loaded and the application accesses
queues hosted on a remote machine.
113

CHAPTER 12 | WebSphere MQ Port
AliasQueueName

Description The AliasQueueName attribute specifies the local name of the reply queue

when the service’s queue manager is running a different host from the client.

Using this attribute ensures that the server will put the replies on the proper

queue. Otherwise, the server will receive a request message with the ReplyToQ

field set to a queue that is managed by a queue manager on a remote host

and will be unable to send the reply.

Effect of AliasQueueName When you specify a value for the AliasQueueName attribute in an mq:client

element, you alter how Artix populates the request’s ReplyToQ field and

ReplyToQMgr field. Typically, Artix populates the reply queue information in

the request’s message descriptor with the values specified in

ReplyQueueManager and ReplyQueueName. Setting AliasQueueName causes

Artix to leave ReplytoQMgr empty and to set ReplyToQ to the value of

AliasQueueName. When the ReplyToQMgr field of the message descriptor is

left empty, the sending queue manager inspects the queue named in the

ReplyToQ field to determine who its queue manager is and uses that value

for ReplyToQMgr. The server puts the message on the remote queue that is

configured as a proxy for the client’s local reply queue.

Examples If you had a system defined similar to that shown in Figure 1, you would need

to use the AliasQueueName attribute setting when configuring your WebSphere

MQ client. In this set up the client is running on a host with a local queue

manager QMgrA. QMgrA has two queues configured. RqA is a remote queue that

is a proxy for RqB and RplyA is a local queue. The server is running on a

different machine whose local queue manager is QMgrB. QMgrB also has two

queues. RqB is a local queue and RplyB is a remote queue that is a proxy for
 114

Attribute Details
RplyA. The client places its request on RqA and expects replies to arrive on

RplyA.

The Artix WebSphere MQ port definitions for the client and server for this

deployment are shown in Example 44. AliasQueueName is set to RplyB

because that is the remote queue proxying for the reply queue in server’s

local queue manager. ReplyQueueManager and ReplyQueueName are set to

the client’s local queue manager so that it knows where to listen for

responses. In this example, the server’s ReplyQueueManager and

ReplyQueueName do not need to be set because you are assured that the

client is populating the request’s message descriptor with the needed

information for the server to determine where replies are sent.

Figure 1: MQ Remote Queues

Example 44:Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>
115

CHAPTER 12 | WebSphere MQ Port
UsageStyle

Description The UsageStyle specifies if a message can be queued without expecting a

response. The default value is peer.

Options The valid settings for UsageStyle are described in Table 10.

Examples In Example 45, the WebSphere MQ client wants a response from the server

and needs to be able to associate the response with the request that generated

it. Setting the UsageStyle to responder ensures that the server’s response will

properly populate the response message descriptor’s CorrelID field according

to the defined correlation style. In this case, the correlation style is set to

correlationId.

CorrelationStyle

Description The CorrelationStyle attribute specifies how WebSphere MQ matches both

the message identifier and the correlation identifier to select a particular

message to be retrieved from the queue (this is accomplished by setting the

corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the

Table 10: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response. This is the default.

requester Specifies that the message sender expects a
response message.

responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Example 45:MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster" ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId"/>
 116

Attribute Details
MatchOptions field in MQGMO to indicate that those fields should be used as

selection criteria).

Options The valid correlation styles for an Artix WebSphere MQ port are messageId,

correlationId, and messageId copy.

Table 11 shows the actions of MQGET and MQPUT when receiving a message

using a WSDL specified message ID and a WSDL specified correlation ID.

AccessMode

Description The AccessMode attribute controls the action of MQOPEN in the Artix WebSphere

MQ transport.

Note: When a value is specified for ConnectionName, you cannot use
messageID copy as the correlation style.

Table 11: MQGET and MQPUT Actions

Artix Port
Setting

Action for MQGET Action for MQPUT

messageId Set the CorrelId of the
message descriptor to
MessageID.

Copy MessageID onto the
message descriptor’s
CorrelId.

correlationId Set CorrelId of the
message descriptor to
CorrelationID.

Copy CorrelationID onto
message descriptor’s
CorrelId.

messageId copy Set MsgId of the
message descriptor to
messageID.

Copy MessageID onto
message descriptor’s
MsgId.
117

CHAPTER 12 | WebSphere MQ Port
Options Table 12 describes the correlation between the Artix attribute settings and

the MQOPEN settings.

MessagePriority

Description The MessagePriority attribute specifies the value for the MQ message

descriptor’s Priority field. Its value must be greater than or equal to zero;

zero is the lowest priority. Special values for MessagePriority include highest

(9), high (7), medium (5), low (3) and lowest (0). The default is normal.

Table 12: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue
to put messages into. The queue is opened for
use with subsequent MQPUT calls.

receive (default) Equivalent to MQOO_INPUT_AS_Q_DEF. receive
opens a queue to get messages using a
queue-defined default. The default value depends
on the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive
exclusive opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_OBJECT_IN_USE if the queue is
currently open (by this or another application) for
input of any type.

receive shared Equivalent to MQOO_INPUT_SHARED. receive
shared opens queue to get messages with shared
access. The queue is opened for use with
subsequent MQGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO_INPUT_SHARED.
 118

Attribute Details
Delivery

Description The Delivery attribute specifies the value of the MQ message descriptor’s

Persistence field.

Options Table 13 describes the settings for Delviery.

To support transactional messaging, you must make the messages

persistent.

Transactional

Description The Transactional controls how messages participate in transactions and

what role WebSphere MQ plays in the transactions.

Options The values of the Transactional attribute are explained in Table 14.

Table 13: Delivery Attribute Settings

Artix WebSphere MQ

persistent MQPER_PERSISTENT

not persistent (Default) MQPER_NOT_PERSISTENT

Table 14: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
rollback actions will be taken if errors occur.

internal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a flowed transaction with
WebSphere MQ serving as an enlisted resource
manager.
119

CHAPTER 12 | WebSphere MQ Port
Reliable MQ messages When the transactional attribute to internal for an Artix service, the

following happens during request processing:

1. When a request is placed on the service’s request queue, MQ begins a

transaction.

2. The service processes the request.

3. Control is returned to the server transport layer.

4. If no reply is required, the local transaction is committed and the

request is permanently discarded.

5. If a reply message is required, the local transaction is committed and

the request is permanently discarded only after the reply is successfully

placed on the reply queue.

6. If an error is encountered while the request is being processed, the

local transaction is rolled back and the request is placed back onto the

service’s request queue.

Examples Example 46 shows the settings for a WebSphere MQ server port whose

requests will be part of transactions managed by WebSphere MQ. Note that

the Delivery attribute must be set to persistent when using transactions.

ReportOption

Description The ReportOption attribute is mapped to the MQ message descriptor’s Report

field. It enables the application sending the original message to specify which

report messages are required, whether the application message data is to be

included in them, and how the message and correlation identifiers in the report

or reply message are to be set. Artix only allows you to specify one

ReportOption per Artix port. Setting more than one will result in unpredictable

behavior.

Example 46:MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>
 120

Attribute Details
Options The values of this attribute are explained in Table 15.

Table 15: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. You should never specifically
set ReportOption to none; it will create validation
errors in the contract.

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.
121

CHAPTER 12 | WebSphere MQ Port
Format

Description The Format attribute is mapped to the MQ message descriptor’s Format field.

It specifies an optional format name to indicate to the receiver the nature of

the data in the message.

Options The value may contain any character in the queue manager's character set,

but it is recommended that the name be restricted to the following:

• Uppercase A through Z

• Numeric digits 0 through 9

In addition, the FormatType attribute can take the special values none,

string, event, programmable command, and unicode. These settings are

described in Table 16.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Table 15: ReportOption Attribute Settings (Continued)

Attribute Setting Description

Table 16: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)
 122

Attribute Details
When you are interoperating with WebSphere MQ applications hosted on a

mainframe and the data needs to be converted into the systems native data

format, you should set Format to string. Not doing so will result in the

mainframe receiving corrupted data.

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 16: FormatType Attribute Settings (Continued)

Attribute Setting Description
123

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 12 | WebSphere MQ Port
 124

CHAPTER 13

JMS Port
JMS is a powerful messaging system used by Java
applications.

Namespace

The WSDL extensions used to describe JMS transport details are defined in

the namespace http://celtix.objectweb.org/transports/jms. If you are

going to use a JMS port you need to include the following in the

definitions tag of your contract:

jms:address

Synopsis <jms:address destinationStyle="..."

 jndiConnectionFactoryName="..."

 jndiDestinationName="..."

 jndiReplyDestinationName="..."

 connectionUserName="..." connectionPassword="...">

 <jms:JMSNamingProperty ... />

 ...

</jms:address>

Description The jms:address element specifies the information needed to connect to a

JMS system.

xmlns:jms="http://celtix.objectweb.org/transports/jms"
125

CHAPTER 13 | JMS Port
Attributes The jms:address element has the following attributes:

jms:JMSNamingProperty

Synopsis <jms:JMSNamingProperty name="..." value="..." />

Description The jms:JMSNamingProperty element is a child of the jms:address element.

It is used to provide the values used to populate the properties object used

when connecting to a JNDI provider.

Attributes The jms:JMSNamingProperty element has the following attributes:

JNDI property names The following is a list of common JNDI properties that can be set:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the
JMS destination to which Artix connects.

jndiReplyDestinationName Specifies the JNDI name bound to the
JMS destinations where replies are sent.
This attribute allows you to use a user
defined destination for replies.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.

name Specifies the name of the JNDI property to set.

value Specifies the value for the specified property.
 126

• java.naming.batchsize

• java.naming.referral

• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to use in these attributes, check your

JNDI provider’s documentation and consult the Java API reference material.

jms:client

Synopsis <jms:client messageType="..." />

Description The jms:client element is a child of the WSDL port element. It is used to

specify the types of messages being used by a JMS client endpoint and the

timeout value for a JMS client endpoint.

Attributes The jms:client element has the following attributes:

jms:server

Synopsis <jms:server useMessageIDAsCorrelationID="..."

 durableSubscriberName="..."

 messageSelector="..." transactional="..." />

Description The jms:server element is a child of the WSDL port element. It specifies

settings used to configure the behavior of a JMS service endpoint.

messageType Specifies how the message data will be packaged as a
JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies that the
data will be packaged as an ObjectMessage.
127

CHAPTER 13 | JMS Port
Attributes The jms:server element has the following attributes:

useMessageIDAsCorrealationID Specifies whether JMS will use the
message ID to correlate messages. The
default is false.

durableSubscriberName Specifies the name used to register a
durable subscription.

messageSelector Specifies the string value of a message
selector to use.

transactional Specifies whether the local JMS broker
will create transactions around message
processing. The default is false.
 128

CHAPTER 14

Tuxedo Port
Artix can connect to applications that use BEA’s Tuxedo as
their messaging backbone.

Namespace

The extensions used to describe a Tuxedo port are defined in the namespace

http://schemas.iona.com/transports/tuxedo. When a Tuxedo endpoint is

defined in a contract, the contract will need the following namespace

declaration in the contract’s definition element:

tuxedo:server

Synopsis <tuxedo:server>

 <tuxedo:service ...>

 ...

 </tuxedo:service>

</tuxedo:server>

Description The tuxedo:server element is a child of a WSDL port element. It contains

the definition of a Tuxedo endpoint.

tuxedo:service

Synopsis <tuxedo:service name="...">

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
129

CHAPTER 14 | Tuxedo Port
 <tuxedo:input .../>

 ...

</tuxedo:service>

Description The tuxedo:service element is the child of a tuxedo:server element. It

specifies the bulletin board name used to post and receive messages. It has

a number of tuxedo:input child elements that provide a map to the operations

from which messages are routed.

Attributes The tuxedo:service element has a single required attribute called name. The

name attribute specifies the bulletin board name for the service.

tuxedo:input

Synopsis <tuxedo:input operation="..." />

Description The tuxedo:input element specify which of the operations bound to the port

being defined are handled by the Tuxedo service.

Attributes The tuxedo:input element has a single required attribute called operation.

The operation attribute specifies the WSDL operation that is handled by the

Tuxedo service. The value must correspond the value of the name attribute of

the appropriate WSDL operation element.
 130

CHAPTER 15

Tibco/Rendezvous
Port
Artix provides a number of attributes to define a TIB/RV
service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 132

Attribute Details page 136
131

CHAPTER 15 | Tibco/Rendezvous Port
Artix Extension Elements

Namespace

The extensions used to describe a Tibco/Rendezvous endpoint are defined in

the namespace http://schemas.iona.com/transports/tibrv. When a

Tibco endpoint is defined in a contract, the contract will need the following

namespace declaration in the contract’s definition element:

tibrv:port

Synopsis <tibrv:port serverSubject="..." clientSubject="..."

 bindingType="..." callbackLevel="..."

 responseDispatchTimeout="..." transportService="..."

 transportNetwork="..." transportDeamon="..."

 transportBatchMode="..." cmSupport="..."

 cmTransportServerName="..." cmTransportClientName="..."

 cmTransportRequestOld="..." cmTransportLedgerName="..."

 cmTransportSyncLedger="..."cmTransportRelayAgent="..."

 cmTransportDefaultTimeLimit="..."

 cmListenerCancelAgreement="..."

 cmQueueTransportServerName="..."

 cmQueueTransportWorkerWeight="..."

 cmQueueTransportWorkerTasks="..."

 cmQueueTransportSchedulerWeight="..."

 cmQueueTransportSchedulerHeartbeat="..."

 cmQueueTransportSchedulerActivation="..."

 cmQueueTransportCompleteTime="..." />

Description The tibrv:port element is the child of a WSDL port element. It specifies the

properties used to configure an endpoint that use Tibco/Rendezvous as its

messaging backbone. The element’s attributes specify the information needed

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 132

Artix Extension Elements
to configure the transport layer. The serverSubject attribute is required to

be set and its value must match on both the server side and the client side.

Attributes The tibrv:port element has the following attributes:

serverSubject Specifies the subject to which the
server listens. This parameter must
be the same between client and
server.

clientSubject Specifies the prefix to the subject
that the client listens to. The
default is to use a uniquely
generated name.

bindingType Specifies the message binding
type.

callbackLevel Specifies the server-side callback
level when TIB/RV system advisory
messages are received.

responseDispatchTimeout Specifies the client-side response
timeout.

transportService Specifies the UDP service name or
port for TibrvNetTransport.

transportNetwork Specifies the binding network
addresses for TibrvNetTransport.

transportDaemon Specifies the TCP daemon port for
TibrvNetTransport. The default is
to use 7500 for the TRDP daemon,
or 7550 for the PGM daemon.

transportBatchMode Specifies if the TIB/RV transport
uses batch mode to send
messages. The default is false;
The endpoint will send messages
as soon as they are ready.

cmSupport Specifies if Certified Message
Delivery support is enabled. The
default is false; CM support is
disabled.

cmTransportServerName Specifies the server’s
TibrvCmTransport correspondent
name.
133

CHAPTER 15 | Tibco/Rendezvous Port
cmTransportClientName Specifies the client
TibrvCmTransport correspondent
name. The default is to use a
transient correspondent name.

cmTransportRequestOld Specifies if the endpoint can
request old messages on start-up.
The default is false; the endpoint
cannot request old messages on
start-up.

cmTransportLedgerName Specifies the TibrvCmTransport
ledger file. The default is to use an
in-process ledger that is stored in
memory.

cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. The default is
false; the endpoint does not use a
synchronous ledger.

cmTransportRelayAgent Specifies the endpoint’s
TibrvCmTransport relay agent. If
this attribute is not set, the
endpoint does not use a relay
agent.

cmTransportDefaultTimeLimit Specifies the default time limit for
a Certified Message to be
delivered. The default is no time
limit.

cmListenerCancelAgreements Specifies if Certified Message
agreements are canceled when the
endpoint disconnects. The default
is false; agreements remain in
place after disconnecting.

cmQueueTransportServerName Specifies the server’s
TibrvCmQueueTransport
correspondent name.

cmQueueTransportWorkerWeight Specifies the endpoint’s
TibrvCmQueueTransport worker
weight. The default is
TIBRVCM_DEFAULT_WORKER_WEIGHT.
 134

Artix Extension Elements
cmQueueTransportWorkerTasks Specifies the value of the
endpoint’s
TibrvCmQueueTransport worker
tasks parameter. The default is
TIBRVCM_DEFAULT_WORKER_TASKS.

cmQueueTransportSchedulerWeight Specifies the value of the
TibrvCmQueueTransport
scheduler weight parameter. The
default is
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

cmQueueTransportSchedulerHeartbeat Specifies the value of the
TibrvCmQueueTransport
scheduler heartbeat parameter.
The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.

cmQueueTransportSchedulerActivation Specifies the value of the
TibrvCmQueueTransport
scheduler activation parameter.
The default is
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

cmQueueTransportCompleteTime Specifies the value of the
TibrvCmQueueTransport complete
time parameter. The default is 0.
135

CHAPTER 15 | Tibco/Rendezvous Port
Attribute Details

bindingType

Description The bindingType attribute specifies the message binding type.

Options Artix TIB/RV ports support three types of payload formats as described in

Table 17.

callbackLevel

Description The callbackLevel attribute specifies the server-side callback level when

TIB/RV system advisory messages are received.

Options It has three settings:

• INFO

• WARN

• ERROR (default)

Table 17: TIB/RV Supported Payload formats

Value Payload Formats TIB/RV Message Implications

msg TibrvMsg The message data is encapsulated in
a TibrvMsg described by the binding
section of the service’s contract.

xml SOAP, tagged data The message data is encapsulated in
a field of TIBRVMSG_XML with a null
name and an ID of 0.

opaque fixed record length
data, variable
record length data

The message data is encapsulated in
a field of TIBRVMSG_OPAQUE with a null
name and an ID of 0.
 136

Attribute Details
responseDispatchTimeout

Description The responseDispatchTimeout attribute specifies the client-side response

receive dispatch timeout. The default is TIBRV_WAIT_FOREVER.

transportService

Description The transportService attribute specifies the UDP service name or port for

TibrvNetTransport. The default is rendezvous. If no corresponding entry exists

in /etc/services, 7500 for the TRDP daemon, or 7550 for the PGM daemon will

be used. This parameter must be the same for both client and server.

transportNetwork

Description The transportNetwork attribute specifies the binding network addresses for

TibrvNetTransport. The default is to use the interface IP address of the host

for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must

be interoperable between the client and the server.

cmTransportServerName

Description The cmTransportServerName attribute specifies the server’s

TibrvCmTransport correspondent name. The default is to use a transient

correspondent name. This parameter must be the same for both client and

server if the client also uses Certified Message Delivery.

cmQueueTransportServerName

Description The cmQueueTransportServerName attribute specifies the server’s

TibrvCmQueueTransport correspondent name. If this property is set, the server

Note: If only the TibrvNetTransport is used and there is no server return
response for a request, then not setting a timeout value causes the client
to block forever.
137

CHAPTER 15 | Tibco/Rendezvous Port
listener joins to the distributed queue of the specified name. This parameter

must be the same among the server queue members.
 138

CHAPTER 16

File Transfer
Protocol Port
Artix can use an FTP server as a middle-tier message broker.

Namespace

The extensions used to describe a File Transfer Protocol (FTP) port are

defined in the namespace http://schemas.iona.com/transports/ftp.

When an FTP endpoint is defined in a contract, the contract will need the

following namespace declaration in the contract’s definition element:

ftp:port

Synopsis <ftp:port host="..." port="..." requestLocation="..."

 replyLocation="..." connectMode="..." scanInterval="...">

 <ftp:properties>

 ...

 </ftp:properties>

</ftp:port>

Description The ftp:port element is a child of a WSDL port element. It defines the

connection details for an FTP endpoint. It may contain an ftp:properties

element.

xmlns:ftp="http://schemas.iona.com/transports/ftp"
139

CHAPTER 16 | File Transfer Protocol Port
Attributes The ftp:port element has the following attributes:

ftp:properties

Synopsis <ftp:properties>

 <ftp:property ... />

 ...

</ftp:property>

Description The ftp:properties element defines a number of file naming properties used

by the endpoint for storing requests and replies. It contains one or more

ftp:property elements.

ftp:property

Synopsis <ftp:property name="..." value="..." />

Description The ftp:property element defines specific file naming properties to use when

reading and writing messages on the FTPD host. The properties are defined

by the implementation used for the naming scheme classes. Artix provides a

default implementation. However, a custom naming scheme implementation

may have different properties.

host Specifies the domain name or IP address of the
machine hosting the FTPD used by the endpoint.

port Specifies the port number on which the endpoint will
contact the FTPD.

requestLocation Specifies the path on the FTPD host the endpoint will
use for requests. The default is /.

replyLocation Specifies the path on the FTPD host the endpoint will
use for replies. The default is /.

connectMode Specifies the connection mode used to connect to the
FTPD. Valid values are passive and active. The default
is passive.

scanInsterval Specifies the interval, in seconds, at which the request
and reply directories are scanned for updates. The
default is 5.
 140

Attributes The ftp:property element has the following attributes:

Default Naming Properties The default naming implementation provided with Artix supports the

following properties:

name Specifies the name of the property to set.

value Specifies the value of the property.

staticFilemanes Determines if the endpoint uses a static,
non-unique, naming scheme for its files. Valid
values are true and false. The default is true.

requestFilenamePrefix Specifies the prefix to use for file names when
staticFilenames is set to false.
141

CHAPTER 16 | File Transfer Protocol Port
 142

Part III
Other Extensions

In this part This part contains the following chapters:

Routing page 145

Security page 155

Codeset Conversion page 159

CHAPTER 18

Routing
Artix provides a number of WSDL extensions for defining how
messages are routed between services.

Namespace

The Artix routing elements are defined in the

http://schemas.iona.com/routing namespace. When describing routes in

an Artix contract your contract’s definition element must have the

following entry:

routing:expression

Synopsis <routing:expression name="..." evaluator="..."

 ...

</routing:expression>

Description The routing:expression element is a child of the WSDL definitions

element. It specifies an XPATH expression that evaluates messages for

content-based routing.

Attributes The routing:expression requires the following two attributes:

xmlns:routing="http://schemas.iona.com/routing"

name Specifies a string that is used to refer to the expression
when defining routes.
145

CHAPTER 18 | Routing
routing:route

Synopsis <routing:route name="..." mulitRoute="...">

 ...

</routing:route>

Description The routing:route element is the root element of each route described in a

contract.

Attributes The routing:route element takes the following attributes:

Options Standard routes define a single source/destination pair. When the mulitRoute

attribute is specified, your route description will contain more than one

destination.

Setting the multiRoute attribute has the following effects:

• fanout instructs Artix to send messages from the source to all the

listed destinations.

• failover instructs Artix to move through the list of destinations until it

can successfully send the message.

• loadBalance instructs Artix to use a round-robin algorithm to spread

messages across all of the listed destinations.

routing:source

Synopsis <routing:source service="..." port="..." />

Description The routing:source element is a child of a routing:route element. It specifies

the port from which the route will redirect messages. A route can have several

evaluator Specifies the name of the grammar used in the
expression. Currently the only valid value is xpath.

name Specifies a unique identifier for the route. This attribute is
required.

multiRoute An optional attribute that specifies how messages are
sent to the listed destinations. Values are fanout,
failover, or loadBalance. Default is to route messages
to a single destination.
 146

source elements as long as they all meet the compatibility rules for port-based

routing.

Attributes The routing:source element requires two attributes:

routing:query

Synopsis <routing:query expression="...">

 <routing:desitination id="..." ... />

 ...

</routing:query>

Description The routing:query element is a child of a routing:route element. It specifies

the destinations for a content-based route. The child routing:destination

elements must use the id attribute to specify the value used to select the

destination.

Attributes The routing:query element has one attribute:

routing:destination

Synopsis <routing:destination id="..." service="..."

 port="..." route="..." />

Description The routing:destination element is a child of a routing:route element. It

specifies the port to which the source messages are directed. The destination

must be compatible with all of the source elements.

service Specifies the WSDL service element in which the source
port is defined.

port Specifies the name of the WSDL port element from
which messages are being received. The router will create
a proxy to listen for messages on this port.

expression Specifies the value of the name attribute from the
routing:expression element defining the XPATH
expression used to select the destination of the message.
The query selects the destination with the id value that
matches the result of applying the expression to the
message content.
147

CHAPTER 18 | Routing
Attributes The routing:destination element has the following attributes:

routing:transportAttribute

Synopsis <routing:transportAttribute>

 ...

</routing:transportAttribute>

Description The routing:transportAttribute element is a child of a routing:route

element. It defines routing rules based on the transport attributes set in a

message’s header when using HTTP, CORBA, or WebSphere MQ. The criteria

for determining if a message meets the transport attribute rule are specified

using the following child elements:

• routing:equals

• routing:greater

• routing:less

• routing:startswith

• routing:endswith

• routing:contains

• routing:empty

• routing:nonempty

A message passes the rule if it meets each criterion specified by the child

elements.

Transport attribute rules are defined after all of the operation-based routing

rules and before any destinations are listed.

id Specifies the value of the content-based routing query
that triggers the destination. This attribute is required
when the element is the child of a routing:query element
and ignored otherwise.

service Specifies the WSDL service element in which the
destination port is defined.

port Specifies the name of the port WSDL element to which
messages are routed.

route Specifies a linked route to use for selecting the ultimate
destination. When this attribute is used, you should not
use the service attribute or the port attribute.
 148

Examples Example 47 shows a route using transport attribute rules based on HTTP

header attributes. Only messages sent to the server whose UserName is equal

to JohnQ will be passed through to the destination port.

routing:equals

Synopsis <routing:equals contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:equals element is a child of a routing:transportAttribute

element. It defines a rule that is triggered when the specified attribute equals

the value given. It applies to string or numeric attributes.

Attributes The routing:equals element has the following attributes:

Example 47:Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.
149

CHAPTER 18 | Routing
routing:greater

Synopsis <routing:greater contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:greater element is a child of a routing:transportAttribute

element. It defines a rule that is triggered when the value of the specified

attribute is greater than the value given. It applies to numeric attributes.

Attributes The routing:greater element has the following attributes:

routing:less

Synopsis <routing:less contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:less element is a child of a routing:transportAttribute element.

It defines a rule that is triggered when the value of the specified attribute is

less than the value given. It applies to numeric attributes.

Attributes The routing:less element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.
 150

routing:startswith

Synopsis <routing:startswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:startswith element is a child of a routing:transportAttribute

element. It applies to string attributes and tests whether the attribute starts

with the specified value.

Attributes The routing:startswith element has the following attributes:

routing:endswith

Synopsis <routing:endswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:endswith element is a child of a routing:transportAttribute

element. It applies to string attributes and tests whether the attribute ends

with the specified value.

Attributes The routing:endswith element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.
151

CHAPTER 18 | Routing
routing:contains

Synopsis <routing:contains contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:contains element is a child of a routing:transportAttribute

element. It applies to string or list attributes. For strings, it tests whether the

attribute contains the value. For lists, it tests whether the value is a member

of the list.

Attributes The routing:contains element has the following attributes:

routing:empty

Synopsis <routing:empty contextName="..."

 contextAttributeName="..." />

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.
 152

Description The routing:empty element is a child of a routing:transportAttribute element.

It applies to string or list attributes. For lists, it tests whether the list is empty.

For strings, it tests for an empty string.

Attributes The routing:empty element has the following attributes:

routing:nonempty

Synopsis <routing:nonempty contextName="..."

 contextAttributeName="..." />

Description The routing:nonempty element is a child of a routing:transportAttribute

element. It applies to string or list attributes. For lists, it passes if the list is

not empty. For strings, it passes if the string is not empty.

Attributes The routing:nonempty element has the following attributes:

Transport Attribute Context Names

The contextName attribute is specified using the QName of the context in

which the attribute is defined. The contexts shipped with Artix are described

in Table 18.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

Table 18: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a server.
153

CHAPTER 18 | Routing
corba:corba_input_attributes Contains the data stored in
the CORBA principle

mq:MQConnectionAttributes Contains the attributes
used to connect to an MQ
queue.

mq:MQIncomingMessageAttributes Contains the attributes in
the message header of an
MQ message.

bus-security Contains the attributes
used by the IONA security
service to secure your
services.

Table 18: Context QNames

Context QName Details
 154

CHAPTER 19

Security
Artix uses a special WSDL extension element to specify
security policies for endpoints.

Namespace

The elements Artix uses for specifying security policies are defined in the

http://schemas.iona.com/bus/security namespace. When defining

security policies in an Artix contract your contract’s definition element

must have the following entry:

bus-security:security

Synopsis <bus-security:security enableSecurity="..."

 is2AuthorizationActionRoleMapping="..."

 enableAuthorization="..."

 authenticationCacheSize="..."

 authenticationCacheTimeout ="..."

 securityType="..."

 securityLevel="..."

 authorizationRealm="..."

 defaultPassword="..." />

Description The bus-security:security element is a child of a WSDL port element. It’s

attributes specify security policies for the endpoint.

xmlns:bus-security="http://schemas.iona.com/bus/security"
155

CHAPTER 19 | Security
Attributes The bus-security:security element has the following attributes:

enableSecurity Specifies if the service should loud
the ASP plug-in. Default is false.

is2AuthorizationActionRoleMapping Specifies the URL of the action role
mapping file the Artix security
framework uses to authenticate
requests for this endpoint.

enableAuthorization Specifies if the endpoint should use
the Artix security framework for
authentication. Default is false.

enableSSO Specifies if the service can use
single-sign on (SSO). Default is
false.

authenticationCacheSize Specifies the maximum number of
credentials stored in the
authentication cache. A value of -1
(the default) means unlimited size. A
value of 0 disables the cache.

authenticationCacheTimeout Specifies the time (in seconds) after
which a credential is considered
stale. A value of -1 (the default)
means an infinite time-out. A value
of 0 disables the cache.

securityLevel Specifies the level from which
security credentials are picked up.

The following options are supported
by the Artix security framework:

• MESSAGE_LEVEL—Get security

information from the transport

header. This is the default.

• REQUEST_LEVEL—Get the

security information from the

message header.
 156

See also For more information about Artix security policies see The Artix Security
Guide.

authenticationCacheSize Specifies the maximum number of
credentials stored in the
authentication cache. A value of -1
(the default) means unlimited size. A
value of 0 disables the cache.

authenticationCacheTimeout Specifies the time (in seconds) after
which a credential is considered
stale. A value of -1 (the default)
means an infinite time-out. A value
of 0 disables the cache.

securityLevel Specifies the level from which
security credentials are picked up.

The following options are supported
by the Artix security framework:

• MESSAGE_LEVEL—Get security

information from the transport

header. This is the default.

• REQUEST_LEVEL—Get the

security information from the

message header.
157

../security_guide/index.htm
../security_guide/index.htm

CHAPTER 19 | Security
 158

CHAPTER 20

Codeset
Conversion
For transports that do not natively support codeset conversion
Artix has the ability to perform codeset conversion.

Namespace

The elements Artix uses for defining codeset conversion rules are defined in

the http://schemas.iona.com/bus/i18n/context namespace. When

defining codeset conversion rules in an Artix contract your contract’s

definition element must have the following entry:

i18n-context:client

Synopsis <i18n-context:client LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:client element is a child of a WSDL port element. It

specifies codeset conversion rules for Artix endpoints that are acting as

servers.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
159

CHAPTER 20 | Codeset Conversion
Attributes The i18n-context:client element has the following attributes for defining

how message codesets are converted:

i18n-context:server

Synopsis <i18n-context:server LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:server element is a child of a WSDL port element. It

specifies codeset conversion rules for Artix endpoints that are acting as

servers.

Attributes The i18n-context:server element has the following attributes for defining

how message codesets are converted:

LocalCodeSet Specifies the client’s native codeset. Default is the
codeset specified by the local system’s locale setting.

OutboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.

InboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in OutboundCodeSet.

LocalCodeSet Specifies the server’s native codeset. Default is the
codeset specified by the local system’s locale setting.

OutboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in InboundCodeSet.

InboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.
 160

Index

A
adding a SOAP header 8
arrays

mapping to a fixed binding 52
mapping to a tagged binding 59
mapping to a TibrvMsg 71
mapping to CORBA 27

Artix contexts
using in a TibrvMsg 76

Artix reference
mapping to CORBA 33

attribute based routing 148

B
bus-security:security 155

authenticationCacheSize attribute 156, 157
authenticationCacheTimeout attribute 156, 157
enableAuthorization attribute 156
enableSecurity attribute 156
enableSSO attribute 156
is2AuthorizationActionRoleMapping attribute 156
securityLevel attribute 156, 157

C
choice complexType

mapping to a fixed binding 49
mapping to a tagged binding 61

complex types
mapping to a TibrvMsg 74
mapping to CORBA 20

corba:address 101
location attribute 101

corba:alias 26
name attribute 26
repositoryID attribute 26
type attribute 26

corba:anonsequence 30
bound attribute 30
elemtype attribute 30
name attribute 30
type attribute 30

corba:array 27
bound attribute 27
elemtype attribute 27
name attribute 27
repositoryID attribute 27
type attribute 27

corba:binding 16
bases attribute 16
repositoryID attribute 16

corba:case 25
label attribute 25

corba:enumerator 22
corba:exception 29

name attribute 29
repositoryID attribute 29
type attribute 29

corba:fixed 22
digits attribute 23
name attribute 23
repositoryID attribute 23
scale attribute 23
type attribute 23

corba:member 20
idltype attribute 20
name attribute 20

corba:object
binding attribute 33
name attribute 34
repositoryID attribute 34
type attribute 34

corba:operation 16
name attribute 17

corba:param 17
idltype attribute 17
mode attribute 17
name attribute 17

corba:policy 102
persistent attribute 102
poaname attribute 102
serviceid attribute 102

corba:raises 18
exception attribute 18

corba:return 17
idltype attribute 18
161

INDEX
name attribute 18
corba:sequence 28

bound attribute 28
elemtype attribute 28
name attribute 28
repositoryID attribute 28

corba:typeMapping 19
targetNamespace attribute 19

corba:union 24
discriminator attribute 24
name attribute 24
repositoryID attribute 24
type attribute 24

corba:unionbranch 24
default attribute 25
idltype attribute 24
name attribute 24

D
defining a fixed message body 44
defining a tagged message body 57
defining a TibrvMsg 74
durable subscriptions 128

E
enumerations

mapping to a fixed binding 48
mapping to a tagged binding 58
mapping to CORBA 21

exceptions
mapping to CORBA 18, 29
mapping to SOAP 9

F
failover routing 146
fanout routing 146
fixed:binding 43

encoding attribute 44
justification attribute 43
padHexCode attribute 44

fixed:body 44
encoding attribute 45
justification attribute 45
padHexCode attribute 45

fixed:case 50
fixedValue attribute 51
name attribute 51

fixed:choice 50
 162
discriminatorName attribute 50
name attribute 50

fixed:enumeration 48
fixedValue attribute 49
value attribute 49

fixed:field 45
bindingOnly attribute 46
fixedValue attribute 46
format attribute 46
name attribute 45
size attribute 46

fixed:operation 44
discriminator attribute 44

fixed:sequence 52
counterName attribute 53
name attribute 53
occurs attribute 53

ftp:port 139
connectMode 140
host 140
port 140
replyLocation 140
requestLocation 140
scanInsterval 140

ftp:properties 140
ftp:property 140

name 141
value 141

H
http:address 84

location attribute 84
http-conf:client 85

Accept attribute 91
AcceptEncoding attribute 93
AcceptLanguage attribute 92
Authorization attribute 91
AuthorizationType attribute 91
AutoRedirect attribute 86
BrowserType attribute 98
CacheControl attribute 95

cache-extension directive 96
max-age directive 95
max-stale directive 96
min-fresh directive 96
no-cache directive 95
no-store directive 95
no-transform directive 96
only-if-cached directive 96

INDEX
ClientCertificate attribute 87
ClientCertificateChain attribute 87
ClientPrivateKey attribute 88
ClientPrivateKeyPassword attribute 88
ConnectionAttempts attribute 87
Connection attribute 95
ContentType attribute 86
Cookie attribute 87
Host attribute 94
Password attribute 86
ProxyAuthorization attribute 99
ProxyAuthorizationType attribute 99
ProxyPassword attribute 87
ProxyServer attribute 99
ProxyUserName attribute 87
ReceiveTimeout attribute 86
Referer attribute 98
SendTimeout attribute 86
TrustedRootCertificate attribute 88
UserName attribute 86
UseSecureSockets attribute 100

http-conf:server 88
CacheControl attribute 95

cache-extension directive 98
max-age directive 97
must-revalidate directive 97
no-cache directive 97
no-store directive 97
no-transform directive 97
private directive 97
proxy-revelidate directive 97
public directive 97
s-maxage directive 98

ContentEncoding attribute 94
ContentLocation attribute 89
ContentType attribute 89
HonorKeepAlive attribute 89
ReceiveTimeout attribute 88
RedirectURL attribute 100
SendTimeout attrubute 88
ServerCertificate 90
ServerCertificateChain 100
ServerPrivateKey attribute 90
ServerPrivateKeyPassword attribute 90
ServerType attribute 89
SuppressClientReceiveErrors attribute 89
SuppressClientSendErrors attribute 89
TrustedRootCertificate attribute 90
UseSecureSockets attribute 100
I
i18n-context:client 159

InboundCodeSet 160
LocalCodeSet 160
OutboundCodeSet 160

i18n-context:server 160
InboundCodeSet 160
LocalCodeSet 160
OutboundCodeSet 160

IDL types
fixed 22
Object 33
sequence 28
typedef 26

iiop:address 103
location attribute 103

iiop:payload 104
type attribute 104

iiop:policy 105
persistent attribute 105
poaname attribute 105
serviceid attribute 105

IOR 101, 103

J
jms:address 125

connectionPassword attribute 126
connectionUserName attribute 126
destinationStyle attribute 126
jndiConnectionFactoryName attribute 126
jndiDestinationName attribute 126
jndiReplyDestinationName 126

jms:client 127
messageType attribute 127

jms:JMSNamingProperty 126
name attribute 126
value attribute 126

jms:server 127
durableSubscriberName attribute 128
messageSelector attribute 128
transactional attribute 128
useMessageIDAsCorrealationID attribute 128

JNDI
connection factory 126

L
load balancing 146
163

INDEX
M
message broadcasting 146
mime:content 11

part attribute 11
type attribute 11

mime:multipartRelated 10
mime:part 11

name attribute 11
mq:client 108

AccessMode attribute 117
AccountingToken attribute 110
AliasQueueName attribute 114
ApplicationData attribute 110
ApplicationIdData attribute 110
ApplicationOriginData attribute 110
ConnectionFastPath attribute 109
ConnectionName attribute 109
ConnectionReusable attribute 109
CorrelationId attribute 110
CorrelationStyle attribute 116
Delivery attribute 119
Format attribute 122
MessageExpiry attribute 109
MessageId attribute 110
MessagePriority attribute 118
ModelQueueName attribute 109
QueueManager attribute 108
QueueName attribute 109
ReplyQueueManager attribute 109
ReplyQueueName attribute 109
ReportOption attribute 120
Server_Client attribute 113
Timeout attribute 109
Transactional attribute 119
UsageStyle attribute 116
UserIdentification attribute 110

mq:server 111
AccessMode attribute 117
AccountingToken attribute 112
ApplicationData attribute 112
ApplicationOriginData attribute 112
ConnectionFastPath attribute 111
ConnectionName attribute 111
ConnectionReusable attribute 111
CorrelationId attribute 112
CorrelationStyle attribute 116
Delivery attribute 119
Format attribute 122
MessageExpiry attribute 112
 164
MessageId attribute 112
MessagePriority attribute 118
ModelQueueName attribute 111
PropogateTransactions attributes 112
QueueManager attribute 111
QueueName attribute 111
ReplyQueueManager attribute 111
ReplyQueueName attribute 111
ReportOption attribute 120
Server_Client attribute 113
Timeout attribute 112
Transactional attribute 119
UsageStyle attribute 116

P
POA policies 102, 105
port address

HTTP 84
primitive types

mapping to a fixed binding 45
mapping to a tagged binding 58
mapping to a TibrvMsg 65, 75
mapping to CORBA 14
mapping to FML 39

R
reply queue

queue manager 109, 111
queue name 109, 111

request queue
queue manager 108, 111
queue name 109, 111

routing:contains 152
contextAttributeName attribute 152
contextName attribute 152
ignorecase attribute 152
value attribute 152

routing:destination 147
id attribute 148
port attribute 148
route attribute 148
service attribute 148

routing:empty 152
contextAttributeName attribute 153
contextName attribute 153

routing:endswith 151
contextAttributeName attribute 152
contextName attribute 151

INDEX
ignorecase attribute 152
value attribute 152

routing:equals 149
contextAttributeName attribute 149
contextName attribute 149
ignorecase attribute 149
value attribute 149

routing:expression 145
evaluator attribute 146
name attribute 145

routing:greater 150
contextAttributeName attribute 150
contextName attribute 150
value attribute 150

routing:less 150
contextAttributeName attribute 150
contextName attribute 150
value attribute 150

routing:nonempty 153
contextAttributeName attribute 153
contextName attribute 153

routing:query 147
routing:route 146

multiRoute attribute 146
failover 146
fanout 146
loadBalance 146

name attribute 146
routing:source 146

port attribute 147
service attribute 147

routing:startswith 151
contextAttributeName attribute 151
contextName attribute 151
ignorecase attribute 151
value attribute 151

routing:transportAttribute 148

S
sequence complexType

mapping to a fixed binding 52
mapping to a tagged binding 59

service failover 146
soap:address 84

location attribute 84
soap:binding 4

style attribute 4
transport attribute 5

soap:body 6
encodingStyle attribute 7
namespace attribute 7
parts attribute 8
use attribute 6

encoded 7
literal 7

soap:fault 9
name attribute 9
use attribute 9

encoded 7
literal 7

soap:header 8
encodingStyle attribute 8
message attribute 8
namespace attribute 9
part attribute 8
use attribute 8

encoded 7
literal 7

soap:operation 5
soapAction attribute 6
style attribute 5

specifying a password
HTTP 86

specifying a user name
HTTP 86

T
tagged:binding 55

fieldNameValueSeparator attribute 56
fieldSeparator attribute 56
flattened attribute 56
ignoreCase attribute 57
ignoreUnknownElements attribute 56
messageEnd attribute 56
messageStart attribute 56
scopeType attribute 56
selfDescribing attribute 56
unscopedArrayElement attribute 56

tagged:body 57
tagged:case 62

name attribute 62
tagged:choice 61

alias attribute 61
discriminatorName attribute 61
name attribute 61

tagged:enumeration 58
value attribute 58

tagged:field 58
165

INDEX
alias attribute 58
name attribute 58

tagged:operation 57
discriminator attribute 57
discriminatorStyle attribute 57

tagged:sequence 59
alias attribute 60
name attribute 60
occurs attribute 60

tibrv:array 71
elementName attribute 71
integralAsSingleField attribute 71
loadSize attribute 72
sizeName attribute 72

tibrv:binding 67
stringAsOpaque attribute 68
stringEncoding attribute 68

tibrv:context 76
tibrv:field 75

alias attribute 75
element attribute 75
id attribute 75
maxOccurs attribute 75
minOccurs attribute 75
name attribute 75
type attribute 75
value attribute 75

tibrv:input 69
messageNameFieldPath attribute 69
messageNameFieldValue attribute 69
stringAsOpaque attribute 69
stringEncoding attribute 69

tibrv:msg 74
alias attribute 74
element attribute 75
id attribute 75
maxOccurs attribute 75
minOccurs attribute 75
name attribute 74

tibrv:operation 68
tibrv:output 70

messageNameFieldPath attribute 70
messageNameFieldValue attribute 70
stringAsOpaque attribute 71
stringEncoding attribute 70

tibrv:port 132
bindingType attribute 136
callbackLevel attribute 136
clientSubject attribute 133
 166
cmListenerCancelAgreements attribute 134
cmQueueTransportCompleteTime attribute 135
cmQueueTransportSchedulerActivation

attribute 135
cmQueueTransportSchedulerHeartbeat

attribute 135
cmQueueTransportSchedulerWeight attribute 135
cmQueueTransportServerName attribute 137
cmQueueTransportWorkerTasks attribute 135
cmQueueTransportWorkerWeight attribute 134
cmSupport attribute 133
cmTransportClientName attribute 134
cmTransportDefaultTimeLimit attribute 134
cmTransportLedgerName attribute 134
cmTransportRelayAgent attribute 134
cmTransportRequestOld attribute 134
cmTransportServerName attribute 137
cmTransportSyncLedger attribute 134
responseDispatchTimeout attribute 137
serverSubject attribute 133
transportBatchMode attribute 133
transportDaemon attribute 133
transportNetwork attribute 137
transportService attribute 137

timeouts
HTTP 86
MQ 109, 112

transactions
MQ 119

tuxedo:binding 40
tuxedo:field 41

id attribute 41
name attribute 41

tuxedo:fieldTable 40
type attribute 41

tuxedo:input 130
operation attribute 130

tuxedo:operation 41
tuxedo:server 129
tuxedo:service 130

name attribute 130

U
unions

mapping to a fixed binding 50
mapping to a tagged binding 61
mapping to CORBA 24

INDEX
X
xformat:binding 79

rootNode attribute 79
xformat:body 80

rootNode attribute 80
167

INDEX
 168

	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Bindings
	SOAP Binding
	SOAP Extensions
	soap:binding
	soap:operation
	soap:body
	soap:header
	soap:fault

	MIME Extensions
	Namespace
	mime:multipartRelated
	mime:part
	mime:content

	CORBA Binding and Type Map
	CORBA Binding Extension Elements
	Namespace
	Primitive Type Mapping
	corba:binding
	corba:operation
	corba:param
	corba:return
	corba:raises

	CORBA Type Map Extension Elements
	corba:typeMapping
	corba:struct
	corba:member
	corba:enum
	corba:enumerator
	corba:fixed
	corba:union
	corba:unionbranch
	corba:case
	corba:alias
	corba:array
	corba:sequence
	corba:exception
	corba:anonsequence
	corba:anonstring
	corba:object

	Tuxedo FML Binding
	Namespace
	FML\XMLSchema Support
	tuxedo:binding
	tuxedo:fieldTable
	tuxedo:field
	tuxedo:operation

	Fixed Binding
	Namespace
	fixed:binding
	fixed:operation
	fixed:body
	fixed:field
	fixed:enumeration
	fixed:choice
	fixed:case
	fixed:sequence

	Tagged Binding
	Namespace
	tagged:binding
	tagged:operation
	tagged:body
	tagged:field
	tagged:enumeration
	tagged:sequence
	tagged:choice
	tagged:case

	TibrvMsg Binding
	Namespace
	TIBRVMSG to XMLSchema Type Mapping
	tibrv:binding
	tibrv:operation
	tibrv:input
	tibrv:output
	tibrv:array
	tibrv:msg
	tibrv:field
	tibrv:context

	XML Binding
	Namespace
	xformat:binding
	xformat:body

	Ports
	HTTP Port
	Standard WSDL Elements
	http:address
	soap:address

	Artix Extension Elements
	Namespace
	http-conf:client
	http-conf:server

	Attribute Details
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	RedirectURL
	ServerCertificateChain

	CORBA Port
	Namespace
	corba:address
	corba:policy

	IIOP Tunnel Port
	Namespace
	iiop:address
	iiop:payload
	iiop:policy

	WebSphere MQ Port
	Artix Extension Elements
	Namespace
	mq:client
	mq:server

	Attribute Details
	Server_Client
	AliasQueueName
	UsageStyle
	CorrelationStyle
	AccessMode
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format

	JMS Port
	Namespace
	jms:address
	jms:JMSNamingProperty
	jms:client
	jms:server

	Tuxedo Port
	Namespace
	tuxedo:server
	tuxedo:service
	tuxedo:input

	Tibco/Rendezvous Port
	Artix Extension Elements
	Namespace
	tibrv:port

	Attribute Details
	bindingType
	callbackLevel
	responseDispatchTimeout
	transportService
	transportNetwork
	cmTransportServerName
	cmQueueTransportServerName

	File Transfer Protocol Port
	Namespace
	ftp:port
	ftp:properties
	ftp:property

	Other Extensions
	Routing
	Namespace
	routing:expression
	routing:route
	routing:source
	routing:query
	routing:destination
	routing:transportAttribute
	routing:equals
	routing:greater
	routing:less
	routing:startswith
	routing:endswith
	routing:contains
	routing:empty
	routing:nonempty
	Transport Attribute Context Names

	Security
	Namespace
	bus-security:security

	Codeset Conversion
	Namespace
	i18n-context:client
	i18n-context:server

	Index

