
Managing Artix Solutions with
JMX

Version 4.1, September 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 22, 2006

Contents

List of Figures 5

List of Tables 7

Preface 9
What is Covered in this Book 9
Who Should Read this Book 9
How to Use this Book 9
The Artix Library 10
Getting the Latest Version 13
Searching the Artix Library 13
Artix Online Help 13
Artix Glossary 14
Additional Resources 14
Document Conventions 14

Chapter 1 Monitoring and Managing an Artix Runtime with JMX 17
Introduction 18
Managed Bus Components 23
Managed Service Components 29

Artix Locator Service 34
Artix Session Manager Service 36

Managed Port Components 37

Chapter 2 Configuring JMX in an Artix Runtime 41
Artix JMX Configuration 42

Chapter 3 Using JMX Consoles with Artix 45
Managing Artix Services with MC4J 46

Managing Logging Levels with MC4J 57
Managing Artix Services with JConsole 65
Managing Artix Services with the JMX HTTP adaptor 69
3

CONTENTS
Index 73
4

List of Figures

Figure 1: Artix JMX Architecture 19

Figure 2: Connecting to a Server 47

Figure 3: Server Connection Details 48

Figure 4: Creation of Server Connection 49

Figure 5: New Server Connection 50

Figure 6: Viewing Service Properties 51

Figure 7: Viewing Service Counters Properties 52

Figure 8: Stopping a Service 52

Figure 9: Deactivated Service 53

Figure 10: Activated a Service 54

Figure 11: Viewing Port Properties 55

Figure 12: Viewing Interceptor Properties 56

Figure 13: Logging Viewing Wizard 58

Figure 14: Entering a Logging Subsystem 59

Figure 15: Displayed Logging Level 60

Figure 16: Setting a Logging Level 61

Figure 17: Logging Level Set Successfully 62

Figure 18: Propagating a Logging Level 63

Figure 19: Managed Service in JConsole 66

Figure 20: Managed Port in JConsole 67

Figure 21: Managed Locator in JConsole 68

Figure 22: HTTP Adaptor Main View 70

Figure 23: HTTP Adaptor Bus View 71
5

LIST OF FIGURES
 6

List of Tables

Table 1: Managed Bus Attributes 24

Table 2: Managed Bus Methods 25

Table 3: Managed Service Attributes 30

Table 4: serviceCounters Attributes 31

Table 5: Managed Service Attributes 32

Table 6: Locator MBean Attributes 34

Table 7: Session Manager MBean Attributes 36

Table 8: Supported Service Attributes 37
7

LIST OF TABLES
 8

Preface
What is Covered in this Book
Managing Artix Solutions with JMX explains how to monitor and manage
Artix services in a runtime environment using Java Management Extensions.

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. It is assumed that you have a
working knowledge of the specific middleware products and transports you
are using.

Who Should Read this Book
The main audience of Managing Artix Solutions with JMX is Artix system
administrators. However, anyone involved in designing a large scale Artix
solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

How to Use this Book
This book includes the following:

• Chapter 1 introduces the Artix JMX architecture and describes the Artix
components that can be managed using JMX.

• Chapter 2 explains how to configure an Artix runtime for JMX.

• Chapter 3 explains how to manage and monitor Artix services using
JMX consoles.
9

PREFACE
The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing Artix Solutions

• Configuring and Managing Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Management Systems

• Reference

• Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

• Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

• Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

• Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

• Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:
 10

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm

PREFACE
• Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.

• Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

Using Artix Services

The books in this section describe how to use the services provided with
Artix:

• Artix Router Guide explains how to integrate services using the Artix
router.

• Artix Locator Guide explains how clients can find services using the
Artix locator.

• Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

• Artix for CORBA provides information on using Artix in a CORBA
environment.

• Artix for J2EE provides information on using Artix to integrate with
J2EE applications.
11

../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm
../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm

PREFACE
For details on integrating with Microsoft’s .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise and SOA management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

• BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

• CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

• AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

Reference

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

• Artix Orchestration Release Notes

• Artix Orchestration Installation Guide

• Artix Orchestration Administration Console Help.
 12

../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
../orch_admin/index.htm

PREFACE
Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help
Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.
13

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
Artix Glossary
The Artix Glossary is a comprehensive reference of Artix terms. It provides
quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures.
For example, text might refer to the
IT_Bus::AnyType class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.
 14

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE
Keying Conventions

This book uses the following keying conventions:

Bold Bold words in normal text represent graphical user
interface components such as menu commands
and dialog boxes. For example: the User
Preferences dialog.

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the Windows command
prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
15

PREFACE
 16

CHAPTER 1

Monitoring and
Managing an Artix
Runtime with JMX
This chapter explains how to monitor and manage an Artix
runtime using Java Management Extensions (JMX).

In this chapter This chapter discusses the following topics:

Introduction page 18

Managed Bus Components page 23

Managed Service Components page 29

Managed Port Components page 37
17

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Introduction

Overview You can use Java Management Extensions (JMX) to monitor and manage
key Artix runtime components both locally and remotely. For example, using
any JMX-compliant client, you can perform the following tasks:

• View bus status.

• Stop or start a service.

• Change bus logging levels dynamically.

• Monitor service performance details.

• View the interceptors for a selected port.

How it works Artix has been instrumented to allow runtime components to be exposed as
JMX Managed Beans (MBeans). This enables an Artix runtime to be
monitored and managed either in process or remotely with the help of the
JMX Remote API.

Artix runtime components can be exposed as JMX MBeans, out-of-the-box,
for both Java and C++ Artix servers. All leading vendor application servers
and containers can be managed using JMX. However, what is unique about
the Artix instrumentation is that its core runtime can also be managed. This
contrasts with the JVM 1.5 management capabilities where you can observe
garbage collection and thread activities using JMX.

In addition, support for registering custom MBeans is also available in Artix
since version 3.0. Java developers can create their own MBeans and
register them either with their MBeanServer of choice, or with a default
MBeanServer created by Artix (see “Relationship between runtime and
custom MBeans” on page 20).
18

Introduction
Figure 1 shows an overview of how the various components interact. The
Java custom MBeans are optional components.

Figure 1: Artix JMX Architecture
19

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
What can be managed Both Java and C++ Artix servers can have their runtime components
exposed as JMX MBeans. The following components can be managed:

• Bus

• Service

• Port

All runtime components are registered with an MBeanServer as Open
Dynamic MBeans. This ensures that they can be viewed by third-party
management consoles without any additional client-side support libraries.

All MBeans for Artix runtime components conform with Sun’s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use com.iona.instrumentation as their domain name
when creating ObjectNames.

See also “Further information” on page 22 for details of how to access
MBean Server hosting runtime MBeans either locally and remotely.

Relationship between runtime
and custom MBeans

The Artix runtime instrumentation provides an out-of-the-box JMX view of
C++ and Java services. Java developers can also create custom JMX
MBeans to manage Artix Java components such as services.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status and update
performance counters, while a custom MBean can provide details on the
status of a business loan request processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already (for example, calculating
service performance counters).

Note: An MBeanServerConnection, which is an interface implemented by
the MBeanServer is used in the examples in this chapter. This ensures that
the examples are correct for both local and remote access.
20

http://java.sun.com/products/JavaManagement/best-practices.html

Introduction
It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans are
named so that containment relationships can be easily established. For
example:

Using these names, you can infer the relationships between ports, services
and buses, and display or process a complete tree in the correct order. For
example, assuming that you write a custom MBean for a loan approval Java
service, you could name this MBean as follows:

For details on how to write custom MBeans, see Developing Artix
Applications in Java.

Accessing the MBeanServer
programmatically

Artix runtime support for JMX is enabled using configuration settings only.
You do not need to write any additional Artix code. When configured, you
can use any third party console that supports JMX Remote to monitor and
manage Artix servers.

If you wish to write your own JMX client application, this is also supported.
To access Artix runtime MBeans in a JMX client, you must first get a handle
to the MBeanServer. The following code extract shows how to access the
MBeanServer locally:

// Bus :
com.iona.instrumentation:type=Bus,name=demos.jmx_runtime

Service :
com.iona.instrumentation:type=Bus.Service,name="{http://ws.iona.

com}SOAPService",Bus=demos.jmx_runtime

// Port :
com.iona.instrumentation:type=Bus.Service.Port,name=SoapPort,Bus

.Service="{http://ws.iona.com}SOAPService",Bus=demos.jmx_runt
ime

com.iona.instrumentation:type=Bus.Service.LoanApprovalManager,na
me=LoanApprovalManager,Bus.Service="{http://ws.iona.com}SOAPS
ervice",Bus=demos.jmx_runtime

Bus bus = Bus.init(args);
MBeanServer mbeanServer =

(MBeanServer)bus.getRegistry().getEntry(ManagementConstants.M
BEAN_SERVER_INTERFACE_NAME);
21

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
The following shows how to access the MBeanServer remotely:

Please see the advanced/management/jmx_runtime demo for a complete
example on how to access, monitor and manage Artix runtime MBeans
remotely.

Further information For further information, see the following URLs:

JMX

http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote

http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/pac
kage-summary.html

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServerConnection

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerCo
nnection.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml

// The address of the connector server
String url = "service:jmx:rmi://host:1099/jndi/artix";
JMXServiceURL address = new JMXServiceURL(url);

// Create the JMXConnectorServer
JMXConnector cntor = JMXConnectorFactory.connect(address, null);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc = cntor.getMBeanServerConnection();
22

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Managed Bus Components
Managed Bus Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix bus components. For example, you
can use any JMX client to perform the following tasks:

• View bus attributes.

• Enable monitoring of bus services.

• Dynamically change logging levels for known subsystems.

If you wish to write your own JMX client, this section describes methods
that you can use to access Artix logging levels and subsystems, and provides
a JMX code example.

Bus MBean registration When an Artix bus is initialized, a corresponding JMX MBean is created and
registered for that bus with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

C++

For example, in an Artix C++ application, this occurs after the following
call:

When a bus is shutdown, a corresponding MBean is unregistered from the
MBeanServer.

Bus naming convention An Artix bus ObjectName uses the following convention:

String[] args = ...;
Bus serverBus = Bus.init(args);

Bus_var server_bus = Bus.init(argc, argv);

com.iona.instrumentation:type=Bus,name=busIdentifier
23

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Bus attributes The following bus component attributes can be managed by any JMX client:

servicesMonitoring is a global attribute which applies to all services and
can be used to change a performance monitoring status.

services is a list of object names that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered service
MBeans that belong to this bus.

For examples of bus attributes displayed in a JMX console, see “Using JMX
Consoles with Artix” on page 45.

Table 1: Managed Bus Attributes

Name Description Type Read/Write

scope Bus scope used to initialize a
bus.

String No

identifier Bus identifier, typically the
same as its scope.

String No

arguments Bus arguments, including the
executable name.

String[] No

servicesMonitoring Used to enable/disable
services performance
monitoring.

Boolean Yes

services A list of object names
representing services on this
bus.

ObjectName[] No

Note: By default, service performance monitoring is enabled when JMX
management is enabled in a standalone server, and disabled in an
it_container process.

When using a JMX console to manage a it_container server, you can
enable performance monitoring by setting the serviceMonitoring attribute
to true.
24

Managed Bus Components
Bus methods If you wish to write your own JMX client, you can use the following bus
methods to access logging levels and subsystems:

All the attributes and methods described in this section can be determined
by introspecting MBeanInfo for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
).

Example JMX client The following code extract from an example JMX client application shows
how to access bus attributes and logging levels:

Table 2: Managed Bus Methods

Name Description Parameters Return Type

getLoggingLevel Returns a logging level for
a subsystem.

subsystem (String) String

setLoggingLevel Sets a logging level for a
subsystem.

subsystem (String),
level (String)

 Boolean

setLoggingLevelPropagate Sets a logging level for a
subsystem with
propagation.

subsystem (String),
level (String),
propagate (Boolean)

 Boolean

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName busName = new ObjectName("com.iona.instrumentation:type=Bus,name=" + busScope);

if (mbsc.isRegistered(busName)) {
 throw new MBeanException("Bus mbean is not registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(busName);

// bus scope
String scope = (String)mbsc.getAttribute(busName, "scope");
// bus identifier
String identifier = (String)mbsc.getAttribute(busName, "identifier");
// bus arguments
String[] busArgs = (String[])mbsc.getAttribute(busName, "arguments");
25

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
// check servicesMonitoring attribute, then disable and reenable it
Boolean status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be enabled by default");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.FALSE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.FALSE)) {
 throw new MBeanException("Service monitoring should be disabled now");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.TRUE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be reenabled now");
}

// list of service MBeans
ObjectName[] serviceNames = (ObjectName[])mbsc.getAttribute(busName, "services");

// logging
String level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS logging level");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS.INITIAL_REFERENCE logging level");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("Wrong IT_BUS.CORE logging level");
}
26

Managed Bus Components
Boolean result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevel",
 new Object[] {"IT_BUS", "LOG_WARN"},
 new String[] {"subsystem", "level"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("IT_BUS.CORE logging level should not be changed");
}

// propagate
result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevelPropagate",
 new Object[] {"IT_BUS", "LOG_SILENT", Boolean.TRUE},
 new String[] {"subsystem", "level", "propagate"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
27

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Further information For information on Artix logging levels and subsystems, see Configuring and
Deploying Artix Solutions.

if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new Exception("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS.CORE logging level shouldve been set to LOG_SILENT");
}
28

../deploy/index.htm
../deploy/index.htm

Managed Service Components
Managed Service Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix service components. For example,
you can use any JMX client to perform the following tasks:

• View managed services.

• Dynamically change a service status.

• Monitor service performance data.

• Manage service ports.

The Artix locator and session manager services have also been
instrumented. These provide an additional set of attributes on top of those
common to all services.

If you wish to write your own JMX client, this section describes methods
that you can use and provides a JMX code example.

Service MBean registration When an Artix servant is registered for a service, a JMX Service MBean is
created and registered with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

Bus bus = Bus.init(args);

QName bankServiceName = new
QName("http://www.iona.com/bus/tests", "BankService");

Servant servant = new SingleInstanceServant(new BankImpl(),
serviceWsdlURL, bus);

bus.registerServant(servant, bankServiceName, "BankPort");
29

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
C++

For example, in an Artix C++ application, this happens after the following
call:

When a service is removed, a corresponding MBean is unregistered from the
MBeanServer.

Service naming convention An Artix service ObjectName uses the following convention:

In this format, a name has an expanded service QName as its value. This
value includes double quotes to permit for characters that otherwise would
not be allowed.

Service attributes The following service component attributes can be managed by any JMX
client:

Bus_var server_bus = Bus.init(argc, argv);

BankServiceImpl servant;
bus->register_servant(
 servant,
 wsdl_location,
 QName("http://www.iona.com/bus/tests", "BankService")
);

com.iona.instrumentation:type=Bus.Service,name="{namespace}local
name",Bus=busIdentifier

Table 3: Managed Service Attributes

Name Description Type Read/Write

name Service QName in expanded
form.

String No

state Service state. String No

serviceCounters Service performance data. CompositeData No

ports A list of ObjectNames
representing ports for this
service.

ObjectName[] No
30

Managed Service Components
name is an expanded QName, such as
{http://www.iona.com/bus/tests}BankService.

state represents a current service state that can be manipulated by stop
and start methods.

ports is a list of ObjectNames that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered Port
MBeans which happen to belong to this Service.

serviceCounters attributes

The following service performance attributes can be retrieved from the
serviceCounters attribute:

For examples of service attributes displayed in a JMX console, see “Using
JMX Consoles with Artix” on page 45

Table 4: serviceCounters Attributes

Name Description Type

averageResponseTime Average response time in
milliseconds.

Float

requestsOneway Total number of oneway requests
to this service.

Long

requestsSinceLastCheck Number of requests happened
since last check.

Long

requestsTotal Total number of requests
(including oneway) to this service.

Long

timeSinceLastCheck Number of seconds elapsed since
last check.

Long

totalErrors Total number of
request-processing errors.

Long
31

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Service methods If you wish to write your own JMX client, you can use the following service
methods to manage a specific service:

All the attributes and methods described in this section can be accessed by
introspecting MBeanInfo for the Service component.

Example JMX client The following code extract from an example JMX client application shows
how to access service attributes and methods:

Table 5: Managed Service Attributes

Name Description Parameters Return Type

name Start (activate) a service. None Void

state Stop (deactivate) a service. None Void

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://www.iona.com/hello_world_soap_http}SOAPService\""

+",Bus=" + busScope);

if (!mbsc.isRegistered(serviceName)) {
 throw new MBeanException("Service MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(serviceName);

// service name
String name = (String)mbsc.getAttribute(serviceName, "name");

// check service state attribute then reset it by invoking stop and start methods

String state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated");
}

mbsc.invoke(serviceName, "stop", null, null);
32

Managed Service Components
Further information MBeanInfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CompositeData

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/Co
mpositeData.html

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("DEACTIVATED")) {
 throw new MBeanException("Service should be deactivated now");
}

mbsc.invoke(serviceName, "start", null, null);

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated again");
}

// check service counters

CompositeData counters = (CompositeData)mbsc.getAttribute(serviceName, "serviceCounters");
Long requestsTotal = (Long)counters.get("requestsTotal");
Long requestsOneway = (Long)counters.get("requestsOneway");
Long totalErrors = (Long)counters.get("totalErrors");
Float averageResponseTime = (Float)counters.get("averageResponseTime");
Long requestsSinceLastCheck = (Long)counters.get("requestsSinceLastCheck");
Long timeSinceLastCheck = (Long)counters.get("timeSinceLastCheck");

// ports
ObjectName[] portNames = (ObjectName[])mbsc.getAttribute(serviceName, "ports");
33

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Artix Locator Service

Overview The Artix locator can also be exposed as a JMX MBean. A locator managed
component is a service managed component that can be managed like any
other bus service with the same set of attributes and methods. The Artix
locator also exposes it own specifc set of attributes.

Locator attributes An Artix locator MBean exposes the following locator-specific attributes:

Table 6: Locator MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceLookups Number of service lookup
requests.

Integer

serviceLookupErrors Number of service lookup
failures.

Integer

registeredNodeErrors Number of node (peer ping)
failures.

Integer
34

Managed Service Components
Example JMX client The following code extract from an example JMX client application shows
how to access locator attributes and methods:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://ws.iona.com/2005/11/locator}LocatorService\""

+",Bus=" + busScope);

// use common attributes and methods, see an example above

// Locator specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer nodeErrors = (Integer)mbsc.getAttribute(servicetName, "registeredNodeErrors");
Integer lookupErrors = (Integer)mbsc.getAttribute(serviceName, "serviceLookupErrors");
Integer lookups = (Integer)mbsc.getAttribute(serviceName, "serviceLookups");
35

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
Artix Session Manager Service

Overview The Artix session manager can also be exposed as a JMX MBean. A session
manager component is a service managed component that can be managed
like any other bus service with the same set of attributes and methods. The
Artix session manager also exposes it own specifc set of attributes.

Session manager attributes An Artix session manager MBean exposes the following session
manager-specific attributes:

Example JMX client The following code extract from an example JMX client application shows
how to access session manager attributes and methods:

Table 7: Session Manager MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceGroups Number of service groups. Integer

serviceSessions Number of service sessions Integer

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +

",name=\"{http://ws.iona.com/sessionmanager}SessionManagerService\"" +",Bus=" +
busScope);

// use common attributes and methods, see an example above

// SessionManager specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer serviceGroups = (Integer)mbsc.getAttribute(serviceName, "serviceGroups");
Integer serviceSessions = (Integer)mbsc.getAttribute(serviceName, "serviceSessions");
36

Managed Port Components
Managed Port Components

Overview This section describes the attributes that you can use to manage JMX
MBeans representing Artix port components. For example, you can use any
JMX client to perform the following tasks:

• Monitor managed ports.

• View message and request interceptors.

If you wish to write your own JMX client, this section also shows an example
of accessing these attributes in JMX code.

Port MBean registration Port managed components are typically created as part of a service servant
registration. When service is activated, all supported ports will also be
registered as MBeans.

When a service is removed, a corresponding Service MBean, as well as all
its child Port MBeans are unregistered from the MBeanServer.

Naming convention An Artix port ObjectName uses the following convention:

Port attributes The following bus component attributes can be managed by any JMX client:

com.iona.instrumentation:type=Bus.Service.Port,name=portName,Bus
.Service="{namespace}localname",Bus=busIdentifier

Table 8: Supported Service Attributes

Name Description Type Read/Write

name Port name. String No

address Transport specific address
representing an endpoint.

String No

interceptors List of interceptors for this
port.

String[] No
37

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
interceptors

The interceptors attribute is a list of interceptors for a given port.
Internally, interceptors is an instance of TabularData that can be
considered an array/table of CompositeData. However, due to a current
limitation of CompositeData, (no insertion order is maintained, which makes
it impossible to show interceptors in the correct order), the interceptors are
currently returned as a list of strings, where each String has the following
format:

In this format, type can be CPP or Java; level can be Message or Request.

It is most likely that this limitation will be fixed in a future JDK release,
probably JDK 1.7 because the enhancement request has been accepted by
Sun. In the meantime, interceptors details can be retrieved by parsing a
returned String array.

For examples of port attributes displayed in a JMX console, see “Using JMX
Consoles with Artix” on page 45

transport An optional attribute
representing a transport for
this port.

ObjectName[] No

Table 8: Supported Service Attributes

Name Description Type Read/Write

[name]: name [type]: type [level]: level [description]: optional
description
38

Managed Port Components
Example JMX client The following code extract from an example JMX client application shows
how to access port attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName portName = new ObjectName("com.iona.instrumentation:type=Bus.Service.Port" +
 ",name=SoapPort" +

",Bus.Service=\"{http://www.iona.com/hello_world_soap_http}SOAPService\"" +",Bus=" +
busScope);

if (!mbsc.isRegistered(portName)) {
 throw new MBeanException("Port MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(portName);

// port name
String name = (String)mbsc.getAttribute(portName, "name");

// port address
String address = (String)mbsc.getAttribute(portName, "address");

// check interceptors

String[] interceptors = (String[])mbsc.getAttribute(portName, "interceptors");
if (interceptors.length != 6) {
 throw new MBeanException("Number of port interceptors is wrong");
}

handleInterceptor(interceptors[0],
 "MessageSnoop",
 "Message",
 "CPP");
handleInterceptor(interceptors[1],
 "MessagingPort",
 "Request",
 "CPP");
handleInterceptor(interceptors[2],
 "http://schemas.xmlsoap.org/wsdl/soap/binding",
 "Request",
 "CPP");
39

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX
For example, the handleInterceptor() function may be defined as follows:

handleInterceptor(interceptors[3],
 "TestInterceptor",
 "Request",
 "Java");
handleInterceptor(interceptors[4],
 "bus_response_monitor_interceptor",
 "Request",
 "CPP");
handleInterceptor(interceptors[5],
 "ServantInterceptor",
 "Request",
 "CPP");

private void handleInterceptor(String interceptor,
 String name,
 String level,
 String type) throws Exception {
 if (interceptor.indexOf("[name]: " + name) == -1 ||
 interceptor.indexOf("[type]: " + type) == -1 ||
 interceptor.indexOf("[level]: " + level) == -1) {

 throw new MBeanException("Wrong interceptor details");
 }
 // analyze this interceptor further
}

40

CHAPTER 2

Configuring JMX in
an Artix Runtime
This chapter explains how to configure an Artix runtime to be
managed with Java Management Extensions (JMX).

In this chapter This chapter discusses the following topic:

Artix JMX Configuration page 42
41

CHAPTER 2 | Configuring JMX in an Artix Runtime
Artix JMX Configuration

Overview This section explains the Artix configuration variable settings that you must
configure to enable JMX monitoring of the Artix runtime, and access for
remote JMX clients.

Enabling the management plugin To expose the Artix runtime using JMX MBeans, you must enable a
bus_management plug-in as follows:

This setting enables local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into Open Dynamic
MBeans and registers them with a local MBeanServer.

Configuring remote JMX clients To enable remote JMX clients to access runtime MBeans, use the following
configuration settings:

These settings allow for both local and remote access.

Specifying a remote access URL

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. Using this configuration, you can use the following
JNDI-based JMXServiceURL to connect remotely:

jmx_local
{
 plugins:bus_management:enabled="true";
};

jmx_remote
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
};

service:jmx:rmi:///jndi/rmi://host:1099/artix
42

Artix JMX Configuration
Configuring a remote access port

To specify a different port for remote access, use the following configuration
variable:

You can then use the following JMXServiceURL:

Configuring a stub-based
JMXServiceURL

You can also configure the connector to use a stub-based JMXServiceURL
as follows:

See the javax.management.remote.rmi package for more details on remote
JMX.

Publishing the JMXServiceURL to
a local file

You can also request that the connector publishes its JMXServiceURL to a
local file:

The following entry can be used to override the default file name:

plugins:bus_management:connector:port="2000";

service:jmx:rmi:///jndi/rmi://host:2000/artix

jmx_remote_stub
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
 plugins:bus_management:connector:registry:required="false";
};

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:file="../../service.url";
43

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

CHAPTER 2 | Configuring JMX in an Artix Runtime
Further information For further information, see the following:

RMI Connector

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/pack
age-summary.html
44

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

CHAPTER 3

Using JMX
Consoles with
Artix
You can use third-party management consoles that support
JMX Remote to monitor and manage Artix servers (for example,
JConsole and MC4J). You can view the status of a bus instance,
stop or start a service, change bus logging levels, or view
interceptor chains. For convenience, Artix installs the MC4J
management console, which you can run out-of-the-box with
the JMX demo.

In this chapter This chapter discusses the following topics:

Managing Artix Services with MC4J page 46

Managing Artix Services with JConsole page 65

Managing Artix Services with the JMX HTTP adaptor page 69
45

CHAPTER 3 | Using JMX Consoles with Artix
Managing Artix Services with MC4J

Overview You can use the open source MC4J management console to view service
attributes and operations, stop or start a service, view interceptor chains,
and change bus logging levels dynamically.

Artix installs MC4J into the InstallDir\artix\4.1\mc4j directory. This
section uses the jmx_runtime Artix demo to show a detailed walk-through
example of how to use MC4J to monitor and manage an Artix server.

Starting the MC4J console To start the MC4J management console, perform the following steps:

1. Change directory to InstallDir\artix\4.1\bin.

2. Run the following command:

Running the JMX demo Before creating a new server connection in the MC4J console, perform the
following steps:

1. Change to the demo directory:

cd InstallDir\artix\4.1\demos\advanced\management\jmx_runtime

2. Build the C++ or Java demo:

3. Run the C++ or Java server:

Windows > start_mc4j.bat

UNIX % ./start_mc4j

C++ nmake

Java ant

C++ run_cxx_server.bat

Java run_java_server.bat
46

Managing Artix Services with MC4J
Creating a new server connection To create a new server connection in the MC4J console, perform the
following steps:

1. Select MC4J Connections, and right click, as shown in Figure 2.

Figure 2: Connecting to a Server
47

CHAPTER 3 | Using JMX Consoles with Artix
2. Click Connection server… to launch the My wizard dialog, as shown in
Figure 3.

3. In the My Wizard dialog, select JSR160 as your server connection type.

4. Enter JMX demo as your connection Name.

5. Enter the contents of the following file as the Server URL:
demos/advanced/management/jmx_runtime/etc/connector.url

Figure 3: Server Connection Details
48

Managing Artix Services with MC4J
6. Click Next to go to next screen, as shown in Figure 4.

7. Click Finish to finish the creation of a new server connection.

Figure 4: Creation of Server Connection
49

CHAPTER 3 | Using JMX Consoles with Artix
8. In the left panel of the MC4J console, a new server connection named
JMX demo is created, as shown in Figure 5:

Monitoring and managing a
service

To monitor and manage an example service in the Mc4J console, perform
the following steps:

1. Expand the MBeans tree node in the left panel of MC4J.

2. Double click on the following tree node, as shown in Figure 6:

Name='{http://www.iona.com/jmx_runtime}SOAPService',type=Bus.

Service

Figure 5: New Server Connection
50

Managing Artix Services with MC4J
This displays the attributes and operations of the SOAPService in the
service properties dialog.

Figure 6: Viewing Service Properties
51

CHAPTER 3 | Using JMX Consoles with Artix
3. Click the … button at the right of the serviceCounters attribute in the
service properties dialog. This displays the details for the
serviceCounters attribute, as shown in Figure 7.

4. Click the … button at right of the stop operation on the service
properties dialog. This displays a dialog for the stop operation, as
shown in Figure 8.

Figure 7: Viewing Service Counters Properties

Figure 8: Stopping a Service
52

Managing Artix Services with MC4J
5. Click Execute… to stop the service. In the SOAPservice properties
dialog, the state attribute of the service becomes DEACTIVATED, as
shown in Figure 9.

6. Click the … button at the right of start operation on SOAP service
properties. This displays a dialog for the start operation, which is the
same as the one shown in Figure 8.

Figure 9: Deactivated Service
53

CHAPTER 3 | Using JMX Consoles with Artix
7. Click Execute… to restart the service. In the service properties dialog,
the state of the SOAPService becomes ACTIVATED, as shown in
Figure 10.

Figure 10: Activated a Service
54

Managing Artix Services with MC4J
Monitoring a service port To monitor an example service port in the Mc4J console, perform the
following steps:

1. Click the following node in the left panel of the MC4J console:

name=SoapPort,tyoe=Bus.Service.Port

This displays the attributes for SoapPort, as shown in Figure 11.

Figure 11: Viewing Port Properties
55

CHAPTER 3 | Using JMX Consoles with Artix
2. Click the … button at the right of the interceptors attribute in
Figure 11. This displays the interceptors properties for the selected
bus, as shown in Figure 12.

Further information For full details on using the MC4J management console, see the MC4J
documentation:

http://mc4j.org/confluence/display/MC4J/User+Guide

Figure 12: Viewing Interceptor Properties
56

http://mc4j.org/confluence/display/MC4J/User+Guide

Managing Artix Services with MC4J
Managing Logging Levels with MC4J

Overview This section uses the jmx_runtime Artix demo to show a detailed
walk-through example of how to use the MC4J console to manage Artix bus
logging levels dynamically at runtime.

Defined demo logging
configuration

The following logging configuration is defined in the demos.jmx_runtime
configuration scope:

This means that the logging level for IT_BUS, and all of its child subsystems,
is LOG_ERROR. The only exception is IT_BUS.CORE, which has a logging level
of LOG_INFO_LOW.

Viewing logging levels for a
subsystem

To view logging levels for a specified Artix logging subsystem in MC4J,
perform the following steps:

1. Expand the following tree node in the left panel of MC4J:

name=demos.jmx_runtime.server,type=Bus

2. Expand the Operations node.

3. Double click getLoggingLevel. This displays the My Wizard screen, as
shown in Figure 13.

Logging Subsystem Logging Level

IT_BUS LOG_ERROR

IT_BUS.CORE LOG_INFO_LOW
57

CHAPTER 3 | Using JMX Consoles with Artix
You can use this wizard to view the logging level of a specified
subsystem.

Figure 13: Logging Viewing Wizard
58

Managing Artix Services with MC4J
4. Enter the IT_BUS subsystem, as shown in Figure 14.

5. Click Next. This displays the logging level of IT_BUS as LOG_ERROR, as
shown in Figure 15.

6. Click Finish.

Figure 14: Entering a Logging Subsystem
59

CHAPTER 3 | Using JMX Consoles with Artix
7. Similarly, use the My Wizard screen to enter a logging subsystem of
IT_BUS.INITIAL_REFERENCE.

8. Click Next. The logging level for the IT_BUS.INITIAL_REFERENCE
subsystem is also displayed as LOG_ERROR. The
IT_BUS.INITIAL_REFERENCE subsystem inherits the same logging level
from its IT_BUS parent.

9. Finally, use the My Wizard screen to enter a logging subsystem of
IT_BUS.CORE.

10. Click Next. The logging level for IT_BUS.CORE is displayed as
LOG_INFO_LOW. The logging level for IT_BUS.CORE has been configured
differently from its IT_BUS parent (see “Defined demo logging
configuration” on page 57).

Figure 15: Displayed Logging Level
60

Managing Artix Services with MC4J
Setting the logging level for a
subsystem

To set the logging level for a specified logging subsystem, perform the
following steps:

1. Double click the setLoggingLevel node in the left panel of the MC4J
console. This displays the My Wizard screen, as show in Figure 16.

2. Enter IT_BUS for the subsystem, and LOG_WARN for the logging level, as
as show in Figure 16.

Figure 16: Setting a Logging Level
61

CHAPTER 3 | Using JMX Consoles with Artix
3. Click Next. This displays true, as shown in Figure 17, which means
that the logging level is set successfully.

4. View the logging level of the IT_BUS subsystem to verify your setting
(as described in “Viewing logging levels for a subsystem” on page 57).
The logging level for IT_BUS is now LOG_WARN.

5. View the logging level for the IT_BUS.INITIAL_REFERENCE subsystem.
The logging level for IT_BUS.INITIAL_REFERENCE is also LOG_WARN.

6. View the logging level for IT_BUS.CORE. The logging level of
IT_BUS.CORE is still LOG_INFO_LOW. It does not inherit the LOG_WARN
level from its parent because its logging level has been configured
separately (see “Defined demo logging configuration” on page 57).

Figure 17: Logging Level Set Successfully
62

Managing Artix Services with MC4J
Setting the logging level for a
subsystem with propagation

To set a logging level to override a child subsystem with a separately
configured logging level, perform the following steps:

1. Double click the setLoggingLevelPropagate tree node in left panel of
MC4J. This displays the My Wizard screen, as shown in Figure 17.

2. Enter IT_BUS as the subsystem, and LOG_SILENT as the logging level.

3. Click Next. The returned value is true, which means that the logging
level is set successfully.

4. View the logging level for IT_BUS (as described in “Viewing logging
levels for a subsystem” on page 57). The logging level for IT_BUS is
LOG_SILENT.

Figure 18: Propagating a Logging Level
63

CHAPTER 3 | Using JMX Consoles with Artix
5. View the logging level for IT_BUS.INITIAL_REFERENCE. The logging
level for IT_BUS.INITIAL_REFERENCE is also LOG_SILENT.

6. View the logging level for IT_BUS.CORE. The logging level for
IT_BUS.CORE is also LOG_SILENT. Specifying propagation overrides log
levels for all child logging subsystems.

Further information For detailed information on Artix logging, see Configuring and Deploying
Artix Solutions.
64

../deploy/index.htm
../deploy/index.htm

Managing Artix Services with JConsole
Managing Artix Services with JConsole

Overview You can also use JConsole, which is provided with JDK 1.5, to monitor and
manage Artix applications. JConsole displays Artix runtime managed
components in a hierarchical tree, as shown in Figure 19.

Using JConsole To use JConsole, perform the following steps:

1. Start up JConsole using the following command:
JDK_HOME/bin/jconsole

2. Select the Advanced tab.

3. Enter or paste a JMXServiceURL (either the default URL, or one copied
from a published connector.url file).

Managing services Figure 19 shows the attributes displayed for a managed service component
(for example, the serviceCounters performance metrics displayed in the
right pane). For detailed information on these attributes, see “Service
attributes” on page 30.

65

CHAPTER 3 | Using JMX Consoles with Artix
Figure 19: Managed Service in JConsole
66

Managing Artix Services with JConsole
Managing ports Figure 20 shows the attributes displayed for a managed port component (for
example, the interceptors list displayed in the right pane). For detailed
information on these attributes, see “Port attributes” on page 37.

Figure 20: Managed Port in JConsole
67

CHAPTER 3 | Using JMX Consoles with Artix
Managing containers Figure 21 shows an example of a locator service deployed into an Artix
container. For more information, see “Locator attributes” on page 34.

Further information For more information on using JConsole, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Figure 21: Managed Locator in JConsole

Note: When using a JMX console to manage a service running in an Artix
container, set the serviceMonitoring attribute to true to enable service
performance monitoring (see “Bus attributes” on page 24).
68

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Managing Artix Services with the JMX HTTP adaptor
Managing Artix Services with the JMX HTTP
adaptor

Overview You can also manage Artix services using the default HTTP adaptor console
that is provided with the JMX reference implementation. This console is
browser-based, as shown in Figure 22.

Using the JMX HTTP adaptor To use the JMX HTTP adaptor, perform the following steps:

1. Specify following configuration settings:

2. Enter the following URL in your browse:

http://localhost:7659

This displays the main HTTP adaptor management view, as shown in
Figure 22.

plugins:bus_management:http_adaptor:enabled="true";
plugins:bus_management:http_adaptor:port="7659";
69

CHAPTER 3 | Using JMX Consoles with Artix
Figure 22: HTTP Adaptor Main View
70

Managing Artix Services with the JMX HTTP adaptor
Figure 23 shows the attributes displayed for a managed bus component (for
example, the services that it includes). For detailed information on these
attributes, see “Bus attributes” on page 24.

Further information For further information on using the HTTP JMX adaptor, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Figure 23: HTTP Adaptor Bus View
71

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

CHAPTER 3 | Using JMX Consoles with Artix
72

Index

A
address 37
arguments 24
averageResponseTime 31

B
bus

attributes 24
ObjectName 23

bus_management 42

C
CompositeData 38
connector.url 65
custom JMX MBeans 20

G
getLoggingLevel 25

H
HTTP adaptor 69

I
identifier 24
interceptors 37, 67

J
Java Management Extensions 17, 41
JConsole 65
JMX 17, 41
JMX HTTP adaptor 69
JMX Remote 21
JMXServiceURL 42

L
locator

managed attributes 34
logging

levels 25
subsystems 25

M
Managed Beans 18
management consoles 45
MBeans 18
MBeanServer 18
MBeanServerConnection 20
MC4J 46

P
plugins:bus_management:connector:enabled 42
plugins:bus_management:connector:registry:require

d 43
plugins:bus_management:connector:url:file 43
plugins:bus_management:connector:url:publish 43
plugins:bus_management:enabled 42
plugins:bus_management:http_adaptor:enabled 69
plugins:bus_management:http_adaptor:port 69
port

name 37
ObjectName 37

ports 30

R
registeredEndpoints 34, 36
registeredNodeErrors 34
registeredServices 34, 36
remote access port 43
remote JMX clients 42
requestsOneway 31
requestsSinceLastCheck 31
requestsTotal 31
RMI Connector 42
runtime MBeans 20

S
scope 24
service

attributes 30
managed components 29
methods 32
name 30
ObjectName 30
73

INDEX
serviceCounters 30
serviceGroups 36
serviceLookupErrors 34
serviceLookups 34
services 24
serviceSessions 36
servicesMonitoring 24
session manager

managed attributes 36
setLoggingLevel 25

setLoggingLevelPropagate 25
state 30

T
TabularData 38
timeSinceLastCheck 31
totalErrors 31
transport 38
74

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Monitoring and Managing an Artix Runtime with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Artix Locator Service
	Artix Session Manager Service

	Managed Port Components

	Configuring JMX in an Artix Runtime
	Artix JMX Configuration

	Using JMX Consoles with Artix
	Managing Artix Services with MC4J
	Managing Logging Levels with MC4J

	Managing Artix Services with JConsole
	Managing Artix Services with the JMX HTTP adaptor

	Index

