
Artix ESB
Writing Artix ESB Contracts

Version 5.1
December 2007

Making Software Work Together™

Writing Artix ESB Contracts
IONA Technologies

Version 5.1

Published 28 Mar 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 9

What is Covered in This Book ... 10
Who Should Read This Book .. 11
How to Use This Book .. 12
The Artix ESB Documentation Library ... 13

Introducing WSDL Contracts .. 15
WSDL Elements .. 16
Structure of a WSDL Contract ... 17
Designing a contract ... 18

Defining Logical Data Units ... 19
Mapping Data into Logical Data Units ... 20
Adding Data Units to a Contract .. 21
XML Schema Simple Types .. 23
Defining Complex Data Types .. 26

Defining Data Structures .. 27
Defining Arrays ... 31
Defining Types by Extension ... 33
Defining Types by Restriction .. 34
Defining Enumerated Types .. 36

Defining Elements .. 37
Defining Logical Messages Used by a Service .. 39
Defining Your Logical Interfaces .. 45
Index .. 49

3

4

List of Tables
1. Complex Type Descriptor Elements ... 28
2. Part Data Type Attributes ... 41
3. Operation Message Elements .. 46
4. Attributes of the Input and Output Elements 47

5

6

List of Examples
1. Schema Entry for a WSDL Contract .. 21
2. Defining an Element with a Simple Type 23
3. Simple Structure .. 27
4. A Complex Type ... 27
5. Simple Complex Choice Type .. 28
6. Simple Complex Type with Occurrence Constraints 29
7. Simple Complex Type with minOccurs Set to Zero 29

8. Complex Type with an Attribute ... 30
9. Complex Type Array .. 31
10. Syntax for a SOAP Array derived using wsdl:arrayType 31

11. Definition of a SOAP Array .. 32
12. Syntax for a SOAP Array derived using an Element 32
13. Type Defined by Extension .. 33
14. int as Base Type .. 34
15. SSN Simple Type Description .. 35
16. Syntax for an Enumeration ... 36
17. widgetSize Enumeration ... 36
18. Reused Part .. 41
19. personalInfo lookup Method .. 42
20. RPC WSDL Message Definitions .. 42
21. Wrapped Document WSDL Message Definitions 42
22. personalInfo lookup interface .. 47
23. personalInfo lookup port type .. 48

7

8

Preface

Table of Contents
What is Covered in This Book ... 10
Who Should Read This Book .. 11
How to Use This Book .. 12
The Artix ESB Documentation Library ... 13

9

What is Covered in This Book
This book describes how to write an abstract service definition using Web
Service Description Language (WSDL). An abstract service definition describes
the operations exposed by a service in terms of the messages exchanged
during the execution of each operation. These messages are described as
XML documents that are implementation neutral. The abstract service
definition does not describe how the messages are mapped to data that is
transmitted over a network or what communication protocols an
implementation of the defined service will use.

10

What is Covered in This Book

Who Should Read This Book
This book is intended for users of Artix ESB who are not familiar with WSDL.

11

Who Should Read This Book

How to Use This Book
This book is organized as follows:

• Introducing WSDL Contracts provides a brief overview of the concepts
needed to understand a WSDL contract. It also provides an overview of the
structure of a WSDL contract.

• Defining Logical Data Units describes how to define data types using XML
Schema.

• Defining Logical Messages Used by a Service describes how data types
are built up into the messages that are used in the definition of a WSDL
interface.

• Defining Your Logical Interfaces describes how to define a service interface
in WSDL. Since interface definitions are built up from the elements
discussed, you should be sure you understand the concepts in the previous
chapters before reading this chapter.

For imformation on adding the physical details to a WSDL document see
Bindings and Transports, C++ Runtime or Bindings and Transports, Java
Runtime.

12

How to Use This Book

http://www.iona.com/support/docs/artix/5.0/bindings/cpp/cxx_tb.pdfindex.html
http://www.iona.com/support/docs/artix/5.0/bindings/java/java_tb.pdfindex.html
http://www.iona.com/support/docs/artix/5.0/bindings/java/java_tb.pdfindex.html

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

13

The Artix ESB Documentation Library

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm

14

Introducing WSDL Contracts
Summary

WSDL contracts define services using Web Service Description Language and a number of possible extensions.
The contracts have a logical part and a concrete part. The abstract part of the contract defines the service in
terms of implementation neutral data types and messages. The concrete part of the contract defines how an
endpoint implementing a service will interact with the outside world.

Table of Contents
WSDL Elements .. 16
Structure of a WSDL Contract ... 17
Designing a contract ... 18

The recommended approach to design services is to define your services in
WSDL and XML Schema before writing any code. The GUI tools provided
with Artix ESB provide wizards that automate most of the tasks involved in
creating a well-formed and valid WSDL document. When hand-editing WSDL
contracts you will need to ensure that the contract is valid, as well as correct.
To do that you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org [http://www.w3.org/TR/wsdl].

15

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

WSDL Elements
A WSDL document is made up of the following elements:

• definitions—the root element of a WSDL contract. The attributes of this

element specify the name of the WSDL contract, the contract’s target
namespace, and the shorthand definitions for the namespaces referenced
by the WSDL.

• types—the XML Schema definitions for the data units that form the building

blocks of the messages used by a service. For information about defining
data types see Defining Logical Data Units.

• message—the description of the messages exchanged during invocation

of a services operations. These elements define the arguments of the
operations making up your service. For information on defining messages
see Defining Logical Messages Used by a Service.

• portType—a collection of operation elements describing the logical

interface of a service. For information about defining port types see Defining
Your Logical Interfaces.

• operation—the description of an action performed by a service. Operations

are defined by the messages passed between two endpoints when the
operation is invoked. For information on defining operations see Operations.

• binding—the concrete data format specification for an endpoint. A

binding element defines how the abstract messages are mapped into the

concrete data format used by an endpoint. This is where specifics such as
parameter order and return values are specified.

• service—a collection of related port elements. These elements are

repositories for organizing endpoint definitions.

• port—the endpoint defined by a binding and a physical address. These

elements bring all of the abstract definitions together, combined with the
definition of transport details, and define the physical endpoint on which
a service is exposed.

16

WSDL Elements

Structure of a WSDL Contract
A WSDL contract is, at its simplest, a collection of elements contained within
a root definition element. These elements describe a service and how an

endpoint implementing that service is accessed.

When looked at closely, a WSDL contract has two distinct parts:

• An abstract part that defines the service in implementation neutral terms.

• A concrete part that defines how an endpoint implementing the service is
exposed on a network.

The logical part
The logical part of a WSDL contract contains the types, the message, and

the portType elements. It describes the service’s interface and the messages

exchanged by the service. Within the types element, XML Schema is used

to define the structure of the data that makes up the messages. A number of
message elements are used to define the structure of the messages used by

the service. The portType element contains one or more operation elements

that define the messages sent by the operations exposed by the service.

The concrete part
The concrete part of a WSDL contract contains the binding and the service

elements. It describes how an endpoint that implements the service connects
to the outside world. The binding elements describe how the data units

described by the message elements are mapped into a concrete, on-the-wire

data format, such as SOAP. The service elements contain one or more port

elements which define the endpoints implementing the service.

17

Structure of a WSDL Contract

Designing a contract
To design a WSDL contract for your services you must perform the following
steps:

1. Define the data types used by your services.

2. Define the messages used in by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the
concrete representation of the data on the wire.

5. Define the transport details for each of the services.

18

Designing a contract

Defining Logical Data Units
Summary

When describing a service in a WSDL contract complex data types are defined as logical units using XML Schema.

Table of Contents
Mapping Data into Logical Data Units ... 20
Adding Data Units to a Contract .. 21
XML Schema Simple Types .. 23
Defining Complex Data Types .. 26

Defining Data Structures .. 27
Defining Arrays ... 31
Defining Types by Extension ... 33
Defining Types by Restriction .. 34
Defining Enumerated Types .. 36

Defining Elements .. 37

When defining a service, the first thing you need to consider is how the data
used as parameters for the exposed operations are going to be represented.
Unlike applications that are written in a programming language that uses
fixed data structures, services must define their data in logical units that can
be consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data
types used by the physical implementations of the service.

2. Combining the logical units into messages that are passed between
endpoints to carry out the operations.

This chapter discusses the first step. Defining Logical Messages Used by a
Service discusses the second step.

19

Mapping Data into Logical Data Units
The interfaces used to implement a service define the data representing
operation parameters as XML documents. If you are defining an interface for
a service that is already implemented, you need to translate the data types
of the implemented operations into discreet XML elements that can be
assembled into messages. If you are starting from scratch, you need to
determine the building blocks from which your messages are built in such a
way as they make sense from an implementation standpoint.

Available type systems for
defining service data units According to the WSDL specification, you can use any type system you like

to define data types in a WSDL contract. However, the W3C specification
states that XML Schema is the preferred canonical type system for a WSDL
document. Therefore, XML Schema is the intrinsic type system in Artix ESB.

XML Schema as a type system
XML Schema is used to define how an XML document is structured. This
done by defining the elements that make up the document. These elements
can use native XML Schema types, like xsd:int, or they can use types that
are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types.
By combining type definitions and element definitions you can create intricate
XML documents that can contain complex data.

When used in WSDL XML Schema defines the structure of the XML document
that will hold the data used to interact with a service. When defining the data
units used by your service, you can define them as types that specify the
structure of the message parts. You can also define your data units as elements
that will make up the message parts.

Considerations for creating your
data units You may consider simply creating logical data units that map directly to the

types you envision using when implementing the service. While this approach
works and closely follows the model of building RPC-style applications, it is
not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides
a number of guidelines for defining data units that can be accessed at
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES.
In addition, the W3C also provides guidelines on using XML Schema to
represent data types in WSDL documents:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

20

Mapping Data into Logical Data Units

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

Adding Data Units to a Contract
Depending on how you choose to create your WSDL contract, creating new
data definitions requires varying amounts of knowledge. The Artix ESB GUI
tools provide a number of aids for describing data types using XML Schema.
Other XML editors offer different levels of assistance. Regardless of the editor
you choose, it is a good idea to at least have some knowledge about what
the resulting contract will look like.

Procedure
Defining the data used in an WSDL contract involves seven steps:

1. Determine all the data units used in the interface described by the
contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 1, “Schema Entry for a

WSDL Contract”, as a child of the type element.

The targetNamespace attribute is where you specify the namespace

under which your new data types are defined. The remaining entries
should not be changed.

Example 1. Schema Entry for a WSDL Contract
<schema targetNamespace="http://schemas.iona.com/bank.idl"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

4. For each complex type that is a collection of elements, define the data
type using a complexType element. See Defining Data Structures.

5. For each array, define the data type using a complexType element. See

Defining Arrays.

6. For each complex type that is derived from a simple type, define the data
type using a simpleType element. See Defining Types by Restriction.

7. For each enumerated type, define the data type using a simpleType

element. See Defining Enumerated Types.

21

Adding Data Units to a Contract

8. For each element, define it using an element element. See Defining

Elements.

22

Adding Data Units to a Contract

XML Schema Simple Types
If a message part is going to be of a simple type you do not need to create a
type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types
XML Schema simple types are mainly placed in the element elements used

in the types section of your contract. They are also used in the base attribute

of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to specify
that an element is of type int, you would enter xsd:int in its type attribute

as shown in Example 2, “Defining an Element with a Simple Type”.

Example 2. Defining an Element with a Simple Type
<element name="simpleInt" type="xsd:int" />

Supported XSD simple types
Artix ESB supports the following XML Schema simple types:

• xsd:string

• xsd:normalizedString

• xsd:int

• xsd:unsignedInt

• xsd:long

• xsd:unsignedLong

• xsd:short

• xsd:unsignedShort

• xsd:float

• xsd:double

• xsd:boolean

23

XML Schema Simple Types

• xsd:byte

• xsd:unsignedByte

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger

• xsd:decimal

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:QName

• xsd:base64Binary

• xsd:hexBinary

• xsd:ID

• xsd:token

• xsd:language

• xsd:Name

• xsd:NCName

• xsd:NMTOKEN

• xsd:anySimpleType

• xsd:anyURI

• xsd:gYear

• xsd:gMonth

24

XML Schema Simple Types

• xsd:gDay

• xsd:gYearMonth

• xsd:gMonthDay

25

XML Schema Simple Types

Defining Complex Data Types

Table of Contents
Defining Data Structures .. 27
Defining Arrays ... 31
Defining Types by Extension ... 33
Defining Types by Restriction .. 34
Defining Enumerated Types .. 36

XML Schema provides a flexible and powerful mechanism for building complex
data structures from its simple data types. You can create data structures by
creating a sequence of elements and attributes. You can also extend your
defined types to create even more complex types.

In addition to allowing you to build complex data structures, you can also
describe specialized types such as enumerated types, data types that have a
specific range of values, or data types that need to follow certain patterns by
either extending or restricting the primitive types.

26

Defining Complex Data Types

Defining Data Structures
In XML Schema, data units that are a collection of data fields are defined
using complexType elements. Specifying a complex type requires three pieces

of information:

1. The name of the defined type is specified in the name attribute of the

complexType element.

2. The first child element of the complexType describes the behavior of the

structure’s fields when it is put on the wire. See Complex type varieties.

3. Each of the fields of the defined structure are defined in element elements

that are grandchildren of the complexType element. See Defining the parts

of a structure.

For example the structure shown in Example 3, “Simple Structure” would
be defined in XML Schema as a complex type with two elements.

Example 3. Simple Structure
struct personalInfo
{
string name;
int age;

};

Example 4, “A Complex Type” shows one possible XML Schema mapping
for the structure shown in Example 3, “Simple Structure”.

Example 4. A Complex Type
<complexType name="personalInfo>
<sequence>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>

</sequence>
</complexType>

Complex type varieties
XML Schema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and when passed on
the wire. The first child element of the complexType element determines

27

Defining Data Structures

which variety of complex type is being used. Table 1, “Complex Type
Descriptor Elements” shows the elements used to define complex type
behavior.

Table 1. Complex Type Descriptor Elements

Complex Type BehaviorElement

All the complex type’s fields must be present and in the exact
order they are specified in the type definition.

sequence

All of the complex type’s fields must be present but can be in
any order.

all

Only one of the elements in the structure can be placed in the
message.

choice

If neither a sequence element, an all element, nor a choice is specified,

a sequence is assumed. For example, the structure defined in Example 4,

“A Complex Type” would generate a message containing two elements: name

and age.

If the structure was defined using a choice element, as shown in Example 5,

“Simple Complex Choice Type”, it would generate a message with either a
name element or an age element.

Example 5. Simple Complex Choice Type
<complexType name="personalInfo">
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>

</choice>
</complexType>

Defining the parts of a structure
You define the data fields that make up a structure using element elements.

Every complexType element should contain at least one element element.

Each element element in the complexType element represents a field in the

defined data structure.

To fully describe a field in a data structure, element elements have two

required attributes:

28

Defining Data Structures

• The name attribute specifies the name of the data field. It must be unique

within the defined complex type.

• The type attribute specifies the type of the data stored in the field. The

type can be either one of the XML Schema simple types or any named
complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly

used optional attributes: minOcurrs and maxOccurs. These attributes place

bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you could define a field, previousJobs, that must occur at least

three times and no more than seven times as shown in Example 6, “Simple
Complex Type with Occurrence Constraints”.

Example 6. Simple Complex Type with Occurrence Constraints
<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
<element name="previousJobs" type="xsd:string"

minOccurs="3" maxOccurs="7"/>
</all>

</complexType>

You could also use the minOccurs to make the age field optional by setting

the minOccurs to zero as shown in Example 7, “Simple Complex Type with

minOccurs Set to Zero”. In this case age can be omitted and the data will

still be valid.

Example 7. Simple Complex Type with minOccurs Set to Zero

<complexType name="personalInfo>
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int" minOccurs="0"/>

29

Defining Data Structures

</choice>
</complexType>

Defining attributes
In XML documents attributes are contained in the element’s tag. For example,
in the complexType element name is an attribute. They are specified using

the attribute element. It comes after the all, sequence, or choice element

and are a direct child of the complexType element. Example 8, “Complex

Type with an Attribute” shows a complex type with an attribute.

Example 8. Complex Type with an Attribute
<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="previousJobs" type="xsd:string"

minOccurs="3" maxOccurs="7"/>
</all>
<attribute name="age" type="xsd:int" use="optional" />

</complexType>

The attribute element has three attributes:

• name is a required attribute that specifies the string identifying the attribute.

• type specifies the type of the data stored in the field. The type can be one

of the XML Schema simple types.

• use specifies if the attribute is required or optional. Valid values are

required or optional.

If you specify that the attribute is optional you can add the optional attribute
default. The default attribute allows you to specify a default value for the

attribute.

30

Defining Data Structures

Defining Arrays
Artix ESB supports two methods for defining arrays in a contract. The first is
define a complex type with a single element whose maxOccurs attribute has

a value greater than one. The second is to use SOAP arrays. SOAP arrays
provide added functionality such as the ability to easily define
multi-dimensional arrays and transmit sparsely populated arrays.

Complex type arrays
Complex type arrays are nothing more than a special case of a sequence
complex type. You simply define a complex type with a single element and
specify a value for the maxOccurs attribute. For example, to define an array

of twenty floating point numbers you would use a complex type similar to the
one shown in Example 9, “Complex Type Array”.

Example 9. Complex Type Array
<complexType name="personalInfo>
<element name="averages" type="xsd:float" maxOccurs="20"/>

</complexType>

You could also specify a value for the minOccurs attribute.

SOAP arrays
SOAP arrays are defined by deriving from the SOAP-ENC:Array base type
using the wsdl:arrayType element. The syntax for this is shown in

Example 10, “Syntax for a SOAP Array derived using wsdl:arrayType”.

Example 10. Syntax for a SOAP Array derived using
wsdl:arrayType

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="ElementType<ArrayBounds>"/>
</restriction>

</complexContent>
</complexType>

Using this syntax, TypeName specifies the name of the newly-defined array

type. ElementType specifies the type of the elements in the array.

ArrayBounds specifies the number of dimensions in the array. To specify a

31

Defining Arrays

single dimension array you would use []; to specify a two-dimensional array

you would use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 11, “Definition
of a SOAP Array”, defines a one-dimensional array of strings. The
wsdl:arrayType attribute specifies the type of the array elements, xsd:string,

and the number of dimensions, [] implying one dimension.

Example 11. Definition of a SOAP Array
<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>
</restriction>

</complexContent>
</complexType>

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 12,
“Syntax for a SOAP Array derived using an Element”.

Example 12. Syntax for a SOAP Array derived using an
Element
<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<sequence>
<element name="ElementName" type="ElementType"

maxOccurs="unbounded"/>
</sequence>

</restriction>
</complexContent>

</complexType>

When using this syntax, the element's maxOccurs attribute must always be

set to unbounded.

32

Defining Arrays

Defining Types by Extension
Like most major coding languages, XML Schema allows you to create data
types that inherit some of their elements from other data types. This is called
defining a type by extension. For example, you could create a new type called
alienInfo, that extends the personalInfo structure defined in Example 4,

“A Complex Type” by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType

element.

2. The complexContent element specifies that the new type will have more

than one element.

Note
If you are only adding new attributes to the complex type, you
can use a simpleContent element.

3. The type from which the new type is derived, called the base type, is
specified in the base attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension

element as they would be for a regular complex type.

For example, alienInfo would be defined as shown in Example 13, “Type

Defined by Extension”.

Example 13. Type Defined by Extension
<complexType name="alienInfo">
<complexContent>
<extension base="personalInfo">
<sequence>
<element name="planet" type="xsd:string"/>

</sequence>
</extension>

</complexContent>
</complexType>

33

Defining Types by Extension

Defining Types by Restriction
XML Schema allows you to create new types by restricting the possible values
of an XML Schema simple type. For example, you could define a simple type,
SSN, which is a string of exactly nine characters. New types defined by

restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the

simpleType element.

2. The simple type from which the new type is derived, called the base type,
is specified in the restriction element. See Specifying the base type.

3. The rules, called facets, defining the restrictions placed on the base type
are defined as children of the restriction element. See Defining the

restrictions.

Specifying the base type
The base type is the type that is being restricted to define the new type. It is
specified using a restriction element. The restriction element is the

only child of a simpleType element and has one attribute, base, that specifies

the base type. The base type can be any of the XML Schema simple types.

For example, to define a new type by restricting the values of an xsd:int you
would use a definition like Example 14, “int as Base Type”.

Example 14. int as Base Type
<simpleType name="restrictedInt">
<restriction base="xsd:int">
...

</restriction>
</simpleType>

Defining the restrictions
The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is

enforced. The available facets and their valid value settings depend on the

base type. For example, xsd:string supports six facets including:

34

Defining Types by Restriction

• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the restriction element.

Example
Example 15, “SSN Simple Type Description” shows an example of a simple
type, SSN, which represents a social security number. The resulting type will

be a string of the form xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a

valid value for an element of this type, but <SSN>032439876</SSN> is
not.

Example 15. SSN Simple Type Description
<simpleType name="SSN">
<restriction base="xsd:string">
<pattern value="\d{3}-\d{2}-\d{4}"/>

</restriction>
</simpleType>

35

Defining Types by Restriction

Defining Enumerated Types
Enumerated types in XML Schema are a special case of definition by
restriction. They are described by using the enumeration facet which is

supported by all XML Schema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration in XML
Schema The syntax for defining an enumeration is shown in Example 16, “Syntax for

an Enumeration”.

Example 16. Syntax for an Enumeration
<simpleType name="EnumName">
<restriction base="EnumType">
<enumeration value="Case1Value"/>
<enumeration value="Case2Value"/>
...
<enumeration value="CaseNValue"/>

</restriction>
</simpleType>

EnumName specifies the name of the enumeration type. EnumType specifies

the type of the case values. CaseNValue, where N is any number one or

greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Example
For example, an XML document with an element defined by the enumeration
widgetSize, shown in Example 17, “widgetSize Enumeration”, would be

valid if it contained <widgetSize>big</widgetSize>, but not if it contained
<widgetSize>big,mungo</widgetSize>.

Example 17. widgetSize Enumeration
<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>

</restriction>
</simpleType>

36

Defining Enumerated Types

Defining Elements
Elements in XML Schema represent an instance of an element in an XML
document generated from the schema. At their most basic, an element consists
of a single element element. Like the element element used to define the

members of a complex type, they have three attributes:

• name is a required attribute that specifies the name of the element as it

will appear in an XML document.

• type specifies the type of the element. The type can be any XML Schema

primitive type or any named complex type defined in the contract. This
attribute can be omitted if the type has an in-line definition.

• nillable specifies if an element can be left out of a document entirely. If

nillable is set to true, the element can be omitted from any document

generated using the schema.

An element can also have an in-line type definition. In-line types are specified
using either a complexType element or a simpleType element. Once you

specify if the type of data is complex or simple, you can define any type of
data needed using the tools available for each type of data. In-line type
definitions are discouraged, because they are not reusable.

37

Defining Elements

38

Defining Logical Messages Used by a
Service
Summary

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract these
messages are defined using message element. The messages are made up of one or more parts that are defined

using part elements.

A service’s operations are defined by specifying the logical messages that are
exchanged when an operation is invoked. These logical messages define the
data that is passed over a network as an XML document. They contain all of
the parameters that would be a part of a method invocation.

Logical messages are defined using the message element in your contracts.

Each logical message consists of one or more parts, defined in part elements.

Tip
While your messages can list each parameter as a separate part, the
recommended practice is to use only a single part that encapsulates
the data needed for the operation.

Messages and parameter lists
Each operation exposed by a service can only have one input message and
one output message. The input message defines all of the information the
service receives when the operation is invoked. The output message defines
all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault
messages define the data that is returned when the service encounters an
error. These messages generally have only one part that provides enough
information for the consumer to understand the error.

Message design for integrating
with legacy systems If you are defining an existing application as a service, you need to ensure

that each parameter used by the method implementing the operation is
represented in a message. You must also ensure that the return value is
included in the operation’s output message.

39

One approach to defining your messages is RPC style. When using RPC style,
you define the messages using one part for each parameter in the method’s
parameter list. Each message part is based on a type defined in the types

element of the contract. Your input message would contain one part for each
input parameter in the method. Your output message would contain one part
for each output parameter and a part to represent the return value if needed.
If a parameter is both an input and an output parameter, it would be listed
as a part of both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems
that use transports such as Tibco or CORBA. These systems are designed
around procedures and methods. As such, they are easiest to model using
messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the
application it is exposing.

Message design for SOAP services
While RPC style is useful for modeling existing systems, the service’s
community strongly favors the wrapped document style. In wrapped document
style, each message has a single part. The message’s part references a wrapper
element defined in the types element of the contract. The wrapper element

has the following characteristics:

• It is a complex type containing a sequence of elements. For more information
see Defining Complex Data Types.

• If it is a wrapper for an input message:

• It would have one element for each of the method’s input parameters.

• Its name would be the same as the name of the operation with which it
is associated.

• If it is a wrapper for an output message:

• It would have one element for each of the method’s output parameters
and one for each of the method’s inout parameters.

• Its first element would represent the method’s return parameter.

40

• Its name would be generated by appending Response to the name of

the operation with which the wrapper is associated.

Message naming
Each message in a contract must have a unique name within its namespace.
It is also recommended that you use the following naming conventions:

• Messages should only be used by a single operation.

• Input message names are formed by appending Request to the name of

the operation.

• Output message names are formed by appending Response to the name

of the operation.

• Fault message names should represent the reason for the fault.

Message parts
Message parts are the formal data units of the logical message. Each part is
defined using a part element. They are identified by a name attribute and

either a type attribute or an element attribute that specifies its data type.

The data type attributes are listed in Table 2, “Part Data Type Attributes”.

Table 2. Part Data Type Attributes

DescriptionAttribute

The data type of the part is defined by an element called elem_name.element="elem_name"

The data type of the part is defined by a type called type_name.type="type_name"

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part

in both the request message and the response message as shown in
Example 18, “Reused Part”.

Example 18. Reused Part
<message name="fooRequest">
<part name="foo" type="xsd:int"/>

<message>
<message name="fooReply">

41

<part name="foo" type="xsd:int"/>
<message>

Example
For example, imagine you had a server that stored personal information and
provided a method that returned an employee’s data based on an employee
ID number. The method signature for looking up the data would look similar
to Example 19, “personalInfo lookup Method”.

Example 19. personalInfo lookup Method
personalInfo lookup(long empId)

This method signature could be mapped to the RPC style WSDL fragment
shown in Example 20, “RPC WSDL Message Definitions”.

Example 20. RPC WSDL Message Definitions
<message name="personalLookupRequest">
<part name="empId" type="xsd:int"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalInfo"/>

<message/>

It could also be mapped to the wrapped document style WSDL fragment
shown in Example 21, “Wrapped Document WSDL Message Definitions”.

Example 21. Wrapped Document WSDL Message Definitions
<types>
<schema ...>
...
<element name="personalLookup">
<complexType>
<sequence>
<element name="empID" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="personalLookupResponse">
<complexType>
<sequence>
<element name="return" type="personalInfo" />

</sequence>
</complexType>

</element>

42

</schema>
</types>
<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalLookupResponse"/>

<message/>

43

44

Defining Your Logical Interfaces
Summary

Logical service interfaces are defined using the portType element.

Logical service interfaces are defined using the WSDL portType element.

The portType element is a collection of abstract operation definitions. Each

operation is defined by the input, output, and fault messages used to complete
the transaction the operation represents. When code is generated to implement
the service interface defined by a portType element, each operation is

converted into a method containing the parameters defined by the input,
output, and fault messages specified in the contract.

Process
Defining a logical interface in a WSDL contract entails the following:

1. Creating a portType element to contain the interface definition and give

it a unique name. See Port types.

2. Creating an operation element for each operation defined in the

interface. See Operations.

3. For each operation, specifying the messages used to represent the
operation’s parameter list, return type, and exceptions. See Operation
messages.

Port types
A WSDL portType element is the root element in a logical interface definition.

While many Web service implementations map portType elements directly

to generated implementation objects, a logical interface definition does not
specify the exact functionality provided by the the implemented service. For
example, a logical interface named ticketSystem can result in an

implementation that sells concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into

a binding to define the physical data used by an endpoint exposing the defined
service.

45

Each portType element in a WSDL document must have a unique name,

specified using the name attribute, and is made up of a collection of operations,

described in operation elements. A WSDL document can describe any

number of port types.

Operations
Logical operations, defined using WSDL operation elements, define the

interaction between two endpoints. For example, a request for a checking
account balance and an order for a gross of widgets can both be defined as
operations.

Each operation defined within a portType element must have a unique name,

specified using the name attribute. The name attribute is required to define

an operation.

Operation messages
Logical operations are made up of a set of elements representing the logical
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3, “Operation
Message Elements”.

Table 3. Operation Message Elements

DescriptionElement

Specifies the message the client endpoint sends to the service
provider when a request is made. The parts of this message
correspond to the input parameters of the operation.

input

Specifies the message that the service provider sends to the client
endpoint in response to a request. The parts of this message

output

correspond to any operation parameters that can be changed by
the service provider, such as values passed by reference. This
includes the return value of the operation.

Specifies a message used to communicate an error condition
between the endpoints.

fault

An operation is required to have at least one input or one output element.

An operation can have both input and output elements, but it can only

have one of each. Operations are not required to have any fault elements,

but can have any number of fault elements.

46

The elements have the two attributes listed in Table 4, “Attributes of the
Input and Output Elements”.

Table 4. Attributes of the Input and Output Elements

DescriptionAttribute

Identifies the message so it can be referenced when mapping the
operation to a concrete data format. The name must be unique
within the enclosing port type.

name

Specifies the abstract message that describes the data being sent
or received. The value of the message attribute must correspond

message

to the name attribute of one of the abstract messages defined in

the WSDL document.

It is not necessary to specify the name attribute for all input and output

elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output

element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values
Because the operation element is an abstract definition of the data passed

during an operation, WSDL does not provide for return values to be specified
for an operation. If a method returns a value it will be mapped into the output

element as the last part of that message.

Example
For example, you might have an interface similar to the one shown in
Example 22, “personalInfo lookup interface”.

Example 22. personalInfo lookup interface
interface personalInfoLookup
{
personalInfo lookup(in int empID)
raises(idNotFound);

}

This interface could be mapped to the port type in Example 23, “personalInfo
lookup port type”.

47

Example 23. personalInfo lookup port type
<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalLookupResponse"/>

<message/>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>

<message/>
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personalLookupRequest"/>
<output name="return" message="personalLookupResponse"/>
<fault name="exception" message="idNotFoundException"/>

</operation>
</portType>

48

Index
A
all element, 28
attribute element, 30

name attribute, 30
type attribute, 30
use attribute, 30

B
binding element, 16

C
choice element, 28
complex types

all type, 28
choice type, 28
elements, 28
occurrence constraints, 29
sequence type, 28

complexType element, 27
concrete part, 17

D
definitions element, 16

E
element element, 28

maxOccurs attribute, 29
minOccurrs attribute, 29
name attribute, 29
type attribute, 29

L
logical part, 17

M
message element, 16, 39

O
operation element, 16

P
part element, 39, 41

element attribute, 41
name attribute, 41
type attribute, 41

port element, 16
portType element, 16, 45

R
RPC style design, 39

S
sequence element, 28
service element, 16

T
types element, 16

W
wrapped document style, 40
WSDL design

RPC style, 39
wrapped document style, 40

49

50

	Writing Artix ESB Contracts
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Introducing WSDL Contracts
	WSDL Elements
	Structure of a WSDL Contract
	Designing a contract

	Defining Logical Data Units
	Mapping Data into Logical Data Units
	Adding Data Units to a Contract
	XML Schema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Extension
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Elements

	Defining Logical Messages Used by a Service
	Defining Your Logical Interfaces
	Index

