
Artix ESBTM

Making Software Work TogetherTM

Getting Started with Artix
Version 5.1, December 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix,
FUSE, and Making Software Work Together are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: May 14, 2008

Contents

List of Figures 5

List of Tables 7

Preface 9
What is Covered in This Book 9
Who Should Read This Book 9
Organization of This Book 9
The Artix Documentation Library 9

Chapter 1 About Artix ESB 11
What is Artix ESB? 12
Key Concepts in Depth 19

Artix ESB Runtime Components 20
Artix Bus 21
Artix Endpoints 22
Artix Contracts 23
Artix Services 25

Solving Problems with Artix ESB 27

Chapter 2 About Artix Designer 31
Overview 32
Generating and Editing WSDL 33
Generating Code 34
Artix-Related Eclipse Perspectives 35

Artix Perspective 36
Artix Designer Project Types 38
Artix Designer Project Templates 39
Artix Designer On-Line Help and Cheat Cheats 40
Artix for z/OS Off-Host Components 41
3

CONTENTS
Chapter 3 Tutorials 43
Tutorial 1: Java First 44

Task 1: Starting and Initializing Artix Designer 45
Task 2: Creating the Project 46
Task 3: Importing the Interface File 50
Task 4: Generating the Code 50
Task 5: Starting the Generated Server 51
Task 6: Starting the Generated Client 54
Task 7: Stopping the Generated Server and Clearing the Console 56

Tutorial 2: WSDL First, Starting with Filled-In WSDL 57
Task 1: Starting and Initializing Artix Designer 58
Task 2: Creating the Project 59
Task 3: Importing the WSDL File 63
Task 4: Generating the Code 64
Task 5: Starting the Generated Server 65
Task 6: Starting the Generated Client 68
Task 7: Stopping the Server and Clearing the Console 69

Tutorial 3: WSDL First, Starting With Boilerplate WSDL 70
Task 1: Creating Empty Projects 71
Task 2: Creating a Boilerplate WSDL File 73
Task 3: Defining Types in the WSDL File 76
Task 4: Defining Messages in the WSDL File 78
Task 5: Defining Port Types in the WSDL File 81
Task 6: Defining Bindings in the WSDL File 85
Task 7: Defining a Service in the WSDL File 88
Task 8: Turning on the Build Automatically Option 92
Task 9: Creating Code-Generation Configurations and Generating Code 93
Task 10: Running the Applications 104

Appendix A Understanding WSDL 113
WSDL Basics 114
Abstract Data Type Definitions 116
Abstract Message Definitions 119
Abstract Interface Definitions 122
Mapping to the Concrete Details 126

Index 127
4

List of Figures

Figure 1: Artix ESB High-Performance Architecture 14

Figure 2: Artix ESB Runtime Components 20

Figure 3: Artix Designer Newly Launched 45

Figure 4: Creating a New Project 46

Figure 5: Select a wizard Panel 47

Figure 6: General Details Panel 48

Figure 7: Import Panel 49

Figure 8: Starting the Generated Server 51

Figure 9: Create, manage, and run configurations Panel 52

Figure 10: Server Ready 53

Figure 11: Client Ran OK 55

Figure 12: Eclipse Toolbar 56

Figure 13: Artix Newly Launched 58

Figure 14: Creating a New Project 59

Figure 15: Select a wizard Panel 60

Figure 16: General Details Panel 61

Figure 17: WSDL Panel 62

Figure 18: Code generation Panel 63

Figure 19: Running the Application 65

Figure 20: Create, manage, and run configurations Panel 66

Figure 21: Server is Ready 67

Figure 22: Client Ran OK 69

Figure 23: Eclipse Newly Launched 71

Figure 24: WSDL File Panel 74

Figure 25: HelloWorld.wsdl as a Link 75

Figure 26: Define Message Parts Panel 78
5

LIST OF FIGURES
Figure 27: Define Message Parts Panel (with InPart) 79

Figure 28: Operation Message Data Dialog 82

Figure 29: Define Operation Messages Panel 83

Figure 30: Edit Operation panel 86

Figure 31: Edit Operation Panel—sayHi Node Selected 87

Figure 32: Define Port Properties Panel 89

Figure 33: Create, manage, and run configurations panel 93

Figure 34: Generation Tab Highlighted 94

Figure 35: WSDL Details Tabbed Page 96

Figure 36: Duplicate Launch Configuration Button 98

Figure 37: Generation Tabbed Page 99

Figure 38: Duplicate Launch Configuration Button 100

Figure 39: Generation Tabbed Page 101

Figure 40: C++ Options Tabbed Page 102

Figure 41: Run Dialog 105

Figure 42: JAX-WS Server Ready 106

Figure 43: Eclipse Toolbar 107

Figure 44: JAX-RPC Server Ready 107

Figure 45: JAX-RPC Client Run-Messages 108

Figure 46: External Tools Window 109

Figure 47: Windows Security Alert Window 110
 6

List of Tables

Table 1: Artix Designer Toolbar Buttons 36

Table 2: Part Data Type Attributes 121

Table 3: Operation Message Elements 123

Table 4: Attributes of the Input and Output Elements 123
Variable: ~DraftStampText 7

LIST OF TABLES
 8 Variable: ~DraftStampText

Preface
What is Covered in This Book
Getting Started with Artix introduces IONA’s Artix ESB technology, the Artix
Designer GUI tool, and Web Services Description Language (WSDL).

Who Should Read This Book
Getting Started with Artix is for anyone who needs to understand the
concepts and terms used in IONA’s Artix product.

Organization of This Book
This book contains conceptual information about Artix and WSDL:

• Chapter 1, “About Artix ESB,” introduces the Artix ESB product,
discussing key concepts in depth and describing the types of problems
it is designed to solve.

• Chapter 2, “About Artix Designer,” introduces Artix Designer, a GUI
interface to Artix ESB.

• Chapter 3, “Tutorials,” walks you through using the Java-first and
WSDL-first techniques with Artix Designer to create SOA-network
client-server applications, which you then run from Artix Designer.

• Appendix A, “Understanding WSDL,” explains the basics of WSDL.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and finding additional resources, see Using the Artix
Library.
9

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 10

CHAPTER 1

About Artix ESB
This chapter introduces the main features of Artix ESB.

In this chapter This chapter discusses the following topics:

What is Artix ESB? page 12

Key Concepts in Depth page 19

Solving Problems with Artix ESB page 27
11

CHAPTER 1 | About Artix ESB
What is Artix ESB?

Overview Artix ESB is an extensible enterprise service bus. It provides the tools for
rapid application integration that exploits the middleware technologies and
the products already present within your enterprise.

The approach taken by Artix ESB relies on existing Web service standards
and extends these standards to provide rapid integration solutions that
increase operational efficiencies, capitalize on existing infrastructure, and
enable the adoption or extension of a service-oriented architecture (SOA).

Web services and SOAs The information services community generally regards Web services as
application-to-application interactions that use SOAP over HTTP.

Web services have the following advantages:

• The data encoding scheme and transport semantics are based on
standardized specifications.

• The XML message content is human readable.

• The contract defining the service is XML-based and can be edited by
any text editor.

• They promote loosely coupled architectures.

Service-oriented architectures take the Web services concept and extend it
to the entire enterprise. Using a service-oriented architecture, your
infastructure becomes a collection of loosely coupled services. Each service
becomes an endpoint defined by a contract written in Web Services
Description Language (WSDL). Clients, or service consumers, can then
access the services by reading a service’s contract.
12

What is Artix ESB?
Artix and services Using IONA’s proven Adaptive Runtime Technology (ART), Artix extends the
Web service standards to include more than just SOAP over HTTP. Thus,
Artix allows organizations to define their existing applications as services
without worrying about the underlying middleware. It also provides the
ability to expose those applications across a number of middleware
technologies without writing any new code.

Artix also provides developers with the tools to write new applications in
C++ or Java that can be exposed as middleware-neutral services. These
tools aid in the definition of the new service in WSDL and in the generation
of stub and skeleton code.

Just like the WSDL contracts used to define a service, the code that Artix
generates adheres to industry standards.

Benefits of Artix Artix ESB’s extensible nature provides a number of benefits compared to
other ESB products and older enterprise application integration (EAI)
products. Chief among these is its speed and flexibility. In addition, Artix
ESB provides enterprise levels of service such as session management,
service discovery, security, and cross-middleware transaction propagation.

EAI products typically use a proprietary, canonical message format in a
centralized EAI hub. When the hub receives a message, it transforms the
message to this canonical format and then transforms the message to the
format of the target application before sending it to its destination. Each
application requires two adapters that are typically proprietary and that
translate to and from the canonical format.

By contrast, the Artix ESB bus does not require a hub architecture, nor does
it use any intermediate message format. When a message is received by the
bus, it is transformed directly into the target application’s message format.

Because Artix ESB uses a standardized means of defining its services, the
plug-ins used to connect applications to the bus are reusable.
13

CHAPTER 1 | About Artix ESB
Figure 1 shows an example Artix ESB integration between BEA Tuxedo and
IBM WebSphere MQ.

Because Artix ESB is built on top of ART, it is modular in nature. This
means that it is highly configurable and that it is easily extendable. You can
configure Artix ESB to only load the pieces you need for the functionality you
require. If Artix ESB does not provide a transport or message format you
need, you can easily develop your own plug-in, extend the contract
definitions, and configure Artix to load it.

Figure 1: Artix ESB High-Performance Architecture
14

What is Artix ESB?
Using Artix ESB There are two ways to use Artix ESB in your enterprise:

• You can use Artix ESB to develop new applications using the Artix
Application Programming Interface (API). In this situation, developers
generate Artix stubs and skeletons from an Artix contract, and Artix
becomes a part of your development environment.

• You can use the Artix bus to integrate two existing applications, built
on different middleware technologies, into a single application. In this
situation, developers simply create an Artix contract defining the
integration of the systems. In most cases, no new code is needed.

Becoming proficient with Artix
ESB

To become an effective Artix ESB developer you need an understanding of
the following:

1. The syntax for WSDL files and the Artix ESB extensions to the WSDL
specification.

2. The relationship between Artix WSDL extensions, ART plug-ins, and
setting configuration entries.

3. The Artix APIs that you can use in your application.

4. Artix Designer, a GUI tool that enables you to write, generate, and edit
WSDL files, and to generate, compile, and run code.

This book introduces these four concepts. The other books in the Artix
documentation library covers the same technologies in greater detail.
15

CHAPTER 1 | About Artix ESB
Artix ESB features Artix ESB includes the following unique features:

• Support for multiple transports and message data formats

• C++ and Java development

• Message routing

• Cross-middleware transaction support

• Asynchronous Web services

• Deployment of services as plug-ins via the Artix container

• Role-based security, single sign-on, and security integration

• Session management and stateful Web services

• Look-up services

• Load-balancing

• High-availability service clustering

• Integration with EJBs

• Easy-to-use development tools

• Support for Microsoft .NET

• Integration with enterprise management tools such as IBM Tivoli and
BMC Patrol

• Support for XSLT-based message transformation

• No need to hard-code WSDL references into applications

Supported transports and
protocols

A transport is an on-the-wire format for messages; whereas a protocol is a
transport that is defined by an open specification. For example, WebSphere
MQ and Tuxedo are transports, while HTTP and IIOP are protocols.

In Artix ESB, both protocols and transports are referred to as transports.
Artix ESB supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ (formerly MQSeries)

• TIBCO Rendezvous™

• IIOP

• CORBA

• Java Messaging Service
16

What is Artix ESB?
Supported payload formats A payload format defines the layout of a message delivered over a transport.
Artix ESB can automatically transform between the following payload
formats:

• CORBA Common Data Representation (CDR)

• G2++

• Fixed record length (FRL)

• SOAP

• Pure XML

• Tagged (variable record length)

• TibrvMsg (a TIBCO Rendezvous format)

• Tuxedo’s Field Manipulation Language (FML)

Artix for z/OS Artix for z/OS allows you to design, create, and deploy a variety of enterprise
integration solutions for the mainframe. These solutions include:

• Non-intrusively exposing existing mainframe applications to the
network as Web services and CORBA objects, with no need to recode
the mainframe applications.

• Developing new mainframe-based Web service applications from
WSDL definitions.

An application can be exposed as both a Web service and a CORBA object
that can accept client requests via SOAP over HTTP or HTTPS, SOAP over
WebSphere MQ, or IIOP over TCP/IP. Thus, Artix for z/OS enables you to
transform basic mainframe applications into true multi-protocol applications
that are accessible throughout the entire enterprise.

Artix for z/OS is delivered in separate packages, as follows:

• Artix for z/OS is a separate add-on package that provides the on-host
mainframe components for development and deployment of Artix
services on the mainframe.

• The Artix for z/OS off-host components are included with Artix ESB for
the Windows, Linux, and Solaris platforms.

For more information on mainframe support in Artix, see the documentation
for Artix for z/OS at http:/www.iona.com/support/docs/index.xml.
17

http://www.iona.com/support/docs/index.xml

CHAPTER 1 | About Artix ESB
Artix Orchestration Artix Orchestration is an add-on kit that must be installed into an existing
Artix ESB installation, as follows:

• The Artix Orchestration add-on for all supported operating systems
provides support for the Artix Orchestration BPEL engine.

• The Artix Orchestration add-on for Windows, Linux, and Solaris
integrates orchestration development tools into Artix Designer.

The installation requirements are further described in the Artix Orchestration
Installation Guide.

Artix Orchestration adds support for designing an orchestrated set of Web
services using the standard Business Process Execution Language (BPEL),
and for integrating your orchestrated set of services into your Artix
environment.

Artix Orchestration adds the following features to Artix:

• BPEL Designer, integrated into Eclipse alongside Artix Designer

• Artix Orchestration and Artix Orchestration Debug perspectives for
Eclipse

• An Artix Orchestration BPEL server for hosting and managing deployed
BPEL processes

• A Web-based Administration Console for the Artix Orchestration server

• A persistent storage option for the Artix Orchestration server

• Demonstration code

• Documentation embedded as Eclipse Help

• An Artix Orchestration tutorial
18

http://www.iona.com/support/docs/artix/4.2/orch_install/index.htm
http://www.iona.com/support/docs/artix/4.2/orch_install/index.htm

Key Concepts in Depth
Key Concepts in Depth
This section discusses key Artix ESB concepts in depth.

In this section This section discusses the following topics:

Artix ESB Runtime Components page 20

Artix Bus page 21

Artix Endpoints page 22

Artix Contracts page 23

Artix Services page 25
19

CHAPTER 1 | About Artix ESB
Artix ESB Runtime Components

How it fits together Artix ESB, built on the Adaptive Runtime Technology (ART) platform,
consists of the following components :

• Artix Bus is at the core of Artix, and provides the support for various
transports and payload formats.

• Artix Contracts describe your applications in such a way that they
become services that can be deployed as Artix Endpoints.

• Artix Services include a number of advanced services, such as the
locator and session manager. Each Artix service is defined with an Artix
contract and can be deployed as an Artix endpoint.

Figure 2 illustrates how the Artix ESB elements fit together.

Plugability Because Artix ESB is built on ART, all Artix services are implemented as
plug-ins. You can also deploy your own services as plug-ins. This means
that you can host any Artix service either as a standalone application or as a
plug-in to another Artix application.

Each separate service, regardless of how it is deployed, becomes a separate
endpoint.

Figure 2: Artix ESB Runtime Components

Artix Bus

Client Server

Endpt
contract

Endpt
contract
20

Key Concepts in Depth
Artix Bus

Overview The Artix bus is at the heart of the Artix ESB architecture. It is the
component that hosts the services that you create and connects your
applications to those services.

The bus is also responsible for translating data from one format into
another. This translation process works as follows:

1. Reader plug-ins accept incoming data in one format.

2. The Artix bus directly translates the data into another format.

3. Writer plug-ins write the data back out to the wire in the new format.

In this way, Artix ESB enables all of the services in your company to
communicate, without needing to communicate in the same way. It also
means that clients can contact services without understanding the native
language of the server handling requests.

Benefits While other products provide some ability to expose applications as
services, they frequently require a good deal of coding. The Artix bus
eliminates the need to modify your applications or write code by directly
translating the application’s native communication protocol into any of the
other supported protocols.

For example, by deploying an Artix instance with a SOAP-over-WebSphere
MQ endpoint and a SOAP-over-HTTP endpoint, you can expose a
WebSphere MQ application directly as a Web service. The WebSphere MQ
application does not need to be altered or made aware that it is being
exposed using SOAP over HTTP.

The Artix bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI products, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing overhead and increases the speed at which messages are
transmitted.
21

CHAPTER 1 | About Artix ESB
Artix Endpoints

Overview An Artix endpoint is the connection point at which a service or a service
consumer connects to the Artix bus. Endpoints are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection An Artix endpoint provides an abstract connection point between
applications, as shown in Figure 2 on page 20. The benefit of this abstract
connection is that it allows you to change the underlying communication
mechanism without recoding any of your applications. You only need to
modify the contract describing the endpoint.

For example, if one of your back-end service providers is a Tuxedo
application and you want to swap it for a CORBA implementation, you
simply change the endpoint’s contract to contain a CORBA connection to
the Artix bus. The clients accessing the back-end service provider do not
need to be aware of the change.
22

Key Concepts in Depth
Artix Contracts

Overview Artix contracts are written in WSDL. In this way, a standard language is
used to describe the characteristics of services and their associated Artix
endpoints. By defining characteristics such as service operations and
messages in an abstract way—independent of the transport or protocol used
to implement the endpoint—these characteristics can be bound to a variety
of protocols and formats.

Artix ESB allows an abstract definition to be bound to multiple specific
protocols and formats. This means that the same definitions can be reused
in multiple implementations of a service. Artix contracts define the services
exposed by a set of systems, the payload formats and transports available to
each system, and the rules governing how the systems interact with each
other. The simplest Artix contract defines a single pair of systems with a
shared interface, payload format, and transport. Artix contracts can also
define very complex integration scenarios.

WSDL elements Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL elements are as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with a defined type.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations defined in
a portType.

A WSDL port specifies the transport details for a binding, and defines a
single communication endpoint.

A WSDL service specifies a set of related ports.
23

CHAPTER 1 | About Artix ESB
The Artix Contract An Artix contract is specified in WSDL and is conceptually divided into
logical and physical components.

The logical contract

The logical contract specifies components that are independent of the
underlying transport and wire format. It fully specifies the data structure and
the possible operations or interactions with the interface. It enables Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (transport and wire format).

The logical contract includes the types, message, operation, and portType
elements of the WSDL file.

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details. For example:

• The wire format, middleware transport, and service groupings

• The connection between the portType operations and wire formats

• Buffer layout for fixed formats

• Artix extensions to WSDL

The physical contract includes the binding, port, and service elements of
the WSDL file.
24

Key Concepts in Depth
Artix Services

Overview In addition to the core Artix components, Artix also provides the following
services:

• Container

• Locator

• Session manager

• Transformer

• Accessing contracts and references

These services provide advanced functionality that Artix deployments can
use to gain even more flexibility.

Container The Artix container provides a consistent mechanism for deploying and
managing Artix services. It allows you to write Web service implementations
as Artix plug-ins and then deploy your services into the Artix container.

Using the container eliminates the need to write your own C++ or Java
server mainline. Instead, you can deploy your service by simply passing the
location of a generated deployment descriptor to the Artix container's
administration client.

IONA strongly recommends that all new client and server Artix
implementations be implemented and deployed in an Artix container.

Locator The Artix locator provides service look-up and load balancing functionality to
an Artix deployment. It isolates service consumers from changes in a
service's contact information.

The Artix WSDL contract defines how the client contacts the server, and
contains the address of the Artix locator. The locator provides the client with
a reference to the server.

Servers are automatically registered with the locator when they start, and
service endpoints are automatically made available to clients without the
need for additional coding.
25

CHAPTER 1 | About Artix ESB
Session manager The Artix session manager is a group of plug-ins that work together to
manage the number of concurrent clients that access a group of services.
This allows you to control how long each client can use the services in the
group before having to check back with the session manager.

In addition, the session manager has a pluggable policy callback
mechanism that enables you to implement your own session management
policies.

Transformer The Artix transformer provides Artix ESB with a way to transform operation
parameters on the wire using rules written in Extensible Style Sheet
Transformation (XSLT) scripts. The transformer can be used to provide a
simple means of transforming data. For example, it can be used to develop
an application that accepts names as a single string and returns them as
separate first and last name strings.

The transformer can also be placed between two applications where it can
transform messages as they pass between the applications. This
functionality allows you to connect applications that do not use exactly the
same interfaces and still realize the benefits of not using a canonical format
without rewriting the underlying applications.

Accessing contracts and
references

Accessing contracts and references in Artix ESB refers to enabling client and
server applications to find WSDL service contracts and references. Using the
techniques and conventions of Artix avoids the need to hard code WSDL into
your client and server applications.

For more information For more information on Artix services, see Configuring and Deploying Artix.
26

http://www.iona.com/support/docs/artix/5.1/deploy/index.htm

Solving Problems with Artix ESB
Solving Problems with Artix ESB

Overview Artix ESB allows you to solve problems arising from the integration of
existing back-end systems using a service-oriented approach. Artix ESB
allows you to develop new services using C++ or Java, and to retain all of
the enterprise levels of service that you require.

There are three phases to an Artix ESB project:

1. The design phase, where you define your services and define how they
are integrated using Artix contracts.

2. The development phase, where you write the application code
required to implement new services.

3. The deployment phase, where you configure and deploy your Artix
solution.

Design phase In the design phase, you define the logical layout of your system in an Artix
contract. The logical or abstract definition of a system includes:

• the services that it contains

• the operations each service offers

• the data the services will use to exchange information

Once you have defined the logical aspects of your system, you then add the
physical network details to the contracts.

The physical details of your system include the transports and payload
formats used by your services, as well as any routing schemes needed to
connect services that use different transports or payload formats.
27

CHAPTER 1 | About Artix ESB
Artix Designer and the Artix command-line tools automate the mapping of
your service descriptions into WSDL-based Artix contracts. These tools allow
you to:

• Import existing WSDL documents

• Create Artix contracts from scratch

• Generate Artix contracts from:

♦ CORBA IDL

♦ A description of tagged data

♦ A description of fixed record length data

♦ A COBOL copybook

♦ A Java class

• Add the following bindings to an Artix contract:

♦ CORBA

♦ Fixed record length

♦ SOAP

♦ Tagged data

♦ XML
28

Solving Problems with Artix ESB
Development phase You must write Artix application code if your solution involves creating new
applications or a custom router, or involves using the Artix session
management feature. The first step in writing Artix code is to generate client
stub code and server skeleton code from the Artix contracts that you created
in the design phase. You can generate this code using Artix Designer or the
Artix command-line tools.

After you have generated the client stub code and server skeleton code, you
can develop the code that implements the business logic you require. For
most applications, Artix-generated code allows you to stick to using
standard C++ or Java code for writing business logic.

Artix Designer is integrated with the open-source Eclipse application
framework, but you are not required to use Eclipse for the whole project.
Once the stub code is generated, you can switch to your favorite
development environment to develop and debug the application code.

Artix ESB also provides advanced APIs for directly manipulating messages,
for writing message handlers, and for other advanced features your
application might require. These can be plugged into the Artix runtime for
customized processing of messages.

Deployment phase In the deployment phase, you configure the Artix runtime to fine-tune the
Artix bus for your new Artix system. This involves modifying the Artix
configuration files and editing the Artix contracts that describe your solution
to fit the exact circumstances of your deployment environment.

This phase also includes the managing of the deployed system. This might
involve, for example, using an enterprise management tool such as Tivoli
along with the Artix command interface. These tools allow you to further
fine-tune your system.
29

CHAPTER 1 | About Artix ESB
30

CHAPTER 2

About Artix
Designer
This chapter introduces Artix Designer.

In this chapter This chapter discusses the following topics:

Overview page 32

Generating and Editing WSDL page 33

Generating Code page 34

Artix-Related Eclipse Perspectives page 35

Artix Designer Project Types page 38

Artix Designer Project Templates page 39

Artix Designer On-Line Help and Cheat Cheats page 40

Artix for z/OS Off-Host Components page 41
31

CHAPTER 2 | About Artix Designer
Overview
Artix Designer is a GUI development tool that ships as a series of plug-ins to
the Eclipse platform. Eclipse is an open source development platform and
application framework for building software, as described at eclipse.org.

Artix Designer enables you to write and edit the WSDL files that describe
Artix resources and their integration, and to generate starting point code for
a Web service. Artix Designer also includes perspectives that enable you to
work with Artix for z/OS and Artix database projects, and to manage
deployed Artix services.
32

http://www.eclipse.org

Generating and Editing WSDL
Generating and Editing WSDL

Eclipse Designer has facilities for generating and for editing WSDL.

Generating WSDL Artix Designer contains wizards that let you create WSDL files based on:

• CORBA IDL files

• Java classes

• EJB session beans

• XSD schemas

• Fixed record-length data

• Tagged data

• COBOL copybook files

Editing WSDL Artix Designer has a WSDL editor that is integrated with its code-generation
tools and that thoroughly understands Artix extensions to the WSDL
standard.

For example, Artix Designer automatically adds the required namespace
declarations and prefix definitions when you build Artix applications that
involve Artix-extended data marshalling schemas, transport protocols, or
routing.

The Artix Designer WSDL editor provides a number of wizards that take you
through the process of creating and editing type, message, portType,
binding, service, and route elements in your WSDL files.
33

CHAPTER 2 | About Artix Designer
Generating Code
Artix Designer’s code-generation tool incorporates the same technology as
the Artix command-line tools. This allows Artix Designer to generate starting
point code from your WSDL files in C++, JAX-RPC Java, and JAX-WS Java.

Integration with the Eclipse Java Development Tools (JDT) and C/C++
Development Tools (CDT) means that any code you create is compiled
automatically after you generate it, and is recompiled when you make any
changes to your source.

The Artix code generator allows you to create a variety of code generation
configurations, which you can save and reuse. For example, you can create
configurations for:

• Client and server applications

• Artix router applications

• CORBA IDL

• Artix service plug-ins

• Container applications for hosting service plug-ins

Note: The Build Automatically option must be enabled in the Eclipse
Project menu for code to be compiled automatically.
34

Artix-Related Eclipse Perspectives
Artix-Related Eclipse Perspectives
In the Eclipse development framework, a perspective is a predefined layout
of the windows, views, menus, and tools in the Eclipse window. The
following Artix-related perspectives are shipped with Artix Designer:

• The Artix perspective is associated with basic Web services projects,
as well as CORBA and EJB projects.

• The Artix Database perspective is associated with Artix database
projects.

• The Artix Mainframe perspective is associated with Artix for z/OS
projects.

The optional Artix Orchestration add-on package installs two more
perspectives: Artix Orchestration and Artix Orchestration Debug.

Artix Designer also includes three perspectives from the client side of Artix
Registry/Repository: Artix Repository Explorer, Artix Repository
Governance, and Artix Repository Infrastructure. If you have an Artix
Repository database at your site, you can log in to it from one of the
Registry/Repository perspectives.
35

CHAPTER 2 | About Artix Designer
Artix Perspective
When you create a new Artix Designer Web services project, Eclipse
automatically switches to the Artix perspective.

The Artix perspective provides you with the tools that you need to develop
an Artix project in Eclipse. It includes the following features:

• The Artix toolbar

• The Navigator view

• The Outline view

Artix toolbar The Artix toolbar gives you quick access to the primary Artix Designer
functionality. It contains the following buttons:

Table 1: Artix Designer Toolbar Buttons

Button Description

St
an

da
rd Re-run the last-run Artix Tools configuration.a

Import Artix demos into Artix Designer.

A
rt

ix
 f
or

 z
/O

S

Export Artix for z/OS project
(active in the Artix for z/OS perspective).

Create a BIM file from the current WSDL file
(active in the Artix for z/OS perspective).

Validate selected WSDL for Artix for z/OS
(active in the Artix for z/OS perspective).

St
an

da
rd

Add import element to currently selected WSDL file.

Add type element to currently selected WSDL file.

Add message element to currently selected WSDL file.

Add portType element to currently selected WSDL file.
36

Artix-Related Eclipse Perspectives
St
an

da
rd

Add binding element to currently selected WSDL file.

Add service element to currently selected WSDL file.

Add route element to currently selected WSDL file.

St
an

da
rd

Define an access control list (ACL) to apply to a port type
or an operation.

CORBA-enable the current WSDL file after it has a fully
defined interface.

SOAP-enable the current WSDL file after it has a fully
defined interface.

a. If a code generation configuration already exists, clicking this button
launches the last-used configuration. Click the down arrow next to
this button to run other configurations, or to open the Artix Tools
dialog.

Table 1: Artix Designer Toolbar Buttons (Continued)

Button Description
37

CHAPTER 2 | About Artix Designer
Artix Designer Project Types
In Eclipse, all development is performed within a project. When you create a
new project in the Artix perspective, Artix Designer offers a choice between
the following project creation wizards:

• C++/JAX-RPC:

♦ Basic Web services project.

♦ CORBA Web services project.

♦ Database Web services project.

♦ Empty Web Services Project.

♦ Web services projects from EJB.

• Java JAX-WS:

♦ Database Web services project.

♦ Empty Web Services Project.

♦ Java first project.

♦ WSDL first project.

• Mainframe.

♦ CORBA Web services project from IDL.

♦ Web services project from application.

♦ Web services project from DB2.

♦ Web services project from deployment descriptors.

♦ Web services projects from WSDL.

Note: A CORBA Web services project creates a WSDL file and a router
configuration based on a CORBA IDL data source.
38

Artix Designer Project Templates
Artix Designer Project Templates
The project creation wizards other than Basic have preselected project
templates. When you select one of these wizards, you also select its
associated project template.

When you create a new project starting with the Basic Web Services
Project wizard, Artix Designer prompts you to specify a template. The
template sets up files and a directory structure for you.

The Empty Project template creates only a project folder and an Eclipse
.project file. You must import or link to an existing WSDL file, or create a
new one, in order to have a starting point for generating code.

The other project templates create all the starting point code and
configuration information needed for your Web services application.

Artix Designer provides the following project templates:

• Empty project

• Artix router

• C++ client

• C++ client and plug-in

• C++ client and server

• C++ plug-in

• C++ server

• Java client

• Java client and plug-in

• Java client and server

• Java plug-in

• Java server

Note: When using a template other than Empty, you must have a valid
WSDL file prepared in advance.
39

CHAPTER 2 | About Artix Designer
Artix Designer On-Line Help and Cheat Cheats

Artix Designer includes online help and Eclipse-style cheat sheets.

Online Help Help on Artix Designer is available from within the Eclipse online help
system.

Select Help|Help Contents to view the Eclipse Help. The Artix Designer
Help section is listed on the left side of the Table of Contents frame

In addition, you can access context-sensitive Help from within the Artix
Designer wizards and the Artix Tools window by pressing F1.

Cheat Sheets The Eclipse environment provides an online documentation type that it calls
cheat sheets. Cheat sheets are interactive tutorials that guide you step by
step through common tasks.

Artix Designer ships with several Artix-related cheat sheets to help you:

• Create an Artix Designer project

• Generate a client-server application

• Create a WSDL file’s logical and physical elements

• Generate code for a services plug-in and deploy it in an Artix container

Each cheat sheet lists the steps required to complete a particular task. As
you progress from one step to the next, the cheat sheet automatically
launches the required tools for you.

Artix Designer also provides cheat sheets to help you learn to use the Artix
Container Admin perspective, the Artix for z/OS off-host components, and
Artix database services.

To view the available Artix Designer cheat sheets, select Help|Cheat
Sheets.
40

Artix for z/OS Off-Host Components
Artix for z/OS Off-Host Components
The base configuration of Artix Designer includes the off-host components of
Artix for z/OS. These off-host components are designed to be used in
conjunction with the mainframe components of Artix for z/OS, which are
licensed separately.
41

CHAPTER 2 | About Artix Designer
42

CHAPTER 3

Tutorials
The tutorials in this chapter walk you though using the
Java-first and WSDL-first techniques with Artix Designer to
generate starting-point code for SOA-network client-server
applications, which you then run from Artix Designer.

In this chapter The tutorials are as follows:

Tutorial 1: Java First page 44

Tutorial 2: WSDL First, Starting with Filled-In WSDL page 57

Tutorial 3: WSDL First, Starting With Boilerplate WSDL page 70
43

CHAPTER 3 | Tutorials
Tutorial 1: Java First

Overview This tutorial walks you through using the Java-first technique with Artix
Designer to generate a “Hello World” client-server application written in
Java that calls JAX-WS.

The Java code you start with resides here:
ArtixInstallDir\java\samples\basic\java_first_jaxws.

The generated code is written here:
EclipseWorkspaceDir\javafirst-project.

Tasks This tutorial consists of the following tasks:

Task 1: Starting and Initializing Artix Designer page 45

Task 2: Creating the Project page 46

Task 3: Importing the Interface File page 50

Task 4: Generating the Code page 50

Task 5: Starting the Generated Server page 51

Task 6: Starting the Generated Client page 54

Task 7: Stopping the Generated Server and Clearing the Console
page 56
44

Tutorial 1: Java First
Task 1: Starting and Initializing Artix Designer
To start Artix Designer:

1. Use one of the following techniques:

♦ On Windows, select Start | [All Programs] | IONA |
Artix version | Artix Designer.

♦ On Linux or Solaris, at a shell prompt, enter a command with the
following syntax:

2. If prompted, specify a directory for the Eclipse workspace.

Artix Designer—that is, the Eclipse platform with the Artix Designer
plug-ins loaded—launches, as shown in Figure 3.

InstallDir/tools/eclipse/eclipse

Figure 3: Artix Designer Newly Launched
45

CHAPTER 3 | Tutorials
Task 2: Creating the Project
Create an Artix Designer project for this tutorial. To do so:

1. From the main menu, select File | New | Project, as shown in
Figure 4.

Figure 4: Creating a New Project
46

Tutorial 1: Java First
This opens the Select a wizard panel, as shown in Figure 5.

2. In the Select a wizard panel, navigate Artix | Java JAX-WS |
Java First Project, then click Next.

Figure 5: Select a wizard Panel
47

CHAPTER 3 | Tutorials
This opens the General Details panel, as shown in Figure 6.

3. In the General Details panel, do the following:

i. For Project Name, type javafirst-project.

ii. Under Project templates, click Java Client and Server.

iii. Click Next.

Figure 6: General Details Panel
48

Tutorial 1: Java First
This opens the Import panel, as shown in Figure 7.

Figure 7: Import Panel
49

CHAPTER 3 | Tutorials
Task 3: Importing the Interface File
Import the Java interface file, which is supplied with the sample code. To do
so:

In the Import panel, click Browse, and in the navigation window:

1. Navigate to
ArtixInstallDir\java\samples\basic\java_first_jaxws\src\demo\

hw\server.

2. Click HelloWorld.java.

3. Click Open.

The navigation window closes.

Task 4: Generating the Code
To generate the code, in the Import panel, click Finish. The code is
generated and written to EclipseWorkspaceDir\javafirst-project or to a
subordinate directory.

WARNING: If Artix Designer raises an error when you import the interface
file, see the Artix 5.1 Release Notes—specifically, the known issue
concerning Artix Designer’s occasional misparsing of text files with multple
kinds of comments.
50

http://www.iona.com/support/docs/artix/5.1/release_notes/wwhelp/wwhimpl/js/html/wwhelp.htm

Tutorial 1: Java First
Task 5: Starting the Generated Server
To start the generated server:

1. In Project Explorer, right-click javafirst-project, and from the context
menu:

i. Navigate Run As | Run.

ii. Click Run.

This is shown in Figure 8.

Figure 8: Starting the Generated Server
51

CHAPTER 3 | Tutorials
This opens the Create, manage, and run configurations panel, as
shown in Figure 9.

2. In this panel, do the following:

i. Navigate Java Application |
javafirst-project_HelloWorldService_ClientServer_
HelloWorldServerSample_server.

ii. Click Run.

Figure 9: Create, manage, and run configurations Panel
52

Tutorial 1: Java First
After a few seconds, the Console (located in the lower right of the
window) displays a message indicating that the server is ready, as
shown in Figure 10.

Figure 10: Server Ready
53

CHAPTER 3 | Tutorials
Task 6: Starting the Generated Client
In the same way, start the generated client. Specifically:

1. In Project Explorer, right-click the project name, and in the context
menu, click Run As | Run.

2. In the Create, manage, and run configurations panel, do the following:

i. Navigate to Java Application |
javafirst-project_HelloWorldService_ClientServer_
HelloWorldServerSample_client.

ii. Click Run.
54

Tutorial 1: Java First
After a few seconds, the Console view displays messages indicating
that the client ran OK, as shown in Figure 11.

Figure 11: Client Ran OK
55

CHAPTER 3 | Tutorials
Task 7: Stopping the Generated Server and Clearing the Console
To stop the generated server and clear the Console, use the Eclipse-toolbar
buttons shown in Figure 12.

Specifically:

1. Clear the client output by clicking the Remove All Terminated
Launches button.

2. Stop the server process by clicking the Terminate button.

3. Clear the server output by clicking the Remove All Terminated
Launches button.

Figure 12: Eclipse Toolbar

Remove All Terminated LaunchesTerminate
56

Tutorial 2: WSDL First, Starting with Filled-In WSDL
Tutorial 2: WSDL First, Starting with Filled-In
WSDL

Overview This tutorial walks you through using the WSDL-first technique with Artix
Designer to generate a “Hello World” SOA-network client-server application
written in Java that calls JAX-WS.

The WSDL file you start with, which is completely filled in, is
ArtixInstallDir\java\samples\basic\wsdl_first\wsdl\

helloworld.wsdl.

The generated code is written to
EclipseWorkspaceDir\wsdlfirst-filledin-project or to a subordinate
directory.

Tasks This tutorial consists of the following tasks:

Task 1: Starting and Initializing Artix Designer page 58

Task 2: Creating the Project page 59

Task 3: Importing the WSDL File page 63

Task 4: Generating the Code page 64

Task 5: Starting the Generated Server page 65

Task 6: Starting the Generated Client page 68

Task 7: Stopping the Server and Clearing the Console page 69
57

CHAPTER 3 | Tutorials
Task 1: Starting and Initializing Artix Designer
Start Artix Designer if it is not already running. To do so:

1. Use one of the following techniques:

♦ On in Windows, select Start | [All Programs] |IONA|
Artix version| Artix Designer.

♦ On Linux or Solaris, at a shell prompt, enter a command with the
following syntax:

2. If prompted, specify a directory for the Eclipse workspace.

Artix Designer—that is, the Eclipse workspace with the Artix Designer
plug-ins loaded—launches, as shown in Figure 3.

InstallDir/tools/eclipse/eclipse

Figure 13: Artix Newly Launched
58

Tutorial 2: WSDL First, Starting with Filled-In WSDL
Task 2: Creating the Project
Create a project for this tutorial. To do so:

1. From the main menu, navigate File | New | Project, as shown in
Figure 14.

Figure 14: Creating a New Project
59

CHAPTER 3 | Tutorials
This opens the Select a wizard panel, as shown in Figure 5.

2. In the Select a wizard panel, navigate Artix | Java JAX-WS |
WSDL First Project, then click Next.

Figure 15: Select a wizard Panel
60

Tutorial 2: WSDL First, Starting with Filled-In WSDL
This opens the General Details panel, as shown in Figure 16.

3. In the General Details panel, do the following:

i. For Project Name, type wsdlfirst-filledin-project.

ii. Select Use default location.

iii. Click Next.

Figure 16: General Details Panel
61

CHAPTER 3 | Tutorials
This opens the WSDL panel, as shown in Figure 17.

Figure 17: WSDL Panel
62

Tutorial 2: WSDL First, Starting with Filled-In WSDL
Task 3: Importing the WSDL File
To import the WSDL file:

1. In the WSDL panel, click Browse, which opens a navigation window.

2. In the navigation window, do the following:

i. Navigate to
ArtixInstallDir\java\samples\basic\wsdl_first\wsdl.

ii. Click HelloWorld.wsdl.

iii. Click Open.

The navigation window closes.

3. Back in the WSDL panel, click Next, which opens the Code generation
panel, as shown in Figure 18.

Figure 18: Code generation Panel
63

CHAPTER 3 | Tutorials
Task 4: Generating the Code
To generate the code, in the Code generation panel, do the following:

1. For Service, select SOAPService.

2. For Generation Options, select Client and Server Application.

3. For Port, select SoapPort.

4. Click Finish.

Artix generates the code.
64

Tutorial 2: WSDL First, Starting with Filled-In WSDL
Task 5: Starting the Generated Server
To start the generated server:

1. In Project Explorer, right-click the project name and in the context
menu, select Run As | Run, as shown in Figure 19.

Figure 19: Running the Application
65

CHAPTER 3 | Tutorials
This opens the Create, manage, and run configurations panel, as
shown in Figure 20.

2. In this panel, start the server by doing the following:

i. Navigate Java Application |
wsdlfirst-project_SOAPService_GreeterServerSample_server.

ii. Click Run.

Figure 20: Create, manage, and run configurations Panel
66

Tutorial 2: WSDL First, Starting with Filled-In WSDL
After a few seconds, the Console displays a message indicating that
the server is ready, as shown in Figure 21.

Figure 21: Server is Ready
67

CHAPTER 3 | Tutorials
Task 6: Starting the Generated Client
In the same way, start the generated client. Specifically:

1. In the Project Explorer, right-click the project name, and in the context
menu, select Run As | Run.

This opens the Create, manage, and run configurations panel.

2. In this panel, start the server by doing the following:

i. Navigate Java Application |
wsdlfirst-project_SOAPService_GreeterServerSample_client.

ii. Click Run.
68

Tutorial 2: WSDL First, Starting with Filled-In WSDL
After a few seconds, the Console displays messages indicating that the
client ran OK, as shown in Figure 22.

Task 7: Stopping the Server and Clearing the Console
To stop the server and clear the console in this tutorial, do what you did in
the previous tutorial in “Task 7: Stopping the Generated Server and Clearing
the Console” on page 56.

Figure 22: Client Ran OK
69

CHAPTER 3 | Tutorials
Tutorial 3: WSDL First, Starting With
Boilerplate WSDL

Overview This tutorial walks you through using the WSDL-first technique with Artix
Designer to generate three versions of a “Hello World” SOA-network
client-server application:

• One written in Java that calls JAX-WS

• One written in Java that calls JAX-RPC

• One written in C++

Unlike Tutorial 2: WSDL First, Starting with Filled-In WSDL, this tutorial
starts with a boilerplate WSDL file, which you fill in.

The generated code is written to
EclipseWorkspaceDir\wsdlfirst-boilerplate-project or to a subordinate
directory.

Tasks This tutorial consists of the following tasks:

Task 1: Creating Empty Projects page 71

Task 2: Creating a Boilerplate WSDL File page 73

Task 3: Defining Types in the WSDL File page 76

Task 4: Defining Messages in the WSDL File page 78

Task 5: Defining Port Types in the WSDL File page 81

Task 6: Defining Bindings in the WSDL File page 85

Task 7: Defining a Service in the WSDL File page 88

Task 8: Turning on the Build Automatically Option page 92

Task 9: Creating Code-Generation Configurations and Generating Code
page 93

Task 10: Running the Applications page 104
70

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Task 1: Creating Empty Projects

Overview In this task, you create an empty Artix Designer project for each version of
the application: one for the Java/JAX-WS version, one for the Java/JAX-RPC
version, and one for the C++ version.

Starting and initializing Artix
Designer

To start and initialize Artix Designer:

1. Use one of the following techniques:

On Windows, select Start | [All Programs] |IONA|
Artix version| Artix Designer.

On Linux or Solaris, at a shell prompt, enter a command with the
following syntax:

2. If prompted, specify a directory for the Eclipse workspace.

Artix Designer—that is, the Eclipse platform with the Artix Designer
plug-ins loaded—launches, as shown in Figure 23.

InstallDir/tools/eclipse/eclipse

Figure 23: Eclipse Newly Launched
71

CHAPTER 3 | Tutorials
Creating the project for the
JAX-WS version

Create a project to contain the JAX-WS version of the application. To do so:

1. From the main menu, select File | New | Project.

2. In the Select a Wizard panel, select Artix | Java JAX-WS | Empty
Web Services Project, then click Next.

3. In the General Details panel, do the following:

i. For Project name, type JaxWsHello.

ii. Select Use default location.

iii. Click Finish

Navigator now displays an entry for the JaxWsHello project.

Creating the project for the
JAX-RPC version

Create a project to contain the JAX-RPC version of the application. To do so:

1. From the main menu, select File | New | Project.

2. In the Select a Wizard panel, select Artix | C++/JAX-RPC | Empty
Web Services Project, then click Next.

3. In the General Details panel, do the following:

i. For Project name, type JaxRpcHello.

ii. Select Use default location.

iii. Click Finish.

Navigator now displays an entry for the JaxRpcHello project.

Creating a project for the C++
version

Create a project to contain the C++ version of the application. To do so:

1. From the main menu, select File | New | Project.

2. In the Select a Wizard panel, do the following:

i. Select Artix | C++/JAX-RPC | Empty Web Services Project.

ii. Click Next.

3. In the General Details panel, do the following:

i. For Project name, type CppHello.

ii. Select Use default location.

iii. Click Finish.

Navigator now displays an entry for the CppHello project.
72

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Task 2: Creating a Boilerplate WSDL File

Overview In this task, you create a boilerplate WSDL file within the JAX-WS project,
then link to this WSDL file from the JAX-RPC project and from the C++
project.

Creating an empty WSDL file
within the JAX-WS project

To create a skeleton WSDL file within the JAX-WS project:

1. From the main menu, select File | New | WSDL File.

2. For parent folder, click JaxWeHello.

3. For File name, type HelloWorld.

4. Click Finish.

Artix Designer displays the boilerplate HelloWorld.wsdl file.

Linking to the WSDL file from the
JAX-RPC project

To link to the new WSDL file from the JAX-RPC project:

1. From the main menu, select File | New | WSDL File, which opens the
WSDL File panel.

2. For parent folder, click JaxRpcHello.

3. For File name, type HelloWorld.

4. Click Advanced.

5. Select Link to file in the file system, click Browse, and in the
navigation window:

i. Navigate to EclipseWorkspaceDir/JaxWsHello.

ii. Select HelloWorld.wsdl.

iii. Click Open.
73

CHAPTER 3 | Tutorials
The WSDL File panel now looks like Figure 24.

6. In the WSDL File panel, click Finish.

Figure 24: WSDL File Panel
74

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
In Navigator, under JaxRpcHello, the icon for HelloWorld.wsdl now
indicates a link, as shown in Figure 25.

Linking to the WSDL file from the
C++ project

To link to the new WSDL file from the C++project:

1. From the main menu, select File | New | WSDL File, which opens the
WSDL File panel.

2. For parent folder, click CppHello.

3. For File name, type HelloWorld.

4. Click Advanced.

5. Select Link to file in the file system, click Browse, and in the
navigation window:

i. Navigate to EclipseWorkspaceDir/JaxWsHello.

ii. Click HelloWorld.wsdl.

iii. Click Open.

6. Back in the WSDL File panel, click Finish.

In Navigator, under CppHello, the icon for HelloWorld.wsdl now
indicates a link.

Figure 25: HelloWorld.wsdl as a Link
75

CHAPTER 3 | Tutorials
Task 3: Defining Types in the WSDL File

Overview The WSDL file’s types element contains all data types used between the
client and server.

In this task, you create two objects of type string:

• InElement, which maps to the in part of the request message.

• OutElement, which maps to the out part of the response message.

Defining InElement To define InElement:

1. In Navigator, navigate JaxWsHello | HelloWorld.wsdl, then
double-click HelloWorld.wsdl.

2. At the bottom of the WSDL Editor view, click the Diagram tab.

3. In the Diagram view, do the following:

i. Right-click Types.

ii. In the context menu, select New Type.

4. In the Select Source Resources panel, do the following:

i. Under Source File(s), select HelloWorld.wsdl.

ii. Click Next.

5. In the Define Type Properties panel, do the following:

i. For Name, type InElement.

ii. For Kind, select Element.

iii. Click Next.

6. In the Define Element Data panel, do the following:

i. For Type Definition, select Pre-declared Type and string.

ii. Click Next.

7. In the View Type Summary panel, click Finish.

8. Save the changes by pressing CTRL-S.
76

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Defining OutElement To define OutElement:

1. In Navigator, navigate JaxWsHello | HelloWorld.wsdl, then
double-click HelloWorld.wsdl.

2. At the bottom of the WSDL Editor view, click the Diagram tab.

3. In the Diagram view, do the following:

i. Right-click Types.

ii. In the context menu, select New Type.

4. In the Select Source Resources panel, do the following:

i. Under Source File(s), select HelloWorld.wsdl.

ii. Click Next.

5. In the Define Type Properties panel, do the following:

i. For Name, type OutElement.

ii. For Kind, select Element.

iii. Click Next.

6. In the Define Element Data panel, do the following:

i. For Type Definition, select Pre-declared Type and string.

ii. Click Next.

7. In the View Type Summary panel, click Finish.

8. Save the changes by pressing CTRL-S.

Review At the bottom of the WSDL Editor, click the Source tab to view the WSDL
file created so far.

In the lower left of the Eclipse window, in the Outline view , open the Types
node. Click the name of a types element to jump to that element in the
WSDL Editor view.

<types>
 <schema targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
</types>
77

CHAPTER 3 | Tutorials
Task 4: Defining Messages in the WSDL File

Overview In this task you define the request and response messages for your Web
service.

For message parts, you will use the types you already created.

Defining the request message To define the request message:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click Messages, and in the context menu, select New Message.

2. In the Select Source Resources panel, do the following:

i. For Source File(s), select HelloWorld.wsdl.

ii. Click Next.

3. In the Define Message Properties panel, do the following:

i. For Name, type RequestMessage.

ii. Click Next.

4. In the Define Message Parts panel, click Add, as shown in Figure 26.

Figure 26: Define Message Parts Panel
78

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
5. In the Message Part Data dialog, do the following:

i. For Name, type InPart.

ii. For Type, select InElement.

iii. Click OK, which adds InPart to the Part List in the Define
Message Parts panel, as shown in Figure 27.

6. In the Define Message Parts panel, click Next, which opens the View
Message Summary panel.

7. In the View Message Summary panel, click Finish.

8. Save the changes by pressing CTRL-S.

Figure 27: Define Message Parts Panel (with InPart)
79

CHAPTER 3 | Tutorials
Defining the response message To define the response message:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click Messages.

2. From the pop-up menu, select New Message.

3. In the Select Source Resources panel, do the following:

i. For Source File(s), select HelloWorld.wsdl.

ii. Click Next.

4. In the Define Message Properties panel, do the following:

i. For Name, type ResponseMessage.

ii. Click Next.

5. In the Define Message Parts panel, click Add.

6. In the Message Part Data dialog, do the following:

i. For Name, type OutPart.

ii. For Type, select OutElement.

iii. Click OK, which adds OutPart to the Part List in the Define
Message Parts panel.

7. Back in the Define Message Parts panel, click Next, which opens the
View Message Summary panel.

8. In the View Message Summary panel, click Finish.

9. Save the changes by pressing CTRL-S.

Review You added request and response messages to your WSDL file.

The request message includes an in part that maps to the InElement type,
and the response message includes an out part that maps to the OutElement
type., as shown in the following fragment:

For complete information on creating messages, see Understanding Artix
Contracts.

<message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
</message>
<message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
</message>
80

http://www.iona.com/support/docs/artix/5.1/contract/index.htm
http://www.iona.com/support/docs/artix/5.1/contract/index.htm

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Task 5: Defining Port Types in the WSDL File

Overview The portType element contains operations, each of which includes one or
more messages, as follows:

• A one-way operation includes an input message only; client application
does not receive a response from the Web service.

• A request-response operation includes an input message, an output
message, and zero or more fault messages.

In this task, you define a portType that includes one request-response
operation called sayHi, which uses RequestMessage as its input and
ResponseMessage as its output.

Defining a port type To define a port type:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click Port Types, and in the context menu, select New Port Type.

2. In the Select Source Resources panel, do the following:

i. For Source File(s), select HelloWorld.wsdl.

ii. Click Next.

3. In the Define Port Type Properties panel, do the following:

i. For Name, type HelloWorldPT.

ii. Click Next.

4. In the Define Port Type Operations panel, do the following:

i. For Name, type sayHi.

ii. For Style, select Request-response.

iii. Click Next.
81

CHAPTER 3 | Tutorials
Defining the request message Define the request message as follows:

1. In the Define Operation Messages panel, click Add, which opens the
Operation Message Data dialog.

2. In the Operation Message Data dialog, do the following:

i. For Type, select input.

ii. For Message, select RequestMessage.

The name SayHiRequest appears in the Name text box, as shown
in Figure 28.

iii. Click OK, which adds the operation to the Operation Messages
list in the Define Operation Messages panel.

Figure 28: Operation Message Data Dialog
82

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Defining the response message Define the response message as follows:

1. Back in the Define Operation Messages panel, click Add again.

2. In the Operation Message Data dialog, do the following:

i. For Type, select output.

ii. For Message, select ResponseMessage.

The name sayHiResponse appears in the Name text box.

iii. Click OK.

The Define Operation Messages panel now looks like Figure 29.

3. Back in the Define Operation Messages panel, click Next, which
opens the View Port Type and Operation Summary panel.

4. In the View Port Type and Operation Summary panel, click Finish.

5. Save the changes by pressing CTRL-S.

Figure 29: Define Operation Messages Panel
83

CHAPTER 3 | Tutorials
Review You added the following portType element to your WSDL file.

<portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
84

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Task 6: Defining Bindings in the WSDL File

Overview The binding element in a WSDL file defines the message format and
protocol details for each port. Each binding maps to a single portType
element, although the same portType can map to multiple bindings.

Artix Designer supports a number of binding types. In this task, you specify
a SOAP 1.1 binding with the document/literal binding style, which is
required when message parts are element types.

Defining a binding To define a binding:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click Bindings, and in the context menu, select New Binding.

2. In the Select Source Resources panel, do the following:

i. Select HelloWorld.wsdl.

ii. Click Next.

3. In the Select Binding Type panel, do the following:

i. For Binding Type, select SOAP 1.1.

ii. Click Next.

4. In the Set Binding Defaults panel, do the following:

i. For Port Type, select HelloWorldPT.

ii. For Style, select document.

iii. For Use, select literal.

iv. Click Next.
85

CHAPTER 3 | Tutorials
5. In the Edit Operation panel, do the following:

i. In the Operations Editor on the left, expand the Operations node,
as shown in Figure 30.

ii. Click each sayHi operation to review its binding.

Figure 30: Edit Operation panel
86

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
The panel now looks like Figure 31.

iii. Click Next, which opens the View Binding Summary panel.

iv. Click Finish, which closes the wizard.

6. Save the changes by pressing CTRL-S.

Review You added the following binding element to your WSDL file.

Figure 31: Edit Operation Panel—sayHi Node Selected

<binding name="HelloWorldPTSOAPBinding� type="tns:HelloWorldPT">
 <soap:binding style="document" transport="http://

schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
87

CHAPTER 3 | Tutorials
Task 7: Defining a Service in the WSDL File

Overview The service element of a WSDL file provides transport-specific information.
Each service element can include one or more port elements. Each port
element must be uniquely identified by the value of its name attribute.

Each port element maps to a single binding element, although the same
binding element can map to one or more port elements. In addition, a
WSDL file can contain multiple service elements.

In this task, you add to the WSDL file one service element that contains
one port element.

Defining a service To define a service:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click Services, and in the context menu, select New Service.

2. In the Select Source Resources panel, do the following:

i. For Source File(s), select HelloWorld.wsdl.

ii. Click Next.

3. In the Define Service panel, do the following:

i. For Name, type HelloWorldService.

ii. Click Next.

4. In the Define Port panel, do the following:

i. For Name, type HelloWorldPort.

ii. For Binding, select HelloWorldPTSOAPBinding.

iii. Click Next.
88

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
5. In the Define Port Properties panel, do the following:

i. For Transport Type, select SOAP/HTTP.

ii. For the location attribute, click just below the Value header, and
type http://localhost:9000/HelloWorldService/
HelloWorldPort, as shown in Figure 32.

iii. Click Next, which opens the View Service and Port Summary
panel.

6. Click Finish, which closes the wizard.

7. Save the changes by pressing CTRL-S.

Figure 32: Define Port Properties Panel
89

CHAPTER 3 | Tutorials
Review You have completed your WSDL contract. To review the WSDL, in the
WSDL Editor, click Source. The WSDL should look like Example 1.

Example 1: HelloWorld.wsdl Filled In Completely

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--Created by IONA Artix Designer-->
<definitions name="HelloWorld.wsdl"
 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://www.iona.com/artix/HelloWorld"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema

 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
 </types>
 <message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
 </message>
 <message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
 </message>
 <portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
 </portType>
90

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
 <binding name="HelloWorldPTSOAPBinding" type="tns:HelloWorldPT">
 <soap:binding style="document" transport="http:schemas.xmlsoap.org/soap/

http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPTSOAPBinding"

 name="HelloWorldPort">
 <soap:address location="http://localhost:9000/HelloWorldService/

HelloWorldPort"/>
 </port>
 </service>
</definitions>

Example 1: HelloWorld.wsdl Filled In Completely (Continued)
91

CHAPTER 3 | Tutorials
Task 8: Turning on the Build Automatically Option

Overview Because Artix Tools integrate with the Eclipse JDT and CDT, Artix can
automatically compile Java or C++ code as soon as it is generated and can
automatically recompile any Java or C++ code as soon as it is changed and
saved. This requires the Build Automatically option to be on.

Turning on Build Automatically To turn on the Build Automatically option:

1. From the main menu, navigate Project | Build Automatically.

If Build Automatically has a check to the left of it, the option is on.

2. If the option is off, click Build Automatically to turn the option on.

Note: If you are running the Windows version of Artix Designer and
generating C++ code, in order for Build Automatically to work, before you
start Artix Designer, you must set the Windows environment for the version
of Visual C++ invoked thorugh Artix Designer. For details, see the Artix
Installation Guide.
92

../install_guide/index.htm
../install_guide/index.htm

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Task 9: Creating Code-Generation Configurations and
Generating Code

Overview Before you can generate code, Artix Designer prompts you to define a
code-generation configuation. Once you create one, you can copy it to a
different name and then edit and save the copy.

In this task, you create a code-generation configuration from scratch for
JAX-WS, clone the original for JAX-RPC, and clone the original a second
time for C++.

Creating the code-generation
configuration for JAX-WS

To create the code-generation configuration for the JAX-WS project:

1. From the main menu, select Artix | Artix Tools | Artix Tools, which
opens the Create, manage, and run configurations panel, as shown in
Figure 33.

2. Select Artix Code Generation.

Figure 33: Create, manage, and run configurations panel
93

CHAPTER 3 | Tutorials
3. In the toolbar just above the Artix Code Generation label, click the
New launch configuration button (marked in red in Figure 33).

The right-pane displays a series of tabs with the Generation tab
highlighted, as shown in Figure 34

4. For Name, type HelloJaxWs.

Figure 34: Generation Tab Highlighted
94

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
5. In the Generation tabbed page, do the following:

i. For Targeted Project, select JaxWsHello.

ii. For WSDL File, select HelloWorld.wsdl.

iii. For Generation Type, select Application.

iv. For Development Language, select Jax-WS.

v. For Templates, check all checkboxes.

6. Click the WSDL/Containers Details tab.
95

CHAPTER 3 | Tutorials
The WSDL Details tabbed page opens, as shown in Figure 35.

7. In the WSDL Details tabbed page, do the following:

i. For Services/ports, select HelloWorldService/HelloWorldPort.

ii. For Bindings, select HelloWorldPTSOAPBinding.

iii. For Port Types, select HelloWorldPT.

iv. Click Apply, which saves the code-generation configuration.

Figure 35: WSDL Details Tabbed Page
96

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Generating the JAX-WS code To generate JAX-WS Java code from the saved code-generation
configuration, in the Create, manage, and run configurations panel, click
Run.

Artix tools generate all source code—Java classes and configuration files—
for the client-server application automatically.

Eclipse compiles the generated code automatically.

By default, the generated source code is written to the following location:

Also by default, the compiled bytecode is written to the following location:

EclipseWorkspace/JaxWsHello/HelloJaxWs/src/com/iona/artix/
HelloJaxWs

EclipseWorkspaceDir/JaxWsHello/bin
97

CHAPTER 3 | Tutorials
Creating a code-generation
configuration for JAX-RPC

Create a code-generation configuration for JAX-RPC by cloning the one for
JAX-WS. To do so:

1. In the Eclipse menu, select the Artix| Artix Tools | Artix Tools.

2. In the Artix Tools window, select HelloJaxWs.

3. From the toolbar, click the Duplicate launch configuration button,
shown in Figure 36.

4. For Name, type HelloJaxRpc.

5. In the Generation tabbed page, do the following:

i. For Targeted Project, select JaxRpcHello.

ii. For WSDL File, select HelloWorld.wsdl.

iii. For Generation Type, select Application.

iv. For Development Language, select JAX-RPC.

v. For Templates, check all checkboxes.

Figure 36: Duplicate Launch Configuration Button
98

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
The Generation tabbed page now looks like Figure 37.

vi. Click Apply, which saves the code-generation configuration.

Generating the JAX-RPC code To generate JAX-RPC code from the JAX-RPC code-generation configuration,
in the Create, manage, and run configurations panel, click Run.

Figure 37: Generation Tabbed Page
99

CHAPTER 3 | Tutorials
Creating a code-generation
configuration for C++

Create a code-generation configuration for C++ by cloning the one for
JAX-WS.

To create a code-generation configuration for C++ by cloning the one for
JAX-WS:

1. In the Eclipse menu, select the Artix| Artix Tools | Artix Tools menu.

2. In the Artix Tools window, select the HelloJaxWs configuration.

3. From the toolbar, click the Duplicate Launch Configuration button,
shown in Figure 38.

4. In the Name text box, change the name to HelloCpp.

5. In the Generation tabbed page, do the following:

i. For Targeted Project, select CppHello.

ii. For WSDL File, select HelloWorld.wsdl.

iii. For Generation, select Application.

iv. For Development Language, select C++.

v. For Templates, check every checkbox.

Note: If you are using the Windows version of Artix Designer, make sure
you have set the environment for a supported version of Visual C++
before creating the C++ configuration. For more information, see the Artix
Installation Guide.

Figure 38: Duplicate Launch Configuration Button
100

../install_guide/index.htm
../install_guide/index.htm

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
The Generation tabbed page now looks like Figure 39.

vi. Click Apply.

Figure 39: Generation Tabbed Page
101

CHAPTER 3 | Tutorials
6. Click the WSDL Details tab. In the tabbed page, do the following:

i. For Services/ports, select HelloWorldService/HelloWorldPort.

ii. For Bindings, select HelloWorldPTSOAPBinding.

iii. For Port Types, select HelloWorldPT.

iv. Click Apply, which saves the code-generation configuration.

7. Click the C++ Options tab. In the tabbed page, do the following:

i. For Specify C++ Namespace, accept the default
(COM_IONA_ARTIX).

ii. For Port Types, select HelloWorldAcceptPT.

The tabbed page should look like Figure 40.

iii. Click Apply, which saves the code-generation configuration.

Figure 40: C++ Options Tabbed Page
102

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Generating the C++ code To generate C++ code from the code-generation configuration you just
created and saved, in the Create, manage, and run configurations panel,
click Run.

The Artix Tools create all the C++ source and header files for your client
and server applications and writes them to the following location:

EclipseWorkspace\CppHello\HelloC\src
103

CHAPTER 3 | Tutorials
Task 10: Running the Applications

Overview You are now ready to run the JAX-WS, JAX-RPC, and C++ versions of the
client-server application.

You can launch each version from within the Eclipse environment, although
the procedures for each version are different.

Editing run configurations Artix Designer automatically creates a run configuration for each generated
executable. You can edit and save a run configuration in much the same
way as you edited and saved code-generation configurations in “Task 9:
Creating Code-Generation Configurations and Generating Code” on page 93.

A saved run configuration saves time when rerunning your application,
because it saves the environment and any arguments necessary for each
invocation. You can copy a saved run configuration and edit it to create a
new run configuration.
104

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Running the JAX-WS server To run the JAX-WS server:

1. Right-click the JaxWsHello project folder and in the context menu,
select Run As|Run.

2. In the Run dialog, do the following:

i. In the list of run configurations on the left, select Java Application
| HelloJaxWs_HelloWorldPTServerSample_server, as shown in
Figure 41.

Figure 41: Run Dialog
105

CHAPTER 3 | Tutorials
ii. Click Run.

The server process starts running, displaying messages in the
Eclipse Console view. After a moment, a message indicating that
the server is ready appears, as shown in Figure 42.

Running the JAX-WS client To run the JAX-WS client:

1. Right-click the JaxWsHello project folder and in the context menu,
select Run As|Run.

2. In the Run window, do the following:

i. In the list of Java launch configurations, select Java Application |
HelloJaxWs_HelloWorldPTClientSample_client.

ii. Click Run.

The message, Operation sayHi received: Curry, appears in the
Eclipse Console view.

Figure 42: JAX-WS Server Ready
106

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Stopping the JAX_WS server and
clearing the console

To stop the JAX-WS server and clear the console, use the Eclipse-toolbar
buttons shown in Figure 12.

Specifically:

1. Clear the client output by clicking the Remove All Terminated
Launches button.

2. Stop the server process by clicking the Terminate button.

3. Clear the server output by clicking the Remove All Terminated
Launches button.

Running the JAX-RPC server To run the JAX-RPC server:

1. Right-click the JaxRpcHello project folder and in the context menu,
select Run As|Run.

2. In the Run dialog, do the following:

i. From the list of run configurations on the left, select Java
Application | HelloJaxRpc_HelloWorldPTServerSample_server.

ii. Click Run.

The server runs. In a few seconds, the Eclipse Console view
displays the message, Server Ready, as shown in Figure 44.

Figure 43: Eclipse Toolbar

Remove All Terminated LaunchesTerminate

Figure 44: JAX-RPC Server Ready
107

CHAPTER 3 | Tutorials
Running the JAX-RPC client To run the JAX-RPC client:

1. Right-click the JaxRpcHello project folder and in the context menu,
select Run As|Run.

2. Interact with the Run window as follows:

i. From the list of Java launch configurations, select Java
Application | HelloJaxRpc_HelloWorldPTClientSample_client.

ii. Click Run.

The message say Hi RECVD: GoodMorning appears in the Eclipse
Console view, as shown in Figure 45.

Stopping the JAX_RPC server and
clearing the console

To stop the JAX-RPC server and clear the console, follow the instructions in
“Stopping the JAX_WS server and clearing the console” on page 107.

Figure 45: JAX-RPC Client Run-Messages
108

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Running the C++ server To run the C++ server:

1. From the Eclipse menu, select Run | External Tools | External Tools.

2. In the External Tools window, do the following:

i. In the list of configurations on the left, expand the Program node.

ii. Select the launch-configuration entry for
CppHello_container_start_server.bat.

The External Tools window now looks like Figure 46.

iii. Click Run.

Figure 46: External Tools Window
109

CHAPTER 3 | Tutorials
If you are using Windows XP SP2 with the Windows Firewall enabled,
the firewall might display a Security Alert, as shown in Figure 47.

3. If this window appears, click Unblock, which allows the server to run.

In any case, a Command Prompt window opens, displaying messages
from the running C++ server.

Running the C++ client To run the C++ client:

1. Select the launch configuration entry for
CppHello_consumer_instance_start_client.bat.

2. Click Run.

Stopping the C++ server and
clearing the console

To stop the C++ server and clear the console, follow the instructions in
“Stopping the JAX_WS server and clearing the console” on page 107.

Figure 47: Windows Security Alert Window
110

Tutorial 3: WSDL First, Starting With Boilerplate WSDL
Command-line alternatives When you use an Artix Designer code-generation configuration to create an
Artix application, start and stop scripts are added to the project.

You can start the C++ application by running the appropriate start script
from the command prompt.

To run a C++ application from a command line:

1. Open a command prompt and change to the following directory:

2. Run the start_server script, which launches the server in a new
command window.

3. In the command prompt, change to the following directory:

4. Run the start_client script.

The client launches in a new command window.

In a few seconds, the command window displays the message,
Operation sayHi received: OutPart = GoodMorning.

5. Stop the client. To do so, in the client’s command window, press
Ctrl+C.

6. Stop the server. To do so, in the server’s command window, press
Ctrl+C.

Note: If an application takes any arguments, you must edit the start
script to include the arguments.

EclipseWorkspace\CppHello\.artix\containers\container\bin

EclipseWorkspace\CppHello\.artix\containers\
consumer_instance\bin
111

CHAPTER 3 | Tutorials
112

APPENDIX A

Understanding
WSDL
Artix contracts use WSDL documents to describe services and
the data they use.

In this appendix This appendix discusses the following topics:

WSDL Basics page 114

Abstract Data Type Definitions page 116

Abstract Message Definitions page 119

Abstract Interface Definitions page 122

Mapping to the Concrete Details page 126
113

APPENDIX A | Understanding WSDL
WSDL Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website at www.w3.org/TR/wsdl.

Elements of a WSDL document A WSDL document is made up of the following elements:

• import allows you to import another WSDL or XSD file.

• Logical contract elements:
♦ types

♦ message

♦ operation

♦ portType

• Physical contract elements:
♦ binding

♦ port

♦ service

These elements are described in “WSDL elements” on page 23.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Alternatively, one WSDL document could be used to define
several services that use the same abstract messages.

The portType A portType is a collection of abstract operations that define the actions
provided by an endpoint.
114

http://www.w3.org/TR/wsdl

WSDL Basics
Concrete details When a portType is mapped to a concrete data format, the result is a
concrete representation of the abstract definition.A port is defined by
associating a network address with a reusable binding, in the form of an
endpoint. A collection of ports (or endpoints) define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the definition
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

Example Example 1 on page 90 shows a simple WSDL document.
115

APPENDIX A | Understanding WSDL
Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex data types using a combination of
schema types defined in referenced external XML schema documents and
complex types described in types elements.

Complex type definitions Complex data types are described in a types element. The W3C
specification states that XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire, and are not concrete descriptions, there are a few guidelines on
using XSD schemas to represent them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo structure

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

116

Abstract Data Type Definitions
Example 3 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 2.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor" type="xsd1:hairColorType"/>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
117

APPENDIX A | Understanding WSDL
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo (Continued)
118

Abstract Message Definitions
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages described in message elements.

Each abstract message consists of one or more parts, defined in part
elements.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and only one output message, the representation of the data returned by
the operation.

In the abstract message definition, you cannot directly describe a message
that represents an operation's return value. Therefore, any return value must
be included in the output message.

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of part elements that represent one element in a
parameter list.

Therefore, all of the input parameters for a method call are defined in one
message and all of the output parameters, including the operation’s return
value, are mapped to another message.
119

APPENDIX A | Understanding WSDL
Example For example, imagine a server that stores personal information as defined in
Example 2 on page 116 and provides a method that returns an employee’s
data based on an employee ID number.

The method signature for looking up the data would look similar to
Example 5.

This method signature could be mapped to the WSDL fragment shown in
Example 6.

Message naming Each message in a WSDL document must have a unique name within its
namespace. Choose message names that show whether they are input
messages (requests) or output messages (responses).

Example 5: Method for Returning an Employee’s Data

personalInfo lookup(long empId)

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>
120

Abstract Message Definitions
Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name attribute and by either a type or an element
attribute that specifies its data type. The data type attributes are listed in
Table 2.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, which is passed by reference or is an in/out, it can be a part
in both the request message and the response message. An example of
parameter reuse is shown in Example 7.

Table 2: Part Data Type Attributes

Attribute Description

type="type_name" The data type of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The data type of the part is defined by an
element called elem_name.

Example 7: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>
121

APPENDIX A | Understanding WSDL
Abstract Interface Definitions

Overview WSDL portType elements define, in an abstract way, the operations offered
by a service. The operations defined in a portType list the input, output, and
any fault messages used by the service to complete the transaction the
operation describes.

PortTypes A portType can be thought of as an interface description. In many Web
service implementations there is a direct mapping between portTypes and
implementation objects. PortTypes are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

PortTypes are described using the portType element in a WSDL document.
Each portType in a WSDL document must have a unique name, specified
using the name attribute, and is made up of a collection of operations,
described in operation elements. A WSDL document can describe any
number of portTypes.

Operations Operations, described in operation elements in a WSDL document, are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a portType must have a unique name, specified using
the required name attribute.
122

Abstract Interface Definitions
Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

 The elements that can describe an operation are listed in Table 3.

An operation is required to have at least one input or output element. The
elements are defined by two attributes listed in Table 4.

Table 3: Operation Message Elements

Element Description

input Specifies a message that is received from another endpoint.
This element can occur at most once for each operation.

output Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

fault Specifies a message used to communicate an error condition
between the endpoints. This element is not required and can
occur an unlimited number of times.

Table 4: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when mapping
the operation to a concrete data format. The name must be
unique within the enclosing port type.

message Specifies the abstract message that describes the data being
sent or received. The value of the message attribute must
correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
123

APPENDIX A | Understanding WSDL
It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name.

If only one element is used in the operation, the element name defaults to
the name of the operation. If both an input and an output element are
used, the element name defaults to the name of the operation with Request
or Response, respectively, appended to the name.

Return values Because the portType is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value, it is mapped into the output message
as the last part of that message. The concrete details of how the message
parts are mapped into a physical representation are described in “Bindings”
on page 126.

Example For example, in implementing a server that stores personal information in
the structure defined in Example 2 on page 116, you might use an interface
similar to the one shown in Example 8.

Example 8: personalInfo Lookup Interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

124

Abstract Interface Definitions
This interface could be mapped to the portType in Example 9.

Example 9: personalInfo Lookup Port Type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </operation>
</portType>
125

APPENDIX A | Understanding WSDL
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions
discussed in the previous section must be mapped to concrete
representations of the data passed between applications. The details
describing the network protocols in use must also be added.

This is accomplished in the WSDL bindings and ports elements. WSDL
binding and port syntax is not tightly specified by the W3C. A specification
is provided that defines the mechanism for defining these syntaxes.
However, the syntaxes for bindings other than SOAP and for network
transports other than HTTP are not defined in a W3C specification.

Bindings Bindings describe the mapping between the abstract messages defined for
each portType and the data format used on the wire. Bindings are described
in binding elements in the WSDL file. A binding can map to only one
portType, but a portType can be mapped to any number of bindings.

It is within the bindings that you specify details such as parameter order,
concrete data types, and return values. For example, a binding can reorder
the parts of a message to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services To define an endpoint that corresponds to a running service, the port
element in the WSDL file associates a binding with the concrete network
information needed to connect to the remote service described in the file.
Each port specifies the address and configuration information for connecting
the application to a network.

Ports are grouped within service elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example, all of the ports might be
bound to the same portType, but use different network protocols, like HTTP
and WebSphere MQ.
126

Index

A
Adaptive Runtime Technology, see ART
applications

running 104
ART 13, 14, 20
Artix

bus 21
contracts 23, 24
features 16
locator 25
session manager 26
transformer 26

Artix Designer
projects 38
using 31, 43

B
BEA Tuxedo 14
bindings 23, 85, 126
bus 21

C
C/C++ Development Tools, see CDT
CDR 17
CDT 34, 92
COBOL 33
Common Data Representation, see CDR
contracts 23, 24
CORBA 16, 38
CORBA IDL 28, 33

D
deployment phase 29
design phase 27
development phase 29

E
EAI 13
Eclipse 29, 32, 34, 35, 36, 38, 40, 45, 58, 71,

72, 73, 75, 77, 92, 97, 98, 100, 104
console view 106, 107, 108
help system 40

endpoints 20
enterprise application integration, see EAI
enterprise service bus, See ESB

F
Field Manipulation Language, see FML
Fixed 17
fixed record length, see FRL
FML 17
FRL 17

G
G2 17

H
HTTP 16

I
IDL 28
IIOP 16

J
Java Development Tools, see JDT
Java Messaging Service 16
JDT 34, 92, 97

L
locator 25
127

INDEX
M
messages 23, 78
MQSeries 16

O
operations 23, 122

P
payload formats 17
plug-ins 20
ports 23
portTypes 23, 81, 114, 122
protocols 16

S
service 88
service-oriented architecture, see SOA
services 23, 126
session manager 26
SOA 12
SOAP 13, 17

T
TIBCO 16
TibrvMsg 17
transformer 26
transports 16
Tuxedo 16
types 23, 76

V
VRL 17

W
W3C 114
Web Services Description Language, see WSDL
WebSphere MQ 14
World Wide Web Consortium, see W3C
WSDL 23, 113–126

defined 114
WSDL files

creating 73

X
XML 17
XSD 33, 116
128

	List of Figures
	List of Tables
	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of This Book
	The Artix Documentation Library

	About Artix ESB
	What is Artix ESB?
	Key Concepts in Depth
	Artix ESB Runtime Components
	Artix Bus
	Artix Endpoints
	Artix Contracts
	Artix Services

	Solving Problems with Artix ESB

	About Artix Designer
	Overview
	Generating and Editing WSDL
	Generating Code
	Artix-Related Eclipse Perspectives
	Artix Perspective

	Artix Designer Project Types
	Artix Designer Project Templates
	Artix Designer On-Line Help and Cheat Cheats
	Artix for z/OS Off-Host Components

	Tutorials
	Tutorial 1: Java First
	Task 1: Starting and Initializing Artix Designer
	Task 2: Creating the Project
	Task 3: Importing the Interface File
	Task 4: Generating the Code
	Task 5: Starting the Generated Server
	Task 6: Starting the Generated Client
	Task 7: Stopping the Generated Server and Clearing the Console

	Tutorial 2: WSDL First, Starting with Filled-In WSDL
	Task 1: Starting and Initializing Artix Designer
	Task 2: Creating the Project
	Task 3: Importing the WSDL File
	Task 4: Generating the Code
	Task 5: Starting the Generated Server
	Task 6: Starting the Generated Client
	Task 7: Stopping the Server and Clearing the Console

	Tutorial 3: WSDL First, Starting With Boilerplate WSDL
	Task 1: Creating Empty Projects
	Task 2: Creating a Boilerplate WSDL File
	Task 3: Defining Types in the WSDL File
	Task 4: Defining Messages in the WSDL File
	Task 5: Defining Port Types in the WSDL File
	Task 6: Defining Bindings in the WSDL File
	Task 7: Defining a Service in the WSDL File
	Task 8: Turning on the Build Automatically Option
	Task 9: Creating Code-Generation Configurations and Generating Code
	Task 10: Running the Applications

	Understanding WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Index

