
Artix ESBTM

Making Software Work TogetherTM

Managing Artix Solutions with
JMX, Java Runtime

Version 5.1, December 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix,
FUSE, and Making Software Work Together are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2008 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: January 25, 2008

Contents

List of Figures 5

List of Tables 7

Preface 9
What is Covered in this Book 9
Who Should Read this Book 9
How to Use this Book 9
The Artix Documentation Library 9

Chapter 1 Monitoring and Managing an Artix Java Runtime 11
Introduction 12
Managed Runtime Components 16

Chapter 2 Instrumenting Artix Java Services 19
Using the JMX MBean Interfaces 20
Using the Artix ManagedComponent interface 23

Chapter 3 Configuring JMX in an Artix Java Runtime 33
Artix JMX Configuration 34

Chapter 4 Managing Java Services with JMX Consoles 39
Managing Artix Services with JConsole 40

Index 47
3

CONTENTS
4

List of Figures

Figure 1: Artix Java Runtime JMX Architecture 13

Figure 2: Managed Bus Info in JConsole 41

Figure 3: Managed Bus Operation in JConsole 42

Figure 4: Managed Endpoint Attributes in JConsole 43

Figure 5: Managed Endpoint Operations in JConsole 44

Figure 6: Custom MBean Attributes in JConsole 45

Figure 7: Custom MBean Operations in JConsole 46
5

LIST OF FIGURES
 6

List of Tables

Table 1: Managed Bus Methods 16

Table 2: Managed Endpoint Attributes 16

Table 3: Managed Endpoint Operations 17

Table 4: JDK 5.0 JMX Annotations 24

Table 5: JMX Annotation Metadata 24
7

LIST OF TABLES
 8

Preface
What is Covered in this Book
Managing Artix Solutions with JMX, Java Runtime explains how to monitor
and manage Artix services in an Artix Java runtime environment using Java
Management Extensions (JMX). It applies to Artix Java services written
using the Java API for XML-Based Web Services (JAX-WS).

Who Should Read this Book
The main audience of Managing Artix Solutions with JMX, Java Runtime is
Artix Java developers and system administrators.

How to Use this Book
This book includes the following:

� Chapter 1 introduces the JMX features supported by the Artix Java
runtime, and describes the Artix components that can be managed
using JMX.

� Chapter 2 explains how to instrument your Artix Java services using
custom MBeans.

� Chapter 3 explains how to configure an Artix Java runtime for JMX.

� Chapter 4 explains how to manage and monitor Artix Java services
using JMX consoles.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
9

../../library_intro/index.htm
../../library_intro/index.htm

PREFACE
 10

CHAPTER 1

Monitoring and
Managing an Artix
Java Runtime
This chapter explains how to monitor and manage Artix Java
runtime components using Java Management Extensions
(JMX).

In this chapter This chapter discusses the following topics:

Introduction page 12

Managed Runtime Components page 16
11

CHAPTER 1 | Monitoring and Managing an Artix Java Runtime
Introduction

Overview You can use Java Management Extensions (JMX) to monitor and manage
key Artix Java runtime components both locally and remotely. For example,
using any JMX-compliant client application, you can perform tasks such as:

� View service status

� View a service endpoint�s address

� Stop or start a service

� Shutdown an Artix Java bus

How it works Artix has been instrumented to allow Java runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an Artix Java
runtime to be monitored and managed either in process or remotely using
the JMX Remote API.

Artix Java runtime components can be exposed as JMX MBeans
out-of-the-box (for example, Artix Java service endpoints and the Artix Java
bus). In addition, the Artix Java runtime supports the registration of custom
MBeans. Java developers can create their own MBeans and register them
either with their JMX MBean server of choice, or with a default MBean
server created by Artix (see �Relationship between runtime and custom
MBeans� on page 14).

Artix Java services can be monitored and managed by any JMX-compliant
client application (for example JConsole). Figure 1 shows an overview of
how the various components interact.
12

Introduction

The custom MBeans shown in Figure 1 are optional components that can be
implemented as required (for details, see Chapter 2).

Figure 1: Artix Java Runtime JMX Architecture
13

CHAPTER 1 | Monitoring and Managing an Artix Java Runtime
Enabling JMX Artix runtime JMX support is enabled using configuration settings only. You
do not need to write any additional Artix code to enable JMX support. When
configured, you can use any third party console that supports JMX Remote
to monitor and manage Artix services.

For details on how to configure JMX support in Artix applications, see
Chapter 3.

What can be managed Artix JAX-WS servers can have the following runtime components exposed
as JMX MBeans:

� Artix Java bus

� Service endpoint

All runtime components are registered with an MBean server as dynamic
MBeans. This ensures that they can be viewed by third-party management
consoles without any additional client-side support libraries.

Naming conventions

All MBeans for Artix runtime components conform with Sun�s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use org.apache.cfx as their domain name when creating
managed components.

Relationship between runtime
and custom MBeans

The Artix Java runtime instrumentation provides an out-of-the-box JMX view
of JAX-WS services. Java developers can also create custom JMX MBeans to
manage Artix Java components such as service endpoint attributes and
operations.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status, while a custom
MBean can provide details on the status of a business loan request
processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already. For more details, see
Chapter 2.
14

http://java.sun.com/products/JavaManagement/best-practices.html

Introduction
Further information For further information, see the following:

JMX

http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote

http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/DynamicMBean
.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml
15

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/DynamicMBean.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

CHAPTER 1 | Monitoring and Managing an Artix Java Runtime
Managed Runtime Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix Java runtime components. For
example, you can use any JMX console or client to perform the following
tasks:

� Shutdown an Artix Java bus

� View service status

� View a service endpoint�s address.

� Stop or start a service

Artix bus operations The following Artix Java bus method can be accessed using any JMX
console or client:

Endpoint attributes The following Artix service endpoint attributes can be managed by any JMX
console or client:

Table 1: Managed Bus Methods

Name Description Parameters

shutdown() Shuts down the current Artix Java bus. boolean

Table 2: Managed Endpoint Attributes

Name Description Type

Address Endpoint address (for example,
http://localhost:9000/SoapContext/SoapPort).

String

State Current service state manipulated by stop and
start methods. Possible values are STARTED or
STOPPED.

String

TransportID Endpoint transport ID (for example,
http://schemas.xmlsoap.org/soap/http for the
HTTP transport).

String
16

Managed Runtime Components
Endpoint operations The following Artix service endpoint operations can be managed by any JMX
console or client:

For examples of operations and attributes displayed in a JMX console, see
Chapter 4

MBeanInfo All the attributes and methods described in this section can also be
determined by introspecting the MBeanInfo for the component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.htm)

Table 3: Managed Endpoint Operations

Name Description Parameters Return Type

getAddress() Get the service address (for example,
http://localhost:9000/SoapContext/
SoapPort).

None String

getState() Get the current service state. Possible
values are STARTED or STOPPED.

None String

getTransportID() Get the service transport ID (for
example,
http://localhost:9000/SoapContext/
SoapPort).

None String

start() Activate a service. None Void

stop() Deactivate a service. None Void
17

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 1 | Monitoring and Managing an Artix Java Runtime
18

CHAPTER 2

Instrumenting
Artix Java Services
This chapter explains how to instrument your Artix Java
services using custom MBeans. There are two different
approaches. You can use either the JMX MBean interfaces or
the Artix ManagedComponent interface. This applies to
applications written using the Java API for XML-Based Web
Services (JAX-WS).

In this chapter This chapter discusses the following topics:

Using the JMX MBean Interfaces page 20

Using the Artix ManagedComponent interface page 23
19

CHAPTER 2 | Instrumenting Artix Java Services
Using the JMX MBean Interfaces

Overview This section shows how to implement a JMX MBean interface and register it
with the Artix MBean server.

The Artix MBean server can be accessed through the Artix Java bus and
enables the registration of custom MBeans. You can instrument your service
implementation by developing a custom MBean using one of the JMX
MBean interfaces and registering it with the Artix MBean server. Your
custom instrumentation can be accessed using the same JMX connection as
the Artix internal components used by your service.

Creating your custom MBean When using the JMX APIs to instrument your service implementation, follow
the design methodology laid out by the JMX specification. This involves the
following steps:

1. Decide what type of MBean you wish to use.

♦ Standard MBeans expose a management interface defined at
development time.

♦ Dynamic MBeans expose their management interface at runtime.

2. Create the MBean interface to expose the properties and operations
used to manager your service implementation.

♦ Standard MBeans use the MBean interface.

♦ Dynamic MBeans use the DynamicMBean interface.

3. Implement the MBean class.

Example 1 shows the interface for a standard MBean.

Example 1: Standard MBean Interface

public interface ServerNameMBean
{
 String getServiceName();
 String getAddress();
}

20

Using the JMX MBean Interfaces
Example 2 shows a class that implements the MBean defined in Example 2.

Registering the MBean To expose your MBean in a JMX management console, it must be registered
with the Artix MBean server. The Artix MBean server can be accessed
through the Artix Java bus. Typically, this happens when your service is
initialized.

To register a custom MBean, perform the following steps:

1. Instantiate your custom MBean.

2. Get an instance of the bus.

3. Get the Artix MBean server from the bus.

4. Create an ObjectName for your MBean.

5. Register your MBean server using the server�s registerMBean()
method.

Example 3 shows the steps for registering a custom MBean with the Artix
MBean server.

Example 2: Standard MBean Implementation Class

public class ServerName{

 String getServiceName()
 {
 return "mySOAPservice";
 }

 String getAddress()
 {
 return "myServiceAddress";
 }
}

Note: It is recommended that your MBeans follow the �Naming
conventions� on page 14. However, you can choose any naming scheme.
21

CHAPTER 2 | Instrumenting Artix Java Services

Alternatively, you do not have to register the MBean directly with the
MBeanServer. You can also use the register(Object, ObjectName) utility
method on the InstrumentationManager to register a StandardMBean.

Further information For further information, see the following:

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml

JMX specifications

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/d
ocs.jsp.

Example 3: Registering a Custom MBean

import javax.management.MBeanServer;
import javax.management.ObjectName;
import org.apache.cfx.Bus;

...

//Instantiate the MBean
ServerName sName = new ServerName();

//Get the MBean server from the bus
InstrumentationManager im =

BusFactory.getDefaultBus().getExtension(org.apache.cxf.management.
InstrumentationManager.class);

MBeanServer server = im.getMBeanServer();

//Create ObjectName for the MBean
ObjectName name = new

ObjectName(my..instrumentation:type=CustomMBean,Bus="+
bus.getBusID() + name="ServerNameMBean");

//Register the MBean
server.registerMBean(sName, name);
22

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/docs.jsp
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/docs.jsp
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Using the Artix ManagedComponent interface
Using the Artix ManagedComponent interface

Overview If you do not wish to use the JMX APIs to add instrumentation to your
service, you can use the Artix ManagedComponent interface. This interface
wraps the JMX subsystem in an Artix-specific API. You do not need to
access the Artix MBean server to register your managed components
because the Artix wrappers take care of this for you. This approach uses
JMX annotations to specify which methods and attributes are exposed.

Adding custom instrumentation using the Artix ManagedComponent interface
involves the following steps:

1. Write an instrumentation class that implements the
org.apache.cxf.management.ManagedComponent interface.

2. When your service is starting up, activate your ManagedComponent
object by instantiating it and registering it with the
InstrumentationManager.

3. When your service is shutting down, deactivate your
ManagedComponent by unregistering it and cleaning it up.

This section shows how to implement the Artix ManagedComponent interface
using JMX annotations. It uses example code from the Artix jmx sample
application:

Writing the instrumentation class Like an MBean, an Artix instrumentation class is responsible for providing
access to the attributes that you wish to track, and implementing any
management operations that you want to expose. Unlike an MBean, an Artix
instrumentation class does not implement a user-defined interface. Instead,
it implements the Artix-defined ManagedComponent interface, and defines the
operations required to expose your managed attributes and operations.

ArtixInstallDir\Version\java\samples\advanced\management\jmx
23

CHAPTER 2 | Instrumenting Artix Java Services
JMX annotations

The Artix management API uses JDK 5.0 annotations to create an object
that implements the ModelMBeanInfo interface. This reads the Artix
annotations to identify the attributes and operations that are exposed. It
then uses this information to create a ModelMBean and registers it with the
MBean server.

Table 4 lists the JDK 5.0 annotations that can be used when implementing
your instrumentation class.

Annotation parameters

Table 5 lists parameters that can be supplied to the JMX annotations.

Table 4: JDK 5.0 JMX Annotations

Annotation Type Description

@ManagedResource Class Marks all instances of a class as a
JMX managed resource.

@ManagedOperation Method Marks a method as a JMX
operation.

@ManagedAttribute Method Marks a getter or a setter as one
half of a JMX attribute.

@ManagedNotification Method Marks a JMX notification issued by
an MBean.

@ManagedOperationParameter

@ManagedOperationParameters

Method Describes the parameters of a
managed operation.

Table 5: JMX Annotation Metadata

Parameter Annotation Description

componentName @ManagedResource Specifies the name of the managed
resource.

description @ManagedResource

@ManagedAttribute

@ManagedOperation

ManagedNotification

@ManagedOperationParameter

Specifies a user-friendly
description of the resource,
attribute, or operation.
24

Using the Artix ManagedComponent interface
currencyTimeLimit @ManagedResource

@ManagedAttribute

Specifies how long in seconds a
cached value is valid (0 for never,
=0 for always, or >0).

defaultValue @ManagedAttribute Specifies a default cached value.

log @ManagedResource

@ManagedNotification

Enables logging. Specify true to
log all notifications or false to log
no notifications.

logFile @ManagedResource

@ManagedNotification

Specifies the a fully qualified
filename to log events to.

persistPolicy @ManagedResource Specifies the persistence policy.
Values are:

OnUpdate
OnTimer
NoMoreOftenThan
Always
Never

persistPeriod @ManagedResource Specifies the frequency of the
persist cycle in seconds for the
OnTime and NoMoreOftenThan
policies.

persistLocation @ManagedResource Specifies the filename in which the
MBean should be persisted.

persistName @ManagedResource Specifies the name that is
persisted.

name @ManagedOperationParameter Specifies the display name of an
operation parameter.

index @ManagedOperationParameter Specifies the index of an operation
parameter.

Table 5: JMX Annotation Metadata

Parameter Annotation Description
25

CHAPTER 2 | Instrumenting Artix Java Services
currencyTimeLimit @ManagedResource

@ManagedAttribute

Specifies how long in seconds a
cached value is valid (0 for never,
=0 for always, or >0).

defaultValue @ManagedAttribute Specifies a default cached value.

log @ManagedResource

@ManagedNotification

Enables logging. Specify true to
log all notifications or false to log
no notifications.

logFile @ManagedResource

@ManagedNotification

Specifies the a fully qualified
filename to log events to.

persistPolicy @ManagedResource Specifies the persistence policy.
Values are:

OnUpdate
OnTimer
NoMoreOftenThan
Always
Never

persistPeriod @ManagedResource Specifies the frequency of the
persist cycle in seconds for the
OnTime and NoMoreOftenThan
policies.

persistLocation @ManagedResource Specifies the filename in which the
MBean should be persisted.

persistName @ManagedResource Specifies the name that is
persisted.

name @ManagedOperationParameter Specifies the display name of an
operation parameter.

index @ManagedOperationParameter Specifies the index of an operation
parameter.

Table 5: JMX Annotation Metadata

Parameter Annotation Description
26

Using the Artix ManagedComponent interface
Adding annotations

When implementing your custom MBean�s instrumentation class using the
ManagedComponent interface, you should annotate the class with the
@ManagedResource attribute. Any management operation that you wish to
expose in your class should be annotated with the @ManagedOperation
attribute. Any attributes that you wish to expose should have their getter
and setter methods annotated with the @ManagedAttribute attribute. If you
want to make an attribute read-only or write-only, you can omit the
annotation from either its setter method or its getter method.

Example 4 shows an custom MBean class taken from the Artix jmx sample
application.

Example 4: Example Artix Instrumentation Class

// GreaterImpl.java

package .hw.server;

import java.util.logging.Logger;

import javax.management.JMException;
import javax.management.ObjectName;

import org.apache.cxf.management.ManagedComponent;
import org.apache.cxf.management.annotation.ManagedAttribute;
import org.apache.cxf.management.annotation.ManagedOperation;
import org.apache.cxf.management.annotation.ManagedResource;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.types.FaultDetail;

@ManagedResource(componentName = "GreeterImpl",
 description = "A typical Greeter implementation.")

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")
27

CHAPTER 2 | Instrumenting Artix Java Services
public class GreeterImpl implements Greeter, ManagedComponent {

 private static final Logger LOG = Logger.getLogger(GreeterImpl.class.getPackage().getName());
 private int count;

 /* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#greetMe(java.lang.String)
 */
 public String greetMe(String me) {
 LOG.info("Executing operation greetMe");
 count++;
 System.out.println("Executing operation greetMe");
 System.out.println("Message received: " + me + "\n");
 return "Hello " + me;
 }

/* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#greetMeOneWay(java.lang.String)
 */
 public void greetMeOneWay(String me) {
 LOG.info("Executing operation greetMeOneWay");
 count++;
 System.out.println("Executing operation greetMeOneWay\n");
 System.out.println("Hello there " + me);
 }

 /* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#sayHi()
 */
 public String sayHi() {
 LOG.info("Executing operation sayHi");
 count++;
 System.out.println("Executing operation sayHi\n");
 return "Bonjour";
 }

 public void pingMe() throws PingMeFault {
 count++;
 FaultDetail faultDetail = new FaultDetail();
 faultDetail.setMajor((short)2);
 faultDetail.setMinor((short)1);
 LOG.info("Executing operation pingMe, throwing PingMeFault exception");
 System.out.println("Executing operation pingMe, throwing PingMeFault exception\n");
 throw new PingMeFault("PingMeFault raised by server", faultDetail);
 }
28

Using the Artix ManagedComponent interface
Registering your custom MBean To make your custom instrumentation available to JMX management
consoles, you must create an instance of your custom class and register it
with the bus. This handles the creation of the ModelMBean to represent your
custom MBean. It also handles the registration of the MBean with the
MBean server.

To activate your custom MBean, do the following:

1. Get the current Artix Java bus instance.

2. Get the InstrumentationManager from the bus using
bus.getExtension().

3. Create an instance of your instrumentation class.

4. Register your custom MBean instance with the
InstrumentationManager.

Example 5 shows these steps in the sample server code for activating a
custom MBean.

 public ObjectName getObjectName() throws JMException {
 return new ObjectName("samples:name=GreeterImpl");
 }

 @ManagedAttribute(description = "The Count Attribute", currencyTimeLimit = 15)
 public int getCount() {
 return count;
 }

 @ManagedOperation(description = "Add Two Numbers Together")
 public void resetCount() {
 count = 0;
 }
}

29

CHAPTER 2 | Instrumenting Artix Java Services
Example 5: Example Server Code

// Server.java

package .hw.server;

import javax.xml.ws.Endpoint;
import org.apache.cxf.Bus;
import org.apache.cxf.bus.spring.SpringBusFactory;
import org.apache.cxf.management.InstrumentationManager;
import org.apache.cxf.management.ManagedComponent;

public class Server {

 protected Server() throws Exception {
 System.out.println("Starting Server");

 SpringBusFactory factory = new SpringBusFactory();
 Bus bus = factory.createBus();
 InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
 ManagedComponent component = new GreeterImpl();
 im.register(component);
 String address = "http://localhost:9000/SoapContext/SoapPort";
 Endpoint.publish(address, component);
 }

 public static void main(String args[]) throws Exception {
 new Server();
 System.out.println("Server ready...");

 Thread.sleep(10 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

30

Using the Artix ManagedComponent interface
Deactivating your custom
instrumentation

You can explicitly tell the bus to remove the ModelMBean created for your
instrumentation using the InstrumentationManager.unregister() method.
This method removes the MBean from the Artix MBean server, destroys the
associated ModelMBean, and frees up any resources used by it.

In the Artix jmx sample application MBean is not explicitly unregistered, but
is destroyed when the server process is destroyed.

Further information For further information, see the following:

ModelMBeanInfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/modelmbean/M
odelMBeanInfo.html
31

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/modelmbean/ModelMBeanInfo.html

CHAPTER 2 | Instrumenting Artix Java Services
32

CHAPTER 3

Configuring JMX in
an Artix Java
Runtime
This chapter explains how to configure an Artix Java runtime
for JMX using the XML-based Spring Framework.

In this chapter This chapter discusses the following topic:

Artix JMX Configuration page 34
33

CHAPTER 3 | Configuring JMX in an Artix Java Runtime
Artix JMX Configuration

Overview JMX support in an Artix Java runtime is enabled using configuration settings
only. You do not need to write any Artix code to enable JMX support in the
Artix runtime.

JMX is not configured by default. When configured, you can use any third
party console that supports JMX Remote to monitor and manage Artix
services. This section shows the Artix configuration settings required to
enable JMX monitoring of the Artix runtime, and access for remote JMX
clients.

Configuring Artix JMX features The Artix Java configuration mechanism uses the XML-based Spring
Framework. In the Artix jmx sample application, the JMX support is
configured using the
org.apache.cxf.management.jmx.InstrumentationManagerImpl class. This
class includes the following properties:

bus Specifies the name of the Artix bus. The name of the
Artix Java bus is cfx.

enabled Specifies whether JMX monitoring and management
is enabled. Possible values are true or false.
Specifying true enables remote JMX clients to
access runtime and custom MBeans.

JMXServiceURL Specifies the connection URL for the JMX server. The
default URL is:

service:jmx:rmi:///jndi/rmi://localhost:1099/
jmxrmi/server
34

Artix JMX Configuration
Example 6 shows the JMX configuration settings taken from the
managed_server.xml file in the Artix jmx sample application:

The InstrumentationManagerImpl class extends JMXConnectorPolicyType.
For more details, see �Artix JMX schema� on page 36.

Accessing Artix Java configuration You can make your configuration available to the Artix Java runtime in one
of the following ways:

� Use one of the following command-line flags to point to your XML
configuration file:

♦ -Dcxf.config.file=<myCfgResource>

♦ -Dcxf.config.file.url=<myCfgURL>

This enables you to save your XML configuration file anywhere on your
system and avoid adding it to your CLASSPATH. This is the approach
used in most of the Artix Java samples (for example,
managed_server.xml).

ArtixInstallDir\Version\java\samples\advanced\management\jmx

Example 6: Contents of managed_server.xml

?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2007 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:im="http://cxf.apache.org/management"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- InstrumetationManager's setting -->
 <bean id="InstrumentationManager"

class="org.apache.cxf.management.jmx.InstrumentationManagerImpl">
 <property name="bus" ref="cxf" />
 <property name="enabled" value="true" />
 <property name="JMXServiceURL"

value="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server" />
 </bean>
</beans>
35

CHAPTER 3 | Configuring JMX in an Artix Java Runtime
� Specify the XML configuration file on your CLASSPATH.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:
 (new SpringBusFactory()).createBus(URL myCfgURL)
 (new SpringBusFactory()).createBus(String myCfgResource)

Artix JMX schema The complete schema for configuring JMX in an Artix Java runtime is
contained in the instrumentation.xsd file shown in Example 7:

These attributes are explained as follows:

Example 7: JMX Configuration Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://cxf.apache.org/management"
 xmlns:tns="http://cxf.apache.org/management"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 jaxb:version="2.0">

 <xs:complexType name="JMXConnectorPolicyType">
 <xs:attribute name="Enabled" type="xs:boolean" use="required" />
 <xs:attribute name="Threaded" type="xs:boolean" use="required" />
 <xs:attribute name="Daemon" type="xs:boolean" use="required" />
 <xs:attribute name="JMXServiceURL" type="xs:string"

default="service:jmx:rmi:///jndi/rmi://localhost:9913/jmxrmi"/>
 </xs:complexType>

 <xs:element name="JMXConnectorPolicy" type="tns:JMXConnectorPolicyType"/>

</xs:schema>

Enabled Specifies whether the JMX infrastructure is
available to the Artix Java runtime. JMX is disabled
by default. The MBean server is an unnecessary
overhead if you do not require JMX.

Threaded Specifies whether the JMX server starts in a
separate thread.

Daemon If the JMX server is running in a separate thread,
specifies whether it is run as daemon thread
36

Artix JMX Configuration
Further information For more information, see the following:

Artix Java configuration

� Configuring and Deploying Artix Solutions, Java Runtime

� Artix Configuration Reference, Java Runtime

Spring Framework

www.springframework.org

RMI Connector

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

JMXServiceURL Specifies the JMXServiceURL to connect to
remotely. Remote access is performed using JMX
Remote, using an RMI Connector on a default port
of 1099. Use the following JNDI-based
JMXServiceURL to connect remotely:

service:jmx:rmi:///jndi/rmi://localhost:1099
/jmxrmi/server
37

www.springframework.org
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
../../deploy/java/index.htm
../../config_ref/java/index.html

CHAPTER 3 | Configuring JMX in an Artix Java Runtime
38

CHAPTER 4

Managing Java
Services with JMX
Consoles
You can use any third-party management console that supports
JMX Remote to monitor and manage Artix services (for
example, JConsole or MC4J).

In this chapter This chapter discusses the following topics:

Managing Artix Services with JConsole page 40
39

CHAPTER 4 | Managing Java Services with JMX Consoles
Managing Artix Services with JConsole

Overview The JConsole management console is provided with JDK 1.5 to monitor and
manage Artix Java applications. For convenience, Artix installs JConsole,
which can be run out-of-the-box with the Artix jmx sample application:

Using JConsole with Artix Artix runtime MBeans can be accessed remotely using JMXRemote. This
means that any management console that supports JMXRemote can be
used to monitor and manage Artix-enabled applications.

To view the management information for a deployed Artix-enabled
application using JConsole, perform the following steps:

1. Launch the JConsole application using the following command:

ArtixInstallDir/java/bin/jmx_console_start

Alternatively, you can use:

JDK_HOME/bin/jconsole.

2. Select the Advanced tab.

3. Enter the URL of your Artix MBean server in the JMXServiceURL field.
This will either be the default Artix JMXServiceURL
(service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server),
or the value specified by the JMXServiceURL property in your
application�s Spring configuration file.

ArtixInstallDir\Version\java\samples\advanced\management\jmx

Note: When running the jmx sample application, steps 2 and 3 are not
necessary.
40

Managing Artix Services with JConsole
Managing runtime components JConsole displays managed Artix runtime components in a hierarchical tree,
as shown in Figure 2. This shows the MBean information displayed for the
managed bus component (for example, the MBean name and Java class).

Figure 2: Managed Bus Info in JConsole
41

CHAPTER 4 | Managing Java Services with JMX Consoles
Figure 3 shows the shutdown() operation for the managed bus displayed in
JConsole.

Figure 3: Managed Bus Operation in JConsole
42

Managing Artix Services with JConsole
Figure 4 shows the attributes displayed for a managed service endpoint
displayed in JConsole.

Figure 4: Managed Endpoint Attributes in JConsole
43

CHAPTER 4 | Managing Java Services with JMX Consoles
Figure 5 shows the operations displayed for managed a service endpoint
displayed in JConsole.

Figure 5: Managed Endpoint Operations in JConsole
44

Managing Artix Services with JConsole
Managing custom MBeans Figure 6 shows the attributes displayed for the sample custom MBean
displayed in JConsole.

Figure 6: Custom MBean Attributes in JConsole
45

CHAPTER 4 | Managing Java Services with JMX Consoles
Figure 5 shows the operations displayed for the sample custom MBean
displayed in JConsole.

Further information For detailed information on Artix runtime attributes and operations see
�Managed Runtime Components� on page 16.

For more information on using JConsole, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Figure 7: Custom MBean Operations in JConsole
46

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Index

Symbols
@ManagedAttribute 24, 27
@ManagedNotification 24
@ManagedOperation 24, 27
@ManagedOperationParameter 24
@ManagedOperationParameters 24
@ManagedResource 24, 27

A
Address 16
Advanced tab 40
annotations 24

B
bus 34
bus.get.Extension() 29

C
componentName 24
createBus() 36
currencyTimeLimit 25, 26
custom JMX MBeans 14

D
Daemon 36
-Dcxf.config.file 35
defaultValue 25, 26
description 24
dynamic MBeans 20

E
enabled 34, 36
endpoint

attributes 16
operations 17

G
getAddress() 17
getState() 17
getTransportID() 17

I
index 25, 26
InstrumentationManager 22, 29
InstrumentationManagerImpl 34

J
Java API for XML-Based Web Services 9
Java Management Extensions 11
JAX-WS 9
JConsole 40
JMX 11
JMX annotations 24
jmx_console_start 40
JMX Remote 14, 34
JMXRemote 40
JMXServiceURL 34, 37, 40

L
log 25, 26
logFile 25, 26

M
Managed Beans 12
ManagedComponent 23
managed_server.xml 35
management consoles 39
MBeanInfo 17
MBean information 41
MBean Java class 41
MBean name 41
MBeans 12
MBeanServer 22
ModelMBean 24, 29, 31
ModelMBeanInfo 24

N
name 25, 26

O
ObjectName 21
47

INDEX
P
persistLocation 25, 26
persistName 25, 26
persistPeriod 25, 26
persistPolicy 25, 26

R
register() 22
registerMBean() 21
remote JMX clients 34
RMI Connector 37
runtime MBeans 14

S
service

attributes 16
operations 17

shutdown() 16, 42
SpringBusFactory() 36
Spring Framework 34
StandardMBean 22
standard MBeans 20
start() 17
STARTED 16
State 16
stop() 17
STOPPED 16

T
Threaded 36
TransportID 16

U
unregister() 31
48

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Monitoring and Managing an Artix Java Runtime
	Introduction
	Managed Runtime Components

	Instrumenting Artix Java Services
	Using the JMX MBean Interfaces
	Using the Artix ManagedComponent interface

	Configuring JMX in an Artix Java Runtime
	Artix JMX Configuration

	Managing Java Services with JMX Consoles
	Managing Artix Services with JConsole

	Index

