IONA

Artix ESB

Bindings and Transports, Java Runtime

Version 5.1
December 2007

Making Software Work Together™

Bindings and Transports, Java Runtime
IONA Technologies

Version 5.1

Published 29 May 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

=1 - oL N 11
What is Covered in This BOOKiuiuieiii et ee e e aaenes 12
Who Should Read This BOOKeiieiieiiit et e e e eneans 13
HOW 10 USE ThiS BOOK ...t e ettt e e e e e 14
The Artix ESB Documentation Libraryc.ouiuirieiiii e 15

I =T T [T ¥ PPN 17
Understanding Bindings in WSDLc.ciiiiiiiiiiii s s s s s s s s e s s s a s a s a s nrnnnen 21
USING SOAP 1.1 MESSAZES «.uuuniernieieeeiinierrrussrararasasasasesesnssenssssssssesasasessnsssnsasasasnsasnnen 23

Adding @ SOAP 1.1 BinNQiNg «..ueuieiiniiiiii et 24
Adding SOAP Headers to @ SOAP 1.1 Bindingc.oviieiiiiiiii e 27
USING SOAP 1.2 MESSAZES «.unnreieeieeneinerrssssrsrarasasasasesesnsnssssasssssesssasesasssssnsasasasnsnsnnen 33
Adding a SOAP 1.2 Binding to @ WSDL DOCUMENTvuinieiiii e 34
Adding Headers 10 @ SOAP 1.2 MESSAEZE ...uuvuiuninieieiiee e e e e aee e aees 37
Sending Binary Data Using SOAP with Attachmentsccocoiii e 43
Sending Binary Data with SOAP MTOMciiiiiiiiiiiiiiiiere e e s s s e e e s e ennnsn 47
Annotating Data Types t0 Use MTOM ...t e 48
ENabliNg MTOM o e e e e e 52
USING JAX-WS AP et e 53

USING CONTIGUIAtION ...ureie i e e e e 55

Using XIML DOCUMENLESuiiiiiiiiiiii i iesiia s s s s s s s s s s s s s s s a s s s ansasasansasasansnssnnnsnss 57

TR 2= 4 1Y o ¢ 3PP 63
Understanding How Endpoints are Defined in WSDLccciiiiiiiiiiiiiiiii v e e e e 67
L0 1= o I 1 PPN 69

Adding a Basic HTTP Endpoint ...t 70
(070 N~ W T == T O] Y0 o T 72
Using ConfigUurationieiii e 73

USINE WS DL .ot aaas 79
Consumer Cache Control DirCHIVESiuiie e e 80
Configuring @ SErviCe ProVIdercuiuiiiii i e 81
USINg CoNfigUIationouieie i e 82

USINE WS DL . e e e e aaas 86
Service Provider Cache Control Dir€CtiVESoveieiinieiiiiiie e 87
Configuring the Jetty RUNTIME ... 89
Using the HTTP Transport in Decoupled MOdec..couiiniiiiiiii e 93
L 1 = PP 99
NBIMESPACES .. utitititet et ettt ettt ettt e et et et et et et e e e e et e et et e e e et e e e e e ea et et et ataranaans 100
Basic Endpoint Configurationccooiiiiiiiii s 101
USINE WS DL ittt e e e 102

Using Configurationc.oeiuiiiii i 105
Consumer Endpoint Configurationooiiiii i 107
Using Configurationouiriiiii i 108

Bindings and Transports, Java Runtime

USINE WS DL ettt 109

Provider Endpoint Configurationccouiiriii 110

UsiNg Configurationoiiii 111

USINE WS DL ettt 113

JMS Runtime Configurationouiuiiiiiii e 114

JMS Session Pool Configurationouiiiiii e 115

Consumer Specific Runtime Configurationcooiiiiiiii 116

Provider Specific Runtime Configurationcooiiiiiiiiii 117

Using WebSphere MQccuiuiiuieiiiiiiiiiirr s s s s s s s s e s s s s s n s sansnsans 119
LT = N I T 123
Adding an FTP Endpoint UsSing WSDLuiii e 124
Adding an Configuration for an FTP Endpointcooiiiiiiiiiiiii e 126
Coordinating Requests and RESPONSESvuiuiuiiiiiee e e e e aaaas 131
INEFOAUCTION ..ttt 132
Implementing the Consumer’s Coordination LOZICcoviviiririiiiiii e 133
Implementing the Server’s Coordination LOICc.ovvviiiiiiiiiiii e 138

Using Properties to Control Coordination Behaviorccooiiiiiiciiiiiene 143

LT =] N I 147

List of Figures

1. Message Flow in for a Decoupled HTTP Transport

List of Tables

1. soapl2:header Attributescooiiiiiii i 37
2. mime:content Attributes ... 45
3. Elements Used to Configure an HTTP Consumer Endpoint 74
4. HTTP Consumer Configuration Attributescocooiiiininin. 74
5. http-conf:client Cache Control Directivescccovvvvviinininnnn. 80
6. Elements Used to Configure an HTTP Service Provider

ENdpoint ... 83
7. HTTP Service Provider Configuration Attributescccoeeinne. 83
8. http-conf:server Cache Control Directivesc.coooiiienne. 87
9. Elements for Configuring a Jetty Runtime Factory 90
10. Elements for Configuring a Jetty Runtime Instance 91
11. Attributes for Configuring a Jetty Thread Poolcccoeveininen. 92
12. JMS Endpoint Attributescoiiii 102
13. messageType ValUBS et 108
14. JMS Client WSDL EXIENSIONS .uvviviinitiiiieii e 109
15. Provider Endpoint Configurationcccooiiiiiiiin 111
16. JMS Provider Endpoint WSDL Extensionscocoeviviiiinnnn. 113
17. Attributes for Configuring the JMS Session Pool 115
18. 9ms:address Attributes for Using WebSphere MQ 119
19. Optional Attributes for ftp:port wovvviviviiiiiiiii e 125
20. Attributes for Configuring the FTP Connectionceeie. 128
21. Attributes for FTP Login Credentialscccoovvviiiiiiininnn, 130
22. Attributes for the Configuring the Client's Coordination Logic 136
23. Attributes for Configuring the Server's Coordination Logic 141
24. Attributes for Configuring the SFTP Transportccocoeivinini, 149

List of Examples

1. Ordering System Interfaceccoooiviiiiii 25
2. SOAP 1.1 Binding for orderWidgets «veeeeveerienieeeianainenannenannenss 26
3. SOAP Header Syntaxvvveieiiiiiiiie e 27
4. SOAP 1.1 Binding with a SOAP Headercccovvvvviviiiiiciienn, 28
5. SOAP 1.1 Binding for orderWidgets with a SOAP Header 30
6. Ordering System Interfacecoooiiiiiiiii e 35
7. SOAP 1.2 Binding for orderWidgetscoooveiiiiiiiiiiiiiiiiiens 36
8. SOAP Header Syntaxoovuiiiiiiiiii e 37
9. SOAP 1.2 Binding with a SOAP Headerccoovevivviiiniiniennnnn, 38
10. SOAP 1.2 Binding for orderWidgets with a SOAP Header 40
11. MIME Namespace Specification in a Contractccee. 43
12. Contract using SOAP with Attachmentscoooiiiiiiiiiienn. 45
13. Message for MTOM ... 48
14. Binary Data for MTOM ..o 50
15. JAXB Class for MTOMovuieiiiiiie e 51
16. Getting the SOAP Binding from an Endpointc.ocoevennnn. 53
17. Setting a Service Provider's MTOM Enabled Property 53
18. Getting a SOAP Binding from a BindingProvidercccovvvvnnnne. 54
19. Setting a Consumer's MTOM Enabled Propertyccoevnenen. b4
20. Configuration for Enabling MTOM ..., b5
21. Valid XML Binding MESSAgEoviviviiiiiiiiieieiiieieieieiee e b9
22. Invalid XML Binding MeSSagecccceviririiiiiiii i, b9
23. Invalid XML DOCUMENT ..vieiiiiie e 59
24. XML Binding with rootNode setccooiviiiiiiiiii 60
25. XML Document generated using the rootNode attribute 60
26. USING RFOTMAt 100 tturuinininininininiteteteterenereeeeierereienearneanans 61
27. SOAP 1.1 Port Elementc.vveiiieiiie e 70
28. SOAP 1.2 Port Elementc.vveieiiiiie e 71
29. HTTP Port Element ..o, 71
30. HTTP Consumer Configuration Namespacecccvevvevenennnnen. 73
31. http-conf:conduit Element ... 73
32. HTTP Consumer Endpoint Configurationc.cccovviiiiiiiiiinnnn. 78
33. HTTP Consumer WSDL Element's Namespacecccoeeevvvennnns 79
34. WSDL to Configure an HTTP Consumer Endpoint 79
35. HTTP Provider Configuration Namespacecocovvvviiiininnnnnnn. 82
36. http-conf:destination Elementccooviiiiiiiiiiiininn, 82
37. HTTP Service Provider Endpoint Configuration 84
38. HTTP Provider WSDL Element's Namespacecovvveenennnen. 86
39. WSDL to Configure an HTTP Service Provider Endpoint 86

Bindings and Transports, Java Runtime

. Jetty Runtime Configuration Namespacecccovvvviiinininenne. 89
. Configuring a Jetty Instanceccoviiiiiiiiii 92
. Activating WS-Addressing using WSDLcccocoiiiiiiiiiiiiiieeen, 93
. Activating WS-Addressing using a Policycooevviiiiiiiiininne. 94
. Configuring a Consumer to Use a Decoupled HTTP Endpoint 94
. JMS Extension NameSpacCecuvuveieviiiiiiiiiiiiiiiiiieieie e e 100
. JMS Configuration Namespacescccveveiiiiiiiiiiiiiiiiiianananns 100
. JMS WSDL Port Specificationcoviviiiiiiiiiiiiiiiieans 104
. Addressing Information in a Artix ESB Configuration File 105
. Configuration for a JMS Consumer Endpointccooeiininis 108
. WSDL for a JMS Consumer Endpointcccooovviiiiiiiiiiiiinnnnn, 109
. Configuration for a Provider Endpointccoooiiiiiiiiiiiiinn, 111
. WSDL for a JMS Provider Endpointcocviviiiiiiiiiiiiiinns 113
. JMS Session Pool Configurationcccoeviiiiiiiiiiiiiiiiiiinns 115
. JMS Consumer Endpoint Runtime Configuration 116
. Provider Endpoint Runtime Configurationcoooiiienns 117
. Specifying the JNDI Initial Context Factorycocooiiiiiniis 120
. Defining an FTP Endpointcoooiiiiieeeeas 124
. Namespace Declarations for FTP Configuration 126
. FTP Consumer Configurationcocoiiiiiiiiiiiiiees 127
. FTP Provider Configurationcccooiiiiiiiiiiiiiiieceeens 127
. Configuring the FTP Connection Propertiescccoovivinininnnns 129
. Client-Side Filename Factory Interfacecocovviiiiiiiiiiiiininni, 133
. Reply Lifecycle Interfaceccooeiiiiiiiiii e, 135
. Configuring an FTP Client Endpoint's Naming Policy 136
. Server-Side Filename Factory Interfacecocooviviiiiiiinnnns 138
. Request Lifecycle Interfaceccoooviiiiiiiiiiiiieens 140
. Configuring an FTP Server Endpoint's Naming Policy 142
. FTP Endpoint with Custom Propertiesccoeviiiiiiiiiinnnnns 143
. Using Custom FTP Propertiescooiviiiiiiiiiiiiiiiieeens 144
. Constructor for FilenameFactoryPropertyMetaData 145
. Populating the Filename Properties Metadata 145
. Defining an SFTP Endpoint in WSDLcccoiiiiiiiiiiiiiens 147
. Simple SFTP Endpoint Configurationcccooiiiiiiiiiinnns 148
. SFTP with HostKey Authenticationcoooiiiiin, 149
. SFTP with Privite Key/Public Key Authentication 150

10

Preface

Table of Contents

What is COVErEA N TS BOOK ...uueitiei ittt et et ettt et et et e e et et e e neeeans 12
Who Should ReAd ThisS BOOKuiiiiiiiii ittt ettt et et eeaaes 13
[[LTV (o T O YT N T = o 14
The Artix ESB Documentation LiDrary ... 15

11

12

What is Covered in This Book

What is Covered in This Book

This book discusses the bindings and transports supported by the Artix ESB
Java Runtime. It describes how the combination of WSDL elements and

configuration is used to set-up a binding or a transport. It also discusses the
advantages of using each of the bindings and transports.

Who Should Read This Book

Who Should Read This Book

This book is intended for people who are developing the contracts for endpoints
that are going to be deployed into the Artix ESB Java Runtime. It assumes a
working knowledge of WSDL and XML. It also assumes a working knowledge
of the underlying middleware technology being discussed.

13

How to Use This Book

How to Use This Book

This book is broken into two parts:
* Part |, “Bindings” describes how to work with the message bindings.

e Part I, “Transports” describes how to work with the transports.

14

The Artix ESB Documentation Library

The Artix ESB Documentation Library

For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

15

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm

16

Part |. Bindings

Table of Contents

Understanding Bindings in WSDLc.ciiiiiiiiiiiiii s s s s s s s s s s s sasasasnsnsnnnnan 21
USING SOAP 1.1 MESSAZES «uuninrnieieieieienererrsasararasasasasasesesnsnsmsnsmstssssesssasssnsssssnsasasasasnsasnnen 23
Adding @ SOAP 1.1 BinNQINg «.vueuieiieiiii et e et 24
Adding SOAP Headers to @ SOAP 1.1 BindiNgovieiniiiiiii e 27
USING SOAP 1.2 MESSAZES «uunnrniereieieneseesrssassrssasasasasssesnsnsnsnsmsmssssssssessssssssnsasasasnsnsnsnnen 33
Adding a SOAP 1.2 Binding to @ WSDL DOCUMENTeuiiieiiiiie e ee e 34
Adding Headers 10 @ SOAP 1.2 MESSAEEuvutueninee i eeeeeeae et e e e e e e e e e e e e e e e aeeanns 37
Sending Binary Data Using SOAP with Attachmentscooiiii e 43
Sending Binary Data with SOAP MTOM ..o v r e s s s s s s s s e sasnsnrnsn 47
Annotating Data Types 10 USE MTOM ...t e e e e aaenas 48
ENADIiNg MO M o, 52
USING JAX WS AP ettt 53

USING CONTIGUIATION ..utitie i e e aas 55

Using XIVIL DOCUMENES ...iicieiiiiiiiii i s s s s s s s s s s s s sa s s s sa s s s aa s sansasassnsnsassnsnsnsnnnns 57

19

20

Understanding Bindings in WSDL

Summary

Bindings map the logical messages used to define a service into a concrete payload format that can be transmitted
and received by an endpoint.

Overview Bindings provide a bridge between the logical messages used by a service to

a concrete data format that an endpoint uses in the physical world. They
describe how the logical messages are mapped into a payload format that is
used on the wire by an endpoint. It is within the bindings that details such
as parameter order, concrete data types, and return values are specified. For
example, the parts of a message can be reordered in a binding to reflect the
order required by an RPC call. Depending on the binding type, you can also
identify which of the message parts, if any, represent the return type of a
method.

Port types and bindings Port types and bindings are directly related. A port type is an abstract definition

of a set of interactions between two logical services. A binding is a concrete
definition of how the messages used to implement the logical services will
be instantiated in the physical world. Each binding is then associated with a
set of network details that finish the definition of one endpoint that exposes
the logical service defined by the port type.

To ensure that an endpoint defines only a single service, WSDL requires that
a binding can only represent a single port type. For example, if you had a
contract with two port types, you could not write a single binding that mapped
both of them into a concrete data format. You would need two bindings.

However, WSDL allows for a port type to be mapped to several bindings. For
example, if your contract had a single port type, you could map it into two or
more bindings. Each binding could alter how the parts of the message are
mapped or they could specify entirely different payload formats for the
message.

The WSDL elements Bindings are defined in a contract using the WSDLbinding element. The

binding element has a single attribute, name, that specifies a unique name

for the binding. The value of this attribute is used to associate the binding
with an endpoint as discussed in Defining Your Logical Interfaces in Writing
Artix ESB Contracts.

21

http://www.iona.com/support/docs/artix/5.0/contract/contract.pdf

Adding to a contract

Supported bindings

The actual mappings are defined in the children of the binding element.

These elements vary depending on the type of payload format you decide to
use. The different payload formats and the elements used to specify their
mappings are discussed in the following chapters.

Artix provides a number of tools for adding bindings to your contracts. These
include:

» Artix Designer has wizards that lead you through the process of adding
bindings to your contract.

* A number of the bindings can be generated using command line tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different types
of bindings work.

You can also add a binding to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

The Artix ESB Java Runtime supports the following bindings:
*« SOAP 1.1

SOAP 1.2
« CORBA
e Pure XML

22

Using SOAP 1.1 Messages

Summary

Artix ESB provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers. However, you
can add SOAP headers to your binding using any text or XML editor.

Table of Contents

Adding @ SOAP 1.1 BinQINg «.eueuitiiiiiiii et et 24
Adding SOAP Headers to @ SOAP 1.1 BindiNgcuiuiniiiii e e ee e 27

23

Adding a SOAP 1.1 Binding

Adding a SOAP 1.1 Binding

Using artix wsdl2soap

To generate a SOAP 1.1 binding using artix wsdl2soap use the following
command:

artix wsdl2soap {-i port-type-name} [-b binding-name] [-d
output-directoryl [-0 output-file] [-N soap-body-namespace] [-style
(document/rpc)] [-use (literal/encoded)] [-v] [[-verbosel | [-quiet]] wsdiuri

The command has the following options:

Option Interpretation

-1 port-type-name|Specifies the portType element for which a binding
should be generated.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-d output-directory |Specifies the directory to place generated WSDL

file.
-0 output-file Specifies the name of the generated WSDL file.
-n Specifies the SOAP body namespace when the

style is RPC.

soap-body-namespace

-style (document/rpc) | Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is document.

-use Specifies the binding use (encoded or literal) to

(1iteral/encoded) use in the SOAP binding. The defaultis 1iteral.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

24

Adding a SOAP 1.1 Binding

Using Artix Designer

Example

Option Interpretation
-quiet Suppresses comments during the code generation
process.

The -1i port-type-name and wsdlurl arguments are required. If the -style
rpc argument is specified, the -n soap-body-namspace argument is also
required. All other arguments are optional and may be listed in any order.

(1) Important

artix wsdl2soap does not support the generation of
document /encoded SOAP bindings.

You can add a SOAP 1.1 binding to a contract by either selecting Artix
Designer — New Binding or selecting New Binding from the context menu
available in Artix Designer’s diagram view. For more information see the
on-line help provided with Artix Designer.

If your system had an interface that took orders and offered a single operation
to process the orders it would be defined in @ WSDL fragment similar to the
one shown in Example 1, “Ordering System Interface”.

Example 1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>

</message>

<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>

<message name="badSize">

<part name="numInventory" type="xsd:int"/>

</message>

25

Adding a SOAP 1.1 Binding

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

</definitions>

The SOAP binding generated for orderwidgets is shown in Example 2,
“SOAP 1.1 Binding for orderwWidgets”.

Example 2. SOAP 1.1 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
</input>
<output name="pill">
<soap:body use="literal"/>
</output>
<fault name="sizeFault">
<soap:body use="literal"/>
</fault>
</operation>
</binding>

This binding specifies that messages are sent using the document/literal
message style.

26

Adding SOAP Headers to a SOAP 1.1
Binding

Adding SOAP Headers to a SOAP 1.1 Binding

Overview

SOAP headers are defined by adding soap:header elements to your default
SOAP 1.1 binding. The soap:header element is an optional child of the
input, output, and fault elements of the binding. The SOAP header

becomes part of the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only contain one
message part, but you can insert as many SOAP headers as needed.

Syntax The syntax for defining a SOAP header is shown in Example 3, “SOAP Header

Syntax”. The message attribute of soap:header is the qualified name of the

message from which the part being inserted into the header is taken. The
part attribute is the name of the message part inserted into the SOAP header.

Because SOAP headers are always document style, the WSDL message part
inserted into the SOAP header must be defined using an element. Together
the message and the part attributes fully describe the data to insert into the

SOAP header.

Example 3. SOAP Header Syntax

<binding name="headwig">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">

<soap:operation soapAction="" style="document"/>
<input name="grain">
<soap:body .../>
<soap:header message="QName" part="partName"/>
</input>
</binding>

As well as the mandatory message and part attributes, soap:header also
supports the namespace, the use, and the encodingstyle attributes. These
optional attributes function the same for soap:header as they do for
soap:body.

Splitting messages between body

and header The message part inserted into the SOAP header can be any valid message

part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want

27

Adding SOAP Headers to a SOAP 1.1
Binding

to send information twice in the same message, the SOAP binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The soap:body element has an optional attribute, parts, that takes a space
delimited list of part names. When parts is defined, only the message parts

listed are inserted into the SOAP body. You can then insert the remaining
parts into the SOAP header.

() Note

When you define a SOAP header using parts of the parent message,
Artix ESB automatically fills in the SOAP headers for you.

Example Example 4, “SOAP 1.1 Binding with a SOAP Header” shows a modified

version of the orderWidgets service shown in Example 2.1, “Ordering

System Interface”. This version has been modified so that each order has an
xsd:base64binary value placed in the SOAP header of the request and
response. The SOAP header is defined as being the xeyva1l part from the

widgetKey message. In this case you would be responsible for adding the

SOAP header in your application logic because it is not part of the input or
output message.

Example 4. SOAP 1.1 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
</types>

28

Adding SOAP Headers to a SOAP 1.1
Binding

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">

<part name="keyVal" element="xsdl:keyElem"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyval"/>
</input>
<output name="bill">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyval"/>
</output>
<fault name="sizeFault">
<soap:body use="literal"/>
</fault>
</operation>
</binding>

</definitions>

You could modify Example 4, “SOAP 1.1 Binding with a SOAP Header” so
that the header value was a part of the input and output messages as shown
in Example 5, “SOAP 1.1 Binding for orderWidgets with a SOAP Header”.

In this case keyval is a part of the input and output messages. In the

soap:body element's parts attribute specifies that keyval is not to be
inserted into the body. However, it is inserted into the SOAP header.

29

Adding SOAP Headers to a SOAP 1.1
Binding

Example 5. SOAP 1.1 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsdl:keyElem"/>
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsdl:keyElem"/>
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">

<soap:operation soapAction="" style="document"/>

<input name="order">
<soap:body use="literal" parts="numOrdered"/>
<soap:header message="tns:widgetOrder" part="keyval"/>

</input>

<output name="bill">

30

Adding SOAP Headers to a SOAP 1.1
Binding

<soap:body use="literal" parts="bill"/>
<soap:header message="tns:widgetOrderBill" part="keyval"/>

</output>

<fault name="sizeFault">
<soap:body use="literal"/>

</fault>

</operation>
</binding>

</definitions>

31

32

Using SOAP 1.2 Messages

Summary

Artix ESB provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. You can add
SOAP headers to your binding using any text or XML editor.

Table of Contents

Adding a SOAP 1.2 Binding t0 @ WSDL DOCUMENTuneiieiiii et e s 34
Adding Headers to a SOAP 1.2 Message

33

Adding a SOAP 1.2 Binding to a WSDL
Document

Adding a SOAP 1.2 Binding to a WSDL Document

Using artix wsdl2soap

To generate a SOAP 1.2 binding using artix wsdl2soap use the following

command:

artix wsdl2soap {-i port-type-name} [-b binding-name] {-soapl2}

[-d output-directoryl [-0 output-filel [-N soap-body-namespacel
[-style (document/rpc)] [-use (literal/encoded)] [-v] [[-verbose] | [-quiet]]

wsdlurl

The tool has the following required arguments:

Option

Interpretation

-1 port-type-name

Specifies the portType element for which a binding
should be generated.

-soapl2

Specifies that the generated binding uses SOAP 1.2.

wsdlurl

The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option

Interpretation

-b binding-name

Specifies the name of the generated SOAP binding.

-soapl2

Specifies that the generated binding will use SOAP
1.2.

-d output-directory |Specifies the directory to place generated WSDL

file.

-0 output-file

Specifies the name of the generated WSDL file.

-n

soap-body-namespace

Specifies the SOAP body namespace when the
style is RPC.

-style (document/rpc) | Specifies the encoding style (document or RPC) to

use in the SOAP binding. The default is document.

—use

(literal/encoded)

Specifies the binding use (encoded or literal) to
use in the SOAP binding. The default is 1iteral.

34

Adding a SOAP 1.2 Binding to a WSDL

Using Artix Designer

Example

Document
Option Interpretation
-v Displays the version number for the tool.
-verbose Displays comments during the code generation
process.
-quiet Suppresses comments during the code generation
process.

The -i port-type-name and wsdlurl arguments are required. If the -style
rpc argument is specified, the -n soap-body-namspace argument is also
required. All other arguments are optional and may be listed in any order.

(1) Important

artix wsdl2soap does not support the generation of
document/encoded SOAP 1.2 bindings.

You can add a SOAP 1.2 binding to a contract by either selecting Artix
Designer — New Binding or selecting New Binding from the context menu
available in Artix Designer’s diagram view. For more information see the
on-line help provided with Artix Designer.

If your system had an interface that took orders and offered a single operation
to process the orders it would be defined in @ WSDL fragment similar to the
one shown in Example 6, “Ordering System Interface”.

Example 6. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>

</message>

<message name="widgetOrderBill">

35

Adding a SOAP 1.2 Binding to a WSDL
Document

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

</definitions>

The SOAP binding generated for orderwidgets is shown in Example 7,
“SOAP 1.2 Binding for orderWidgets”.

Example 7. SOAP 1.2 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soapl2:operation soapAction="" style="document"/>
<input name="order">
<soapl2:body use="literal"/>
</input>
<output name="bill">
<wsoapl2:body use="literal"/>
</output>
<fault name="sizeFault">
<soapl2:body use="literal"/>
</fault>
</operation>
</binding>

This binding specifies that messages are sent using the document/literal
message style.

36

Adding Headers to a SOAP 1.2
Message

Adding Headers to a SOAP 1.2 Message

Overview

SOAP message headers are defined by adding soap12:header elements to
your SOAP 1.2 message. The soap12:header element is an optional child
of the input, output, and fault elements of the binding. The header

becomes part of the parent message. A header is defined by specifying a
message and a message part. Each SOAP header can only contain one
message part, but you can insert as many headers as needed.

Syntax The syntax for defining a SOAP header is shown in Example 8, “SOAP Header

Syntax”.

Example 8. SOAP Header Syntax

<binding name="headwig">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">
<soapl2:operation soapAction="" style="documment"/>
<input name="grain">
<soapl2:body .../>
<soapl2:header message="QName" part="partName"
use="literal |encoded"
encodingStyle="encodingURI"
namespace="namespaceURI" />
</input>

</binding>

The soapl2:header element’s attributes are described in Table 1,
“soapl2:header Attributes”.

Table 1. soapl2:header Attributes

Attribute Description

message A required attribute specifying the qualified name of the message from which the part being
inserted into the header is taken.

part A required attribute specifying the name of the message part inserted into the SOAP header.

use Specifies whether the message parts are to be encoded using encoding rules. If set to encoded
the message parts are encoded using the encoding rules specified by the value of the

37

Adding Headers to a SOAP 1.2
Message

Attribute Description
encodingstyle attribute. If set to 1iteral, then the message parts are defined by the
schema types referenced.

encodingStyle |Specifies the encoding rules used to construct the message.

namespace Defines the namespace to be assigned to the header element serialized with use="encoded".

Splitting messages between body

and header

Example

The message part inserted into the SOAP header can be any valid message
part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP 1.2 binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The soap12:body element has an optional attribute, parts, that takes a
space delimited list of part names. When parts is defined, only the message

parts listed are inserted into the body of the SOAP 1.2 message. You can
then insert the remaining parts into the message's header.

(@ Note

When you define a SOAP header using parts of the parent message,
Artix ESB automatically fills in the SOAP headers for you.

Example 9, “SOAP 1.2 Binding with a SOAP Header” shows a modified
version of the orderWidgets service shown in Example 3.1, “Ordering

System Interface”. This version has been modified so that each order has an
xsd:base64binary value placed in the header of the request and response.
The header is defined as being the keyva1l part from the widgetKey message.

In this case you would be responsible for adding the application logic to create
the header because it is not part of the input or output message.

Example 9. SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"

38

Adding Headers to a SOAP 1.2
Message

xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
</types>

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">

<part name="keyVal" element="xsdl:keyElem"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soapl2:operation soapAction="" style="document"/>
<input name="order">
<soapl2:body use="literal"/>
<soapl2:header message="tns:widgetKey" part="keyval"/>
</input>
<output name="bill">
<soapl2:body use="literal"/>
<soapl2:header message="tns:widgetKey" part="keyval"/>
</output>
<fault name="sizeFault">
<soapl2:body use="literal"/>
</fault>

39

Adding Headers to a SOAP 1.2
Message

</operation>
</binding>

</definitions>

You could modify Example 9, “SOAP 1.2 Binding with a SOAP Header” so
that the header value was a part of the input and output messages as shown
in Example 10, “SOAP 1.2 Binding for orderWidgets with a SOAP Header”.
In this case keyval is a part of the input and output messages. In the
soapl2:body elements the parts attribute specifies that keyva1l is not to

be inserted into the body. However, it is inserted into the header.

Example 10. SOAP 1.2 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsdl:keyElem"/>
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsdl:keyElem"/>
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>

40

Adding Headers to a SOAP 1.2
Message

<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soapl2:operation soapAction="" style="document"/>
<input name="order">
<soapl2:body use="literal" parts="numOrdered"/>
<soapl2:header message="tns:widgetOrder" part="keyVval"/>
</input>
<output name="bill">
<soapl2:body use="literal" parts="bill"/>
<soapl2:header message="tns:widgetOrderBill" part="keyVal"/>
</output>
<fault name="sizeFault">
<soapl2:body use="literal"/>
</fault>
</operation>
</binding>

</definitions>

41

42

Sending Binary Data Using SOAP with

Attachments

Summary

SOAP attachments provide a mechanism for sending binary data as part of a SOAP message. Using SOAP with
attachments requires that you define your SOAP messages as MIME multipart messages.

Overview

Namespace

Changing the message binding

SOAP messages generally do not carry binary data. However, the W3C SOAP
1.1 specification allows for using MIME multipart/related messages to send
binary data in SOAP messages. This technique is called using SOAP with
attachments. SOAP attachments are defined in the W3C's SOAP Messages
with Attachments Note (http://www.w3.0rg/TR/SOAP-attachments).

The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL definitions element to set this up is

shown in Example 11, “MIME Namespace Specification in a Contract”.

Example 11. MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

In a default SOAP binding, the first child element of the input, output, and
fault elements is a soap:body element describing the body of the SOAP

message representing the data. When using SOAP with attachments, the
soap:body element is replaced with a mime:multipartRelated element.

Note

WSDL does not support using mime :multipartRelated for fault
messages.

43

http://www.w3.org/TR/SOAP-attachments

Describing a MIME multipart
message

The mime :multipartRelated element tells Artix ESB that the message body

is going to be a multipart message that potentially contains binary data. The
contents of the element define the parts of the message and their contents.
mime:multipartRelated elements in contain one or more mime:part

elements that describe the individual parts of the message.

The first mime : part element must contain the soap:body element that would
normally appear in a default SOAP binding. The remaining mime :part
elements define the attachments that are being sent in the message.

MIME multipart messages are described using @ mime :multipartRelated
element that contains a number of mime : part elements. To fully describe a
MIME multipart message do the following:

1. Inside the input or output message you want to send as a MIME
multipart message, add a mime :mulipartRelated element as the first
child element of the enclosing message.

2. Add a mime:part child element to the mime :multipartRelated

element and set its name attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and
set its attributes appropriately.

@ Tip

If the contract had a default SOAP binding, you can copy the
soap :body element from the corresponding message from the

default binding into the MIME multipart message.

4. Add another mime:part child element to the mime :multipartReleated
element and set its name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to
describe the contents of this part of the message.

To fully describe the contents of a MIME message part the mime : content
element has the following attributes:

44

Table 2. mime:content Attributes

Attribute | Description

part Specifies the name of the WSDL message part, from the parent message definition, that is used as
the content of this part of the MIME multipart message being placed on the wire.

type The MIME type of the data in this message part. MIME types are defined as a type and a subtype using
the syntax type/subtype.

There are a number of predefined MIME types such as image/jpeg and text/plain. The MIME types

are maintained by the Internet Assigned Numbers Authority (IANA) and described in detail in Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types(ftp://ftp.isi.edu/in-notes/rfc2046.txt).

6. For each additional MIME part, repeat steps Step 4 and Step 5.

E | . .
xample Example 12, “Contract using SOAP with Attachments” shows a WSDL

fragment defining a service that stores X-rays in JPEG format. The image
data, xRay, is stored as an xsd:base64binary and is packed into the MIME

multipart message's second part, imagebata. The remaining two parts of the
input message, patientName and patientNumber, are sent in the first part
of the MIME multipart image as part of the SOAP body.

Example 12. Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="XrayStorage"
targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<message name="storRequest">
<part name="patientName" type="xsd:string"/>
<part name="patientNumber" type="xsd:int"/>
<part name="xRay" type="xsd:base64Binary"/>

</message>

<message name="storResponse">

45

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

<part name="success" type="xsd:boolean"/>
</message>

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>
</operation>
</portType>

<binding name="xRayStorageBinding" type="tns:xRayStorage">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="document"/>
<input name="storRequest">
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body use="literal"/>
</mime:part>
<mime:part name="imageData">
<mime:content part="xRay" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>
<output name="storResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding" name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>
</port>
</service>
</definitions>

46

Sending Binary Data with SOAP MTOM

Summary
SOAP Message Transmission Optimization Mechanism (MTOM) replaces SOAP with attachments as a mechanism

for sending binary data as part of an XML message. Using MTOM with Artix ESB requires adding the correct
schema types to a service's contract and enabling the MTOM optimizations.

Table of Contents

Annotating Data Types t0 USE MTOM ... e eene 48
0P] LT Y= O 1 PPN 52
USING JAXW S AP IS .ttt e e et b3
USING CONTIGUIATION ..ttt e et e e e e e aeaaaaans b5

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an
optimized method for sending binary data as part of a SOAP message. Unlike
SOAP with Attachments, MTOM requires the use of XML-binary Optimized
Packaging (XOP) packages for transmitting binary data. Using MTOM to send
binary data does not require you to fully define the MIME Multipart/Related
message as part of the SOAP binding. It does, however, require that you do
the following:

1. Annotate the data that you are going to send as an attachment.

You can annotate either your WSDL or the Java class that implements
your data.

2. Enable the runtime's MTOM support.
This can be done either programmatically or through configuration.

3. Develop a pataHandler for the data being passed as an attachment.

Note

Developing pataHandlers is beyond the scope of this book.

47

Annotating Data Types to use MTOM

Annotating Data Types to use MTOM

Overview

When defining a data type for passing along a block of binary data, such as
an image file or a sound file, in WSDL you define the element for the data to
be of type xsd:base64Binary. By default, any element of type
xsd:baseb4Binary results in the generation of a byte[] which can be serialized
using MTOM. However, the default behavior of the code generators does not
take full advantage of the serialization.

In order to fully take advantage of MTOM you must add annotations to either
your service's WSDL document or the JAXB class that implements the binary
data structure. Adding the annotations to the WSDL document forces the
code generators to generate streaming data handlers for the binary data.
Annotating the JAXB class involves specifying the proper content types and
may also involve changing the type specification of the field containing the
binary data.

WSDL first Example 13, “Message for MTOM” shows a WSDL document for a Web

service that uses a message which contains one string field, one integer field,
and a binary field. The binary field is intended to carry a large image file, so
it is not appropriate for sending along as part of a normal SOAP message.

Example 13. Message for MTOM

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="XrayStorage"
targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:xsdl="http://mediStor.org/types/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<types>
<schema targetNamespace="http://mediStor.org/types/"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="xRayType">
<sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary" />
</sequence>
</complexType>
<element name="xRay" type="xsdl:xRayType" />
</schema>

48

Annotating Data Types to use MTOM

</types>

<message name="storRequest">

<part name="record" element="xsdl:xRay"/>

</message>

<message name="storResponse">

<part name="success

</message>

" type="xsd:boolean"/>

<portType name="xRayStorage">

<operation name="store">

<input message="tns:storRequest" name="storRequest"/>

<output message="tns:storResponse" name="storResponse"/>

</operation>

</portType>

<binding name="xRayStorageSOAPBinding" type="tns:xRayStorage">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="store">

<soapl2:operation soapAction="" style="document"/>
<input name="storRequest">
<soapl2:body use="literal"/>

</input>

<output name="storResponse">
<soapl2:body use="literal"/>

</output>
</operation>

</binding>

</definitions>

If you wanted to use MTOM to send the binary part of the message as an
optimized attachment you would need to add the
xmime :expectedContentTypes attribute to the element containing the

binary data. This attribute is defined in the
http://www.w3.0rg/2005/05/xmlmime Nnamespace and specifies the MIME

types that the element is expected to contain. You can specify a comma
separated list of MIME types. The setting of this attribute will change how
the code generators create the JAXB class for the data. For most MIME types,
the code generator will create a DataHandler. Some MIME types, such as

those for images, have defined mappings.

,'] Note

The MIME types are maintained by the Internet Assigned Numbers
Authority (IANA) and described in detail in Multipurpose Internet

49

Annotating Data Types to use MTOM

Mail Extensions (MIME) Part One: Format of Internet Message
Bodies(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose
Internet Mail Extensions (MIME) Part Two: Media
Types(ftp://ftp.isi.edu/in-notes/rfc2046.txt)

@ Tip

For most uses you would specify application/octet-stream.

Example 14, “Binary Data for MTOM” shows how you would modify xRayType
from Example 13, “Message for MTOM” for using MTOM.

Example 14. Binary Data for MTOM

<types>
<schema targetNamespace="http://mediStor.org/types/"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xmime="http://www.w3.0rg/2005/05/xmlmime">
<complexType name="xRayType">
<sequence>

<element name="patientName" type="xsd:string" />

<element name="patientNumber" type="xsd:int" />

<element name="imageData" type="xsd:base64Binary"

xmime : expectedContentTypes="application/octet-stream"/>

</sequence>
</complexType>
<element name="xRay" type="xsdl:xRayType" />
</schema>
</types>
The generated JAXB class generated for xRayType will no longer contain a
byte[]. Instead the code generator will see the xmime : expectedContentTypes
attribute and generate a pataHandler for the imageData field.
(@ Note
You do not need to change the binding element to use MTOM. The
runtime will make the appropriate changes when the data is sent.
Java first

If you are doing Java first development you can make your JAXB class MTOM
ready by doing the following:

50

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

Annotating Data Types to use MTOM

1. Make sure the field holding the binary data is a DataHandler.

2. Add the exmiMimeType () annotation to the field containing the data
you want to be streamed as an MTOM attachment.

Example 15, “JAXB Class for MTOM” shows a JAXB class annotated for
using MTOM.

Example 15. JAXB Class for MTOM

@XmlType

public class XRayType {
protected String patientName;
protected int patientNumber;
@XmlMimeType ("application/octet-stream")
protected DataHandler imageData;

51

Enabling MTOM

Enabling MTOM
Table of Contents

USING JAX-W S APIS .ttt et e e 53
L8] = ol i ={F =1 Ao o PPt b5

By default the Artix ESB runtime does not enable MTOM support. It will send
all binary data as either part of the normal SOAP message or as an
unoptimized attachment. You can activate MTOM support either
programmatically or through the use of configuration.

52

Using JAX-WS APIs

Using JAX-WS APIs

Both service providers and consumers need to have the MTOM optimizations
enabled. The JAX-WS APIs offer different mechanisms for each type of
endpoint.

Service provider If you published your service provider using the JAX-WS APIs you enable the

runtime's MTOM support as follows:

1. Get access to the Endpoint object for your published service.

The easiest way to get the Endpoint object is when you publish the
endpoint. For more information see Publishing a Service in Developing
Artix Applications with JAX-WS.

2. Get the SOAP binding from the Endpoint using its getBinding ()

method as shown in Example 16, “Getting the SOAP Binding from an
Endpoint”.

Example 16. Getting the SOAP Binding from an Endpoint

// Endpoint ep is declared previously

SOAPBinding binding = (SOAPBinding)ep.getBinding();
You must cast the returned binding object to a soaPBinding object
inorder to access the MTOM property.

3. Set the bindings MTOM enabled property to true using the binding's
setMTOMEnabled () method as shown in Example 17, “Setting a Service
Provider's MTOM Enabled Property”.

Example 17. Setting a Service Provider's MTOM Enabled
Property

binding.setMTOMEnabled (true) ;

Consumer To MTOM enable a JAX-WS consumer you do the following:

1. Cast the consumer's proxy to a BindingProvider object.

53

http://www.iona.com/support/docs/artix/5.0/jaxws_pguide/jaxws_pguide.pdf

Using JAX-WS APIs

@ Tip

For information on getting a consumer proxy see Developing a
Consumer without a WSDL Contract in Developing Artix
Applications with JAX-WS or Developing a Consumer Starting
from a WSDL Contract in Developing Artix Applications with
JAX-WS.

Get the SOAP binding from the BindingProvider using its
getBinding () method as shown in Example 18, “Getting a SOAP
Binding from a BindingProvider”.

Example 18. Getting a SOAP Binding from a

BindingProvider

// BindingProvider bp declared previously
SOAPBinding binding = (SOAPBinding)bp.getBinding() ;

Set the bindings MTOM enabled property to true using the binding's
setMTOMEnabled () method as shown in Example 19, “Setting a
Consumer's MTOM Enabled Property”.

Example 19. Setting a Consumer's MTOM Enabled
Property

binding.setMTOMEnabled (true) ;

54

http://www.iona.com/support/docs/artix/5.0/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.0/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.0/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.0/jaxws_pguide/jaxws_pguide.pdf

Using configuration

Using configuration

Overview

Procedure

Example

If you publish your service using XML, such as when deploying into a
container, you can enable your endpoint's MTOM support in the endpoint's
configuration file. For more information on configuring endpoint's see
Configuring and Deploying Artix Java Runtime Endpoints.

The MTOM property is set inside the jaxws:endpoint element for your
endpoint. To enable MTOM do the following:

1. Addajaxws:property child element to the endpoint's jaxws:endpoint
element.

2. Add a entry child element to the jaxws:property element.
3. Set the entry element's key attribute to mtom-enabled.

4. Setthe entry element's value attribute to true.

Example 20, “Configuration for Enabling MTOM” shows an endpoint that is
MTOM enabled.

Example 20. Configuration for Enabling MTOM

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schema/jax

ws.xsd">

<jaxws:endpoint id="xRayStorage"
implementor="demo.spring.xRayStorImpl"
address="http://localhost/xRayStorage">

<jaxws:properties>

<entry key="mtom-enabled" value="true"/>

</jaxws:properties>
</jaxws:endpoint>
</beans>

55

56

Using XML Documents

Summary

The pure XML payload format provides an alternative to the SOAP binding by allowing services to exchange data
using straight XML documents without the overhead of a SOAP envelope.

Artix Designer provides a wizard for generating an XML binding from a logical interface. Alternatively, you can
create an XML binding using any text or XML editor.

XML binding namespace

Using Artix Designer

Hand editing

The extensions used to describe XML format bindings are defined in the
namespace http://cxf.apache.org/bindings/xformat. Artix ESB tools

use the prefix xformat to represent the XML binding extensions. Add the
following line to your contracts:

xmlns:xformat="http://cxf.apache.org/bindings/xformat"

You can add an XML binding to a contract by either selecting Artix Designer
- New Binding or selecting New Binding from the context menu available

in Artix Designer’s diagram view. For more information see the on-line help

provided with Artix Designer.

To map an interface to a pure XML payload format do the following:

1.

Add the namespace declaration to include the extensions defining the
XML binding. See XML binding namespace.

Add a standard WSDL binding element to your contract to hold the
XML binding, give the binding a unique name, and specify the name of
the WSDL portType element that represents the interface being bound.

Add an xformat :binding child element to the binding element to

identify that the messages are being handled as pure XML documents
without SOAP envelopes.

Optionally, set the xformat :binding element's rootNode attribute to
a valid QName. For more information on the effect of the rootNode
attribute see XML messages on the wire.

57

XML messages on the wire

5. For each operation defined in the bound interface, add a standard WSDL
operation element to hold the binding information for the operation's

messages.

6. For each operation added to the binding, add the input, output, and
fault children elements to represent the messages used by the operation.
These elements correspond to the messages defined in the interface
definition of the logical operation.

7. Optionally add an xformat : body element with a valid rootNode attribute
to the added input, output, and fault elements to override the value
of rootNode set at the binding level.

(® Note

If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the
rootNode attribute for the message to ensure that the message

written on the wire is a valid, but empty, XML document.

When you specify that an interface’s messages are to be passed as XML
documents, without a SOAP envelope, you must take care to ensure that your
messages form valid XML documents when they are written on the wire. You
also need to ensure that non-Artix ESB participants that receive the XML
documents understand the messages generated by Artix ESB.

A simple way to solve both problems is to use the optional rootNode attribute
on either the global xformat :binding element or on the individual message’s
xformat :body elements. The rootNode attribute specifies the QName for

the element that serves as the root node for the XML document generated by
Artix ESB. When the rootNode attribute is not set, Artix ESB uses the root

element of the message part as the root element when using doc style
messages, or an element using the message part name as the root element
when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in

Example 21, “Valid XML Binding Message” would generate an XML document
with the root element 1ineNumber.

58

Example 21. Valid XML Binding Message

<type ...>
<element name="operatorID" type="xsd:int"/>

</types><message name="operator"><part name="lineNumber" element="nsl:operatorID"/>
</message>

For messages with one part, Artix ESB will always generate a valid XML
document even if the rootNode attribute is not set. However, the message

in Example 22, “Invalid XML Binding Message” would generate an invalid
XML document.

Example 22. Invalid XML Binding Message

<types>

<element name="pairName" type="xsd:string"/>
<element name="entryNum" type="xsd:int"/>

</types>
<message name="matildas">
<part name="dancing" element="nsl:pairName"/>

<part name="number" element="nsl:entryNum"/>
</message>

Without the rootNode attribute specified in the XML binding, Artix ESB will

generate an XML document similar to Example 23, “Invalid XML Document”
for the message defined in Example 22, “Invalid XML Binding Message”.
The generated XML document is invalid because it has two root elements:
pairName and entryNum.

Example 23. Invalid XML Document

<pairName>
Fredé&Linda
</pairName>
<entryNum>
123
</entryNum>

If you set the rootNode attribute, as shown in Example 24, “XML Binding
with rootNode set” Artix ESB will wrap the elements in the specified root

59

element. In this example, the rootNode attribute is defined for the entire
binding and specifies that the root element will be named entrants.

Example 24. XML Binding with rootNode set

<portType name="danceParty">
<operation name="register">
<input message="tns:matildas" name="contestant"/>
</operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered"/>
</binding>

An XML document generated from the input message would be similar to
Example 25, “XML Document generated using the rootNode attribute”. Notice
that the XML document now only has one root element.

Example 25. XML Document generated using the rootNode
attribute

<entrants>
<pairName>
Fred&Linda
<entryNum>
123
</entryNum>
</entrants>

Overriding the binding's rootNode . s
attribute setting You can also set the rootNode attribute for each individual message, or
override the global setting for a particular message, by using the

xformat :body element inside of the message binding. For example, if you

wanted the output message defined in Example 6.4, “XML Binding with
rootNode set” to have a different root element from the input message, you
could override the binding's root element as shown in Example 26, “Using
xformat:bodym

60

Example 26. Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered">
<xformat:body rootNode="entryStatus"/>
</output>
</operation>
</binding>

61

62

Part Il. Transports

Table of Contents

Understanding How Endpoints are Defined in WSDLcociiiiiiiiiiiiiiiisi e rreserereren e n e e e e eas 67
L0 1= o I I PPN 69
Adding a Basic HTTP Endpoint ... ettt 70

070 i =W T == T O] o Y0 T 72
USINg CoNfIGUIATION ...eieei e e 73

USINE WS D .ttt 79

Consumer Cache Control DIrECTIVESeie it a 80

ConfigUriNg @ SEIVICE PrOVIEYiuiei i e e e e et e e e e 81
USING CoNfiGUIATION L.u.etiti i e e ettt e e aaes 82

USINE WS DL .ttt 86

Service Provider Cache Control Dir€CtIVESoveieieiiiii e 87

Configuring the Jetty RUNTIME ... e 89
Using the HTTP Transport in Decoupled Modec.ouiriuiiiii e 93
L= PP 99
N BIMNIESPACES .. uetitititit ettt ettt et ettt et ettt ettt e e et et et et e e et e e et e e e e e et e e e e et e e e e e e tetetarararaaaaas 100

Basic Endpoint Configurationooiiiiiiii s 101
USING WS DL ittt e e e et 102

UsIiNg Configurationieieii s 105

Consumer Endpoint Configurationoooieiiii e e 107
UsIiNg Configuration ... s 108

USINE WS DL ittt e e et e, 109

Provider Endpoint Configuration ... 110

UsIiNg Configurationieieii s 111

USINE WS DL ettt e e et 113

JMS Runtime Configurationooiiiii e 114

JMS Session Pool Configurationc.oeiiiiiiiiiiii e 115

Consumer Specific Runtime Configuration ..o, 116

Provider Specific Runtime Configurationooiiiiiii e 117

Using WebSPhere IMQocuiuiiiiiiieireri s se s s s s ss s ss s sa s s s sasessasansasassnsassnsasensasanss 119
L0 = I P 123
Adding an FTP Endpoint USING WSDLuuiiieiii it ee e aaeaes 124
Adding an Configuration for an FTP Endpointcooiiiiiiii e 126
Coordinating Requests and RESPONSESiiiiiiii e ettt e e aaaaas 131

T o0 01 T o 132
Implementing the Consumer’s Coordination LOZICc.ouiviriiiiiiiiiiiiiiii e 133
Implementing the Server’s Coordination LOZICcuiuininiiiiiiii e 138

Using Properties to Control Coordination BEhaviorcooooiiiiiiiiiii e 143

L1 = N [P 147

65

66

Understanding How Endpoints are
Defined in WSDL

Summary

Endpoints represent an instantiated service. They are defined by combining a binding and the networking details
used to expose the endpoint.

Overview An endpoint can be thought of as a physical manifestation of a service. It

combines a binding, which specifies the physical representation of the logical
data used by a service, and a set of networking details that define the physical
connection details used to make the service contactable by other endpoints.

ndpoints and services In the same way a binding can only map a single interface, an endpoint can

only map to a single service. However, a service can be manifested by any
number of endpoints. For example, you could define a ticket selling service
that was manifested by four different endpoints. However, you could not have
a single endpoint that manifested both a ticket selling service and a widget
selling service.

The WSDL elements Endpoints are defined in a contract using a combination of the WSDL service

element and the WSDL port element. The service element is a collection
of related port elements. The port elements define the actual endpoints.

The WSDL service element has a single attribute, name, that specifies a
unique name. The service element is used as the parent element of a
collection of related port elements. WSDL makes no specification about how
the port elements are related. You can associate the port elements in any
manner you see fit.

The WSDL port element has a single attribute, binding, that specifies the
binding used by the endpoint. The port element is the parent element of the
elements that specify the actual transport details used by the endpoint. The

67

Adding endpoints to a contract

Supported transports

elements used to specify the transport details are discussed in the following
sections.

Artix provides a number of tools for adding endpoints to your contracts. These
include:

» Artix Designer has wizards that lead you through the process of adding
endpoints to your contract.

* A number of the endpoint types can be generated using command line
tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different transports
used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

Endpoint definitions are built using extensions defined for each of the
transports the Artix ESB Java Runtime supports. This includes the following
transports:

* HTTP

IBM WebSphere MQ

CORBA
» Java Messaging Service

¢ File Transfer Protocol

68

Using HTTP

Summary

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform for
communicating between endpoints. Becuase of these factors it is the assumed transport for most WS-*
specifications and is integral to RESTful architectures.

Table of Contents

Adding a Basic HTTP ENAPOinto.eeii e e e et ae e aan 70
CONFIGUIING @ CONSUMET ..utitit ittt ettt ettt e e e e e e et et et et et e e et et e e e e e e e e e e et et et et et et anaaaenes 72
USING CONTIGUIATION L.vittiti i e e e ettt e e e e e et e et et e e e aeaeenan 73
USINE WS DL . 79
Consumer Cache Control DIrECTIVESv.eie e e e 80
CoNfigUIING @ SEIVICE PrOVIEY ...eieiii i ettt ettt e e e naenanas 81
USING CONTIGUIATION L.v.ttitit i e e e ettt e e e e et e e e e e e e eeaeenan 82
USINE WS DL . 86
Service Provider Cache Control DIr€CHIVESieiiieiiii e 87
Configuring the Jetty RUNTIME ... e aaas 89
Using the HTTP Transport in Decoupled MOEcuiuiiiiiii e 93

69

Adding a Basic HTTP Endpoint

Adding a Basic HTTP Endpoint

Overview There are three ways of specifying an HTTP endpoint’s address depending
on the payload format you are using.
¢ SOAP 1.1 uses the standardized soap:address element.
e SOAP 1.2 uses the soapl2:address element.
* All other payload formats use the http:address element.
SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the
SOAP 1.1 address element to specify the endpoint’s address. It has one

attribute, 1ocation, that specifies the endpoint’s address as a URL. The
SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 8.1, “SOAP 1.1 Port Element” shows a port element used to send
SOAP 1.1 messages over HTTP.

Example 27. SOAP 1.1 Port Element

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>

<service name="SOAPllService">
<port binding="SOAP1l1Binding" name="SOAPllPort">
<soap:address location="http://artie.com/index.xml">
</port>
</service>

<definitions>

SOAP 1.2 When you are sending SOAP 1.2 messages over HTTP you must use the

SOAP 1.2 address element to specify the endpoint’s address. It has one
attribute, 1ocation, that specifies the endpoint’s address as a URL. The
SOAP 1.2 address element is defined in the namespace

http://schemas.xmlsoap.org/wsdl/soapl2/.

70

Adding a Basic HTTP Endpoint

Example 8.2, “SOAP 1.2 Port Element” shows a port element used to send
SOAP 1.2 messages over HTTP.

Example 28. SOAP 1.2 Port Element

<definitions
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/" ... >
<service name="SOAPl2Service">
<port binding="SOAP12Binding" name="SOAPl2Port">
<soapl2:address location="http://artie.com/index.xml">
</port>
</service>

</definitions>

Other messages types When your messages are mapped to any payload format other than SOAP

you must use the HTTP address element to specify the endpoint’s address.
It has one attribute, 10cation, that specifies the endpoint’s address as a
URL. The HTTP address element is defined in the namespace

http://schemas.xmlsoap.org/wsdl/http/.

Example 8.3, “HTTP Port Element” shows a port element used to send an
XML message.

Example 29. HTTP Port Element

<definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >
<service name="HTTPService">
<port binding="HTTPBinding" name="HTTPPort">
<http:address location="http://artie.com/index.xml">
</port>
</service>

</definitions>

71

Configuring a Consumer

Configuring a Consumer

Table of Contents

Using Configuration
Using WSDL ...vviiiiiiieen

Consumer Cache Control Directives

HTTP consumer endpoints can specify a number of HTTP connection attributes
including whether the endpoint automatically accepts redirect responses,
whether the endpoint can use chunking, whether the endpoint will request a
keep-alive, and how the endpoint interacts with proxies. In addition to the
HTTP connection properties, an HTTP consumer endpoint can specify how
it is secured.

A consumer endpoint can be configured using two mechanisms:
* Configuration

* WSDL

72

Using Configuration

Using Configuration

Namespace

The elements used to configure an HTTP consumer endpoint are defined in
the namespace
http://cxf.apache.org/transports/http/configuration. Itis

commonly refered to using the prefix http-conf. In order to use the HTTP
configuration elements you will need to add the lines shown in Example 8.4,
“HTTP Consumer Configuration Namespace” to the beans element of your

endpoint's configuration file. In addition, you will need to add the configuration
elements' namespace to the xsi:schemaLocation attribute.

Example 30. HTTP Consumer Configuration Namespace

<beans ...

xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

xsi:schemaLocation=".

http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd

o0

The conduit element

You configure an HTTP endpoint using the http-conf:conduit element
and its children. The http-conf:conduit element takes a single attribute,
name, that specifies the WSDL port element that corresponds to the endpoint.
The value for the name attribute takes the form portonName.http-conduit.
For example, Example 31, “http-conf:conduit Element” shows the
http-conf:conduit element that would be used to add configuration for

an endpoint that was specified by the WSDL fragment <port
binding="widgetSOAPBInding" name="widgetSOAPPort> if the endpoint's
target namespace was http://widgets.widgetvendor.net.

Example 31. http-conf:conduit Element

<http-conf:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit>

</http-conf:conduit>

73

Using Configuration

The http-conf:conduit element has a number of child elements that specify

configuration information. They are described in Table 3, “Elements Used
to Configure an HTTP Consumer Endpoint”.

Table 3. Elements Used to Configure an HTTP Consumer Endpoint

Element

Description

http-conf:client

Specifies the HTTP connection properties such as timeouts, keep-alive
requests, content types, etc. See The client element.

http-conf:authorization

Specifies the the parameters for configuring the basic authentication method
that the endpoint uses preemptively.

@ Tip

The preferred approach is to supply a Basic Authentication Supplier
object.

http-conf:proxyAuthorization

Specifies the parameters for configuring basic authentication against outgoing
HTTP proxy servers.

http-conf:tlsClientParameters |Specifies the parameters used to configure SSL/TLS.

http-conf:basicAuthSupplier

Specifies the bean reference or class name of the object that supplies the
the basic authentication information used by the endpoint both preemptively
or in response to a 401 HTTP challenge.

http-conf:trustDecider

Specifies the bean reference or class name of the object that checks the
HTTP(S) urRLConnection object in order to establish trust for a connection

with an HTTPS service provider before any information is transmitted.

The client element

The http-conf:client element is used to configure the non-security

properties of a consumer endpoint's HTTP connection. Its attributes, described
in Table 4, “HTTP Consumer Configuration Attributes”, specify the
connection's properties.

Table 4. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout |Specifies the amount of time, in milliseconds, that the consumer will attempt to establish
a connection before it times out. The default is 30000.

74

Using Configuration

Attribute

Description

0 specifies that the consumer will continue to send the request indefinitely.

ReceiveTimeout

Specifies the amount of time, in milliseconds, that the consumer will wait for a response
before it times out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect

Specifies if the consumer will automatically follow a server issued redirection. The default
is false.

MaxRetransmits

Specifies the maximum number of times a consumer will retransmit a request to satisfy a
redirect. The default is -1 which specifies that unlimited retransmissions are allowed.

AllowChunking

Specifies whether the consumer will send requests using chunking. The default is true
which specifies that the consumer will use chunking when sending requests.

(1) Important

Chunking cannot be used used if either of the following are true:

* http-conf:basicAuthSupplier is configured to provide credentials
preemptively.

* AutoRedirect is set to true.

In both cases the value of A11owChunking is ignored and chunking is disallowed.

Accept

Specifies what media types the consumer is prepared to handle. The value is used as the
value of the HTTP Accept property. The value of the attribute is specified using as
multipurpose internet mail extensions (MIME) types.

AcceptLanguage

Specifies what language (for example, American English) the consumer prefers for the
purposes of receiving a response. The value is used as the value of the HTTP
AcceptLanguage property.

Language tags are regulated by the International Organization for Standards (ISO) and are
typically formed by combining a language code, determined by the ISO-639 standard, and
country code, determined by the ISO-3166 standard, separated by a hyphen. For example,
en-US represents American English.

AcceptEncoding

Specifies what content encodings the consumer is prepared to handle. Content encoding
labels are regulated by the Internet Assigned Numbers Authority (IANA). The value is used
as the value of the HTTP AcceptEncoding property.

75

Using Configuration

Attribute

Description

ContentType

Specifies the media type of the data being sent in the body of a message. Media types are
specified using multipurpose internet mail extensions (MIME) types. The value is used as
the value of the HTTP ContentType property. The default is text/xml.

@ Tip

For web services, this should be set to text/xm1. If the client is sending HTML

form data to a CGI script, this should be set to
application/x—www—form—urlencoded.”the HTTP POSTrequestb bound to

a fixed payload format (as opposed to SOAP), the content type is typically set to

application/octet-stream.

Host

Specifies the Internet host and port number of the resource on which the request is being
invoked. The value is used as the value of the HTTP Host property.

@ Tip

This attribute is typically not required. It is only required by certain DNS scenarios
or application designs. For example, it indicates what host the client prefers for
clusters (that is, for virtual servers mapping to the same Internet protocol (IP)
address).

Connection

Specifies whether a particular connection is to be kept open or closed after each

request/response dialog. There are two valid values:

* Keep-Alive specifies that the consumer wants to keep its connection open after the
initial request/response sequence. If the server honors it, the connection is kept open
until the consumer closes it.

* close(default) specifies that the connection to the server is closed after each
request/response sequence.

CacheControl

Specifies directives about the behavior that must be adhered to by caches involved in the
chain comprising a request from a consumer to a service provider. See Consumer Cache
Control Directives.

Cookie

Specifies a static cookie to be sent with all requests.

76

Using Configuration

Attribute Description
BrowserType Specifies information about the browser from which the request originates. In the HTTP
specification from the World Wide Web consortium (W3C) this is also known as the
user-agent. Some servers optimize based upon the client that is sending the request.
Referer Specifies the URL of the resource that directed the consumer to make requests on a
particular service. The value is used as the value of the HTTP Referer property.
@ Note
This HTTP property is used when a request is the result of a browser user clicking
on a hyperlink rather than typing a URL. This can allow the server to optimize
processing based upon previous task flow, and to generate lists of back-links to
resources for the purposes of logging, optimized caching, tracing of obsolete or
mistyped links, and so on. However, it is typically not used in web services
applications.
(1) Important
If the autorRedirect attribute is set to true and the request is redirected, any
value specified in the Referer attribute is overridden. The value of the HTTP
Referer property will be set to the URL of the service who redirected the consumer’s
original request.
DecoupledEndpoint |Specifies the URL of a decoupled endpoint for the receipt of responses over a separate
provider->consumer connection. For more information on using decoupled endpoints see,
Using the HTTP Transport in Decoupled Mode.
€3 Warning
You must configure both the consumer endpoint and the service provider endpoint
to use WS-Addressing for the decoupled endpoint to work.
ProxyServer Specifies the URL of the proxy server through which requests are routed.
ProxyServerPort |Specifies the port number of the proxy server through which requests are routed.
ProxyServerType |Specifies the type of proxy server used to route requests. Valid values are:

e nrTP(default)

77

Using Configuration

Attribute

Description

¢ SOCKS

Example

Exampl

Example 32, “HTTP Consumer Endpoint Configuration” shows a the
configuration for an HTTP consumer endpoint that wants to keep its connection
to the provider open between requests, will only retransmit requests once per
invocation, and cannot use chunking streams.

e 32. HTTP Consumer Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:conduit name="{http://apache.org/hello world soap http}SoapPort.http-conduit">

<http-conf:client Connection="Keep-Alive"

MaxRetransmits="1"
AllowChunking="false" />

</http-conf:conduit>
</beans>

78

Using WSDL

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. Itis

commonly refered to using the prefix http-conf. In order to use the HTTP
configuration elements you will need to add the line shown in Example 8.7,
“HTTP Consumer WSDL Element's Namespace” to the definitions element

of your endpoint's WSDL document.

Example 33. HTTP Consumer WSDL Element's Namespace

<definitions ...

xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

The client element

Example

The http-conf:client element is used to specify the connection properties
of an HTTP consumer in a WSDL document. The http-conf:client element
is a child of the WSDL port element. It has the same attributes as the c1ient

element used in the configuration file. The attributes are described in Table 4,
“HTTP Consumer Configuration Attributes”.

Example 34, “WSDL to Configure an HTTP Consumer Endpoint” shows a
WSDL fragment that configures an HTTP consumer endpoint to specify that
it will not interact with caches.

Example 34. WSDL to Configure an HTTP Consumer Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:client CacheControl="no-cache" />
</port>
</service>

79

Consumer Cache Control Directives

Consumer Cache Control Directives

Table 5, “nttp-conf:client Cache Control Directives” lists the cache

control directives supported by an HTTP consumer.

Table 5. http-conf:client Cache Control Directives

Directive

Behavior

no-cache

Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that response
with the server. If specific response header fields are
specified with this value, the restriction applies only to
those header fields within the response. If no response
header fields are specified, the restriction applies to the
entire response.

no-store

Caches must not store any part of a response or any part
of the request that invoked it.

max-age

The consumer can accept a response whose age is no
greater than the specified time in seconds.

max-stale

The consumer can accept a response that has exceeded
its expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the expiration
time of a response up to which the consumer can still
accept that response. If no value is assigned, it means the
consumer can accept a stale response of any age.

min-fresh

The consumer wants a response that will be still be fresh
for at least the specified number of seconds indicated.

no-transform

Caches must not modify media type or location of the
content in a response between a provider and a consumer.

only-if-cached

Caches should return only responses that are currently
stored in the cache, and not responses that need to be
reloaded or revalidated.

cache-extension

Specifies additional extensions to the other cache directives.
Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard
directive, so that applications not understanding the
extended directive can at least adhere to the behavior
mandated by the standard directive.

80

Configuring a Service Provider

Configuring a Service Provider
Table of Contents

Using Configuration
L0 LT = PP 86
Service Provider Cache Control Directives

HTTP service provider endpoints can specify a number of HTTP connection
attributes including if it will honor keep alive requests, how it interacts with
caches, and how tolerant it is of errors in communicating with a consumer.

A service provider endpoint can be configured using two mechanisms:
» Configuration

* WSDL

81

Using Configuration

Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration

It is commonly refered to using the prefix http-conf. In order to use the HTTP
configuration elements you will need to add the lines shown in Example 35,
“HTTP Provider Configuration Namespace” to the beans element of your

endpoint's configuration file. In addition, you will need to add the configuration
elements' namespace to the xsi:schemaLocation attribute.

Example 35. HTTP Provider Configuration Namespace

<beans ...

xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

xsi:schemaLocation="...
http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd

>

The destination element

You configure an HTTP service provider endpoint using the
http-conf:destination element and its children. The

http-conf:destination element takes a single attribute, name, that
specifies the WSDL port element that corresponds to the endpoint. The value
for the name attribute takes the form portonName.http-destination. For
example, Example 36, “http-conf:destination Element” shows the
http-conf:destination element that would be used to add configuration

for an endpoint that was specified by the WSDL fragment <port
binding="widgetSOAPBIinding" name="widgetSOAPPort> if the endpoint's
target namespace was http://widgets.widgetvendor.net.

Example 36. http-conf:destination Element

<http-conf:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-destin

ation>

</http-conf:destination>

82

Using Configuration

The nttp-conf:destination element has a number of child elements that

specify configuration information. They are described in Table 6, “Elements
Used to Configure an HTTP Service Provider Endpoint”.

Table 6. Elements Used to Configure an HTTP Service Provider Endpoint

Element

Description

http-conf:server

Specifies the HTTP connection properties. See The server element.

http-conf:contextMatchStrategy |Specifies the parameters that configure the context match strategy for

processing HTTP requests.

http-conf:fixedParameterOrder Specifies whether the parameter order of an HTTP request handled by

this destination is fixed.

The server element

The http-conf:server element is used to configure the properties of a

service provider endpoint's HTTP connection. Its attributes, described in
Table 7, “HTTP Service Provider Configuration Attributes”, specify the
connection's properties.

Table 7. HTTP Service Provider Configuration Attributes

Attribute

Description

ReceiveTimeout

Sets the length of time, in milliseconds, the service provider tries to receive a
request before the connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors

Specifies whether exceptions are to be thrown when an error is encountered
on receiving a request. The default is false; exceptions are thrown on

encountering errors.

SuppressClientReceiveErrors

Specifies whether exceptions are to be thrown when an error is encountered
on sending a response to a consumer. The default is false; exceptions are

thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors requests for a connection to
remain open after a response has been sent. The default is false; keep-alive
requests are ignored.

RedirectURL Specifies the URL to which the client request should be redirected if the URL

specified in the client request is no longer appropriate for the requested

83

Using Configuration

Attribute

Description

resource. In this case, if a status code is not automatically set in the first line
of the server response, the status code is set to 302 and the status description

is set to object Moved. The value is used as the value of the HTTP
RedirectURL property.

CacheControl

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a response from a service provider to a
consumer. See Service Provider Cache Control Directives.

ContentLocation

Sets the URL where the resource being sent in a response is located.

ContentType

Specifies the media type of the information being sent in a response. Media
types are specified using multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP ContentType location.

ContentEncoding

Specifies any additional content encodings that have been applied to the
information being sent by the service provider. Content encoding labels are
regulated by the Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.

This value is used as the value of the HTTP ContentEncoding property.

(® Note

The primary use of content encodings is to allow documents to be
compressed using some encoding mechanism, such as zip or gzip.
Artix ESB performs no validation on content codings. It is the user’s
responsibility to ensure that a specified content coding is supported
at application level.

ServerType

Specifies what type of server is sending the response. Values take the form
program-name/ version. FOr example, Apache/1.2.5.

Example

Example 37, “HTTP Service Provider Endpoint Configuration” shows a the
configuration for an HTTP service provider endpoint that honors keep alive
requests and suppresses all communication errors.

Example 37. HTTP Service Provider Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

84

Using Configuration

xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:destination name="{http://apache.org/hello world soap http}SoapPort.http-des
tination">
<http-conf:server SuppressClientSendErrors="true"
SuppressClientReceiveErrors="true"
HonorKeepAlive="true" />
</http-conf:destination>
</beans>

85

Using WSDL

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. Itis

commonly refered to using the prefix http-conf. In order to use the HTTP
configuration elements you will need to add the line shown in Example 38,
“HTTP Provider WSDL Element's Namespace” to the definitions element

of your endpoint's WSDL document.

Example 38. HTTP Provider WSDL Element's Namespace

<definitions ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

The server element
The nttp-conf:server element is used to specify the connection properties

of an HTTP service provider in a WSDL document. The http-conf:server
element is a child of the WSDL port element. It has the same attributes as
the server element used in the configuration file. The attributes are described
in Table 7, “HTTP Service Provider Configuration Attributes”.

Example Example 39, “WSDL to Configure an HTTP Service Provider Endpoint” shows

a WSDL fragment that configures an HTTP service provider endpoint to specify
that it will not interact with caches.

Example 39. WSDL to Configure an HTTP Service Provider
Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:server CacheControl="no-cache" />
</port>
</service>

86

Service Provider Cache Control
Directives

Service Provider Cache Control Directives

Table 8, “nttp-conf:server Cache Control Directives” lists the cache

control directives supported by an HTTP service provider.

Table 8. http-conf:server Cache Control Directives

Directive

Behavior

no-cache

Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that response
with the server. If specific response header fields are
specified with this value, the restriction applies only to
those header fields within the response. If no response
header fields are specified, the restriction applies to the
entire response.

public

Any cache can store the response.

private

Public (shared) caches cannot store the response because
the response is intended for a single user. If specific
response header fields are specified with this value, the
restriction applies only to those header fields within the
response. If no response header fields are specified, the
restriction applies to the entire response.

no-store

Caches must not store any part of response or any part of
the request that invoked it.

no-transform

Caches must not modify the media type or location of the
content in a response between a server and a client.

must-revalidate

Caches must revaildate expired entries that relate to a
response before that entry can be used in a subsequent
response.

proxy-revalidate

Means the same as must-revalidate, except that it can only
be enforced on shared caches and is ignored by private
unshared caches. If using this directive, the public cache
directive must also be used.

max-age

Clients can accept a response whose age is no greater that
the specified number of seconds.

s-max-age

Means the same as max-age, except that it can only be
enforced on shared caches and is ignored by private
unshared caches. The age specified by s-max-age overrides

87

Service Provider Cache Control
Directives

Directive

Behavior

the age specified by max-age. If using this directive, the
proxy-revalidate directive must also be used.

cache-extension

Specifies additional extensions to the other cache directives.
Extensions might be informational or behavioral. An
extended directive is specified in the context of a standard
directive, so that applications not understanding the
extended directive can at least adhere to the behavior
mandated by the standard directive.

88

Configuring the Jetty Runtime

Configuring the Jetty Runtime

Overview

Namespace

The Jetty runtime is used by HTTP service providers and HTTP consumers
using a decoupled endpoint. The runtime's thread pool can be configured.
You can also set a number of the security settings for an HTTP service provider
through the Jetty runtime.

The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It

is commonly refered to using the prefix httpj. In order to use the Jetty
configuration elements you will need to add the lines shown in Example 40,
“Jetty Runtime Configuration Namespace” to the beans element of your

endpoint's configuration file. In addition, you will need to add the configuration
elements' namespace to the xsi:schemaLocation attribute.

Example 40. Jetty Runtime Configuration Namespace

<beans ...

xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration

xsi:schemalocation="...

The engine-factory element

http://cxf.apache.org/transports/http-jetty/configuration

http://cxf.apache.org/schemas/configuration/http-jetty.xsd

o0

The httpj:engine-factory element is the root element used to configure

the Jetty runtime used by an application. It has a single required attribute,
bus, whose value is the name of the Bus that manages the Jetty instances

being configured.

@ Tip
The value is typically cxf which is the name of the default Bus
instance.

The httpj:engine-factory element has three children that contain the

information used to configure the HTTP ports instantiated by the Jetty runtime
factory. The children are described in Table 9, “Elements for Configuring a
Jetty Runtime Factory”.

89

Configuring the Jetty Runtime

Table 9. Elements for Configuring a Jetty Runtime Factory

Element

Description

httpj:engine

Specifies the configuration for a particular Jetty runtime instance.
See The engine element.

httpj:identifiedTLSServerParameters |Specifies a reusable set of properties for securing an HTTP service

provider. It has a single attribute, id, that specifies a unique
identifier by which the property set can be refered.

httpj:identifiedThreadingParameters |Specifies a reusable set of properties for controlling a Jetty instance's

thread pool. It has a single attribute, id, that specifies a unique
identifier by which the property set can be refered.

See Configuring the thread pool.

The engine element

The httpj:engine element is used to configure specific instances of the
Jetty runtime. It has a single attribute, port, that specifies the number of the
port being managed by the Jetty instance.

@ Tip

You can specify a value of 0 for the port attribute. Any threading
properties specified in an httpj:engine element with its port
attribute set to 0 are used as the configuration for all Jetty listeners
that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring

security properties and one for configuring the Jetty instance's thread pool.
For each type of configuration you can either directly provide the configuration
information or provide a reference to a set of configuration properties defined
in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described
in Table 10, “Elements for Configuring a Jetty Runtime Instance”.

90

Configuring the Jetty Runtime

Table 10. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tlsServerParameters Specifies a set of properties for configuring the security used for the specific
Jetty instance.

httpj:tlsServerParametersRef |Refers to a set of security properties defined by a
identifiedTLSServerParameters element. The id attribute provides the

id of the refered identifiedTLSServerParameters element.

httpj:threadingParameters Specifies the size of the thread pool used by the specific Jetty instance. See
Configuring the thread pool.

httpj:threadingParametersRef |Refers to a set of properties defined by a identifiedThreadingParameters
element. The id attribute provides the id of the refered

identifiedThreadingParameters element.

Configuring the thread pool You can configure the size of a Jetty instance's thread pool by either:

» Specifying the size of thread pool using a
identifiedThreadingParameters element in the engine-factory
element. You then refer to the element using a threadingParametersRef
element.

* Specify the size of the of thread pool directly using a
threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread

pool. The attributes are described in Table 11, “Attributes for Configuring a
Jetty Thread Pool”.

(@ Note

The httpj:identifiedThreadingParameters element has a

single child threadingParameters element.

91

Configuring the Jetty Runtime

Table 11. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads |Specifies the minimum number of threads available to the
Jetty instance for processing requests.

maxThreads |Specifies the maximum number of threads available to the
Jetty instance for processing requests.

Example Example 41, “Configuring a Jetty Instance” shows a configuration fragment

that configures a Jetty instance on port number 9001.

Example 41. Configuring a Jetty Instance

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalocation="http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<httpj:engine-factory bus="cxf">
<httpj:identifiedTLSServerParameters id="secure">
<sec:keyManagers keyPassword="password">
<sec:keyStore type="JKS" password="password"
file="certs/cherry.jks"/>
</sec:keyManagers>
</httpj:identifiedTLSServerParameters>

<httpj:engine port="9001">
<httpj:tlsServerParametersRef id="secure" />
<httpj:threadingParameters minThreads="5"
maxThreads="15" />
</httpj:engine>
</httpj:engine-factory>
</beans>

92

Using the HTTP Transport in
Decoupled Mode

Using the HTTP Transport in Decoupled Mode

Overview

In normal HTTP request/response scenarios, the request and the response
are sent using the same HTTP connection. The service provider processes
the request and responds with a response containing the appropriate HTTP
status code and the contents of the response. In the case of a successful
request, the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an
extended period of time to execute, it makes sense to decouple the request
and response message. In this case the service providers sends the consumer
a 202 Accepted response to the consumer over the back-channel of HTTP

connection on which the request was received. It then processes the request
and sends the response back to the consumer using a new decoupled
server->client HTTP connection. The consumer runtime receives the incoming
response and correlates it with the appropriate request before returning to
the application code.

Configuring decoupled mode Using the HTTP transport in decoupled mode requires that you do two things:

1. Specify that the consumer and any service provider with which the
consumer will interact use WS-Addressing.

You can specify that an endpoint uses WS-Addressing in one of two
ways:

* Adding the wswa:UsingAddressing element to the endpoint's WSDL
port element as shown in Example 42, “Activating WS-Addressing
using WSDL".

Example 42. Activating WS-Addressing using WSDL

<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wswa:UsingAddressing xmlns:wswa="http://www.w3.0rg/2005/02/addressing/wsdl"/>
</port>
</service>

93

Using the HTTP Transport in
Decoupled Mode

* Adding the WS-Addressing policy to the endpoint's WSDL port element
as shown in Example 43, “Activating WS-Addressing using a Policy”.

Example 43. Activating WS-Addressing using a Policy

<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wsp:Policy xmlns:wsp="http://www.w3.0rg/2006/07/ws-policy">
<wsam:Addressing xmlns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsp:Policy/>
</wsam:Addressing>
</wsp:Policy>
</port>
</service>

(® Note

The WS-Addressing policy supersedes the
wswa :UsingAddressing WSDL element.

2. Configure the consumer endpoint to use a decoupled endpoint using the
DecoupledEndpoint attribute of the http-conf:conduit element.

Example 44, “Configuring a Consumer to Use a Decoupled HTTP
Endpoint” shows the configuration for the setting up the endpoint defined
in Example 42, “Activating WS-Addressing using WSDL" to use use a
decoupled endpoint. The consumer will now receive all responses at
http://widgetvendor.net/widgetSellerInbox

Example 44. Configuring a Consumer to Use a Decoupled HTTP Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

94

Using the HTTP Transport in
Decoupled Mode

<http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
<http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled endpoint" />

</http:conduit>
</beans>

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity
to the processing of HTTP messages. While the added complexity is
transparent to the implementation level code in an application, it may be
important to understand what happens for debugging reasons.

Figure 1, “Message Flow in for a Decoupled HTTP Transport” shows the flow
of messages when using HTTP in decoupled mode.

95

Using the HTTP Transport in
Decoupled Mode

Figure 1. Message Flow in for a Decoupled HTTP Transport

WS-A
rS 2

;

HTTP| HTTP HTTP| |HTTP

[

o b B %
1 '

MNetwork

A request starts the following process:

1. The consumer implementation invokes an operation and a request
message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration
the address of the decoupled endpoint is placed in the WS-A ReplyTo
header.

3. The message is sent to the service provider.

96

Using the HTTP Transport in
Decoupled Mode

10.
11.

12.

13.

14.

15.

The service provider receives the message.

The request message from the consumer is dispatched as far as the
provider's WS-A layer.

Because the WS-A ReplyTo header is not set to anonymous, the provider
sends back a message with the HTTP status code set to 202 to

acknowledge that the request has been received.

The HTTP layer sends a 202 Accepted message back to the consumer
using the original connection's back-channel.

The consumer receives the 202 aAccepted reply on the back-channel of
the HTTP connection used to send the original message.

When the consumer receives the 202 Acceptedreply the HTTP
connection is closed.

The request is passed to the service provider's implementation where
the request is processed.

When the response is ready, it is dispatched to the WS-A layer.

The WS-A layer adds the WS-Addressing headers to the response
message.

The HTTP transport sends the response to the consumer's decoupled
endpoint.

The consumer's decoupled endpoint receives the response from the
service provider.

The response is dispatched to the consumer's WS-A layer where it is
correlated to the proper request using the WS-A RelatesTo header.

The correlated response is returned to the client implementation and the
invoking call is unblocked.

97

98

Using JMS

Summary

The JMS is a standards based messaging system that is widely used in enterprise Java applications.

Table of Contents

N T o o= Tod =Y PP PPPRP 100
Basic Endpoint ConfigUrationooiiiiii s 101
USINE WS DL ittt e e e e e e et aaaaas 102
USING CoNfigUIation ... ueii i e e e e 105
Consumer Endpoint Configuration ... e 107
USING CoNfigUIAtioN ... e e e e 108
USINE WS DL ottt e e e e e e et aaaas 109
Provider Endpoint Configuration ..o e 110
USING CoNfigUIation ... ueii i e e e e 111
USINE WS DL ittt e e e e e e et aaaaas 113
JMS Runtime ConfigUrationo.iuiuiii e e e a e 114
JMS Session Pool ConfigUrationc.ieieiiiiiiii e e e 115
Consumer Specific Runtime Configurationc.cooiiiiiiiiii e 116
Provider Specific Runtime Configuration ... 117

99

Namespaces

Namespaces

WSDL Namespace

Configuration Namespace

The WSDL extensions for defining a JMS endpoint are defined in the
namespace http://cxf.apache.org/transports/jms. In order to use

the JMS extensions you will need to add the line shown in Example 45, “JMS
Extension Namespace” to the definitions element of your contract.

Example 45. JMS Extension Namespace

xmlns:jms="http://cxf.apache.org/transports/jms"

The Artix ESB JMS endpoint configuration properties are specified under the
http://cxf.apache.org/transports/jms namespace. In order to use

the JMS configuration properties you will need to add the line shown in
Example 46, “JMS Configuration Namespaces” to the beans element of your
configuration.

Example 46. JMS Configuration Namespaces

xmlns:jms="http://cxf.apache.org/transports/jms"

100

Basic Endpoint Configuration

Basic Endpoint Configuration
Table of Contents

USINE WS D ettt ittt et 102
Using Configuration

JMS endpoints need to know certain basic information about how to establish
a connection to the proper destination. This information can be provided in
one of two places:

* WSDL

¢ Configuration

101

Using WSDL

Using WSDL

The address element

The JMS destination information is provided using the jms : address element
and its child, the jms : IMSNamingProperties element. The jms:address

element’s attributes specify the information needed to identify the JMS broker
and the destination. The jms: JMSNamingProperties element specifies the

Java properties used to connect to the JNDI service.

The basic configuration for a JMS endpoint is done by using a jms:address
element as the child of your service’s port element. The 9ms:address element

uses the attributes described in Table 12, “JMS Endpoint Attributes” to
configure the connection to the JMS broker.

Table 12. JMS Endpoint Attributes

Attribute

Description

destinationStyle

Specifies if the JMS destination is a JMS queue or a JMS topic.

jndiConnectionFactoryName

Specifies the JNDI name bound to the JMS connection factory to use when
connecting to the JMS destination.

jndiDestinationName

Specifies the JNDI name bound to the JMS destination to which requests are
sent.

jndiReplyDestinationName

Specifies the JNDI name bound to the JMS destinations where replies are
sent. This attribute allows you to use a user defined destination for replies.
For more details see Using a named reply destination.

connectionUserName

Specifies the user name to use when connecting to a JMS broker.

connectionPassword

Specifies the password to use when connecting to a JMS broker.

The JMSNamingProperties
element

To increase interoperability with JMS and JNDI providers, the yms:address
element has a child element, jms: JMSNamingProperties, that allows you

to specify the values used to populate the properties used when connecting
to the JNDI provider. The jms: JMSNamingProperties element has two

attributes: name and value. name specifies the name of the property to set.
value attribute specifies the value for the specified property.

102

Using WSDL

Using a named reply destination

jms : JMSNamingProperties element can also be used for specification of

provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.
2. java.
3. java.
4, java
B. java.
6. java.
7.java.
8.java.
9. java.
10 java.
11 java.
12 java
13 java.
4 java.

15 java.

naming.factory.initial

naming.

naming.

.naming.

naming.

naming.

naming.

naming.

naming.

naming.

naming.

.naming.

naming.

naming.

naming.

provider

.url

factory.object

factory.state

factory.url.pkgs

dns.url

authoritative

batchsize

referral

security

security

security

security

language

applet

.protocol

.authentication

.principal

.credentials

For more details on what information to use in these attributes, check your
JNDI provider’s documentation and consult the Java API reference material.

By default, Artix ESB endpoints using JMS create a temporary queue for
sending replies back and forth. You can change this behavior by setting the

103

Using WSDL

Example

jndiReplyDestinationName attribute in the endpoint's contract. A client

endpoint will listen for replies on the specified destination and it will specify
the value of the attribute in the Rep1yTo field of all outgoing requests. A

service endpoint will use the value of the yndiReplyDestinationName

attribute as the location for placing replies if there is no destination specified
in the request’s ReplyTo field.

Example 47, “JMS WSDL Port Specification” shows an example of a JMS
WSDL port specification.

Example 47. JMS WSDL Port Specification

<service name="JMSService">

<port binding="tns:Greeter SOAPBinding"
name="SoapPort">

<jms:address jndiConnectionFactoryName="Con

nectionFactory"

jndiDestinationName="dynamic
Queues/test.Celtix.jmstransport” >

<jms:JMSNamingProperty name="java.nam
ing.factory.initial"

value="org.activemqg.jndi.ActiveMQInitial
ContextFactory" />

<jms:JMSNamingProperty name="java.nam
ing.provider.url"

value="tcp://localhost:61616" />

</jms:address>

</port>

</service>

104

Using Configuration

Using Configuration

Configuration elements

The address element

Example

In addition to using the WSDL file to specify the connection information for
a JMS endpoint, you can supply it in the endpoint's configuration file. The
information in the configuration file will override the information in the
endpoint's WSDL file.

You configure a JMS endpoint using one of the following configuration
elements:
jms:conduit
The 9ms:conduit element contains the configuration for a consumer
endpoint. It has one attribute, name, whose value takes the form

{WSDLNamespace} WSDLPortName. jms—conduit.

jms:destination
The yms:destination element contains the configuration for a provider
endpoint. It has one attribute, name, whose value takes the form

{WSDLNamespace} WSDLPortName. jms—-destination.

JMS connection information is specified by adding a yms:address child to
the base configuration element. The jms:address element used in the

configuration file is identical to the one used in the WSDL file. Its attributes
are listed in Table 9.1, “JMS Endpoint Attributes”. Like the jms:address

element in the WSDL file, the yms:address configuration element also has
a jms : IMSNamingProperties child element that is used to specify additional
information used to connect to a JNDI provider.

Example 48, “Addressing Information in a Artix ESB Configuration File” shows
a Artix ESB configuration entry for configuring the addressing information for
a JMS consumer endpoint.

Example 48. Addressing Information in a Artix ESB Configuration File

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"

105

Using Configuration

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
http://cxf.apache.org/jaxws ht
tp://cxf.apache.org/schemas/jaxws.xsd
http://cxf.apache.org/transports/jms http://cxf.apache.org/schem
as/configuration/jms.xsd">
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myConnectionFactory"
jndiDestinationName="myDestination"
jndiReplyDestinationName="myReplyDestination"
connectionUserName="testUser"
connectionPassword="testPassword">
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.apache.cxf.transport.jms.MyInitialContextFactory"
/>
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616" />
</Jjms:address>
</jms:conduit>
</beans>

106

Consumer Endpoint Configuration

Consumer Endpoint Configuration

Table of Contents

Using Configuration

Using WSDL «..vooveveeene

JMS consumer endpoints specify the type of messages they use. JMS
consumer endpoint can use either a JMS ByteMessage or a JMS

TextMessage. When using an objectMessage the consumer endpoint uses

a byte[] as the method for storing data into and retrieving data from the JMS
message body. When messages are sent, the message data, including any
formating information, is packaged into a byte[] and placed into the message
body before it is placed on the wire. When messages are received, the
consumer endpoint will attempt to unmarshall the data stored in the message
body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the

method for storing and retrieving data from the message body. When messages
are sent, the message information, including any format-specific information,
is converted into a string and placed into the JMS message body. When
messages are received the consumer endpoint will attempt to unmarshall the
data stored in the JMS message body as if it were packed into a string.

When native JMS applications interact with Artix ESB consumers, the JMS
application is responsible for interpreting the message and the formatting
information. For example, if the Artix ESB contract specifies that the binding
used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing

all of the SOAP envelope information.
A consumer endpoint can be configured in one of two ways:
¢ Configuration

* WSDL

& Tip

The recommended method is to place the consumer endpoint specific
information into the Artix ESB configuration file for the endpoint.

107

Using Configuration

Using Configuration

Specifying the message type

Using this configuration element, you specify the message type supported by
the consumer endpoint using the jms: runtimePolicy child element. The

message type is specified using the messageType attribute. The messageType

Consumer endpoint configuration is specified using the jyms : conduit element.

attribute has two possible values:

Table 13. messageType Values

text

Specifies that the data will be packaged as a TextMessage.

binary

specifies that the data will be packaged as an ByteMessage.

Example

Example 49, “Configuration for a JMS Consumer Endpoint” shows a

configuration entry for configuring a JMS consumer endpoint.

Example 49. Configuration for a JMS Consumer Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"
xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"

http://cxf.apache.org/jaxws ht

tp://cxf.apache.org/schemas/jaxws.xsd

http://cxf.

as/configuration/jms.xsd">

apache.org/transports/jms http://cxf.apache.org/schem

<jms:conduit name="{http://cxf.apache.org/jms endpt}HelloWorldJMSPort.jms-conduit">

<jms:address ... >

</jms:address>

<Jms:runtimePolicy messageType="binary"/>

</jms:conduit>

</beans>

108

Using WSDL

Using WSDL

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured
using the optional yms:client element. The jms:client elementis a child

of the WSDL port element and has one attribute:

Table 14. JMS Client WSDL Extensions

messageType |Specifies how the message data will be packaged as a JMS message. text specifies that the
data will be packaged as a TextMessage. binary specifies that the data will be packaged as

an ByteMessage.

Example Example 50, “WSDL for a JMS Consumer Endpoint” shows the WSDL for

configuring a JMS consumer endpoint.

Example 50. WSDL for a JMS Consumer Endpoint

<service name="JMSService">
<port binding="tns:Greeter SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemg.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:6161l6" />
</jms:address>
<jms:client messageType="binary" />
</port>
</service>

109

Provider Endpoint Configuration

Provider Endpoint Configuration
Table of Contents

L0 T = (F 1 =Yoo I PP 111

Using WSDL

JMS provider endpoints have a number of behaviors that are configurable.
These include:

* how messages are correlated

* the use of durable subscriptions

* if the service uses local JMS transactions

* the message selectors used by the endpoint

Service endpoints can be configure in one of two ways:
* Configuration

* WSDL

@ Tip

The recommended method is to place the provider endpoint specific
information into the Artix ESB configuration file for the endpoint.

110

Using Configuration

Using Configuration

Specifying configuration data

Provider endpoint configuration is specified using the jms:destination

configuration element. Using this configuration element, you can specify the
provider endpoint's behaviors using the jms : runtimePolicy element. When

configuring a provider endpoint you can use the following jms : runtimePolicy
attributes:

Table 15. Provider Endpoint Configuration

Attribute Description

useMessageIDAsCorrealationID|Specifies whether the JMS broker will use the message ID to correlate
messages. The default is false.

durableSubscriberName Specifies the name used to register a durable subscription.

messageSelector Specifies the string value of a message selector to use. For more information
on the syntax used to specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create transactions around
message processing. The default is fa1se.?

Currently,setting the transactional attribute to true is not supported by the runtime.

Example Example 51, “Configuration for a Provider Endpoint” shows a Artix ESB

configuration entry for configuring a provider endpoint.

Example 51. Configuration for a Provider Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
http://cxf.apache.org/jaxws ht
tp://cxf.apache.org/schemas/jaxws.xsd
http://cxf.apache.org/transports/jms http://cxf.apache.org/schem
as/configuration/jms.xsd">

<jms:destination name="{http://cxf.apache.org/jms endpt}HelloWorldJMSPort.jms-destination">

111

Using Configuration

<jms:runtimePolicy messageSelector="cxf message selector"

useMessageIDAsCorrelationID="true"
transactional="true"

durableSubscriberName="cxf subscriber" />

</jms:destination>

</beans>

112

Using WSDL

Using WSDL

Configuring the endpoint

Provider endpoint behaviors are configured using the optional jms:server
element. The yms : server element is a child of the WSDL wsd1 : port element
and has the following attributes:

Table 16. JMS Provider Endpoint WSDL Extensions

Attribute

Description

useMessageIDAsCorrealationID

Specifies whether JMS will use the message ID to correlate messages. The
default is false.

durableSubscriberName

Specifies the name used to register a durable subscription.

messageSelector Specifies the string value of a message selector to use. For more information
on the syntax used to specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create transactions around

message processing. The default is false. ?

2Currently,setting the transactional attribute to true is not supported by the runtime.

Example

Example 52, “WSDL for a JMS Provider Endpoint” shows the WSDL for
configuring a JMS provider endpoint.

Example 52. WSDL for a JMS Provider Endpoint

<service name="JMSService">

<port binding="tns:Greeter

SOAPBinding" name="SoapPort">

<jms:address jndiConnectionFactoryName="ConnectionFactory"
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >

<jms:JMSNamingProperty
<jms:JMSNamingProperty

</jms:address>

name="java.naming.factory.initial"
value="org.activemg.jndi.ActiveMQInitialContextFactory" />
name="java.naming.provider.url"
value="tcp://localhost:61616" />

<jms:server messageSelector="cxf message selector"
useMessageIDAsCorrelationID="true"
transactional="true"
durableSubscriberName="cxf subscriber" />

</port>
</service>

113

JMS Runtime Configuration

JMS Runtime Configuration
Table of Contents

JMS Session Pool CoNfigUIationi.ieie i e e e 115
Consumer Specific Runtime Configurationooiiiiiiiii e 116
Provider Specific Runtime Configurationc.iiuii i 117

In addition to configuring the externally visible aspects of your JMS endpoint,
you can also configure aspects of its internal runtime behavior. There are
three types of runtime configuration:

* JMS session pool configuration

» Consumer specific configuration

* Provider specific configuration

114

JMS Session Pool Configuration

JMS Session Pool Configuration

Configuration element

Example

The JMS configuration allows you to specify the number of JMS sessions an
endpoint will keep in a pool.

You use the jms:sessionPool element to specify the session pool
configuration for a JMS endpoint. The ims:sessionPool element is a child
of both the jms:conduit element and the jms:destination element.

The yms:sessionPool element's attributes, listed in Table 17, “Attributes

for Configuring the JMS Session Pool”, specify the high and low water marks
for the endpoint's JMS session pool.

Table 17. Attributes for Configuring the JMS Session Pool

Attribute Description

lowWaterMark Specifies the minimum number of JMS sessions pooled
by the endpoint. The default is 20.

highwaterMark |Specifies the maximum number of JMS sessions pooled
by the endpoint. The default is 500.

Example 53, “JMS Session Pool Configuration” shows an example of
configuring the session pool for a Artix ESB JMS provider endpoint.

Example 53. JMS Session Pool Configuration

<jms:destination name="{http://cxf.apache.org/jms_endpt}Hello
WorldJMSPort. jms-destination>
<jms:address ... >

</Jjms:address>

<jms:sessionPool lowWaterMark="10"
highWaterMark="5000" />

</jms:destination>

115

Consumer Specific Runtime
Configuration

Consumer Specific Runtime Configuration

Configuration element

Configuring the response timeout
interval

Configure the request time to live

Example

The JMS consumer configuration allows you to specify two runtime behaviors:
* the number of milliseconds the consumer will wait for a response.

* the number of milliseconds a request will exist before the JMS broker can
remove it.

You configure consumer runtime behavior using the jms:clientConfig
element. The §ms:clientConfig element is a child of the jms: conduit

element. It has two attributes that are used to specify the configurable runtime
properties of a consumer endpoint.

You specify the interval, in milliseconds, a consumer endpoint will wait for a
response before timing out using the jms:clientConfig element's

clientReceiveTimeout attribute. The default timeout interval is 2000.

You specify the interval, in milliseconds, that a request can remain unreceived
before the JMS broker can delete it using the jms:clientConfig element's

messageTimeToLive attribute. The default time to live interval is O which
specifies that the request has an infinite time to live.

Example 54, “JMS Consumer Endpoint Runtime Configuration” shows a
configuration fragment that sets the consumer endpoint's request lifetime to
500 milliseconds and its timeout value to 500 milliseconds.

Example 54. JMS Consumer Endpoint Runtime Configuration

<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorld
JMSPort.jms-conduit">
<jms:address ... >

</jms:address>

<jms:clientConfig clientReceiveTimeout="500"
messageTimeToLive="500" />

</jms:conduit>

116

Provider Specific Runtime
Configuration

Provider Specific Runtime Configuration

Configuration element

Configuring the response time to
live

Configuring the durable
subscriber identifier

Example

The provider specific configuration allows you to specify to runtime behaviors:

» the amount of time a response message can remain unreceived before the
JMS broker can delete it.

« the client identifier used when creating and accessing durable subscriptions.

You configure provider runtime behavior using the yms:serverConfig
element. The yms: serverConfig element is a child of the yms:destination

element. It has two attributes that are used to specify the configurable runtime
properties of a provider endpoint.

The jms:serverConfig element's messageTimeToLive attribute specifies

the amount of time, in milliseconds, that a response can remain unread before
the JMS broker is allowed to delete it. The default is 0 which specifies that

the message can live forever.

The jms:serverConfig element's durableSubscriptionClientId attribute

specifies the client identifier the endpoint uses to create and access durable
subscriptions.

Example 55, “Provider Endpoint Runtime Configuration” shows a configuration
fragment that sets the provider endpoint's response lifetime to 500
milliseconds and its durable subscription client identifier to yms-test-id.

Example 55. Provider Endpoint Runtime Configuration

<jms:destination name="{http://cxf.apache.org/jms_endpt}Hello
WorldJMSPort.jms-destination">
<jms:address ... >

</Jjms:address>
<jms:serverConfig messageTimeToLive="500"

durableSubscriptionClientId="jms-test-id"
/>

117

Provider Specific Runtime
Configuration

</Jjms:destination>

118

Using WebSphere MQ

Summary

Artix ESB connects to WebSphere MQ using MQ's JMS APIs. It is set up using the standard Artix ESB JMS

transport configuration.

Overview

JMS Addressing Information

To configure an endpoint to use WebSphere MQ you need to provide the
following information:

* The class name of MQ's initial context factory.

e The URL of MQ's JNDI provider.

(1) Important

In addition to the above, you will also need to provide the standard
JMS configuration information.

& Tip

This information can be provided as part of an endpoint's WSDL
document or in an endpoint's configuration.

Regardless of the JMS provider in use, you will always need to provide some
standard addressing information using the yms : address element's attributes.

Table 18, “yms:address Attributes for Using WebSphere MQ” shows the
attributes needed when using WebSphere MQ's JMS interface.

Table 18. jms:address Attributes for Using WebSphere MQ

Attribute Description
destinationStyle WebSphere MQ supports both queues and
topics.

jndiConnectionFactoryName | The JNDI name for the connection factory
can be any string. You will need to use this
value when providing the WebSphere MQ
specific JMS properties.

119

The JNDI Initial Context Factory

The JNDI Provider URL

Attribute Description

jndiDestinationName The JNDI name for the destination can be
any string. You will need to use this value
when providing the IBM WebSphere MQ
specific JMS properties.

You specify the WebSphere MQ JNDI initial context factory using a
jms : JMSNamingProperty element. As shown in Example 56, “Specifying

the JNDI Initial Context Factory”, the value of the name attribute is
java.naming.factory.initial and the value of the value attribute is

com.ibm.mg.jms.context.WMQInitialContextFactory.

Example 56. Specifying the JNDI Initial Context Factory

<jms:address ...>
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="com.ibm.mg.jms.context .WMQIni
tialContextFactory" />

</jms:address>

() Important

com.ibm.mq.jms.context.WMQInitialContextFactory iS only
available in the IBM supplied SupportPac MEOL.

You specify the JNDI provider's URL using a jms : IMSNamingProperty
element. The value of the name attribute is java.naming.provider.url.
The value of the value attribute is the URL at which WebSphere MQ's broker
is running.

There are two options for a JNDI provider when using WebSphere MQ:

* The default WebSphere MQ installation includes JNDI providers for local
filesystems and LDAP servers.

» SupportPac MEO1, available from IBM, provides support for using a
WebSphere MQ queue manager as a JNDI repository. It can dynamically

120

generate JMS administrable objects, based on actual queues on the queue
manager.

For more information about setting up JNDI providers for use with WebSphere
MQ, see the WebSphere MQ documentation.

121

122

Using FTP

Summary

Artix allows endpoints to communicate using a remote FTP server as an intermediary persistent datastore. When
using the FTP transport, client endpoints will put request messages into a folder on the FTP server and then
begin scanning the folder for a response. Server endpoints will scan the request folder on the FTP server for
requests. When a request is found, the service endpoint will get it and process the request. When the service
endpoint finishes processing the request, it will post the response back to the FTP server. When the client sees
the response, it will get the response from the FTP server.

Because of the file-based nature of the FTP transport and the fact that endpoints do not have a direct connection
to each other, the FTP transport places the burden of implementing a request/response coordination scheme on
the developer. The FTP transport also requires that you implement the logic determining how the request and
response messages are cleaned-up.

Table of Contents

Adding an FTP Endpoint USING WSDL . ..ueiiii e 124
Adding an Configuration for an FTP ENdpointcuiiniii e 126
Coordinating Requests and RESPONSESuiuiuiiitei ittt et ettt enas 131
Tk ege]e U o1 1To] H PP PP PTRP PR 132
Implementing the Consumer’s Coordination LOZICcvuvuiuiieieie et 133
Implementing the Server’'s Coordination LOGICc.ovuieieiiiiiii e 138
Using Properties to Control Coordination BEhaviorooiuiiiiiii e 143

123

Adding an FTP Endpoint Using WSDL

Adding an FTP Endpoint Using WSDL

Overview

Namespace

Defining the connection details

You define an FTP endpoint using WSDL extensions that are placed within a
the port element of a contract. The WSDL extensions provided by Artix allow

you to specify a number of properties for establishing the FTP connection. In
addition, they allow you to specify some of the properties used to define the
naming properties for the files used by the transport.

To use the FTP transport, you need to describe the endpoint using the FTP
WSDL extensions in the physical part of a WSDL document. The extensions
used to describe a FTP port are defined in the following

namespace:xmlns: ftp="http://schemas.iona.com/transports/ftp"

This namespace will need to be included in your contract's definitions
element.

The connection details for the endpoint are defined in an ftp:port element.
The ftp:port element has two attributes that are used to specify the location
of the FTP deamon's location: host and port.

* The host attribute is required. It specifies the name of the machine hosting
the FTP server to which the endpoint connects.

* The port attribute is optional. It specifies the port number on which the
FTP server is listening. The default value is 21.

Example 57, “Defining an FTP Endpoint” shows an example of a port
element defining an FTP endpoint.

Example 57. Defining an FTP Endpoint

<port name="FTPendpoint">
<ftp:port host="Dauphin" port="8080" />
</port>

In addition to the two required attributes, the ftp:port element has the
following optional attributes:

124

Adding an FTP Endpoint Using WSDL

Specifying optional naming
properties

Table 19. Optional Attributes for £tp:port

Attribute Description

requestLocation |Specifies the location on the FTP server where
requests are stored. The default is /.

replyLocation Specifies the location on the FTP server where replies
are stored. The default is /.

connectMode Specifies the connection mode used to connect to the
FTP daemon. Valid values are passive and active.

The default is passive.

scanInterval Specifies the interval, in seconds, at which the request
and reply locations are scanned for updates. The
default is 5.

You can specify optional naming policies using an ftp:properties element.
The ftp:properties element is a container for a number of ftp:property
elements. The ftp:property elements specify the individual naming
properties. Each ftp:property element has two attributes, name and value,
that make up a name-value pair that are used to provide information to the
naming implementation used by the endpoint.

The default naming implementation provided with Artix has two properties:

Property Description

staticFilenames Determines if the endpoint uses a static,
non-unique, naming scheme for its files. Valid
values are true and false. The default is true.

requestFilenamePrefix |Specifies the prefix to use for file names when
staticFilenames is set to false.

For information on defining optional properties see Using Properties to Control
Coordination Behavior.

125

Adding an Configuration for an FTP
Endpoint

Adding an Configuration for an FTP Endpoint

Overview

Namespaces

Consumer configuration

There are a number of configurable properties that do not make sense to set
in an application's WSDL document. These include the username and
password used to login to the FTP server and some of the connection's timeout
settings. These properties, along with the message coordination logic, are
able to be set in the applications configuration file.

The configuration elements used to configure an FTP endpoint are defined in
the namespace http://schemas.iona.com/soa/ftp-config

This namespace will need to be added to the list of namespaces in the
schemaLocation attribute of your configuration's bean element. In addition,

you should also add a namespace shortcut for the namespace. Example 11.2,
“Namespace Declarations for FTP Configuration” shows a configuration bean

element with the proper attributes.

Example 58. Namespace Declarations for FTP Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—
instance"
xmlns:ftp-conf="http://schem
as.ilona.com/soa/ftp-config"
xsi:schemalocation="http://www.springframe
work.org/schema/beans
http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://schemas.iona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd">

Consumer endpoints are configured using the ftp-conf:conduit element.
Using this element you can configure the following FTP endpoint properties:

* FTP connection properties
* the credentials used to access the FTP server

* the classes used for the consumer's message coordination logic

126

Adding an Configuration for an FTP
Endpoint

Example 11.3, “FTP Consumer Configuration” shows the configuration for
a consumer endpoint. The consumer's FTP endpoint is configured to use an
active connection and scan for new files every three seconds.

Example 59. FTP Consumer Configuration

<beans
xsi:schemaLocation="http://schem
as.lona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<ftp-conf:conduit id="{ht
tp://iona.com/soap over ftp}FTPPort.ftp-conduit">

<ftp-conf:connection connectMode="active"

scanInterval="3" />

</ftp-conf:conduit>

Provider configuration
g Provider endpoints are configured using the ftp-conf:destination element.

Using this element you can configure the following FTP endpoint properties:
* FTP connection properties

* the credentials used to access the FTP server

* the classes used for the provider's message coordination logic

Example 11.4, “FTP Provider Configuration” shows the configuration for a
provider endpoint. The provider's FTP endpoint is configured to timeout if a
connection cannot be established after 5 seconds and connect to the FTP
server using the username "JoeFred".

Example 60. FTP Provider Configuration

<beans
xsi:schemalocation="http://schem
as.lona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<ftp-conf:destination id="{ht
tp://iona.com/soap over ftp}FTPPort.ftp-destination”>

127

Adding an Configuration for an FTP

Endpoint

Connection configuration

<ftp-conf:connection connectTimeout="5000" />

<ftp-conf:credentials name="JoeFred"
password="FredJoe" />
</ftp-conf:conduit>

The FTP transport connection information is configurable by adding a
ftp-conf:connection child element to an endpoint's ftp-conf:conduit

element or ftp-conf:destination element. The ftp-conf:connection

element's attributes, described in Table 11.2, “Attributes for Configuring the
FTP Connection”, are used to specify the connection setting information.

Table 20. Attributes for Configuring the FTP Connection

Attribute

Description

connectMode

Specifies if the endpoint connects to the FTP
server using an active or a passive connection.
Valid values are passive(default) or active.

connectTimeout

Specifies a timeout value in milliseconds for
establishing a connection with a remote FTP
daemon. The default is -1 which specifies that

endpoint will never timeout.

recieveTimeout

Specifies a receive timeout value in milliseconds
for the FTP daemon filesystem scanner. The
receive timeout will occur when the following
condition is met:

CurrentTime - StartReplyScanningTime
>= plugins:ftp:policy:connection:receiv
eTimeout

It is recommended that the receive timeout value
is greater than scanInterval * 1000. If this

value is set to 0, it is guaranteed that there will
be at least one scan of the remote FTPD
filesystem before the timeout.

The default is -1 which specifies that the

endpoint will never timeout.

128

Adding an Configuration for an FTP
Endpoint

Login configuration

Attribute Description

scanInterval Specifies the interval, in seconds, at which the
request and reply locations are scanned for
updates. The default is five seconds.

useFilenameMaskOnScan |Specifies whether the Artix ESB Java Runtime
uses a filename mask when calling the FTP
daemon with a FTP LIST command (for
example, LIST myrequests*).

Some FTP daemons do not implement support
for listing a subset of files based on a filename
mask. To enable interoperability with such
servers, this variable must be set to false.

However, if you know that an FTP daemon
supports a filtered LIST command, setting this
variable to true increases FTP transport

performance.

The default is false.

Example 11.5, “Configuring the FTP Connection Properties” shows the
configuration for a consumer endpoint that uses the filename mask
optimization and has a receive timeout of ten seconds.

Example 61. Configuring the FTP Connection Properties

<beans ...
xsi:schemaLocation="http://schem
as.lona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<ftp-conf:conduit id="{ht

tp://iona.com/soap_over ftp}FTPPort.ftp-conduit">
<ftp-conf:connection recieveTimeout="10000"
useFilenameMaskOnScan="true" />
</ftp-conf:conduit>

The FTP transport default behavior is to login to the FTP server as anonymous.
You can specify a username and password for accessing the FTP server using

129

Adding an Configuration for an FTP
Endpoint

the ftp-conf:credentials element. The ftp-conf:credentials element
is a child of both the ftp-conf:conduit element and the
ftp-conf:destination element. It has two attributes, described in

Table 11.3, “Attributes for FTP Login Credentials”, that specify the username
and password.

Table 21. Attributes for FTP Login Credentials

Attribute |Description

name Specifies the username used to login to the FTP server.

(M) Important

This user must have the required credentials to list,
add, move and remove files from the filesystem location
specified by the application's WSDL document.

password |Specifies the password used to login to the FTP server.

130

Coordinating Requests and Responses

Coordinating Requests and Responses
Table of Contents

Tk ugeTe [0 o1 1To] H PP PP 132
Implementing the Consumer’s Coordination LOZICuuiuiriririti e aaaas 133
Implementing the Server’s Coordination LOGICv.viiiii e 138
Using Properties to Control Coordination Behaviorouiiiiiiiiiiiii e 143

131

Introduction

Introduction

Overview

Default implementation

FTP requires that messages are written out to a file system for retrieval. This
poses a few problems. The first is determining a naming scheme that is agreed
upon by all endpoints that use a common location on an FTP server. Client
endpoints and the server endpoints they are making requests on need a
method to coordinate requests and responses. This includes knowing which
messages are intended for which endpoint.

The other problem posed by using a file system as a transport is knowing
when a message can be cleaned-up. If a message is cleaned-up too soon,
there is no way to re-read the message if something goes wrong while it is
being processed. If a message is not cleaned-up soon enough, it is possible
that the message will be processed more than once.

Artix requires that you implement the logic used to determine the file naming
and clean-up logic used by your FTP endpoints. This is done by implementing
four Java interfaces: two for the client-side and two for the server-side.

Artix provides a default implementation for coordinating requests and
responses. The default implementation enables clients and servers to interact
as if they are using a standard RPC mechanism. Message names are generated
at runtime following a pattern based on the server endpoint’s service name.
Request messages are cleaned-up by the server endpoint when the
corresponding response is written to the file system. Responses are cleaned-up
by the client endpoint when they are read from the file system.

132

Implementing the Consumer’s
Coordination Logic

Implementing the Consumer’s Coordination Logic

Overview

The filename factory

The consumer-side of the coordination implementation is made up of two
parts:

* The filename factory is responsible for generating the filenames used for
storing request messages on the FTP server and determining the name of
the associated replies.

* The reply lifecycle policy is responsible for cleaning-up reply files.

The consumer-side filename factory is created by implementing the interface
com.iona.cxf.transport.ftp.filenamepolicy.client.FilenameFactory

Example 11.6, “Client-Side Filename Factory Interface” shows the interface.
Example 62. Client-Side Filename Factory Interface

package com.iona.cxf.transport.ftp.filenamepolicy.client;
import java.util.Properties;

import javax.xml.namespace.QName;

import com.iona.cxf.transport.ftp.filenamepolicy.FilenameFact
oryPropertyMetaData;

public interface FilenameFactory

{

void initialize (QName service, String port, Properties
properties) throws Exception;

String getNextRequestFilename () throws Exception;

String getRequestIncompleteFilename (String requestFilename)
throws Exception;

String getReplyFilename (String requestFilename) throws
Exception;

FilenameFactoryPropertyMetaData[] getPropertiesMetaData () ;
}i

The interface has four methods to implement:

133

Implementing the Consumer’s
Coordination Logic

initialize ()
initialize () is called by the transport when it is loaded. It receives

the following:

¢ the QName of the service the client on which the consumer wants to
make requests.

* the value of the name attribute for the wsd1:port element defining
the endpoint implementing the service.

* an array containing any properties you specified as ftp:property
elements in your client’s contract.

This method is used to set up any resources you need to implement
naming scheme used by the consumer-side endpoints. For example, the
default implementation uses initialize () to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see

Using Properties to Control Coordination Behavior.
2. If so, it generates a static filename prefix for the requests.
3. If not, it uses the user supplied filename prefix for the requests.

getNextRequestFilename ()
getNextRequestFilename () is called by the transport each time a

request is sent out. It returns a string that the transport will use as the
filename for the completed request message. For example, the default

implementation creates a filename by appending a string representing

the server endpoint’s system address and the system time, in hexcode,
to the prefix generated in initialize ().

getRequestIncompleteFilename ()
getRequestIncompleteFilename () is called by the transport each
time a request is sent out. It returns a string that the transport will use
as the filename for the request message as it is being transmitted. For
example, the default implementation creates a filename by appending a
the request filename with _incomplete.

134

Implementing the Consumer’s
Coordination Logic

The reply lifecycle policy

getReplyFilename ()
getReplyFilename () is called by the transport when it starts listening
for a response to a two-way request. It receives a string representing the
name of the request’s filename. It returns the name of the file that will
contain the response to the specified request. For example, the default
implementation generates the reply filename by appending reply to

the request filename.

The reply lifecycle policy is created by implementing the
com.iona.cxf.transport.ftp.filenamepolicy.FileLifecycle

interface. Example 63, “Reply Lifecycle Interface” shows the interface.

Example 63. Reply Lifecycle Interface
package com.iona.cxf.transport.ftp.filenamepolicy;

public interface FilelLifecycle

{
boolean shouldDeleteFile (String fileName) throws Exception;

String renameFile (String fileName) throws Exception;

}
The interface has two methods to implement:

shouldDeleteFile ()
shouldDeleteFile () is called by the transport after it completes reading

in a reply. It receives the filename of the reply and returns a boolean
stating if the file should be deleted. If shouldbeleteFile () returns

true, the transport deletes the reply file. If it returns false, the transport
renames reply file based on the logic implemented in renameFile ().

renameFile ()
renameFile () is called by the transport if shouldDeleteReplyFile ()
returns false. It receives the original name of the reply file. It returns a

135

Implementing the Consumer’s
Coordination Logic

Configuring the client's
coordination logic

string the contains the filename the transport uses to rename the reply
file.

If you choose to implement your own coordination logic for an FTP client
endpoint, you need to configure the endpoint to load the your implementation
classes. This is done by adding the ftp-conf:clientNaming element to

the endpoint’s configuration. The ftp-conf:clientNaming element's

attributes are described in Table 11.4, “Attributes for the Configuring the
Client's Coordination Logic”.

Table 22. Attributes for the Configuring the Client's
Coordination Logic

Attribute Description

filenameFactory Specifies the name of the class implementing the
client’s filename factory.

replyFileLifecycle |Specifies the name of the class implementing the
client’s reply lifecycle policy.

(1) Important
Both classes need to be on the endpoint’s classpath.

Example 64, “Configuring an FTP Client Endpoint's Naming Policy” shows
an example of a configuration fragment that specifies an FTP client endpoint’s
coordination policies.

Example 64. Configuring an FTP Client Endpoint's Naming
Policy

<beans ...
xsi:schemalocation="http://schemas.iona.com/soa/ftp-
config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd">

<ftp-conf:conduit id="{http://iona.com/soap over ftp}FTP
Port.ftp-conduit">
<ftp-conf:clientNaming filenameFactory="demo.ftp.policy.cli
ent.myFilenameFactory"
replyFileLife

136

Implementing the Consumer’s
Coordination Logic

cycle="demo.ftp.policy.client.myReplyFileLifecycle" />
</ftp-conf:conduit>

For more information on configuring Artix ESB Java Runtime see Configuring
and Deploying Artix Solutions, Java Runtime [../../deploy/java/index.htm].

137

../../deploy/java/index.htm
../../deploy/java/index.htm
../../deploy/java/index.htm

Implementing the Server’s Coordination
Logic

Implementing the Server’s Coordination Logic

Overview

The filename factory

The server-side of the coordination implementation is made up of two parts:

* The filename factory is responsible for identifying which requests to dispatch
and how to name reply messages.

* The request lifecycle policy is responsible for cleaning-up request files.

The server-side filename factory is created by implementing the interface
com. iona.cxf.transport.ftp.filenamepolicy.server.FilenameFactory

Example 65, “Server-Side Filename Factory Interface” shows the interface.

Example 65. Server-Side Filename Factory Interface

package com.iona.cxf.transport.ftp.filenamepolicy.server;
import java.util.Properties;
import javax.xml.namespace.QName;
import com.iona.cxf.transport.ftp.filenamepolicy.FilenameFact
oryPropertyMetaData;
import com.iona.cxf.transport.ftp.ftpclient.Element;
public interface FilenameFactory
{

void initialize (QName service, String port, Properties
properties) throws Exception;

String getRequestFilenamesRegEx () throws Exception;

Element[] updateRequestFiles (Element|[] inElements) throws
Exception;

String getReplyFilename (String requestFilename) throws Ex
ception;

FilenameFactoryPropertyMetaData[] getPropertiesMetaData () ;

The interface has six methods to implement:

138

Implementing the Server’s Coordination
Logic

initialize ()
initialize () is called by the transport when it is activated. It receives
the following:

» the QName of the service to which the endpoint is implementing.

* the value of the name attribute for the port element defining the
endpoint’s connection details.

* an array containing any properties you specified as ftp:property
elements in your server endpoint’s contract.

This method is used to set up any resources you need to implement
naming scheme used by the server-side endpoints. For example, the
default implementation uses initialize () to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see

Using Properties to Control Coordination Behavior.
2. If so, it generates a static filename prefix for the requests.
3. If not, it uses the user supplied filename prefix for the requests.

getRequestFilenamesRegEx ()
getRequestFilenamesRegEx () is called by the transport when it

initializes the server-side FTP listener. It returns a regular expression that
is used to match request filenames intended for a specific server instance.
For example, the default implementation returns a regular expression of
the form

{wsdl:tns} {wsdl:service(@name)} {wsdl:port (@name)} {reqUuid}.

updateRequestFiles ()
updateRequestFiles () is called by the transport after it determines

the list of possible requests and before it dispatches the requests to the
service implementation for processing. It receives an array of
com.iona.cxf.transport.ftp.ftpclient.Element Objects. This

array is a list of all the request messages selected by the request filename
regular expression. updateRequestFiles () returns an array of Element

objects containing only the messages that are to be dispatched to the
service implementation.

139

Implementing the Server’s Coordination
Logic

The request lifecycle policy

getReplyIncompleteFilename ()
getReplyInclompleteFilename () is called by the transport when it

is ready to post a response. It receives the filename of the request that
generated the response. It returns a string that is used as the filename
for the response as it is being written to the FTP server. For example,

the default implementation returns _incomplete appended to request

filename.

getReplyFilename ()
getReplyFilename () is called by the transport after it finishes writing

a response to the FTP server. It receives the filename of the request that
generated the response. It returns a string that is used as the filename
for the completed response. For example, the default implementation
returns _reply appended to request filename.

getPropertiesMetaData ()
getPropertiesMetaData () iS a convenience function that returns an

array of all the possible properties you can use to effect the behavior of
the FTP naming scheme. The properties returned correspond to the values
defined in the ftp:properties element. For more information see Using

Properties to Control Coordination Behavior.

The request lifecycle policy is created by implementing the
com.iona.cxf.transport.ftp.filenamepolicy.FileLifecycle

interface. Example 66, “Request Lifecycle Interface” shows the interface.
Example 66. Request Lifecycle Interface

package com.iona.cxf.transport.ftp.filenamepolicy;

public interface FilelLifecycle

{
boolean shouldDeleteFile (String fileName) throws Exception;

String renameFile (String fileName) throws Exception;
}

The interface has two methods to implement:

140

Implementing the Server’s Coordination
Logic

Configuring the server's
coordination logic

shouldDeleteFile ()
shouldbeleteFile () is called by the transport after it completes writing

in a response. It receives the filename of the request that generated the
response and returns a boolean stating if the file should be deleted. If
shouldDeleteFile () returns true, the transport deletes the request

file. If it returns false, the transport renames reply file based on the logic
implemented in renameFile ().

renameFile ()
renameFile () is called by the transport if shouldbeleteFile () returns

false. It receives the original name of the request file. It returns a string
the contains the filename the transport uses to rename the request file.

If you choose to use your own coordination logic for an FTP server endpoint,
you need to configure the endpoint to load the proper implementation classes.
This is done by adding a ftp-conf:serverNaming element the endpoint’s

destination configuration. The ftp-conf:serverNaming element's attributes

are described in Table 11.5, “Attributes for Configuring the Server's
Coordination Logic”.

Table 23. Attributes for Configuring the Server's Coordination
Logic

Attribute Description

filenameFactory Specifies the name of the class implementing the
server’s filename factory.

requestFileLifecycle |Specifies the name of the class implementing the
server’s request lifecycle policy.

(1) Important

Both classes need to be on the endpoint’s classpath.

Example 67, “Configuring an FTP Server Endpoint's Naming Policy” shows
an example of a configuration fragment that specifies an FTP server endpoint’s
coordination policies.

141

Implementing the Server’s Coordination
Logic

Example 67. Configuring an FTP Server Endpoint's Naming
Policy

<beans
xsi:schemalLocation="http://schemas.iona.com/soa/ftp-
config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<ftp-conf:destination id="{http://iona.com/soap over ftp}FTP
Port.ftp-destination">
<ftp-conf:serverNaming filenameFactory="demo.ftp.policy.serv
er.myFilenameFactory"
requestFilelLife
cycle="demo.ftp.policy.server.myReplyFileLifecycle" />
</ftp-conf:destination>

For more information on configuring Artix ESB Java Runtime see Configuring
and Deploying Artix, Java Runtime [../../deploy/java/index.htm].

142

../../deploy/java/index.htm
../../deploy/java/index.htm
../../deploy/java/index.htm

Using Properties to Control
Coordination Behavior

Using Properties to Control Coordination Behavior

Overview

Properties in the contract

In order to ensure that your FTP client endpoints and FTP server endpoints
are using the same coordination behavior, you may need to pass some
information to the transports as they initialize. To make this information
available to both sides of the application and still be settable at run time, the
FTP transport allows you to provide custom properties that are settable in an
endpoint’s contract. These properties are set using the ftp:properties

element.

You can place any number of custom properties into port element defining
an FTP endpoint. As described in Specifying optional naming properties, the
ftp:properties element is a container for one or more ftp:property

elements. The ftp:property element has two attributes: name and value.

Both attributes can have any string as a value. Together they form a
name/value pair that your coordination logic is responsible for processing.

For example, imagine an FTP endpoint defined by the port element in
Example 68, “FTP Endpoint with Custom Properties”.

Example 68. FTP Endpoint with Custom Properties

<port ...>

<ftp:port ... />

<ftp:properties>

<ftp:property name="UseHumanNames"
value="true" />

<ftp:property name="LastName" value="Doe"

/>
</ftp:properties>
</port>

The endpoint is configured using two custom FTP properties:

* UseHumanNames With a value of true.

* LastName With a value of Doe.

143

Using Properties to Control
Coordination Behavior

Supporting the properties

Filling in the filename factory
property metadata

These properties are only meaningful if the coordination logic used by the
endpoint supports them. If they are not supported, they are ignored.

The initialize () method of both the client-side filename factory and the
server-side filename factory take a java.util.Properties object. The
Properties object is populated by the contents of the endpoints
ftp:properties element when the transport is initialized.

The properties object can be used to access all of the properties defined

by ftp:property elements. To access the properties you can use either of
the getProperty () methods to extract the value. Once you have the values
of the properties, it is up to you to determine how they impact the coordination
scheme.

Example 69, “Using Custom FTP Properties” shows code for supporting the
properties shown in Example 68, “FTP Endpoint with Custom Properties”.

Example 69. Using Custom FTP Properties

import java.util.Properties;

String nameTypeProp = "UseHumanNames";
String lastNameProp = "LastName";
String useNames = (string)properties.get

Property (nameTypeProp) ;

if ("TRUE".equalsIngnoreCase (useNames))

{

boolean useHumanNames = true;

String lastName = properties.getProp
erty(lastNameProp) ; }

}

else

{

boolean useHumanNames = false;

}
}

The server-side filename factory’s getPropertiesMetabData () method is a

convenience function that can be used to publish the supported custom
properties. It returns the details of the supported properties in an array of

144

Using Properties to Control
Coordination Behavior

com. iona.cxf.transport. ftp.filenamepolicy.FilenameFactoryPropertyMetaData
objects.

FilenameFactoryPropertyMetaData Objects have three fields:

* name is a string that specifies the value of the ftp:property element’s
name attribute.

* readOnly is a boolean that specifies if you can set this property in a
contract.

* valueSet is an array of strings that specify the possible values for the
property.

FilenameFactoryPropertyMetaData objects do not have any methods for

populating its fields once the object is instantiated. You must set all of the
values using the constructor that is shown in Example 70, “Constructor for
FilenameFactoryPropertyMetaData".

Example 70. Constructor for
FilenameFactoryPropertyMetaData

public FilenameFactoryPropertyMetaData (String n, boolean ro,
String[] vs)
{
name = n;
readOnly = ro;
valueSet = vs;

}

Example 71, “Populating the Filename Properties Metadata” shows code for
creating an array to be returned from getPropertiesMetaData ().

Example 71. Populating the Filename Properties Metadata

FilenameFactoryPropertyMetaData[] propMetas = new FilenameFact
oryPropertyMetaDatal]

{

new FilenameFactoryPropertyMetaData ("Use
HumanNames", false,

new String[] {Boolean.TRUE.toString(),

Boolean.FALSE.toString() }),

new FilenameFactoryPropertyMetaData ("Last

145

Using Properties to Control
Coordination Behavior

Name", false, null)

}i

The list of possible values specified for the property LastName is set to nu11
because the property can have any string value.

146

Using SFTP

Summary

SFTP file transfer features over SSH. It is configured using extensions to the FTP transport's configuration
elements.

Overview SFTP, or SSH file transfer protocol, provides file transfer and manipulation

functionality over any reliable data stream. It uses SSH -2 to provide
authentication and security. SFTP is not a secure version of FTP. In fact it is
an entirely separate protocol and shares no common heritage with FTP.

While SFTP is not related to FTP, Artix uses the FTP transport's configuration
and WSDL extensors to specify the use of SFTP. In particular, Artix uses an
SFTP specific adapter that needs to be specified in the configuration. There
are also a number of additional configuration elements that are used to
configure SFTP specific features.

The WSDL You use the FTP WSDL extensors that are discussed in Adding an FTP

Endpoint Using WSDL to define an SFTP endpoint. The WSDL document for
a service using the FTP transport will be identical to that of a service using
the SFTP transport.

Example 72, “Defining an SFTP Endpoint in WSDL” shows the WSDL for
defining an SFTP endpoint.

Example 72. Defining an SFTP Endpoint in WSDL

<port name="SFTPendpoint">
<ftp:port host="Dauphin" port="8080" />
</port>

Specifying the SFTP adapter Artix's SFTP transport is implemented using a separate adapter from the FTP

transport. The key to using the SFTP transport is configuring the runtime to
load the SFTP adapter instead of the FTP adapter. This is done using the
ftp-conf:ftpLayerConfig element.

The ftp-conf: ftpLayerConfig element's
clientConnectionFactoryClass attribute specifies the adapter that is
loaded to implement the transport. To load the SFTP adapter the value of the

147

clientConnectionFactoryClass attribute is

com.iona.cxf.transport. ftp.ftpclient.adapter.jsch.ConnectionFactoryImpl.

Example 73, “Simple SFTP Endpoint Configuration” shows the basic
configuration for a server using simple username/password authentication.

Example 73. Simple SFTP Endpoint Configuration

<beans

xsi:schemalocation="http://schemas.iona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<ftp-conf:destination name="{http://iona.com/soap over ftp}SFTPendpoint.ftp-destination">

<ftp-conf:credentials name="nameduser" password="password"/>

<ftp-conf:connection scanInterval="1"/>

<ftp-conf:ftpLayerConfig clientConnectionFactoryClass="com.iona.cxf.transport.ftp.ftp
client.adapter.jsch.ConnectionFactoryImpl"/>

</ftp-conf:destination>

</beans>

SFTP specific configuration

You can set up a simple SFTP use case with just the FTP configuration
elements. As shown in Example 73, “Simple SFTP Endpoint Configuration”,
the FTP configuration elements are sufficient for specifying a simple
username/password connection.

Once you start wanting to use more robust authentication, you will need to
start using the SFTP configuration element. The ftp-conf:sftpConfig

element allows you to configure the SFTP transport to do the following:
* username/password authentication

* HostKey authentication

* public key/private key authentication

Table 24, “Attributes for Configuring the SFTP Transport” lists the attributes
of the ftp-conf:sftpConfig. These attributes can be combined to provide

robust authentication scenarios.

148

Table 24. Attributes for Configuring the SFTP Transport

Attribute Description

name Specifies a plaintext username for
authentication.

password Specifies a plaintext password for
authentication.

passphrase Specifies a public key for use in public
key/private key authentication.

privateKeyFile Specifies the file holding the private key for
use in public key/private key authentication.

hostKeyVerificationFile |Specifies the file containing the HostKey to
use for verification.

When using the SFTP specific configuration, you must use either
username/password authentication or public key/private key authentication.
HostKey verification can be used to supplement either authentication methods.

Examples Example 74, “SFTP with HostKey Authentication” shows the configuration

for using username/password authentication along with HostKey verification.

Example 74. SFTP with HostKey Authentication

<beans ...
xsi:schemaLocation="http://schemas.iona.com/soa/ftp-config
http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<ftp-conf:conduit name="{http://iona.com/soap over ftp}SFTPendpoint.ftp-conduit">
<ftp-conf:sftpConfig name="nameduser" password="passphrase"
hostKeyVerificationFile="host.key" />
<ftp-conf:connection scanInterval="1"/>
<ftp-conf:ftplLayerConfig clientConnectionFactoryClass="com.iona.cxf.transport.ftp.ftp
client.adapter.jsch.ConnectionFactoryImpl"/>
</ftp-conf:conduit>
</beans>

Example 75, “SFTP with Privite Key/Public Key Authentication” shows the
configuration for using public key/private key authentication.

149

Example 75. SFTP with Privite Key/Public Key Authentication

<beans
xsi:schemaLocation="http://schemas.iona.com/soa/ftp-config

http://schemas.iona.com/soa/ftp-config.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<ftp-conf:conduit name="{http://iona.com/soap over ftp}SFTPendpoint.ftp-conduit">
<ftp-conf:sftpConfig name="nameduser"
passphrase="passphrase"
privateKeyFile="test key.pk" />
<ftp-conf:connection scanInterval="1"/>
<ftp-conf:ftplLayerConfig clientConnectionFactoryClass="com.iona.cxf.transport.ftp.ftp
client.adapter.jsch.ConnectionFactoryImpl"/>
</ftp-conf:conduit>
</beans>

150

Index
A

artix wsdl2soap, 24, 34

B

bindings
SOAP with Attachments, 44
XML, 57

C

configuration
consumer endpoint (see jms:conduit)
consumer runtime, 116
HTTP consumer connection properties, 74
HTTP consumer endpoint, 73
HTTP service provider connection properties, 83
HTTP service provider endpoint, 82
HTTP thread pool, 91
Jetty engine, 89
Jetty instance, 90
JMS session pool (see jms:sessionPool)
jms:address (see jms:address)
provider endpoint (see jms:destination)
provider endpoint properties, 111
provider runtime, 117
specifying the message type, 108
(see also jms:runtimePolicy)
consumer endpoint configuration
specifying the message type, 108
(see also jms:runtimePolicy)
consumer runtime configuration, 116
request time to live, 116
response timeout, 116

E

endpoint address configuration (see jms:address)

F

FilenameFactoryPropertyMetaData, 144

name, 145
readOnly, 145
valueSet, 145
FTP configuration
namespace, 126
FTP Properties, 144
FTP transport
connection properties, 128
consumer filename factory, 133
login credentials, 129
reply lifecycle policy, 135
request lifecycle policy, 140
server filename factory, 138
ftp-conf:clientNaming, 136
filenameFactory, 136
replyFileLifecycle, 136
ftp-conf:conduit, 126
ftp-conf:connection, 128
ftp-conf:credentials, 129
ftp-conf:destination, 127
ftp-conf:ftpLayerConfig, 147
clientConnectionFactoryClass attribute, 147
ftp-conf:serverNaming, 141
filenameFactory, 141
requestFileLifecycle, 141
ftp-conf:sftpConfig, 148
hostKeyVerificationFile attribute, 149
name attribute, 149
passphrase attribute, 149
password attribute, 149
privateKeyFile attribute, 149
ftp:port, 124
connectMode, 125
host, 124
port, 124
replyLocation, 125
requestLocation, 125
scanlinterval, 125
ftp:properties, 125, 143
ftp:property, 125, 143
name, 125, 143
value, 125, 143

151

H
HTTP
endpoint address, 70
http-conf:authorization, 74
http-conf:basicAuthSupplier, 74
http-conf:client, 74
Accept, 75
AcceptEncoding, 75
AcceptLanguage, 75
AllowChunking, 75
AutoRedirect, 75
BrowserType, 77
CacheControl, 76, 80
Connection, 76
ConnectionTimeout, 74
ContentType, 76
Cookie, 76
DecoupledEndpoint, 77, 94
Host, 76
MaxRetransmits, 75
ProxyServer, 77
ProxyServerPort, 77
ProxyServerType, 77
ReceiveTimeout, 75
Referer, 77
http-conf:conduit, 73
name attribute, 73
http-conf:contextMatchStrategy, 83
http-conf:destination, 82
name attribute, 82
http-conf:fixedParameterOrder, 83
http-conf:proxyAuthorization, 74
http-conf:server, 83
CacheControl, 84, 87
ContentEncoding, 84
ContentLocation, 84
ContentType, 84
HonorKeepAlive, 83
ReceiveTimeout, 83
RedirectURL, 83
ServerType, 84
SuppressClientReceiveErrors, 83
SuppressClientSendErrors, 83

http-conf:tisClientParameters, 74
http-conf:trustDecider, 74
http:address, 71
httpj:engine, 90
httpj:engine-factory, 89
httpj:identifiedThreadingParameters, 90, 91
httpj:identifiedTLSServerParameters, 90
httpj:threadingParameters, 91
maxThreads, 92
minThreads, 92
httpj:threadingParametersRef, 91
httpj:tisServerParameters, 91
httpj:tisServerParametersRef, 91

J
JMS
specifying the message type, 109
JMS destination
specifying, 102
jms:address, 102
connectionPassword attribute, 102
connectionUserName attribute, 102
destinationStyle attribute, 102, 119
jndiConnectionFactoryName attribute, 102, 119
jndiDestinationName, 120
jndiDestinationName attribute, 102
jndiReplyDestinationName attribute, 102, 103
jms:client, 109
messageType attribute, 109
jms:clientConfig, 116
clientReceiveTimeout attribute, 116
messageTimeTolLive attribute, 116
jms:conduit, 105
jms:destination, 105
jms:JMSNamingProperties, 102
jms:runtimePolicy
consumer endpoint properties, 108
durableSubscriberName, 111
messageSelector, 111
messageType attribute, 108
provider configuration, 111
transactional, 111
useMessagelDAsCorrealationID, 111

152

jms:server, 113
durableSubscriberName, 113
messageSelector, 113
transactional, 113
useMessagelDAsCorrealationID, 113
jms:serverConfig, 117
durableSubscriptionClientld attribute, 117
messageTimeTolLive attribute, 117
jms:sessionPool, 115
highWaterMark, 115
lowWaterMark attribute, 115
JNDI
specifying the connection factory, 102
specifying the initial context factory, 120

M

mime:content, 44
part, 45
type, 45
mime:multipartRelated, 43
mime:part, 43, 44
name attribute, 44
MTOM, 47
enabling
configuration, 55
consumer, 53
service provider, 53
Java first, 50
WSDL first, 48

N

named reply destination
specifying in WSDL, 102
using, 103

namespace
FTP configuration, 126
FTP WSDL extensors, 124

P

provider endpoint configuration, 111
provider runtime configuration, 117
durable subscriber identification, 117

response time to live, 117

S

session pool configuration (see jms:sessionPool)
SOAP 1.1

endpoint address, 70
SOAP 1.2

endpoint address, 70
SOAP Message Transmission Optimization Mechanism,
47
soapl2:address, 70
soapl2:body

parts, 38
soapl2:header, 37

encodingStyle, 38

message, 37

namespace, 38

part, 37

use, 37
soap:address, 70
soap:body

parts, 27
soap:header, 27

encodingStyle, 27

message, 27

namespace, 27

part, 27

use, 27

W
WS-Addressing
using, 93
wsam:Addressing, 93
WSDL
port element, 67
binding attribute, 67
service element, 67
name attribute, 67
WSDL extensors
jms:address (see jms:address)
jms:client (see jms:client)
ims:JMSNamingProperties (see
jms:JMSNamingProperties)

153

jms:server (see jms:server)
WSDL:binding element, 21

name attribute, 21
wswa:UsingAddressing, 93

X

xformat:binding, 57
rootNode, 57

xformat:body, 58
rootNode, 58

154

	Bindings and Transports, Java Runtime
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Part I. Bindings
	Understanding Bindings in WSDL
	Using SOAP 1.1 Messages
	Adding a SOAP 1.1 Binding
	Adding SOAP Headers to a SOAP 1.1 Binding

	Using SOAP 1.2 Messages
	Adding a SOAP 1.2 Binding to a WSDL Document
	Adding Headers to a SOAP 1.2 Message

	Sending Binary Data Using SOAP with Attachments
	Sending Binary Data with SOAP MTOM
	Annotating Data Types to use MTOM
	Enabling MTOM
	Using JAX-WS APIs
	Using configuration

	Using XML Documents

	Part II. Transports
	Understanding How Endpoints are Defined in WSDL
	Using HTTP
	Adding a Basic HTTP Endpoint
	Configuring a Consumer
	Using Configuration
	Using WSDL
	Consumer Cache Control Directives

	Configuring a Service Provider
	Using Configuration
	Using WSDL
	Service Provider Cache Control Directives

	Configuring the Jetty Runtime
	Using the HTTP Transport in Decoupled Mode

	Using JMS
	Namespaces
	Basic Endpoint Configuration
	Using WSDL
	Using Configuration

	Consumer Endpoint Configuration
	Using Configuration
	Using WSDL

	Provider Endpoint Configuration
	Using Configuration
	Using WSDL

	JMS Runtime Configuration
	JMS Session Pool Configuration
	Consumer Specific Runtime Configuration
	Provider Specific Runtime Configuration

	Using WebSphere MQ
	Using FTP
	Adding an FTP Endpoint Using WSDL
	Adding an Configuration for an FTP Endpoint
	Coordinating Requests and Responses
	Introduction
	Implementing the Consumer’s Coordination Logic
	Implementing the Server’s Coordination Logic
	Using Properties to Control Coordination Behavior

	Using SFTP

	Index

