
Artix ESB
TM

Making Software Work TogetherTM

Developing Artix Applications
with JAX-RPC

Version 5.1, Dec. 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: May 29, 2009

Contents

List of Figures 11

List of Tables 13

Preface 15
What is Covered in this Book 15
Who Should Read this Book 15
How to Use this Book 15
The Artix Documentation Library 16

Part I Fundamentals of Artix Programming

Chapter 1 The Artix Java Development Model 19
Separating Transport Details from Application Logic 20
Representing Services in Artix Contracts 22
Mapping from an Artix Contract to Java 24

Generating Java Code 25
Mapping Contract Elements to Java 30
Java Package Naming 33

Chapter 2 Developing Artix Consumers 35
Generating the Stub Code 36
Writing the Consumer Code 39

Initializing an Artix Bus 40
Creating a Service Proxy Using the JAX-RPC Method 41
Creating a Service Proxy Using Artix APIs 43
Shutting Down the Artix Bus 45
Full Consumer Code 46

Setting Connection Attributes Using the Stub Interface 48
Creating a Service Proxy Using UDDI 52
Building an Artix Consumer 55
 3

CONTENTS
Chapter 3 Developing Artix Services 57
Generating the Skeleton Code 59
Developing a Service Implementation 62
Developing a Container Based Service 64

Generating Starting Point Code 65
Implementing the Service�s Plug-in Class 66
Implementing the Service�s Activator Class 70

Developing a Standalone Service 75
Servant Registration 79

Static Servant Registration 80
Transient Servant Registration 81

Servant Threading Models 83
Building an Artix Service 87

Chapter 4 Finding Contracts and References at Runtime 89
Finding Initial References 91
Finding Artix Contracts 93

Chapter 5 Things to Consider when Developing Artix Applications 97
Getting a Bus 98
Ensuring a Server Uses a Unique Bus 99
Class Loading 101
Avoid Circular References 105

Chapter 6 Handling Artix Generated Exceptions 107
Generic Exception Handling 108

Overview of Fault Exceptions 110
Processing Fault Exceptions 111
Throwing Fault Exceptions 114

Using the SOAP Binding 116

Chapter 7 Working with Artix Data Types 119
Including and Importing Schema Definitions 120
XML Schema Elements 122
Using XML Schema Simple Types 123

Atomic Type Mapping 124
Special Atomics Type Mappings 128
4

CONTENTS
Defining Simple Types by Restriction 130
Using Enumerations 135
Using Lists 141
Using XML Schema Unions 144

Using XML Schema Complex Types 148
Sequence and All Complex Types 149
Choice Complex Types 154
Attributes 158
Undeclared Attributes 166
Nesting Complex Types 170
Deriving a Complex Type from a Simple Type 180
Deriving a Complex Type from a Complex Type 184
Occurrence Constraints 188
Using Model Groups 200

Using XML Schema any Elements 205
SOAP Arrays 213
Holder Classes 217
Using SOAP with Attachments 221
Unsupported XML Schema Constructs 226

Chapter 8 Creating User-Defined Exceptions 229
Describing User-defined Exceptions in an Artix Contract 230
How Artix Generates Java User-defined Exceptions 232
Working with User-defined Exceptions in Artix Applications 235

Chapter 9 Using Substitution Groups 237
Substitution Groups in XML Schema 238
Using Substitution Groups with Artix 242
Widget Vendor Example 252

Widget Server 254
Widget Client 258

Chapter 10 Working with Artix Type Factories 261
Introduction to Type Factories 262
Registering Type Factories 264
Getting Type Information From Type Factories 267
 5

CONTENTS
Chapter 11 Working with XML Schema anyTypes 271
Introduction to Working with XML Schema anyTypes 272
Setting anyType Values 274
Retrieving Data from anyTypes 276

Chapter 12 Using Endpoint References 281
Introduction to Endpoint References 282

Endpoint Reference Basic Concepts 283
Using Endpoint References in Artix Contracts 286
Creating a NULL Endpoint Reference 289
Creating Endpoint References for a Service 290
Instantiating Service Proxies Using an Endpoint Reference 293

Using Endpoint References in a Factory Pattern 295
Bank Service Contract 296
Bank Service Implementation 301
Bank Service Client 305

Using Endpoint References to Implement Callbacks 308
The Accounting Contract 309
The Accounting Client 315
The Accounting Server 320

Migration Scenarios 323

Chapter 13 Using Native XML 325
Populating Artix Objects with XML 326
Converting Artix Objects Into XML 331
Converting References into XML 335

Chapter 14 Using Message Contexts 337
Understanding Message Contexts in Artix 338
Getting the Context Registry 342
Getting the MessageContext Object for a Thread 344
Working with JAX-RPC MessageContext Objects 347
Working with IonaMessageContext Objects 353

How Properties are Stored in Artix Message Contexts 354
Setting a Property into an Artix Message Context 357
Working with Properties from an Artix Message Context 360
Special Artix Properties 362
6

CONTENTS
Chapter 15 Sending Message Headers 365
Defining Context Data Types 367
Registering Context Types 369

Registering a Context for Use as a SOAP Header 370
Registering a Context for Use as a CORBA Header 372

SOAP Header Example 374
The Contract 375
Generating the Classes for the Header 377
The Client 378
The Service 382

Chapter 16 Working with Transport Attributes 387
How Artix Stores Transport Attributes 389
Getting Transport Attributes from an Artix Context 391
Getting IP Attributes 394
Setting Configuration Attributes 396

Using the Standard Contexts 397
Using the Configuration Context 398

Setting HTTP Attributes 400
Client-side Configuration 401
Server-side Configuration 411
Setting the Server�s Endpoint URL 421
Adding Custom HTTP Header Properties 423

Setting CORBA Attributes 426
Setting WebSphere MQ Attributes 428

Working with Connection Attributes 429
Working with MQ Message Descriptor Attributes 433

Setting JMS Attributes 442
Using JMS Message Headers and Properties 443
Using Client-side JMS Attributes 447
Using Server-side JMS Attributes 449
Setting JMS Broker Security Information 451

Setting FTP Attributes 453
Setting FTP Connection Policies 454
Setting the Connection Credentials 458
Setting the Coordination Policies 460

Setting i18n Attributes 463
 7

CONTENTS
Part II Advanced Artix Programming

Chapter 17 Using Persistent Datastores 469
Introduction to Artix Persistent Datastores 470
Creating a Persistent Datastore 475

Creating Persistent Maps 478
Creating Persistent Lists 482

Working with Data in a Persistent Datastore 484
Using Persistent Maps 485
Using Persistent Lists 489

Supporting High-Availability 493
Configuring Artix to Use Persistent Datastores 498

Chapter 18 Using the Call Interface for Dynamic Invocations 499
DII and the Call Interface 500
Building Invocations using the Call Interface 502
Printer Service Demo 504

Chapter 19 Instrumenting a Service 507
Overview of Artix Instrumentation 508
Using the JMX APIs 511
Using the Artix ManagedComponent Interface 515

Implementing the Instrumentation Class 516
Implementing the Support Class 520
Creating and Removing your Instrumentation 524

Chapter 20 Developing Plug-Ins 527
Understanding the Artix Plug-in Model 528
Extending the BusPlugIn Class 531
Implementing the BusPlugInFactory Interface 534
Configuring Artix to Load a Plug-in 536

Chapter 21 Writing Handlers 539
Handlers: An Introduction 540
Developing Request-Level Handlers 543
Developing Message-Level Handlers 546
8

CONTENTS
Implementing a Handler as a Plug-in 549
Creating the Handler Plug-in 550
Creating a Handler Factory 553

Handling Errors and Exceptions 557
Handling Errors when Processing Requests 558
Handling Errors when Processing Responses 560
Throwing User Faults 561
Processing Fault Messages 563

Configuring Endpoints to Use Handlers 565

Chapter 22 Manipulating Messages in a Handler 569
Working with Operation Parameters 570
Working with SOAP Messages 575
Manipulating Messages as a Binary Stream 578

Chapter 23 Developing Custom Artix Transports 581
Developing a Transport: The Big Picture 582
Making a Schema for the Transport Attributes 584
Developing and Registering the Transport Factory 588

Creating a Transport Factory 589
Transport Policies 592
Registering and Unregistering a Transport Factory 595

Developing the Client Transport 597
Developing the Server Transport 605

Activating a Server Transport 607
Processing Requests 612
Shutting Down a Server Transport 620

Using your Custom Transport 622

Chapter 24 Configuring Artix Plug-Ins 625
Understanding Artix Configuration 626
Adding Custom Configuration for a Plug-in 630

Chapter 25 Using Artix Classloader Environments 633
Class Loading: An Overview 634
Artix�s Classloader Hierarchy 637
Using Artix�s Classloader Environment 641
 9

CONTENTS
Index 649
10

List of Figures

Figure 1: SingleInstanceServant 84

Figure 2: SerializedServant 85

Figure 3: PerInvocationServant 86

Figure 4: Classloader Firewall 101

Figure 5: Artix Message Context Hierarchy 338

Figure 6: Overview of the Message Context Mechanism 340

Figure 7: Contexts Passed Along Request/Reply Chain 355

Figure 8: The Artix Persistence Mechanism 470

Figure 9: Artix Service Cluster 471

Figure 10: Artix Persistent Datastores 472

Figure 11: Default Artix MBean Structure 508

Figure 12: Loading a Plug-In 529

Figure 13: Initializing a Plug-In 530

Figure 14: The Life of a Message 540

Figure 15: Handler Levels 541

Figure 16: Classloader Chain 635

Figure 17: Default Classloader Hierarchy 635

Figure 18: Artix Bus Classloader Chain 637

Figure 19: Artix Plug-In Classloader Chain 639
 11

LIST OF FIGURES
 12

List of Tables

Table 1: discover-source values for the Classloader Firewall 102

Table 2: Binding Support for Artix Exceptions 108

Table 3: FaultException Fields 110

Table 4: Simple Schema Type to Primitive Java Type Mapping 124

Table 5: simple Schema Type to Java Wrapper Class Mapping 129

Table 6: Effects of length Facet on XML Schema Types 132

Table 7: Effects of minLength Facet on XML Schema Types 133

Table 8: Effects of maxLength Facet on XML Schema Types 133

Table 9: List Type Facets 141

Table 10: Group Children 200

Table 11: Attributes for an any 205

Table 12: MIME Type Mappings 221

Table 13: anyType Setter Methods for Primitive Types 274

Table 14: Methods for Extracting Primitives from AnyType 277

Table 15: Artix Context Properties 347

Table 16: Configuration Context QNames 391

Table 17: Configuration Context Classes 392

Table 18: Outgoing HTTP Client Attributes 402

Table 19: Incoming HTTP Client Attributes 409

Table 20: Outgoing HTTP Server Attributes 412

Table 21: Incoming HTTP Server Attributes 417

Table 22: MQ Connection Attributes Context Properties 429

Table 23: Transactional Values 431

Table 24: MQ Message Attributes Context Properties 433

Table 25: CorrelationStyle Values 436

Table 26: Delivery Values 437
 13

LIST OF TABLES
Table 27: Format Values 438

Table 28: ReportOption Values 440

Table 29: JMS Header Attributes 443

Table 30: ConnectionMode Values 454

Table 31: Unsupported Service Methods 500

Table 32: Unsupported ServiceFactory Methods 501

Table 33: Configuration Map Properties 556

Table 34: SOAPMessageContext Methods 575

Table 35: SOAPMessage Elements 576

Table 36: Method for Transport Factory 589

Table 37: Transport Threading Models 592

Table 38: Threading Resource Policy Values 594

Table 39: ClientTransport Methods 597

Table 40: ServerTransport Methods 605

Table 41: activate() Responsibilities by Threading Policies 608

Table 42: discover-source values for the Classloader Firewall 643
 14

Preface
What is Covered in this Book
This guide discusses the main aspects of developing transport-independent
services and service consumers using JAX-RPC style stubs and skeletons
generated by Artix ESB. This book covers:

� how to access the Artix bus

� how to use generated data types

� how to create user defined exceptions

� how to access the header information for the transports supported by
Artix.

Who Should Read this Book
This guide is intended for Artix Java programmers. In addition to a
knowledge of Java, this guide assumes that the reader is familiar with the
basics of WSDL and XML schemas. Some knowledge of Artix concepts
would be helpful, but is not required.

How to Use this Book
If you are new to using Artix ESB to develop JAX-RPC applications,
Chapter 1 provides an overview of the benefits of using Artix and how Artix
generates Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled consumer,
Chapter 2 describes the steps to implement a consumer using
Artix-generated code.
 15

PREFACE
If you are interested in the basics of writing an Artix-enabled service,
Chapter 3 describes the steps to implement a service using Artix-generated
code. It also includes details about the threading models used by Artix
services.

Chapter 4 and Chapter 5 extend the discussion of building Artix
applications. They discuss methods for discovering Artix contracts, getting
access to an Artix bus, and class loading issues that may be encountered
when using Artix.

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 7 gives detailed description of how
all of the XML Schema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 8 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

The remainder of the book discusses advanced programming features of the
Artix Java APIs such as handlers, persistence, and transactions. The
chapters assume familiarity with the basic material covered in chapters 1
through 5. In addition, they assume a basic understanding of distributed
system development.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 16

../library_intro/index.htm
../library_intro/index.htm

Part I
Fundamentals of Artix

Programming

In this part This part contains the following chapters:

The Artix Java Development Model page 19

Developing Artix Consumers page 35

Developing Artix Services page 57

Finding Contracts and References at Runtime page 89

Things to Consider when Developing Artix Applications page 97

Handling Artix Generated Exceptions page 107

Working with Artix Data Types page 119

Creating User-Defined Exceptions page 229

Using Substitution Groups page 237

Working with Artix Type Factories page 261

Working with XML Schema anyTypes page 271

Using Endpoint References page 281
 17

Using Native XML page 325

Using Message Contexts page 337

Sending Message Headers page 365

Working with Transport Attributes page 387
18

CHAPTER 1

The Artix Java
Development
Model
The Artix development tools generate JAX-RPC compliant Java
code from WSDL-based Artix contracts. Using the generated
code, you can develop transport-independent applications.

In this chapter This chapter discusses the following topics:

Separating Transport Details from Application Logic page 20

Representing Services in Artix Contracts page 22

Mapping from an Artix Contract to Java page 24
 19

CHAPTER 1 | The Artix Java Development Model
Separating Transport Details from Application
Logic

Overview One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by dictating the type of messaging system over
which the application works. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Dividing the logical and physical Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application�s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.
20

Separating Transport Details from Application Logic
The Artix bus The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.
 21

CHAPTER 1 | The Artix Java Development Model
Representing Services in Artix Contracts

Overview Services, which are a collection of operations exposed by an endpoint, are
described in the logical section of an Artix contract using a portType
element. When defining a service in an Artix contract, you break it down into
three parts: the complex data types used in the messages, the messages
used by the operations, and the collection of operations that make up the
service.

Data types Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XML Schema. The descriptions are
contained within the WSDL types element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

The described types are used to define the message parts used by the
service.

Messages In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the message element and consist of one or more part
elements. Each message part represents an argument in an operation�s
parameter list or a piece of data returned as part of an exception.

Operations In an Artix contract logical services are described using the portType
element and consist of one or more operation elements. Each operation
element describes an operation that is to be exposed over the network.

Example 1: Array Description

<complexType name="ArrayOfInt">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
 type="xsd:int"/>
 </sequence>
</complexType>
22

Representing Services in Artix Contracts
Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature
long myOp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<message name="inMessage">
 <part name="c1" type="xsd:char" />
 <part name="c2" type="xsd:char" />
</message>
<message name="outMessage">
 <part name="returnVal" type="xsd:int" />
</message>
<portType name="myService">
 <operation name="myOp">
 <input message="inMessage" name="in" />
 <output message="outMessage" name="out" />
 </operation>
</portType>
 23

CHAPTER 1 | The Artix Java Development Model
Mapping from an Artix Contract to Java

Overview Artix maps the WSDL-based Artix contract description of a service into Java
service skeletons and consumer stubs following the JAX-RPC specification.
This allows application developers to implement the service�s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

In this section This section discusses the following topics:

Generating Java Code page 25

Mapping Contract Elements to Java page 30

Java Package Naming page 33
24

Mapping from an Artix Contract to Java
Generating Java Code

Overview The Artix development tools include a utility to generate service skeleton and
consumer stub code from an Artix contract. In addition, Artix maps WSDL
types to Java classes using the mapping described in the JAX-RPC
specification.

Generated files The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

� portTypeName.java defines the Java interface that both the client and
server implement.

� portTypeNameImpl.java defines the class used to implement the
server.

� portTypeNameServer.java is a simple main class for the server.

� portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

� portTypeNameDemo.java is a simple main class for a client.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see �Working with Artix
Data Types� on page 119.

Generating code using Artix
Designer

Artix Designer includes a full Java IDE and can generate Artix starting point
code for you. These capabilities combined with Artix Designer�s WSDL
editing capabilities, make it an end-to-end service development tool.

To generate Artix code inside Artix Designer need to do the following:

1. Create a launch configuration for your service.

2. Run the code generator from the Artix Tools dialog.
 25

CHAPTER 1 | The Artix Java Development Model
If you make changes to the contract from which your code is generated, you
can regenerate the starting point code. Artix Designer will preserve any work
you have done to the code. So, if you have implemented one of the
operations in your contract and then add a new logical operation to the
contract, you can regenerate the code. Your implementation code will be
preserved and the starting point code for the new operation will be added.

Generating code from the
command line

You generate code at the command line using the command:

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

wsdltojava [-e service:port][-b binding][-i portType]
 [-d output_dir][-p [namespace=]package]
 [-impl][-server][-client][-plugin][-servlet]
 [-types][-call][-interface][-sample][-all][-ant]
 [-datahandlers][-merge][-deployable]
 [-nexclude namespace[=package]]
 [-ninclude namespace[=package]][-L file][-ser]
 [-q][-h][-V] artix-contract

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.
26

Mapping from an Artix Contract to Java
-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-impl Generates the skeleton class for implementing the
server defined by the contract.

-server Generates a simple main class for the server.

-client Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

-plugin Generate a bus plug-in with the appropriate
servant registration code for the generated service
implementation. When using this flag, the server
mainline does not include code for registering the
servant with the bus.

-servlet Generates a bus plug-in with the additional
information needed to deploy it as a servlet. For
more information see Artix for J2EE.

-types Generates the code to implement the complex
types defined by the contract.

-call Generates a sample client the uses the Call
interface to invoke on the remote service. For
more information see �Using the Call Interface for
Dynamic Invocations� on page 499.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test
your Java server.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.
 27

../j2ee/index.htm

CHAPTER 1 | The Artix Java Development Model
Warning messages If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax.activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see �Using
SOAP with Attachments� on page 221 and
Bindings and Transports, C++ Runtime.

-merge Merge any user changes into the generated code.

-deployable Generate a deployment descriptor to deploy the
generated plug-in into an Artix container. For
more information see Configuring and Deploying
Solutions, C++ Runtime.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XML Schema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XML Schema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-ser Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

-q Specifies that the tool runs in quiet mode. No
output will be shown on the console. This
includes error messages.

-h Specifies that the tool will display a usage
message.

-V Specifies that the tool runs in verbose mode.
28

../bindings/cpp/index.html
../deploy/cpp/index.htm
../deploy/cpp/index.htm

Mapping from an Artix Contract to Java
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.
 29

CHAPTER 1 | The Artix Java Development Model
Mapping Contract Elements to Java

portTypes For each portType element in an Artix contract, a Java interface that
extends java.rmi.Remote is generated. The name of the generated interface
is taken from the name attribute of the portType element. The interface�s
name will be identical to the portType elements�s name unless the
portType element�s name ends in PortType. In this case, the PortType will
be stripped off the interface�s name.

The generated interface will contain each of the operations of the portType
to which the portType element is bound. For example, the contract shown
in Example 3 will generate an interface, sportsCenter, containing one
operation, update.

Example 3: SportsCenter Port

<message name="scoreRequest">
 <part name="teamName" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="score" type="xsd:int" />
</message>
<portType name="sportsCenterPortType">
 <operation name="update">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsCenterPortType">
...
<service name="sportsService">
 <port name="sportsCenterPort" binding="tns:scoreBinding">
...
30

Mapping from an Artix Contract to Java
The generated Java interface is shown in Example 4.

Operations Every operation element in a contract generates a Java method within the
interface defined for the operation element�s portType. The generated
method�s name is taken from the operation element�s name attribute.
operation elements with the same name attribute will generate overloaded
Java methods in the interface.

All generated Java methods throw a java.rmi.RemoteException exception.
In addition, all fault elements listed as part of the operation create an
exception to the generated Java method.

Message parts The message parts of the operation�s input and output elements are
mapped as parameters in the generated method�s signature. The order of
the mapped parameters can be specified using the operation element�s
parameterOrder attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the parameterOrder
attribute will be placed in the generated method�s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the message elements of the
contract. The first unlisted output message part is mapped to the generated
method�s return type. The parameter names are taken from the part
element�s name attribute. If the parameterOrder attribute is not specified,
input message parts are listed before output message parts. Message parts
that are listed in both the input and output messages are considered inout
parameters and are listed only according to their position in the input
message.

All in-out and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Holder classes. For
the XML primitive types, the Java Holder class used is the standard Java
Holder class, defined in javax.xml.rpc.holders package, for the

Example 4: SportsCenter Interface

//Java
public interface sportsCenter extends java.rmi.Remote
{
 int update(String teamName)
 throws java.rmi.RemoteException;
}

 31

CHAPTER 1 | The Artix Java Development Model
appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Holder classes. For more
information on data type mapping, see �Working with Artix Data Types� on
page 119.

For example, the contract fragment shown in Example 5 would result in an
operation, final, with a return type of String and a parameter list that
contains two input parameters and two output parameters.

The generated Java interface is shown in Example 6.

Example 5: SportsFinal Port

<message name="scoreRequest">
 <part name="team1" type="xsd:string" />
 <part name="team2" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="winTeam" type="xsd:string" />
 <part name="team1score" type="xsd:int" />
 <part name="team2score" type="xsd:int" />
</message>
<portType name="sportsFinalPortType">
 <operation name="finalScore">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsFinalPortType">
...
<service name="sportsService">
 <port name="sportsFinalPort" binding="tns:scoreBinding">
...

Example 6: SportsFinal Interface

//Java
public interface sportsFinal extends java.rmi.Remote
{
 String finalScore(String team1, String team2,
 IntHolder team1score, IntHolder team2score)
 throws java.rmi.RemoteException;
}

32

Mapping from an Artix Contract to Java
Java Package Naming

Artix packages The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com.iona.jbus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

Generated type packages The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in .com or .gov, the leading www. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped
to the Java package name com.widgetvendor.types.widgettypes.

Java packages Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.
 33

CHAPTER 1 | The Artix Java Development Model
java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.
34

CHAPTER 2

Developing Artix
Consumers
Artix generates stub code that provides a developer with a
simple model to develop consumers that can interact with
services over a number of protocols.

In this chapter This chapter discusses the following topics:

Generating the Stub Code page 36

Writing the Consumer Code page 39

Setting Connection Attributes Using the Stub Interface page 48

Creating a Service Proxy Using UDDI page 52

Building an Artix Consumer page 55
 35

CHAPTER 2 | Developing Artix Consumers
Generating the Stub Code

Overview The Artix Java code generator generates the stub code needed to develop a
consumer from an Artix contract. In addition, the code generator creates
Java classes for the complex types defined in the contract using the
mapping described in the JAX-RPC specification.

Generating code from the
command line

You generate consumer code at the command line using the following
command:

You must specify the location of a valid Artix contract for the code generator
to work. The -client flag tells the code generator to generate the classes
needed to develop a consumer from the specified contract.

Optional flags You can also supply the following optional parameters to control what code
is generated:

wsdltojava -client artix-contract

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.
36

Generating the Stub Code
-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-call Generates a consumer the uses the Call interface
to invoke on the remote service. For more
information see �Using the Call Interface for
Dynamic Invocations� on page 499.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax.activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see �Using
SOAP with Attachments� on page 221 and
Bindings and Transports, C++ Runtime.

-merge Merge any user changes into the generated code.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XML Schema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XML Schema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-ser Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.
 37

../bindings/cpp/index.html

CHAPTER 2 | Developing Artix Consumers
Generated files The Artix code generator produces the following files from when you
generate code for a consumer:

� portTypeName.java defines the Java interface that the consumer�s
service proxy implements.

� portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

� portTypeNameClient.java is a simple main class for a consumer.

In addition, the code generator creates a class for each named schema type
defined in the Artix contract. For more information on using these generated
data types see �Working with Artix Data Types� on page 119.

Warning messages If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.
38

Writing the Consumer Code
Writing the Consumer Code

Overview Artix consumers are implemented using dynamic proxies as described in the
JAX-RPC 1.1 specification. The interface used to create the proxy class is
defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix consumer initializes and shuts down the Artix bus.

An Artix consumer needs to do four basic things:

1. Initialize an instance of the Artix bus.

2. Instantiate one or more service proxies.

3. Invoke one or more operations on the service proxies.

4. Shut-down the Artix bus instance used by the consumer.

In this section This section discusses the following topics:

Initializing an Artix Bus page 40

Creating a Service Proxy Using the JAX-RPC Method page 41

Creating a Service Proxy Using Artix APIs page 43

Shutting Down the Artix Bus page 45

Full Consumer Code page 46
 39

CHAPTER 2 | Developing Artix Consumers
Initializing an Artix Bus

Overview The Artix bus manages the service proxy used to contact remote services. It
also manages the invocation of any handlers used by the consumer. Your
consumer code must initialize an instance of the Artix bus before you can
register a service proxy and starting making requests on a remote service.

Bus.init() The Artix bus is initialized using com.iona.jbus.Bus.init(). The method
has the following signature:

Bus.init() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your service proxy, load the Artix
configuration information for your application, and load the required
plug-ins. Once the bus is initialized, you can create a service proxy and
register it with the bus. The bus will then take any invocations made on the
service proxy and turn them into requests on the remote service.

Example Example 7 shows code for initializing an instance of the Artix bus.

static Bus init(String args[]);

Example 7: Initializing an Artix Bus

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {
 Bus bus = Bus.init(args);
 ...
 }
}

40

Writing the Consumer Code
Creating a Service Proxy Using the JAX-RPC Method

Overview Artix consumers use dynamic proxies, as described in the JAX-RPC
specification, to make requests on remote services. Dynamic proxies are
created using the interface generated from your contract and the
javax.xml.rpc.Service interface. You need the QName of the service for
which you are creating the proxy, the QName of the endpoint the proxy will
use to contact the service, and the URL of the contract defining the service.

Once you have these three pieces of information, creating a dynamic proxy
requires three steps:

1. Obtain an instance of javax.xml.rpc.ServiceFactory.

2. Use the ServiceFactory to create a Service object for the service to
which the proxy will connect.

3. Use the Service object to instantiate the dynamic proxy.

Obtaining a ServiceFactory
instance

To obtain an instance of the ServiceFactory you call
ServiceFactory.newInstance() as shown in Example 8. This returns the
ServiceFactory. Only one is created per application and the same
ServiceFactory is returned for each successive call.

Creating a Service object A Service object is created from the ServiceFactory using
createService(). createService() takes two arguments:

� the URL of the contract defining the service.

� the service�s QName.

Note: If your consumer is going to run inside of a J2EE container
you will need to set the JAX-RPC ServiceFactory property to use the
IONA ServiceFactory prior to getting the ServiceFactory object.
You do this with the following code:

System.setProperty("javax.xml.rpc.ServiceFactory",
 "com.iona.jbus.JBusServiceFactory");

Example 8: Getting the ServiceFactory

ServiceFactory factory = ServiceFactory.newInstance();
 41

CHAPTER 2 | Developing Artix Consumers
Example 9 shows an example of creating a Service object for a widget order
service.

Creating the dynamic proxy The dynamic proxy is created using the Service objects� getPort() method.
getPort() takes two arguments:

� the QName of the endpoint with which the proxy contacts the service.

� the name of the generated Java interface in PortName.java with
.class appended. For example, if the generated interface�s name is
HelloWorld, this argument would be HelloWorld.class.

As shown in Example 10, getPort() returns an instance of
java.rmi.Remote that must be cast to the generated interface.

Example 9: Creating a Service Object

QName name = new QName("http://widgetVendor.com/widgetOrders",
 "orderWidgetsService");

String wsdlPath = "http://widgetVendor.com/widgets.wsdl";
URL wsdlLocation = new File(wsdlPath).toURL();

Service service = factory.createService(wsdlLocation, name);

Example 10: Creating the Dynamic Proxy

QName portName = new QName("","orderWidgetsPort");

WidgetOrder proxy = (WidgetOrder)service.getPort(portName,
 WidgetOrder.class);
42

Writing the Consumer Code
Creating a Service Proxy Using Artix APIs

Overview While the Artix Java APIs use dynamic proxies as specified by JAX-RPC, you
may not always be able to use the JAX-RPC specified method for creating a
service proxy. Artix provides a method for creating service proxies that
bypasses the steps outlined in the JAX-RPC specification.

createClient() You can create service proxies using the bus� createClient() method.
createClient() takes the URL of the service�s contract, the QName of the
service, the name of the port the proxy will use to connect to the service,
and the Java Class representing the service�s remote interface and returns a
JAX-RPC style dynamic proxy for the service if it is successful.
createClient()�s signature is shown in Example 11.

Example Example 12 shows the code for creating a service proxy using
createClient().

Example 11: Bus.createClient()

Remote Bus.createClient(URL wsdlUrl, QName serviceName,
 String portName, Class interfaceClass)
throws BusException

Example 12: Creating a Service Proxy using createClient()

1 QName name = new QName("http://www.buystuff.com",
 "RegisterService");

2 String portName = new String("RegisterPort");

3 String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();

4 // Bus bus obtained earlier
Register proxy = bus.createClient(wsdlURL, name, portName,
 Register.class);
 43

CHAPTER 2 | Developing Artix Consumers
The code in Example 12 does the following:

1. Creates the QName for the service from the contract defining the
application. In this example, the service, RegisterService, is defined
in the namespace http:\\www.buystuff.com.

2. Creates a String to hold the name of the port element defining the
transport the proxy will use to contact the service. In this example, the
transport details are defined in a port element named RegisterPort.

3. Creates a URL specifying where the service�s contract can be located. In
this example, the contract, register.wsdl, is located in the client�s
directory.

4. Calls createClient() with the correct parameters to create a service
proxy for the Register service.
44

Writing the Consumer Code
Shutting Down the Artix Bus

Overview The Artix bus created to host a consumer�s service proxy and handle the
marshalling of requests and responses uses a number of resources. To
ensure that all of the resources allocated by the bus is cleaned up, the bus
needs to be properly shut down before the consumer application exits.

Bus.shutdown() You shutdown a bus using its shutdown() method. This method takes one
boolean argument that determines how the method returns control to the
calling object. If you pass in true, shutdown() will block until the bus�s
internal threads have finished processing all requests and have fully
shutdown. If you pass in false, shutdown() returns immediately. It is
advisable to pass true to shutdown() to ensure that the bus is fully
shutdown before exiting.

Example Example 13 shows code for initializing an instance of the Artix bus.

Example 13: Shutting Down an Artix Bus

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {
 Bus bus = Bus.init(args);
 ...
 bus.shutdown(1);
 }
}

 45

CHAPTER 2 | Developing Artix Consumers
Full Consumer Code

The code An Artix consumer developed to access HelloWorldService will look similar
to Example 14.

Example 14: HelloWorld Consumer Code

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://iona.com/HelloWorld",
 "HelloWorldService");

3 QName portName = new QName("","HelloWorldPort");

4 String wsdlPath = "file:/./HelloWorld.wsdl";
 URL wsdlLocation = new File(wsdlPath).toURL();

5 ServiceFactory factory = ServiceFactory.newInstance();

6 Service service = factory.createService(wsdlLocation, name);

7 HelloWorld proxy = (HelloWorld)service.getPort(portName,
 HelloWorld.class);

8 String string_out;

 string_out = proxy.sayHi();
 System.out.println(string_out);
46

Writing the Consumer Code
The explanation The code does the following:

1. The com.iona.jbus.Bus.init() function initializes the bus.

2. Creates the service�s QName.

3. Creates the QName of the endpoint through which the proxy will contact
the service.

4. Creates the URL of the contract defining the service.

5. The newInstance() function returns the ServiceFactory.

6. The createService() function instantiates the Service from which the
dynamic proxy is created.

7. The getPort() function returns a dynamic proxy to the HelloWorld
service. getPort() returns an instance of java.rmi.Remote that must
be cast to the interface defining the service.

8. Makes a call on the proxy to request service.

9. Shuts down the bus.

9 bus.shutdown(true);

 }
}

Example 14: HelloWorld Consumer Code
 47

CHAPTER 2 | Developing Artix Consumers
Setting Connection Attributes Using the Stub
Interface

Overview The JAX-RPC specification lists four standard properties to which a service
proxy�s Stub interface provides access. Artix provides support for setting
three of them:

� Username

� Password

� Endpoint Address

Currently, Artix only supports setting these properties for HTTP connections.

The Stub interface As required by the JAX-RPC specification, all Artix proxies implement the
javax.xml.rpc.Stub interface. This interface provides access to a number
of low-level properties used in connecting the proxy to the service
implementation. To access these low-level properties the Stub interface has
two methods:

� _getProperty() returns the value of the specified property.

� _setProperty() allows you to set the value of the specified property.

Getting a Stub object Because all Artix proxies implement the Stub interface, you can simply cast
an Artix proxy to a Stub object. Example 15 shows code getting a Stub
object from an Artix proxy.

Example 15: Casting a Client Proxy to a Stub

//Java
import javax.xml.rpc.*;

// client proxy, client, created earlier
Stub clientStub = (Stub) client;
48

Setting Connection Attributes Using the Stub Interface
Setting the username property One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.security.auth.username property. It is used to set a
username for use in basic authentication systems. Artix uses this property to
set the HTTP transport�s UserName property.

To set the username property using the client�s Stub interface do the
following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 15 on page 48.

2. Create a String containing the username for the value of the property.

3. Call _setProperty() on the Stub specifying Stub.USERNAME_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 16 on page 49 shows code for setting the username for a client.

Setting the password property One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.security.auth.password property. It is used to set a
password for use in basic authentication systems. Artix uses this property to
set the HTTP transport�s Password property.

To set the username property using the client�s Stub interface do the
following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 15 on page 48.

2. Create a String containing the password for the value of the property.

3. Call _setProperty() on the Stub specifying Stub.PASSWORD_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 16: Setting the Username Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String userName = new String("Smart");
secStub._setProperty(Stub.USERNAME_PROPERTY, userName);
 49

CHAPTER 2 | Developing Artix Consumers
Example 17 on page 50 shows code for setting the password for a client.

Setting the endpoint address One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.service.endpoint.address property. It is used to set the
address for the target service. The property takes a String containing a valid
HTTP URL that points to a service implementing the interface supported by
the proxy.

You can only set this property before you invoke any of the service proxy�s
methods. Once the proxy makes a request on the remote service an HTTP
service connection is established between the consumer and the service.
Due to the multi-threaded nature of the Artix bus and the nature of HTTP
connections, this connection cannot be broken and reassigned to a new
endpoint. Attempts to reset the endpoint address property after invoking one
of the proxy�s methods will be ignored.

To set the endpoint address property using the consumer�s Stub interface do
the following:

1. Get a Stub object by casting your service proxy to a Stub as shown in
Example 15 on page 48.

2. Create a String containing the target endpoint�s HTTP URL for the
value of the property.

3. Call _setProperty() on the Stub specifying Stub.ENDPOIT_PROPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 17 on page 50 shows code for setting the endpoint address
property.

Example 17: Setting the Password Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String password = new String("86");
secStub._setProperty(Stub.PASSWORD_PROPERTY, password);
50

Setting Connection Attributes Using the Stub Interface
Example 18: Setting the Endpoint Address Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String endpt = new
 String("http://control.silencecone.net/9986");
secStub._setProperty(Stub.ENDPOINT_PROPERTY, endpt);
 51

CHAPTER 2 | Developing Artix Consumers
Creating a Service Proxy Using UDDI

Overview You can create a service proxy by dynamically locating existing web services'
endpoints through a UDDI service. When an application does not have a
pointer or reference to an instance of a running web service, Artix can take a
service description then query a UDDI registry for an available service
instance. The UDDI registry returns endpoint information that Artix uses to
create a service proxy to invoke upon a specific instance of the service.

UDDI queries Artix uses UDDI query strings that take the form of a URL. The syntax for a
UDDI URL is shown in Example 19. The syntax adheres to the rules for URL
syntax described in RFC2396 (Uniform Resource Identifiers (URI): Generic
Syntax).

UDDIRegistryEndptURL specifies the HTTP URL of the UDDI registry that
Artix is going to submit the query for a service endpoint. For example, you
could deploy a local UDDI registry at the address
http://localhost:9000/uddi/inquiryapi.

query is a string that Artix uses to look-up services in the UDDI registry. The
query string specifies the UDDI attributes and their coresponding values to
use in selecting an appropriate service from the registry. If more than one
service in the registry match the query, Artix uses the first one found to
create the service proxy. For example to return a widget ordering service,
you could use the query string tmodelname=widgetVendor.

Example 20 shows a complete UDDI URL.

Example 19: UDDI URL Syntax

uddi:UDDIRegistryEndptURL?query

Note: Currently, only the tmodelname attribute is supported by Artix.

Example 20: Artix UDDI URL

uddi:http://localhost:9000/uddi/inquiryapi?tmodelname=widgets
52

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Creating a Service Proxy Using UDDI
Getting the service proxy Using a UDDI registry to look up a service�s endpoint information and using
the returned endpoint information to create a service proxy is simple in Artix.
The only change to your application code is the path used to specify your
contract location when creating the Service object or when calling
createClient().

In place of the location of an actual contract, you would use a UDDI URL to
locate the service�s contract. Artix will recognize the UDDI URL, query the
UDDI registry, retrieve the service�s endpoint information, and build the
service proxy under the covers. Example 21 shows an example of creating a
service proxy using UDDI.

The code in Example 21 does the following:

1. Builds a UDDI URL to query the UDDI registry hosted at
localhost:9090 for services whose tmodelname is collie.

2. Builds a QName for the service proxy.

3. Gets an instance of the ServiceFactory.

Example 21: Creating a Service Proxy with UDDI

1 String query =
"uddi:http://localhost:9090/uddi/inquiry?tmodelname=collie";

URL wsdlURL;
try
{
 wsdlURL= new URL(query);
} catch (java.net.MalformedURLException ex)
{
 wsdlURL= new File(query).toURL();
}

2 QName name = new QName("http://dogLova.com/borderCollies",
 "SOAPAccess");

3 ServiceFactory factory = ServiceFactory.newInstance()

4 Service = factory.createService(wsdlURL, name);

5 QName port = new QName("", "SOAPAccessPort");

6 Collie proxy = (Collie)service.getPort(port, Collie.class);
 53

CHAPTER 2 | Developing Artix Consumers
4. Instantiates a new Service object using the endpoint information
returned from the UDDI registry.

5. Builds a QName for the port that will be used to access the service.

6. Creates the service proxy.

Configuring your application to
use UDDI support

The Artix UDDI support is provided by an Artix plug-in. To use the UDDI
features, you must configure your application to load the Java version of the
UDDI plug-in. To configure your application to load the UDDI plug-in do the
following:

1. Open artix.cfg in any text editor.

2. Locate the scope for your application, or create a new one for it.

3. Add java_uddi_proxy to the list of plug-ins in the java_plugins list.

4. Add java to the list of plug-ins in the orb_plugins list.

Example 22 shows a configuration fragment with the configuration to use
UDDI.

For more information on configuring Artix see Configuring and Deploying
Solutions, C++ Runtime.

Example 22: UDDI Configuration

collieClient

{
 orb_plugins = ["java", "xmlfile_log_stream"];
 java_plugins = ["java_uddi_proxy"];
}

Note: The UDDI plug-in is implented using a JNI layer in the Artix ESB
C++ Runtime.
54

../deploy/cpp/index.htm
../deploy/cpp/index.htm

Building an Artix Consumer
Building an Artix Consumer

Required jar files Artix Java consumers require that the following Artix jar files are in your
classpath:

� InstallDir\artix_5.1\cxx_java\lib\artix\java_runtime\5.0\it_bus-

api.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\wsdl\1.3\it_wsdl.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\reflect\1.3\it_ws_re

flect.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\reflect\1.3\it_ws_re

flect_types.jar

� InstallDir\artix_5.1\cxx_java\lib\common\ifc\1.3\ifc.jar

� InstallDir\artix_5.1\cxx_java\lib\jaxrpc\jaxrpc\1.1\jaxrpc-api.j

ar

Other jar files If your consumer uses SOAP with attachments, you will also need to include
InstallDir\artix_5.1\cxx_java\lib\sun\activation\1.0.2\activation

.jar on your classpath.

If your consumer uses xsd:any, you will need to include
InstallDir\artix_5.1\cxx_java\lib\sun\saaj\1.2.1\saaj-api.jar on
your classpath.
 55

CHAPTER 2 | Developing Artix Consumers
56

CHAPTER 3

Developing Artix
Services
Artix generates the starting point code needed to develop and
deploy protocol agnostic services.

Overview Developing a service with Artix is a two step process The first step is to
implement the business logic for your service. Because Artix generates
JAX-RPC compliant code from your contracts, the implementation of your
service�s business logic does not require much Artix specific knowledge.
Most of the code used will be standard Java code and manipulating the
objects generated to handle complex types. Artix does have a number of
proprietary APIs that are used to support some of its more advanced
features.

The second step in developing an Artix service is to develop the code that
registers your service�s implementation with the Artix bus. This step involves
some knowledge of Artix and how you intend to deploy your service. Artix
provides you with two models for developing and deploying a service:

� The Artix container model

� Standalone model

The Artix container model is the preferred method. When using the
container model you package your service as a plug-in that is deployed into
a light-weight Artix container. The Artix container can host and manage a
 57

CHAPTER 3 | Developing Artix Services
number of services that use the same configuration scope. It provides a
remote management APIs for dynamically starting and stopping your
services.

The standalone deployment model requires that you develop your service as
a standalone Java application. You can also develop your standalone
application to host multiple services. However, this requires you to write the
Java code for this and to ensure that your application cleans up it resources
properly. The standalone model also does not provide the remote
management APIs.

In this chapter This chapter discusses the following topics:

Generating the Skeleton Code page 59

Developing a Service Implementation page 62

Developing a Container Based Service page 64

Developing a Standalone Service page 75

Servant Registration page 79

Servant Threading Models page 83

Building an Artix Service page 87
58

Generating the Skeleton Code
Generating the Skeleton Code

Overview The Artix development tools take an Artix contract and generate skeleton
code to use as a starting point for developing a service. In addition, Artix
maps WSDL types to Java classes using the mapping described in the
JAX-RPC specification.

Generating code from the
command line

You generate service skeleton code at the command line using the
command:

You must specify the location of a valid Artix contract for the code generator
to work. The command line flags do the following:

� -impl instructs the code generator to create an empty implentation
class for the service.

� -plugin instructs the code generator to create the plug-in classes
needed to deploy the service into an Artix container.

� -deployable instructs the code generator to create a deployment
descriptor for deploying the service into an Artix container.

Optional parameters You can also supply the following optional parameters to control the
generated code:

wsdltojava -impl -plugin -deployable artix-contract

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.
 59

CHAPTER 3 | Developing Artix Services
-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-server Generates a simple main class for the server. This
flag is used in place of -plugin and -deployable.
For more information see �Developing a
Standalone Service� on page 75.

-types Generates the code to implement the complex
types defined by the contract.

-interface Generates the Java interface for the service.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax..activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see �Using
SOAP with Attachments� on page 221 and
Bindings and Transports, C++ Runtime.

-merge Merge any user changes into the generated code.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XML Schema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XML Schema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.
60

../bindings/cpp/index.html

Generating the Skeleton Code
Generated files The Artix code generator produces the following files from when you
generate code for a service:

� portTypeName.java defines the Java interface that both the service
implements.

� portTypeNameImpl.java defines the class used to implement the
service.

� portTypeNameServicePlugin includes code to register the appropriate
servant with the bus when the service is loaded into an Artix container.

� portTypeNameServicePluginFactory instantiates the generated
plug-in class for your service.

� portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see �Working with Artix
Data Types� on page 119.

Warning messages If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-ser Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.
 61

CHAPTER 3 | Developing Artix Services
Developing a Service Implementation

Generating the server
implementation class

The Artix code generation utility, wsdltojava, will generate an
implementation class for your service when passed the -impl command
flag.

Generated code The service implementation class code consists of two files:

PortName.java contains the interface implemented by the service.

PortNameImpl.java contains the class definition for the service�s
implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the service. To do this you edit the empty methods provided in
PortNameImpl.java. A generated implementation class for a contract
defining a service with two operations, sayHi and greetMe, would resemble
Example 23. Only the code portions highlighted in bold (in the bodies of the
greetMe() and sayHi() methods) must be inserted by the programmer.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -types flag.

Example 23: Implementation of the HelloWorld PortType in the Server

// Java
import java.net.*;
import java.rmi.*;
62

Developing a Service Implementation
public class HelloWorldImpl {

 /**
 * greetMe
 *
 * @param: stringParam0 (String)
 * @return: String
 */
 public String greetMe(String stringParam0) {
 System.out.println("HelloWorld.greetMe() called with

message: "+stringParam0);
 return "Hello Artix User: "+stringParam0;
 }

 /**
 * sayHi
 *
 * @return: String
 */
 public String sayHi() {
 System.out.println("HelloWorld.sayHi() called");
 return "Greetings from the Artix HelloWorld Server";
 }

Example 23: Implementation of the HelloWorld PortType in the Server
 63

CHAPTER 3 | Developing Artix Services
Developing a Container Based Service

Overview The recommended method for deploying Artix services is to use the Artix
container. This enables you to dynamically deploy, start, and stop your
services using the container�s remote interfaces. It also means that you can
deploy multiple services into a single process.

To enable your services to be deployable into an Artix container you need to
do the following:

1. Generate the starting point code for your service.

2. Implement the busInit() and busShutdown() methods in the
generated plug-in class.

3. Implement the activateService() and deactivateService()
methods in the generated servant activator class.

4. Complete the deployment descriptor for your service.

In this section This section discusses the following topics:

Note: All of the services deployed into an Artix container will share one
configuration scope.

Generating Starting Point Code page 65

Implementing the Service�s Plug-in Class page 66

Implementing the Service�s Activator Class page 70
64

Developing a Container Based Service
Generating Starting Point Code

Overview The wsdltojava tool, or the Artix Designer, will generate all the code you
need to deploy your service into an Artix container. The generated classes
provide basic implementations for all of the required methods. However, you
may wish to modify the code for more advanced applications.

The wsdltojava flags The -plugin and -deployable flags instruct the wsdltojava tool will
generate the starting point code for a service to deploy into an Artix
container. The -plugin flag instructs the code generator to generate the
following additional classes:

� portTypeNameServicePlugin contains the code used by the bus when
it loads the service plug-in.

� portTypeNameServicePluginFactory contains the code to instantiate
the generated plug-in class for your service.

� portTypeNameServiceActivator contains the code to activate and
deactivate the service.

The -deployable flag instructs the code generator to generate a deployment
descriptor named portTypeName.xml. The deployment descriptor is used by
the Artix container to load your service.

The generated implementations The generated code provides a default implementation for all of the required
methods. The default implementation includes the code needed to register
and activate a single instance of a single service. It does not perform any
resource initialization beyond the creation of the service instance.

If you want your service plug-in to load multiple services you will need to
modify the busInit() method of the generated plug-in class. You may also
need to add additional code to initialize and clean up any resources needed
by the services loaded by the plug-n.
 65

CHAPTER 3 | Developing Artix Services
Implementing the Service�s Plug-in Class

Overview All Artix plug-ins have two classes. The first class,
portTypeNameServicePluginFactory, is a factory used by Artix to create
instances of the plug-in as needed. This class is fully implemented when
you generate Artix starting point code for a container deployed service. You
do not need to edit it. For more information see �Implementing the
BusPlugInFactory Interface� on page 534

The second class, portTypeNameServicePlugin, is used by Artix to load
your service�s implementation, register it with the Artix bus, and instantiate
any resources needed by the service. It is also used by the bus at shutdown
to clean up any resources used by your service. The generated
implementation of this class is sufficient for most services, however you may
need to modify it.

When modifying the plug-in you will change two methods:

� busInit() is called by Artix when the plug-in is loaded. It is where you
instantiate a servant for your service and register it with the bus.

� busShutdown() is called by Artix at shutdown. It is where you clean up
any resources used by your service.

Implementing busInit() busInit() is responsible for loading all the resources needed by service.
This includes creating and registering the service activator that loads and
unload the servant that hosts the service�s implementaiton. To implement
busInit() for your service you need to do four things:

1. Get an instance of the Artix bus.

2. Create an instance of your service�s activator class.

3. Register the service�s activator with the bus.

4. Call activateService() to load the servant for your service.

Getting an instance of the Artix bus

In order to register your servant with Artix, you need an instance of the Artix
bus. The BusPlugin class, which your service�s plug-in extends, has a
method, getBus(), that returns the instance of the bus loading the plug-in.
getBus() takes no arguments and returns a Bus object.
66

Developing a Container Based Service
Instantiating a service activator

The creator for the generated service activator takes two arguments:

� the location of the service�s contract.

� the bus that hosts the plug-in.

The default implementation of busInit() passes the hard coded location of
the contract used to generate the service plug-in. Using a hard coded
location for a contract limits the flexibility of your service plug-in. You should
update your plug-in to use one of the methods outlined in �Finding Artix
Contracts� on page 93.

Registering a service activator

You register a service activator with the bus using the bus�
registerServiceActivator() method. The signature for
registerServiceActivator() is shown in Example 24.

The QName passed into registerServiceActivator() is used by the bus to
determine when to use this particular service activator object. It should be
the same QName as that used to register the servants.

For more information on service activators see �Implementing the Service�s
Activator Class� on page 70.

Calling activateService()

activateService() is a method implemented by the service activator. It is
responsible for instantiating a servant for your service and registering the
servant with the bus. For more information on activateService() see
�Implementing the Service�s Activator Class� on page 70.

Example 24: registerServiceActivator()

public abstract boolean registerServiceActivator(QName serviceName, ServiceActivator sa)
throws BusException;
 67

CHAPTER 3 | Developing Artix Services
Example

Example 25 shows a busInit() method used in implementing the
SOAPService service to be deployed in an Artix container.

Example 25: busInit()

import java.net.URL;
import javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.jbus.ServiceActivator;
import com.iona.jbus.BusConstants;
import com.iona.jbus.BusException;
import com.iona.jbus.BusPlugIn;

public class SOAPServicePlugin extends BusPlugIn
{
 private ServiceActivator serviceActivator;

 ...

 public void busInit() throws BusException
 {
 Bus bus = getBus();

 QName serviceName = new
QName("http://www.iona.com/hello_world_soap_http",

 "SOAPService");
 String wsdl = bus.getServiceWSDL(serviceName);

 serviceActivator = new SOAPServiceServiceActivator(wsdl,
 bus);

 bus.registerServiceActivator(serviceName, serviceActivator);

 serviceActivator.activateService(serviceName);
 }
 ...
}

68

Developing a Container Based Service
Implementing busShutdown() busShutdown() is called by Artix when the service is stopped or the Artix
container is shutdown. It is where you would place code to clean up after
your service. Typically busShutdown() needs to perform two tasks:

1. Call deactivateService() on the service�s activator to clean up the
servant used by the service.

2. Call dereigisterServiceActivator() to remove the service activator
from the bus� registry.

Example 26 shows the default implementation of busShutdown() for the
SOAPService plug-in.

Example 26: busShutdown()

public void busShutdown() throws BusException
{
 Bus bus = getBus();

 QName serviceName = new
QName("http://www.iona.com/hello_world_soap_http",

 "SOAPService");

 serviceActivator.deactivateService(serviceName);

 bus.deregisterServiceActivator(serviceName);
}

 69

CHAPTER 3 | Developing Artix Services
Implementing the Service�s Activator Class

Overview The service activator class provides the entry point for creating and
registering servants. In general, this class is used to manage the lifecycle of
an Artix service. If the relevant member functions of the service activator
class are properly implemented, it should be possible to deactivate and then
re-activate a service without needing to shut down the entire service plug-in.

Service activator functions The service plug-in class provides two methods that control the lifecycle of
an Artix service, as follows:

� activateService()�a method called either from within busInit() or
whenever the it_container_admin -deploy command is executed.

The purpose of activateService() is to perform all of the
housekeeping tasks necessary to start up an Artix service, including the
creation of a servant object and the registration of that servant object
with the bus.

� deactivateService()�a method called either from within
busShutdown() or whenever the it_container_admin -removeservice
command is executed.

The purpose of deactivateService() is to perform all of the
housekeeping tasks necessary to shut down an Artix service, including
deregistration of the service and deletion of the associated servant
object.

Related container administration
commands

The lifecycle functions provided by the service activator class are closely
related to the following it_container_admin commands:

� it_container_admin -deploy�the effect of issuing this command
depends on whether this is the first or subsequent deployment, as
follows:

♦ First deployment�load and initialize the service plug-in. The
container calls busInit(), which is normally programmed to call
activateService() for each of the WSDL services.
70

Developing a Container Based Service
♦ Subsequent deployment (re-deploy)�activate any inactive
services. The container calls activateService() on each of the
registered service activators, but only if the service is currently
inactive. The container does not call busInit() in this case.

� it_container_admin -removeservice�de-activate a specific service.
When you issue the -removeservice command, the container calls
deactivateService(), but only if the specified service is currently
active.

For more details about the it_container_admin command-line utility, see
Configuring and Deploying Artix Solutions, C++ Runtime.

activateService() activateService() is called either from busInit() or whenever the
it_container_admin -deploy command is issued. It is the appropriate
place to put the code that creates and registers servants. Registering a
servant is a two step process:

1. Create a servant for your service.

2. Register the service with the bus.

Creating a servant for your service implementation

Artix wraps service implementation objects in a Servant object that allows
the bus to manage the object. To create a com.iona.jbus.Servant for your
service implementation you create an instance of a SingleInstanceServant
as shown in Example 27. The creator for a SingleInstanceServant uses
the following three items:

� the path of the WSDL file describing the service interface

� an instance of your implementation object

� an instance of an initialized Artix bus.

Note: Artix does not currently provide an administration command
that re-activates a single service at a time. The -deploy command
re-activates all of the inactive services from the specified plug-in.

Note: JAX-RPC based services run in the Artix ESB C++ Runtime using
a JNI layer.
 71

../deploy/cpp/index.htm

CHAPTER 3 | Developing Artix Services
Example 27 shows the code to create a servant for the HelloWorld service.

For more details see �Servant Threading Models� on page 83.

Registering a servant

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus�
registerServant() method. This registers the servant with a fixed address
that is read from the contract associated with the service. The signature for
registerServant() is shown in Example 28.

In addition to the servant, registerServant() takes the service�s QName as
specified in the service�s contract. You can also supply the name of the
WSDL port you on which you want the servant activated. If no port name is
given, the servant is activated on all ports.

For more details about servant registration see �Servant Registration� on
page 79.

Example 27: Creating a Servant

//Java
Servant servant =
 new SingleInstanceServant(new HelloWorldImpl(),
 "./HelloWorld.wsdl", bus);

Example 28: registerServant()

void registerServant(Servant servant,
 QName serviceName,
 String portName)
throws BusException
72

Developing a Container Based Service
Example

Example 29 shows an implementation of activateService() that registers
a Greeter servant, thereby associating it with the SOAPService WSDL
service.

In this example, it is assumed that the service activator instance was
registered as shown in Example 25 on page 68�that is, the service
activator instance is registered only against the SOAPService WSDL service.
Hence, it follows that the activateService() method shown in Example 29
will only be called when serviceName equals the SOAPService QName.

Advanced applications might choose to register a service activator instance
against several different services. In that case, you would need to examine
the service QName, serviceName, in order to decide which servant to
activate.

deactivateService() deactivateService() is called either by busShutdown() or whenever the
it_container_admin -removeservice command is issued. It is the
appropriate place to deregister the servant for your service. This is done by
using the bus� removeServant() method.

Example 30 shows an implementation of deactivateService() that
deregisters and deletes the Greeter servant that was registered by
activateService().

Example 29: Sample Implementation of activate_service()

public void activateService(QName serviceName)
throws BusException
{
 Servant servant = new SingleInstanceServant(new GreeterImpl(),
 theWsdlLocation,
 theBus);
 theBus.registerServant(servant, serviceName);
}

 73

CHAPTER 3 | Developing Artix Services
Example 30: Sample Implementation of deactivate_service()

public void deactivateService(QName serviceName)
{
 try
 {
 theBus.removeServant(serviceName);
 }
 catch(BusException ex) {}
}

74

Developing a Standalone Service
Developing a Standalone Service

Overview If you decide that you want to deploy your service as a standalone Java
application, Artix can generate a server class that contains a main().
Developing a service as a standalone service requires that you register your
service implementation, or implementations, with the Artix bus in the
applications main(). It also requires that you must specifically initialize the
Artix bus and then start the bus.

Your standalone service will require a dedicated configuration scope.
However, it will not require a deployment descriptor.

Generating the service main() You can use wsdltojava to generate a service main() by using the -server
flag as shown in Example 31.

The -server flag is used in place of the -plugin and the -deployable flags.
It instructs the code generator to create a class containing a main(). The
generated main() will contain the basic code needed to register the service
implementation with the bus. The main() shown in Example 34 on page 77
was generated using wsdltojava.

Writing the main() The main() of a standalone service must do four things before it can process
requests:

1. Initialize the Artix bus.

2. Create a servant for the service implementation.

3. Register the server implementation with the Artix bus.

4. Start the Artix bus.

Initializing the bus The Artix bus is initialized using com.iona.jbus.Bus.init(). The method
has the following signature:

Example 31: Generating a Standalone service

wsdltojava -server -impl widgets.wsdl

static Bus init(String args[]);
 75

CHAPTER 3 | Developing Artix Services
init() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your service, load the Artix
configuration information for your application, and load the required
plug-ins.

Before the bus can begin processing requests made on your service, you
must register the servant object that implements your service�s business
logic with the bus. Registering the implementation object�s servant with the
bus allows the bus to create instances of the implementation object as it
processes requests.

Creating a servant for your service
implementation

Artix wraps service implementation objects in a Servant object that allows
the bus to manage the object. To create a com.iona.jbus.Servant for your
service implementation you create an instance of a SingleInstanceServant
as shown in Example 32. The creator for a SingleInstanceServant uses
the following:

� an instance of your implementation object

� the path of the WSDL file describing the service interface

� an instance of an initialized Artix bus.

Example 32 shows the code to create a servant for the HelloWorld service.

For more details see �Servant Threading Models� on page 83.

Example 32: Creating a Servant

//Java
Servant servant =
 new SingleInstanceServant(new HelloWorldImpl(),
 "./HelloWorld.wsdl", bus);
76

Developing a Standalone Service
Registering a servant After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus�
registerServant() method. This registers the servant with a fixed address
that is read from the contract associated with the service. The signature for
registerServant() is shown in Example 33.

In addition to the servant, registerServant() takes the service�s QName as
specified in the service�s contract. You can also supply the name of the
WSDL port you on which you want the servant activated. If no port name is
given, the servant is activated on all ports.

For more details about servant registration see �Servant Registration� on
page 79

Starting the bus After the bus is initialized and the service implementation is registered with
it, the bus is ready to listen for requests and pass them to the servant for
processing. To start the bus, you use the bus� run() method. Once the bus
is started, it retains control of the process until it is shut down. The service�s
main() will be blocked until run() returns.

Completed server main() Example 34 shows the main() for a standalone service.

Example 33: registerServant()

void registerServant(Servant servant,
 QName serviceName,
 String portName)
throws BusException

Example 34: Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {
 77

CHAPTER 3 | Developing Artix Services
 // Initialize the Artix bus
 Bus bus = Bus.init(args);

 // Register the Servant
 QName name = new QName("http://xmlbus.com/HelloWorld",
 "HelloWorldService");
 Servant servant =
 new SingleInstanceServant(new HelloWorldImpl(),
 "./HelloWorld.wsdl",
 bus);
 bus.registerServant(servant, name, "HelloWorldPort");

 // Start the Bus
 bus.run();
 }
}

Example 34: Server main()
78

Servant Registration
Servant Registration

Overview In order to make a service accessible to remote client�s, you must register its
associated servant with a bus instance. Once the servant is registered with
the bus instance the service is activated and begins listening for requests.

When a servant is instantiated in Java it is associated with the logical
portion of an Artix contract. It is a Java instance of the interfaced defined in
a WSDL portType element. At this point, a Java servant has no knowledge
of the physical details of the service which it implements.

The servant is associated with the physical details of the service when it is
registered with an instance of the Artix bus. At this point the servant is tied
to the physical details defined by the WSDL port element defining the
message format and transport used by the service.

Artix provides two methods for registering a servant:

Static registration ties the servant to a port element in the physical contract
defining the service.

Transient registration ties the servant to a cloned service element.

In this section This section discusses the following topics:

Static Servant Registration page 80

Transient Servant Registration page 81
 79

CHAPTER 3 | Developing Artix Services
Static Servant Registration

Overview When a servant is registered as a static servant it is linked to a port element
that is read from the contract associated with the application. This means
that a static servant is restricted to using the details of a service element
appearing in the service�s contract.

Static servants are useful when a bus instance is only going to host a single
instance of a servant. They are also useful when using references and you do
not want to use the WSDL publishing plug-in because consumers that have
a copy of the service�s contract have the servant�s port information.

Registering You register a static servant using the bus� registerServant() method. The
signature for registerServant() is shown in Example 33.

In addition to the servant instance, registerServant() takes the service�s
QName as specified in the contract defining the service. You can also supply
the name of the WSDL port you on which you want the servant activated. If
no port name is given, the servant is activated on all ports. To register a
servant on more than one specific port, you can call registerServant()
multiple times and specify a different port name on each call.

Example Example 36 shows the code for registering a static servant.

Example 35: registerServerFactory()

void registerServant(Servant servant,
 QName serviceName,
 String portName)
throws BusException

Example 36: Registering a Static Servant

QName name = new QName("http://whoDunIt.com/Sleuth",
 "SleuthService");
Servant servant = new SingleInstanceServant("./sleuth.wsdl",
 new SleuthImpl());
bus.registerServant(servant, name, "SleuthHTTPPort");
80

Servant Registration
Transient Servant Registration

Overview When a servant is registered as a transient servant, Artix clones a service
element from the service�s physical contract and links the transient servant
with the clone. This has the following effects:

� The transient servant�s physical details are based on an existing
service element that appears in the contract.

� The transient servant�s QName is replaced by a dynamically generated,
unique QName.

� The transient servant�s addressing information is replaced such that
each address is unique per-clone and per-port.

Transient servants are useful if the bus is going to be hosting a number of
instances of a servant such as when a service is a factory for other services.

Supported transports While Artix will allow you to register any servant as transient, not all
transports support the notion of transience. Currently, the only transports
that can make use of transient servants are HTTP, CORBA, and IIOP
Tunnel.

Service templates When using transient servants in your application, your contract must
provide a service template for the servant. A service template is a service
element from which your transient servants will be cloned. When creating
the service template for transient servants adhere to the following:

� The service template must come before any actual service elements
defined in the contract. If you place your service templates after your
actual service elements, you may run into problems using the router.

� The port elements defined in the service element must use one of the
supported transports.

� The port elements defined in the service element must fully describe
the properties of the transport being used.

� The address specified for an HTTP endpoint must be specified using
host_name:0.
 81

CHAPTER 3 | Developing Artix Services
� The address specified for either a CORBA endpoint or a IIOP endpoint
must be ior:. Specifying any other address in the template will cause
the servants to have invalid IORs.

Registering You register a transient servant using the bus� registerTransientServant()
method. The signature of registerTransientServant() is shown in
Example 37.

In addition to the servant instance, registerTransientServant() takes the
service element�s QName as specified in the contract defining the service.
Unlike registerServant(), registerTransientServant() does not allow
you to specify a port element because the bus dynamically assigns a port to
the transient servant.

Transient servant QNames Because the newly created transient servant is cloned from the service
element whose QName was supplied, the new servant has a different
QName. The transient servant�s QName is returned when you invoke
registerTransientServant(). The returned QName is the QName you use
when creating references for the transient servant or when destroying the
transient servant.

Example Example 38 shows the code for registering a transient servant.

Example 37: registerTransientServant()

public abstract QName registerTransientServant(Servant servant,
 QName serviceName)
throws BusException;

Example 38: Registering a Transient Servant

QName name = new QName("http://whoDunIt.com/Sleuth",
 "SleuthService");
Servant servant = new SingleInstanceServant("./sleuth.wsdl",
 new SleuthImpl());
QName transientName = bus.registerTransientServant(servant,
 name);
82

Servant Threading Models
Servant Threading Models

Overview The Artix bus is a multi-threaded C++ application that uses a thread pool
to hand out threads. When using the Artix Java APIs, you can use the Artix
configuration file to control how the C++ core manages its threads. In
addition the Artix Java APIs provide three servant threading models to
handle requests from the bus. These models are:

� single-instance multithreaded

� serialized single-instance

� per-invocation

Thread pool configuration The bus�s thread pool is configured in your applications configuration scope.
This configuration scope is specified in the main Artix configuration file.

There are three configuration variables that are used to configure the bus�
thread pool:

� thread_pool:initial_threads sets the number of initial threads in
each port's thread pool.

� thread_pool:low_water_mark sets the minimum number of threads in
each service's thread pool.

� thread_pool:high_water_mark sets the maximum number of threads
allowed in each service's thread pool.

For a detailed discussion of Artix configuration see Configuring and
Deploying Artix Solutions, C++ Runtime.

Single-instance multithreaded
servant

The standard Artix servant is the SingleInstanceServant. The
SingleInstanceServant provides a multi-threaded, single instance usage
model to the user. This means that all invocation threads for a given

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 83

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 3 | Developing Artix Services
endpoint access the same implementation object as shown in Figure 1 on
page 84. The SingleInstanceServant provides no thread safety for the user
code.

To instantiate a SingleInstanceServant you need to provide an instance of
your implementation object, the path of the contract describing the service,
and an instance of an initialized Artix bus. Example 32 shows an example of
instantiating a SingleInstanceServant.

Figure 1: SingleInstanceServant

Example 39: Creating a SingleInstnaceServant

//Java
Servant servant =
 new SingleInstanceServant(new HelloImpl(),
 "./hello.wsdl", bus);
84

Servant Threading Models
Serialized single-instance servant Artix provides a thread safe single-instance servant called a
SerializedServant. A SerializedServant ensures that all invocations are
routed to a single implementation object in a serialized manner as shown in
Figure 2 on page 85. Using a SerializedServant is equivalent to using a
SingleInstanceServant whose target object is completely synchronized.

To instantiate a SerializedServant you need to provide an instance of your
implementation object, the path of the contract describing the service, and
an instance of an initialized Artix bus. Example 32 shows an example of
instantiating a SerializedServant.

Per-invocation servant In addition to the multithreaded single instance servants, Artix provides a
per-invocation servant. This servant is implemented by the
PerInvocationServant class. A PerInvocationServant guarantees that a

Figure 2: SerializedServant

Example 40: Creating a SerializedServant

//Java
Servant servant = new SerializedServant(new HelloImpl(),
 "./hello.wsdl", bus);
 85

CHAPTER 3 | Developing Artix Services
separate instance of the implementation object will be used for each
invocation as shown in Figure 3 on page 86. This ensures thread safety, but
does not allow the implementation object to have any statefull information.

To use a PerInvocationServant, your implementation object must either
have a no-argument constructor, or implement the Cloneable interface and
provide a clone() method. Like the other servants the
PerInvocationServant needs an instance of your implementation object,
the path of the contract describing the service, and an instance of an
initialized Artix bus when being instantiated. Example 41 shows the code
for instantiating a PerInvocationServant.

Figure 3: PerInvocationServant

Example 41: Creating a PerInvocationServant

//Java
Servant servant = new PerInvocationServant(new HelloImpl(),
 "./hello.wsdl", bus);
86

Building an Artix Service
Building an Artix Service

Required jar files Artix Java applications require that the following Artix jar files are in your
classpath:

� InstallDir\artix_5.1\cxx_java\lib\artix\java_runtime\5.0\it_bus-

api.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\wsdl\1.3\it_wsdl.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\reflect\1.3\it_ws_re

flect.jar

� InstallDir\artix_5.1\cxx_java\lib\ws_common\reflect\1.3\it_ws_re

flect_types.jar

� InstallDir\artix_5.1\cxx_java\lib\common\ifc\1.3\ifc.jar

� InstallDir\artix_5.1\cxx_java\lib\jaxrpc\jaxrpc\1.1\jaxrpc-api.j

ar

Other jar files If your application uses SOAP with attachments, you will also need to
include
InstallDir\artix_5.1\cxx_java\lib\sun\activation\1.0.2\activation

.jar on your classpath.

If your application uses xsd:any, you will need to include
InstallDir\artix_5.1\cxx_java\lib\sun\saaj\1.2.1\saaj-api.jar on
your classpath.
 87

CHAPTER 3 | Developing Artix Services
88

CHAPTER 4

Finding Contracts
and References at
Runtime
Locating contracts at runtime is much more flexible than
specifying their location at development time.

Overview When it comes to deploying applications in a real system, it is typically
inconvenient to hardcode the location of a contract in the application. It is
more practical to specify the location of basic resources, such as a contract,
at runtime�for example, by specifying the contract URL in configuration or
on the command line.

Artix simplifies the process of obtaining the following kinds of basic
resources: contracts and Artix references. The process is divided into two
independent steps:

1. Provide the basic resource�you can provide a contract or an Artix
reference in several different ways: by configuration, by specifying the
location on the command line, and so on.

2. Retrieve the basic resource�Java functions are provided to retrieve
WSDL services and Artix references, based on the qualified name
(QName) of the resource.
 89

CHAPTER 4 | Finding Contracts and References at Runtime
In this chapter This chapter discusses the following topics:

Finding Initial References page 91

Finding Artix Contracts page 93
90

Finding Initial References
Finding Initial References

Overview An endpoint reference encapsulates the data required for creating a service
proxy to connect to an Artix endpoint (essentially, this data is identical to the
data contained in a WSDL service element). Once an application has a
reference to a service, it creates a service proxy by passing the reference to a
proxy constructor.

The Artix provides an API, Bus.resolveInitialEndpointReference(), for
finding initial references based on the QName of a WSDL service.

Example of finding an initial
reference

Given that the bus has already loaded and parsed either an Artix reference
(or a contract) containing a service called SOAPService in the namespace,
http://www.iona.com/hello_world_soap_http, you can initialize a service
proxy, proxy, as shown in Example 42.

Note: The Artix 3.0.x API Bus.resolveInitialReference() has been
deprecated in Artix 4.0. It is supported for backwards compatibility, but it
is recommended that you update clients to use the newer API.

Example 42: Finding an Initial Reference

QName name = new
 QName("http://www.iona.com/hello_world_soap_http",
 "SOAPService");

EndpointReferenceType ref;

// Find the initial reference using the bootstrap service
ref = bus.resolveInitialEndpointReference(name);

// Create a proxy and use it
GreeterClient proxy = (GreeterClient)bus.CreateClient(
 ref,
 GreeterClient.class);

proxy.sayHi();
 91

CHAPTER 4 | Finding Contracts and References at Runtime
Options for finding initial
references

Artix finds initial references from the following sources, in order of priority:

1. Collocated service�if the client code that calls
resolveInitialEndpointReference() is in the same process as the
specified service, resolveInitialEndpointReference() returns an
endpoint reference to the collocated service. This assumes that the
client and server code are using the same bus instance.

2. References specified on the command line�you can provide an initial
reference by specifying, on the command line, the location of a file
containing an XML instance of an endpoint reference. For example:

3. References specified in the configuration file�you can provide an
initial reference from the configuration file, either by specifying the
location of an endpoint reference file or by specifying the literal value of
an endpoint reference.

For more details, see Configuring and Deploying Artix Solutions, C++
Runtime.

4. Service in a contract�the service element in a contract contains
essentially the same data as an endpoint reference. Hence, if an
endpoint reference is not specified using one of the other methods,
Artix searches any loaded contracts to find the specified service.

The sources of contracts are the same as on the server side. The
mechanism for discovering references is, thus, effectively an extension
of the mechanism for discovering service contracts�see �Options for
finding contracts� on page 93.

java bsServer -BUSinitial_reference ../../etc/hello_ref.xml

Note: The JAX-RPC APIs are implemented on top of the Artix ESB
C++ Runtime using a JNI layer.
92

../deploy/cpp/index.htm
../deploy/cpp/index.htm

Finding Artix Contracts
Finding Artix Contracts

Overview An Artix contract is required to:

� register a servant with the bus.

� create a service proxy using the JAX-RPC Service interface.

Registering a servant with the bus associates an implementation
(represented by a servant object) with a particular WSDL service. The
Service interface uses the information in a WSDL service to identify the
operations exposed by the service and to open the proper network
connection. The WSDL service must, therefore, be available from one of
the contracts discovered by Artix.

The Artix provides an API, Bus.getServiceWSDL(), for retrieving the contract
for a particular WSDL service. getServiceWSDL() takes the QName of the
service and returns a string representing the location of the corresponding
contract.

Example of finding a contract Given that the bus has already loaded and parsed a contract containing the
service, SOAPService, in the namespace,
http://www.iona.com/hello_world_soap_http, you can find the WSDL
service element as shown in Example 43.

Options for finding contracts Artix finds contracts from the following sources, in order of priority:

1. Contract specified on the command line�you can provide a contract
by specifying the location of the contract file on the command line. For
example:

Example 43: Finding a Contract

QName name = new
 QName("http://www.iona.com/hello_world_soap_http",
 "SOAPService");

// Find the WSDL contract using the bootstrap service
String wsdl = bus.getServiceWSDL(name);

java bsServer -BUSinitial_contract ../../etc/hello.wsdl
 93

CHAPTER 4 | Finding Contracts and References at Runtime
2. Contract specified in the configuration file�you can provide a
contract from the configuration file. For example:

This associates a nickname, hello_service, with the QName for the
SOAPService service. The bus:initial_contract:url:hello_service
variable then specifies the location of the WSDL contract containing
this service.

For more details, see Configuring and Deploying Artix Solutions, C++
Runtime.

3. Contract directory specified on the command line�you can provide a
contract by specifying a contract directory on the command line. When
Artix looks for a particular WSDL service, it searches all of the WSDL
files in the specified directory. For example:

For more details, see Configuring and Deploying Artix Solutions, C++
Runtime.

4. Contract directory specified in the configuration file�you can provide
a contract by specifying a contract directory in the configuration file.
For example:

Artix Configuration File
bus:qname_alias:hello_service =
 "{http://www.iona.com/hello_world_soap_http}SOAPService";
bus:initial_contract:url:hello_service =

"../../etc/hello.wsdl";

Note: The JAX-RPC APIs are implented on top of the Artix ESB
C++ Runtime using a JNI layer.

java bsServer -BUSservice_contract_dir ../../etc/

Note: The JAX-RPC APIs are implemented on top of the Artix ESB
C++ Runtime using a JNI layer.

Artix Configuration File
bus:initial_contract_dir = [".", "../../etc"];
94

../deploy/cpp/index.htm
../deploy/cpp/index.htm
../deploy/cpp/index.htm
../deploy/cpp/index.htm

Finding Artix Contracts
5. Stub WSDL shared library�Artix can retrieve a contract that has been
embedded in a shared library.

Currently, this mechanism is not publicly supported. However, it is
used internally by the following Artix services: Locator Service, Session
Manager Service, Peer Manager, and Container Service.

References For more details about how to register servants, see �Servant Registration�
on page 79.

For more information on endpoint references see �Using Endpoint
References� on page 281.
 95

CHAPTER 4 | Finding Contracts and References at Runtime
96

CHAPTER 5

Things to Consider
when Developing
Artix Applications
Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:

Getting a Bus page 98

Ensuring a Server Uses a Unique Bus page 99

Class Loading page 101

Avoid Circular References page 105
 97

CHAPTER 5 | Things to Consider when Developing Artix Applications
Getting a Bus

Overview There are many instances where you need to get the default bus for an
application. These include working with contexts and generating references.
When you are in the mainline code of your application, you will have access
to the instance of the bus you initialized. However, inside the
implementation object of your service or in methods outside the scope of
your client application�s mainline you will need to perform additional steps
to get the bus.

Inside a service implementation
object

If you are in a service�s implementation object, you can use the code shown
in Example 44.

From a client proxy If you have a client proxy object, you can use the JAX-RPC Stub interface as
shown in Example 45.

Example 44: Getting a Bus Reference Inside a Servant

com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

Example 45: Getting a Bus Reference from a Client Proxy

Stub clientStub = (Stub)client;
com.iona.jbus.MessageContext context =
clientStub._getProperty(com.iona.jbus.MessageContext.ARTIX_

MESSAGE_CONTEXT);
com.iona.jbus.Bus bus = context.getTheBus();
98

Ensuring a Server Uses a Unique Bus
Ensuring a Server Uses a Unique Bus

Overview The default behavior of Artix is to create a single Bus instance per JVM. This
means that if you are deploying multiple Artix service providers into a single
servlet container, a single application server, a single Artix container, or a
single Artix server, all the services will use the same Bus instance. For all
cases except multiple service providers in an Artix container, you can ensure
that each service provider gets a unique Bus instance. This is done by
providing a unique ORBId to the init() method used to instantiate the
service providers Bus instance.

You can specify an ORBId in one of two ways:

� Specifying the -ORBId parameter on the command line when starting
an Artix server.

� Adding a -ORBId entry to the argument list passed to Bus.init() when
creating a new Bus instance for a service provider.

Specifying the ORBId on the
command line

When starting an Artix Java server from the command line you can supply a
number of optional command line parameters. These parameters are used
to specify configuration information to the Bus instance started by the server.

Among these optional parameters is the -ORBId parameter. This parameter
specifies the ORB identifier used when creating the Bus instance used by an
Artix server.

When it is added to the command line, as shown in Example 46, the ORBId
parameter instructs the Artix runtime to associate the server with a Bus
instance using the specifed ORB identifier. If an appropraite Bus instance
does not exist in the JVM, a new Bus instance is created for the server. If a
Bus instance with the specified ORB identifier exists, the JVM will return
that Bus instance.

Note: There is no way to spawn multiple Bus instances in side of an Artix
container.

Example 46:Starting an Artix Server with the ORBId Parameter

java com.iona.demo.HelloWorldServer -ORBId HelloBus
 99

CHAPTER 5 | Things to Consider when Developing Artix Applications
Specifying the ORBId
programatically

You can specify the ORBId of the Bus instance used by an Artix server by
adding the -ORBId parameter to the array of strings passed to the
Bus.init() method. Example 47 shows code for doing this.

The code in Example 47 does the following:

1. Creates a new array to hold the updated command line argument list.

2. Copies the command line arguments into the new argument list.

3. Adds the -ORBId parameter to the new argument list.

4. Calls Bus.init() with the updated argument list.

Example 47:Specifying the Bus�s ORBId Programatically

public class HelloWorldServer
{
 public static void main(String args[])
 {

1 String[] newArgs = new String(args.length + 2);

2 int i = 0;
 while (i < args.length)
 {
 newArgs[i] = args[i];
 i++;
 }

3 newArgs[i] = "-ORBid";
 newArgs[i+1] = "HelloORB";

4 Bus bus = Bus.init(newArgs);

 ...
 }
}

100

Class Loading
Class Loading

Overview There may be occasions where the jars provided with Artix conflict with the
jars used in your environment. In particular, you may be using different
versions of the Xerces XML parser and Log4J. To handle such situations,
Artix provides a classloader firewall that isolates the Artix runtime
classloader from the application classloader and the system classloader.
This allows the Artix runtime to load the jars it needs and your application to
load your versions of any jars that conflict.

How the classloader firewall
works

The classloader firewall provides a mechanism for you to hide the
application classloader�s jar files from the Artix runtime. It does this by
exposing a simple mechanism for you to create a set of positive filters
defining what classes loaded by the application classloader are visible to the
Artix runtime�s classloader and specifying the location from which the Artix
runtime classloader will load its classes. Any classes not matched by a
positive filter are blocked from the Artix runtime�s classloader and will only
be loaded from the locations specified in the firewall�s configuration file.
Figure 4 shows how the classloader firewall blocks off the Artix runtime.

Figure 4: Classloader Firewall
 101

CHAPTER 5 | Things to Consider when Developing Artix Applications
For example, in most cases you would create a positive filter allowing all of
the J2SE classes into the Artix runtime. However, you would not create a
positive filter for the Xerces classes if your applications use a different
version of Xerces than Artix does. Artix will need to load its own Xerces
classes in order to operate.

Configuring the firewall
classloader

To use the classloader firewall with an Artix Java application do the
following:

1. Create a file called artix_ce.xml and place it in your application�s
classpath.

2. Using the artix_ce.xml file included with the Java firewall demo as a
template, define the filters to only allow the desired packages from the
Artix classloader to be visible to your application code.

3. Define the rules governing where the Artix classloader will look for
specific classes in the ce:loader element of artix_ce.xml.

Defining class filters The classloader firewall, if it finds an artix_ce.xml file in the classpath,
assumes that all classes not specified by a positive filter are to be blocked
from the Artix runtime�s classloader. You define positive filters using one of
two ce:filter attributes: type="discover" and type="pattern".

Using type=�discover�

The discover filter type specifies that the classloader will discover the filters
from the location specified in the discover-source attribute. Table 1 shows
the values for discover-source.

Table 1: discover-source values for the Classloader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your artix_ce.xml definition.
102

Class Loading
Using type=�pattern�

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application�s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java import
statements. For example, to specify that all classes from javax.xml.rpc are
to be allowed through the firewall you could use a filter like <ce:filter
type="pattern">javax.xml.rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce:filter
type="pattern">javax.xml.rpc.</ce:filter>.

Defining negative filters Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with com.iona.jbus. The Artix runtime needs to share a
number of resources from this package with the application code, but it also
needs to ensure that some of its resources are loaded from the Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negative-pattern for
the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system�s

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
myApp.jar, you could define a filter like <ce:filter
type="discover"
discover-source="jar">.\myApp.jar</ce:filter>.

jar-of Discover the filters needed to load specified resource. This
option makes it possible to discover the contents of jar files
which you know are reachable through the class loading
system, but which you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EJBHome class, you could
use a filter like <ce:filter type="discover"
discover-source="jar-of">javax/ejb/EJBHome.class</ce:
filter>.

Table 1: discover-source values for the Classloader Firewall

Value Meaning
 103

CHAPTER 5 | Things to Consider when Developing Artix Applications
JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce:filter
type="negative-pattern">com.iona.jbus.jaxrpc.<\ce:filter>.

Specifying the location for loading
blocked resources

The location from which the Artix runtime classloader will load resources
blocked by the firewall are specified in the ce:loader element of
artix_ce.xml. Inside the loader definition, you use a number of
ce:location elements to specify the location of specific resources. These
locations can be either the relative or absolute pathnames of a jar file. You
can also specify a directory in which the classloader will search for the
required jar files.

For example, if all of your Artix specific jar files are stored in the location in
which they were installed you could use a loader element similar to
Example 48 to specify the proper Xerces and Log4J version to load into the
Artix runtime.

Examples For an example of using the Artix classloader firewall see the java_firewall
demo in the demos\basic folder of your Artix installation. The demo provides
an example of using the classloader firewall to shield the Artix runtime from
different versions of Xerces and Log4J.

Example 48: Loader Definition to Load Xerces and Log4J

<ce:loader>
 <ce:loaction>C:\IONA\lib\apache\jakarta-log4j\1.2.6\log4j.jar<\ce:loaction>
 <ce:location>C:\IONA\lib\apache\xerces\2.5.0\xercesImpl.jar<\ce:location>
</ce:loader>
104

Avoid Circular References
Avoid Circular References

Overview This section warns against using circular references in Artix code. These can
result in infinite recursion and stack overflow.

Circular references and infinite
recursion

Artix does not detect circular references in your code. You must ensure that
your code does not contain any circular references.

The following simple example class contains a single member object:

The following code shows an example circular reference:

In this example, Artix first marshals the myObject instance, and then
marshals members of the myObject instance, which in this case is
myObject.m. This leads back to the myObject instance, which is marshalled
again, followed again by the myObject.m member, resulting in an infinite
recursive loop.

Artix does not check for circular references for performance reasons. Circular
references can result in infinite recursion and stack overflow and must be
avoided.

class A {
 Object m;
}

A myObject = new A();
myObject.m = myObject;
 105

CHAPTER 5 | Things to Consider when Developing Artix Applications
106

CHAPTER 6

Handling Artix
Generated
Exceptions
Artix supports the definition of user-defined exceptions using
the WSDL fault element. When mapped to Java, the fault
element is mapped to a throwable exception on the associated
Java method.

In this chapter This chapter discusses the following topics:

Generic Exception Handling page 108

Using the SOAP Binding page 116
 107

CHAPTER 6 | Handling Artix Generated Exceptions
Generic Exception Handling

Overview By default, remote invocations in Java return a RemoteException when the
remote service throws an exception. This works fine when working with
other Java services. Artix, however, is designed to interact with services
developed on a number of platforms. It is unlikely that user defined
exceptions and RemoteException objects can cover all of the possible
exceptions.

To fix this limitation, Artix uses a class called
com.iona.jbus.FaultException to handle exceptions thrown by remote
endpoints.

Bindings and Artix exceptions Each binding supported by Artix handles Artix generated exceptions
differently. Some, such as SOAP and CORBA, have mappings that are
determined by standards. Others use proprietary mappings. Table 2
describes how each of the bindings handle Artix generated exceptions.

Table 2: Binding Support for Artix Exceptions

Binding Support

SOAP Artix runtime exceptions and user thrown
FaultException objects are mapped into
SOAPFaultException objects. For more information
see �Using the SOAP Binding� on page 116.

CORBA Artix runtime exceptions and user thrown
FaultException objects are mapping into
corresponding CORBA exceptions. For more
information see Artix for CORBA.

Fixed Artix runtime exceptions and user thrown
FaultException objects are mapped into a fixed
record length message using a proprietary mapping.

Tagged Artix runtime exceptions and user thrown
FaultException objects are mapped into a tagged
message using a proprietary mapping.
108

../corba_ws/index.htm

Generic Exception Handling
When working with bindings that use proprietary mappings for exceptions,
Artix will transmit a message containing the exception back to the remote
endpoint. If the remote endpoint is developed using Artix, it will properly
decode the exception and behave as described in this section. If it is not
developed using Artix, it is responsible for decoding the message being
returned.

In this section This section discusses the following topics:

TibMsg Artix runtime exceptions and user thrown
FaultException objects are mapped into a TibMsg
using a proprietary mapping.

FML

XML Artix runtime exceptions and user thrown
FaultException objects are not transmitted.

G2++ Artix runtime exceptions and user thrown
FaultException objects are not transmitted.

Table 2: Binding Support for Artix Exceptions

Binding Support

Overview of Fault Exceptions page 110

Processing Fault Exceptions page 111

Throwing Fault Exceptions page 114
 109

CHAPTER 6 | Handling Artix Generated Exceptions
Overview of Fault Exceptions

Overview FaultException inherits from RuntimeException and adds fields to hold the
information needed to support the range of exceptions that Artix can
encounter. Because they inherit from RuntimeException, FaultException
objects can be thrown by Artix code and will be processed properly by the
Artix runtime. You can also retirieve a FaultException object from the
RemoteException object caught from a remove invocation.

FaultException fields FaultException objects have four fields. These field are explained in
Table 3.

Artix runtime exceptions The Artix runtime has a number of implementation specific exception types
that can be thrown. Artix runtime exceptions that occur along the messaging
chain are not passed to the user code. Instead they are packaged into a
FaultException and passed back down the message chain. The binding
level and transport level code will package the exception into an appropriate
format and transmit it back to the remote endpoint.

Some Artix runtime exceptions are returned to the user-level code. You must
handle these exceptions. One method of handling them is to throw a user
defined exception as discussed in �Creating User-Defined Exceptions� on
page 229. Alternatively, you can throw your own FaultException as
discussed in �Throwing Fault Exceptions� on page 114.

Table 3: FaultException Fields

Name Description

Message Specifies a detailed description of why the exception was thrown.

Category Specifies the category of the exception. For a full listing of the possible fault
categories see the FaultCatagory Javadoc.

Completion Status Specifies the status of the invocation. For a full listing of the possible values see
the FaultCompletionStatus Javadoc.

Source Specifies the type of endpoint that threw the exception. For a full listing of the
possible values see the FaultSource Javadoc.
110

http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultCompletionStatus.html
http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultCategory.html
http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultSource.html

Generic Exception Handling
Processing Fault Exceptions

Overview In general, your applications will not catch FaultException. For local
method calls, they should catch the exceptions that are thrown by the local
method. For remote method calls, they should catch RemoteException as
specified by JAX-RPC. The FaultException is stored in the cause member
of the caught RemoteException.

Procedure To extract the FaultException do the following:

1. Catch the RemoteException.

2. Extract the cause of the RemoteException object using its getCause()
method.

3. Check if the returned Throwable object is an instance of the
FaultException class.

4. If it is, cast the Throwable object to a FaultException object.

5. Use the FaultException object's get methods to extract the
information about the exception.

Getting exception details from a
FaultException

FaultException objects have four getter methods, shown in Example 49, to
retrieve the information about the cause of the exception.

Example 49: FaultException Getter Methods

String getMessage()
FaultCategory getCategory()
FaultCompletionStatus getCompletionStatus()
FaultSource getSource()
 111

CHAPTER 6 | Handling Artix Generated Exceptions
Evaluating the exception data The values returned by three of the methods are instances of an
enumeration. The easiest way to evaluate the values is to use the a static
instance of the appropriate class. For example, to decide how to proceed
based on the completion status you could use the code shown in
Example 50.

Example Example 51 shows code for catching and inspecting a FaultException.

Example 50: Evaluating the Completion Status of a Fault Exception

FaultCompletionStatus fcs = fe.getCompletionStatus();
if (fcs.value().equals(FaultCompletionStatus.YES)
{
 // Operation completed
}
else
{
 // Operation not completed
}

Example 51: Catching a FaultException

try
{
 Client client = (Client)service.getPort(...);
 client.sayHi();
}
catch (RemoteException re)
{
 Throwable t = re.getCause();

 if (t instanceof FaultException)
 {
 FaultException fe = (FaultException) t;

 FaultCategory fc = fe.getCategory();
 if (fc.value() == (FaultCategory.TRANSIENT_VAL))
 {
 // a TRANSIENT system exception
 }
112

Generic Exception Handling
 FaultCompletionStatus fcs = fe.getCompletionStatus();
 if (fcs.value()== (FaultCompletionStatus.YES_VAL)
 {
 // Operation completed
 }

 FaultSource fs = fe.getSource();
 if (fs.value() == (FaultSource.UNKNOWN_VAL))
 {
 // The exception was thrown by an unidentified endpoint
 }
 }
}

Example 51: Catching a FaultException
 113

CHAPTER 6 | Handling Artix Generated Exceptions
Throwing Fault Exceptions

Throwing a FaultException Because FaultException extends RuntimeException, you can throw a
FaultException just as you would any other exception in your application
code. The Artix runtime will process the exception and populate the
message according to the binding and transport being used by the endpoint.
If the endpoint receiving the exception is an Artix endpoint, it will interpret
the FaultException and return it to the endpoint�s application logic as a
RemoteException. If the receiving endpoint is not an Artix endpoint, it will
need to have logic for interpreting the fault message that is transmitted.

Procedure To throw a FaultException from your code do the following:

1. Instantiate a FaultException object to hold the exception.

2. Set the exception's category field.

3. Set the exception's source field.

4. Set the exception's completion status field.

5. Throw the exception.

Instantiating a FaultException
object

The FaultException class' creator method, shown in Example 52, takes a
single string that is placed in the message field of the new object.

While it is good practice to populate the message field with a message
describing the nature of the exception, it is not required.

None of the fields in the newly instantiated FaultException object will be
initialized. You will need to set values for each field independently.

Example 52: FaultException Constructor

FaultException(String message)
114

Generic Exception Handling
Setting the FaultException
object's fields

FaultException objects have three setter methods, shown in Example 53,
to populate the fields used to report details about the exception.

The values used to set the categories are defined as enumerations, so the
easiest way to set the values is to use the a static instance of the
appropriate class. For example to set the source field to UNKNOWN you could
use the code shown in Example 54.

Example Example 55 shows code for throwing a fault exception from an Artix service.

Example 53: FaultException Setter Methods

void setCategory(FaultCategory faultCategory)
void setCompletionStatus(FaultCompletionStatus faultStatus)
void setSource(FaultSource faultSource)

Example 54: Setting the Source Field

fe.setSource(FaultSource.UNKNOWN);

Example 55: Throwing a Fault Exception

FaultException fe = new FaultException("Account has expired");
fe.setCategory(FaultCategory.TIMEOUT);
fe.setSource(FaultSource.SERVER);
fe.setCompletionStatus(FaultCompletionStatus.NO);
throw fe;
 115

CHAPTER 6 | Handling Artix Generated Exceptions
Using the SOAP Binding

Overview According to the JAX-RPC specification, exceptions are mapped to
soap:fault elements when using the SOAP binding and soap:fault
elements are mapped to either a RemoteException, a user defined
exception, or a SOAPFaultException. Artix runtime exceptions and user
thrown FaultException objects are mapped to SOAPFaultException
objects.

Catching exceptions When using the SOAP binding, Artix applications need catch
SOAPFaultException objects. When a remote invocation results in a
returned exception, the Artix SOAP binding will either return a user defined
exception or a javax.xml.rpc.soap.SOAPFaultException object. If the
remote endpoint is implemented using Artix, a SOAPFaultException is
returned when either:

� an Artix runtime exception occurred.

� the application code threw a FaultException object.

You can inspect the SOAPFaultException object�s FaultString field to
determine the cause of the exception. It contains the String from the
Message field of the FaultException that caused the SOAPFaultException.

Example 56 shows code for catching a SOAPFaultException and inspecting
its FaultString field.

Example 56: Catching a SOAPFaultException

try
{
 String returnVal = impl.sayHi();
 System.out.println("Returned: "+returnVal);
}
catch(SOAPFaultException sfe)
{
 System.out.println("Caught exception");
 System.out.println("Fault String: "+sfe.getFaultString());
}

116

Using the SOAP Binding
Throwing exceptions When throwing exceptions from Artix applications using the SOAP binding,
you do not need to do anything special. You can throw a FaultException
object and the SOAP binding will map it into a SOAPFaultException. In the
mapping the FaultException object�s Message field is mapped to the
SOAPFaultException object�s FaultString field.

You can also throw SOAPFaultException object directly.

More information For more information on SOAPFaultException objects see the
SOAPFaultException Javadoc.
 117

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/soap/SOAPFaultException.html

CHAPTER 6 | Handling Artix Generated Exceptions
118

CHAPTER 7

Working with Artix
Data Types
Artix maps XML Schema data types in an Artix contract into
Java data types. For XML Schema simple types the mapping
is a one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

In this chapter This chapter discusses the following topics:

Including and Importing Schema Definitions page 120

XML Schema Elements page 122

Using XML Schema Simple Types page 123

Using XML Schema Complex Types page 148

Using XML Schema any Elements page 205

SOAP Arrays page 213

Holder Classes page 217

Using SOAP with Attachments page 221

Unsupported XML Schema Constructs page 226
 119

CHAPTER 7 | Working with Artix Data Types
Including and Importing Schema Definitions

Overview Artix supports the including and importing of schema definitions, using the
<include/> and <import/> schema tags. These tags enable you to insert
definitions from external files or resources into the scope of a schema
element. The essential difference including and importing is this:

� Including brings in definitions that belong to the same target
namespace as the enclosing schema element, whereas

� Importing brings in definitions that belong to a different target
namespace from the enclosing schema element.

xsd:include syntax The include directive has the following syntax:

The referenced schema, given by anyURI, must either belong to the same
target namespace as the enclosing schema or not belong to any target
namespace at all. If the referenced schema does not belong to any target
namespace, it is automatically adopted into the enclosing schema�s
namespace when it is included.

xsd:import syntax The import directive has the following syntax:

The imported definitions must belong to the namespaceAnyURI target
namespace. If namespaceAnyURI is blank or remains unspecified, the
imported schema definitions are unqualified.

<include schemaLocation = "anyURI" />

<import namespace = "namespaceAnyURI"
 schemaLocation = "schemaAnyURI" />
120

Including and Importing Schema Definitions
Example Example 57 shows an example of an XML schema that includes another
XML schema.

Example 58 shows the contents of the included schema file, included.xsd.

Example 57: Example of a Schema that Includes Another Schema

<definitions
targetNamespace="http://schemas.iona.com/tests/schema_parser"

 xmlns:tns="http://schemas.iona.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema
 targetNamespace="http://schemas.iona.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <include schemaLocation="included.xsd"/>

 <complexType name="IncludingSequence">
 <sequence>
 <element
 name="includedSeq"
 type="tns:IncludedSequence"/>
 </sequence>
 </complexType>

 </schema>
 </types>
<...>

Example 58: Example of an Included Schema

<schema
 targetNamespace="http://schemas.iona.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>
 121

CHAPTER 7 | Working with Artix Data Types
XML Schema Elements

Schema elements Elements in XML Schema represent an instance of an element in an XML
document generated from the schema. At their most basic, an element
consists of a single element element. Global element elements have two
attributes:

� name specifies the name of the element as it will appear in an XML
document.

� type specifies the type of the element. The type can be any XML
Schema primitive type or any named complex type defined in the
contract.

In addition to name and type, global elements have one other commonly
used optional attributes: nillable. This attribute specifies if an element can
be left out of a document entirely. If nillable is set to true, the element
can be omitted from any document generated using the schema.

An element can also define its own type. Elements defined this way have an
in-line type definition. In-line types are specified using either a complexType
element or a simpleType element. Once you specify if the type of data is
complex or simple, you can define any type of data needed using the tools
available for each type of data. In-line type definitions are discouraged,
because they are not reusable.

Java mapping Artix does not generate special classes for element elements unless they
have an in-line type definition. For in-line type definitions Artix follows the
same rules for code generation as described for a type definition. The
mappings between XML Schema types and Java classes is described in the
following sections of this chapter.

Because Artix does not generate classes specifically for elements some of
the attributes of XML Schema elements are not supported. In particular, the
attribute "abstract=true" is not recognized by Artix. If you specify that an
element is abstract and give it an in-line type definition, Artix will still
generate a class to support the defined type.
122

Using XML Schema Simple Types
Using XML Schema Simple Types

Overview Artix follows the JAX-RPC specification for mapping native XML Schema
types into Java. In most cases, the mapping from an atomic XML Schema
type is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:

Atomic Type Mapping page 124

Special Atomics Type Mappings page 128

Defining Simple Types by Restriction page 130

Using Enumerations page 135

Using Lists page 141

Using XML Schema Unions page 144
 123

CHAPTER 7 | Working with Artix Data Types
Atomic Type Mapping

Overview When a message part is described as being of one of the atomic XML
Schema types, the generated parameter�s type will be of a corresponding
primitive Java type. For example, the message description shown in
Example 59 will cause a parameter, score, of type int to be generated.

Table of atomic type mappings The atomics type mappings are shown in Table 4.

Example 59: Message Description Using a Simple Type

<message name="scoreResponse">
 <part name="score" type="xsd:int" />
</message>

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd:string java.lang.String

xsd:normalizedString java.lang.String

xsd:int int

xsd:unsignedInt long

xsd:long long

xsd:unsignedLong java.math.BigInteger

xsd:short short

xsd:unsignedShort int

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:unsignedByte byte
124

Using XML Schema Simple Types
xsd:integer java.math.BigInteger

xsd:positiveInteger java.math.BigInteger

xsd:negativeInteger java.math.BigInteger

xsd:nonPositiveInteger java.math.BigInteger

xsd:nonNegativeInteger java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:dateTime java.util.Calendar

xsd:time java.util.Calendar

xsd:date java.util.Calandar

xsd:QName javax.xml.namespace.QName

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:ID java.lang.String

xsd:token java.lang.String

xsd:language java.lang.String

xsd:Name java.lang.String

xsd:NCName java.lang.String

xsd:NMTOKEN java.lang.String

xsd:anySimpleType java.lang.String

xsd:anyURI java.net.URI

xsd:gYear java.lang.String

xsd:gMonth java.lang.String

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
 125

CHAPTER 7 | Working with Artix Data Types
xsd:integer java.math.BigInteger

xsd:positiveInteger java.math.BigInteger

xsd:negativeInteger java.math.BigInteger

xsd:nonPositiveInteger java.math.BigInteger

xsd:nonNegativeInteger java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:dateTime java.util.Calendar

xsd:time java.util.Calendar

xsd:date java.util.Calandar

xsd:QName javax.xml.namespace.QName

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:ID java.lang.String

xsd:token java.lang.String

xsd:language java.lang.String

xsd:Name java.lang.String

xsd:NCName java.lang.String

xsd:NMTOKEN java.lang.String

xsd:anySimpleType java.lang.String

xsd:anyURI java.net.URI

xsd:gYear java.lang.String

xsd:gMonth java.lang.String

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
126

Using XML Schema Simple Types
Atomic type validation Artix Java validates XML Schema atomic types when they are passed to the
bus for writing to the wire. This means that when you are working with data
elements that are mapped from XML Schema atomics types you should take
care to ensure that they conform to the restrictions of the XML Schema type.
For example, the Java APIs would allow you to set a value of -10 into a data
element that is mapped to an xsd:positiveInteger. However, when the
bus attempted to write out the message containing that data element, the
bus would throw an exception.

BigDecimal type In Artix, the java.math.BigDecimal type is stored internally as a jstring.
The recommended way in Artix to initialize an object of BigDecimal type
with a floating-point number is as follows:

xsd:gDay java.lang.String

xsd:gYearMonth java.lang.String

xsd:gMonthDay java.lang.String

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type

new BigDecimal(Double.toString(645.769));
 127

CHAPTER 7 | Working with Artix Data Types
Special Atomics Type Mappings

Overview Mapping XML Schema atomic types to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XML Schema atomics type is mapped to the Java primitive�s corresponding
wrapper type. These cases include:

� an element element with its nillable attribute set to true as shown in
Example 60.

� an element element with its minOccurs attribute set to 0 and its
maxOccurs attribute set to 1 or its maxOccurs attribute not specified as
shown in Example 61.

� an attribute element with its use attribute set to optional, or not
specified, and having neither its default attribute nor its fixed
attribute specified as shown in Example 62.

Mappings Table 5 shows how XML Schema simple types are mapped into Java
wrapper classes in these special cases.

Example 60: Nillable Element

<element name="finned" type="xsd:boolean" nillable="true" />

Example 61: minOccurs set to Zero

<element name="plane" type="xsd:string" minOccurs="0" />

Example 62: Optional Attribute Description

<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>
128

Using XML Schema Simple Types
Table 5: simple Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte

xsd:unsignedByte java.lang.Short

xsd:unsignedShort java.lang.Integer

xsd:unsignedInt java.lang.Long

xsd:unsignedLong java.math.BigInteger

xsd:duration java.lang.String
 129

CHAPTER 7 | Working with Artix Data Types
Defining Simple Types by Restriction

Overview XML Schema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
type> section of an Artix contract using a simpleType element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XML Schema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

Procedure To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate
simpleType element into the types section of your contract.

Describing a simple type in XML
Schema

Example 63 shows the syntax for describing a simple type.

The type description is enclosed in a simpleType element and identified by
the value of the name attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the restriction

Example 63: Simple Type Syntax

<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
</simpleType>
130

Using XML Schema Simple Types
element. Each facet element is specified within the restriction element.
The available facets and their valid setting depends on the base type. For
example, xsd:string has six facets including:

� length
� minLength
� maxLength
� pattern
� whitespace

Example 64 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value, but
<SSN>032439876</SSN> is not valid.

Mapping simple types to Java Artix maps user-defined simple types to the Java type of the simple type�s
base type. So, any message using the simple type SSN, shown in
Example 64, would be mapped to a String because the base type of SSN is
xsd:string. For example, the contract fragment shown in Example 65
would result in a Java method, creditInfo(), which took a parameter,
socNum, of String.

Example 64: SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}" />
 </restriction>
</simpleType>

Example 65: Credit Request with Simple Types

<message name="creditRequest">
 <part name="socNum" type="SSN" />
</message>
...
<portType name="creditAgent">
 <operation name="creditInfo">
 <input message="tns:creditRequest" name="credRec" />
 <output message="tns:creditReport" name="credRep" />
 </operation>
</portType>
 131

CHAPTER 7 | Working with Artix Data Types
Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you should ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Enforced facets For the facets that Artix does enforce, no special code is generated. Instead,
the enforcement is done by the Artix core. Therefore, the Artix user level
code will allow you to set invalid values into a restricted simple type.
However, when the Artix core attempts to parse the message, it will throw a
runtime exception and refuse to process the message.

Artix enforces the following facets:

length

The length facet is a non-negative integer that works with a number of
primitive types. Table 6 describes the effects of the length facet on
supported XML Schema types.

Table 6: Effects of length Facet on XML Schema Types

Restricted Type Effect

xsd:string The string must have the specified number of
characters.

xsd:anyURL The URL must have the specified number of
characters.

xsd:list The list must have the specified number of
elements.

xsd:hexBinary The value must have the specified number of
octets (8-bits).

xsd:base64Binary The value must have the specified number of
octets (8-bits).
132

Using XML Schema Simple Types
minLength

The minLength facet is a non-negative integer that works with a number of
primitive types. Table 7 describes the effects of the minLength facet on
supported XML Schema types.

maxLength

The maxLength facet is a non-negative integer that works with a number of
primitive types. Table 8 describes the effects of the maxLength facet on
supported XML Schema types.

Table 7: Effects of minLength Facet on XML Schema Types

Restricted Type Effect

xsd:string The string must have at least the specified
number of characters.

xsd:anyURL The URL must have at least the specified
number of characters.

xsd:list The list must have at least the specified
number of elements.

xsd:hexBinary The value must have at least the specified
number of octets (8-bits).

xsd:base64Binary The value must have at least the specified
number of octets (8-bits).

Table 8: Effects of maxLength Facet on XML Schema Types

Restricted Type Effect

xsd:string The string must have no more than the
specified number of characters.

xsd:anyURL The URL must have no more than the specified
number of characters.

xsd:list The list must have no more than the specified
number of elements.

xsd:hexBinary The value must have no more than the
specified number of octets (8-bits).
 133

CHAPTER 7 | Working with Artix Data Types
enumeration

For more information on the enumeration facet, read �Using Enumerations�
on page 135.

Unenforced facets Artix does not enforce the following facets:

� pattern
� whiteSpace
� maxInclusive
� maxExclusive
� minInclusive
� minExclusive
� totalDigits
� fractionDigits

xsd:base64Binary The value must have no more than the
specified number of octets (8-bits).

Table 8: Effects of maxLength Facet on XML Schema Types

Restricted Type Effect
134

Using XML Schema Simple Types
Using Enumerations

Overview In XML Schema, enumerations are described by derivation of a simple type
using the syntax shown in Example 66.

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration widgetSize, shown in Example 67, would be valid if it were
<widgetSize>big</widgetSize>, but not if it were
<widgetSize>big,mungo</widgetSize>.

Example 66: Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value" />
 <enumeration value="Case2Value" />
 ...
 <enumeration value="CaseNValue" />
 </restriction>
</simpleType>

Example 67: widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>
</simpleType>
 135

CHAPTER 7 | Working with Artix Data Types
Mapping to a Java class Artix maps enumerations to a Java class whose name is taken from the
schema type�s name attribute. So Artix would generate a class, WidgetSize,
to represent the widgetSize enumeration.

The generated class contains two static public data members for each
possible case value. One, _CaseNValue, holds the data value of the
enumeration instance. The other, CaseNValue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration�s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, WidgetSize, shown in
Example 68, to represent the enumeration, widgetSize, shown in
Example 67 on page 135.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in �Nesting with Anonymous Types� on page 175.

Example 68: WidgetSize Class

// Java
public class WidgetSize
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";
136

Using XML Schema Simple Types
 private final String _val;

 public static final String _big = "big";
 public static final WidgetSize big = new WidgetSize(_big);

 public static final String _large = "large";
 public static final WidgetSize large = new WidgetSize(_large);

 public static final String _mungo = "mungo";
 public static final WidgetSize mungo = new WidgetSize(_mungo);

 public static final String _gargantuan = "gargantuan";
 public static final WidgetSize gargantuan = new

WidgetSize(_gargantuan);

 protected WidgetSize(String value)
 {
 _val = value;
 }

 public String getValue()
 {
 return _val;
 };

Example 68: WidgetSize Class
 137

CHAPTER 7 | Working with Artix Data Types
 public static WidgetSize fromValue(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

 public static WidgetSize fromString(String value)
 {
 if (value.equals("big"))
 {
 return big;
 }
 if (value.equals("large"))
 {
 return large;
 }
 if (value.equals("mungo"))
 {
 return mungo;
 }
 if (value.equals("gargantuan"))
 {
 return gargantuan;
 }
 throw new IllegalArgumentException("Invalid enumeration

value: "+value);
 };

Example 68: WidgetSize Class
138

Using XML Schema Simple Types
Working with enumerations in
Java

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromValue() or fromString() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the getValue() method on that member to
determine the value for the member.

If you were working with the widgetSize enumeration, shown in
Example 67 on page 135, to build an ordering system, you would need a
way to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 69 shows a simple text entry method
for getting the proper member of the enumeration using fromValue(),

Because the value used to define the cases of the enumeration is a string,
fromValue() takes a String and returns the member based on the value of
the string. In this example, fromString() is interchangeable with
fromValue(). However, if the value of the enumeration were integers,
fromValue() would take an int.

 public String toString()
 {
 return ""+_val;
 }
}

Example 68: WidgetSize Class

Example 69: Using fromValue() to Get a Member of an Enumeration

// Java
temp = new String();
WidgetSize ordered_size;

// Get the type of widgets to order
System.out.println("What size widgets do you want?");
System.out.println("Big");
System.out.println("Large");
System.out.println("Mungo");
System.out.println("Gargantuan");
temp = inputBuffer.readLine();

ordered_size = WidgetSize.fromValue(temp);
 139

CHAPTER 7 | Working with Artix Data Types
To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the getValue() method
to retrieve the value of the enumeration or you could use the toString()
method to return the value as a String. Example 70 uses getValue() to
return the value of the enumeration retrieved in Example 69 on page 139

Example 70: Using getValue()

// Java
String sizeVal = ordered_size.getValue();
System.out.println("You ordered "+sizeVal+" sized widgets.");
140

Using XML Schema Simple Types
Using Lists

Overview XML Schema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, simpleList, using
a list type is shown in Example 71.

In Java code list types are mapped into arrays.

Defining list types in XML Schema XML Schema list types are simple types and as such are defined using a
simpleType element. The most common syntax used to define a list type is
shown in Example 72.

The value given for atomicType defines the type of the elements in the list. It
can only be one of the built in XML Schema atomic types, like xsd:int or
xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type. Table 9
shows the facets used by list types.

Example 71: List Type Example

<simpleList>apple orange kiwi mango lemon lime<\simpleList>

Example 72: Syntax for List Types

<simpleType name="listType">
 <list itemType="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </list>
</simpleType>

Table 9: List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.
 141

CHAPTER 7 | Working with Artix Data Types
For example, the definition for the simpleList element shown in
Example 71 on page 141, is shown in Example 73.

In addition to the syntax shown in Example 72 on page 141 you can also
define a list type using the less common syntax shown in Example 74.

minLength Defines the minimum number of elements allowed in
an instance of the list type.

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

pattern Defines the lexical form of the elements in an instance
of the list type. Patterns are defined using regular
expressions.

Table 9: List Type Facets

Facet Effect

Example 73: Definition for simpleList

<simpleType name="simpleListType">
 <list itemType="string"/>
</simpleType>
<element name="simpleList" type="simpleListType"/>

Example 74: Alternate Syntax for List Types

<simpleType name="listType">
 <list>
 <simpleType>
 <restriction base="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
 </simpleType>
 </list>
</simpleType>
142

Using XML Schema Simple Types
Mapping of list types in Java List types are mapped to Java arrays and do not cause a new class to be
generated to represent them. Instead, any message part that was specified
in the Artix contract as being of type listType or any element of another
complex type that was of type listType in the Artix contract would be
mapped to an array of the type specified by the itemType attribute.

For example, the list type, stringList, shown in Example 75 defines a list
of strings that must have at least two elements and no more than six
elements. The itemType attribute specifies the type of the list elements,
xsd:string. The facets minLength and maxLength set the size constraints on
the list.

Any message part of type stringList and any complex type element of type
stringList would be mapped to String[]. So the contract fragment shown
in Example 76, would result in the generation a Java method
celebWasher() that took a parameter, badLang, of type String[].

Example 75: Definition of stringList

<simpleType name="stringList">
 <list itemType="xsd:string">
 <minLength value="2" />
 <maxLength value="6"/>
 </list>
</simpleType>

Example 76: Operation Using a List

...
<message name="badLang">
 <part name="statement" type="stringList" />
</message>
<portType name="censor">
 <operation name="celebWasher">
 <input message="badLang" name="badLang" />
 </operation>
</portType>
...
 143

CHAPTER 7 | Working with Artix Data Types
Using XML Schema Unions

Overview In XML Schema, a union is a construct that allows you to describe a type
whose data can be of a number of simple types. For example, you could
define a type whose value could be either the integer 1 or the string first.

XML Schema unions are simple types, defined using a simpleType element.
They contain at least one union element that define the member types of
the union. The member types of the union are the valid types of data that
can be stored in an instance of the union. You define them using the
memberTypes attribute of the union element. memberTypes contains a list of
one or more defined simple type names. Example 77 shows the definition of
a union that can store either an integer or a string.

In addition to specifying named types to be a member type of a union, you
can also define anonymous simple types to be a member type of a union.
This is done by adding the anonymous type definition inside of the union
tag. Example 78 shows an example of a union containing an anonymous
member type restricting the possible values of a valid integer to 1 through
10.

Example 77: Simple Union Type

<simpleType name="orderNumUnion">
 <union memberTypes="xsd:string xsd:int" />
</simpleType>

Example 78: Union with an Anonymous Member Type

<simpleType name="restrictedOrderNumUnion">
 <union memberTypes="xsd:string">
 <simpleType>
 <restriction base="xsd:int">
 <minInclusive value="1" />
 <maxInclusive value="10" />
 </restriction>
 </simpleType>
 </union>
</simpleType>
144

Using XML Schema Simple Types
Mapping to Java class Artix maps unions to a Java class whose name is taken from the schema
type�s name attribute. So Artix would generate a class, OrderNumUnion, to
represent the orderNumUnion union.

The Java mapping of XML Schema unions is very similar to that used in
mapping choice complex types. See �Choice Complex Types� on page 154.
The generated class would contain a getter method, a setter method and an
isSet method for each member type in the union. For example,
orderNumUnion, shown in Example 77 on page 144, would result in the
generated class shown in Example 79.

Note: If the union contains an anonymous enumerated type, the nested
type will result in a generated class whose name begins with the name of
the union and ends with the name of the base simple type. See �Using
Enumerations� on page 135

Example 79: Java Class for a Union

public class OrderNumUnion
{
 private String __discriminator;
 private String string;
 private int _int

 public String getString()
 {
 return (String)string;
 }

 public setString(String val)
 {
 this.string = val;
 __discriminator = "string";
 }
 145

CHAPTER 7 | Working with Artix Data Types
Working with unions in Java When working with unions in Java it is important to remember that in XML
Schema only one of the member types can be valid at a time. This means
that in an Artix Java application, while it is possible for both elements of the
generated class can have valid data in them, only the last element on which
set was called will be transmitted across the wire. For example, if you

 public boolean isSetString()
 {
 if(__discriminator != null &&
 __discriminator.eqauls("string"))
 {
 return true;
 }

 return false;
 }

 public get_int()
 {
 return (int)_int;
 }

 public set_int(int val)
 {
 this._int = val;
 __discriminator = "_int";
 }

 public boolean isSet_int()
 {
 if(__discriminator != null && _discriminator.eqauls("__int"))
 {
 return true;
 }

 return false;
 }

 public toString()
 {
 ...
 }
}

Example 79: Java Class for a Union
146

Using XML Schema Simple Types
called set_int() and then called setString(), both elements in
OrderNumUnion would have valid data, but the discriminator would be set to
the string member and that is the only value Artix will consider valid. If you
transmitted the object, the receiving application would only receive the data
stored in the string member.

Receiving union types in Artix is a little more complicated. When using
bindings that pass information as XML documents, like SOAP, Artix will
follow the validation rules described in the XML Schema specification for
determining the value of the union. So, if the xsi:type is written by the
sending application, Artix will use that to determine the valid member
element of the union. If the xsi:type is not written by the sending
application, Artix will use the order in which the member types are specified
in the type definition to determine the valid member type. For example, if an
Artix application using a SOAP binding receives an element of type
OrderNumUnion and the xsi:type is not written out by the sending
application, the data will be treated as a string because xsd:string is first
in the member type list.
 147

CHAPTER 7 | Working with Artix Data Types
Using XML Schema Complex Types

Overview Complex types are described in the types section of an Artix contract.
Typically, they are described in XML Schema using a complexType element.
In contrast to simple types, complex types can contain multiple elements
and have attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a
method for stiringifying the object.

In this section This section contains the following subsections:

Sequence and All Complex Types page 149

Choice Complex Types page 154

Attributes page 158

Undeclared Attributes page 166

Nesting Complex Types page 170

Deriving a Complex Type from a Simple Type page 180

Deriving a Complex Type from a Complex Type page 184

Occurrence Constraints page 188

Using Model Groups page 200
148

Using XML Schema Complex Types
Sequence and All Complex Types

Overview Complex types often describe basic structures that contain a number of
fields or elements. XML Schema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a sequence
element. The other is to describe the structure inside of an all element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using sequence and all is in how the elements of
the structure are passed on the wire. When a structure is described using
sequence, the elements are passed on the wire in the exact order they are
specified in the contract. When the structure is described using all, the
elements of the structure can be passed on the wire in any order.

Mapping to Java A complex type described with sequence or with all is mapped to a Java
class whose name is derived from the name attribute of the complexType
element in the contract from which the type is generated. As specified in the
JAX-RPC specification, the generated class has a getter and setter method
for each element described in the type. The individual elements of the
complex type are mapped to private variables within the generated class.

The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 80, the generated setter
method would have the signature void setName(String val).

Note: You can define a complex type without using sequence, all, or
choice. However, the type can only contain attributes.

Example 80: Element Name Description

<complexType name="Address">
 <all>
 <element name="Name" type="xsd:string" />
 ...
 </all>
</complexType>
 149

CHAPTER 7 | Working with Artix Data Types
The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter
method for the element described in Example 80 would have the signature
String getName().

Elements of xsd:boolean are an exception to the above mapping. For
elements of type xsd:boolean, the getter methods name is prepended with
is. For example if an element is defined as <element name="in"
type="xsd:boolean /> the generated getter method would be boolean
isIn().

In addition to the getter and setter methods, Artix also generates a
toString() method for each complex type. The toString() method returns
a string containing a labeled list of the values for each element in the class.

The maxOccurs attribute Any elements whose maxOccurs attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 81
would result in the generation of a private variable, observedSpeed,of type
float[].

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.

Example 81: Element with MaxOccurs Greater than One

<complexType name="drugTestResults">
 <sequence>
 <element name="observedSpeed" type="xsd:float"
 maxOccurs="unbounded"/>
...
 </sequence>
</complexType>
150

Using XML Schema Complex Types
The getter and setter methods for observedSpeed are shown in Example 82.

Example Suppose you had a contract with the complex type, monsterStats, shown in
Example 83.

The Java class generated to support monsterStats would be similar to
Example 84.

Example 82: observedSpeed Getter and Setter Methods

// Java
public class drugTestResults
{
 private float[] observedSpeed;
...
 void setObservedSpeed(float[] val);
 float[] getObservedSpeed();
...
}

Example 83: monsterStats Description

<complexType name="monsterStats">
 <all>
 <element name="name" type="xsd:string" />
 <element name="weight" type="xsd:long" />
 <element name="origin" type="xsd:string" />
 <element name="strength" type="xsd:float" />
 <element name="specialAttack" type="xsd:string"
 maxOccurs="3" />
 </all>
</complexType>
 151

CHAPTER 7 | Working with Artix Data Types
Example 84: monsterStats Java Class

// Java
public class monsterStats
{
 public static final String TARGET_NAMESPACE =

"http://monsterBootCamp.com/types/monsterTypes";

 private String name;
 private long weight;
 private String origin;
 private float strength;
 private String[] specialAttack;

 public void setName(String val)
 {
 name=val;
 }
 public String getName()
 {
 return name;
 }

 public void setWeight(long val)
 {
 weight=val;
 }
 public long getWeight()
 {
 return weight;
 }

 public void setOrigin(String val)
 {
 origin=val;
 }
 String getOrigin()
 {
 return origin;
 }
152

Using XML Schema Complex Types
 public void setStrength(float val)
 {
 strength=val;
 }
 public float getStrength()
 {
 return strength;
 }

 public void setSpecialAttack(String[] val)
 {
 specialAttack=val;
 }
 public String[] getSpecialAttack()
 {
 return specialAttack;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null) {
 buffer.append("name: "+name+"\n");
 }
 if (weight != null) {
 buffer.append("weight: "+weight+"\n");
 }
 if (origin != null) {
 buffer.append("origin: "+origin+"\n");
 }
 if (strength != null) {
 buffer.append("strength: "+strength+"\n");
 }
 if (specialAttack != null) {
 buffer.append("specialAttack: "+specialAttack+"\n");
 }
 return buffer.toString();
 }
}

Example 84: monsterStats Java Class
 153

CHAPTER 7 | Working with Artix Data Types
Choice Complex Types

Overview XML Schema allows you to describe a complex type that may contain any
one of a number of elements. This is done using a choice element as part of
the complex type description. When elements are contained within a choice
element, only one of the elements will be transmitted across the wire.

Mapping to Java Like complex types described with a sequence element or with an all
element, complex types described with a choice element are mapped to a
Java class with getter and setter methods for each possible element inside
the choice element. In addition, the generated Java class for a choice
complex type includes an additional element, _discriminator, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method
isSetelem_name() is generated. If the element is the currently valid value,
its isSet method returns true. If not, the method returns false.

The discriminator is set in each of the complex type elements� setter
methods. This means that while any of the elements in the Java object
representing the complex type may contain valid data, the discriminator
points to the last element whose value was set. As stated in the Web
services specification only the element to which the discriminator is set will
be placed on the wire by a server. For Artix developers this has two
implications:

1. Artix servers will only write out the value for the last element set on an
object representing a choice complex type.

2. When Artix clients receive an object representing a choice complex
type, only the element pointed to by the discriminator will contain valid
data.
154

Using XML Schema Complex Types
Example Suppose you had a contract with the complex type, terrainReport, shown
in Example 85.

The Java class generated to represent terrainReport would be similar to
Example 86.

Example 85: terrainReport Description

<complexType name="terrainReport">
 <choice>
 <element name="water" type="xsd:float" />
 <element name="pier" type="xsd:short" />
 <element name="street" type="xsd:long" />
 </choice>
</complexType>

Example 86: terrainReport Java Class

// Java
public class TerrainReport
{
 public static final String TARGET_NAMESPACE =

"http://GlobeStrollers.com";

 private String __discriminator;

 private float water;
 private short pier;
 private long street;
 155

CHAPTER 7 | Working with Artix Data Types
 public void setWater(float _v)
 {
 this.water=_v;
 _discriminator="water"�
 }
 public float getWater()
 {
 return water;
 }
 public boolean isSetWater()
 {
 if(__discriminator != null &&
 __discriminator.equals("water")) {
 return true;
 }

 return false;
 }

 public void setPier(short _v)
 {
 this.pier=_v;
 _discriminator="pier";
 }
 public short getPier()
 {
 return pier;
 }
 public boolean isSetPier()
 {
 if(__discriminator != null &&
 __discriminator.equals("pier")) {
 return true;
 }

 return false;
 }

Example 86: terrainReport Java Class
156

Using XML Schema Complex Types
 public void setStreet(long _v)
 {
 this.street=_v;
 _discriminator="street";
 }
 public long getStreet()
 {
 return street;
 }
 public boolean isSetStreet()
 {
 if(__discriminator != null &&
 __discriminator.equals("street")) {
 return true;
 }

 return false;
 }

 public void _setToNoMember()
 {
 __discriminator = null;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (water != null) {
 buffer.append("water: "+water+"\n");
 }
 if (pier != null) {
 buffer.append("pier: "+pier+"\n");
 }
 if (street != null) {
 buffer.append("street: "+street+"\n");
 }
 return buffer.toString();
 }
}

Example 86: terrainReport Java Class
 157

CHAPTER 7 | Working with Artix Data Types
Attributes

Overview Artix supports the use of attribute elements and attributeGroup elements
within the scope of a complexType element. When defining structures for an
XML document attribute declarations provide a means of adding information
to be specified within the tag, not the value that the tag contains. For
example, when describing the XML element <value
currency="euro">410<\value> in XML Schema currency would be
described using an attribute element as shown in Example 87 on
page 159.

The attributeGroup element allows you to define a group of reusable
attributes that can be referenced by all complex types defined by the
schema. For example, if you are defining a series of elements that all use
the attributes catagory and pubDate, you could define an attribute group
with these attributes and reference them in all the elements that use them.
This is shown in Example 90 on page 160.

When describing data types for use in developing application logic,
attributes are treated as elements of a structure. For each attribute
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

Describing an attribute in XML
Schema

An XML Schema attribute element has one required attribute, name, that is
used to identify the attribute. It also has four optional attributes:

use Specifies if the attribute is required, optional, or
prohibited.

type Specifies the type of value the attribute can take. If it is
not used the schema type of the attribute must be
defined in-line.

default Specifies a default value to use for the attribute. It is only
used when the attribute definition�s use attribute is set to
optional.

fixed Specifies a fixed value to use for the attribute. It is only
used when the attribute definition�s use attribute is set to
optional.
158

Using XML Schema Complex Types
Example 87 shows an attribute element defining an attribute, currency,
whose value is a string.

If the type attribute is omitted from the attribute element, the format of
the data must be described in-line. Example 88 shows an attribute
element for an attribute, catagory, that can take the values autobiography,
non-fiction, or fiction.

Example 87: XML Schema for value

<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="currency" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

Example 88: Attribute with an In-Line Data Description

<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>
 159

CHAPTER 7 | Working with Artix Data Types
Example 89 shows an alternate description of the catagory attribute using
the type attribute.

Describing an attribute group in
XML Schema

Using an attribute group in a complex type definition is a two step process.
The first step is to define the attribute group itself. An attribute group is
defined using an attributeGroup element with a number of attribute child
elements. When defining an attribute group, attributeGroup requires a
name attribute that defines the string used to refer to the attribute group. The
attribute children elements define the members of the attribute group and
are specified as shown in �Describing an attribute in XML Schema� on
page 158. Example 90 shows the description of the attribute group
catalogIndecies. The attribute group has two members. catagory is of the
type defined in Example 89 on page 160. pubDate is of the native XML
Schema type dateTime and is required.

The second step is using an attribute group is to use the attribute group in
the definition of a complex type. You use attribute groups in complex type
definitions by using the attributeGroup element with the ref attribute. The
value of the ref attribute is the name given the attribute group that you
want to use as part of the type definition. For example if you wanted to use

Example 89: Category Attribute Using the type Attribute

<simpleType name="catagoryType">
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
</simpleType>
<complexType name="attributed">
...
 <attribute name="category" type="catagoryType" use="required">
</complexType>

Example 90: Attribute Group Definition

<attributeGroup name="catalogIndices">
 <attribute name="catagory" type="catagoryType" />
 <attribute name="pubDate" type="dateTime" use="required" />
</attributeGroup>
160

Using XML Schema Complex Types
the attribute group catalogIndecies in the complex type dvdType, you
would use <attributeGroup ref="catalogIndecies" /> as shown in
Example 91.

Mapping to Java Attributes are mapped to elements in the generated Java class for a complex
type. For each attribute element in a complex type definition, a
corresponding element, along with getter and setter methods, will be added
to the generated Java class for the type. For example, a contract with the
complex type shown in Example 92 would generate a class with three sets
of getter/setter methods.

Example 91: Complex Type with an Attribute Group

<complexType name="dvdType">
 <sequence>
 <element name="title" type="xsd:string" />
 <element name="director" type="xsd:string" />
 <element name="numCopies" type="xsd:int" />
 </sequence>
 <attributeGroup ref="catalogIndices" />
</complexType>

Example 92: techDoc Description

<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 </all>
 <attribute name="usefullness" type="xsd:float" use="optional"
 default="0.01" />
</complexType>
 161

CHAPTER 7 | Working with Artix Data Types
The Java class generated to represent it would be similar to Example 93.

Example 93: techDoc Java Class

// Java
public class TechDoc
{
 public static final String TARGET_NAMESPACE =

"http://www.docUSA.org/usability";

 private String product;
 private short version;
 private Float usefullness = new Float(0.01);

 public void setProduct(String val)
 {
 product=val;
 }
 public String getProdcut()
 {
 return product;
 }

 public void setVersion(short val)
 {
 version=val;
 }
 public short getVersion()
 {
 return version;
 }

 public void setUsefullness(Float val)
 {
 usefullness=val;
 }
 public Float getUsefullness()
 {
 return usefullness;
 }
162

Using XML Schema Complex Types
Attribute groups are mapped into Java as if the members of the group were
explicitly used in the type definition. If your attribute group has three
members, and it is used in a complex type, the generated class for that type
will include an element, along with the getter and setter methods, for each
member of the attribute group. For example, the complex type defined in
Example 91, Artix would generate a class that contained the members
catagory and pubDate to support the members of the attribute group used
in the definition as shown in.Example 94

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (prudcut != null) {
 buffer.append("product: "+product+"\n");
 }
 if (version != null) {
 buffer.append("version: "+version+"\n");
 }
 if (usefullness != null) {
 buffer.append("usefullness: "+usefullness+"\n");
 }
 return buffer.toString();
 }
}

Example 93: techDoc Java Class

Example 94: dvdType Java Class

// Java
public class Dvd
{
 private String title;
 private String director;
 private short numCopies;
 private Catagory catagory;
 private Calendar pubDate;
 163

CHAPTER 7 | Working with Artix Data Types
 public void setTitle(String val)
 {
 title=val;
 }
 public String getTitle()
 {
 return title;
 }

 public void setDirector(String val)
 {
 director=val;
 }
 public String getDirector()
 {
 return director;
 }

 public void setNumCopies(short val)
 {
 numCopies=val;
 }
 public short getNumCopies()
 {
 return numCopies;
 }

 public void setCatagory(Catagory val)
 {
 catagory=val;
 }
 public Catagory getCatagory()
 {
 return catagory;
 }

 public void setPubData(Calendar val)
 {
 pubDate=val;
 }
 public Calendar getPubDate()
 {
 return pubDate;
 }

Example 94: dvdType Java Class
164

Using XML Schema Complex Types
 public String toString()
 {
 ...
 }
}

Example 94: dvdType Java Class
 165

CHAPTER 7 | Working with Artix Data Types
Undeclared Attributes

Overview XML Schema has a mechanism that allows you to leave a place holder for
an arbitrary attribute in a complex type definition. Using this mechanism,
you could define a complex type that can have any attribute. For example,
you could create a type that defines the elements <robot name="epsilon"
/>, <robot age="10000" />, or <robot type="weevil" /> without
specifying the three attributes. This can be particularly useful when you
need to provide for a bit of flexibility in your data.

Defining in XML Schema Undeclared attributes are defined in XML Schema using the anyAttribute
element. It can be used wherever an attribute element can be used. The
anyAttribute element has no attributes as shown in Example 95.

The defined type, arbitter, has two elements and can have one attribute of
any type. The elements <officer
rank="12"><name>...</name><rate>...</rate></officer>, <lawyer
type="divorce"><name>...</name><rate>...</rate></lawyer>, and
<judge><name>...</name><rate>...</rate></judge> can all be generated
from the complex type arbitter.

Example 95: Complex Type with an Undeclared Attribute

<complexType name="arbitter">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="rate" type="xsd:float" />
 </sequence>
 <anyAttribute />
</complexType>

Note: The anyAttribute element is not support for complex types with
an all element.
166

Using XML Schema Complex Types
Mapping to Java When a complex type containing an anyAttribute element is mapped to
Java, Artix adds a member called otherAttributes to the generated class.
otherAttributes is of type java.util.Map and as with all other attributes it
has a getter method and a setter method. Example 96 shows the class
generated for the complex type defined in Example 95.

Example 96: Class for a Complex Type with an Undeclared Attribute

package com.iona.schemas.types.cattypes;

import java.util.Map;

public class Arbitter
{
 public static final String TARGET_NAMESPACE =

"http://schemas.iona.com/types";

 public static final javax.xml.namespace.QName QNAME = new
javax.xml.namespace.QName("http://schemas.iona.com/types",
"arbitter");

 private String name;
 private float rate;
 private Map otherAttributes;

 public String getName()
 {
 return name;
 }

 public void setName(String val)
 {
 this.name = val;
 }

 public float getRate()
 {
 return rate;
 }

 public void setRate(float val)
 {
 this.rate = val;
 }
 167

CHAPTER 7 | Working with Artix Data Types
Setting undeclared attributes The otherAttributes member of the generated class expects to be
populated with a HashMap object. The map is keyed using QNames. You can
set the keys using either the standard javax.xml.namespace.QName object or
the Artix specific com.iona.common.util.QName object. Once you have
created and populated the hash map, you can set the otherAttributes
member using the setOtherAttributes() method as shown in Example 97.

 public Map getOtherAttributes()
 {
 return otherAttributes;
 }

 public void setOtherAttributes(Map val)
 {
 this.otherAttributes = val;
 }

 public javax.xml.namespace.QName _getQName()
 {
 return QNAME;
 }

 public String toString()
 {
 ...
 }
}

Example 96: Class for a Complex Type with an Undeclared Attribute

Example 97: Setting Values for Undeclared Attributes

judge = new Arbitter();

1 otherAtts = new HashMap();

2 QName at1 = new QName("test.iona.com", "house");
QName at2 = new QName("test.iona.com", "veteran");

3 otherAtts.put(at1, "Cape");
otherAtts.put(at2, "false");

4 judge.setOtherAttributes(otherAtts);
168

Using XML Schema Complex Types
The code in Example 97 does the following:

1. Creates a new HashMap object to hold the undeclared attributes.

2. Creates QName objects for each of the attribute names.

3. Puts two attributes into the hash map.

4. Sets the otherAttributes member of the object using its
setOtherAttributes() method.

Any changes to the hash map will be reflected in the value of the
otherAttributes member once it is set.

Inspecting undeclared attributes You retrieve the hash map holding undeclared attributes using the
getOtherAttributes() method. getOtherAttributes() returns a Java Map
object that is keyed using com.iona.common.util.QName object. Example 98
shows code for checking the value of an undeclared attribute.

The code in Example 98 does the following:

1. Imports the Artix specific QName class.

2. Retrieves the Map object containing the undeclared attributes.

3. Creates a QName object for the desired attribute.

4. Gets the value from the hash map.

Example 98: Checking the Values for an Undeclared Attribute

1 import com.iona.common.util.QName;

// object judge populated earlier
2 Map otherAttrs = judge.getOtherAttributes();

3 QName atKey = new QName("test.iona.com", "house");

4 String houseType = (String)otherAttrs.get(atKey);
 169

CHAPTER 7 | Working with Artix Data Types
Nesting Complex Types

Overview XML Schema allows you to define complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

� Nesting with Named Types

� Nesting with Anonymous Types

Nesting with Named Types When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element�s data is placed in the element�s type attribute as
shown in Example 99.

The complex type sylvesterState includes an element, food, of type
tweetyBird. The advantage of using named types is that tweetyBird can be
reused as either a standalone complex type or nested in another complex
type description.

Artix will generate a class for each of the named types. The type containing
the nested type will contain an element of the Java type generated for its
class. For example, the type defined in Example 99 will result in the
generation of two types:TweetyBird and SylvesterState. The generated
type SylvesterState will contain an element food that is of type
TweetyBird.

Example 99: Nesting with a Named Type

<complexType name="tweetyBird">
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
</complexType>
<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food" type="tweetyBird" />
 </sequence>
</complexType>
170

Using XML Schema Complex Types
Example using named nested
types

If you had an application using the complex type shown in Example 99 on
page 170 your application would include two classes to support it,
TweetyBird and SylvesterState.

Example 100 shows the generated Java class for tweetyBird.

Example 100: TweetyBird Class

//Java
public class TweetyBird
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/foodstuffs";

 private boolean caged;
 private int granny_proximity;

 public boolean isCaged()
 {
 return caged;
 }

 public void setCaged(boolean val)
 {
 caged=val;
 }

 public int getGranny_proximity()
 {
 return granny_proximity;
 }

 public void setGranny_proximity(int val)
 {
 granny_proximity=val;
 }
 171

CHAPTER 7 | Working with Artix Data Types
The generated class for sylvesterState, shown in Example 101, has one
element, food, that is an instance of TweetyBird.

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("caged: "+caged+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("granny_proximity: "+granny_proximity+"\n");
 }
 return buffer.toString();
 }
}

Example 100: TweetyBird Class

Example 101: SylvesterState Class

//Java
public class SylvesterState
{
 public static final String TARGET_NAMESPACE =

"http://toonville.org/cats";

 private int hunger;
 private TweetyBird food;

 public int getHunger()
 {
 return hunger;
 }

 public void setHunger(int val)
 {
 hunger=val;
 }
172

Using XML Schema Complex Types
When you set the value of SylvesterState.food, you must pass a valid
TweetyBird object to setFood(). Also, when you get the value of
SylvesterState.food, you are returned a TweetyBird object which has its
own getter and setter methods. Example 102 shows an example of using
the nested type sylvesterState in Java.

 public TweetyBird getFood()
 {
 return food;
 }

 public void setFood(TweetyBird val)
 {
 food=val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();

 if (caged != null) {
 buffer.append("hunger: "+hunger+"\n");
 }
 if (granny_proximity != null) {
 buffer.append("food: "+food+"\n");
 }
 return buffer.toString();
 }
}

Example 101: SylvesterState Class

Example 102: Working with Nested Complex Types

// Java
1 SylvesterState hunter = new SylvesterState();

hunter.setHunger(25);

2 TweetyBird prey = new TweetyBird();
prey.setCaged(false);
prey.setGranny_proximity(0);

3 hunter.setFood(prey);
 173

CHAPTER 7 | Working with Artix Data Types
The code in Example 102 does the following:

1. Instantiates a new SylvesterState object and sets its hunger element
to 25.

2. Instantiates a new TweetyBird object and sets its values.

3. Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the food
element�s caged element.

5. Gets the food element, assigns it to outPrey then prints out the
granny_proximity element.

4 System.out.println("The cat is this hungry:
"+hunter.getHunger());

System.out.println("The food is caged:
"+hunter.getFood().isCaged());

5 TweetyBird outPrey = hunter.getFood();
System.out.println("Granny is this many feet away:

"+outPrey.getGranny_proximity());

Example 102: Working with Nested Complex Types
174

Using XML Schema Complex Types
Nesting with Anonymous Types When you nest with an anonymous type, the element declaration for the
nested complex type does not have a type attribute. Instead, the element�s
type description is provided as part of the element�s declaration.
Example 103 shows a description of sylvesterState using an anonymous
type.

In this example, the food element of sylvesterState still contains a caged
sub-element and a granny_proximity sub-element. However, the complex
type used to describe food cannot be re-used.

When you use anonymous nested complex types, Artix generates a single
class for the named complex type. The nested complex type is mapped to a
public class that is internal to the generated class. The internal class will be
given the name of the element for which it is generated. For example, the
type defined in Example 103 would result in the generated class
SylvesterState. The generated class SylvesterState contains a public
class named SylvesterState.Food to represent the food element.

Example using anonymous nested
types

If you had an application using the complex type shown in Example 100 on
page 171 your application would include the class SylvesterState to
support it.

Example 103: Nesting with an Anonymous Type

<complexType name="sylvesterState">
 <sequence>
 <element name="hunger" type="xsd:int" />
 <element name="food">
 <complexType>
 <sequence>
 <element name="caged" type="xsd:boolean" />
 <element name="granny_proximity" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>
 175

CHAPTER 7 | Working with Artix Data Types
The generated class for sylvesterState, shown in Example 104, contains
an internal class SylvesterState.Food. The element food is an instance of
SylvesterState.Food.

Example 104: SylvesterState Class

package com.iona.schemas.types.anoncattypes;

import java.util.Arrays;

public class SylvesterState
{
 public static final String TARGET_NAMESPACE =

"http://schemas.iona.com/types/anonCatTypes";

 private int hunger;
 private Food food;

 public int getHunger()
 {
 return hunger;
 }

 public void setHunger(int val)
 {
 this.hunger = val;
 }

 public Food getFood()
 {
 return food;
 }

 public void setFood(Food val)
 {
 this.food = val;
 }
176

Using XML Schema Complex Types
 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 buffer.append("hunger: "+hunger+"\n");
 if (food != null)
 {
 buffer.append("food: "+food+"\n");
 }
 return buffer.toString();
 }

 public static class Food
 {
 public static final String TARGET_NAMESPACE =

"http://schemas.iona.com/types/anonCatTypes";

 private boolean caged;
 private int granny_proximity;

 public boolean isCaged()
 {
 return caged;
 }

 public void setCaged(boolean val)
 {
 this.caged = val;
 }

 public int getGranny_proximity()
 {
 return granny_proximity;
 }

 public void setGranny_proximity(int val)
 {
 this.granny_proximity = val;
 }

Example 104: SylvesterState Class
 177

CHAPTER 7 | Working with Artix Data Types
When you set the value of SylvesterState.food, you must pass a valid
SylvesterState.Food object to setFood(). Also, when you get the value of
SylvesterState.food, you are returned a SylvesterState.Food object
which has its own getter and setter methods. Example 102 shows an
example of using the nested type sylvesterState in Java.

The code in Example 102 does the following:

1. Instantiates a new SylvesterState object and sets its hunger element
to 25.

2. Instantiates a new SylvesterState.Food object and sets its values.

3. Sets the food element on hunter.

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 buffer.append("caged: "+caged+"\n");
 buffer.append("granny_proximity: "+granny_proximity+"\n");
 return buffer.toString();
 }
 }
}

Example 104: SylvesterState Class

Example 105: Working with Nested Complex Types

// Java
1 SylvesterState hunter = new SylvesterState();

hunter.setHunger(25);

2 SylvesterState.Food prey = new SylvesterState.Food();
prey.setCaged(false);
prey.setGranny_proximity(0);

3 hunter.setFood(prey);

4 System.out.println("The cat is this hungry:
"+hunter.getHunger());

System.out.println("The food is caged:
"+hunter.getFood().isCaged());

5 SylvesterState.Food outPrey = hunter.getFood();
System.out.println("Granny is this many feet away:

"+outPrey.getGranny_proximity());
178

Using XML Schema Complex Types
4. Prints out the value of the hunger element and the value of the food
element�s caged element.

5. Gets the food element, assigns it to outPrey then prints out the
granny_proximity element.
 179

CHAPTER 7 | Working with Artix Data Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

There are two ways of deriving a complex type from a simple type:

� by extension

� by restriction

Derivation by extension Example 106 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type to include a
currency attribute.

The simpleContent element indicates that the new type does not contain
any sub-elements and the extension element defines the derivation by
extension from xsd:decimal.

Example 106: Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
</complexType>
180

Using XML Schema Complex Types
Derivation by restriction Example 107 shows an example of a complex type, idType, that is derived
by restriction from an xsd:string. The defined type must have a value that
is ten characters in length. In addition, idType has an attribute called
expires.

As is Example 106 the simpleContent element signals that the new type
does not contain any children. However, the definition uses a restriction
element to constrain the possible values used in the new type. The
attribute element adds the attribute to the new type.

Java mapping A complex type derived from a simple type is mapped to a Java class. The
generated class will contain an element, _value, of the simple type from
which the complex type is derived. The class will also have a get_value()
and a set_value() method. In addition, the generated class will have an
element, and the associated getter and setter methods, for each attribute
that extends the simple type.

When a complex type is derived by restriction the generated set_value()
method will enforce the following facets:

� length
� maxLength
� minLength

If you attempt to set an invalid value, set_value() will throw a
RuntimeException. For more information on the effects of the facets see
X-REF.

Example 107: complexType derived from a simpleType using Restriction

<complexType name="idType">
 <simpleContent>
 <restriction base="xsd:string">
 <length value="10" />
 </restriction>
 <attribute name="expires" type="xsd:dateTime" />
 </simpleContent>
</complexType>
 181

CHAPTER 7 | Working with Artix Data Types
Example Example 108 shows the generated Java class representing the idType
complex type from Example 107.

Example 108: idType Java Class

//Java
public class IdType
{

 public static final String TARGET_NAMESPACE = "tracking.gov";

 private String _value;
 private static final BigInteger length = new BigInteger("10");
 private Calendar expires;

 public String get_value()
 {
 return _value;
 }

 public void set_value(String val)
 {
 BigInteger realLength = new

BigInteger(String.valueOf(val.length()));
 if (realLength.compareTo(length) == 0)
 {
 _value = val;
 return;
 }
 throw new RuntimeException("Invalid length value in

org.soapinterop.xsd.IdType");
 }

 public Calendar getExpires()
 {
 return expires;
 }

 public void setExpires(Calendar val)
 {
 this.expires = val;
 }
182

Using XML Schema Complex Types
The simple type value (that is, the value enclosed between the <idType>
and </idType> tags) is accessed and modified by the get_value() and
set_value() methods. The set_value() method, due to the inclusion of the
length facet, checks to ensure that the value is the proper length. The value
of the expires attribute is accessed and modified using the getExpires()
and setExpires() methods.

 public javax.xml.namespace.QName _getQName()
 {
 return QNAME;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (_value != null)
 {
 buffer.append("_value : " + _value + "\n");
 }
 if (expires != null)
 {
 buffer.append("expires : " + expires + "\n");
 }
 return buffer.toString();
 }
}

Example 108: idType Java Class
 183

CHAPTER 7 | Working with Artix Data Types
Deriving a Complex Type from a Complex Type

Overview Using XML Schema, you can derive new complex types by extending or
restricting other complex types using the complexContent element. When
generating the Java class to represent the derived complex type, Artix
extends the base type�s class. In this way, the Artix-generated Java code
preserves the inheritance hierarchy intended in the XML Schema.

Schema syntax You derive complex types from other complex types by using the
complexContent element and either the extension or the restriction
element. The complexContent element specifies that the included data
description includes more than one field. The extension element and the
restriction element, which are part of the complexContent definition,
specifies the base type being modified to create the new type. The base type
is specified by the base attribute.

Extending a complex type Within the extension element, you define the additional fields that make up
the new type. All elements that are allowed in a complex type description
are allowable as part of the new type�s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
choice element to specify that only one of the new fields is to be valid at a
time.

Example 109 shows an XML Schema fragment that defines two complex
types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetOrderInfo to include two new fields,
orderNumber and amtDue.

Example 109: Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:decimal"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:QName" use="optional" />
</complexType>
184

Using XML Schema Complex Types
Restricting a complex type Within the restriction element you must list all of the elements and
attributes of the base type. For each element you can add restrictive
attributes to the definition. For example, you could add a maxOccurs
attribute to an element to limit the number of times it can occur. You could
also use the fixed attribute to force on or more of the elements to have
predetermined values.

Example 110 shows an example of defining a complex type by restricting
another complex type. The redefined type, wallawallaAddress, can only be
used for addresses in Walla Walla, Washington because the values for city,
state, and zipCode have been fixed.

<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:boolean"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Example 109: Deriving a Complex Type by Extension

Example 110: Defining a Complex Type by Restriction

<complexType name="Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short" maxOccurs="3"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zipCode" type="xsd:string"/>
 </sequence>
</complexType>
 185

CHAPTER 7 | Working with Artix Data Types
Generated Java code As with all complex types defined in a contract, Artix generates a class to
represent complex types derived from another complex type. When the
complex type is derived from another complex type, the generated class
extends the base class generated to support the base complex type in the
contract.

When the new complex type is derived by extension, the generated class will
include getter and setter methods for all of the added elements and
attributes. The new methods will be generated according to the same
mappings as all other elements.

When the new complex type is derived by restriction, the generated class
will have no new getter or setter methods. It will simply redefine the Artix
specific information needed to marshal and unmarshal the data.

For example, the schema in Example 109 on page 184 would result in the
generation of two Java classes, WidgetOrderInfo and
WidgetBillOrderInfo. WidgetOrderBillInfo would extend
WidgetOrderInfo because widgetOrderBillInfo is derived by extension
from widgetOrderInfo. Example 111 shows the generated class for
widgetOrderBillInfo.

<complexType name="wallawallaAddress">
 <complexContent>
 <restriction base="xsd1:Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short" maxOccurs="3"/>
 <element name="city" type="xsd:string"
 fixed="WallaWalla"/>
 <element name="state" type="xsd:string" fixed="WA" />
 <element name="zipCode" type="xsd:string"fixed="99362" />
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Example 110: Defining a Complex Type by Restriction

Note: Artix does not enforce the restriction defined in the contract. It is up
to you to ensure that your application logic enforces them.
186

Using XML Schema Complex Types
Example 111: WidgetOrderBillInfo

// Java
public class WidgetOrderBillInfo extends WidgetOrderInfo
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/types/widgetTypes";

 private boolean amtDue;
 private String orderNumber;

 public boolean isAmtDue()
 {
 return amtDue;
 }

 public void setAmtDue(boolean val)
 {
 this.amtDue = val;
 }

 public String getOrderNumber()
 {
 return orderNumber;
 }

 public void setOrderNumber(String val)
 {
 this.orderNumber = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 buffer.append("amtDue: "+amtDue+"\n");
 if (orderNumber != null)
 {
 buffer.append("orderNumber: "+orderNumber+"\n");
 }
 return buffer.toString();
 }
}

 187

CHAPTER 7 | Working with Artix Data Types
Occurrence Constraints

Overview XML Schema allows you to specify the occurrence constraints on three
different XML Schema elements that make up a complex type definition:

� The sequence element

� The choice element

� The element element

The sequence element You can specify that a sequence of elements is to occur multiple times by
setting the element�s minOccurs and maxOccurs attributes. The minOccurs
attribute specifies the minimum number of times the sequence must occur
in an instance of the defined complex type. The maxOccurs attribute
specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Example 114 shows the definition of
a sequence type, CultureInfo, with sequence occurrence constraints. The
sequence can be repeated 0 to 2 times.

Mapping to Java

When a sequence with occurrence constraints is mapped into Java it looks
very similar to a vanilla sequence. Each element still has a getter and setter
methods. However, these methods all take an additional parameter, index,
that specifies which instance of the sequence is being referenced. In
addition, Artix generates a new internal sequence, TypeName_Insternal,
and four new functions to cope with the multiple occurrences of the type:

� _setSize() allows you to specify how many times the sequence
occurs.

� _getSize() returns the number of time the sequence occurs.

Example 112: Sequence with Occurrence Constraints

<complexType name="CultureInfo">
 <sequence minOccurs="0" maxOccurs="2">
 <element name="Name" type="string"/>
 <element name="Lcid" type="int"/>
 </sequence>
</complexType>
188

Using XML Schema Complex Types
� _setTypeName_Internal() allows to set an instance of the sequence
into one of the occurences.

� _getTypeName_internal() returns the instance of the sequence stored
at the specified index.

Example 113 shows an outline of the Java class generated for the type
defined in Example 112.

Example 113: Java Class for Sequence with Occurrence Constraints

public class CultureInfo
{
 private CultureInfo_Internal[] cultureInfo_Internal;

 public int _getSize() {
 if (null != cultureInfo_Internal) {
 return cultureInfo_Internal.length;
 }
 return 0;
 }
 189

CHAPTER 7 | Working with Artix Data Types
 public void _setSize(int sz) {
 CultureInfo.CultureInfo_Internal[] temp = new

CultureInfo.CultureInfo_Internal[sz];
 if (null != cultureInfo_Internal) {
 if (sz <= cultureInfo_Internal.length) {
 for (int x = 0; x < sz; x++) {
 temp[x] = cultureInfo_Internal[x];
 }
 } else {
 for (int x = 0; x < cultureInfo_Internal.length;

x++) {
 temp[x] = cultureInfo_Internal[x];
 }
 for (int x = cultureInfo_Internal.length; x < sz;

x++) {
 temp[x] = new

CultureInfo.CultureInfo_Internal();
 }
 }
 } else {
 for (int x = 0; x < sz; x++) {
 temp[x] = new CultureInfo.CultureInfo_Internal();
 }
 }
 cultureInfo_Internal = temp;
 }

 public void
_setCultureInfo_Internal(CultureInfo.CultureInfo_Internal
val, int indx) {

 this.cultureInfo_Internal[indx] = val;
 }

 public CultureInfo.CultureInfo_Internal
_getCultureInfo_Internal(int indx) {

 return cultureInfo_Internal[indx];
 }

 public void setName(java.lang.String val, int indx) {
 this.cultureInfo_Internal[indx].setName(val);
 }

Example 113: Java Class for Sequence with Occurrence Constraints
190

Using XML Schema Complex Types
 public int getLcid(int indx) {
 return cultureInfo_Internal[indx].getLcid();
 }

 public void setLcid(int val, int indx) {
 this.cultureInfo_Internal[indx].setLcid(val);
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (cultureInfo_Internal != null) {
 buffer.append("cultureInfo_Internal : " +

java.util.Arrays.asList(cultureInfo_Internal).toString() +
"\n");

 }
 return buffer.toString();
 }

 public static class CultureInfo_Internal {

 private String name;
 private int lcid;

 public String getName() {
 return name;
 }

 public void setName(String val) {
 this.name = val;
 }

 public int getLcid() {
 return lcid;
 }

 public void setLcid(int val) {
 this.lcid = val;
 }

Example 113: Java Class for Sequence with Occurrence Constraints
 191

CHAPTER 7 | Working with Artix Data Types
The choice element A choice type can also be defined with occurrence constraints.You specify
these occurrence constraints on an element by setting the element�s
minOccurs and maxOccurs attributes. The minOccurs attribute specifies the
minimum number of times the choice must occur in an instance of the
defined complex type. The maxOccurs attribute specifies the upper limit for
how many times the choice type can occur in an instance of the defined
complex type. Example 114 shows the definition of a choice type,
ClubEvent, with choice occurrence constraints. The choice type overall can
be repeated 0 to unbounded times.

Mapping to Java

When a choice type with occurrence constraints is mapped into Java it looks
very similar to a vanilla choice type. Each element still has a getter a setter
and an isSet method. However, these methods all take an additional
parameter, index, that specifies which instance of the choice type is being
referenced. In addition, Artix generates a new internal choice type,
TypeName_Insternal, and four new functions to cope with the multiple
occurrences of the type:

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (name != null) {
 buffer.append("name : " + name + "\n");
 }
 buffer.append("lcid : " + lcid + "\n");
 return buffer.toString();
 }
 }
 }

Example 113: Java Class for Sequence with Occurrence Constraints

Example 114: Choice Occurrence Constraints

<complexType name="ClubEvent">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="MemberName" type="xsd:string"/>
 <element name="GuestName" type="xsd:string"/>
 </choice>
</complexType>
192

Using XML Schema Complex Types
� _setSize() allows you to specify how many times the choice type
occurs.

� _getSize() returns the number of occurences of the choice type.

� _setTypeName_Internal() allows to set an instance of the choice type
into one of the occurences.

� _getTypeName_internal() returns the instance of the choice type
stored at the specified index.

Example 115 shows an outline of the Java class generated for the type
defined in Example 114.

Example 115: Java Class for Choice with Occurrence Constraints

public class ClubEvent
{
 private String __discriminator;
 private ClubEvent_Internal[] clubEvent_Internal;

 public int _getSize()
 {
 if (null != clubEvent_Internal)
 {
 return clubEvent_Internal.length;
 }
 return 0;
 }
 193

CHAPTER 7 | Working with Artix Data Types
 public void _setSize(int sz)
 {
 ClubEvent.ClubEvent_Internal[] temp = new

ClubEvent.ClubEvent_Internal[sz];
 if (null != clubEvent_Internal)
 {
 if (sz <= clubEvent_Internal.length)
 {
 for (int x = 0; x < sz; x++)
 {
 temp[x] = clubEvent_Internal[x];
 }
 }
 else
 {
 for (int x = 0; x < clubEvent_Internal.length; x++)
 {
 temp[x] = clubEvent_Internal[x];
 }
 for (int x = clubEvent_Internal.length; x < sz; x++)
 {
 temp[x] = new ClubEvent.ClubEvent_Internal();
 }
 }
 }
 else
 {
 for (int x = 0; x < sz; x++)
 {
 temp[x] = new ClubEvent.ClubEvent_Internal();
 }
 }
 clubEvent_Internal = temp;
 }

 public void _setClubEvent_Internal(
 ClubEvent.ClubEvent_Internal val,
 int indx)
 {
 this.clubEvent_Internal[indx] = val;
 }

Example 115: Java Class for Choice with Occurrence Constraints
194

Using XML Schema Complex Types
 public ClubEvent.ClubEvent_Internal _getClubEvent_Internal(
 int indx)
 {
 return clubEvent_Internal[indx];
 }

 public java.lang.String getMemberName(int indx)
 {
 return clubEvent_Internal[indx].getMemberName();
 }

 public void setMemberName(java.lang.String val, int indx)
 {
 this.clubEvent_Internal[indx].setMemberName(val);
 }

 public boolean isSetMemberName(int indx)
 {
 return clubEvent_Internal[indx].isSetMemberName();
 }

 public java.lang.String getGuestName(int indx)
 {
 return clubEvent_Internal[indx].getGuestName();
 }

 public void setGuestName(java.lang.String val, int indx)
 {
 this.clubEvent_Internal[indx].setGuestName(val);
 }

 public boolean isSetGuestName(int indx)
 {
 return clubEvent_Internal[indx].isSetGuestName();
 }

Example 115: Java Class for Choice with Occurrence Constraints
 195

CHAPTER 7 | Working with Artix Data Types
 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (clubEvent_Internal != null) {
 buffer.append("clubEvent_Internal : " +

java.util.Arrays.asList(clubEvent_Internal).toString() +
"\n");

 }
 if (__discriminator != null) {
 buffer.append("Discriminator : " + __discriminator +

"\n");
 }
 return buffer.toString();
 }

 public static class ClubEvent_Internal {
 private String __discriminator;

 private String memberName;
 private String guestName;

 public String getMemberName() {
 return (String)memberName;
 }

 public void setMemberName(String val) {
 this.memberName = val;
 __discriminator = "memberName";
 }

 public boolean isSetMemberName() {
 if(__discriminator != null &&
 __discriminator.equals("memberName")) {
 return true;
 }
 return false;
 }

Example 115: Java Class for Choice with Occurrence Constraints
196

Using XML Schema Complex Types
The element element You can set minimum and the maximum number of times that an element
in a complex type can occur. You specify these occurrence constraints on an
element by setting the element�s minOccurs and maxOccurs attributes. The
minOccurs attribute specifies the minimum number of times the element
must occur. The maxOccurs attribute specifies the upper limit for how many

 public String getGuestName() {
 return (String)guestName;
 }

 public void setGuestName(String val) {
 this.guestName = val;
 __discriminator = "guestName";
 }

 public boolean isSetGuestName() {
 if(__discriminator != null &&
 __discriminator.equals("guestName")) {
 return true;
 }
 return false;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (memberName != null) {
 buffer.append("memberName : " + memberName +

"\n");
 }
 if (guestName != null) {
 buffer.append("guestName : " + guestName + "\n");
 }
 if (__discriminator != null) {
 buffer.append("Discriminator : " + __discriminator

+ "\n");
 }
 return buffer.toString();
 }
 }
}

Example 115: Java Class for Choice with Occurrence Constraints
 197

CHAPTER 7 | Working with Artix Data Types
times the element can occur. For example, if an element, lives, were to
occur at least twice and no more than nine times in a complex type it would
be described as shown in Example 116.

Given the description in Example 116, a valid houseCat element would
have a single name and at least two lives. However, a valid houseCat
element could not have more than nine lives.

Mapping to Java

When a complex type contains an element with its maxOccurs attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XML Schema requires that the maxOccurs
attribute of an element is set to a value equal to or greater than the value of
the element�s minOccurs, the code generator will generate a warning if the
minOccurs attribute is set without a maxOccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

Example

For example, the complex type, houseCat, shown in Example 116 will be
mapped to the Java class HouseCat shown in Example 117.

Example 116: Occurrence Constraints Setting

<complexType name="houseCat">
 <all>
 <element name="name" type="xsd:string" />
 <element name="lives" type="xsd:short" minOccurs="2"
 maxOccurs="9" />
 </all>
</complexType>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
�SOAP Arrays� on page 213.

Example 117: HouseCat Java Class

// Java
public class HouseCat
{
 private String name;
 private short[] lives;
198

Using XML Schema Complex Types
The generated code does not force you to obey the min and the max
occurrence rules from the contract, but your application code should be sure
to obey the contract rules. Attempting to send too few or too many
occurrences of an element across the wire will create unpredictable results.

 public void setName(String val)
 {
 name=val;
 {
 public String getName()
 {
 return name;
 }

 public void setLives(short[] val)
 {
 lives=val;
 {
 public short[] getLives()
 {
 return lives;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (name != null)
 {
 buffer.append("name: "+name+"\n");
 }
 if (lives != null)
 {
 buffer.append("lives: "+lives+"\n");
 }
 return buffer.toString();
 }
}

Example 117: HouseCat Java Class
 199

CHAPTER 7 | Working with Artix Data Types
Using Model Groups

Overview XML Schema model groups are a convenient shortcut that enables you to
reference a group of elements from a user-defined complex type.For
example, you could define a group of elements that are common to several
types in your application and then reference the group repeatedly. Model
groups are defined using the group element and are similar to complex type
definitions. The mapping of model groups to Java is also similar to the
mapping for complex types.

Defining a model group in XML
Schema

You define a model group in XML Schema using the group element with the
name attribute. The value of name is a string that is used to refer to the group
throughout the schema. group, like complexType, can have either sequence,
all, or choice as its immediate child element. Table 10 shows how the
choice of child element affects the behavior of the elements in the group.

Inside the child element, you define the members of the group using
element elements. For each member of the group, you specify one element.
Group members can use any of the standard attributes for element including
minOccurs and maxOccurs. So, if your group has three elements and one of

Table 10: Group Children

Child Effect

sequence All the members of the group must
be present and are transmitted in
the exact order they appear in the
definition.

all All of the members of the group
must appear no more than once
and their order in unimportant.

choice No more than one member of the
group can appear.
200

Using XML Schema Complex Types
them can occur up to three times, you would define a group with three
element elements, one of which would use maxOccurs="3". Example 118
shows a model group with three elements.

Using a model group in a type
definition

Once a model group has been defined, you can use it as part of a complex
type definition. To use a model group in a complex type definition, you use
the group element with the ref attribute. The value of ref is the name given
to the group when it was defined. For example, to use the group defined in
Example 118 you would use <group ref="tns:passenger" /> as shown in
Example 119.

When a model group is used in a type definition, the group becomes a
member of the type. So an instance of reservation would have four
members. The first of which would be passenger and have the members
defined by the group in Example 118 as shown in Example 120.

Example 118: Model Group

<group name="passenger">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="clubNum" type="xsd:long" />
 <element name="seatPref" type="xsd:string" maxOccurs="3" />
 </sequence>
</group>

Example 119: Complex Type with a Model Group

<complexType name="reservation">
 <sequence>
 <group ref="tns:passenger" />
 <element name="origin" type="xsd:string" />
 <element name="destination" type="xsd:string" />
 <element name="fltNum" type="xsd:long" />
 </sequence>
</complexType>

Example 120: Instance of a Type with a Group

<reservation>
 201

CHAPTER 7 | Working with Artix Data Types
Mapping to Java Artix maps model groups to Java classes using the same mapping used for
complex types. For example, Artix would generate a Java class called
Passenger to represent the group passenger defined in Example 118 on
page 201. The generated class would have three members, one for each
member of the group, and the associated getter and setter methods as
shown in Example 121.

 <passenger>
 <name>A. Smart</name>
 <clubNum>99</clubNum>
 <seatPref>isle1</seatPref>
 </passenger>
 <origin>LAX</origin>
 <destination>FRA</destination>
 <fltNum>34567</fltNum>
</reservation>

Example 120: Instance of a Type with a Group

Example 121: Class for a Group

public class Passenger
{
 private String name;
 private long clubNum;
 private String[] seatPref;

 public String getName()
 {
 return name;
 }

 public void setName(String val)
 {
 this.name = val;
 }
202

Using XML Schema Complex Types
If the group definition used choice, the Artix generated class would also
include methods for determining which member of the group was valid. See
�Using XML Schema Complex Types� on page 148 for a detailed discussion
of the mapping.

When Artix encounters a group in a complex type definition it maps the
group to a class member of the type generated for the group�s definition. For
example, the generated class for reservation, defined in Example 119 on
page 201, would include a member of type Passenger as shown in
Example 122.

 public long getClubNum()
 {
 return clubNum;
 }

 public void setClubNum(long val)
 {
 this.clubNum = val;
 }

 public String[] getSeatPref()
 {
 return seatPref;
 }

 public void setSeatPref(String[] val)
 {
 this.seatPref = val;
 }
}

Example 121: Class for a Group

Example 122: Type with a Group

public class Reservation
{
 private Passenger passenger;
 private String origin;
 private String destination;
 private long fltNum;
 203

CHAPTER 7 | Working with Artix Data Types
 public Passenger getPassenger()
 {
 return passenger;
 }

 public void setPassenger(Passenger val)
 {
 this.passenger = val;
 }

 public String getOrigin()
 {
 return origin;
 }

 public void setOrigin(String val)
 {
 this.origin = val;
 }

 ...
}

Example 122: Type with a Group
204

Using XML Schema any Elements
Using XML Schema any Elements

Overview An XML Schema any is a special element used to denote that an element�s
contents are undefined. An element defined using any can contain any XML
data. When mapped to Java, an any element is mapped to a SOAPElement
as called for in the JAX-RPC specification.

Describing an any in the contract Example 123 shows the syntax for defining an element as an any in an Artix
contract.

Table 11 explains the details of the optional attributes.

Example 123: Syntax of an any

<any [maxOccurs = max] [minOccurs = min]
 [namespace = ((##any | ##other) | List of (anyURI |

(##targetNamespace | ##local)))]
 [processContents = (lax | skip | strict)] />

Table 11: Attributes for an any

Attribute Explanation

maxOccurs Specifies the maximum number of times the
element can occur. Default is 1.

minOccurs Specifies the minimum number of times the
element must occur. Default is 1.
 205

CHAPTER 7 | Working with Artix Data Types
namespace Specifies how to determine the namespace to use
when validating the contents of the any. Valid
entries are:

##any(default) specifies that the contents of the
any can be from any namespace.

##other specifies that the contents of the any can
be from any namespace but the target namespace.

list of URIs specifies that the contents of the any
are from one of the listed namespaces in the space
delimited list. The list can contain two special
values:

� ##local which correspondes to an empty
namespace.

� ##targetNamespace which corrensponds to the
tager namespace of the schema in which the
any is defined.

processContents Specifies how the contents of the any are validated.
Valid entries are:

strict(default) specifies that the contents of the any
must be a valid and well-formed XML document.

skip specifies that no validation is done on the
contents of the any. The only constraint is that it
must be a well-formed XML element.

lax specifies that if there is an XML Schema
definition available to validate the contents of the
any, then it must be valid. If there is no XML
Schema definition available, then validation is
skipped.

Table 11: Attributes for an any

Attribute Explanation
206

Using XML Schema any Elements
Example 124 shows the definition of a type, wildCard, that contains an
any. The contents of wildCard can be defined in any, or no, namespace and
the validation of the contents is only performed if there is schema available.

Mapping to Java XML Schema any elements are mapped to a Java element of type
javax.xml.soap.SOAPElement. The member is named _any and it is given
associated setter and getter methods. If a complex type contains more than
one any element the additional any elements are named _any_n, where n is
an integer starting at one. For example, if a complex type had two any
elements the generated Java type would have two
javax.xml.soap.SOAPElement members, _any and _any_1.

Example 125 shows the Java class generated for the complex type
wildCard, shown in Example 124 on page 207.

Example 124: Complex Type with an any

<complexType name="wildCard">
 <sequence>
 <any namespace="##any" processContents="lax" />
 </sequence>
</complexType>

Example 125: Generated Java Class with an any

// Java
import java.util.*;
import javax.xml.soap.SOAPElement;

public class WildCard
{
 public static final String TARGET_NAMESPACE =

"http://packageTracking.com/types/packageTypes";

 private javax.xml.soap.SOAPElement _any;

 public javax.xml.soap.SOAPElement get_any()
 {
 return _any;
 }
 207

CHAPTER 7 | Working with Artix Data Types
If the minOccurs or maxOccurs attribute of the any element are set, then the
Java element is mapped to an array of SOAPElement. For example, if the any
element in wildCard had maxOccurs="4", the _any member of the generated
Java class would be a javax.xml.soap.SOAPElement[].

Parsing an any The fact that an any element can hold any well-formed XML data makes it
very flexible. However, that flexibility requires that your application is
designed to handle all the possible contents of the any.

For most applications, the contents of the any will have a finite number of
forms and these are known at development time. For example, if your
application is retrieving student records from a college database it may
receive different records based on if the student is a graduate student or an
under graduate student. In cases where you know at development time the
possible contents of the any, you can query the any for the name of its root
element using SOAPElement.getElementName() and determine from the
returned javax.xml.soap.Name how to process the contents.

 public void set_any(javax.xml.soap.SOAPElement val)
 {
 this._any = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer();
 if (_any != null) {
 buffer.append("_any: "+_any+"\n");
 }
 return buffer.toString();
 }
}

Example 125: Generated Java Class with an any

Note: Because the contents of the any is an XML document made up
entirely of text, you do not necessarily need to determine the form of the
data. You can still extract the contents using the SOAPElement�s methods.
208

Using XML Schema any Elements
Example 126 shows code for querying the any in WildCard for its element
name. Once the element is determined, the application uses the local part of
the name to determine how to process the contents of the any.

You can parse the XML content of the any using the
SOAPElement.getChildElements() method. getChildElements() returns a
Java Iterator containing a list of javax.xml.soap.Node elements
representing the nodes of the XML document contained in the any. These
nodes will in turn either be SOAPElement nodes or javax.xml.soap.Text
nodes which will require further parsing.

Example 127 shows code for extracting the data from an any containing a
houseCat, defined in Example 116 on page 198.

Example 126: Determining the Contents of an any

// Java
import java.util.*;
import javax.xml.soap.*;

WildCard dataHolder;

// Client proxy, proxy, instantiated earlier
dataHolder = proxy.getRecord();
SOAPElement studentRec=dataHolder.get_any();

// Get the root element name of the returned record
Name recordType = studentRec.getElementName();

if (recordType.getLocalName().equals("gradRec"))
{
 // process the data as a graduate student record
}
if (recordType.getLocalName().equals("ugradRec"))
{
 // process the data as a graduate student record
}

Example 127: Parsing the Contents of an any

// Java
import java.util.*;
import javax.xml.soap.*;

WildCard dataHolder;
 209

CHAPTER 7 | Working with Artix Data Types
The code in Example 127 does the following:

1. Gets the data and extracts the any from it.

2. Gets the children elements of the any.

3. Checks if there are any children elements. If there are, print the name.
If not, print an error message.

4. Checks if there are any more children elements. If there are, iterate
through the list and print the lives. If not, print an error message.

1 // Client proxy, proxy, instantiated earlier
dataHolder = proxy.getCat();
SOAPElement catHolder = dataHolder.get_any();

2 // Get the XML node from the returned any
Iterator catIt = catHolder.getChildElements();

3 if (catIt.hasNext())
{
 System.out.println("The cat�s name is

"+catIt.next().getValue());
}
else
{
 System.out.println("Malformed houseCat: No elements.");
 return(-1);
}

4 if (catIt.hasNext())
{
 for (Node index=catIt.next(); (catIt.hasNext());
 index=catIt.next())
 {
 System.out.println("The cat lived

"+index.getValue()+"years");
 }
else
{
 System.out.println("Malformed houseCat: No lives.");
 return(-1);
}
}

Example 127: Parsing the Contents of an any
210

Using XML Schema any Elements
To get the value of the nodes, the code uses the getValue() method of the
node. For a SOAPElement node, getValue() returns the value of the element
if it has one, or it returns the value of the first child element that has one.
For example, if the SOAPElement contains the element <name>Joe</name>,
getValue() returns Joe. If the SOAPElement contains
<houseCat><name>Joe</name><lives>12</lives></houseCat>, getValue()
returns Joe. For a Text node, getValue() returns the text stored in the
node.

Putting content into an any When adding content into an any, you build up the XML document
contained in the any from scratch. The SOAPElement provides a number of
methods for adding attributes and elements. It has methods for setting the
value of the contained elements.

Example 128 shows the code for creating an any element containing the
XML document
<houseCat><name>Joe</name><lives>12</lives></houseCat>.

The code in Example 128 does the following:

1. Gets an instance of the SOAPElementFactory.

2. Creates a new SOAPElement, using the factory, to hold the contents of
the any.

3. Adds the name child element and set its value.

Example 128: Building an any

//Java
import java.util.*;
import javax.xml.soap.*;

1 SOAPElementFactory factory = SOAPElementFactory.newInstance();

2 SOAPElement anyContent = factory.create("houseCat");

3 SOAPElement tmp = anyContent.addChildElement("name");
tmp.addTextNode("Joe");

4 tmp = anyContent.addChildElement("lives");
tmp.addTextNode("12");

5 WildCard dataHolder = new WildCard();
dataHolder.set_any();
 211

CHAPTER 7 | Working with Artix Data Types
4. Adds the lives child element and set its value.

5. Creates a new WildCard and set the any element to the newly created
SOAPElement.

More information For a detailed description of the classes used to represent and work with any
elements read the SOAP with Attachments API for Java� (SAAJ) 1.2
specification.
212

http://java.sun.com/webservices/saaj/index.jsp

SOAP Arrays
SOAP Arrays

Overview SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

Syntax of a SOAP Array SOAP arrays can be described by deriving from the SOAP-ENC:Array base
type using the wsdl:arrayType. The syntax for this is shown in
Example 129.

Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
ArrayBounds specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [][] or [,].

Example 129: Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>
 213

CHAPTER 7 | Working with Artix Data Types
You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 130.

When using this syntax, the element�s maxOccurs attribute must always be
set to unbounded.

Java mapping SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message part
that was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPStrings, shown in Example 131 defines
a one-dimensional array of strings. The wsdl:arrayType attribute specifies
the type of the array elements, xsd:string, and the number of dimensions,
[] implying one dimension.

Example 130: Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Example 131: Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>
214

SOAP Arrays
Any message part of type SOAPStrings and any complex type element of
type SOAPStrings would be mapped to String[]. So the contract fragment
shown in Example 132, would result in the generation a Java method
celebWasher() that took a parameter, badLang, of type String[].

Multi-dimensional arrays Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SOAPStrings were mapped to a two-dimensional array, as shown in
Example 133, the mapping of celebWasher() would take a parameter,
badLang, of type String[][].

Sparse and partially transmitted
arrays

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, intArray[], of 10 integers and
only filled in intArray[1], intArray[6], and intArray[9], it would be
considered a sparse array.

Example 132: Operation Using an Array

...
<message name="badLang">
 <part name="statement" type="SOAPStrings" />
</message>
<portType name="censor">
 <operation name="celebWasher">
 <input message="badLang" name="badLang" />
 </operation>
</portType>
...

Example 133: Definition of a two-dimensional SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[][]"/>
 </restriction>
 </complexContent>
</complexType>
 215

CHAPTER 7 | Working with Artix Data Types
A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,
hotMatrix[x][y], and only put values in elements where 9 > x > 5 and 4
> y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.
216

Holder Classes
Holder Classes

Overview WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C++ does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
in/out parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in javax.xml.rpc.holders.
The names of the holder classes start with a capital letter and end with the
Holder postfix. The name of the holder class for long is LongHolder. For
primitive wrapper classes, Wrapper is placed after the class name and before
Holder. For example, the holder class for Long is LongWrapperHolder.

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the
javax.xml.rpc.holders.Holder interface. For example, the holder class for
a complex type, hand, would be HandHolder.

All holder classes provide the following:

� A public field named value of the mapped Java type. For example, a
HandHolder would have a value field of type Hand.

� A constructor that sets value to a default.

� A constructor that sets value to the value of the passed in parameter.

Working with holder classes A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation�s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 134 shows an example of an operation that would
require holder classes in the generated Java code.

Example 134: Multiple Output Parts

<message name="incomingPackage">
 <part name="ID" type="xsd:long" />
</message>
 217

CHAPTER 7 | Working with Artix Data Types
Artix will use holder classes for the parameters of the Java method
generated to implement the operation, router, because the output message
has multiple parts. Example 135 shows the resulting Java method
signature.

The first part of the outgoingPackage message, rerouted, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, destination, is mapped to a
holder class because it has to be mapped into the method�s parameter list.

<message name="outgoingPackage">
 <part name="rerouted" type="xsd:boolean" />
 <part name="destination" type="xsd:string" />
</message>
<portType name="portal">
 <operation name="router">
 <input message="tns:incomingPackage" name="recieved" />
 <output message="tns:outgoingPackage" name="shipped" />
 </operation>
</portType>

Example 134: Multiple Output Parts

Example 135: Interface Using Holders

//Java
import java.net.*;
import java.rmi.*;

public interface portal extends java.rmi.Remote
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 throws RemoteException;
}

218

Holder Classes
An example of an application that implements the portal interface might be
one that determines if a package has reached its final destination. The
router method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 136 shows
how a server might implement the router method.

Example 137 shows a client calling router() on a portal service.

Example 136: Portal Implementation

//Java
import java.net.*;
import java.rmi.*;

// The methods boolean belongsHere() and
// String getFinalDestination() are left
// for the reader to implement.

public class portalImpl
{
 public boolean router(long ID,
 javax.xml.rpc.holders.StringHolder destination)
 {
 if(belongsHere(ID))
 {
 return false;
 }

 destination.value = getFinalDestination(ID);
 return true;
 }

}

Example 137: Client Calling router()

//Java
StringHolder destination = new StringHolder();
long ID = 1232;
boolean continuing;
 219

CHAPTER 7 | Working with Artix Data Types
// proxy portalClient obtained earlier
continuing = portalClient.router(ID, destination);

if (continuing)
{
 System.out.println("Package "+ID+" is going to

"+destination.value);
}

Example 137: Client Calling router()
220

Using SOAP with Attachments
Using SOAP with Attachments

Overview When a contract specifies that one or more of an operation�s messages are
being sent using SOAP with attachments, also called a MIME multi-part
related message, Artix treats the data being passed as an attachment
differently than it would normally. The JAX-RPC specification defines
specific Java data types to be used when using SOAP attachments. The data
mappings for the data passed as a SOAP attachment is derived from the
MIME type specified in the contract for the message part.

In addition, Artix support the use of javax.activation.DataHandler objects
for handling SOAP attachments. DataHandler objects provide a generic
means of dealing with the data passed as a SOAP attachment. They also
allow you to directly access the stream representation of the data sent as a
SOAP attachment.

JAX-RPC mappings When Artix generates code for an operation that has one or more of its
message bound to a SOAP with attachment payload format, it inspects the
binding to see which parts of the bound message are being sent as
attachments. For the message parts that are to be sent as attachments, it
disregards the data type mappings described in previous sections and maps
the corresponding method parameter based on the MIME type specified for
the part in the contract. Table 12 shows the mappings for the supported
MIME types.

Table 12: MIME Type Mappings

MIME Type Java Type

image/gifa java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

multipart/* javax.mail.internet.MimeMultipart
 221

CHAPTER 7 | Working with Artix Data Types
For example, the contract shown in Example 138 has one operation, store,
whose input message has three parts: a patient name, a patient ID number,
and a base64Binary buffer to hold an image. The input message is bound to
a SOAP message with attachments using the mime:multiPart element.

a. Artix only supports the decoding of images in the GIFF format. It does not
support the encoding of images into the GIFF format.

Example 138: Using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="storRequest">
 <part name="patientName" type="xsd:string" />
 <part name="patientNumber" type="xsd:int" />
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>
 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>
 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="rpc"/>
222

Using SOAP with Attachments
The binding specifies that only one part of the message, the base64Binary
buffer, is to be passed as an attachment using the MIME type image/jpeg.
The other two parts of the message are to be passed in the SOAP body of
the message. If the operation were bound to a standard SOAP message, the

 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://mediStor.org/x-rays" use="encoded"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:AttachmentService" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 138: Using SOAP with Attachments
 223

CHAPTER 7 | Working with Artix Data Types
generated method would have a String parameter, an int parameter, and a
byte[] parameter. Instead the operation, store, is mapped as shown in
Example 139.

Using DataHandler objects Artix also provides the option to map SOAP attachments to
javax.activation.DataHandler objects. To have Artix map SOAP
attachments to DataHandler objects, use the -datahandlers flag when
running wsdltojava.

When using DataHander objects, Artix maps all SOAP attachments to a
DataHandler, so the contract in Example 138 on page 222 would result in
the operation shown in Example 140 as opposed to the one shown in
Example 139 on page 224.

Example 139: Java for SOAP with Attachments

// Java
package org.medistor.x_rays;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import java.awt.Image;

public class XRayStorageImpl implements java.rmi.Remote
{
 public boolean store(String patientName,
 int patientNumber,
 java.awt.Image xRay) {
 // User code goes in here.
 return false;
 }
}

Example 140: SOAP Attachments Using DataHandler Objects

// Java
package org.medistor.x_rays;

import java.net.*;
import java.rmi.*;
224

Using SOAP with Attachments
Using DataHandler objects to manipulate SOAP attachments provides you
with greater control over the data being passed in the attachment. As
specified in the J2EE specification, DataHandler objects have methods that
allow you to manipulate the attachment data as either an Object, an
InputStream, or an OutputStream. In addition, DataHandler objects allow
you to query it for the MIME type for the data being passed in the
attachment. For more information on using DataHandler objects see the
J2EE API documentation at
http://java.sun.com/j2ee/1.4/docs/api/index.html.

import java.lang.String;
import javax.activation.DataHandler;

public class XRayStorageImpl implements java.rmi.Remote
{
 public boolean store(String patientName,
 int patientNumber,
 javax.activation.DataHandler xRay)
 {
 // User code goes in here.
 return false;
 }
}

Example 140: SOAP Attachments Using DataHandler Objects

Note: When creating DataHandler objects to be passed in a SOAP
attachment, ensure that the MIME type specified in the creator method
matches the MIME type specified in the contract.
 225

http://java.sun.com/j2ee/1.4/docs/api/index.html

CHAPTER 7 | Working with Artix Data Types
Unsupported XML Schema Constructs

Unsupported built-in types The following XML Schema types are currently not supported by Artix:

� xsd:NOTATION
� xsd:IDREF
� xsd:IDREFS
� xsd:ENTITY
� xsd:ENTITIES
� xsd:anySimpleType

Unsupported simpleType features The following are not supported when working with xsd:simpleType:

� The final attribute

� All facets except for enumeration

� Have an xsd:list child element

Unsupported complexType
features

The following are not supported when working with xsd:complexType:

� The mixed attribute

� The final attribute

� The block attribute

� The abstract attribute

� simpleContent with restriction

� complexContent with restriction

� Having a choice complex type with a child of xsd:all

� Using xsd:anyAttribute

Unsupported features of
xsd:element

The following attributes are not supported for xsd:element:

� final

� block

� fixed

� default

� abstract

The following children are not supported for xsd:element:
226

Unsupported XML Schema Constructs
� xsd:unique

� xsd:key

� xsd:keyRef

Unsupported attributes for
xsd:attribute

The following attributes are not supported for attribute:

� ref
� from

Unsupported features of
xsd:attributeGroup

You cannot use xsd:anyAttribute inside of xsd:attributeGroup.

Unsupported attributes of
xsd:anyAttribute

The following attributes are not supported for xsd:anyAttribute:

� namespace
� processContents

Unsupported xsd:group features The following are not supported when working with group:

� minOccurs on local groups

� maxOccurs on local groups

� all inside a group

Other unsupported XML Schema
elements

The following XML Schema elements are not supported:

� xsd:redefine
� xsd:notation
� xsd:unique
� xsd:key
� xsd:keyref
� xsd:selector
� xsd:field

id attribute The id attribute is not supported by Artix.
 227

CHAPTER 7 | Working with Artix Data Types
228

CHAPTER 8

Creating
User-Defined
Exceptions
Artix supports the definition of user-defined exceptions using
the WSDL fault element. When mapped to Java, the fault
element is mapped to a throwable exception on the associated
Java method.

In this chapter This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 230

How Artix Generates Java User-defined Exceptions page 232

Working with User-defined Exceptions in Artix Applications page 235
 229

CHAPTER 8 | Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix
Contract

Overview Artix allows you to create user-defined exceptions that your service can
propagate back to its clients. As with any information that is exchanged
between a service and client in Artix, the exception must be described in the
Artix contract. Describing a user-defined exception in an Artix contract
involves the following:

� Describing the message that the exception will transmit.

� Associating the exception message to a specific operation.

� Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a
user-defined exception. The third task, describing the binding of the
exception to a payload format, is beyond the scope of this book. For
information on binding messages to specific payload formats in an Artix
contract read Bindings and Transports, C++ Runtime.

Describing the exception message Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the message element. There are
no restrictions on the data types that can be passed as part of an exception
message or on the number of parts the message can contain.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.
230

../bindings/cpp/index.html

Describing User-defined Exceptions in an Artix Contract
Example 141 shows a message description in an Artix contract.

For more information on describing a message in an Artix contract, read
Bindings and Transports, C++ Runtime.

Associating the exception with an
operation

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a fault element to the operation�s description.
A fault element takes the same attributes as the input elements and
output elements. The message attribute specifies the message element
describing the data passed by the exception. The name attribute specifies the
name by which the exception will be referenced in the binding section of the
contract.

Example 142 shows an operation description that uses the message
described in Example 141 on page 231 as a user-defined exception.

The operation described in Example 142, getWidgets, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

Example 141: Message Description

<message name="notEnoughInventory">
 <part name="numInventory" type="xsd:int" />
</message

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.

Example 142: Operation with a User-defined Exception

<operation name="getWidgets">
 <input message="tns:widgetSizeMessage" name="size" />
 <output message="tns:widgetCostMessage" name="cost" />
 <fault message="tns:notEnoughInventory" name="notEnough" />
</operation>
 231

../bindings/cpp/index.html

CHAPTER 8 | Creating User-Defined Exceptions
How Artix Generates Java User-defined
Exceptions

Overview As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Exception class so that it can be thrown.

Mapping simple type exceptions When your exception message is of a simple type, as shown in
Example 141 on page 231, the generated type will have one private data
member of the type specified in the contract�s message part to represent the
content of the message, a creation method that allows you to specify the
values of the data member, and the associated getter and setter methods for
the data member. In addition, the generated class will have a toString()
method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the name attribute of the exception�s message description and
will always start with a capital letter.

Mapping complex type exceptions When your exception message is of a user defined complex type, Artix will
generate an exception class whose name will be the name of the complex
type used in the fault message postfixed with _Exception. For example, if
you had a fault defined as shown in Example 143, the generated exception
class would be named NumInventory_Exception and would be located in
the same java package as the rest of the generated types.

Example 143: Complex Fault

...
<complexType name="numInventory">
 <sequence>
 <element name="numLeft" type="xsd:int" />
 <element name="size" type="xsd:string" />
 </sequence>
</complexType>
232

How Artix Generates Java User-defined Exceptions
The generated exception class will be the same as the one generated for the
complex type. The only difference being that the exception class extends
Exception and is throwable. See �Working with Artix Data Types� on
page 119.

Example Example 144 shows the generated exception class for the fault message in
Example 141 on page 231.

...
<message name="badSize">
 <part name="errorInfo" type="xsd1:numInventory" />
</message>
...
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

Example 143: Complex Fault

Example 144: Generated Java Class

//Java
import java.util.*;

public class NotEnoughInventory extends Exception
{
 public static final String TARGET_NAMESPACE =

"http://widgetVendor.com/widgetOrderForm";

 private int numInventory;

 public NotEnoughInventory(int numInventory)
 {
 super();
 this.numInventory = numInventory;
 }
 233

CHAPTER 8 | Creating User-Defined Exceptions
The TARGET_NAMESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

 public int getNumInventory()
 {
 return numInventory;
 }

 public void setNumInventory(int val)
 {
 numInventory = val;
 }

 public String toString()
 {
 StringBuffer buffer = new StringBuffer(super.toString());
 if (size != null)
 {
 buffer.append("numInventory: "+numInventory+"\n");
 }
 return buffer.toString();
 }
}

Example 144: Generated Java Class
234

Working with User-defined Exceptions in Artix Applications
Working with User-defined Exceptions in Artix
Applications

Overview Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception. Once the exception is caught, the client can inspect the contents
using the standard methods.

Example Example 145 shows how a server implementing the getWidgets operation,
shown in Example 142 on page 231, might instantiate and throw a
NotEnoughInventory exception.

Example 146 shows how a client might catch and report the exception
thrown by the server.

Example 145: Throwing a User-defined Exception

//Java
...
// checkInventory() is left for the reader to implement
// size and numOrdered are parameters passed into the operation
if (numOrdered > checkInventory(size))
{
 throw NotEnoughInventory(checkInventory(size));
}

Example 146: Catching a User-defined Exception

// Java
...
try
{
 long cost = getWidgets(size, numOrdered);
}

 235

CHAPTER 8 | Creating User-Defined Exceptions
catch(NotEnoughInventory nei)
{
 // get the value stored in the exception
 int numInventory = nei.getNumInventory();
 System.out.println("The factory only has "+numInventory+
 " widgets of size "+size+".");
}

Example 146: Catching a User-defined Exception
236

CHAPTER 9

Using Substitution
Groups
XML Schema substitution groups allow you to define a group
of elements that can replace a top level, or head, element.

In this chapter This chapter discusses the following topics:

Substitution Groups in XML Schema page 238

Using Substitution Groups with Artix page 242

Widget Vendor Example page 252
 237

CHAPTER 9 | Using Substitution Groups
Substitution Groups in XML Schema

Overview A substitution group is a feature of XML schema that allows you to specify
elements that can replace another element in documents generated from
that schema. The replaceable element is called the head element and must
be defined in the schema�s global scope. The elements of the substitution
group must be of the same type as the head element or a type that is
derived from the head element�s type.

In essence, a substitution group allows you to build a collection of elements
that can be specified using a generic element. For example, if you are
building an ordering system for a company that sells three types of widgets
you may define a generic widget element that contains a set of common
data for all three widget types. Then you could define a substitution group
that contains a more specific set of data for each type of widget. In your
contract you could then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget.
When the actual message is built, the message can then contain any of the
elements of the substitution group.

Syntax Substitution groups are defined using the substitutionGroup attribute of
the XML Schema element element. The value of the substitutionGroup
attribute is the name of the element that the element being defined can
replace. For example if your head element was widget, then by adding the
attribute substitutionGroup="widget" to an element named woodWidget
would specify that anywhere widget was used, you could substitute
woodWidget. This is shown in Example 147.

Type restrictions The elements of a substitution group must be of a similar type to the head
element of the group. This means that all the elements of the group must be
of the same type as the head element or of a type derived from the head

Example 147: Using a Substitution Group

<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"
 substitutionGroup="widget" />
238

Substitution Groups in XML Schema
element�s type. For example, if the head element is of type xsd:int all
members of the substitution group must be of type xsd:int or of type
derived from xsd:int. You could also define a substitution group similar to
the one shown in Example 148 where the elements of the substitution
group are of types derived from the head element�s type.

Example 148: Substitution Group with Complex Types

<complexType name="widgetType">
 <sequence>
 <element name="shape" type="xsd:string" />
 <element name="color" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="woodWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="woodType" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<complexType name="plasticWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="moldProcess" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
 substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
 substitutionGroup="widget" />
<complexType name="partType">
 <sequence>
 <element ref="widget" />
 </sequence>
</complexType>
<element name="part" type="partType" />
 239

CHAPTER 9 | Using Substitution Groups
The head element of the substitution group, widget, is defined as being of
type widgetType. Each element of the substitution group then extends
widgetType to include data specific to ordering the specific type of widget.

Based on the schema in Example 148 on page 239, the <part> elements in
Example 149 are valid.

Abstract head elements You can define an abstract head element that can never appear in a
document produced using your schema. Abstract head elements are similar
to abstract classes in Java in that they are used as the basis for defining
more specific implementations of a generic class. Abstract heads also
prevent the use of the generic element in the final product.

You declare an abstract head element using the abstract="true" attribute
of element element as shown in Example 150. Using this schema, a valid
review element could contain either a positiveComment element or a
negativeComment element, but not a comment element.

Example 149: XML Document using a Substitution Group

<part>
 <widget>
 <shape>round</shape>
 <color>blue</color>
 </widget>
</part>
<part>
 <plasticWidget>
 <shape>round</shape>
 <color>blue</color>
 <moldProcess>sandCast</moldProcess>
 </plasticWidget>
</part>
<part>
 <woodWidget>
 <shape>round</shape>
 <color>blue</color>
 <woodType>elm</woodType>
 </woodWidget>
</part>

Example 150: Abstract Head Definition

<element name="comment" type="xsd:string" abstract="true" />
240

Substitution Groups in XML Schema
<element name="positiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="review">
 <complexContent>
 <all>
 <element name="custName" type="xsd:string" />
 <element name="impression" ref="comment" />
 </all>
 </complexContent>
</element>

Example 150: Abstract Head Definition
 241

CHAPTER 9 | Using Substitution Groups
Using Substitution Groups with Artix

Overview Artix allows you to use substitution groups when defining Artix systems. The
bus properly validates messages that contain substitution groups provides a
Java mapping that makes using a substitution group easy. Artix maps
substitution groups into Java classes that extend the class used to represent
the head class. In addition, it adds special getter and setter methods to
complex types that reference members of substitution groups. Therefore,
your application code can reflect the element hierachy defined in the WSDL.

Using a substitution group as an
element of a complex type

When you include the head element of a substitution group as an element in
a complex type, the Artix WSDL to Java code generator adds additional
methods to the generated class representing the complex type. These
methods are similar to the ones generated to support choice complex types.
They allow you to place one of the elements of the substitution group into
the object, query the object to determine which element of the substitution
group is present in the object, and get a type specific element of the
substitution group back from the object.

Following a similar pattern to the one used in generating code for choice
complex types, Artix generates three methods for each element of a
substitution group used in a complex type. These methods are a setter
method named setMemberName(), a getter method named
getMemberName(), and a method to determine if the element is the one
being used by the object named isSetMemberName(). When setting a value
into the object, you should use the element specific methods to ensure that
the Artix runtime handles the data correctly when transmitting it across the
wire.
242

Using Substitution Groups with Artix
For example, you could define a complex type named widgetOrderInfo that
included an element defined using the widget element in Example 148 on
page 239. A possible definition widgetOrderInfo is shown in Example 151.

Artix would generate the class shown in Example 152 to represent
widgetOrderInfo. Unlike the other elements in the generated class, which
only have a getter and a setter method, the widget element results in the
generation of the methods setWidget(), getWidget(), isSetWidget(),
setWoodWidget(), getWoodWidget(), isSetWoodWidget(),
setPlasticWidget(), getPlasticWidget(), and isSetPlasticWidget() to
handle the substitution group. However, like all of the other elements, the
widget element only results in one member of the generated class. This
member, widget, is of the type generated for the head element of the
substitution group, WidgetType. This is possible because the types for each
member of the substitution group inherit from WidgetType.

While, due to the inheritance rules in Java, you could use the generic
setWidget() and getWidget() methods to place any one of the substitution
group elements into the object, it is not advisable. Artix relies on the
discriminator that is set in the type specific setter methods to ensure that

Example 151: Complex Type with a Substitution Group

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element ref="xsd1:widget"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>
 243

CHAPTER 9 | Using Substitution Groups
messages are generated properly when they are sent on the wire. So setting
a PlasticWidget using setWidget() may produce unpredictable results in a
running system.

Example 152: Class for a Substitution Group

public class WidgetOrderInfo
{
 private String __discriminator_widget;

 private int amount;
 private WidgetType widget;
 private Address shippingAddress;
 private Boolean rush;

 public int getAmount() {
 return amount;
 }

 public void setAmount(int val) {
 this.amount = val;
 }

 public WidgetType getWidget() {
 return widget;
 }

 public void setWidget(WidgetType val) {
 this.widget = val;
 __discriminator_widget = "widget";
 }

 public boolean isSetWidget() {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("widget")) {
 return true;
 }
 return false;
 }
244

Using Substitution Groups with Artix
 public WoodWidgetType getWoodWidget() {
 return (WoodWidgetType)widget;
 }

 public void setWoodWidget(WoodWidgetType val) {
 this.widget = val;
 __discriminator_widget = "woodWidget";
 }

 /**
 * isSetWoodWidget
 *
 * @return: boolean
 */
 public boolean isSetWoodWidget() {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("woodWidget")) {
 return true;
 }
 return false;
 }

 public PlasticWidgetType getPlasticWidget() {
 return (PlasticWidgetType)widget;
 }

 public void setPlasticWidget(PlasticWidgetType val) {
 this.widget = val;
 __discriminator_widget = "plasticWidget";
 }

 public boolean isSetPlasticWidget() {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("plasticWidget")) {
 return true;
 }
 return false;
 }

Example 152: Class for a Substitution Group
 245

CHAPTER 9 | Using Substitution Groups
If the head element of the substitution group is declared abstract, the
generated class will not include the methods to support the head element.
So in Example 152, getWidget(), setWidget(), and isSetWidget() would
not be generated.

Using a substitution group as an
argument to an operation

When you use a substitution group as part of an operation�s message, the
Artix WSDL to Java code generator generates the method for the operation
normally. The message part that is a substitution group results in a

 public Address getShippingAddress() {
 return shippingAddress;
 }

 public void setShippingAddress(Address val) {
 this.shippingAddress = val;
 }

 public Boolean isRush() {
 return rush;
 }

 public void setRush(Boolean val) {
 this.rush = val;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (amount != null) {
 buffer.append("amount: "+amount+"\n");
 }
 if (widget != null) {
 buffer.append("widget: "+widget+"\n");
 }
 if (shippingAddress != null) {
 buffer.append("shippingAddress:

"+shippingAddress+"\n");
 }
 if (rush != null) {
 buffer.append("rush: "+rush+"\n");
 }
 return buffer.toString();
 }
}

Example 152: Class for a Substitution Group
246

Using Substitution Groups with Artix
parameter of the head element�s type. For example, you could define the
operation shown in Example 153 that uses the substitution group defined in
Example 148 on page 239.

Artix would generate the interface shown in Example 154 to implement
orderWidgets. You could invoke on this operation by passing any of the
valid elements of the widget substitution group as a parameter.

Because Artix generates the same code for elements and types, Artix does
not enforce the abstract attribute when you use the head element of a
substitution group as a message part. If you want to ensure that the

Example 153: Operation with a Substitution Group

<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>

Example 154: orderWidgets Generated Code

public interface OrderWidgets extends java.rmi.Remote
{
 public int checkWidgets(
 com.widgetvendor.types.widgettypes.WidgetType widgetPart)
 throws RemoteException;
}

 247

CHAPTER 9 | Using Substitution Groups
abstract attribute is enforced you should define a new element that
includes a reference to the substitution group�s head element and use that in
place of the head element. This is shown in Example 155.

Doing so will cause Artix to generate a new class for the element that
includes the appropriate methods for working with a substitution group. The
generated method will use the class generated for the new element. The
additional code generated to implement the contract fragment in
Example 155 is shown in Example 156. In this scenario, if the head
element is declared abstract the methods supporting it would not be
generated.

Example 155: Element Referring to a Substitution Group

<types ...>
...
 <element name="widgetElement">
 <complexType>
 <sequence>
 <element ref="xsd1:widget" />
 </sequence>
 </complexType>
 </element>
...
</types>
<message name="widgetMessage">
 <part name="request" element="xsd1:widgetElement" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>
248

Using Substitution Groups with Artix
Example 156: Code for Element with a Substitution Group

public class WidgetElement
{
 private String __discriminator_widget;

 private WidgetType widget;

 public WidgetType getWidget()
 {
 return widget;
 }

 public void setWidget(WidgetType val)
 {
 this.widget = val;
 __discriminator_widget = "widget";
 }

 public boolean isSetWidget()
 {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("widget")) {
 return true;
 }
 return false;
 }
 249

CHAPTER 9 | Using Substitution Groups
 public WoodWidgetType getWoodWidget()
 {
 return (WoodWidgetType)widget;
 }

 public void setWoodWidget(WoodWidgetType val)
 {
 this.widget = val;
 __discriminator_widget = "woodWidget";
 }

 public boolean isSetWoodWidget()
 {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("woodWidget")) {
 return true;
 }
 return false;
 }

Example 156: Code for Element with a Substitution Group
250

Using Substitution Groups with Artix
 public PlasticWidgetType getPlasticWidget()
 {
 return (PlasticWidgetType)widget;
 }

 public void setPlasticWidget(PlasticWidgetType val)
 {
 this.widget = val;
 __discriminator_widget = "plasticWidget";
 }

 public boolean isSetPlasticWidget()
 {
 if(__discriminator_widget != null &&
 __discriminator_widget.equals("plasticWidget")) {
 return true;
 }
 return false;
 }

 public String toString() {
 StringBuffer buffer = new StringBuffer();
 if (widget != null) {
 buffer.append("widget: "+widget+"\n");
 }
 return buffer.toString();
 }
}
public interface OrderWidgets extends java.rmi.Remote
{
 public int checkWidgets(
 com.widgetvendor.types.widgettypes.WidgetElement widgetPart)
 throws RemoteException;
}

Example 156: Code for Element with a Substitution Group
 251

CHAPTER 9 | Using Substitution Groups
Widget Vendor Example

Overview This section shows an example of substitution groups being used in Artix to
solve a real world application. A server and client are developed using the
widget substitution group defined in Example 148 on page 239. The
service offers two operations: checkWidgets and placeWidgetOrder.
Example 157 shows the interface for the ordering service.

The type widgetOrderForm is defined in Example 151 and
widgetOrderBillInfo extends widgetOrderForm to include one extra field to
hold the final cost of the order.

Example 157: Widget Ordering Interface

<message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
 <part name="widgetOrderConformation"
 type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>

Note: Because the example is to demonstrate the use of substitution
groups, some of the business logic is not shown.
252

Widget Vendor Example
placeWidgetOrder placeWidgetOrder takes a complex type containing the substituion group.
This operation demonstrates how one might go about using such a structure
in a Java implentation. Both the client and the server have to get and set
members of a substitution group.

checkWidgets checkWidgets is a simple operation that has a parameter that is a
substitution group. This operation demonstrates how to deal with individual
parameters that are members of a substitution group. The server must
properly determine which member of the substitution group was sent in the
request. The client must ensure that the parameter is a valid member of the
substitution group.

In this section This section discusses the following topics:

Widget Server page 254

Widget Client page 258
 253

CHAPTER 9 | Using Substitution Groups
Widget Server

Overview The widget server implements the operations defined by the orderWidgets
interface shown in Example 157. The Artix WSDL to Java code generator
creates the implementation class shown in Example 158 for the interface.
Using this as a starting point, the following section implements each of the
defined operations. Note that some of the application logic is omitted for
clarity around the use of substitution groups.

placeWidgetOrder placeWidgetOrder() recieves an order in the form of a WidgetOrderInfo
object, processes the order, and returns a bill to the client in the form of a
WidgetOrderBillInfo object. The orders can be for either a plain widget, a
plastic widget, or a wooden widget. The type of widget ordered is

Example 158: Widget Server Implementation Class

// Java
package com.widgetvendor.widgetorderform;

import com.widgetvendor.types.widgettypes.WidgetOrderBillInfo;
import com.widgetvendor.types.widgettypes.WidgetOrderInfo;
import com.widgetvendor.types.widgettypes.WidgetType;

public class OrderWidgetsImpl implements java.rmi.Remote
{

 public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo
 placeWidgetOrder(com.widgetvendor.types.widgettypes.WidgetOrderInfo widgetOrderForm)
 {
 // User code goes in here.
 return new com.widgetvendor.types.widgettypes.WidgetOrderBillInfo();
 }

 public int checkWidgets(com.widgetvendor.types.widgettypes.WidgetType widgetPart)
 {
 // User code goes in here.
 return 0;
 }
}

254

Widget Vendor Example
determined by what type of object is stored in widgetOrderForm�s widget
member. widget is a substitution group and can contain either a Widget, a
WoodWidget, or a PlasticWidget.

The best way to determine the type of object stored in widgetOrderForm�s
widget member is to use the isSetelemName() methods. These methods are
generated by the Artix WSDL to Artix code generator to support the
identification of which element of a substitution group is being used and
return a boolean value. Using these methods, you can build a series of
if/then statements to determine what type of widget is being ordered and
process the order correctly. This is shown in Example 159.

Example 159: placeWidgetOrder()

//Java
public WidgetOrderBillInfo placeWidgetOrder(WidgetOrderInfo

widgetOrderForm)
{
 WidgetOrderBillInfo bill = new WidgetOrderBillInfo()

 // Copy the shipping address and the number of widgets
 // ordered from widgetOrderForm to bill
 ...
 int numOrdered = widgetOrderForm.getAmount();

 if (widgetOrderForm.isSetWidget())
 {
 // Get the widget data from the order form
 WidgetType order = widgetOrderForm.getWidget();

 // Method buildWidget() is left for you to implement
 buildWidget(order, numOrdered);

 // Add the amount of the bill and the widget info to bill
 bill.setWidget(order);
 float amtDue = numOrdered * 0.30;
 bill.setAmountDue(amtDue);
 }
 255

CHAPTER 9 | Using Substitution Groups
Once you have determined which type of widget is in the order, you use the
type specific getter method to extract the proper element of the substitution
group in the order. To set the widget member of the bill you use the type
specific setter methods to ensure that when the client gets the bill back it
can use the isSetelemName() methods on the bill.

checkWidgets checkWidgets() gets a widget description as a WidgetType, checks the
inventory of widgets, and returns the number of widgets in stock. Due to the
way Artix generates code, the fact that the operation is defined using a
substitution group head element does not imply that you need to use any
Artix specific APIs. In fact, you can implement checkWidgets() using
standard Java code.

 else if (widgetOrderForm.isSetWoodWidget())
 {
 // Get the widget data from the order form
 WoodWidgetType order = widgetOrderForm.getWoodWidget();

 // Method buildWoodWidget() is left for you to implement
 buildWoodWidget(order, numOrdered);

 // Add the amount of the bill and the widget info to bill
 bill.setWoodWidget(order);
 float amtDue = numOrdered * 0.85;
 bill.setAmountDue(amtDue);
 }
 else if (widgetOrderForm.isSetPlasticWidget())
 {
 // Get the widget data from the order form
 PlasticWidgetType order = widgetOrderForm.getPlasticWidget();

 // Method buildPlasticWidget() is left for you to implement
 buildPlasticWidget(order, numOrdered);

 // Add the amount of the bill and the widget info to bill
 bill.setPlasticWidget(order);
 float amtDue = numOrdered * 0.85;
 bill.setAmountDue(amtDue);
 }

 return bill;
}

Example 159: placeWidgetOrder()
256

Widget Vendor Example
Because all of the types defining the different members of the substitution
group for widget extend WidgetType, you can use instanceof to determine
what type of widget was passed in and simply cast the argument
widgetPart into the more restrictive type if appropriate. Once you have the
proper type of object, you can check the inventory of the right kind of
widget.

A possible implementation is shown in Example 160.

Example 160: checkWidgets()

public int checkWidgets(WidgetType widgetPart)
{
 if (widgetPart instanceof WidgetType)
 {
 return checkWidgetInventory(widgetType);
 }
 else if (widgetPart instanceof WoodWidgetType)
 {
 WoodWidgetType widget = (WoodWidgetType)widgetPart;
 return checkWoodWidgetInventory(widget);
 }
 else if (widgetPart instanceof PlasticWidgetType)
 {
 PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
 return checkPlasticWidgetInventory(widget);
 }
}

 257

CHAPTER 9 | Using Substitution Groups
Widget Client

Overview The widget client makes request on the widget server for orders or to check
inventory. To do so it must properly populate the data elements that are
defined using substitution groups. For example, to make an order the client
needs to use the type specific setter methods for the widget type it is
ordering.

placeWidgetOrder To invoke placeWidgetOrder() the client needs to construct a widget order
that contains one element of the widget substitution group. When adding
the widget to the order, the client code should use the type specific setters
generated for each element of the substitution group to ensure that the Artix
runtime and the server can correctly process the order. For example, if an
order is being placed for a plastic widget, setPlasticWidget() should be
used to add the widget to the order.

Example 161 shows client code for setting the widget member of
WidgetOrderInfo.

Example 161: Setting a Substitution Group Member

//Java
InputStreamReader inReader = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(inReader);

WidgetOrderInfo order = new WidgetOrderInfo();
...

System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
258

Widget Vendor Example
System.out.println();
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);

switch (widgetType)
{
 case '1':
 {
 WidgetType widget = new WidgetType();
 widget.setColor(color);
 widget.setShape(shape);
 order.setWidget(widget);
 break;
 }
 case '2':
 {
 WoodWidgetType woodWidget = new WoodWidgetType();
 woodWidget.setColor(color);
 woodWidget.setShape(shape);

 System.out.println();
 System.out.println("What type of wood are your widgets?");
 String wood = reader.readLine();
 woodWidget.setWoodType(wood);

 order.setWoodWidget(woodWidget);
 break;
 }

Example 161: Setting a Substitution Group Member
 259

CHAPTER 9 | Using Substitution Groups
checkWidgets Because substitution groups are made up of elements that are either of the
same type or of element whose type inherits from the type of the head
element, the client can invoke checkWidgets() without using any special
Artix code. When developing the logic to invoke checkWidgets() you can
pass in any element of the widget substitution group and the server side
implementation should be able to handle it correctly.

The only caveat is that Artix does not enforce abstract="true". It is up to
you to ensure that your code does not pass in the head element in this case.
This is particularly important when working with services that were not
developed using Artix.

 case '3':
 {
 PlasticWidgetType plasticWidget = new PlasticWidgetType();
 plasticWidget.setColor(color);
 plasticWidget.setShape(shape);

 System.out.println();
 System.out.println("What type of mold to use for your
 widgets?");
 String mold = reader.readLine();
 plasticWidget.setMoldProcess(mold);

 order.setPlasticWidget(plasticWidget);
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
}

Example 161: Setting a Substitution Group Member
260

CHAPTER 10

Working with Artix
Type Factories
Artix uses generated type factories to support a number of
advanced features including XML Schema anyType support
and message contexts.

In this chapter This chapter discusses the following topics:

Introduction to Type Factories page 262

Registering Type Factories page 264

Getting Type Information From Type Factories page 267
 261

CHAPTER 10 | Working with Artix Type Factories
Introduction to Type Factories

What are type factories? Artix type factories are generated classes that allow the Artix bus to
dynamically create instances of user defined types. They are used to support
Artix functionality that manipulate data using generic Java Object instances
such as working with XML Schema anyType instances, message contexts,
and SOAP headers.

Using type factories in your
applications

To use type factories in your Artix applications you need to do the following:

1. Generate the type factories for all of the XML Schema types and XML
Schema elements used by your application.

2. Edit the WSDL path hard coded into the generated type factory to point
to the proper location of your application�s contract.

3. Register the type factories with the bus used by your application.

Once the type factories are registered with the bus, it will use the type
factories to create the proper holders for any data that needs them. In
addition, you can also use the functions on the type factories to get
information about the types used in your application or to dynamically
instantiate classes for your data types.

Generating type factories wsdltojava automatically generates a type factory for all user-defined types
in a contract when it generates the code for them. The type factory class is
named by postfixing TypeFactory onto the port type�s name. For example if
you generated Java code for a port type named packageDepot, the generated
type factory class would be packageDepotTypeFactory.

Additionally, you can pass wsdltojava an XML Schema document that
defines types used by your application and it will generate the classes and
type factory for the defined types.

Each contract or XML Schema document results in one type factory that
supports all of the types and elements defined by it. The generated type
factory will also support all of the types and elements defined by any
imported XML Schema documents. So, if your application only uses the
complex types defined in its own contract you will only need to register one
262

Introduction to Type Factories
type factory. However, if your application uses types defined in a second
XML Schema document, you will need to generate and register the type
factory for those types also.

The generated type factories have a hard coded WSDL path. The WSDL
path in the generated type factory is an absolute path that points to the
location of the document from which the type factory was generated. If you
plan to move your application, you will need to edit this hard coded path.

Java packages for type factory
support

When using type factories you must import the package
com.iona.webservices.reflect.types.TypeFactory.
 263

CHAPTER 10 | Working with Artix Type Factories
Registering Type Factories

Overview Before the Artix bus can use the generated type factories, they must be
registered with the bus. This is done using the bus� registerTypeFactory()
method.

Procedure To register type factories with an application�s bus do the following:

1. Get a reference to the application�s bus as shown in �Getting a Bus� on
page 98.

2. Instantiate the type factories you wish to register with the client proxy
as shown in �Instantiating a type factory� on page 264.

3. Register the type factories using registerTypeFactory() on the Bus
object as shown in �Registering a type factory� on page 265.

Instantiating a type factory The Artix Java code generator automatically generates a type factory for all
of the complex types and elements defined in a contract. The type factory
class is named by postfixing TypeFactory onto the port type�s name. For
example if you generated Java code for a port type named packageDepot,
the generated type factory class would be PackageDepotTypeFactory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 162 shows the code to
instantiate the type factory for packageDepot.

Example 162: Instantiating a TypeFactory

//Java
PackageDepotTypeFactory factory = new PackageDepotTypeFactory();
264

Registering Type Factories
Registering a type factory You register a type factory with the bus using its registerTypeFactory()
method. registerTypeFactory() takes an instance of a type factory as its
only argument. Example 163 shows code registering a type factory.

To register multiple type factories with the bus, call registerTypeFactory()
with each additional type factory. Subsequent calls add new type factories
to the list of registered type factories.

Determining if type factories are
registered

You can get a hash table of the type factories registered with a bus using
getTypeFactoryMap(). The returned hash table contains the QName for the
registered type factories and an ArrayList of TypeFactory objects
containing all of the registered type factories. Example 164 shows code for
returning the hash table of registered type factories.

Example Example 165 shows an example of registering two type factories,
packageDepotTypeFactory and widgetsTypeFactory.

Example 163: Registering a Type Factory

//Java

...
// Bus bus and TypeFactory factory obtained above
bus.registerTypeFactory(factory);

Example 164: Getting Hash Table of Registered Type Factories

//Java
HashMap factMap = bus.getTypeFactoryMap();

Example 165: Registering Type Factories

//Java
import javax.xml.rpc.*;
import com.iona.webservices.reflect.types.*;
...
// Start the bus and create the Artix client proxy

1 Bus bus = Bus.init();
2 packageDepotTypeFactory fact1 = new packageDepotTypeFactory();

widgetsTypeFactory facts = new widgetsTypeFactory();
 265

CHAPTER 10 | Working with Artix Type Factories
The code in Example 165 does the following:

1. Initializes the bus.

2. Instantiates the type factory that will be registered.

3. Registers the type factories using registerTypeFactory(). The first
call registers the type factory for the types defined in the packageDepot
contract. The second call registers the factory for the types defined in
the widgets contract.

3 bus.registerTypeFactory(fact1);
bus.registerTypeFactory(fact2);

Example 165: Registering Type Factories
266

Getting Type Information From Type Factories
Getting Type Information From Type Factories

Overview In most cases you will not need to do anything with the type factories once
they are registered. The bus automatically handles the creation of type
instances for dynamically created data.

However, you can use the type factory�s methods to get information about
the supported types or dynamically create instances of data types on your
own. TypeFactory objects have five methods that provide access to the
types supported by the factory. They are:

� getSupportedNamespaces()

� getSchemaType()

� getJavaType()

� getJavaTypeForElement()

� getTypeResourceLocation()

getSupportedNamespaces() getSupportedNamespaces() returns an array of strings listing the
namespace URIs used in the schema for which the type factory was
generated. For example, if your type factory was generated from a contract
that contained the fragment shown in Example 166 a calling
getSupportedNamespaces() on the generated type factory would return an
array of strings containing a single entry:
http://packageTracking.com/packageTypes.

Example 166: WSDL Fragment

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 267

CHAPTER 10 | Working with Artix Type Factories
Example 167 shows code calling getSupportedNamespaces().

getSchemaType() getSchemaType() returns the QName of the schema type for which the
specified class is generated. It takes a Class object for a generated type and
returns the QName given in the applications contract for the type which
resulted in the generated class.

For example, the contract fragment in Example 166 on page 267 would
cause a class called PackageInfo to be generated to support the XML
Schema complex type packageInfo. Calling getSchemaType() on an

 <types>
 <schema
 targetNamespace="http://packageTracking.com/packageTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="packageInfo">
 <sequence>
 <element name="id" type="xsd:string" />
 <any namespace="##any" processContents="lax"
 maxOccurs="4" />
 <element name="size" type="xsd1:packageSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...
 <portType name="packageDepot">
 ...
 </portType>
 ...
</definitions>

Example 166: WSDL Fragment

Example 167: getSupportedNamespaces()

//Java

PackageDepotTypeFactory fact = new PackageDepotTypeFactory();
String[] typeNamespaces = fact.getSupportedNamespaces();
268

Getting Type Information From Type Factories
instance of packageDepotTypeFactory, as shown in Example 168, would
return a QName whose local part is packageInfo and whose namespace
URI is http://packageTracking.com/packageTypes.

getJavaType() getJavaType() returns the Java Class object generated to support the
specified XML Schema type. It takes the QName of an XML Schema type
defined using a type element in the contract from which the type factory
was generated as an argument. Using the QName, getJavaType() finds the
Class object generated to support the XML Schema type and returns an
instance of it.

For example, the code in Example 169 gets an instance of the generated
PackageInfo object by passing getJavaType() the QName of the
packageInfo XML Schema type defined in Example 166 on page 267.

The code in Example 169 does the following:

1. Creates the QName for the XML Schema type.

2. Calls getJavaType() on the type factory to get the Class object for the
XML Schema type.

3. Uses the returned Class object to create a new instance of
PackageInfo.

Example 168: getSchemaType()

// Java
// PackageDepotTypeFactory fact obtained earlier
QName typeName = fact.getSchemaType(PackageInfo.class);

Example 169: getJavaType()

//Java

1 QName typeName = new
QName("http://packageTracking.com/packageTypes",
"packageInfo");

2 // PackageDepotTypeFactory, fact, obtained earlier
Class typeClass = fact.getJavaType(typeName);

3 PackageInfo newPackage = typeClass.newInstance();
 269

CHAPTER 10 | Working with Artix Type Factories
getJavaTypeForElement() getJavaTypeForElement() returns the Java Class object generated to
support the specified XML Schema element. It takes the QName of an XML
Schema element defined using an element element in the contract from
which the type factory was generated as an argument. Using the QName,
getJavaTypeForElement() finds the Class object generated to support the
XML Schema element and returns an instance of it.

getTypeResourceLocation() getTypeResourceLocation() returns a string containing the location of the
contract, or XML Schema document, for which the type factory was
generated.
270

CHAPTER 11

Working with XML
Schema anyTypes
The XML Schema anyType allows you to place a value of any
valid XML Schema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

In this chapter This chapter discusses the following topics:

Introduction to Working with XML Schema anyTypes page 272

Setting anyType Values page 274

Retrieving Data from anyTypes page 276
 271

CHAPTER 11 | Working with XML Schema anyTypes
Introduction to Working with XML Schema
anyTypes

XML Schema anyType The XML Schema anyType is the root type for all XML Schema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XML Schema primitives as well as any complex type
defined in a schema document.

Artix and anyType In Artix, an anyType can assume the value of any complex type defined
within the types section of an Artix contract. An anyType can also assume
the value of any XML Schema primitive. For example, if your contract
defines the complex types joeFriday, samSpade, and mikeHammer, an
anyType used as a message part in an operation can assume the value of an
element of type samSpade or an element of type xsd:int. However, it could
not assume the value of an element of type aceVentura because aceVentura
was not defined in the contract.

Artix binding support Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

� SOAP

� Pure XML

� CORBA

Using anyType in Java When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory classes with the application�s bus. See
�Registering Type Factories� on page 264.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in �Retrieving Data from anyTypes� on page 276.
272

Introduction to Working with XML Schema anyTypes
Java packages for anyType
support

When using anyType data and the type factories you must import the
following:

� com.iona.webservices.reflect.types.AnyType
� com.iona.webservices.reflect.types.TypeFactory
 273

CHAPTER 11 | Working with XML Schema anyTypes
Setting anyType Values

Overview In Artix Java xsd:anyType is mapped to
com.iona.webservices.reflect.types.AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the QName for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data�s schema type when the object is
transmitted.

Setting primitive data The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 13.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 13: anyType Setter Methods for Primitive Types

Method Java Type XML Schema Type

setBoolean() boolean boolean

setByte() byte byte

setShort() short short

setInt() int int

setLong() long long

setFloat() float float

setDouble() double double

setString() string string

setShort() short short

setUByte() short ubyte

setUShort() int ushort
274

Setting anyType Values
Setting complex type data You set complex data into any AnyType using setType(). setType() can be
used in one of two ways. The first is to provide the QName of the XML
Schema type describing the data to store in the AnyType along with the
data. Using this method makes it easier to query the contents of anyType
objects that were created in the current application space because Artix
does not set the type identifier until after it sends the anyType across the
wire. Example 170 shows code for storing a widgetSize in an anyType.

The other way is to pass in null for the QName and the data value to store in
the AnyType. When it encounters a null QName, Artix will determine the XML
Schema type describing the data. From the receiving end this method for
storing data in an anyType is equivalent to the first method because Artix
identifies the content�s schema type when it transmits the data. However,
the application that stores the value will have no way to determine the data
type until it is used as part of a remote invocation. Example 171 shows
code for storing a widgetSize in an anyType without providing its QName.

setUInt() long uint

setULong() BigInteger ulong

setDecimal() BigDecimal decimal

Table 13: anyType Setter Methods for Primitive Types

Method Java Type XML Schema Type

Example 170: Storing Complex Data and Specifying its Type

//Java
widgetSize size = widgetSize.big;
QName qn = new QName("http://widgetVendor.com/types/",
 "widgetSize");
AnyType aT =new AnyType();
aT.setType(qn, size);

Example 171: Storing Complex Data without a QName

// Java
widgetSize size = widgetSize.big;
AnyType aT =new AnyType();
aT.setType(null, size);
 275

CHAPTER 11 | Working with XML Schema anyTypes
Retrieving Data from anyTypes

Overview Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value�s type you could
cast the value into the proper Java type and work with it using standard
Java methods.

Artix�s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not
specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java getClass() method on the Java Object
returned from AnyType.getObject() to get the Java class of the data stored
in the anyType.

Determining the type of an
anyType

The Artix Java AnyType provides a method, getSchemaTypeName(), that
returns the QName of the schema type of the data stored in the anyType.
Example 172 gets the schema type of an anyType and prints it out to the
console.

Example 172: Using getSchemaTypeName()

// Java
import com.iona.webservices.relect.types.*;

AnyType blackBox;

// Client proxy, proxy, instantiated previously
blackBox = proxy.newBox();
QName schemaType = blackBox.getSchemaTypeName();
System.out.println("The type for blackBox is defined in "
 +schemaType.getNamespaceURI());
System.out.println("blackBox is of type: "
 +schemaType.getLocalPart());
276

Retrieving Data from anyTypes
The data stored in an Artix AnyType is a stored as a standard Java Object,
so when the data is extracted you can use the standard getClass() method
on the returned Object to determine its Java type.

Extracting primitive types from an
anyType

The Artix AnyType provides specific methods for extracting primitive types.
Table 14 lists the getter methods for the supported primitive types and the
local part of the schema type name returned by getSchemaType(). All of the
primitive types have http://www.w3.org/2001/XMLSchema as their
namespace URI.

Table 14: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name

getBoolean() boolean boolean

getByte() byte byte

getShort() short short

getInt() int int

getLong() long long

getFloat() float float

getDouble() double double

getString() String string

getUByte() short unsignedByte

getUShort() int unsignedShort

getUInt() long unsignedInt

getULong() BigInteger unsignedLong

getDecimal() BigDecimal decimal
 277

CHAPTER 11 | Working with XML Schema anyTypes
Extracting complex data from an
anyType

The Artix AnyType provides a generic method, getType(), that can be used
to extract complex data. getType() returns the data stored in the anyType as
a Java Object that you can then cast to the proper Java type. Example 173
shows an example of retrieving a widgetSize from an anyType.

Example If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and desktops.
Because the laptops and desktops are configured differently you�ve decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, laptopOrder and desktopOrder, in the
namespace http://myAssemblyLine.com/systemTypes. Example 174
shows code for receiving the order from the server, querying the returned
AnyType to see what type of order it is, and then extracting the order from
the AnyType.

Example 173: Extracting a Complex Type from an anyType

// Java
AnyType any;

// Client proxy, proxy, instantiated earlier
any = proxy.returnWidget();
widgetSize size = (widgetSize)any.getObject();

Example 174: Working with anyTypes

// Java
import javax.xml.namespace.QName;
import com.iona.webservices.reflect.types.*;

AnyType anyOrder;
1

// Client proxy, proxy, instantiated earlier
anyOrder = proxy.getSystemOrder();

2
// Get the schema type of the returned order
QName orderType = anyOrder.getSchemaType();
278

Retrieving Data from anyTypes
The code in Example 174 on page 278 does the following:

1. Populates anyOrder.

2. Queries anyOrder for its schema type information.

3. Checks the namespace of the returned type to ensure it correct.

4. Checks if anyOrder is a laptopOrder. If so, cast anyOrder into a
laptopOrder.

5. Checks if anyOrder is a desktopOrder. If so, cast anyOrder into a
desktopOrder.

3 if (!(orderType.getNamespaceURI().equals(
 "http://myAssemblyLine.com/systemTypes"))
{
 // handle the fact that the schema type is from the wrong
 // namespace.
}

4 if (orderType.getLocalPart().equals("laptopOrder"))
{
 LapTopOrder order = (LapTopOrder)anyOrder.getType();
 buildLaptop(order);
}

5 if (orderType.getLocalPart().equals("desktopOrder"))
{
 DeskTopOrder order = (DeskTopOrder)anyOrder.getType();
 buildDesktop(order);
}

Example 174: Working with anyTypes
 279

CHAPTER 11 | Working with XML Schema anyTypes
280

CHAPTER 12

Using Endpoint
References
An endpoint reference is a standardized means of representing
handles to Artix service instances. Because they can be passed
as message parts, endpoint references provide a convenient
and flexible way of identifying and locating specific services.

In this chapter This chapter discusses the following topics:

Introduction to Endpoint References page 282

Using Endpoint References in a Factory Pattern page 295

Using Endpoint References to Implement Callbacks page 308

Migration Scenarios page 323
 281

CHAPTER 12 | Using Endpoint References
Introduction to Endpoint References

Overview An Endpoint Reference is a Java object that encapsulates the addressing
information for an endpoint defined in a WSDL contract. They are generated
from the WS-Addressing endpoint reference schema type. Endpoint
references in Artix have the following features:

� The encapsulate the information stored in a wsdl:service element.

� They can be passed as a parameter of an operation.

� They can be used to create service proxies for a service.

� They are the building blocks for the Artix locator and the Artix session
manager.

� They are transport neutral. An endpoint reference can be used to
represent any Artix service.

 In this section This section discusses the following topics:

Note: In versions of Artix prior to 4.0, references were represented by the
proprietary Reference type. The Reference type has been deprecated and
replaced by WS-Addressing compliant endpoint references. For details of
the issues involved in migrating, see �Migration Scenarios� on page 323.

Endpoint Reference Basic Concepts page 283

Using Endpoint References in Artix Contracts page 286

Creating Endpoint References for a Service page 290

Instantiating Service Proxies Using an Endpoint Reference page 293
282

Introduction to Endpoint References
Endpoint Reference Basic Concepts

Overview An endpoint reference is a Java object, derived from the XML Schema
defined by the WS-Addressing standard. It contains all of the information
needed to contact a deployed Artix endpoint. It lists the endpoint�s address
and contains a copy of the service element from the endpoint�s contract.
The data contained in the reference provides an Artix client process with the
information needed to instantiate a service proxy to contact the referenced
endpoint.

Using endpoint references provides you with the ability to generate servants
on the fly and pass a client an endpoint reference to the newly instantiated
servant. It also provides you the ability to write applications that require
using a callback mechanism. In addition, the Artix locator and the Artix
session manager use endpoint references to supply applications with
pointers to the services which they are looking-up.

Contents of an endpoint reference An endpoint reference encapsulates the following data:

� Endpoint Address�the addressing details needed to contact the
endpoint expressed as a IRI.

� Reference Parameters�an optional list of properties used to connect
to the endpoint.

� Metadata�a WSDL document containing the service element
containing the endpoint�s port element. Because Artix associates
endpoint references with the service element of an Artix contract, the
service element included in the endpoint reference may contain
multiple port elements.

Note: The service element contained in the endpoint reference�s
metadata is derived from the service element in the endpoint�s physical
contract. If the endpoint reference is generated for a transient servant or for
an endpoint whose port element contains a dynamic URL, the service
element in the metadata will contain the live information.
 283

CHAPTER 12 | Using Endpoint References
The schema definition of a
reference

Like all types in Artix, the reference is defined in XML Schema. The XML
Schema defining a reference is located in the schema folder of your Artix
Installation and is called wsaddressing.xsd. It can also be found on-line at
http://www.w3.org/2005/08/addressing/ws-addr.xsd.

You will need to import the reference schema into the contract of any
application that uses endpoint references. It is required for Artix to properly
generate the Java code for operations using an endpoint reference as a
parameter and for the bus to properly marshal and unmarshal endpoint
references.

Java mapping of an endpoint
reference

In Java an endpoint reference is mapped to a class called
com.iona.schemas.wsaddressing.EndpointReferenceType. This class is
provided in the libraries shipped with Artix. Applications that use endpoint
references must import this class.

Endpoint references and the Artix
router

When endpoint references are passed through the Artix router, the router
creates a service proxy for each endpoint reference. In this way it ensures
that messages are correctly delivered to the referenced service. However,
this creates two issues that must be considered:

Misconnected Proxies

Because transient servants are not associated with a fixed service, the router
must guess at which service element was used as the template to create
the servant. It chooses the first compatible service element it encounters in
the router�s contract. A compatible service element is one that uses the
same portType element as the template used to create the transient
servant.

If your contract contains a service element for a static service and a
service element for use as a template for transient services and they both
use the same portType element, the router will use the first one listed in the
contract. If the static service element is first, the router will create a proxy
that connects to the servant defined by that service element and not the
transient servant that is referenced. The result will be that all messages
directed to the transient servant will be silently forwarded to the wrong
servant.
284

http://www.w3.org/2005/08/addressing/ws-addr.xsd

Introduction to Endpoint References
To avoid this situation place all service templates in your router�s contract
before the static service elements. This will ensure that the router will
select the service template and create a proxy for the transient servant.

Router bloat

Because the router cannot know when a proxy is no longer needed, it cannot
reap any of the proxies it creates. Because of this, a router that handles a
large number of references may get quite bloated. To solve this problem
Artix includes a life-cycle service that allows you to configure a reaping
schedule for the router. For more information on using the life-cycle service
see Configuring and Deploying Artix Solutions, C++ Runtime.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 285

../deploy/cpp/index.htm

CHAPTER 12 | Using Endpoint References
Using Endpoint References in Artix Contracts

Overview There are many cases where distributed applications need to exchange
contact information. For example, an endpoint may need to register a
callback object or a service may be acting as a factory for other services. In
cases where contact information is being exchanged, you will need to
include endpoint references in one or more of the logical messages defined
in your service�s contract.

To use endpoint references in a service contract do the following:

1. Define a prefix, typically wsa, for the WS-Addressing schema used to
define endpoint references.

2. Import the WS-Addressing schema in the types element of your
contract.

3. Use the wsa:EndpointReferenceType in any logical data units or
logical messages that involve the exchange of contact information.

Defining the wsa prefix You define namespace prefixes in a contract�s definitions element. They
are used as shorthand for full namespace declarations throughout the body
of the contract. Commonly used prefixes include xsd for the namespace
under which XML Schema elements are defined and soap for the
namespace under which SOAP elements are defined.

To define the wsa prefix and associate it with the namespace under which
the WS-Addressing EndpointReferenceType is defined you will need to add
the line shown in Example 175 to your contract�s definition element.

The full namespace under which the WS-Addressing elements are defined is
http://www.w3.org/2005/08/addressing. Once this line is added to your
contract you will be able to use elements defined in the namespace by
prefixing the element name with wsa:.

Example 175: Defining the wsa Prefix

<definintions ...
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 ... >
286

Introduction to Endpoint References
Importing the schema Before you can use the wsa:EndpointReferenceType in your contract, you
need to import the XML Schema document defining it into your contract.
You import XML Schema documents into your contract using an import
element as shown in Example 176.

The value of the location attribute is the location of the actual XML
Schema document being imported. For the WS-Addressing XML Schema
document, the most portable location is from
http://www.w3.org/2005/08/addressing/ws-addr.xsd. The value of the
namespace attribute should match the value of the prefix declaration in the
definitions element.

Using the endpoint reference in a
message

Once you�ve imported the XML Schema document defining
wsa:EndpointReferenceType, you can use endpoint references as units of
data in your custom type definitions or as parts of a message. You add
endpoint references to custom types by adding an element that is of
wsa:EndpointReferenceType as shown in Example 177. The complex type
referenceHolder has two elements. serviceName is of type xsd:string.
serviceEndpoint is of wsa:EndpointReferenceType and is used to hold and
endpoint reference.

You can specify that an endpoint reference is part of a logical message
directly in one or more of the message element of a contract. To do so you
set the type attribute of one of the logical message�s part elements to
wsa:EndpointReferenceType. For example, the message defined in
Example 178 consists of only an endpoint reference.

Example 176: Importing the WS-Addressing Schema

<import location="http://www.w3.org/2005/08/addressing/ws-addr.xsd"
 namespace="http://www.w3.org/2005/08/addressing" />

Example 177: Using an Endpoint Reference in a Custom Type

<complexType name="referenceHolder">
 <sequence>
 <element name="serviceName" type="xsd:string" />
 <element name="serviceEndpoint"
 type="wsa:EndpointReferenceType" />
</complexType>
 287

CHAPTER 12 | Using Endpoint References
Example 178: Using an Endpoint Reference in a Logical Message

<message name="factoryRequest">
 <part name="endpointInfo" type="wsa:EndpointReference" />
</message>
288

Introduction to Endpoint References
Creating a NULL Endpoint Reference

Overview There may be cases where you want to create a NULL endpoint reference.
To do so you would instantiate an endpoint reference object and a URI
attribute object. You would set the attribute object to a NULL address and
then set the address of the endpoint reference to the NULL URI attribute.

Procedure To create a NULL endpoint reference do the following:

1. Instantiate an EndpointReferenceType object.

2. Instantiate a URI object with a NULL address.

3. Instantiate an AttributedURIType.

4. Set the AttributedURIType�s value to the NULL URI.

5. Set the EndpointReferenceType�s address field to the NULL
AttributedURIType.

Example Example 179 shows the code for creating a NULL endpoint reference.

java.net.URI null_addr = new
 java.net.URI("http://www.w3.org/2005/08/addressing/none");

com.iona.schemas.wsaddressing.AttributedURIType uri_null =
 new com.iona.schemas.wsaddressing.AttributedURIType();

uri_null.set_value(null_addr);

ref.setAddress(uri_null);

Example 179:Creating a NULL EPR

EndpointReferenceType ref = new EndpointReferenceType();
java.net.URI null_addr = new
 java.net.URI("http://www.w3.org/2005/08/addressing/none");
AttributedURIType uri_null = new AttributedURIType();
uri_null.set_value(null_addr);
ref.setAddress(uri_null);
 289

CHAPTER 12 | Using Endpoint References
Creating Endpoint References for a Service

Overview Endpoint references are created by a bus using the
createEndpointReference() method. Before a bus instance can create an
endpoint reference for a service, the servant implementing the service must
be registered with the bus. The process for creating an endpoint reference
for a service involves three steps:

1. Get a handle to a bus as shown in �Getting a Bus� on page 98.

2. Register the servant with the bus.

3. Create an endpoint reference using the service�s QName.

Registering a servant Registering a service with the bus is a two step process. The first step is to
create an Artix Servant instance for your service. Example 180 shows an
example of creating a Servant for the WidgetLoader service. The Servant
contsructor requires the path of the contract defining the service, an
instance of the service�s implementation class, and a bus instance.

The second step in registering a service with the bus is to register the
servant with a bus instance. Servants can be registered as either static or
transient. A static servant is registered using Bus.registerServant() and
has a fixed port address that is defined in its contract. A transient servant is
registered using Bus.registerTransientServant(). A transient servant is a
clone of the service defined in the contract and each servant for a given
service will have a unique port number.

For a detailed discussion of registering servants, read �Servant Registration�
on page 79.

Example 180: Creating a ServerFactoryBase

//Java
Servant servant =
 new SingleInstanceServant("./Widgets.wsdl",
 new WidgetLoaderImpl(), bus);
290

Introduction to Endpoint References
Creating the endpoint reference Once you have registered a service with the bus, you can create an endpoint
reference for it using the QName returned from the servant registration
method. Endpoint references are created using the bus�
createEndpointReference() method. Example 181 shows the signature for
createEndpointReference().

The method takes in the QName of a registered service. For a static servant,
the service�s QName is the QName of the service from the WSDL contract. For a
transient servant, the QName of the service is returned when you register the
transient servant with the bus. Keeping track of the registered service�s
QName when using endpoint references is particularly important when
working with transient servants. Because they are clones of a service, each
instance of a service registered with a transient servant will have a unique
QName that is generated by the bus.

Example Example 182 shows the code for generating an endpoint reference for a
static instance of the Cling service.

Example 181: createEndpointReference()

//Java
EndpointReferenceType createEndpointReference(QName service);

Note: It is recommended that when your application is creating endpoint
references, it has the wsdl_publish plugin loaded. If it is not, WSDL
location stored in the endpoint reference will be local to the application
creating the reference.
 291

CHAPTER 12 | Using Endpoint References
Example 182: Creating an Endpoint Reference

//Java
import com.iona.jbus.*
com.iona.schemas.wsaddressing.EndpointReferenceType;

// Initialize a default bus
Bus bus = Bus.init();

// Register the servant
QName name = new QName("http://www.static.com/Cling", "ClingService");
Servant servant = new SingleInstanceServant(new ClingImpl(), "./cling.wsdl", bus);
QName clingName = bus.registerTransientServant(servant, name, "ClingPort");

// Generate the reference for the register Cling Service
EndpointReferenceType clingRef = bus.createEndpointReference(clingName);
292

Introduction to Endpoint References
Instantiating Service Proxies Using an Endpoint Reference

Overview One of the primary uses of an endpoint reference is to create a service proxy
for connecting to the referenced service. The bus provides a method,
createClient(), that takes an endpoint reference and returns a JAX-RPC
style dynamic proxy for the referenced service.

Getting a bus Typically, you will receive an endpoint reference inside of a service�s
implementation object and will not have access to the bus which is hosting
the current servant. In order to get a handle for a servant�s default bus you
would use code similar to that shown in Example 183.

Creating a service To create a service proxy from an endpoint reference, you need three things:

� a bus

� an endpoint reference

� the Java Class representing the service�s interface

You create service proxy from an endpoint reference by calling
createClient() on the servant�s default bus. createClient() takes an
endpoint reference to a service and the service�s interface Class as
parameters. If the call is successful, it returns a JAX-RPC style dynamic
proxy for the service referenced. createClient()�s signature is shown in
Example 184.

Example Example 185 shows the code for creating a service proxy for the Cling
service from an endpoint reference.

Example 183: Getting a Bus Reference Inside a Servant

com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

Example 184: Bus.createClient()

Remote Bus.createClient(EndpointReferenceType epr,
 Class interfaceClass)
throws BusException
 293

CHAPTER 12 | Using Endpoint References
Example 185: Creating a Service Proxy from and Endpoint Reference

// Java
com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

// Endpoint reference clingRef obtained earlier
Cling clingProxy = bus.createClient(clingRef, Cling.class);
294

Using Endpoint References in a Factory Pattern
Using Endpoint References in a Factory
Pattern

Overview A common pattern for working with endpoint references is a factory pattern
where one object, a factory, creates endpoint references for other objects.
For example, you could develop a banking service that is responsible for
creating and managing accounts. It may have one operation, get_account,
that returns endpoint references to account objects that handle the more low
level operations for depositing or withdrawing money from an account. In
this instance, your bank implementation object is a factory for account
objects.

This section discusses how such a banking service could be developed. The
examples used are loosely based on the transient servant demo supplied
with Artix. It is located in the
demos/servant_management/transient_sevants folder of your Artix
installation.

In this section The following topics are discussed in this section:

Bank Service Contract page 296

Bank Service Implementation page 301

Bank Service Client page 305
 295

CHAPTER 12 | Using Endpoint References
Bank Service Contract

Overview The contract defining the Bank service has several key elements that are
required for defining a service that uses endpoint references in a factory
pattern. The first thing to notice is that the contract imports the XML
Schema definition for endpoint references. Also, it defines two interfaces:
Bank and Account. Bank defines an operation for returning endpoint
references to an Account. Also, both interfaces have fully described bindings
and service definitions.

Messages with endpoint
references

The Bank interface�s get_account operation returns an endpoint reference to
an Account. The message definition for the response of these operations
have one part, return, that is of type wsa:EndpointReferenceType.
Example 186 shows the definition for a message that contains an endpoint
reference.

Bank interface The portType element defining the Bank interface defines a single operation
named get_account. This operation takes a string as input and returns an
endpoint reference. Example 187 shows the portType element for the Bank
interface.

Example 186: Message with a Reference

<message name="bankResponse">
 <part name="return" type="wsa:EndpointReferenceType" />
</message>

Example 187: Bank portType Element

<portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
</portType>
296

Using Endpoint References in a Factory Pattern
Account interface The contract defining the service will also need to include a definition for the
Account interface. This interface can either be defined in a separate contract
that is imported or it can be defined in the same contract as the Bank
interface. The transient servant demo defines the Account interface in the
same contract.

Bank binding While an endpoint reference can describe a service that uses any of the
bindings supported by Artix, they can only be sent using the SOAP binding
or the CORBA binding. When using the SOAP binding, you do not need to
anything special to send an Artix reference. The transient servant demo
supplied with Artix uses a SOAP binding.

The CORBA binding maps an endpoint reference into a generic CORBA
Object. You can do some additional work to create typed CORBA
references. For details on how endpoint references are mapped into a
CORBA binding see Artix for CORBA.

Account binding You will also need to add a binding for the referenced service, which in this
case is the Account interface. The binding for the referenced service can be
any one of the supported Artix bindings. The transient servant demo
supplied with Artix uses a SOAP binding for the Account interface.

Transport definitions References can be sent over any transport that supports SOAP or CORBA
messages. However, because in this example the servants used to service
Account objects will be transient, the Account service must use either HTTP
or CORBA.

Complete bank contract Example 188 shows the complete contract used for the code generated in
the following discussions about the factory pattern.
 297

../corba_ws/index.htm

CHAPTER 12 | Using Endpoint References
Example 188: Bank Service Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BankService">
 <import location="http://www.w3.org/2005/08/addressing/ws-addr.xsd"
 namespace="http://www.w3.org/2005/08/addressing" />
 <message name="accountName">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="bankResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>
 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>
 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>
 <message name="depositResponse"/>
 <portType name="Bank">
 <operation name="get_account">
 <input name="acctName" message="tns:accountName"/>
 <output name="return" message="tns:bankResponse"/>
 </operation>
 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
298

Using Endpoint References in a Factory Pattern
 <binding name="BankBinding" type="tns:Bank">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_account">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>
 <binding name="AccountBinding" type="tns:Account">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_balance">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 <operation name="deposit">
 <soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/bank"/>
 </output>
 </operation>
 </binding>
 <service name="BankService">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address location="http://localhost:0/BankService/BankPort/"/>
 </port>
 </service>

Example 188: Bank Service Contract
 299

CHAPTER 12 | Using Endpoint References
 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 </port>
 </service>
</definitions>

Example 188: Bank Service Contract
300

Using Endpoint References in a Factory Pattern
Bank Service Implementation

Overview The bank service is the factory for accounts in this example. Its operation,
get_account, returns endpoint references to accounts. get_account creates
a servant for an account and registers it as a transient servant. The accounts
are registered as transient servants to ensure that each new account is
exposed as a unique endpoint.

The bank service interface The bank service defined in the contract shown in Example 188 will result
in a generated interface called Bank. This interface extends
java.rmi.Remote and is used by clients to create proxies for the bank
service. While you generally do not need to edit this generated interface, you
do need to edit it when using endpoint references. You will need to add a
line to the generated interface that imports the EndpointReferenceType
class as shown by the bold line in Example 189.

The bank service implementation
object

The bank service defined in the contract shown in Example 188 will result
in a generated implementation class called BankImpl. This object will
contain one method, get_account(), for which you will provide the logic.
You will also need to add an import for the EndpointReferenceType class.
The import statement is in bold to show that you need to manually add this
statement.

Example 189: Bank Interface

import java.rmi.RemoteException;

import com.iona.schemas.wsaddressing.EndpointReferenceType;
public interface Bank extends java.rmi.Remote
{
 public EndpointReferenceType get_account(String account_name)
 throws RemoteException;
}

Note: For this example, BankImpl has a global data member, accounts,
that stores a table of the created accounts by their account name. The line
declaring accounts is in bold because you need to add it to the generated
file.
 301

CHAPTER 12 | Using Endpoint References
Example 190 shows the generated BamkImpl with accounts added.

get_account The logical operation get_account is mapped to the get_account() method
in the bank service�s implementation object. get_account() does the
following:

1. Checks the table of accounts to see if one with the given name already
exists.

2. If one does exist, returns the endpoint reference to that account.

3. If no account with that name exists, it does the following:

i. creates a new AccountImpl object

ii. registers it as a transient servant with the bus.

iii. returns an endpoint reference to the new account.

The AccountImpl object is registered as a transient servant because
transient servants are guaranteed to have a unique port element in their
in-memory contract and that the endpoint reference created for each

Example 190: BankImpl

package com.iona.bus.demos.bank;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class BankImpl implements java.rmi.Remote
{
 Hashtable accounts = new Hashtable();

 public EndpointReferenceType get_account(String account_name)
 {
 return new

com.iona.schemas.wsaddressing.EndpointReferenceType();
 }
}

302

Using Endpoint References in a Factory Pattern
AccountImpl object will point to the correct servant. When using static
servants, all endpoint references point to a single instance of the servant
object.

Once the AccountImpl object is registered with the bus, get_account()
generates an endpoint reference for the new servant using
bus.createEndpointReference(). This is the endpoint reference that is
returned to the client. Using the returned endpoint reference, the client can
create a service proxy to access the new Account instance.

Example 191 shows the fully implemented get_account().

Note: When working with transient servants, you should ensure that the
WSDL publishing plug-in is loaded into the server process.

Example 191: get_account()

public EndpointReferenceType get_account(String account_name)
{

1 EndpointReferenceType ref =
(EndpointReferenceType)accounts.get(account_name)

2 if (ref == null)
 {

3 AccountImpl acct = new AccountImpl();

4 com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

5 String contract = new String("./bank.wsdl");
 Servant servant = new SingleInstanceServant(acct, contract,
 bus);

6 QName name = new QName("http://www.iona.com/bus/demos/bank",
 "AccountService");
 bus.registerTransientServant(servant, name);

7 ref = bus.createEndpointReference(name);

8 accounts.put(account_name, ref);
 }

8 return ref;
}

 303

CHAPTER 12 | Using Endpoint References
The code in Example 191 does the following:

1. Looks up the account name in the table of existing accounts.

2. Checks to see if an account was found. If a valid account was found
skip to step 9. If not, continue.

3. Creates a new AccountImpl for a new account.

4. Gets the bus for this bank servant.

5. Creates a new Artix servant for the new account.

6. Registers the new servant as a transient servant with the bus.

7. Creates an endpoint reference for the newly registered transient
servant.

8. Adds the new endpoint reference and account name to the table of
accounts.

9. Returns the endpoint reference to the client.
304

Using Endpoint References in a Factory Pattern
Bank Service Client

Overview The client for the bank service requests accounts and then performs
operations on the returned accounts. In this case, the returned accounts are
also services implemented by remote Artix servants. Therefore, before the
client can invoke operations on the returned accounts, it must create service
proxies for them.

Requirements for building the
client

Endpoint references provide all of the information needed to contact a
remote service. They do not provide access to the contract defining the
remote service or the interface used to create the interface. Therefore, your
client application will need access to the following additional artifacts:

� the generated interface for the Account service. This interface will be
generated into a file called Account.java by wsdltojava.

� a copy of the contract defining the Account service. This contract
should be available from the endpoint.

Client tasks The client main in this example does four things:

1. Creates a service proxy for the bank service.

2. Invokes get_account() on the bank proxy.

3. Creates a service proxy for an account service using the returned
endpoint reference.

4. Invokes operations in the account service proxy.

The first two things that the client does are typical Artix client programming
steps. Any Artix client will instantiate a service proxy using a known contract
and then invoke operations on the proxy. The third task of the client is, for
this discussion, the interesting task.

Using the reference returned from get_account(), the client will use the
Bus.createClient() method to create a service proxy for an account
service. The version of Bus.createClient() used to create a service proxy
from an endpoint reference takes two parameters:

Note: You will need to ensure that the server process has loaded the
WSDL publishing plug-in.
 305

CHAPTER 12 | Using Endpoint References
� an endpoint reference

� the interface class for the referenced service

Example 192 shows the code for creating an account service proxy from an
endpoint reference.

Code for the client main() Example 193 shows the completed code for the bank client�s main line.

Example 192: Creating an Account Service Proxy

acctProxy = bus.createClient(acctRef, Account);

Example 193: Code for Bank Client

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class BankClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://www.iona.com/bus/demos/bank",
 "BankService");

3 String portName = new String("BankPort");

4 String wsdlPath = "file:/./bank.wsdl";
 URL wsdlURL = new File(wsdlPath).toURL();

5 Bank bankProxy = bus.createClient(wsdlURL, name, portName,
 Bank.class);
306

Using Endpoint References in a Factory Pattern
The code in Example 193 does the following:

1. Initializes the bus.

2. Creates the QName for the bank service.

3. Sets the port name for the bank service.

4. Sets the URL to the client�s copy of the bank service contract.

5. Creates a service proxy for the bank service using
bus.createClient().

6. Gets the name of the account.

7. Gets an endpoint reference for the desired account by invoking
get_account() on the bank service proxy.

8. Uses the returned endpoint reference to create an account service
proxy using bus.createClient().

6 String account_name;
 System.out.println("What is the name of the account?");
 System.in.read(account_name);

7 EndpointReferenceType acctRef =
bankProxy.get_account(account_name);

8 Account acctProxy = bus.createClient(acctRef, Account.class);

 // Invoke operations on acctProxy
 }
}

Example 193: Code for Bank Client
 307

CHAPTER 12 | Using Endpoint References
Using Endpoint References to Implement
Callbacks

Overview Another common use for endpoint references is to create callbacks from a
service to a client. When creating a callback, the client creates a callback
service to receive notices and registers it, using an endpoint reference, with
the remote service. The remote service can then create a service proxy for
the client�s callback service and invoke its operations to update the client.

For example, an accounts receivable system may need to notify its clients
that it is closing the daily books and is not accepting new transactions until
the operation is complete. In this case, the clients would each have a
callback service with two operations, posting and done_posting. The
accounts receivable system would invoke posting to notify the client that it
is not accepting new transactions. When it was done closing the books, the
accounts receivable system would then invoke done_posting.

In this section This section discusses the following topics:

The Accounting Contract page 309

The Accounting Client page 315

The Accounting Server page 320
308

Using Endpoint References to Implement Callbacks
The Accounting Contract

Overview The contract for an application the uses a callback needs to include the
interface definition, binding definition, and service information for both the
service implemented by the server and the callback service implemented by
the client. When using callbacks the client essentially plays a dual role. It
implements a service, like a server process, and makes requests on a
service.

Messages with references The Register interface�s register_callback operation sends an endpoint
reference to a Notify service. The logical message definition for this
interaction has one part, ref, that is of type wsa:EndpointReferenceType as
shown in Example 194.

The callback�s interface The interface for the callback service can be as complex or simple as your
application requires. For this example, the callback service will only need
two operations. One operation informs the client that the accounts
receivable system is busy. The other operation informs the client that the
accounts receivable service is ready to receive new posts. Neither operation
requires input or output messages, but because WSDL requires at least one
input element or output element the interface definition includes a dummy
input message.

Example 194: Message with a Reference

<message name="regMessage">
 <part name="ref" type="wsa:EndpointReferenceType" />
</message>
 309

CHAPTER 12 | Using Endpoint References
Example 195 shows the portType element defining the callback service�s
interface.

Accounts receivable system�s
interface

The account receivable system�s interface needs one operation,
register_callback, to register the client�s callback service and create a
proxy for it. In addition to the operation for registering the callback, the
account receivable system�s interface can have any number of logical
operations to represent the other functionality it exposes. In this example,
the accounts receivable system exposes three operations: deposit,
withdraw, and dailyPosting. The client shown in this example only invokes
desposit and withdraw. An administrative client would invoke
dailyPosting.

Example 195: Callback Interface

<message name="callbackRequest" />
<portType name="Notify">
 <operation name="posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 <operation name="done_posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
</portType>
310

Using Endpoint References to Implement Callbacks
Example 196 shows the portType element defining the accounts receivable
system�s interface.

Bindings The callback service�s interface can be bound to any of the message formats
supported by Artix. Because the account receivable system�s interface
includes an operation that has an endpoint reference as a parameter, it can
only be bound to a SOAP message or a CORBA message. In this example,
both interfaces are bound to SOAP messages.

Transport details Because both the callback�s implementation object and the accounts
receivable system�s implementation object are registered as static servants,
they can use any of the transports supported by Artix. In this example, HTTP
is used.

Contract Example 197 shows the complete contract used for the code generated in
the following discussions about callbacks.

Example 196: Accounts Receivable Interface

<portType name="Register">
 <operation name="register_callback">
 <input name="param" message="tns:refMessage" />
 </operation>
 <operation name="deposit">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtMessage" />
 </operation>
 <operation name="withdraw">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtMessage" />
 </operation>
 <operation name="dailyPosting">
 <input name="date" message="tns:dateMessage" />
 </operation>
</portType>
 311

CHAPTER 12 | Using Endpoint References
Example 197: Callback Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/callbacks"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 targetNamespace="http://www.iona.com/bus/demos/callbacks"
 name="BankService">
 <import location="http://www.w3.org/2005/08/addressing/ws-addr.xsd"
 namespace="http://www.w3.org/2005/08/addressing" />
 <message name="amtMessage">
 <part name="amount" type="xsd:float"/>
 </message>
 <message name="amtResponse">
 <part name="return" type="xsd:float"/>
 </message>
 <message name="refMessage">
 <part name="ref" type="wsa:EndpointReferenceType"/>
 </message>
 <message name="dateMessage">
 <part name="date" type="xsd:string"/>
 </message>
<message name="callbackRequest" />
 <portType name="Notify">
 <operation name="posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 <operation name="done_posting">
 <input name="param" message="tns:callbackRequest" />
 </operation>
 </portType>
312

Using Endpoint References to Implement Callbacks
 <portType name="Register">
 <operation name="register_callback">
 <input name="param" message="tns:refMessage" />
 </operation>
 <operation name="deposit">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtResponse" />
 </operation>
 <operation name="withdraw">
 <input name="amount" message="tns:amtMessage" />
 <output name="return" message="tns:amtResponse" />
 </operation>
 <operation name="dailyPosting">
 <input name="date" message="tns:dateMessage" />
 </operation>
 </portType>
 <binding name="NotifyBinding" type="tns:Notify">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="posting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 <operation name="done_posting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbaks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 </binding>
 <binding name="RegisterBinding" type="tns:Register">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="register_callback">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>

Example 197: Callback Contract
 313

CHAPTER 12 | Using Endpoint References
 <operation name="deposit">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </output>
 </operation>
 <operation name="withdraw">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 <output>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </output>
 </operation>
 <operation name="dailyPosting">
 <soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
 <input>
 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.iona.com/bus/demos/callbacks"/>
 </input>
 </operation>
 </binding>
 <service name="NotifyService">
 <port name="NotifyPort" binding="tns:NotifyBinding">
 <soap:address location="http://localhost:0"/>
 </port>
 </service>
 <service name="RegisterService">
 <port name="RegisterPort" binding="tns:RegisterBinding">
 <soap:address location="http://localhost:0/RegisterService/RegisterPort/"/>
 </port>
 </service>
</definitions>

Example 197: Callback Contract
314

Using Endpoint References to Implement Callbacks
The Accounting Client

Overview A client that has a callback has two major parts to develop:

� The callback service�s implementation object.

� The client�s main() that performs the clients work.

When using a callback, the client�s main() will perform one additional task
that is normally only performed by servers. It will instantiate a servant for
the callback service and register it with the bus.

Callback implementation The callback service for this example is very simple. It has one static
member, busy, that is set to 1 when posting() is invoked and set to 0 when
done_posting() is invoked. Using the instance of NotifyImpl registered
with the bus in the client�s main(), you can check the value of busy to see if
the Register service is doing its daily posting and not accepting new
requests.

To avoid thread conflicts, the callback object�s methods are synchronized.
When the methods complete, they then notify all interested parties that
callback object has been modified. This notifies the client that the status
has been updated and it can stop waiting for the server.

Example 198 shows the code for the callback object.

Example 198: Callback Object

package com.iona.bus.demos.callbacks;

import java.net.*;
import java.rmi.*;

public class NotifyImpl implements java.rmi.Remote
{
 public int busy = 0;
 315

CHAPTER 12 | Using Endpoint References
The client main() The client main() in this example does six things:

1. Creates a service proxy for the Register service.

2. Creates a servant for the callback service.

3. Registers the callback service�s servant with the bus so that it can
receive requests.

4. Registers the callback service with the Register service.

5. Invokes operations on the Register service.

6. Checks the callback service to see if the Register service is posting.

 public void posting()
 {
 synchronize(this)
 {
 busy = 1;
 notifyAll();
 }
 }

 public void done_posting()
 {
 synchronize(this)
 {
 busy = 0;
 notifyAll();
 }
 }
}

Example 198: Callback Object
316

Using Endpoint References to Implement Callbacks
Example 199 shows the code for client main().

Example 199: Callback Client Main()

//Java
import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class RegisterClient
{

 public static void main (String args[]) throws Exception
 {
 char op;

1 Bus bus = Bus.init(args);

2 QName name = new
 QName("http://www.iona.com/bus/demos/callbacks",
 "RegisterService");
 String portName = new String("RegisterPort");

 String wsdlPath = "file:/./resister.wsdl";
 URL wsdlURL = new File(wsdlPath).toURL();

 Register registerProxy = bus.createClient(wsdlURL, name,
 portName,
 Register.class);

3 NotifyImpl notify = new NotifyImpl();

 String contract = new String("./register.wsdl");

4 Servant servant = new SingleInstanceServant(notify, contract,
 bus);

 QName notifyName = new
 QName("http://www.iona.com/bus/demos/callbacks",
 "NotifyService");
 317

CHAPTER 12 | Using Endpoint References
5 bus.registerServant(servant, notifyName);

6 EndpointReferenceType ref =
bus.createEndpointReference(notifyName);

7 registerProxy.register_callback(ref);

 Float amount;
 float balance;
 String temp;

 while(true)
 {

8 synchronize(notify)
 {

9 while(notify.busy == 1)
 {
 System.out.println("The Server is posting. Please
 wait.");

10 notify.wait();
 }
 }

11 System.out.println("Choose an option:");
 System.out.println("1) Deposit");
 System.out.println("2) Withdraw");
 System.out.println("3) Exit");
 System.in.read(op);

 switch(op)
 {
 case �1�:
 System.out.println("Amount to deposit?");
 System.in.read(temp);
 amount = new Float(temp);
 balance = registerProxy.deposit(amount.floatValue());
 System.out.println("New balance: "+balance);
 break;

Example 199: Callback Client Main()
318

Using Endpoint References to Implement Callbacks
The code in Example 199 does the following:

1. Initializes a bus for the client.

2. Creates a proxy for the Register service.

3. Creates an instance of NotifyImpl.

4. Creates a servant to wrap the callback service.

5. Registers the servant with the bus.

6. Creates an endpoint reference for the callback service.

7. Registers the callback by invoking the Register service�s
register_callback() operation.

8. Ensures that the callback implementation cannot be modified by other
threads before checking its state.

9. If the callback implementation�s busy flag is set to 1, then the server is
doing its daily posting and the client needs to wait.

10. Waits on the callback�s implementation. When the server changes the
value of busy, this call will stop blocking and the flag can be checked
again.

11. Makes requests on the Register service.

 case �2�:
 System.out.println("Amount to withdraw?");
 System.in.read(temp);
 amount = new Float(temp);
 balance = registerProxy.withdraw(amount.floatValue());
 System.out.println("New balance: "+balance);
 break;
 Case �3�:
 return;
 }
 }
 }
}

Example 199: Callback Client Main()
 319

CHAPTER 12 | Using Endpoint References
The Accounting Server

Overview The server in this example also exhibits some hybrid behavior. The
register_callback operation receives a reference to the client�s callback
service and creates a service proxy for it. In this example, the proxy is put
into an object-level data element and the dailyPosting operation invokes
the proxy�s operations to inform the clients when the server is posting.

Servant registration In this example, the code that instantiates the Servant and registers it with
the bus is standard Artix code. For more information see �Developing a
Container Based Service� on page 64 or �Developing a Standalone Service�
on page 75.

RegisterImpl The accounts receivable system�s implementation object, as generated by
wsdltojava, is called RegisterImpl. It has four methods:
register_callback(), dailyPosting(), deposit(), and withdraw().
deposit() and withdraw() perform data requests for the client and they are
left for you to implement.

For the discussion of callbacks, only register_callback() and
dailyPosting() are of interest. register_callback() is responsible for
receiving the callback service�s endpoint reference and instantiating a proxy
for it. In this example, the proxy is stored in the objects notify member.
dailyPosting() then invokes the callback service�s operations to inform the
client when the system is busy.

Example 200 shows the completed RegisterImpl class. The code in bold is
added to the generated class by the user.

Example 200: RegisterImpl

package com.iona.bus.demos.callbacks;

import java.net.*;
import java.rmi.*;

import com.iona.schemas.wsaddressing.EndpointReferenceType;
import com.iona.jbus.*;
import java.lang.String;
320

Using Endpoint References to Implement Callbacks
register_callback() register_callback() does the following:

1. Gets a handle on the bus hosting this servant.

2. Creates a proxy for the callback service using the endpoint reference
sent by the client.

public class RegisterImpl implements java.rmi.Remote
{
 NotifyImpl notify;

 public void register_callback(com.iona.schemas.wsaddressing.EndpointReferenceType ref)
 {
 com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

 notify = bus.createClient(ref, Notify.class);
 }

 public float deposit(float ammount)
 {
 // User code goes in here.
 return 0.0f;
 }

 public float withdraw(float ammount) {
 // User code goes in here.
 return 0.0f;
 }

 public void dailyPosting(String date)
 {
 notify.posting();

 // User code goes in here.

 notify.done_posting();
 }
}

Example 200: RegisterImpl
 321

CHAPTER 12 | Using Endpoint References
dailyPosting() dailyPosting() does the following:

1. Invokes the callback service�s posting operation to notify the client
that the system is busy.

2. Performs the tasks involved in closing the daily books and posting the
results. This logic is left to the user to implement.

3. When the daily posting tasks are complete, it invokes the callback
system�s done_posting operation to notify the client that the system is
ready to handle new requests.
322

Migration Scenarios
Migration Scenarios

Overview With the release of Artix 4.0, Artix switched from using a proprietary
reference format to using the WS-Addressing endpoint reference format. If
you have existing applications that use the proprietary format, you should
consider migrating those applications to the WS-Addressing standard.

Retaining proprietary references Artix 4.0 retains support for the proprietary reference format and the
associated APIs. This means the following:

� existing applications that use the proprietary format can simply be
recompiled with out changing the code.

� new services written using Artix 4.0 can interoperate with older
services if they are properly implemented. For more information see
�Mixing references types� on page 323.

Migrating to WS-Addressing Migrating your applications to use WS-Addressing endpoint references is a
straight process. You would need to do the following:

1. Add a prefix definition to your contract for the WS-Addressing
namespace.

2. Modify the import element in your contract to import the
WS-Addressing schema instead of the Artix reference schema.

3. Replace the reference:Reference type with the
wsa:EndpointReferenceType type.

4. Regenerate the stub and skeleton code for your applications.

5. Replace all instances of Reference with EndpointReferenceType.

6. Replace all instances of createReference() with
createEndpointReference().

Mixing references types You can have applications that use both the proprietary references and the
WS-Addressing endpoint references. However, they do not share the same
wire format and are not interchangeable. If your application uses both
styles, you must ensure that operations using proprietary references use the
 323

CHAPTER 12 | Using Endpoint References
old Reference type and the older APIs on both the client-side and
service-side. If an operation expecting an Artix reference receives an
endpoint reference it will throw an exception.

The same is true of operations that use endpoint references. They cannot
process Artix references.
324

CHAPTER 13

Using Native XML
The Artix Java API provides a utility class that populates Artix
generated objects from an XML document. This utility class
will also convert Artix generated object back into a native XML
representation.

In this chapter This chapter discusses the following topics:

Populating Artix Objects with XML page 326

Converting Artix Objects Into XML page 331

Converting References into XML page 335
 325

CHAPTER 13 | Using Native XML
Populating Artix Objects with XML

Overview You may have instances where the data your application is using input that
is already in XML. For example, your data may stored in a database that
stores information as XML or you are working with a word processing
document stored in the Oasis Open Document format. The problem them
becomes how to populate the objects used in your application with the XML
data.

Artix solves this problem by providing two utility classes:

� com.iona.jbus.utils.XMLUtils provides an overloaded static method
fromXML() for populating objects using XML data stored as a string.
This class supports namespaces. It uses the JNI layer to parse the data
which can make it inappropraite for large XML documents.

� com.iona.jbus.util.StreamUtils provides a static fromXML() method
for converting XML data stored in an InputStream object as a Java
object of the appropraite class. This method does not use the JNI layer
and is very efficient. However, it does not support namespaces.

Populating an object generated
from an XML Schema type

If the object you are populating is generated to represent an XML Schema
type, you can use the simple form of fromXML(). The signature for this form
is shown in Example 201.

fromXML() returns an Object that can be cast into the appropriate type. It
takes four arguments:

Note: StreamUtils is only available if you have installed patch
20080305 or higher.

Example 201: fromXML() for Types

static Object fromXML(String xml, QName name,
 Class class, String path)

String xml Contains the XML data to populate the object.

QName name Specifies the QName of the XML Schema type from
which the object was generated.
326

Populating Artix Objects with XML
If, for example, your application works with student records whose structure
is defined as an XML Schema complex type called studentRec, and it reads
records from an XML database, the code for populating the object would be
similar to that shown in Example 202.

The code in Example 202 does the following:

1. Opens a file containing XML data

2. Reads in a record from the file.

3. Converts the byte stream into a String.

4. Creates the QName for the type definition.

5. Uses the XMLUtils class to populate a StudentRec object with the XML
data read from the file.

If the XML data passed into fromXML() does not conform to the XML
Schema definition for the type a WriteException will be thrown.

Class class Specifies the Class object for the object to be populated.

String path Specifies the path to the contract or XML Schema
document defining the data the object represents.

Example 202: Populating an Object from XML

1 FileInputStream file = new FileInputStream("test.xml");

2 byte record[256];
file.read(record);

3 String xmlRec = new String(record);

4 QName name = new QName("schemas.com/tests/types",
 "studentRec");

5 StudentRec student = (StudentRec)XMLUtil.fromXML(xmlRec, name,
 StudentRec.class,
 "./grader.wsdl");
 327

CHAPTER 13 | Using Native XML
Populating an object generated
from an XML Schema element

If the object you are populating is generated to represent an XML Schema
element, you can use the more flexible form of fromXML(). This form will
work with both XML Schema types and XML Schema elements. The
signature for this form is shown in Example 203.

fromXML() returns an Object that can be cast into the appropriate type. It
takes five arguments:

If your object represents an XML Schema element, you would specify null
for typeName. Conversely, if your object represents an XML Schema type,
you would specify null for elementName.

If we changed Example 202 so that studentRec was defined as an XML
Schema element instead of a complex type, the code for populating the
object would be similar to that shown in Example 204.

Example 203: Five Argument form of fromXML()

static Object fromXML(String xml, QName elementName,
 QName typeName, Class class, String path)

String xml Contains the XML data to populate the object.

QName
elementName

Specifies the QName of the XML Schema element from
which the object was generated.

QName typeName Specifies the QName of the XML Schema type from
which the object was generated.

Class class Specifies the Class object for the object to be populated.

String path Specifies the path to the contract or XML Schema
document defining the data the object represents.

Example 204: Populating an Object from XML

FileInputStream file = new FileInputStream("test.xml");

byte record[256];
file.read(record);

String xmlRec = new String(record);

QName name = new QName("schemas.com/tests/types",
 "studentRec");
328

Populating Artix Objects with XML
The code in Example 204 differs from the code in Example 202 in only one
way. The call to fromXML() includes the extra parameter. In this case,
because studentRec is defined as an element it is null.

If the XML data passed into fromXML() does not conform to the XML
Schema definition for the element a WriteException will be thrown.

Populating an object from an XML
document stored as a Stream

If the XML data from which you want to create an object from is stored in an
InputStream object you can use the stream-based
com.iona.jbus.util.StreamUtils.fromXML() method. This method will
work with both XML Schema types and XML Schema elements. The
signature for this form is shown in Example 205.

fromXML() returns an Object that can be cast into the appropriate type. It
takes three arguments:

StudentRec student = (StudentRec)XMLUtil.fromXML(xmlRec, name,
 null
 StudentRec.class,
 "./grader.wsdl");

Example 204: Populating an Object from XML

Example 205: Stream form of fromXML()

static Object fromXML(Class cls, String wsdlPath, InputStream is)
throws ReadException;

Class cls Specifies the Class object of the class into which the
XML is being converted.

String wsdlPath Specifies the path to the WSDL document or XML
Schema document containing the type definition for the
XML data.

InputStream is Specifies the InputStream object containing the XML
data.
 329

CHAPTER 13 | Using Native XML
If we changed Example 202 so that studentRec was stored in a
FileInputStream, the code for populating the object would be similar to
that shown in Example 206.

If the XML data passed into fromXML() does not conform to the XML
Schema definition for the element a ReadException will be thrown.

Example 206: Populating an Object from XML Using Streams

FileInputStream file = new FileInputStream("test.xml");

StudentRec student =
 (StudentRec)StreamUtils.fromXML(StudentRec.class,
 "./grader.wsdl",
 file);
330

Converting Artix Objects Into XML
Converting Artix Objects Into XML

Overview All Artix generated objects have a toString() method that will produce a
stringified representation of the object. There are instances that you need to
recreate the XML data represented by the object. For example, you may
need to store the data in an XML database. Recreating the XML data
represented by an object can also be a useful debugging tool.

Artix solves this problem by providing two utility classes:

� com.iona.jbus.utils.XMLUtils provides the overloaded static
method toXML() for converting objects into their XML form and storing
the results as a string. These methods support XML namespaces.
However, they use the Artix JNI layer and incurs heavy processing
penalties when working with large chunks of data.

� com.iona.jbus.util.StreamUtils provides a static toXML() method
for converting objects into thier XML form and storing the results in an
OutputStream object. This method does not use the JNI layer and is
very efficient. However, it does not support namespaces.

Artix objects that represent an
XML Schema type

If the object you are converting into XML was generated by Artix to represent
an XML Schema type you can use the simplest form of toXML(). The
signature for this form is shown in Example 207.

Note: StreamUtils is only available if you have installed patch
20080305 or higher.

Example 207: Two Argument toXML()

static String toXML(Object obj, String path)
 331

CHAPTER 13 | Using Native XML
It returns a String containing the XML representation of the object and
takes two arguments.

Objects that represent an XML
Schema type

If you have an object, that was not generated by Artix, that represents an
XML Schema type and you have access to the XML Schema document that
defines the type, you can still convert it into XML. toXML() has a three
argument form that allows you to specify the QName of the XML Schema
type the object represents. The signature for this form is shown in
Example 208.

It returns a String containing the XML representation of the object and
takes three arguments.

Objects that represent an XML
Schema element

If you have an object, that represents an XML Schema element and you
have access to the XML Schema document that defines the type, can
convert it into XML using the four argument form of toXML().This form that
allows you to specify the QName of the XML Schema element the object

Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XML Schema
document defining the data the object represents.

Example 208: Three Argument toXML()

static String toXML(QName name, Object obj, String path)

QName name Specifies the QName of the XML Schema type
represented by the object.

Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XML Schema
document defining the data the object represents.
332

Converting Artix Objects Into XML
represents. It also allows you to convert an object that represents an XML
Schema type by specifying the type�s QName. The signature for this form is
shown in Example 209.

It returns a String containing the XML representation of the object and
takes four arguments.

If your object represents an XML Schema element, you would specify null
for typeName. Conversely, if your object represents an XML Schema type,
you would specify null for elementName.

Storing the results in a stream If you have an object representing an XML object and you want to convert it
into an OutputStream object containing the XML, you would use the
stream-based com.iona.jbus.util.StreamUtils.toXML() method. The
signature for this method is shown in Example 210.

It takes three arguments.

Example 209: Four Argument toXML()

static String toXML(QName elementName, QName typeName,
 Object obj, String pth)

QName
elementName

Specifies the QName of the XML Schema element
represented by the object.

QName typeName Specifies the QName of the XML Schema type
represented by the object.

Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XML Schema
document defining the data the object represents.

Example 210: Stream-based toXML()

static void toXML(Object obj, String wsdlPath, OutputStream os)
throws WriteException;
 333

CHAPTER 13 | Using Native XML
Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String wsdlPath Specifies the path to the contract or XML Schema
document defining the data the object represents.

OutputStream os Specifies the OutputStream into which the XML is
written. This can be any implementation of the
OutputStream interface.
334

Converting References into XML
Converting References into XML

Overview Artix references are defined with in an Artix specific XML Schema document
that is not always available to applications. Therefore, they contain enough
information to be self-describing. For converting them to and from XML,
XMLUtils provides special methods.

Converting to XML To convert an Artix reference into XML, you use
XMLUtils.referenceToXML(). referenceToXML() takes a single Reference
object and returns a String object containing the XML representation of the
reference. If it cannot convert the reference it throws a WriteException.

Converting from XML To convert the XML representation of an Artix reference into an Artix
Reference object, you use XMLUtil.referenceFromXML().
referenceFromXML() takes a String object containing the XML
representation of the reference and returns the Reference object constructed
from the XML. If the supplied XML is not valid a ReadException is thrown.
 335

CHAPTER 13 | Using Native XML
336

CHAPTER 14

Using Message
Contexts
Artix implements and extends the JAX-RPC MessageContext
interface to allow users to manipulate metadata about
messages and transports.

In this chapter This chapter discusses the following topics:

Understanding Message Contexts in Artix page 338

Getting the Context Registry page 342

Getting the MessageContext Object for a Thread page 344

Working with JAX-RPC MessageContext Objects page 347

Working with IonaMessageContext Objects page 353
 337

CHAPTER 14 | Using Message Contexts
Understanding Message Contexts in Artix

Overview Artix implements the JAX-RPC MessageContext interface. MessageContext
objects, or message contexts, are primarily used in writing handlers, but can
also be used to store metadata about messages or to pass state information
into or out of the message handling chain. Generally, this metadata is not
passed across the wire with the message.

Artix extends the JAX-RPC MessageContext interface to create Artix
IONAMessageContext objects, or Artix message contexts. The Artix message
contexts provide a consistent, thread safe mechanism for passing
supplemental information along with request and reply messages. This
supplemental information can include SOAP headers, GIOP context objects,
transport attributes, and MIME type definitions.

Artix message context hierarchy All message contexts in Artix are based on the JAX-RPC MessageContext
interface as shown in Figure 5.

Figure 5: Artix Message Context Hierarchy

javax.xml.rpc.handler.MessageContext

javax.xml.rpc.handler.soap.SOAPMessageContext

com.iona.jbus.StreamMessageContext

com.iona.jbus.IONAMessageContext
338

Understanding Message Contexts in Artix
All of the Artix operations that return a message context return an object that
implements the MessageContext interface. Depending on where you are in
your code and what properties you want to access, you can cast the
returned message context into an object that implements one of the other
interfaces.

How Artix uses message contexts In Artix, message contexts are thread-specific objects that are managed by
an instance of the Artix bus. Each bus instance creates a context registry to
manage its message contexts. The context registry manages the list of
registered context properties and one MessageContext instance for each
thread the bus has spawned. This mechanism ensures that message
contexts remain tied to the messages for which they are created.

Artix consumers, however, do have a number of Artix specific context
properties that survive beyond the life of a single message. These properties
contain information used to configure the bindings and transports used by
the consumer. The values of these properties persist until they are reset by
application code. For more information see �Working with Transport
Attributes� on page 387.

Artix extensions to message
contexts

Artix extends the JAX-RPC MessageContext interface to create an
Artix-specific IONAMessageContext interface. This interface is used to
implement Artix message contexts that hold information which is to be
written out on the wire or used to alter how messages are sent and received.
To ensure that these properties remain attached to the correct message in
the sequence, Artix message contexts use two containers:

� a request context container that hold properties associated with
messages that travel from a consumer to a service

� a reply context container that holds properties associated with
messages that travel from a service to a consumer
 339

CHAPTER 14 | Using Message Contexts
This is shown in Figure 6.

The request and reply context containers hold separate instances of each
property. So, a property can have one value for requests and one for replies.
Some properties are specific to a particular container. For example, the
HTTP properties are different for requests and replies.

Getting message contexts To access message contexts in your application do the following:

1. If you are using Artix message contexts, register the type factories for
the data stored in the contexts. See �Registering Type Factories� on
page 264.

2. Get a reference to the bus� context registry.

3. Get the message context for the thread in which your application is
running from the context registry.

Figure 6: Overview of the Message Context Mechanism
340

Understanding Message Contexts in Artix
Working with message contexts Once you have gotten the message context, you can chose to use it as a
JAX-RPC message context, a SOAP message context, or an Artix message
context. The JAX-RPC interface allows you to set properties in the message
context as name value pairs. These properties can then be accessed as a
message passes along the messaging chain. For more information see
�Working with JAX-RPC MessageContext Objects� on page 347.

The Artix interface allows you to manipulate properties that are used to
create message headers or to change transport attributes. In addition, the
Artix interface, because it inherits from the JAX-RPC interface, can also
access any property set using the JAX-RPC message contexts. For more
information see �Working with IonaMessageContext Objects� on page 353.

The SOAP interface, which is defined by the JAX-RPC specification, is only
available when using the Artix SOAP binding. It provides access to
messages in SOAP form. Using this context you can manipulate the
messages using the SOAPMessage APIs. For more information see �Working
with SOAP Messages� on page 575.
 341

CHAPTER 14 | Using Message Contexts
Getting the Context Registry

Overview The context registry is maintained by the bus. It contains an entry for all of
the Artix specific property types registered with the bus. It also instantiates
thread-specific message contexts and hands them out when requested by
the application.

Procedure The Bus has a method, getContextRegistry(), that returns a reference to
the bus instance�s context registry. The context registry is an object of type
ContextRegistry. Example 211 shows the signature of
getContextRegistry(). Because the context registry is specific to an
instantiated bus instance, you must call it on an initialized bus instance.

To get access to the context registry from your application code, do the
following:

1. Get a handle for the desired bus using one of the methods shown in
�Getting a Bus� on page 98.

2. Call getContextRegistry() on the returned bus to get a reference to
the context registry.

Example Example 212 shows an example of getting the context registry from within
the implementation object of an Artix service.

Example 211: getContextRegistry()

ContextRegistry com.iona.jbus.Bus.getContextRegistry();

Example 212: Getting the Context Registry

import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus
342

Getting the Context Registry
The code in Example 212 does the following:

1. Import the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Call getContextRegistry() on the default bus to get the default bus�
context registry.

2 ContextRegistry contReg = bus.getContextRegistry();

...
}

Example 212: Getting the Context Registry
 343

CHAPTER 14 | Using Message Contexts
Getting the MessageContext Object for a
Thread

Overview To ensure thread safety, the context registry creates a message context for
each thread. The message contexts maintained by the context registry are
passed as JAX-RPC MessageContext objects. These objects provide access
to properties stored in the contexts using the APIs defined in the JAX-RPC
specification.

Artix provides two means of getting the current message context for a
thread. If you have the context registry, you can use the registry�s
getCurrent() method. If you do not have the context registry, you can use
the DispatchLocals.getCurrentContext() method.

To manipulate Artix specific properties you must cast the returned
MessageContext into an IonaMessageContext object. Once the
MessageContext is cast to an IonaMessageContext you can access the Artix
specific context properties.

getCurrent() Message contexts are passed out by the context registry using the registry�s
getCurrent() method. getCurrent() returns the message context object for
the thread from which it is called. Message contexts are returned as
JAX-RPC MessageContext objects. Example 213 shows the signature for
getCurrent().

Example 214 shows how to get an message context from the context
registry.

Example 213: getCurrent()

javax.xml.rpc.handler.MessageCcontext ContextRegistry.getCurrent();

Example 214: Getting a Message Context

import java.net.*;
import java.rmi.*;
import javax.xml.rpc.handlers.*;
344

Getting the MessageContext Object for a Thread
The code in Example 214 does the following:

1. Import the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Call getContextResistry() on the default bus to get the default bus�
context registry.

3. Call getCurrent() on the context registry to get the Artix message
context for the application�s thread.

DispatchLocals DispactLocals is a servant-specific interface that provides a simple method
for getting the current message context for a thread. Its
getCurrentMessageContext() method returns the message context object
for the thread from which it is called. Message contexts are returned as
JAX-RPC MessageContext objects. Example 215 shows the signature for
getCurrentMessageContext().

Example 216 shows how to get an message context using the
DispatchLocals interface.

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 MessageContext messCont = contReg.getCurrent();
...
}

Example 214: Getting a Message Context

Example 215: getCurrentMessageContext()

javax.xml.rpc.handler.MessageCcontext getCurrentMessageContext();

Example 216: Getting a Message Context

import java.net.*;
import java.rmi.*;
import javax.xml.rpc.*
 345

CHAPTER 14 | Using Message Contexts
import com.iona.jbus.*;

public class Atherny
{
 MessageContext messCont =
 DispatchLocals.getCurrentMessageContext();
 ...
}

Example 216: Getting a Message Context
346

Working with JAX-RPC MessageContext Objects
Working with JAX-RPC MessageContext
Objects

Overview A JAX-RPC message context is a container for properties that are shared
among the participants in applications message handling chain. They have
some predefined properties that are made available to the components
along the messaging chain. However, you can add any named property you
like to the context as long as the name does not conflict with one of the
predefined properties.

Properties set in the message context are only available at certain steps
along the messaging chain. Properties set in the context by handlers are
only available to handlers further down the processing chain and are
destroyed once the operation�s invocation completes. Properties set at the
application level are available globally and live for the duration of the
application.

JAX-RPC message contexts have methods to set a property in the context, to
get a property from the context, and to remove a property from the context.
They also have methods to determine what properties are set in the context.

Artix context properties Artix has a number of standard properties that it stores in the JAX-RPC
message context. These properties can all be accessed using the appropriate
constant from the com.iona.jbus.ContextConstants class. Table 15 lists
the context properties used by Artix.

Table 15: Artix Context Properties

Property Description

OPERATION_NAME Holds the name of the operation the
originated the message being processed.
See �Working with Operation Parameters�
on page 570.
 347

CHAPTER 14 | Using Message Contexts
SERVER_REQUEST_CLASSES Holds an array of Class objects
representing the classes of each part of the
current request message. See �Working
with Operation Parameters� on page 570.

SERVER_REQUEST_VALUES Holds an array of Object objects
containing the data for each part in the
current request message. See �Working
with Operation Parameters� on page 570.

SERVER_RESPONSE_CLASSES Holds an array of Class objects
representing the classes of each part of the
current response message. See �Working
with Operation Parameters� on page 570.

SERVER_RESPONSE_VALUES Holds an array of Object objects
containing the data for each part in the
current response message. See �Working
with Operation Parameters� on page 570.

CLIENT_REQUEST_CLASSES Holds an array of Class objects
representing the classes of each part of the
current request message. See �Working
with Operation Parameters� on page 570.

CLIENT_REQUEST_VALUES Holds an array of Object objects
containing the data for each part in the
current request message. See �Working
with Operation Parameters� on page 570.

CLIENT_RESPONSE_CLASSES Holds an array of Class objects
representing the classes of each part of the
current response message. See �Working
with Operation Parameters� on page 570.

CLIENT_RESPONSE_VALUES Holds an array of Object objects
containing the data for each part in the
current response message. See �Working
with Operation Parameters� on page 570.

Table 15: Artix Context Properties

Property Description
348

Working with JAX-RPC MessageContext Objects
Setting a property in the context Before a property exists in the message context it must be set using the
message context�s setProperty() method. Example 217 shows the
signature for setProperty(). The first parameter, name, can be any string as
long as it is unique among the properties set in the context. The second
parameter, value, can be any instantiated Java object. It becomes the value
of the property stored in the context.

The scope of the property depends on where in the messaging chain the
property is set into the context. Properties set at the implementation level
are global in scope and exist for the duration of the process� lifecycle or until
they are explicitly removed from the message context. Properties set by
handlers are only available to handlers further down the handler chain and
expire once the operation�s invocation is completed. For more information
about handlers, see �Writing Handlers� on page 539.

Example 218 shows the code for setting a property in the request context.

Example 217: MessageContext.setProperty()

void setProperty(Sting name, Object value);

Example 218: Setting a Property in a Message Context

import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 MessageContext context = contReg.getCurrent();

4 boolean isEncrytped = TRUE;

5 context.setProperty("isEncrypted", isEncrypted);

...
}

 349

CHAPTER 14 | Using Message Contexts
The code in Example 218 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Calls getContextResistry() on the default bus to get the default bus�
context registry.

3. Calls getCurrent() on the context registry to get the message context
for the application�s thread.

4. Creates the an instance of the property�s class and set the values.

5. Sets the property by calling setProperty().

Getting a property from the
context

You get a property�s value from the message context using its
getProperty() method. Example 219 shows the signature for
getProperty(). It takes a single parameter, name, that is the name of the
property for which you want the value. If the property exists, it is returned. If
the property does not exist, null is returned.

Example 220 shows the code for getting a property from the request
context.

Example 219: MessageContext.getProperty()

Object getProperty(String name);

Example 220: Getting a Property from the Message Context

import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 MessageContext context = contReg.getCurrent();

4 boolean encrypt = (boolean)context.getProperty("isEncrypted");
...
}

350

Working with JAX-RPC MessageContext Objects
The code in Example 220 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Calls getContextResistry() on the default bus to get the default bus�
context registry.

3. Calls getCurrent() on the context registry to get the message context
for the application�s thread.

4. Gets the property by calling getProperty() with the appropriate name.

Removing a property from the
context

If you wish to remove a property from the message context, you do so using
the message context�s removeProperty() method. Example 221 shows the
signature for removeProperty(). It takes a single parameter, name, that
represents the name of the property you wish to remove.

Example 222 shows the code for removing a property from the message
context.

Example 221: MessageContext.removeProperty()

void removeProperty(String name);

Example 222: Removing a Property from a Message Context

import java.net.*;
import java.rmi.*;
import com.iona.jbus.*;

public class Atherny
{
// get the bus

1 ContextRegistry contReg = def_bus.getContextRegistry();

2 MessageContext context = contReg.getCurrent();

3 context.removeProperty("isEnctryted");
...
}

 351

CHAPTER 14 | Using Message Contexts
The code in Example 222 does the following:

1. Calls getContextResistry() on the default bus to get the default bus�
context registry.

2. Calls getCurrent() on the context registry to get the message context
for the application�s thread.

3. Removes the property by calling removeProperty().

Determining what properties are
set

The JAX-RPC MessageContext interface has two methods that allow you to
determine what properties are set in a context. containsProperty() takes
the name of a property, as a String, and returns true if the property is set
and false if the property is not. getPropertyNames() returns an Iterator
object with the names of all properties stored in the message context.

Example 223 shows the code for seeing if a property is set in the message
context.

Example 223: Querying a Property in the Message Context

import java.net.*;
import java.rmi.*;
import com.iona.jbus.*;

public class Atherny
{
// get the bus
ContextRegistry contReg = def_bus.getContextRegistry();

MessageContext context = contReg.getCurrent();

if (context.containsProperty("isEnctryted"))
 {
 System.out("The property is set");
 }
...
}

352

Working with IonaMessageContext Objects
Working with IonaMessageContext Objects

Overview Artix extends the MessageContext interface defined by JAX-RPC to support
some of Artix�s more advanced features. This extended interface is the
IonaMessageContext interface. Message contexts that are accessed using
this interface are referred to as Artix message contexts. They are used to
store complex data types that are used for adding header elements to
messages or to programatically define certain binding and transport details.

In this section This section discusses the following topics:

How Properties are Stored in Artix Message Contexts page 354

Setting a Property into an Artix Message Context page 357

Working with Properties from an Artix Message Context page 360

Special Artix Properties page 362
 353

CHAPTER 14 | Using Message Contexts
How Properties are Stored in Artix Message Contexts

Overview Artix message contexts store data that must be used by both the Java
components of Artix and the C++ components of Artix. In addition, the
properties for a transport may differ depending on the direction a message is
travelling and a property may or may not be populated depending on where
in the request/reply sequence you access it. Transport properties and
message headers must also be preserved across multiple Artix endpoints.
For example, the HTTP properties that are available for a client to set on a
request are different from the HTTP properties that it can access for a reply.
Also, the HTTP properties for a reply are only available to the client after a
reply is received. If the invocation chain involves a router, the router must
also preserves both the request�s HTTP properties and the response�s HTTP
properties.

To make these capabilities possible Artix message contexts use two
additional components:

� The context registry contains the list of all possible properties that can
be stored in the Artix message contexts for the current bus.

� Two context containers store individual instances of each Artix
message context.

Property registration Properties stored in an Artix message context are defined as XML Schema
complex types. Each XML Schema complex type represents one Java object
that conforms to the mappings described in �Using XML Schema Complex
Types� on page 148. Before the property can be placed into an Artix
message context it must be registered with the context registry using the
context registry�s registerContext() method. For more details on
registering properties with the context registry see �Registering Context
Types� on page 369.

Each of the transports shipped with Artix has a set of properties that are
managed using Artix message contexts. The transports automatically
register all of the properties they use when the transport is loaded. For more
information see �Working with Transport Attributes� on page 387.
354

Working with IonaMessageContext Objects
Context containers Each Artix message context holds one request context container and one
reply context container. The request context container holds all of the
properties associated with messages that originate as service requests in a
proxy. The reply context container holds all of the properties associated with
messages that are created by services in response to a request. In both
instances, the properties in the context container are passed all the way
through the request and reply chain. For example, if Client makes a
request on ServerA, ServerA would receive the properties set in the request
context from the client. If ServerA then passes the request along to ServerB,
ServerB also receives the request context sent by Client. The same is true
when using the Artix router. Figure 7 shows how context properties are
passed with messages.

The context containers hold the data for all of the contexts instantiated in
the Artix message context�s thread. Each context container can hold one
instance of a registered property type. Properties are instantiated separately
for the request context container and the reply context container. For
instance, you can get a SOAP header property for the request context

Figure 7: Contexts Passed Along Request/Reply Chain
 355

CHAPTER 14 | Using Message Contexts
container and leave the reply context container empty. In that case, the
SOAP header property would be included in all request messages sent from
the thread in which it was set.
356

Working with IonaMessageContext Objects
Setting a Property into an Artix Message Context

Overview Before you can get a property from one of the context containers, the
property must be set in that container. Properties are set in one of two ways:

� the property is set by the sender of the message

� the property is set using the context�s setter methods

Received properties When Artix receives a message the transport layer will populate the
appropriate properties in the Artix message context. The SOAP and CORBA
bindings will populate the appropriate properties if headers are attached to
messages. In addition, other Artix plug-ins that have access to a message
can also set properties based on the content of a received message. For
example, if a client sends a request with a WS-Security header, the server's
request context container will have the WS-Security property set.

Artix message context setter
methods

Artix message contexts have two setter methods: setReplyContext() and
setRequestContext(). Example 224 shows the signature for these
methods.

The first parameter to these methods, name, specifies the name of the
property you desire to set. The QName passed in must be a QName of a
property that is registered with the context registry.

The second parameter, value, is data you are using to set the property. It
must be of the appropriate type for the property specified in name.

Procedure for setting a property To set a property do the following:

1. Create an instance of the object representing the property you want to
set.

2. Set the desired fields of the newly created property.

Example 224: Methods for Setting a Property

void setReplyContext(QName name, Object value);
void setRequestContext(QName name, Object value);
 357

CHAPTER 14 | Using Message Contexts
3. Call the appropriate setter method with the name of the property you
are setting and the property instance you created. For example, to set a
property into the reply context container, you would use
setReplyContext().

Example Example 225 shows the code for setting a property in the request context.

The code in Example 225 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Calls getContextResistry() on the default bus to get the default bus�
context registry.

3. Calls getCurrent() on the context registry to get the message context
for the application�s thread and casts it to an Artix message context.

4. Creates the an instance of the property�s class and set the values.

Example 225: Setting a Property in an Artix Message Context

import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

4 MusicTagType tag = new MusicTagType();
tag.setArtist("Murphy");
tag.setAlbum("Law");

5 QName contextName = new QName("http://records.com/",
 "MusicTags");

6 context.setRequestContext(contextName, tag);

...
}

358

Working with IonaMessageContext Objects
5. Creates the QName for the property.

6. Sets the property by calling setRequestContext() with the appropriate
QName and the newly created property object.
 359

CHAPTER 14 | Using Message Contexts
Working with Properties from an Artix Message Context

Overview Once a property is set in an Artix message context you can retrieve the
property and manipulate its contents. Properties in an Artix message context
are Java objects, so you manipulate them as you would any other Java
object.

Getting a property Artix message contexts have two methods that allows you to get a property
from one of the context containers. These methods are getReplyContext()
and getRequestContext(). Example 226 shows the signature for these
methods.

They take a single parameter, name, that specifies the name of the property
you desire to get. The QName passed in must be a QName of a property that is
registered with the context registry. Artix has a number of preregistered
context types to support transport attributes. In addition, You can register
your own properties to use as SOAP headers or GIOP service contexts.

Manipulating a property Once you have gotten a property from the context container, you must first
cast the returned Object to the appropriate data type for the property. Each
property has its own associated data type. For example, in Example 227 the
custom SOAP header�s data is of type headerType.

Once the property is cast into the appropriate type you can access its fields
using the methods defined for the type. Any changes made to the property
by your application change the copy stored in the context container and will
be propagated when the property is sent with a message.

Example 226: Methods for Getting a Property

Object getReplyContext(QName name);
Object getRequestContext(QName name);
360

Working with IonaMessageContext Objects
Example Example 227 shows the code for getting a property from the request
context.

The code in Example 227 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Calls getContextResistry() on the default bus to get the default bus�
context registry.

3. Calls getCurrent() on the context registry to get the message context
for the application�s thread and casts it to an Artix message context.

4. Creates the QName used to get the property from the context
container. This QName must be the same QName as the one with
which the property was registered.

5. Gets the customer SOAP header property by calling
getRequestContext() with the appropriate QName.

Example 227: Getting a Property

import java.net.*;
import java.rmi.*;

1 import com.iona.jbus.*;

public class Atherny
{
// get the bus

2 ContextRegistry contReg = def_bus.getContextRegistry();

3 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

4 QName refName = new QName("http://records.com/","MusicTags");
5 MusicTagType tag =

 (MusicTagType)context.getRequestContext(refName);
...
}

 361

CHAPTER 14 | Using Message Contexts
Special Artix Properties

Overview Artix message contexts have two special properties for use by servers:

� oneway is a boolean property that specifies if a request requires a
response.

� correalationID is stored as a long and specifies a unique identifier
that allows a server to correlate an incoming request with its
corresponding outgoing reply.

Oneway property The oneway property is available in a server�s Artix message context once a
message reaches the request-level interceptors. You can check its value
using IonaMessageContext.isOneway(). If the request is a oneway request,
meaning that it will not generate a reply, oneway is true. For requests that
require a response, oneway is false.

Example 228 shows code for checking if a request is oneway.

Example 228 does the following:

1. Imports the proper jbus package.

2. Gets the context registry.

3. Gets the Artix message context.

4. Determine if the request is oneway.

Example 228: Seeing if a Request is Oneway

1 import com.iona.jbus.IonaMessageContext;

...
2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 if (context.isOneway())
{
 System.out.println("This is a oneway request.");
}

362

Working with IonaMessageContext Objects
Correlation ID property The correlationID property is available at all levels of the server-side
messaging chain and is accessed using
IonaMessageContext.getCorrelationID(). The value of the property is a
long that is specific to each request/reply pair. Using correlationID you
could, for instance, write an interceptor that tracked the amount of time
required for a reply to be generated for each request.
 363

CHAPTER 14 | Using Message Contexts
364

CHAPTER 15

Sending Message
Headers
Artix message contexts are used to add headers to messages
that are sent using payload formats that support message
headers.

Overview Using the context mechanism, you can embed data in message headers that
are not part of the operation�s parameter list. This is useful for sending
metadata such as security tokens or session information that is tangential to
the logic involved in processing the request.

The data sent in the message header is a custom context that you will need
to create and register with the Artix context container when you build your
application. How you define the data for the context and how you register
the context will depend on the payload format used by the application.

Procedure To send customer header information in a context you need to do the
following:

1. Define an XML Schema for the data being stored in the header.

2. Generate the type factory and support code for the header data.

Note: If you change the payload format used by the application, your
code will continue to work. However, the header information stored in the
context will not be transmitted.
 365

CHAPTER 15 | Sending Message Headers
3. Register the type factory for the header data. See �Registering Type
Factories� on page 264.

4. Register the header data as a context.

Once the header data is registered as a context with Artix, it can be
accessed using the normal context mechanisms.

In this chapter This chapter discusses the following topics:

Defining Context Data Types page 367

Registering Context Types page 369

SOAP Header Example page 374
366

Defining Context Data Types
Defining Context Data Types

Overview Contexts can store data of any XML Schema type that is derived from
xsd:anyType. In other words, a context data type can be any primitive,
simple, or complex XML Schema type.

When creating a context whose type is an XML Schema primitive type or a
native XML Schema simple type like xsd:nonNegativeInteger, you do not
need to explicitly define the context�s data type. However, if you are creating
a context whose type is a user-defined simple type or a complex type, you
need to define the data type in an XML Schema document (XSD), or in the
types section of your contract, and generate the appropriate type factories
for the data type.

Defining a context schema It is typically appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application�s
contract. This approach is logical because contexts are normally used to
implement features independent of any particular service.

To define a complex context data type, ContextDataType, in the namespace,
ContextDataURI, you define a context schema following the outline shown
in Example 229.

Example 229: Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="ContextDataURI"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="ContextDataType">
 ...
 </xsd:complexType>
</xsd:schema>
 367

CHAPTER 15 | Sending Message Headers
Example For example, you could define the data for a header that contains two
elements. One element, originator, is a string containing the name of the
message originator. The other element, message, contains a message string.
The data type for this header, SOAPHeaderInfo, is shown in Example 230.

Generating Java code for a context
schema

To generate the Java code for the context data type, ContextType, from a
context schema file, ContextSchema.xsd, enter the following command at
the command line:

The WSDL-to-Java compiler will generate two Java classes:

� ContextType.java contains the class representing the data type.

� ContextTypeTypeFactory.java contains the type factory needed to
instantiate the context data type.

These classes will need to be accessible to any applications that wishes to
register and use a context of the defined type.

For more information on type factories see �Working with Artix Type
Factories� on page 261.

Example 230: Header Context Data Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:sequence>
 <xs:element name="originator" type="xs:string"/>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

wsdltojava ContextSchema.xsd
368

Registering Context Types
Registering Context Types

Overview Before you can use a context, you must register it with the bus� context
registry using the registry�s registerContext() method. registerContext()
requires the QName for the context and the QName of the data type stored in
the context.

Registering a context adds a type factory reference to the context registry�s
internal table. This type factory reference enables the context registry to
create context data instances whenever they are needed.

In this section This section discusses the following topics:

Registering a Context for Use as a SOAP Header page 370

Registering a Context for Use as a CORBA Header page 372
 369

CHAPTER 15 | Sending Message Headers
Registering a Context for Use as a SOAP Header

Overview To register a context to be used as a SOAP header you need to provide the
name of the WSDL message part that is to be inserted into the SOAP
header. This information comes from the WSDL contract defining the
messages used by the application.

Example 231 shows the signature of the registerContext() function used
to register a context to be used as a SOAP header.

registerContext() takes the following arguments:

Example For example, to register a SOAP header property of the type defined in
Example 230 on page 368 you would use code similar to Example 232.

Example 231: The registerContext() Function for SOAP Headers

void ContextRegistry.registerContext(QName name, QName type,
 QName message_name,
 String part_name);

name The qualified name used to represent the property.

type The qualified name of the property�s data type.

message_name The qualified name of the WSDL message specified in the
soap:header element defining this SOAP header. If there
is no soap:header elements defined in the contract, this
can be any valid QName.

part_name The part name specified in the soap:header element
defining this SOAP header. If there is no soap:header
elements defined in the contract, this can be any valid
String.

Example 232: Registering a SOAP Header Property

1 SOAPHeaderInfoTypeFactory fact = new
SOAPHeaderInfoTypeFactory();

// Bus, bus, obtained earlier
bus.registerTypeFactory(fact);
370

Registering Context Types
The code in Example 232 does the following:

1. Register the type factory for the header�s data type.

2. Get a handle to the bus� context registry.

3. Build the QName by for the new property. This can be any valid QName.

4. Build the QName that specifies the property�s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Build the QName for the message defining the SOAP header. In this
example, the SOAP header is not defined in the WSDL contract so the
value is unimportant.

6. Register the property with the context registry. The value used for the
part name, header_part, can be any string.

2 ContextRegestry contReg = bus.getContextRegistry();

3 // Create a QName for the new property
QName name = new QName("http://javaExamples.iona.com",
 "SOAPHeader");

4 // Create a QName to hold the QName of the property�s data type
QName type = new QName("http://schemas.iona.com/types/context",
 "headerInfo");

5 // Create a QName for the message
QName message = new QName("http://myHeader.com/header"
 "header_info");

6 // Register the property
contReg.registerContext(name, type, message, "header_part");

Example 232: Registering a SOAP Header Property
 371

CHAPTER 15 | Sending Message Headers
Registering a Context for Use as a CORBA Header

Overview To register a property to be used as a CORBA header you need to provide an
ID to be placed in the GIOP service context ID.

Example 233 shows the signature of the registerContext() function used
to register a property to be used as a CORBA header.

This registerContext() method takes the following arguments:

Example For example, to register a CORBA header property of the type defined in
Example 230 on page 368 you would use code similar to Example 234.

Example 233: The registerContext() Function for CORBA Headers

void ContextRegistry.regiserContext(QName name, QName type,
 long context_id);

name The qualified name used to represent the property.

type The qualified name of the property�s data type.

context_id The ID that tags the GIOP service context containing the
Artix context. In CORBA, the context_id corresponds to
a service context ID of IIOP::ServiceId type. For details
of GIOP service contexts, consult the OMG CORBA
specification.

Example 234: Registering a Property as a CORBA Header

1 // Artix servant, servant, obtained earlier
headerInfoTypeFactory fact = new headerInfoTypeFactory();
servant.registerTypeFactory(factArray);

2 // Bus, bus, obtained earlier
ContextRegestry contReg = bus.getContextRegistry();

3 // Create a QName for the new property
QName name = new QName("http://javaExamples.iona.com",
 "CORBAHeader");
372

Registering Context Types
The code in Example 234 does the following:

1. Register the type factory for the header�s data type.

2. Get a handle to the bus� context registry.

3. Build the QName for the new property. This can be any valid QName.

4. Build the QName that specifies the property�s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Register the property with the context registry.

4 // Create a QName to hold the QName of the property�s data type
QName type = new QName("http://schemas.iona.com/types/context",
 "headerInfo");

5 // Register the property
contReg.registerContext(name, type, 1);

Example 234: Registering a Property as a CORBA Header
 373

CHAPTER 15 | Sending Message Headers
SOAP Header Example

Overview The example in this section transmits a custom SOAP header between two
Artix processes. The SOAP header is defined in the WSDL contract for this
example to demonstrate how context registration relates to the WSDL
contract for SOAP headers.

The SOAP header data in this example is transmitted as follows:

1. The client registers the property, SOAPHeaderInfo, with the context
registry for its bus.

2. The client initializes the property instance.

3. The client invokes the sayHi() operation on the server and the SOAP
header property is packaged into the request message�s SOAP header.

4. When the server starts up, it registers the SOAPHeaderInfo property
with the context registry for its bus.

5. When the sayHi() operation request arrives on the server side, the
SOAP header is extracted and put into the request context container as
a SOAPHeaderInfo property.

6. The sayHi() operation implementation extracts the property from the
request.

If the server in this example were not an Artix process, it would not need to
use the context mechanism to extract the SOAP header. It would have its
own method of handling the SOAP header.

In this section This section discusses the following topics:

The Contract page 375

Generating the Classes for the Header page 377

The Client page 378

The Service page 382
374

SOAP Header Example
The Contract

Overview The contract used for this example imports the XSD file, SOAPcontext.xsd,
that defines the SOAP header property�s data type in Example 230 on
page 368. The SOAPHeaderInfo type is used to define the only part of the
headerMsg message. In the SOAP binding for Greeter,
GreeterSOAPBinding, the definition of the input message includes a
soap:header element that specifies that headerMsg:headerPart is to be
placed in a SOAP header when a request is made. Your application code will
be responsible for creating the property that populates the defined SOAP
header.

Example Example 235 on page 375 shows the contract used to define the service
used in this example.

Example 235: SOAP Header WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld" targetNamespace="http://www.iona.com/custom_soap_interceptor"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/custom_soap_interceptor"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://www.iona.com/custom_soap_header"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 <element name="SOAPHeaderInfo" type="ns1:headerInfo"/>
 </schema>
 </types>
 <message name="sayHiRequest"/>
 <message name="sayHiResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>
 <message name="greetMeRequest">
 <part element="requestType" name="me"/>
 </message>
 <message name="greetMeResponse">
 <part element="responseType" name="theResponse"/>
 </message>
 375

CHAPTER 15 | Sending Message Headers
 <portType name="Greeter">
 <operation name="sayHi">
 <input message="tns:sayHiRequest" name="sayHiRequest"/>
 <output message="tns:sayHiResponse" name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <input message="greetMeRequest" name="greetMeRequest"/>
 <output message="greetMeResponse" name="greetMeResponse"/>
 </operation>
 </portType>
 <binding name="GreeterSOAPBinding" type="Greeter">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="greetMe">
 <soap:operation soapAction="" style="document"/>
 <input name="greetMeRequest">
 <soap:body use="literal"/>
 </input>
 <output name="greetMeResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SOAPService">
 <port binding="Greeter_SOAPBinding" name="SoapPort">
 <address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 235: SOAP Header WSDL
376

SOAP Header Example
Generating the Classes for the Header

Overview In order to generate the proper classes to support the custom SOAP header
you need to run the wsdltojava tool on the SOAP headers schema file
separately. This will create the classes needed to work with the header. You
will need to add these classes to your application.

Procedure To generate the code for the header save header�s schema file to a file called
SOAPcontext.xsd. Then run the following command:

The file
InstallDir/artix_5.1/cxx_java/samples/advanced/custom_soap_header

/etc/contextData.xsd also defines SOAPHeaderInfo.

wsdltojava SOAPcontext.xsd
 377

CHAPTER 15 | Sending Message Headers
The Client

Overview The client in this example will send a SOAP header of type SOAPHeaderInfo
when it invokes the greetMe operation. To do this it must do four things:

1. Register the type factory for SOAPHeaderInfo.

2. Register a property of SOAPHeaderInfo type.

3. Create an instance of SOAPHeaderInfo.

4. Populate the instance with the appropriate data.

5. Set the SOAPHeaderInfo property in the request context container.

When the greetMe() method is invoked, the property will be inserted into
the SOAP message�s header element and sent to the server.

Example Example 236 on page 378 shows the code for the client.

Example 236: Client Code

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class GreeterClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);
378

SOAP Header Example
2 QName name =
 new QName("http://www.iona.com/custom_soap_interceptor",
 "SOAPService");
 QName portName = new QName("","SoapPort");

 String wsdlPath = "../../etc/hello_world.wsdl";

 URL wsdlLocation = null;
 try
 {
 wsdlLocation = new URL(wsdlPath);
 }
 catch (java.net.MalformedURLException ex)
 {
 wsdlLocation = new File(wsdlPath).toURL();
 }

 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(wsdlLocation, name);
 Soap impl = (Soap)service.getPort(portName, Soap.class);

3 SOAPHeaderInfoTypeFactory fact =
 new SOAPHeaderInfoTypeFactory();
 bus.registerTypeFactory(fact);

4 ContextRegestry contReg = bus.getContextRegistry();

5 QName name = new QName("", "SOAPHeaderInfo");

6 QName type =
 new QName("http://schemas.iona.com/types/context",
 "SOAPHeaderInfo");

7 QName message =
 new QName("http://schemas.iona.com/custom_header",
 "header_content", "soap_header");

8 contReg.registerContext(name, type, message, "header_info");

9 SOAPHeaderInfo header = new SOAPHeaderInfo();
 header.setOriginator("Client");
 header.setMessage("Hello from Client.!");

Example 236: Client Code
 379

CHAPTER 15 | Sending Message Headers
The code in Example 236 on page 378 does the following:

1. Initializes an instance of the bus.

2. Creates a proxy for the Greeter service.

3. Register the type factory for SOAPHeaderInfo.

4. Gets the context registry from the bus.

5. Builds the QName for the new property.

6. Builds the QName for the property�s data type. The values for this are
taken from the XSD defining the data type. The first argument is the
namespace under which the type is defined. The second argument is
the name of the complex type.

7. Builds the QName for the message defining the SOAP header.

8. Registers the property with the context registry.

9. Instantiates an instance of the SOAP header property�s class,
SOAPHeaderInfo, and sets the fields.

10. Gets the Artix message context for the client.

11. Adds the SOAP header property to the request context container.

12. Invokes sayHi(). The SOAP header property is placed into the SOAP
header of the request and sent to the server.

10 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

11 context.setRequextContext(name, header);

12 String string_out;

 string_out = impl.sayHi();
 System.out.println(string_out);

13 string_out = impl.greetMe("Chris");
 System.out.println(string_out);

14 SOAPHeaderInfo replyInfo =
(SOAPHeaderInfo)(context.getReplyContext(name));

 System.out.println("Context from Server: " + replyInfo);
 bus.shutdown(true);
 }
}

Example 236: Client Code
380

SOAP Header Example
13. Invokes greetMe(). The SOAP header property is placed into the SOAP
header of the request and sent to the server.

14. Retrieves the SOAP header that is returned from the service and
displays its contents.
 381

CHAPTER 15 | Sending Message Headers
The Service

Overview A service that works with SOAP headers need to do three things:

1. Register the type factory for the SOAP header�s data type.

2. Register the SOAP headers property with the context registry.

3. Extract the SOAP header from the request.

Registering the property in the
service

The service must also register the SOAPHeader property with its context
registry in order to extract the SOAP header sent with the request. Because
the property only needs to be registered with the context registry once, it
makes sense to register it in the service�s busInit().

Example 237 on page 382 shows the code for the service�s busInit().

Example 237: Registering a Context in busInit()

import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class HelloWorldPlugIn extends BusPlugIn
{
 private HelloWorldImpl service;

 public void busInit() throws BusException
 {

1 Bus bus = getBus();

2 QName name =
 new QName("http://www.iona.com/custom_soap_interceptor",
 "SOAPService");
 Servant servant =
 new SingleInstanceServant(new SoapImpl(),
 "../../etc/hello_world.wsdl", bus);
 bus.registerServant(servant, name, "SoapPort");
382

SOAP Header Example
The code in Example 237 on page 382 does the following:

1. Gets an instance of the bus.

2. Registers the services implementation object with the bus.

3. Registers the type factory for SOAPHeaderInfo.

4. Gets the context registry from the bus.

5. Builds the QName for the new property.

6. Builds the QName for the property�s data type.

7. Builds the QName for the message defining the SOAP header.

8. Registers the property with the context registry.

3 SOAPHeaderInfoTypeFactory fact =
 new SOAPHeaderInfoTypeFactory();
 bus.registerTypeFactory(fact);

4 ContextRegestry contReg = bus.getContextRegistry();

5 QName propName = new QName("", "SOAPHeaderInfo");

6 QName propType =
 new QName("http://schemas.iona.com/types/context",
 "SOAPHeaderInfo");

7 QName message =
 new QName("http://schemas.iona.com/custom_header",
 "header_content", "soap_header");

8 contReg.registeContext(propName, propType,
 message, "header_info");

 }
 ...
}

Example 237: Registering a Context in busInit()
 383

CHAPTER 15 | Sending Message Headers
Extracting the SOAP header The service�s implementation object, GreeterImpl, gets the SOAP header
from the request message and prints the headers contents. To do this the
implementation object must get the SOAP header property from the request
context container. Getting the SOAP header property takes four steps:

1. Get a reference to the bus for the implementation object.

2. Get the bus� context registry.

3. Get the thread�s Artix message context from the registry.

4. Get the SOAP header property from the request context container.

Example 238 shows the code for the GreeterImpl implementation object.

Example 238: Implementation of the Greeter Service

import java.net.*;
import java.rmi.*;
import javax.xml.namespace.QName;

import com.iona.jbus.*

public class SoapImpl
{
 public String greetMe(String stringParam)
 {

1 IonaMessageContext context =
 (IonaMessageContext)DispatchLocals.getCurrentMessageContext();

4 QName name = new QName("", "SOAPHeaderInfo");

5 SOAPHeaderInfo header =
 (SOAPHederInfo)context.getRequestContext(name);

6 System.out.println("SOAP Header Originator:
 "+header.getOriginator());
 System.out.println("SOAP Header message:
 "+header.getMessage());

7 SOAPHeaderInfo replyInfo = new SOAPHeaderInfo();
 replyInfo.setOrginator("Servier");
 replyInfo.setMessage("Success! :)");

8 context.setReplyContext(name,replyInfo);
384

SOAP Header Example
The code in Example 238 on page 384 does the following:

1. Gets an instance of the bus.

2. Gets the context registry from the bus.

3. Gets the context current for the implementation object�s thread.

4. Builds the QName for the SOAP header property. This QName must be the
same as the QName used when registering the property in the server
main.

5. Gets the SOAP header property from the request context container.

6. Prints out the information contained in the SOAP header.

7. Instantiates a new SOAP header to send back to the client.

8. Sets the new SOAP header into the reply context so it can be returned
to the client.

9. Returns the results of the operation to the client.

9 return "Hello Artix User: "+stringParam;
 }
}

Example 238: Implementation of the Greeter Service
 385

CHAPTER 15 | Sending Message Headers
386

CHAPTER 16

Working with
Transport
Attributes
Using the Artix context mechanism, you can set many of the
the transport attributes at runtime.

In this chapter This chapter discusses the following topics:

How Artix Stores Transport Attributes page 389

Getting Transport Attributes from an Artix Context page 391

Getting IP Attributes page 394

Setting Configuration Attributes page 396

Setting HTTP Attributes page 400

Setting CORBA Attributes page 426

Setting WebSphere MQ Attributes page 428

Setting JMS Attributes page 442

Setting FTP Attributes page 453
 387

CHAPTER 16 | Working with Transport Attributes
Setting i18n Attributes page 463
388

How Artix Stores Transport Attributes
How Artix Stores Transport Attributes

Overview Artix uses the context mechanism described in �Using Message Contexts� on
page 337 to store the properties used to configure the transport layer and
populate any headers used by the selected transport. Most of the properties
are stored in the normal Artix context containers. However, some properties
that are used in initializing the transport layer at start-up are stored in a
special context container.

Initialization properties Some transport attributes, such as JMS broker sign-on values or a server�s
HTTP endpoint URL, are used by Artix when it is initializing the transport
layer. Therefore, they need to be specified before Artix it initializes the
transport layer for a service or a service proxy. These attributes are stored in
a special context container. When the bus initializes the transport layer, it
will check this special context container for any initialization properties.

Global transport attributes For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV callbackLevel, the context objects containing the
transport�s properties are stored in the Artix request context container and
the Artix reply context container. Once you have retrieved the context object
from the proper context container, you can inspect the values of transport
headers and other transport related properties such as codeset conversion.
You can also dynamically set many of the values for outgoing messages
using the context APIs. For a full listing of all the possible port attributes for
each transport see Bindings and Transports, C++ Runtime.

Transport specific Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer is
initialized. They are specific to the different transports. For example, if you
request the context for the HTTP port attributes from the context container,
the returned context will have methods for setting and examining HTTP
specific attributes. However, if the application is using another transport,

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 389

../bindings/cpp/index.html

CHAPTER 16 | Working with Transport Attributes
WebSphere MQ for example, the HTTP configuration context will not be
registered and you will be unable to get the HTTP configuration context from
the container.

When are the attribute contexts
populated

All of the transport attributes have default values that are specified in either
the service�s contract or in the service�s configuration. If you do not use the
contexts for overriding transport attributes, these are always used when
sending messages. However, when you get the transport attributes for an
outgoing message, the context will be empty. You will need to create an
instance of the context and set the values you want to override in the context
yourself.

When a message is received by the transport layer, the transport populates
the context with the attributes of the message it receives. For example, if
you are using HTTP the values of the incoming message�s HTTP header will
be used to populate the context. The context can then be inspected at any
point in the application�s code.
390

Getting Transport Attributes from an Artix Context
Getting Transport Attributes from an Artix
Context

Overview All of the contexts for holding transport attributes are handled using the
standard context mechanism. To get a transport attribute context do the
following:

1. Get the applications message context registry as shown in �Getting the
Context Registry� on page 342.

2. Get the message context for the current application as shown in
�Getting the MessageContext Object for a Thread� on page 344.

3. Cast the message context to an Artix message context.

4. Get the desired context from the appropriate context container.

Once you have the context you can inspect it and set new values for any of
its properties.

Getting a transport attribute
context

You get an instance of a transport attribute context from an Artix message
context using the standard context APIs discussed in �Working with
IonaMessageContext Objects� on page 353. To make it easy to remember
the names used to access each context, Artix provides a helper class called
ContextConstants that has a static member for each configuration context.
The static member name for each configuration context is shown in
Table 16.

Table 16: Configuration Context QNames

Context ContextConstants Member

HTTP Client Incoming Attributes HTTP_CLIENT_INCOMING_CONTEXTS

HTTP Client Outgoing Attributes HTTP_CLIENT_OUTGOING_CONTEXTS

HTTP Server Incoming Attributes HTTP_SERVER_INCOMING_CONTEXTS

HTTP Server Outgoing Attributes HTTP_SERVER_OUTGOING_CONTEXTS

CORBA Transport Attributes CORBA_CONTEXT_ATTRIBUTES
 391

CHAPTER 16 | Working with Transport Attributes
Once you have gotten the desired context from the Artix message context,
you will need to cast it to the appropriate class for the context. Table 17
lists the data types for each of the configuration contexts.

MQ Connection Attributes MQ_CONNECTION_ATTRIBUTES

MQ Outgoing Message Attributes MQ_OUTGOING_MESSAGE_ATTRIBUTES

MQ Incoming Message Attributes MQ_INCOMING_MESSAGE_ATTRIBUTES

JMS Client Header Attributes JMS_CLIENT_CONTEXT

JMS Server Header Attributes JMS_SERVER_CONTEXT

FTP Connection Policy FTP_CONNECTION_POLICY

FTP Client Naming Policy FTP_CLIENT_NAMING_POLICY

FTP Server Naming Policy FTP_SERVER_NAMING_POLICY

FTP Connection Credentials FTP_CREDENTIALS

i18n Server Attributes I18N_INTERCEPTOR_SERVER_QNAME

i18n Client Attributes I18N_INTERCEPTOR_CLIENT_QNAME

Bus Security Attributes SECURITY_SERVER_CONTEXT

Table 16: Configuration Context QNames

Context ContextConstants Member

Table 17: Configuration Context Classes

Context Class

HTTP Client Attributes com.iona.schemas.transports.http.configuration.context.ClientType

HTTP ServerAttributes com.iona.schemas.transports.http.configuration.context.ServerType

CORBA Attributes com.iona.schemas.bindings.corba.contexts.CORBAAttributesType

MQ Connection Attributes com.iona.schemas.transports.mq.context.MQConnectionAttributesType

MQ Message Attributes com.iona.schemas.transports.mq.context.MQMessageAttrinutesType

JMS Client Header Attributes com.iona.schemas.transports.jms.context.JMSClientHeadersType
392

Getting Transport Attributes from an Artix Context
JMS Server Header Attributes com.iona.schemas.transports.jms.context.JMSServerHeadersType

FTP Connection Policy com.iona.schemas.transports.ftp.context.ConnectionPolicyType

FTP Client Naming Policy com.iona.schemas.transports.ftp.context.ClientNamingPolicyType

FTP Server Naming Policy com.iona.schemas.transports.ftp.context.ServerNamingPolicyType

FTP Connection Credentials com.iona.schemas.transports.ftp.context.CredentialsType

i18n Server Attributes com.iona.schemas.bus.i18n.context.ServerConfiguration

i18n Client Attributes com.iona.schemas.bus.i18n.context.ClientConfiguration

Bus Security Attributes com.iona.schemas.bus.security_context.BusSecurity

Table 17: Configuration Context Classes

Context Class
 393

CHAPTER 16 | Working with Transport Attributes
Getting IP Attributes

Overview Artix provides a context that enables you to access data from the IP socket
layer. Currently, the only supported IP attribute is the client IP address,
which is accessible through the client address context.

Client address context The client address context is a server-side request context that contains the
IP address (or hostname) of the requesting client. This context can be useful
if you want a simple way of identifying clients�for example, for the
purposes of logging requests on the server side.

Enabling the client address
context

To enable the client address context on the server side, insert the following
setting into the relevant scope of your server�s .cfg configuration file:

This setting causes the Bus to read the client�s IP address from the IP socket
layer each time the server receives a message from a client. The IP address
is then inserted into a client address context, which is accessible to the
server application code.

WARNING: The client address context is not a secure way to identify
clients. If you need to be certain of the client�s identity, use one of the
authentication techniques described in the Artix Security Guide.

Artix Configuration File
plugins:bus:register_client_context = "true";

Note: The default setting is false, thus disabling the client address
context. This is to avoid any unnecessary performance overhead when this
feature is not needed.
394

Getting IP Attributes
Getting the client address on the
server side

The context containing the client�s IP address, CLIENT_ADDRESS_CONTEXT, is
available in the server�s request context container, after a request from the
client is received by the transport layer. To access the client�s IP address on
the server side, use the code fragment shown in Example 239.

Example 239:Getting the Client�s Address

private void printClientAddress()
{
try
{
 IonaMessageContext contextImpl = (IonaMessageContext)DispatchLocals.getCurrentMessageContext();
 String clientAddress =

(String)contextImpl.getRequestContext(ContextConstants.CLIENT_ADDRESS_CONTEXT);
 System.out.println("client address: " + clientAddress);
}
catch (ContextException ctex) {
ctex.printStackTrace();
}

 395

CHAPTER 16 | Working with Transport Attributes
Setting Configuration Attributes

Overview Depending on the attributes that are being set, you will one of two methods
for setting the configuration information into the context container. For most
cases, you will use the standard context mechanism. For properties that
must be known before the bus initializes the transport layer, you will use the
specialized configuration context.

In this section This section discussed the following topics:

Using the Standard Contexts page 397

Using the Configuration Context page 398
396

Setting Configuration Attributes
Using the Standard Contexts

Durability of settings When programmatically alter your application�s transport attributes, you
override any settings read from the application�s contract and the
application�s configuration file. The durability of this setting depends on
whether the application is a server or a client.

For servers, transport attribute settings are valid only for a single request.
After each request is processed and a reply is sent the settings revert back to
the settings specified in the contract.

For clients, the contexts used to programatically set transport attributes are
permanent. Once set, a value remains in place until it is explicitly changed.
So, if you change a client�s HTTP username attribute to GreenDragon, it will
be used in all future requests. Exceptions to this rule are noted when
applicable.

Configuring clients To override the default transport attributes on the client-side you set values
on the context in the request context container. The bus uses the values
from the request context container to override the default configuration on
the client�s transport before sending a request. If no values have been set in
the request context container the transport uses its default values.

The values in a client�s reply context are set by the Artix bus when a reply is
received by the transport layer. They can be checked by client code at any
point.

Configuring servers To override the default transport attributes on the server-side you set the
values on the contexts in the reply context container. The bus uses the
values from the reply context container to override the default configuration
on the server�s transport before sending a reply. If no values have been set in
the reply context container the transport uses its default values.

The values in a server�s request context are set by the Artix bus when a
request is received by the transport layer. The properties can be checked at
any point in the server�s messaging chain and in the server�s implementation
object.
 397

CHAPTER 16 | Working with Transport Attributes
Using the Configuration Context

Overview There are a few transport attributes that need to be specified before the
transport layer of an Artix application is instantiated. For example when
using a secure JMS broker, your application need to know its username and
password before it attempts to connect to the JMS broker. To accomplish
this, you need to set these properties before the user level code is registered
with the bus. Artix uses a special context, called the configuration context,
to do this.

Available properties Currently, Artix supports the following special port properties:

� HTTP Endpoint URL - specifies the URL on which the server can be
contacted.

� JMS Broker Connection Security Info - specifies the username and
password used by an application when connecting to the JMS broker.

� FTP Transport Settings - specifies the attributes to use when
establishing an FTP connection for the FTP transport.

Procedure To register a special port property do the following:

1. Get the configuration context from the context registry.

2. Get a copy of the desired property from the configuration context.

3. Set the appropriate values into the property.

4. If the application is a server, register the servant with the bus.

5. If the application is a client, instantiate the service proxy.

Getting the configuration context The configuration context is obtained directly from the context registry using
the getConfigurationContext() method shown in Example 240. It is
returned as a port specific ContextContainer object. To specify the port
with which the context container is associated you pass in the QName of the
398

Setting Configuration Attributes
service defining the port and the name of the port. You can also specify if
the bus will create an instance of the configuration context for the specified
port.

Setting properties in the
configuration context

Once you have the context container for the configuration context, you can
set the desired port properties. Like a normal message context, the context
container has a getContext() method for retrieving contexts from the
container and a setContext() method for writing new contexts to the
container.

getContext(), shown in Example 241, gets the instance of a context from
the container. The method can also create a new instance of the desired
context. The context is returned as a Java Object that can then be cast into
the appropriate data type. Once you have the context object, you can
manipulate any data set in it and the changes are propagated back to the
container.

You can also use the setContext() method, shown in Example 242, to set
a context into the context container. setContext() takes an instance of the
context�s data type and the context name. The context instance is then use
to populate the context. All of the values set on the context instance become
the values used to configure your server port.

Example 240: getConfigurationContext()

ContextContainer getConfigurationContext(QName serviceName,
 String portName,
 boolean createIfNotFound);

Example 241: getContext()

Object getContext(QName contextName, boolean createIfNotFound);

Example 242: setContext()

void setContext(QName contextName, Object context);
 399

CHAPTER 16 | Working with Transport Attributes
Setting HTTP Attributes

Overview Artix uses five contexts to support the HTTP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of type
com.iona.schemas.transports.http.configuration.context.ServerType.
The other two contexts support the client-side HTTP information. The
client-side contexts are of type
com.iona.schemas.transports.http.configuration.context.ClientType.

The fifth context is used to store custom HTTP header properties. It is of
type com.iona.schemas.transports.header.CustomHeaders.

The information stored in the HTTP transport attribute contexts correlates to
the values passed in an HTTP header.

In this section This section discusses the following topics:

Client-side Configuration page 401

Server-side Configuration page 411

Setting the Server�s Endpoint URL page 421

Adding Custom HTTP Header Properties page 423
400

Setting HTTP Attributes
Client-side Configuration

Overview HTTP clients have access to both the values being passed in the HTTP
header of the outgoing request and the values received in the HTTP header
of the response. The information for each header is stored in a separate
context.

Outgoing header information On the client-side, the outgoing context, HTTP_CLIENT_OUTGOING_CONTEXTS,
is available in the client�s request context. Any changes made to values in
the outgoing context are placed in the request�s HTTP header and
propagated to the server. For example, if you want to allow requests to be
automatically redirected you could set the AutoRedirect attribute to true in
the client�s outgoing context. Example 243 shows the code for setting the
AutoRedirect property for a client.

The code in Example 243 does the following:

1. Imports the package containing the HTTP client context type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

Example 243: Setting a Client�s AutoRedirect Property

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 ClientType httpAtribs =
(ClientType)context.getRequestContext(ContextConstants.HTTP_C
LIENT_OUTGOING_CONTEXTS, true);

5 httpAtribs.setAutoRedirect(true);

// make proxy invocations
 401

CHAPTER 16 | Working with Transport Attributes
4. Gets the client�s outgoing HTTP context from the request context
container.

5. Sets the value of the AutoRedirect property to true.

Outgoing client attributes Table 18 shows the attributes that are valid in the outgoing HTTP client
context.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description

Accept String getAccept()
void setAccept(String val)

Specifies the MIME types the
client can handle in a response.

Accept-Encoding String getAcceptEncoding()
void setAcceptEncoding(String val)

Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept-Language String getAcceptLanguage()
void setAcceptLanguage(String val)

Specifies the language the client
prefers. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en-US.

Authorization String getAuthorization()
void setAuthorization(String val)

Specifies the credentials that will
be used by the server to authorize
requests from the client.

AuthorizationType String getAuthorizationType()
void setAuthorizationType(
 String val)

Specifies the name of the
authentication scheme in use.

AutoRedirect Boolean isAutoRedirect()
void setAutoRedirect(Boolean val)

Specifies whether a request
should be automatically
redirected by the server. The
default is false to specify that
requests are not to be
automatically redirected.
402

Setting HTTP Attributes
BrowserType String getBrowserType()
void setBrowserType(String val)

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Cache-Control String getCacheControl()
void setCacheControl(String val)

Specifies directives to caches
along the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

no-store: caches must not store
any part of a request or its
response.

max-age: the max age, in
seconds, of an acceptible
response.

max-stale: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

min-fresh: the response must
stay fresh for the given number of
seconds.

no-transform: caches must not
modify the media type or the
content location of a response.

only-if-cached: caches should
return only cached responses.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 403

CHAPTER 16 | Working with Transport Attributes
BrowserType String getBrowserType()
void setBrowserType(String val)

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Cache-Control String getCacheControl()
void setCacheControl(String val)

Specifies directives to caches
along the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

no-store: caches must not store
any part of a request or its
response.

max-age: the max age, in
seconds, of an acceptible
response.

max-stale: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

min-fresh: the response must
stay fresh for the given number of
seconds.

no-transform: caches must not
modify the media type or the
content location of a response.

only-if-cached: caches should
return only cached responses.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
404

Setting HTTP Attributes
ClientCertificate String getClientCertificate()
void setClientCertificate(
 String val)

Specifies the full path to the
PKCS12-encoded X509
certificate issued by the certificate
authority for the client.

ClientCertificateChain String getClientCertificateChain()
void setClientCertificateChain(
 String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

ClientPrivateKey String getClientPrivateKey()
void setClientPrivateKey(
 String val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ClientCertificate.

ClientPrivateKeyPassword String getClientPrivateKeyPassword()
void setClientPrivateKeyPassword(
 String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Connection String getConnection()
void setConnection(String val)

Specifies whether a connection is
to be kept open after each
request/response transaction.

Valid values are:

close: the connection is closed
after each transaction.

Keep-Alive: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

Cookie String getCookie()
void setCookie(String val)

Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Expires String getExpires()
void setExpires(String val)

Specifies the date after which
responses are considered stale.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 405

CHAPTER 16 | Working with Transport Attributes
Host String getHost()
void setHost(String val)

Specifies the Internet host and
port number of the service for
which the request is targeted.

Password String getPassword()
void setPassword(String val)

Specifies the password to use in
username/password
authentication.

Pragma String getPragma()
void setPragma(String val)

Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Proxy-Authorization String getProxyAuthroization()
void setProxyAuthentication(
 String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAuthorizationType String getProxyAuthorizationType()
void setProxyAuthorizationType(
 String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

ProxyPassword String getProxyPassword()
void setProxyPassword(String val)

Specifies the password used by
proxy servers for authentication if
username/password
authentication is in use.

ProxyServer String getProxyServer()
void setProxyServer(String val)

Specifies the URL of the proxy
server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
406

Setting HTTP Attributes
ProxyUserName String getProxyUsername()
void setProxyUserName(String val)

Specifies the username used by
proxy servers for authentication if
username/password
authentication is in use.

RecieveTimeout Integer getRecieveTimeout()
void setRecieveTimeout(Integer val)

Specifies the number of
milliseconds the client will wait to
receive a response from a server
before timing out. The default is
3000.

Referer String getReferer()
void setReferer(String val)

Specifies the entity that referred
the client to the target server.

Send-Timeout Integer getSendTimeout()
void setSendTimeout(Integer val)

Specifies the number of
milliseconds the client will
continue trying to send a request
to the server before timing out.

ServerDate String getServerDate()
void setServerDate(String val)

Specifies the time setting for the
server. When this value is set, the
client will use it as the base time
from which to calculate message
expiration. The client defaults to
using its internal system clock.

Trusted Root Certificate String getTrustedRootCertificates()
void setTrustedRootCertificates(
 String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

Username String getUserName()
void setUserName(String val)

Specifies the username used for
authentication when the server
uses username/password
authentication.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 407

CHAPTER 16 | Working with Transport Attributes
Incoming header The client�s incoming context, HTTP_CLIENT_INCOMING_CONTEXTS, is
available in the client�s reply context after a response from the server has
been received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME
type of the data returned in the request, you would read it from the client�s
incoming context as shown in Example 244.

The code in Example 244 does the following:

1. Imports the package containing the HTTP client context type.

2. Makes an invocation on the proxy.

Use Secure Sockets Boolean isUseSecureSockets()
void setUseSecureSockets(
 Boolean val)

Specifies the client wants to use a
secure connection. Secure HTTP
connections are also referred to as
HTTPS.

Valid values are true and false.

Note: If the contract specifies
HTTPS, this value is always true.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description

Example 244: Reading the Content Type in an HTTP Client

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

...
2 // make proxy invocation

...

3 ContextRegistry contReg = bus.getContextRegistry();
4 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

5 ClientType httpAtribs =
(ClientType)context.getReplyContext(ContextConstants.HTTP_CLI
ENT_INCOMING_CONTEXTS, true);

6 String contentType = httpAttribs.getContentType();
408

Setting HTTP Attributes
3. Gets the client�s context registry.

4. Gets the Artix context from the context registry.

5. Gets the client�s incoming HTTP context from the reply context
container.

6. Gets the value of the ContextType property.

Incoming client attributes Table 19 shows the attributes that are valid in the incoming HTTP client
context.

Table 19: Incoming HTTP Client Attributes

HTTP Attribute Artix APIs Description

Content-Encoding String getContentEncoding() Specifies the type of special
encoding, if any, the server used
to package the response.

Content-Language String getContentLanguage() Specifies the language the server
used in writing the response.
Valid language tags combine an
ISO language code and an ISO
country code separated by a
hyphen. For example, en-US.

Content-Location String getContentLocation() Specifies the URL where the
resource being sent in a response
is located.

Content-Type String getContentType() Specifies the MIME type of the
data in the response.

ETag String getETag() Specifies the entity tag in the
response header.

HTTPReply String getHTTPReply() Specifies the type of reply being
sent back by the server. For
example, if a request is fulfilled a
server will reply with OK.

HTTPReplyCode Integer getHTTPReplyCode() Specifies an integer code
associated with the server�s reply.
For example, 200 means OK and
404 means Not Found.
 409

CHAPTER 16 | Working with Transport Attributes
Last-Modified String getLastModified() Specifies the date and time at
which the server believes a
resource was last modified.

Proxy-Authenticate String getProxyAuthenticate() Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

RedirectURL String getRedirectURL() Specifies the URL to which client
requests should be redirected.
This is issued by a server when it
is not appropriate for the request.

ServerType String getServerType() Specifies the type of server
responded to the client. Values
take the form
program-name/version.

WWW-Authenticate String getWWWAuthentication() Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

Table 19: Incoming HTTP Client Attributes

HTTP Attribute Artix APIs Description
410

Setting HTTP Attributes
Server-side Configuration

Overview HTTP servers have access to both the values being passed in the HTTP
header of the outgoing response and the values received in the HTTP header
of the request. The information for each header is stored in a separate
context.

Outgoing header On the server-side, the outgoing context, HTTP_SERVER_OUTGOING_CONTEXTS,
is available in the server�s reply context container. Any changes made to
values in the outgoing context are placed in the reply�s HTTP header and
propagated to the client. For example, if you want to inform the client that it
needs to redirect it�s request to a different server, you could set the
RedirectURL attribute in the server�s outgoing context to the URL of an
appropriate server. Example 245 shows the code for setting the
RedirectURL attribute for a server.

The code in Example 245 does the following:

1. Imports the package containing the HTTP server context type.

2. Gets the server�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the server�s outgoing HTTP context from the reply context
container.

Example 245: Setting a Server�s RedirectURL Attribute

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 ClientType httpAtribs =
(ClientType)context.getReplyContext(ContextConstants.HTTP_SER
VER_OUTGOING_CONTEXTS, true);

5 httpAtribs.setRedirectURL("http:\\www.notme.org\askthisguy");
 411

CHAPTER 16 | Working with Transport Attributes
5. Sets the value of the RedirectURL property to the URL of the server
who can satisfy the request.

Outgoing server attributes Table 20 shows the attributes that are valid in the outgoing HTTP server
context.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description

Cache-Control String getCacheControl()
void setCacheControl(String val)

Specifies directives to caches
along the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

public: any cache can store the
response.

private: public caches cannot
store the response. If response
header fields are given, the
restriction applies only to those
header fields.

no-store: caches must not store
any part of the response or the
request.

no-transform: caches must not
modify the media type or the
content location of a response.
412

Setting HTTP Attributes
must-revalidate: caches must
revalidate responses that have
expired with the server before the
response can be used.

proxy-revalidate: means the
same as must-revalidate, but it
can only be enforced on shared
caches. You must set the public
directive when using this
directive.

max-age: the max age, in
seconds, of an acceptible
response.

s-maxage: means the same as
max-age, but it can only be
enforced on shared caches. When
set it overides the value of
max-age. You must use the
proxy-revalidate directive when
using this directive.

Content-Encoding String getContentEncoding()
void setContextEncoding(String val)

Specifies the type of special
encoding, if any, the server uses
to package a response.

Content-Language String getContentLanguage()
void setContentLanguage(String val)

Specifies the language used to
write a response. Valid language
tags combine an ISO language
code and an ISO country code
separated by a hyphen. For
example, en-US.

Content-Location String getContentLocation()
void setContentLocation(String val)

Specifies the URL where the
resource being sent in a response
is located.

Content-Type String getContentType()
void setContentType(String val)

Specifies the MIME type of the
data in the response.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
 413

CHAPTER 16 | Working with Transport Attributes
ETag String getETag()
void setETag(String val)

Specifies the entity tag in the
response header.

Expires String getExpires()
void setExpires(String val)

Specifies the date after which the
response is considered stale.

HonorKeepAlive Boolean isHonorKeepAlive()
void setHonorKeepAlive(Boolean val)

Specifies if the server is going to
honor a client�s keep-alive
request.

HTTPReply String getHTTPReply()
void setHTTPReply(String val)

Specifies the type of response the
server is issuing. For example, if
the request is fulfilled the server
will reply with OK.

HTTPReplyCode Integer getHTTPReplyCode()
void setHTTPReplyCode(Integer val)

Specifies an integer code
associated with the response. For
example, 200 means OK and 404
means Not Found.

Last-Modified String getLastModified()
void setLastModified(String val)

Specifies the date and time at
which the server believes a
resource was last modified.

Pragma String getPragma()
void setPragma(String val)

Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Proxy-Authorization String getProxyAuthroization()
void setProxyAuthentication(
 String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAuthorizationType String getProxyAuthorizationType()
void setProxyAuthorizationType(
 String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
414

Setting HTTP Attributes
ProxyPassword String getProxyPassword()
void setProxyPassword(String val)

Specifies the password used by
proxy servers for authentication if
username/password
authentication is in use.

ProxyServer String getProxyServer()
void setProxyServer(String val)

Specifies the URL of the proxy
server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

ProxyUserName String getProxyUsername()
void setProxyUserName(String val)

Specifies the username used by
proxy servers for authentication if
username/password
authentication is in use.

Recieve-Timeout Integer getRecieveTimeout()
void setRecieveTimeout(Integer val)

Specifies the number of
milliseconds the server will wait
to receive a request before timing
out. The default is 3000.

RedirectURL String getRedirectURL()
void setRedirectURL(String val)

Specifies the URL to which the
request should be redirected.

Send-Timeout Integer getSendTimeout()
void setSendTimeout(Integer val)

Specifies the number of
milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate String getServerCertificate()
void setServerCertificate(String
 val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain String getServerCertificateChain()
void setServerCertificateChain(
 String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
 415

CHAPTER 16 | Working with Transport Attributes
Server Type String getServerType()
void setServerType(String val)

Specifies the type of server
responded to the client. Values
take the form
program-name/version.

ServerPrivateKey String getServerPrivateKey()
void setServerPrivateKey(String val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ServerCertificate.

ServerPrivateKeyPassword String getServerPrivateKeyPassword()
void getServerPrivateKeyPassword(
 String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Trusted Root Certificate String getTrustedRootCertificates()
void setTrustedRootCertificates(
 String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

UseSecureSockets Boolean isUseSecureSockets()
void setUseSecureSockets(Boolean

val)

Specifies the server wants to use
a secure connection. Secure
HTTP connections are also
referred to as HTTPS.

Note: If the contract specifies
HTTPS, this value is always true.

WWW-Authenticate String getWWWAuthentication()
void setWWWAunthentication(String

val)

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
416

Setting HTTP Attributes
Incoming header The server�s incoming context, HTTP_SERVER_INCOMING_CONTEXTS, is
available in the server�s request context container after a request from client
has been received by the transport layer. The values stored in this context
are for informational purposes only. For example, if you need to check the
MIME type of the data the client can accept in the response, you would read
it from the server�s incoming context as shown in Example 246.

The code in Example 246 does the following:

1. Imports the package containing the HTTP server context type.

2. Gets the server�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the server�s incoming HTTP context from the reply context
container.

5. Gets the value of the Accept attribute.

Incoming server attributes Table 19 shows the attributes that are valid in the incoming HTTP server
context.

Example 246: Reading the Accept Attribute in an HTTP Server

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

...
2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 ClientType httpAtribs =
(ClientType)context.getRequestContext(ContextConstants.HTTP_S
ERVER_INCOMING_CONTEXTS, true);

5 String contentType = httpAttribs.getAccept();

Table 21: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description

Accept String getAccept() Specifies the MIME types the
client can handle in a response.
 417

CHAPTER 16 | Working with Transport Attributes
Accept-Encoding String getAcceptEncoding() Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept-Language String getAcceptLanguage() Specifies the language preferred
by the client. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en-US.

Authorization String getAuthorization() Specifies the credentials that will
be used by the server to authorize
requests from the client.

AuthorizationType String getAuthorizationType() Specifies the name of the
authentication scheme in use.

AutoRedirect Boolean isAutoRedirect() Specifies whether the server
should automatically redirect the
request.

BrowserType String getBrowserType() Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Certificate Issuer String getCertificateIssuer() Specifies the value stored in the
Issuer field of the client�s X509
certificate.

Certificate Key Size Integer getCertificateKeySize() Specifies the size, in bytes, of the
public key included in the client�s
x509 certificate.

Certificate Valid Not
After

String getCertificateNotAfter() Specifies the date and time after
which the client�s X509 certificate
is invalid.

Table 21: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description
418

Setting HTTP Attributes
Certificate Valid Not
Before

String getCertificateNotBefore() Specifies the date and time before
which the client�s X509 certificate
is invalid.

Certificate Subject String getCertificateSubject() Specifies the value of the Subject
field in the client�s X509
certificate.

Connection String getConnection() Specifies whether a connection is
to be kept open after each
request/response transaction.

Cookie String getCookie() Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Host String getHost() Specifies the Internet host and
port number of the resource being
requested.

HTTPVersion String getHTTPVersion() Specifies the version of the HTTP
transport in use. Currently, this is
always set to 1.1.

If-Modified-Since String getIfModifiedSince() If the requested resource has not
been modified since the time
specified, the server should issue
a 304 (not modified) response
without any message body.

Method String getMethod() Specifies the value of the METHOD
token sent in the request. Valid
values and their meanings are
given in the HTTP 1.1
specification.

Passwrod String getPassword() Specifies the password the client
wishes to use for authentication.

Table 21: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description
 419

CHAPTER 16 | Working with Transport Attributes
Proxy-Authenticate String getProxyAuthenticate() Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Referer String getReferer() Specifies the entity that referred
the client.

URL String getURL() Specifies the value of the
Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.

Username String getUserName() Specifies the username the client
wishes to use for authentication.

Table 21: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description
420

Setting HTTP Attributes
Setting the Server�s Endpoint URL

Overview Because the server�s endpoint URL must be known before the transport
layer is initialized by the bus, you must use the specialized configuration
context to set it. For more information on using the configuration context see
�Using the Configuration Context� on page 398.

Getting the property To access the HTTP endpoint URL property for an HTTP server, you use the
ContextConstants member HTTP_SERVER_OUTGOING_CONTEXTS. You are
returned a ServerType object that has two relevant methods:

� setURL() sets a String representing the URL of the server.

� getURL() returns a String representing the URL of the server.

Side effects A side affect of setting the server's endpoint URL using contexts is that the
following configuration variables are ignored:

� policies:soap:server_address_mode_policy:publish_hostname

� policies:at_http:server_address_mode_policy:publish_hostname

The endpoint addresses advertised by the WSDL publish service will reflect
the values set in the configuration context, not the values set in the
configuration file.

Example Example 247 shows how to set the HTTP Endpoint URL programatically.

Example 247: Setting the HTTP Endpoint URL

1 ContextRegistry registry = bus.getContextRegistry();

2 QName name = new QName("http://www.iona.com/config_context",
 "SOAPService");

3 ContextContainer contain = registry.getConfigurationContext(
 name,
 "SoapPort",
 true);
 421

CHAPTER 16 | Working with Transport Attributes
The code in Example 247 does the following:

1. Get the context registry.

2. Create the service�s QName.

3. Get the configuration context container.

4. Get the server�s outgoing HTTP context.

5. Set the endpoint URL property.

6. Register the servant.

4 ServerType httpConf = (ServerType)container.getContext(
 ContextConstants.HTTP_SERVER_OUTGOING_CONTEXTS,
 true);

5 httpConf.setURL("http://localhost:63278/config_context_test");

...
6 bus.registerServant(servant, qname, portName);

Example 247: Setting the HTTP Endpoint URL
422

Setting HTTP Attributes
Adding Custom HTTP Header Properties

Overview The HTTP header can be used to store a variety of properties that are not a
part of HTTP specification. Commonly people will store the SOAP action or
basic authentication credentials in the HTTP header. You could also place
properties in the HTTP head that are used by a RESTful service.

The context used to store custom HTTP header properties are stored in the
IONA message context. It is valid in both the request container and the reply
container. Both providers and consumers can set and inspect the custom
HTTP header properties.

Getting the context You access the custom HTTP header context using the standard get method
for the desired context container. As shown in Example 248, the key used to
access the context is ContextConstants.TRANSPORT_CUSTOM_HEADERS.

The returned context should be cast into a
com.iona.schemas.transports.header.CustomHeaders object.

How properties are stored in the
context

The CustomHeaders object stores properties as an array of
com.iona.schemas.transports.header.CustomHeader objects.
CustomHeader objects have two fields:

� Name stores the name of the custom property.

� Value stores the value of the costom property.

Example 248:Accessing the Custom HTTP Properties Context

import com.iona.schemas.transports.header.CustomHeaders.

ContextRegistry registry = bus.getContextRegistry();
IonaMessageContext context = (IonaMessageContext)registry.getCurrent();

CustomHeaders headers =
 (CustomHeaders)context.getRequestContext(ContextConstants.TRANSPORT_CUSTOM_HEADERS);
 423

CHAPTER 16 | Working with Transport Attributes
Setting properties into the context To add a custom property to the HTTP header do the following:

1. Get the customer header context from the desired context container as
shown in �Getting the context�.

2. Create an array of CustomHeader objects and populate their fields.

3. Add the array of CustomHeader objects to the context using the
CustomHeaders.setCustom_headers() method.

setCustom_headers() takes an array of CustomHeader objects and sets
the array as the set of custom properties to add to the HTTP header.
Any existing properties will be overwritten. To add properties to an
existing set of properties see �Manipulating the property set�.

Example 249 shows an example of setting custom properties into the HTTP
header.

Manipulating the property set Once you have access to the custom header context, you can use that to get
access to the set of custom properties stored in the context using the
CustomHeaders.getCustom_headers() method. As shown in Example 250,
getCustom_headers() returns an array of CustomHeader objects.

Example 249:Setting a Custom Property Set into the Context

CustomHeader header = new CustomHeader();
header.setName("MyHeader");
header.setValue("\"MyValue\"");

ArrayList props = new ArrayList();
props.add(header);

if (props.size() != 0)
 {
 headers.setCustom_headers((CustomHeader[])props.toArray(new CustomHeader[props.size()]));
}

Example 250:Getting the Set of Custom Properties

CustomHeaders reply_headers =
 (CustomHeaders)context.getReplyContext(ContextConstants.TRANSPORT_CUSTOM_HEADERS);
CustomHeader[] headers = reply_headers.getCustom_headers();
424

Setting HTTP Attributes
Any manipulation of the returned array is reflected in the contents of the
custom header context. Therefore, if you wish to add a new property to an
existing set of properties, you can add it to the returned array.

Note: Changing the contents of a consumer�s reply context or a server�s
request context has no lasting effect because they are wiped out for each
invocation.
 425

CHAPTER 16 | Working with Transport Attributes
Setting CORBA Attributes

Overview The CORBA transport does not support programmatic configuration. It also
does not provide access to any of the settings that are used to establish the
connection. Artix does, however, provide access to the CORBA principle by
way of the context mechanism. The CORBA principle is manipulated as a
String by the Java contexts.

Retrieving the CORBA principle Generally, you would only be inspecting the CORBA principle of an incoming
message. This means that in an Artix server, you would get the CORBA
context from the Artix request context container. In an Artix client, you
would get the CORBA context from the Artix reply context container.

Example 251 shows the code for getting the CORBA principle in a server.

The code in Example 251 does the following:

1. Imports the package containing the CORBA context type.

2. Gets the server�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the server�s CORBA context from the request context container.

5. Gets the principle.

Example 251: Getting the CORBA Principle from a Client�s Request

1 import com.iona.schemas.bindings.corba.contexts.*;
import com.iona.jbus.ContextConstants;

...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 CORBAAttributesType CORBAAtribs =
(CORBAAttributesType)context.getRequestContext(ContextConstan
ts.CORBA_CONTEXT_ATTRIBUTES, true);

5 String CORBAPrinciple = CORBAAtribs.getPrinciple();
426

Setting CORBA Attributes
Setting the CORBA principle The CORBA principle is typically used for interoperability with older CORBA
servers to set security information. In most cases, you would set the CORBA
principle in a client�s request message using the client�s request context.
You can also set the CORBA principle in a server�s reply message using the
server�s reply context.

Example 252 shows the code for setting the CORBA principle for a client
request.

The code in Example 251 does the following:

1. Imports the package containing the CORBA context type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the CORBA context from the request context container.

5. Creates a new String to hold the value to set into the CORBA
principle.

6. Sets the principle.

7. Make the invocation on the proxy.

Example 252: Setting the CORBA Principle for a Client�s Request

1 import com.iona.schemas.bindings.corba.contexts.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 CORBAAttributesType CORBAAtribs =
(CORBAAttributesType)context.getRequestContext(ContextConstan
ts.CORBA_CONTEXT_ATTRIBUTES, true);

5 String username = new String("Fred");
6 CORBAAtribs.setPrinciple(username);

7 // Make invocation on proxy
 427

CHAPTER 16 | Working with Transport Attributes
Setting WebSphere MQ Attributes

Overview When working with WebSphere MQ, your applications can access
information about the WebSphere MQ connection that is in use and
information contained in the WebSphere MQ message descriptor. The MQ
connection attributes context contains information about the queues and
queue managers that your application uses for send and receiving
messages. On the client-side, you can set this information on a
per-invocation basis. The MQ message attributes context allows you to
inspect and set a number of the properties stored in the WebSphere MQ
message descriptor.

In this section This section discusses the following topics:

Working with Connection Attributes page 429

Working with MQ Message Descriptor Attributes page 433
428

Setting WebSphere MQ Attributes
Working with Connection Attributes

Overview The WebSphere MQ transport provides information about the queues to
which your application send and receives messages. This information is
stored in the MQ connection attributes context and is accessed using
ContextConstants.MQ_CONNECTION_ATTRIBUTES. The data is returned in an
MQConnetionAttributesContextType object. Table 22 describes the
attributes stored in the MQ connection attributes context.

Table 22: MQ Connection Attributes Context Properties

Attribute Artix APIs Description

AliasQueueName String getAliasQueueName()
void setAliasQueueName(String val)

Specifies the remote queue to
which a server will put replies if
its queue manager is not on the
same host as the client�s local
queue manager.

ConnectionName String getConnectionName()
void setConnecitonName(String val)

Specifies the name of the
connection by which the adapter
connects to the queue.

ModelQueueName String getModelQueueName()
void setModelQueueName(String val)

Specifies the name of the queue
to be used as a model for
creating dynamic queues.

QueueManager String getQueueManager()
void setQueueManager(String val)

Specifies the name of the queue
manager.

QueueName String getQueueName()
void setQueueName(String val)

Specifies the name of the
message queue.

ReplyQueueManager String getReplyQueueManager()
void setReplyQueueManager(String val)

Specifies the name of the reply
queue manager. This setting is
ignored by WebSphere MQ
servers when the client specifies
the ReplyToQMgr in the request
message�s message descriptor.
 429

CHAPTER 16 | Working with Transport Attributes
On the client-side you can control the connection to which requests are
direct by setting the MQ connection attributes in the client�s request context
before each invocation. The connection attributes are returned to the
defaults specified in the client�s contract after each invocation.

Example Example 253 shows code for specifying the queue and queue manager to
use when making a request.

ReplyQueueName String getReplyQueueName()
void setReplyQueueName(String val)

Specifies the name of the queue
where response messages are
received. This setting is ignored
by WebSphere MQ servers when
the client specifies the ReplyToQ
in the request message�s
message descriptor.

Transactional TransactionType getTransactional()
void setTransactional(TransactionType val)

Specifies how messages
participate in transactions and
what role WebSphere MQ plays
in the transactions. For
information on setting
Transactional see �Setting the
Transactional attribute� on
page 431.

Table 22: MQ Connection Attributes Context Properties

Attribute Artix APIs Description

Example 253: Setting the Client�s QueueManager and QueueName

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 MQConnectionAttributesType connect =
(MQConnectionAttributesType)context.getRequestContext(Context
Constants.MQ_CONNECTION_ATTRIBUTES, true);
430

Setting WebSphere MQ Attributes
The code in Example 253 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the queue manager attribute.

6. Sets the queue name attribute.

7. Makes the invocation on the proxy.

On the server-side you cannot change any of the connection attributes
programmatically.

Setting the Transactional attribute The transactional attribute is set using a
com.iona.schemas.transports.mq.context.TransactionType object.
TransactionType is a WSDL enumeration whose values are described in
Table 23.

5 connect.setQueueManager("Bloggy");
6 connect.setQueueName("TalkBack");

7 // Make invocation on proxy

Example 253: Setting the Client�s QueueManager and QueueName

Table 23: Transactional Values

Value Artix API for Setting Description

none setTransactional(TransactionType.fromString("none")) The messages are not part
of a transaction. No rollback
actions will be taken if
errors occur.

internal setTransactional(TransactionType.fromString("internal")) The messages are part of a
transaction with
WebSphere MQ serving as
the transaction manager.
 431

CHAPTER 16 | Working with Transport Attributes
Example 254 shows code for setting a client�s connection to use XA style
transactionality for a request.

The code in Example 253 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the transactional attribute.

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

xa setTransactional(TransactionType.fromString("xa")) The messages are part of a
transaction with
WebSphere MQ serving as
the resource manager.

Table 23: Transactional Values

Value Artix API for Setting Description

Example 254: Setting the Client�s Transactionality Attribute

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 MQConnectionAttributesType connect =
(MQConnectionAttributesType)context.getRequestContext(Context
Constants.MQ_CONNECTION_ATTRIBUTES, true);

5 connect.setTransactional(TransactionType.fromString("xa"));

6 // Make invocation on proxy
432

Setting WebSphere MQ Attributes
Working with MQ Message Descriptor Attributes

Overview The Artix WebSphere MQ transport breaks its support for MQ message
descriptor attributes across two contexts. One context, accessed using
ContextConstants.MQ_INCOMING_MESSAGE_ATTRIBUTES, contains the MQ
message descriptor attributes for the last message received by the
application. For a client, this means that it contains the attributes for the
last response received from the server and the context is accessed through
the client�s reply context container. For a server, this means that the
incoming message attributes context contains the descriptor attributes for
the request being processed and it is accessed through the server�s request
context container. The incoming message properties can be read at any
point in the processing of the message once the transport layer has passed it
to the messaging chain.

The second context, accessed using
ContextConstants.MQ_OUTGOING_MESSAGE_ATTRIBUTES, allows you to set
the values of the attributes in the MQ message descriptor for the next
message being sent across the wire. For clients, this means that it affects
the values of the next request being made and the context is accessed
through the client�s request context. For server�s, this means that the
outgoing message attributes context affects the values of the current
response�s MQ message descriptor and it is accessed through the server�s
reply context container. You can set the values of the outgoing message
attributes at any point in an application�s message chain before it the
message is handed off to the transport layer.

Both the incoming message attributes context and the outgoing message
attributes context are returned using as an
com.iona.schemas.transports.mq.context.MQMessageAttributesType
object. Table 24 describes the attributes stored in the MQ message
attributes context.

Table 24: MQ Message Attributes Context Properties

Attribute Artix APIs Description

AccountingToken String getAccountingToken()
void setAccountingToken(String val)

Specifies the value for the MQ
message decscriptor�s
AccountingToken field.
 433

CHAPTER 16 | Working with Transport Attributes
ApplicationData String getApplicationData()
void setApplicationData(String val)

Specifies any
application-specific information
that needs to be set in the
message descriptor.

ApplicationIdData String getApplicationIdData()
void setApplicationIdData(String val)

Specifies the value of the MQ
message descriptor�s
ApplIdentityData field. It is
only valid for MQ clients.

ApplicationOriginData String getApplicationOriginData()
void setApplicationOriginData(String val)

Specifies the value of the MQ
message descriptor�s
ApplOriginData field.

BackoutCount Integer getBackoutCount() Specifies the number of times
the message has been
previously returned by the
MQGET call as part of a unit of
work, and subsequently backed
out.

Convert Boolean isConvert()
void setConvert(Boolean val)

Specifies if the messages in the
queue needs to be converted to
the system�s native encoding.

CorrelationId byte[] getCorrelationId()
void setCorrelationId(byte[] val)

Specifies the value for the MQ
message descriptor�s CorrelId
field.

CorrelationStyle CorrelationStyleType getCorrelationStyle()
void
 setCorrelationStyle(CorrelationStyleType
 val)

Specifies how WebSphere MQ
matches both the message
identifier and the correlation
identifier to select a particular
message to be retrieved from
the queue. For information on
how to set CorrelationStyle, see
�Setting the CorrelationStyle
attribute� on page 436.

Table 24: MQ Message Attributes Context Properties

Attribute Artix APIs Description
434

Setting WebSphere MQ Attributes
Delivery DeliveryType getDelivery()
void setDelivery(DeliveryType val)

Specifies the value of the MQ
message descriptor�s
Persistence field. For
information on setting Delivery,
see �Setting the Delivery
attribute� on page 437.

Format FormatType getFormat()
void setFormat(FormatType val)

Specifies the value of the MQ
message descriptor�s Format
field. For information on setting
Format, see �Setting the Format
attribute� on page 438.

MessageId byte[] getMessageId()
void setMessageId(byte[] val)

Specifies the value for the MQ
message descriptor�s MsgId
field.

ReportOption ReportOptionType getReportOption()
void setReportOption(ReportOptionType val)

Specifies the value of the MQ
message descriptor�s Report
field. For information on setting
ReportOption, see �Setting the
ReportOption attribute� on
page 440.

UserIdentifier String getUserIdentifier()
void setUserIdentifier(String val)

Specifies the value for the MQ
message descriptor�s
UserIdentifier field.

Table 24: MQ Message Attributes Context Properties

Attribute Artix APIs Description
 435

CHAPTER 16 | Working with Transport Attributes
Setting the CorrelationStyle
attribute

The CorrelationStyle attribute is set using a
com.iona.schemas.transports.mq.context.CorrealatoinStyleType
object. CorrelationStyleType is a WSDL enumeration whose values are
described in Table 25.

Example 255 shows code for setting a request message descriptor�s
CorrelationStyle message Id.

Table 25: CorrelationStyle Values

Value Artix API for Setting Description

messageId setCorrelationStyle(
 CorrelationStyleType.fromString("messageId")
)

Use the message ID as the
value for the message�s
CorrelId.

correlationId setCorrelationStyle(
 CorrelationStyleType.fromString("correlationId")
)

Use the message�s
CorrelationId as the value
for the message�s
CorrelId.

messageId copy setCorrelationStyle(
 CorrelationStyleType.fromString("messageId_copy")
)

Use the message ID as the
value for the message�s
MsgId.

Example 255: Setting the Client�s CorrelationStyle Attribute

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 MQMessageAttributesType desc =
(MQMessageAttributesType)context.getRequestContext(ContextCon
stants.MQ_OUTGOING_MESSAGE_ATTRIBUTES, true);

5 connect.setCorrelationStyle(
 CorrelationStyleType.fromString("messageId")
);

6 // Make invocation on proxy
436

Setting WebSphere MQ Attributes
The code in Example 255 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the correlation style attribute.

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

Setting the Delivery attribute The Delivery attribute is set using a
com.iona.schemas.transports.mq.context.DeliveryType object.
DeliveryType is a WSDL enumeration whose values are described in
Table 26.

Example 256 shows code for setting a request message descriptor�s
Persistence field to MQPER_PERSISTENT.

Table 26: Delivery Values

Value Artix API for Setting Description

persistent setDelivery(DeliveryType.fromString("persistent")) Sets the Persistence field
to MQPER_PERSISTENT.

not persistent setDelivery(
 DelvieryType.fromString("not_persistent")
)

Sets the Persistence field
to MQPER_NOT_PERSISTENT.

Example 256: Setting the Client�s Delivery Attribute

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
 437

CHAPTER 16 | Working with Transport Attributes
The code in Example 256 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the delivery attribute.

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

Setting the Format attribute The Format attribute is set using a
com.iona.schemas.transports.mq.context.FormatType object.
FormatType is a WSDL enumeration whose values are described in
Table 27.

3 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

4 MQMessageAttributesType desc =
(MQMessageAttributesType)context.getRequestContext(ContextCon
stants.MQ_OUTGOING_MESSAGE_ATTRIBUTES, true);

5 connect.setDelivery(DeliveryType.fromString("persistent"));

6 // Make invocation on proxy

Example 256: Setting the Client�s Delivery Attribute

Table 27: Format Values

Value Artix API for Setting Description

none setFormat(FormatType.fromString("none")) Sets the Format field to
MQFMT_NONE.

string setFormat(FormatType.fromString("string")) Sets the Format field to
MQFMT_STRING.
438

Setting WebSphere MQ Attributes
Example 257 shows code for setting a request message descriptor�s Format
field to MQPER_STRING.

The code in Example 257 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the format attribute.

unicode setFormat(FormatType.fromString("unicode")) Sets the Format field to
MQFMT_STRING.

event setFormat(FormatType.fromString("event")) Sets the Format field to
MQFMT_EVENT.

programmable
command

setFormat(
 FormatType.fromString("programmable_command")
)

Sets the Format field to
MQFMT_PCF.

Table 27: Format Values

Value Artix API for Setting Description

Example 257: Setting the Client�s Format Attribute

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

4 MQMessageAttributesType desc =
(MQMessageAttributesType)context.getRequestContext(ContextCon
stants.MQ_OUTGOING_MESSAGE_ATTRIBUTES, true);

5 connect.setFormat(FormatType.fromString("string"));

6 // Make invocation on proxy
 439

CHAPTER 16 | Working with Transport Attributes
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

Setting the ReportOption attribute The ReportOption attribute is set using a
com.iona.schemas.transports.mq.context.ReportOptionType object.
ReportOptionType is a WSDL enumeration whose values are described in
Table 28.

Example 258 shows code for setting a request message descriptor�s Report
field to MQRO_DISCARD_MSG.

Table 28: ReportOption Values

Value Artix API for Setting Description

coa setReportOption(ReportOption.fromString("coa")) Set the message
descriptor�s Report field to
MQRO_COA.

cod setReportOption(ReportOption.fromString("cod")) Set the message
descriptor�s Report field to
MQRO_COD.

exception setReportOption(
 ReportOption.fromString("exception")
)

Set the message
descriptor�s Report field to
MQRO_EXCEPTION.

expiration setReportOption(
 ReportOption.fromString("expiration")
)

Set the message
descriptor�s Report field to
MQRO_EXPIRATION.

discard setReportOption(ReportOption.fromString("discard")
)

Set the message
descriptor�s Report field to
MQRO_DISCARD_MSG.

Example 258: Setting the Client�s ReportOption Attribute

1 import com.iona.schemas.transports.mq.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();
440

Setting WebSphere MQ Attributes
The code in Example 258 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client�s context registry.

3. Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the report option attribute.

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

3 IonaMessageContext context =
 (IonaMessageContext)contReg.getCurrent();

4 MQMessageAttributesType desc =
(MQMessageAttributesType)context.getRequestContext(ContextCon
stants.MQ_OUTGOING_MESSAGE_ATTRIBUTES, true);

5 connect.setReportOption(ReportOptionType.fromString("discard"));

6 // Make invocation on proxy

Example 258: Setting the Client�s ReportOption Attribute
 441

CHAPTER 16 | Working with Transport Attributes
Setting JMS Attributes

Overview Artix splits the JMS transport information into three contexts:

� one for JMS clients.

� one for JMS servers.

� one to register JMS enabled Artix applications with a secure JMS
broker.

The JMS server context and the JMS client context provide access to the
JMS message header attributes. It includes information about message
expiration, message persistence, message correlation, and when the
message was created. In addition, the JMS header contexts enable you to
set optional properties into the JMS header for use with message selectors.

Both the JMS server context and the JMS client context provide access to
specific properties that alter the behavior of the transport. For instance the
JMS client context allows you to specify a timeout value for messages.

In this section This section discusses the following topics:

Using JMS Message Headers and Properties page 443

Using Client-side JMS Attributes page 447

Using Server-side JMS Attributes page 449

Setting JMS Broker Security Information page 451
442

Setting JMS Attributes
Using JMS Message Headers and Properties

Overview A JMS message is composed of three sections:

� a JMS header containing a number of standard properties effecting ho
a message is handled.

� a group of name/value properties that specify optional information
about the message.

� the message body.

Using the context mechanism, Artix allows you to inspect all members of the
JMS header. It also allows you to set the values for members that are not set
by the JMS broker. In addition, the context mechanism provides you with a
way to set properties into the properties group of the JMS message.

Standard JMS attributes available
from the context

Table 29 shows the JMS header attributes available for both the JMS client
context and the JMS server context. Not all of the JMS header attributes are
settable. For those that are settable, both the getter and the setter methods
are shown.

Table 29: JMS Header Attributes

JMS Header Attribute Artix API Description

JMSCorrelationID String getJMSCorrelationID() Specifies the message�s
correlation ID.

JMSDeliveryMode Integer getJMSDeliveryMode()
void setJMSDeliveryMode(Integer val)

Specifies if the message is
persistent or non-persistent. Valid
values are PERSITENT and
NON_PERSISTENT. The default is
PERSISTENT.

JMSExpiration Long getJMSExpiration() Specifies the time at which the
message expires. An expiration of
0 means that the message never
expires.

JMSMessageID String getJMSMessageID() Specifies the unique ID assigned
to the message by the JMS
broker.
 443

CHAPTER 16 | Working with Transport Attributes
Creating optional JMS header
properties

A part of the JMS header is set aside for optional properties. These
properties include a few standard properties that are prefixed with JMSX.
JMS vendors also use the properties section of the JMS message to specify
vendor-specific information. The properties section can also be used as a
place to store user-defined properties that can be used for message selection
among other things.

JMSPriority Integer getJMSPriority()
void setJMSPriority(Integer val)

Specifies the relative priority of
the message. Valid values are 0-9.
0 is the lowest priority. The
default priority is 4.

Optional Properties JMSPropertyType[] getProperty()
void setProperty(JMSPropertyType[] val)

Specifies any number of
user-defined properties that are
used in conjunction with JMS
message selectors.

JMSRedelivered Boolean isJMSRedelivered() Specifies if the JMS broker
believes that this message has
already been delivered, but not
acknowledged.

JMSTimestamp Long getJMSTimeStamp() Specifies the time at which the
message was handed off to the
JMS broker.

JMSType String getJMSType() Specifies the type of the message.
Some JMS implementations use
this field to specify templates for
messages.

Time To Live Long getTimeToLive()
void setTimeToLive(Long val)

Specifies the number of
milliseconds the message will
remain active in the JMS
destination to which it is
delivered. The default value is
unlimited.

Table 29: JMS Header Attributes

JMS Header Attribute Artix API Description
444

Setting JMS Attributes
The JMS properties are stored in the JMS header as name value pairs. In
Artix JMS properties are created in
com.iona.schemas.transports.jms.context.JMSProperyType objects.
JMSProperty objects have two members and getter and setter methods for
each member. The name member specifies the name by which the property
will be referred. It can be any string value. The value member stores the
data of the property and can also be any string value.

Properties are set into the JMS header using the outbound JMS context�s
setProperty() method. setProperty() takes an array of properties, so you
can create as many user-defined properties as you wish.

Example 259 shows how to create a set of user-defined properties and set
them on a client request�s JMS message.

Example 259: Creating User-Defined Properties and Setting Them into a
JMS Header

1 import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

2 JMSPropertyType[] props = new JMSPropertyType[2];

3 props[0] = new JMSPropertType();
props[0].setName("Username");
props[0].setValue("Flint");

4 props[1] = new JMSPropertType();
props[1].setName("Password");
props[1].setValue("Moore");

5 ContextRegistry contReg = bus.getContextRegistry();
6 IonaMessageContext context =

 (IonaMessageContext)contReg.getCurrent();

7 JMSClientHeadersType header =
(JMSClientHeadersType)context.getRequestContext(ContextConsta
nts.JMS_CLIENT_CONTEXT, true);

8 header.setProperty(props);

9 // Make invocation on proxy
 445

CHAPTER 16 | Working with Transport Attributes
The code in Example 259 does the following:

1. Imports the package containing the JMS context types.

2. Creates an array of two JMSPropertyType objects to hold the
user-defined properties.

3. Sets the name/value pair for the first property.

4. Sets the name/value pair for the second property.

5. Gets the client�s context registry.

6. Gets the Artix context from the context registry.

7. Gets the JMS context from the request context container.

8. Sets the user-defined properties into the JMS context.

9. Makes an invocation on the proxy.
446

Setting JMS Attributes
Using Client-side JMS Attributes

Overview When working with JMS clients you get the JMS header information using
the JMS client context which is accessed using the JMS_CLIENT_CONTEXT
tag. The JMS client context information is returned as a
JMSClientHeadersType object. The JMS client context has all of the
standard JMS header attributes plus an additional TimeOut attribute.

Timeout The Timeout attribute specifies the value passed into the JMS message
consumer�s recieve() method. The time-out value is specified as a Long
and determines how long, in milliseconds, the message consumer will wait
for a message to arrive before timing out. Example 260 shows the methods
for accessing the TimeOut value on a JMSClientHeadersType object.

Setting the client attributes Most of the attributes in the JMS header are populated by the JMS broker
and are provided simply for informational purposes. However, when making
requests you can add any number of user-defined properties to the header
as shown in �Creating optional JMS header properties� on page 444. In
addition, you can set the message�s JMDDeliveryMode, the message�s
JMSPriority, the message�s time to live, and the time-out interval used to
wait for a response. To set these properties, you use the JMS client context
from the client�s request context container at any point along the messaging
chain before the message is handed off to the transport layer. The settable
attributes are valid for one request and are reset once the request is sent to
the JMS broker.

To set the user settable JMS client attributes do the following:

1. Get the application�s message context.

2. Get the JMS client context from the request context container.

3. Set the desired property values on the JMS client context.

Example 260: Methods for Accessing the TimeOut Value

Long getTimeOut();
void setTimeOut(Long timeout);
 447

CHAPTER 16 | Working with Transport Attributes
Example 261 shows the code for setting the JMS client attributes for a
request.

Inspecting the client attributes To inspect the JMS header values of a response message, you get the JMS
client context from the client�s reply context container. The values in the
context are valid for the last response received from the server. They are
available once the transport layer passes the message up the messaging
chain.

Example 262 shows code for checking the JMSCorrelationID of a response.

Example 261: Setting a Request�s JMS Header Attributes

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

1 IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();

2 JMSClientHeadersType header = (JMSClientHeadersType)
 cont.getRequstContext(ContextConstants.JMS_CLIENT_CONTEXT,
 true);

3 header.setJMSDeliveryMode("NON_PERSISTENT");
header.setJMSPriority(new Integer(7));
header.setTimeToLive(new Long(120000));
header.setTimeOut(new Long(3000));

// Make invocation on proxy

Example 262: Checking a Responses JMSCorrelationID

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

// Make invocation on proxy

IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();

JMSClientHeadersType header = (JMSClientHeadersType)
 cont.getReplyContext(ContextConstants.JMS_CLIENT_CONTEXT,
 true);

String corrID = header.getJMSCorrealtionID();
448

Setting JMS Attributes
Using Server-side JMS Attributes

Overview When working with JMS servers you get the JMS header information using
the JMS server context which is accessed using the JMS_SERVER_CONTEXT
tag. The JMS client context information is returned as a
JMSServerHeadersType object. The JMS server context contains all of the
JMS header attributes plus an additional boolean attribute called
CommitMessage.

CommitMessage CommitMessage specifies if a message that is part of a transaction should be
commited if an exception is thrown. The default behavior of JMS is to
rollback the message and continue to retry a message that is part of a
transaction. Setting CommitMessage to true before you send the message
forces JMS to commit the message regardless of the result of the
transmission.

Setting server attributes As with the JMS header properties on the client-side, the server can only
change a few of the values in the JMS header. It can add user-defined
properties to the response�s JMS header as shown in �Creating optional JMS
header properties� on page 444. From the server you can also set a
response�s delivery mode, priority, and time to live. To set these properties,
you use the JMS server context from the server�s reply context container.
The values are valid only for the active response and are reset each time the
servant is invoked.

Example 263 shows the code for setting the JMS header attributes for a
response.

Example 263: Setting a Response�s JMS Header Attributes

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();
 449

CHAPTER 16 | Working with Transport Attributes
Inspecting server attributes To inspect the JMS header values of a request message, you get the JMS
server context from the server�s request context container. Example 262
shows code for checking a request�s JMSRedilvered flag.

JMSServerHeadersType header = (JMSServerHeadersType)
 cont.getReplyContext(ContextConstants.JMS_SERVER_CONTEXT,
 true);

header.setJMSDeliveryMode("NON_PERSISTENT");
header.setJMSPriority(new Integer(1));
header.setTimeToLive(new Long(3000));
header.setCommitMessage(Boolean.TRUE);

Example 263: Setting a Response�s JMS Header Attributes

Example 264: Checking a Request�s JMSRedlivered Flag

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

// Make invocation on proxy

IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();

JMSServerHeadersType header = (JMSServerHeadersType)
 cont.getResponseContext(ContextConstants.JMS_SERVER_CONTEXT,
 true);

if (header.isJMSRedelivered())
{
 System.out.println("This is a redelivered message.");
}

450

Setting JMS Attributes
Setting JMS Broker Security Information

Overview When using a secure JMS broker, your applications will need to register with
the JMS broker using a username and password. These are set using the
JMS broker connection security property. You need to set this property for
both JMS client applications and JMS server applications.

Because the username and password used to connect to the JMS broker
must be known before the JMS transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see �Using the Configuration Context� on
page 398.

Getting the JMS broker
connection info

To set the JMS broker connection security information property you use the
ContextConstants member JMS_CONNECTION_SECURITY_INFO. You are
returned a JMSConnectionSecurityInfoType object that has four methods:

� setUsername() sets a String representing the username used when
connecting to the JMS broker.

� getUsername() returns a String representing username used when
connecting to the JMS broker.

� setPassword() sets a String representing the password used when
connecting to the JMS broker.

� getPassword() returns a String representing the password used when
connecting to the JMS broker.

Example Example 265 shows how to set the JMS broker connection properties on an
Artix JMS client.

Example 265: Setting the JMS Connection Info

1 ContextRegistry registry = bus.getContextRegistry();

2 QName name = new QName("http://www.iona.com/config_context",
 "SOAPService");
 451

CHAPTER 16 | Working with Transport Attributes
The code in Example 265 does the following:

1. Get the context registry.

2. Create the service�s QName.

3. Get the configuration context container.

4. Get the client�s JMS connection info.

5. Set the username and password.

6. Creates the service proxy.

3 ContextContainer cnt = registry.getConfigurationContext(name,
 "SoapPort",
 true);

4 JMSConnectionSecurityInfoType info =
 (JMSConnectionSecurityInfoType)cnt.getContext(
 ContextConstants.JMS_CONNECTION_SECURITY_INFO,
 true);

5 info.setUsername("george");
info.setPassword("bosco");
...

6 QName servName = new QName("http://buystuff.com", "Register");
String portName = new String("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();
Register proxy = bus.createClient(wsdlURL, servName,
 portName, Register.class);

Example 265: Setting the JMS Connection Info
452

Setting FTP Attributes
Setting FTP Attributes

Overview The attributes used to configure an FTP connection are split into four
contexts:

� one for setting the policies used to connect to the FTP daemon.

� one for setting the credentials to use when connecting to the FTP
daemon.

� one for setting the naming scheme implementation to use for Artix
clients.

� one for setting the naming scheme implementation to use for Artix
servers.

These settings are all controlled through the special configuration context
that is made available before Artix registers any user level code with the bus.
For more information on using the configuration context see �Using the
Configuration Context� on page 398.

Artix clients can dynamically set the scan interval used by the FTP transport.
and can dynamically adjust the length of time they will wait for a response
before timing out.

In this section This section discusses the following topics:

Setting FTP Connection Policies page 454

Setting the Connection Credentials page 458

Setting the Coordination Policies page 460
 453

CHAPTER 16 | Working with Transport Attributes
Setting FTP Connection Policies

Overview When setting the FTP connection policies you access them using the
FTP_CONNECTION_POLICY tag. The FTP connection policy context information
is returned as a ConnectionPolicyType object. All of the connection policies
are valid when set in the configuration context. In addition, Artix clients can
set the scan interval policy and the receive timeout policy in their request
contexts.

Setting the connection mode The FTP connection mode is set using a
com.iona.schemas.transports.ftp.context.ConnectionModeType object.
ConnectionModeType is an enumeration whose values are described in
Table 30.

Example 266 shows code for setting the connection mode to passive.

Table 30: ConnectionMode Values

Value Artix API for Setting Description

active setConnectMode(ConnectModeType.fromString("active")) Specifies that Artix controls the
connection to the FTPD.

passive setConnectMode(ConnectModeType.fromString("passive")) Specifies that the FTPD
controls the connection.

Example 266: Setting the FTP Connection Mode

1 import com.iona.schemas.transports.ftp.context.*;
import com.iona.jbus.ContextConstants;
...

2 ContextRegistry contReg = bus.getContextRegistry();

3 QName name = new QName("http://www.iona.com/config_context",
 "SOAPService");
454

Setting FTP Attributes
The code in Example 266 does the following:

1. Imports the package containing the FTP connection policy attributes
context type.

2. Gets the context registry.

3. Creates the service�s QName.

4. Gets the Artix configuration context from the context registry.

5. Gets the FTP connection attributes context from the context.

6. Sets the connection mode.

7. Creates the proxy.

For more information about working with Artix enumerated types, see
�Using Enumerations� on page 135.

4 ContextContainer ctn = registry.getConfigurationContext(name,
 "SoapPort",
 true);

5 ConnectionPolicyType policy =
(ConnectionPolicyType)ctn.getContext(ContextConstants.FTP_CON
NECTION_POLICY, true);

6 policy.setConnectionMode(ConnectionModeType.fromString("passive"
));

7 QName servName = new QName("http://buystuff.com", "Register");
String portName = new String("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();
Register proxy = bus.createClient(wsdlURL, servName,
 portName, Register.class);

Example 266: Setting the FTP Connection Mode
 455

CHAPTER 16 | Working with Transport Attributes
Setting the connection timeout The FTP connection time out determines the number of milliseconds Artix
will spend in attempting to connect to the FTPD before timing out. It is set
using setConnectTimeout(). The value is specified as an integer as shown
in Example 267.

Setting the scan interval The scan interval determines the number of seconds that Artix waits before
rescaning the remote message repository for new messages. In addition to
being settable in the configuration context, the scan interval can also be set
by Artix clients using the request context.

It is set using setScanInterval(). The value is specified as an integer as
shown in Example 268.

Setting the receive timeout The receive timeout determines the number of milliseconds that an Artix
client waits for a response before throwing a timeout exception. In addition
to being settable in the configuration context, the receive timeout can also
be set by Artix clients using the request context.

It is set using setRecieveTimeout(). The value is specified as an integer as
shown in Example 268.

Example 267: Setting the Connection Timeout Policy

ConnectionPolicyType policy =
(ConnectionPolicyType)ctn.getContext(ContextConstants.FTP_CON
NECTION_POLICY, true);

policy.setConnectTimeout(10000);

Example 268: Setting the Scan Interval in a Client

IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();

ConntectionPolicyType policy = (ConnectionPolicyType)
 cont.getRequstContext(ContextConstants.FTP_CONNECTION_POLICY);

policy.setScanInterval(3);

// Make invocation on proxy
456

Setting FTP Attributes
Example 269: Setting the Timeout Interval in a Client

IONAMessageContext cont = (IONAMessageContext)
 DispatchLocals.getCurrentMessageContext();

ConntectionPolicyType policy = (ConnectionPolicyType)
 cont.getRequstContext(ContextConstants.FTP_CONNECTION_POLICY);

policy.setRecieveTimeout(60000);

// Make invocation on proxy
 457

CHAPTER 16 | Working with Transport Attributes
Setting the Connection Credentials

Overview FTP servers require you to connect using a username and password. These
are set using the FTP connection credentials property.

Because the username and password used to connect to the FTP server
must be known before the transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see �Using the Configuration Context� on
page 398.

Setting the FTP connection
credentials

To set the FTP connection credentials property you use the
ContextConstants member FTP_CREDENTIALS. You are returned a
CredentialsType object that has four methods:

� setName() sets a String representing the username used when
connecting to the FTP server.

� getName() returns a String representing username used when
connecting to the FTP server.

� setPassword() sets a String representing the password used when
connecting to the FTP server.

� getPassword() returns a String representing the password used when
connecting to the FTP server.

Example Example 270 shows how to set the FTP connection credentials properties
on an Artix FTP client.

Example 270: Setting the FTP Connection Credentials

1 ContextRegistry registry = bus.getContextRegistry();

2 QName name = new QName("http://www.iona.com/config_context",
 "SOAPService");
458

Setting FTP Attributes
The code in Example 270 does the following:

1. Get the context registry.

2. Create the service�s QName.

3. Get the configuration context container.

4. Get the client�s FTP credentials.

5. Set the username and password.

6. Creates the service proxy.

3 ContextContainer cnt = registry.getConfigurationContext(name,
 "SoapPort",
 true);

4 CredentialsType creds =(CredentialsType)cnt.getContext(
 ContextConstants.FTP_CREDENTIALS,
 true);

5 creds.setUsername("george");
creds.setPassword("bosco");
...

6 QName servName = new QName("http://buystuff.com", "Register");
String portName = new String("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();
Register proxy = bus.createClient(wsdlURL, servName,
 portName, Register.class);

Example 270: Setting the FTP Connection Credentials
 459

CHAPTER 16 | Working with Transport Attributes
Setting the Coordination Policies

Overview The FTP coordination policies determine how Artix names the files created
for the messages sent over the FTP transport and how Artix cleans up files
on the remote datastore. These behaviors are controlled by a set of Java
classes that you can implement to meet specific needs. Artix also provides
default implementations. For more information see the FTP chapter in
Bindings and Transports, C++ Runtime.

Artix uses two contexts to set the naming polices. One is used for setting the
naming policies for an Artix client. The other is used for setting the naming
policies for an Artix server.

Because the client and server naming policies are interdependent, you need
to establish the policies when the connection is initialized. Therefore it can
only be set in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see �Using the Configuration Context� on
page 398.

Setting the client-side naming
policies

To set the FTP client-side naming policies you use the ContextConstants
member FTP_CLIENT_NAMING_POLICY. You are returned a
ClientNamingPolicyType object that has four methods:

� setFilenameFactory() sets a String representing the fully qualified
classname of the class that implements
com.iona.jbus.transports.ftp.client.FilenameFactory.

� getFilenameFactory() returns a String representing the name of the
class of the class that implements the client-side filename factory.

� setReplyFileLifecycle() sets a String representing the fully
qualified classname of the class that implements
com.iona.jbus.transports.ftp.client.ReplyFileLifecycle.

� getReplyFileLifecycle() returns a String representing the name of
the class that implements the logic for cleaning up reply files from the
remote data store.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
460

../bindings/cpp/index.html

Setting FTP Attributes
Setting the server-side naming
policies

To set the FTP server-side naming policies you use the ContextConstants
member FTP_SERVER_NAMING_POLICY. You are returned a
ServerNamingPolicyType object that has four methods:

� setFilenameFactory() sets a String representing the fully qualified
classname of the class that implements
com.iona.jbus.transports.ftp.server.FilenameFactory.

� getFilenameFactory() returns a String representing the name of the
class of the class that implements the server-side filename factory.

� setRequestFileLifecycle() sets a String representing the fully
qualified classname of the class that implements
com.iona.jbus.transports.ftp.server.RequestFileLifecycle.

� getRequestFileLifecycle() returns a String representing the name
of the class that implements the logic for cleaning up request files from
the remote data store.

Example Example 271 shows how to set the FTP server-side naming policies.

Example 271: Setting the FTP Server Naming Policy

1 ContextRegistry registry = bus.getContextRegistry();

2 QName name = new QName("http://www.iona.com/config_context",
 "SOAPService");

3 ContextContainer cnt = registry.getConfigurationContext(name,
 "SoapPort",
 true);

4 ServerNamingPolicyType namePol =
 (ServerNamingPolicyType)cnt.getContext(
 ContextConstants.FTP_SERVER_NAMING_POLICY,
 true);

5 namePol.setFilenameFactory("example.ServerNamingFactory");
namePol.setRequestFileLifecycle("example.RequestLifecycle");
...
 461

CHAPTER 16 | Working with Transport Attributes
The code in Example 271 does the following:

1. Get the context registry.

2. Create the service�s QName.

3. Get the configuration context container.

4. Get the server�s FTP naming policy.

5. Set the filename factory and request lifecycle.
462

Setting i18n Attributes
Setting i18n Attributes

Overview Artix has two contexts to configure codeset conversion when using the i18n
interceptor. One context configures the client and the other configures the
server. The i18n interceptor is used when working in an environment where
codeset conversion is required, but the transports in use do not support it. It
is a message-level interceptor and is invoked just before the transport layer
is handed the message.

The i18n interceptor can also be set up using port extensors in your
application�s contract. For information on setting up the i18n interceptor
using port extensors see the chapter on services in Bindings and Transports,
C++ Runtime.

Configuring Artix to use the i18n
interceptor

Before your application can use the i18n interceptor for code conversion you
must configure the Artix bus to load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:

1. If your application includes a service proxy that needs to use codeset
conversion, add "I18nInterceptorFactory" to the
binding:artix:client_message_interceptor_list variable for your
application.

2. If your application includes a service that needs to use codeset
conversion, add "I18nInterceptorFactory" to the
binding:artix:server_message_interceptor_list variable for your
application.

3. Add "i18n_interceptor" to the list of plug-ins to load in the
orb_plugins variable for your application.

For more information on configuring Artix see Configuring and Deploying
Artix Solutions, C++ Runtime.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 463

../bindings/cpp/index.html
../bindings/cpp/index.html
../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 16 | Working with Transport Attributes
Setting up i18n on a client In a client the only attributes in the i18n context that alter how the i18n
interceptor works are the client local codeset and the client outbound
codeset in the client�s request context. The client inbound codeset defaults
to the value of the outbound codeset and the client-side interceptor does not
read its value from the context.

To configure a client for codeset conversion using the i18n interceptor do
the following:

1. Get the client�s message context.

2. Get the i18n client request context.

3. Set the local codeset property.

4. Set the outbound codeset property.

Example 272 shows the code for configuring a client for codeset conversion.

Setting up i18n on a server In a server the only attributes in the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound
codeset in the server�s reply context. The server-side interceptor does not
read the server inbound codeset from the context.

To configure a server for codeset conversion using the i18n interceptor do
the following:

1. Get the server�s message context.

2. Get the i18n server reply context.

3. Set the local codeset property.

4. Set the outbound codeset property.

Example 272: Client i18n Properties

// Java
1 IONAMessageContext messCont =

 (IONAMessageContext)DispatchLocals.getCurrentMessageContext();

2 com.iona.schemas.bus.i18n.context.ClientConfiguration i18nConfig
 = (com.iona.schemas.bus.i18n.context.ClientConfiguration)
 messCont.getRequestContext(
 ContextUtils.I18N_INTERCEPTOR_CLIENT_QNAME, true);

3 i18nConfig.setLocalCodeSet("Latin-1");
4 i18nConfig.setOutboundCodeSet("UTF-16");
464

Setting i18n Attributes
Example 273 shows the code for configuring a server for codeset
conversion.

Example 273: Server i18n Properties

// Java
1 IONAMessageContext messCont =

 (IONAMessageContext)DispatchLocals.getCurrentMessageContext();

2 com.iona.schemas.bus.i18n.context.ServerConfiguration i18nConfig
 = (com.iona.schemas.bus.i18n.context.ServerConfiguration)
 messCont.getReplyContext(
 ContextUtils.I18N_INTERCEPTOR_CLIENT_QNAME, true);

3 i18nConfig.setLocalCodeSet("UTF-16");
4 i18nConfig.setOutboundCodeSet("LATIN-1");
 465

CHAPTER 16 | Working with Transport Attributes
466

Part II
Advanced Artix

Programming

In this part This part contains the following chapters:

Using Persistent Datastores page 469

Using the Call Interface for Dynamic Invocations page 499

Instrumenting a Service page 507

Developing Plug-Ins page 527

Writing Handlers page 539

Manipulating Messages in a Handler page 569

Developing Custom Artix Transports page 581

Configuring Artix Plug-Ins page 625

Using Artix Classloader Environments page 633
 467

468

CHAPTER 17

Using Persistent
Datastores
Artix provides a persistence mechanism, built on top of
Berkeley DB, which you can use to persist data when using
Artix. With this mechanism, you can make your services highly
available.

In this chapter This chapter discusses the following topics:

Introduction to Artix Persistent Datastores page 470

Creating a Persistent Datastore page 475

Working with Data in a Persistent Datastore page 484

Supporting High-Availability page 493

Configuring Artix to Use Persistent Datastores page 498
 469

CHAPTER 17 | Using Persistent Datastores
Introduction to Artix Persistent Datastores

Overview In many enterprise services it is imperative that data does not get lost when
a service goes down. There are also many instances where an enterprise
service must always be available. To address these use cases, Artix has an
integrated persistence mechanism. This mechanism, which is built using
Berkeley DB, provides a Java API for storing data in persistent datastores as
shown in Figure 8.

In addition, the persistence mechanism provides the backbone for creating
highly available services. Services that are implemented using persistent
datastores can be configured and deployed in a highly available cluster as
shown in Figure 9. The Berkeley DB layer will seamlessly set up a

Figure 8: The Artix Persistence Mechanism

Persistent Service

Service
Impl

DB
Layer

Hard Drive

Datastore
470

Introduction to Artix Persistent Datastores
master/slave relationship between members of the cluster to ensure that the
service remains available and the slaves have the latest data from the
master.

For more information on deploying your service as a highly available cluster
see Configuring and Deploying Artix Solutions, C++ Runtime.

How Artix datastores are
structured

Artix persistent datastores are hash tables stored in a Berkeley DB database.
The hash table stores pairs of items as shown in Figure 10.The first item is
a key and the second item is the data. Both the key, which is used to locate

Figure 9: Artix Service Cluster

Master

Service
Impl

DB
Layer

Hard Drive

Datastore

Slave1

Service
Impl

DB
Layer

Hard Drive

Datastore

Slave2

Service
Impl

DB
Layer

Hard Drive

Datastore

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 471

../deploy/cpp/index.htm

CHAPTER 17 | Using Persistent Datastores
entries in the datastore, and the data can be any Java object. The objects
can either be stored as serialized data, or, if they are generated by Artix, as
XML data.

Developing a service with
persistent datastores

Developing a service that uses Artix based persistent datastores is a simple
process. To create a persistent datastore and work with the data it contains
you will need to do the following:

1. Create a database manager object.

2. Create one or more persistent datastores using the provided templates.

3. Use the persistent datastore object to add or remove data from the
persistent datastore.

4. Close the persistent datastore.

5. Close the database manager.

The APIs deal exclusively with creating datastores and manipulating the
data stored in them. The underlying Berkeley DB layer automatically creates
a new database instance for the service�s datastores and initializes all of the
database connections. The Berkeley DB layer�s behavior can be configured

Figure 10: Artix Persistent Datastores

Service

Service
Impl

DB
Layer

Hard Drive

key1 data1

data2

data3

data4

dataN

key2

key3

key4

keyN
472

Introduction to Artix Persistent Datastores
to specify the location of the database and the name of the Berkeley DB�s
environment file. By default the database and environment files are created
in the directory from which the service is started.

Packages To use persistent datastores in an Artix application you will need to import
the following packages:

com.iona.jbus.db contains the classes for configuring the database layer
and handling exceptions thrown by the database layer.

com.iona.jbus.db.collections contains the template classes from which you
instantiate instances of Artix datastores.

Types of Persistent datastores Artix provides two different types of persistent datastores. You can choose
persistent datastores the are implementations of java.util.Map or you can
choose datastores that are implementations of java.util.List. Both types
of datastore use the database layer to automatically persist data.

The key difference between the two types of datastores is how they handle
the keys in the hash table. Using persistent maps, you get to specify the key
values. When you use persistent lists, the key values of the hash table are
handled by the database layer. They are always a sequential series of
integers.

Persistent map templates There are four templates for using persistent maps:

� PersistentMap is the base class for all persistent maps. It allows you
to store data in any format for which you have a data handler. The
most common use is to store both key values and data values as XML.

� SerialPersistentMap allows both the key values and the data values
to be any serializable Java object.

� StringSerialPersistentMap allows key valuess to be java String
objects and the data values to be any serializable Java object.

� StringXMLPersistentMap allows key values to be Java String objects
and the data values to be an Artix generated Java object that will be
stored as XML.

Persistent list templates There are two persistent list templates:
 473

CHAPTER 17 | Using Persistent Datastores
� PersistentList is the base class for all persistent lists. It allows you to
store data in any format for which you have a data handler. The most
common use is to store data values as XML.

� SerialPersistentList allows you to store any serializeable Java
object.
474

Creating a Persistent Datastore
Creating a Persistent Datastore

Overview Artix persistent datastores are instances of one of the persistent datastore
templates listed in �Types of Persistent datastores� on page 473. The first
step in creating a persistent datastore is to consider what data is going to be
stored in the datastore and in what format you want it stored. For example,
if you are storing a complex type defined in one of your contracts, you do not
care what the key values are then you may want to make your datastore an
instance of PersistentList. If you want the data to be keyed using strings,
you may want to make your datastore an instance of
StringSerialPersistentMap.

In this section This section contains subsections discussing the following topics:

Procedure To create a persistent datastore you need to do four things:

1. Determine what type of datastore you want to create.

2. Instantiate a DatabaseManager object to hold the database
configuration.

3. If the datastore you want to create stores Artix generated datatypes as
XML, create an XMLDataHandler for each type.

4. Instantiate an instance of the persistent datastore template for the type
of datastore is most appropriate for your application.

Creating Persistent Maps page 478

Creating Persistent Lists page 482
 475

CHAPTER 17 | Using Persistent Datastores
Instantiating a DatabaseManager To instantiate an instance of a DatabaseManager object for your service you
pass an instance of the active bus into its constructor as shown in
Example 274.

When the database manager is instantiated, Artix initiates the database
layer. The database manager is used when creating persistent datastores. It
also provides a method for releasing database locks when using iterators
created by datastores created with it.

Closing the DatabaseManager When your application is done accessing persistent data, you need to invoke
the database manager�s close() method. This releases any resources used
in maintaining the connection to the underlying database and ensures that it
is left in a stable state.

Creating an XMLDataHandler An XMLDataHandler object provides the database layer with the information
needed to convert an object into an XML document. To create an
XMLDataHandler object for an Artix generated class you need the following
things:

� The QName of the root element of the XML representation of the data in
the datastore.

� The QName of the XML Schema type that defines the class.

� The Class object for the class.

� The location of the contract in which the type is defined.

Example 275 shows an example of creating an XMLDataHandler object for
the widgetOrderInfo type defined in Example 109 on page 184.

Example 274: Instantiating a DatabaseManager

import com.iona.jbus.*;
import com.iona.jbus.db.*;

Bus bus = Bus.init(args);
DatabaseManager mgr = new DatabaseManager(bus);

WARNING: This must be done before the server is shutdown.
476

Creating a Persistent Datastore
Example 275: Creating an XMLDataHandler

QName typeName = new QName("http://widgets.com/widgetTypes",
 "widgetOrderInfo");
String wsdlPath = "file:/../widgets.wsdl";

XMLDataHandler handler = new XMLDataHandler(null, typeName,
 WidgetOrderInfo.class,
 wsdlPath);
 477

CHAPTER 17 | Using Persistent Datastores
Creating Persistent Maps

Overview All of the persistent datastore templates that implement java.util.Map
extend from the superclass PersistentMap. They also share two
instantiation parameters:

� id - specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

� manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend PersistentMap have additional
parameters that are required to instantiate them. The following blocks
describe each.

Creating a generic PersistentMap To create a generic PersistentMap you need to pass in the id of your map,
the database manager, and two Datahandler objects. The first is for the key
value and the second one is for the data value. If you chose not to use the
supplied XMLDataHandler objects you can create your own custom data
handlers by extending the com.iona.jbus.db.collections.DataHandler
interface.

The most common use for a generic persistent map is to store Artix
generated objects that are defined in XML Schema as XML. This is done by
passing in an XMLDataHandler for both the key and the data. When an
object is placed into the map both the key and the data are converted into
XML based on their schema definitions. The XML representations are then
written into the persistent store.

When using this type of persistent map both your key and data must be
Artix generated objects and the service must have access to the XML
Schema definitions of the types. Objects not defined in an accessible XML
Schema will cause an exception to be thrown.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent map that stores data
as XML.
478

Creating a Persistent Datastore
Example 276 shows how to instantiate a PersistentMap that stores objects
as XML. The id of the created datastore is widget_table.

Creating a SerialPersistentMap A SerialPersistentMap is the most flexible of the persistent datastore
templates. It allows you to use any serializable Java object for both the key
and data in your map. To create an instance of a SerialPersistentMap, you
pass in the id of the database you wish to create, the database manager for
the datastore, and the Class objects for both the key and the data to be
stored in the map.

The only restriction on the type of data that can be stored in a
SerialPersistentMap is that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as long, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdltojava.

Example 277 shows how to instantiate a SerialPersistentMap that uses
Integer objects as keys and Inet6Address objects as data. The id of the
created datastore is host_ipv6_table.

Example 276: Instantiating a PersistentMap for storing XML

import com.iona.jbus.db.collections.*;

String wsdlPath = "file:/../widgets.wsdl";

QName keyName = new QName("http://widgets.com/widgetTypes", "orderID");
QName dataName = new QName("http://widgets.com/widgetTypes", "widgetOrderInfo");

XMLDataHandler keyHandler = new XMLDataHandler(null, keyName, OrderID.class, wsdlPath);
XMLDataHandler dataHandler = new XMLDataHandler(null, dataName, WidgetOrderInfo.class, wsdlPath);

// DatabaseManager mgr obtained earlier
PersistentMap widgetMap = new PersistentMap("widget_table", mgr, keyHandler, dataHander);

Example 277: Instantiating a SerialPersistentMap

import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
SerialPersistentMap ipMap = new SerialPersistentMap("host_ipv6_table", mgr, Integer.class,

Inet6Address.class);
 479

CHAPTER 17 | Using Persistent Datastores
Creating a
StringSerialPersistentMap

A StringSerialPersistentMap allows you to store any serializable Java
object as data but it requires that the key values be strings. To create an
instance of a StringSerialPersistentMap, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the Class objects for the data to be stored in the map.

Example 278 shows how to instantiate a StringSerialPersistentMap that
stores Float objects as data. The id of the created datastore is float_table.

Creating a
StringXMLPersistentMap

A StringXMLPersistentMap uses strings as the key values and the XML
representation of an Artix generated object that is defined in XML Schema as
the data. When an object is placed into the map the data is converted into
XML based on their schema definitions. The XML representation is then
written into the persistent store.

When using this type of map the data must be an Artix generated object and
the service must have access to the XML Schema definitions of the type the
object represents. Objects not defined in an accessible XML Schema will
cause an exception to be thrown.

To create a StringXMLPersistentMap you need to pass in the id of your
map, the database manager, and an XMLDatahandler object for the data
value.

Example 279 shows how to instantiate a StringXMLPersistentMap. The id
of the created datastore is widget_table.

Example 278: Instantiating a StringSerialPersistentMap

import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
StringSerialPersistentMap floatMap = new StringSerialPersistentMap("float_table", mgr,

Float.class);

Example 279: Instantiating a StringXMLPersistentMap

import com.iona.jbus.db.collections.*;

String wsdlPath = "file:/../widgets.wsdl";

QName dataName = new QName("http://widgets.com/widgetTypes", "widgetOrderInfo");
480

Creating a Persistent Datastore
XMLDataHandler dataHandler = new XMLDataHandler(null, dataName, WidgetOrderInfo.class, wsdlPath);

// DatabaseManager mgr obtained earlier
StringXMLPersistentMap widgetMap = new StringXMLPersistentMap("widget_table", mgr, dataHandler);

Example 279: Instantiating a StringXMLPersistentMap
 481

CHAPTER 17 | Using Persistent Datastores
Creating Persistent Lists

Overview The two persistent datastore templates that implement java.util.List
extend from the superclass PersistentList. They also share two
instantiation parameters:

� id - specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

� manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend PersistentList have additional
parameters that are required to instantiate them. The following blocks
describe each.

Creating a generic PersistentList To create a generic PersistentList you need to pass in the id of your list,
the database manager, and a Datahandler object for the data value. The
most common use for a generic persistent list is to store Artix generated
objects that are defined in XML Schema as XML. This is done by passing in
an XMLDataHandler for the data elements data handler. When an object is
placed into the list it is converted into XML based on its schema definition.
The XML representations are then written into the persistent store.

If you chose not to use the supplied XMLDataHandler object you can create
your own custom data handler by extending the
com.iona.jbus.db.collections.DataHandler interface.

When using this type of persistent list both your data must be Artix
generated objects and the service must have access to the XML Schema
definitions of the type. Objects not defined in an accessible XML Schema
will cause an exception to be thrown.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent list that stores data
as XML.
482

Creating a Persistent Datastore
Example 280 shows how to instantiate a PersistentList that stores
objects as XML. The id of the created datastore is widget_list.

Creating a SerialPersistentList A SerialPersistentList allows you to store any serializable Java object. To
create an instance of a SerialPersistentList, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the Class objects for the data to be stored in the list.

The only restriction on the type of data that can be stored in a
SerialPersistentList is that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as long, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdltojava.

Example 281 shows how to instantiate a SerialPersistentList that stores
Float objects as data. The id of the created datastore is float_list.

Example 280: Instantiating a PersistentList for storing XML

import com.iona.jbus.db.collections.*;

String wsdlPath = "file:/../widgets.wsdl";

QName keyName = new QName("http://widgets.com/widgetTypes", "orderID");
QName dataName = new QName("http://widgets.com/widgetTypes", "widgetOrderInfo");

XMLDataHandler dataHandler = new XMLDataHandler(null, dataName, WidgetOrderInfo.class, wsdlPath);

// DatabaseManager mgr obtained earlier
PersistentList widgetList = new PersistentList("widget_table", mgr, dataHander);

Example 281: Instantiating a SerialPersistentList

import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
SerialPersistentList floatList = new SerialPersistentList("float_table", mgr, Float.class);
 483

CHAPTER 17 | Using Persistent Datastores
Working with Data in a Persistent Datastore

Overview Artix persistent datastores are implemented using the standard Java
interfaces java.util.Map and java.util.List. The Artix implementations
are built on top of Berkeley DB to provide persistence and they have a few
Artix specific behaviors. They implement all of the defined methods for both
interfaces. In addition, they have a method for closing the datastore when
the application is finished with it.

In this section This section discusses the following topics:

Using Persistent Maps page 485

Using Persistent Lists page 489
484

Working with Data in a Persistent Datastore
Using Persistent Maps

Overview Artix persistent maps implement java.util.Map using Berkeley DB to
provide persistence. To manipulate the data in a persistent map you use the
standard methods defined for a Map object. However, because the maps are
persistent there are a few things to consider when using them:

� Iterator objects are implemented using Berkeley DB cursors that
aquire a read lock on the datastore. This lock is not released until the
Iterator object is closed by the database manager.

� When your application is finished working with a persistent map it
must close the map or the database layer may leave the data in an
unusable state.

Adding data to a map Maps have two methods for inserting data. The one most likely to be used is
put(). put() takes two objects as parameters:

� The first object is the key.

� The second object is the data.

When using SerialPersistentMap maps you must be sure that both the key
and the data objects are of the class you specified when creating the map.
When using StringSerialPersistentMap maps, you must ensure that the
key is a String object and that the data is of the class you specified when
creating the map. The XML style persistent maps do not have this restriction
because the objects are converted to XML representations.

Example 282 shows the code for adding an entry to a
StringSerialPersistentMap using put().

Example 282: Putting an Element in a Persistent Map

import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
StringSerialPersistentMap floatMap = new

StringSerialPersistentMap("float_table", mgr, Float.class);

Float data = new Float(0.314);
floatMap.put("first", data);
 485

CHAPTER 17 | Using Persistent Datastores
The other way to add data to a persistent map is to use the putAll()
method. putAll() takes a Map object as a parameter and copies all of the
values from the map parameter into the current map. If any values in the
current map have the same key as a value in the map being copied, the
copied values overwrite them.

Removing data from a map You remove entries from a persistent map using the remove() method.
remove() takes a key value and returns the data value associated with the
key. remove() deletes the data value associated with the key from the map.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use String objects as keys, you must ensure that the
value used in a String object.

Example 283 shows code for removing an object from a map.

In addition to using remove() to delete a single entry from a persistent map,
you can also clear all of the entries in a persistent map by invoking its
clear() method.

Getting an entry from a map To retrieve an entry from a persistent map you can use the get() method.
get() takes a key value as a parameter and returns the data value
associated with the key. If the key does not exist in the map get() returns
null.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use String objects as keys, you must ensure that the
value used in a String object.

Example 284 shows code for getting an object from a map.

Example 283: Removing an Element from a Persistent Map

floatMap.remove("first");

Example 284: Getting an Element from a Persistent Map

floatMap.get("first");
486

Working with Data in a Persistent Datastore
Searching through the map If you wish to search through all of the data values in a persistent map you
will need to use one the two methods that return the data values in a form
that provides access to an Iterator object:

� entrySet() returns the values stored in the map as a java.util.Set
object.

� values() returns the values stored in the map as a
java.util.Collection object.

Both the Set object and the Collection object support the iterator()
method. iterator() returns an Iterator object that can be used to iterate
through the values in the map. Any changes made to values using either the
Set object, the Collection object, or the Iterator object are reflected in
the values stored in the original persistent map.

The returned Iterator object is implemented using Berkeley DB cursors.
When the Iterator object is created the database layer creates a read lock
on the underlying datastore. This read lock is held until the Iterator object
is closed by the database manager using the database manager�s static
closeIterator() method. closeIterator() takes the Iterator object to
be closed as a parameter.

Example 285 shows code for iterating through a map.

Closing a persistent map When you are finished working with a persistent map, your application
needs to invoke the persistent map�s close() method. close() informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

Example 285: Iterating through a Persistent Map

Iterator iter = floatMap.entrySet().iterator();

while (iter.hasNext())
{
 Map.entry entry = (Map.Entry)iter.next();
 System.out.println(entry.getKey() + � � + entry.getValue());
}

DatabaseManager.closeIterator(iter);
 487

CHAPTER 17 | Using Persistent Datastores
Example 286 shows code for closing a persistent map.

Other operations Artix persistent maps implement all of the methods of the java.util.Map
interface. These methods provide means for querying the list to see if it
contains a specific key values or specific data values. They also provide a
means for seeing if the map has any data stored in it. For a full list of all the
methods available see the Java 1.4.2 API documentation for java.util.Map
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html).

Example 286: Closing a Persistent Map

floatMap.close();

Note: Artix persistent maps throw an unsupported exception when
invoking the size() method.
488

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html

Working with Data in a Persistent Datastore
Using Persistent Lists

Overview Artix persistent lists implement java.util.List using Berkeley DB to
provide persistence. To manipulate the data in a persistent list you use the
standard methods defined for a List object. However, because the lists are
persistent there are a few things to consider when using them:

� Iterator objects are implemented using Berkeley DB cursors that
aquire a read lock on the datastore. This lock is not released until the
Iterator object is closed by the database manager.

� When your application is finished working with a persistent list it must
close the list or the database layer may leave the data in an unusable
state.

Adding data to a list Lists have four methods that can be used to add data:

� add(Object obj) adds the specified to the end of the list.

� add(int index, Object obj) adds the specified object to the specified
position in the list and shifts all existing elements that fall after the new
object are forward one element.

� addAll(Collection col) adds the objects stored in the specified
Collection object to the end of the list.

� addAll(int index, Collection col) adds the object stored in the
specified in the Collection object to the list starting at the specifed
position. The elements that fall after the newly inserted objects are
shifted forward in the list.

When using a SerialPersistentList you need to ensure that all of the
objects being added to the list are of the class specified when the list was
created.
 489

CHAPTER 17 | Using Persistent Datastores
Example 287 shows an example of adding an element to the end of a
persistent list.

Removing data from a list Lists have four methods for removing data:

� clear() deletes all of the entries from the list.

� remove(int index) removes the entry specified by the index. The
elements that come after the removed element are shifted back by one.

� remove(Object obj) removes the specified object from the list. The
elements that come after the removed element are shifted back by one.

� remove(Collection col) removes all of the elements in the collection
from the list. The remaining elements are adjusted to remove any gaps.

Example 288 shows an example of removing an element from a persistent
list.

Getting an element from a list To retrieve a single element from a persistent list you use the get() method.
get() takes an integer value and returns the entry stored at the specified
position in the list.

Example 288 shows an example of getting an element from a persistent list.

Example 287: Adding an Element to a Persistent List

import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
SerialPersistentList floatList = new

SerialPersistentList("float_table", mgr, Float.class);

Float data = new Float(0.314);
floatList.add(data);

Example 288: Removing an Element from a Persistent List

floatList.remove(3);

Example 289: Getting an Element from a Persistent List

floatList.get(3);
490

Working with Data in a Persistent Datastore
Searching through the elements of
a list

If you wish to search through all of the elements in a persistent list you will
need to use one the three methods that return an Iterator object:

� iterator() returns an Iterator object to access the entries in their
proper order.

� listIterator() returns a java.util.ListIterator object to access
the entries.

� listIterator(int index) returns a java.util.ListIterator object
to access the entries. The ListIterator object starts from the
specified position in the list.

Both the Iterator object and the ListIteraor object provide the means for
iterating through the elements of the list and remove elements from the list.
The ListIterator object allows you the additional capabilities of traversing
the list in both directions and modifying elements in the list. Any changes
made to elements using either the ListIterator object are reflected in the
values stored in the original persistent list.

The Iterator object and the ListIterator object are implemented using
Berkeley DB cursors. When the Iterator object or ListIterator object is
created the database layer creates a read lock on the underlying datastore.
This read lock is held until the iterator is closed by the database manager
using the database manager�s static closeIterator() method.
closeIterator() takes the iterator to be closed as a parameter.

Example 290 shows code for iterating through a list.

Example 290: Iterating through a Persistent List

Iterator iter = floatlist.iterator();

while (iter.hasNext())
{
 Float entry = (Float)iter.next();
 System.out.println(Float.floatValue());
}

DatabaseManager.closeIterator(iter);
 491

CHAPTER 17 | Using Persistent Datastores
Closing a persistent list When you are finished working with a persistent list, your application needs
to invoke the persistent list�s close() method. close() informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

Example 286 shows code for closing a persistent list.

Other operations Artix persistent lists implement all of the methods of the java.util.List
interface. These methods provide means for querying the list to see if it
contains a specific object. They also provide a means for seeing if the list
has any data stored in it and for converting the data into an array. For a full
list of all the methods available see the Java 1.4.2 API documentation for
java.util.List
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html).

Example 291: Closing a Persistent List

floatMap.close();

Note: Artix persistent lists throw an unsupported exception when
invoking the size() method.
492

http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html

Supporting High-Availability
Supporting High-Availability

Overview If you are going to use persistent maps in conjunction with the high
availability features of Artix, it is necessary to perform some additional
programming tasks to support write-request forwarding. Essentially, you
must write a few lines of code to tell Artix which WSDL operations need to
write to the database.

Write-request forwarding The high availability model in Artix mirrors the high availability features of
Berkeley DB. In this model, a replicated cluster consists of a master replica
and any number of slave replicas. The master replica can perform both read
and write operations to the database, but the slaves can perform only read
operations.

What happens, though, if a client sends a write-request to one of the slave
replicas? In this case, the slave replica needs to have some way of
forwarding the write-request to the master replica. Artix supports this
write-request forwarding feature using the request_forwarder plug-in on
the server side. To enable the write-request forwarding feature, you must
appropriately configure the server replicas, as described in Configuring and
Deploying Artix Solutions, C++ Runtime, and you must perform some
programming steps, as described here.

Enabling write-request forwarding To enable your service to perform write-request forwarding you must do the
following before handing control over to the bus:

1. Create a com.iona.jbus.db.DatabaseConfig object from the
DatabaseManager object.

2. Create an array of strings that contains the names of all of the
operations defined in the portType element of the service�s contract
that make changes to a persistent datastore.

3. Call the DatabaseConfig object�s markAsWriteOperations() method to
enable write-request forwarding for the specified operations.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 493

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 17 | Using Persistent Datastores
There are three recommended places you can add this code to your service:

� In the server mainline before you call Bus.run().

� In the service plug-in�s busInit() method.

� In the creator for your service implementation object.

The demo provided with Artix uses the last method.

Creating a DatabaseConfig object The DatabaseConfig object stores the configuration information used to
connect to the Berkeley DB instance behind the datastore. It is created from
the DatabaseManager object using the getConfiguration() method as
shown in Example 292.

Creating the operation list The write-request forwarding mechanism in Artix uses the service�s contract
to determine which operations to forward. In order to do this, the method
used to set up the write-request forwarding takes an array of strings that
contain the names of the operations for which write-requests to forward to
the master.

The strings used to populate the array match the values of the name attribute
of the operation elements whose implementation requires the modification
of a persistent datastore. For example, imagine a service with the interface
defined in Example 293.

Example 292: Creating a DatabaseConfig Object

// Bus object bus obtained earlier
DatabaseManager mgr = new DatabaseManager(bus);
DatabaseConfig cfg = mgr.getConfiguration();

Example 293: Interface that Modifies Persistent Data

<portType name="empService">
 <operation name="is_registered_employee">
 <input message="tns:is_registered_employee_request"
 name="is_registered_employee_request"/>
 <output message="tns:is_registered_employee_response"
 name="is_registered_employee_response"/>
 </operation>
494

Supporting High-Availability
The service, empService, defines three operations:
is_registered_employee, add_empolyee, and delete_employee. However,
only two of the operations, add_employee and delete_employee, require
modifying the persistent data store. Therefore, you would place
add_employee and delete_employee in the array of strings that configures
the write-request forwarding mechanism as shown in Example 294.

This string will configure the write-forward request mechanism to only
forward requests when a client invokes add_employee or delete_employee.
If a client invokes either add_employee or delete_employee on a slave
instance of this service the request will be automatically forwarded to the
master instance. If a client invokes is_registered_employee, the slave
instance will handle the request.

Marking the write operations The last step in setting-up write-request forwarding is to mark the operations
that write data to the persistent datastore. This informs Artix which
operations will be forwarded to the master service instance.

 <operation name="add_employee">
 <input message="tns:add_employee_request"
 name="add_employee_request"/>
 <output message="tns:add_employee_response"
 name="add_employee_response"/>
 </operation>
 <operation name="delete_employee">
 <input message="tns:delete_employee_request"
 name="delete_employee_request"/>
 <output message="tns:delete_employee_response"
 name="delete_employee_response"/>
 </operation>
</portType>

Example 293: Interface that Modifies Persistent Data

Example 294: Populating the Operation List

String[] writeOps = { "add_employee", "delete_employee" };
 495

CHAPTER 17 | Using Persistent Datastores
You do this using the DatabaseConfig object�s markAsWriteOperations()
method. Its signature is shown in Example 295.

It has the following parameters:

Example 296 shows the code for marking a set of operations as write
operations.

Example 295: markAsWriteIOperations() Signature

void markAsWriteOperations(String[] operations, QName service,
 String portName, String wsdlURL);

operations The array of strings containing the name of the operations
to mark.

service The QName of the service element defining the
endpoint.

portName The value of the name attribute of the port element
defining the endpoint�s contact details

wsdlURL The URL of the contract defining the service.

Example 296: Marking Operations for Write-Request Forwarding

QName service = new QName("http://www.iona.com/persist_demo",
 "empSOAPService");
// Bus object bus obtained earlier
DatabaseManager mgr = new DatabaseManager(bus);

1 DatabaseConfig cfg = mgr.getConfiguration();

2 String[] writeOps = { "add_employee", "delete_employee" };

3 cfg.markAsWriteOperations(writeOps, service, "empSOAPPort",
 ".\epmServ.wsdl");
496

Supporting High-Availability
Configuring write-request
forwarding

In order for a service to use the Artix write-request forwarding mechanism it
must be configured to load the request_forwarder plug-in. In addition, the
request_forwarder plug-in must be placed on the service�s request
interceptor list. To do this do the following:

1. Add request_forwarder to the list of plug-ins in the service�s
orb_plugins variable.

2. Add request_forwarder to the list of plug-ins in the service�s
binding:artix:server_request_interceptor_list variable.

Example 297 shows a sample configuration for a service that has
write-request forwarding enabled.

For more information on Artix configuration see Configuring and Deploying
Artix Solutions, C++ Runtime.

Example 297: Configuration for Write-Request Forwarding

server
{
 orb_plugins = ["local_log_stream", "request_forwarder",
 "iiop_profile", "iiop", "giop"];

 binding:artix:server_request_interceptor_list=
"request_forwarder";

}

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 497

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 17 | Using Persistent Datastores
Configuring Artix to Use Persistent Datastores

Overview Artix will automatically create all of the artifacts needed to use persistent
datastores without adding any configuration to your Artix environment.
However, Artix can be configured to control the location and name of the
Berkeley DB artifacts used by the database layer.

Also, if you intend to deploy a service as a highly available cluster, that is all
done in Artix configuration.

Database layer configuration The database layer is configured using two configuration variables:

� plugins:artix:db:env_name specifies the filename for the Berkeley
DB environment file. It can be any string and can have any file
extension.

� plugins:artix:db:home specifies the directory where Berkeley DB
stores all the files for the service databases. Each service should have a
dedicated folder for its data stores. This is especially important for
replicated services.

Example Example 298 shows a configuration fragment for a service using persistent
datastores.

More information For more information on Artix configuration see Configuring and Deploying
Artix Solutions, C++ Runtime.

Example 298: Persistent Datastore Configuration

Artix Configuration File
...
foo_service {
 plugins:artix:db:env_name = "myDB.env";
 plugins:artix:db:home = "/etc/dbs/foo_service";
};

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
498

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 18

Using the Call
Interface for
Dynamic
Invocations
The JAX-RPC Call interface allows you to make invocations on
remote services for which you only have a WSDL description.

In this chapter This chapter discusses the following topics:

DII and the Call Interface page 500

Building Invocations using the Call Interface page 502

Printer Service Demo page 504
 499

CHAPTER 18 | Using the Call Interface for Dynamic Invocations
DII and the Call Interface

What is DII? DII stands for Dynamic Invocation Interface. DII provides a mechanism by
which you can invoke on remote services without having the stubs statically
linked into your application code. Using DII, you query a service for a
description of its interface, use that description to dynamically build the
proper invocation interface, and then use the dynamic interface to invoke on
the service. This is useful if your application cannot always be sure of the
exact structure of the request message or must dynamically request services
from a repository of some sort.

The Call interface The JAX-RPC specification defines the Call interface to support DII. Using
the Call interface, Artix developers can invoke on remote services without
needing to have access to the service�s generated interface. To invoke on a
remote service using the Call interface, you need to get a copy of the
remote service�s WSDL contract, a description of the message expected by
the service, and any message the service may return. With this information
you build, at runtime, the interface needed to invoke on the remote service
and receive a response.

Artix DII support Artix supports the majority of the functions specified in sections 8.2.4-8.2.8
of the JAX-RPC specification. The limitations are listed below.

� Artix does not support the javax.xml.rpc.session.maintain standard
property.

� The methods listed in Table 31 are not supported by the Artix
implementation of the Service interface.

Table 31: Unsupported Service Methods

Method Signature

TypeMappingRegistry getTypeMappingRegistry();

HandlerRegistry getHandlerRegistry();

Remote getPort(Class intfc) throws ServiceException;
500

DII and the Call Interface
� The methods listed in Table 32 are not supported by the Artix
implementation of the ServiceFactory interface.

Iterator getPorts() throws ServiceException;

Table 31: Unsupported Service Methods

Method Signature

Table 32: Unsupported ServiceFactory Methods

Method Signature

Service createService(Qname qname) throws ServiceException;

Service loadService(Class class1) throws ServiceException;

Service loadService(URL url, Class class1, Properties props)
throws ServiceException;

Service loadService(URL url, QName qname, Properties props)
throws ServiceException;
 501

CHAPTER 18 | Using the Call Interface for Dynamic Invocations
Building Invocations using the Call Interface

Overview Using a dynamic proxy to invoke on a remote service requires you to
discover the name of the remote service�s operation that you wish to invoke.
It also requires you to carefully construct the parameter list for the
operation. There are several ways to get this information. They range from
giving the client application some foreknowledge of the possible operations
it will invoke to parsing the services WSDL to recreate the operation.

Applications that use the Call interface to dynamically invoke on remote
services also need to have knowledge of the types used by the services from
which they request services. The application making the dynamic invocation
must register the type factories for any complex types used by the remote
services on which it will invoke. For more information on type factories see
�Working with Artix Type Factories� on page 261.

Procedure To make a dynamic service invocation using the Call interface do the
following:

1. Register the type factories for the complex types the application may
use in building a dynamic invocation. See �Registering Type Factories�
on page 264.

2. Obtain a copy of the remote service�s WSDL contract.

3. Create a ServiceFactory instance using
ServiceFactory.newInstance().

4. Using the location of the remote service�s WSDL contract and service
name, create a new Service instance from the factory.

5. Using the QName of the port element defining the service and the
name of the operation to be invoked, create a Call instance from the
service.

6. Create the input parameters required to invoke the operation and store
them in an Object[].

Note: Only in and inout parameters are included in the Object[]
used to invoke on the service. Do not include out parameters.
502

Building Invocations using the Call Interface
7. Invoke the remote service using the Call instance�s invoke() method.

8. Unpack any output parameters from the operation using the Call
instance�s getOutputParameters() method.

Note: For oneway operations you can use invokeOneWay().

Note: getOutputParameters() can return either a Map or a List.
 503

CHAPTER 18 | Using the Call Interface for Dynamic Invocations
Printer Service Demo

Overview One use of dynamic invocations is in situations where you cannot be sure or
the exact requirements of an operation. This can occur when a service may
be fulfilled by a number of service providers. Each service provider may
provide a service, such as document printing, but may have different
operation signatures and require different information to fulfill the service
request.

The application outlined below asks a service repository for an available
printing service. The service repository can return two types of printing
service: Laser and InkJet. The print() operation supported by a Laser
printing service takes three arguments:

The print() operation supported by an InkJet printing service takes two
arguments:

Both printing services return a cost for the printing. They also have one
output parameter, numSheets, that specifies the number of sheets used to
print the job.

The application uses the Call interface to invoke on the returned printing
service. For purposes of demonstrating the use of the Call interface, the
application is designed to not need to parse the returned WSDL contract to
determine how to construct the invocation.

Byte[] dataBuff The data to be printed.

boolean duplex Specifies whether to use double sided printing.

long numPage Specifies the number of pages to print per side.

Byte[] dataBuff The data to be printed.

boolean draft Specifies the print quality.
504

Printer Service Demo
Application code Example 299 shows the code for creating a print request and invoking on
the returned print service.

Example 299: Dynamic Invocation using the Call Interface

//Java

import javax.xml.rpc.*;
import java.net.*
import com.iona.webservices.reflect.types.*;

Object[] args = null;
1 Bus bus = Bus.init();

2 QName name = new QName("http://www.printers.com",
 "RegisteryService");
String portName = "RegisteryPort";
String wsdlPath = "file:/./printresistery.wsdl";
URL wsdlURL = new File(wsdlPath).toURL();
Register printReg = (Register)bus.createClient(wsdlURL, name,
 portName,
 Registery.class);

3 String printerType;
URIHolder tempURL;
QNameHolder tempName = new QNameHolder();
printReg.getPrinter(printerType, tempURL, tempName);

URL printerURL = tempURL.value.toURL();
QName printerName = tempName.value;

4 if (printerType.equals("Laser"))
{
 boolean duplex = true;
 long numPages = 2;
 // byte[] dataBuff obtained earlier
 args = new Object[]{dataBuff, duplex, numPages};
}

5 else if (printerType.equals("InkJet"))
{
 boolean draft = false;
 // byte[] dataBuff obtained earlier
 args = new Object[]{dataBuff, draft};
}
else System.exit(1);

6 ServiceFactory factory = ServiceFactory.newInstance();
 505

CHAPTER 18 | Using the Call Interface for Dynamic Invocations
What does the code do? The code in Example 299 does the following:

1. Initialize the Artix bus.

2. Create a proxy for the print service registry.

3. Request a printing service from the print service registry.

4. If the type of printing service returned is Laser, build the three
argument list.

5. If the type of printing service returned is inkJet, build the two
argument list.

6. Get a new ServiceFactory.

7. Using the WSDL location and the service name returned from the print
service registry, create a new Service.

8. Build the QName for the port defining the print service�s endpoint.

9. Using the port name and the operation name, print, create a Call.

10. Invoke the print request using the argument list created above.

11. Get the output parameters as a Map.

12. Extract numSheets from the Map.

7 Service printService = factory.createService(printerURL,
 printerName);

8 String portName = name.getLocalPart().concat("Port");
QName port = new QName("", portName);

9 Call printCall = printService.createCall(port, "print");

10 float cost = printCall.invoke(args);

11 Map outs = printCall.getOutputParameters();
12 long numSheets = outs.get("numSheets");

System.out.println("Your print job costs "+cost+" and used "+
 numSheets+" sheets of paper.");

Example 299: Dynamic Invocation using the Call Interface
506

CHAPTER 19

Instrumenting a
Service
Artix provides two mechanisms that allow you to instrument
your service implementations to be managed using any JMX
console.

In this chapter This chapter discusses the following topics:

Overview of Artix Instrumentation page 508

Using the JMX APIs page 511

Using the Artix ManagedComponent Interface page 515
 507

CHAPTER 19 | Instrumenting a Service
Overview of Artix Instrumentation

Default instrumentation Artix exposes a number of its internal components through a JMX complaint
MBean server as shown in Figure 11. The instrumented components can be
managed using any JMX console.

Artix Bus MBean

Each instance of an Artix bus has an MBean associated with it. The bus�
MBean exposes the following properties:

� the bus identifier.

� the bus� configuration scope.

� the list of arguments passed to the bus.

� the list of service objects being managed by the bus.

Figure 11: Default Artix MBean Structure

Artix Service Process

Artix
MBean
Server

Bus MBean

Service

Service
Binding

Request
TransportImpl Handler

Message
Handler

Service MBean

Port MBean

Bus

Port
508

Overview of Artix Instrumentation
The bus MBean exposes the following operations:

� enable/disable performance logging for a service.

� set/retrieve the logging level for the different Artix subsystems.

Artix Service MBean

When Artix loads a service contract, it creates a Service object for each
service element in the contract. Each Service object has an MBean
associated with it. The name of each service MBean is received from the
bus� MBean.

The service�s MBean exposes the following properties:

� the QName, specified in the service contract, of the service element
represented by the Service object.

� the status of the service.

� a list of all the ports exposing this service.

� a number of service counters including:

♦ the average response time of the service.

♦ the total number of requests processed.

♦ the total number of oneway requests processed.

♦ the number errors encountered by the service.

Artix Port MBean

When Artix activates a service it creates a Port object for each port element
in the activated service�s service element. Each Port object has an MBean
associated with it. The name of a port�s MBean is received from the MBean
of the Service object that manages the port.

The port�s MBean exposes the following properties:

� the port�s name as specified in the service�s contract.

� the endpoint address.

� the transport�s name.

� the list of message handlers through which messages on this port pass.

Additional Components

A number of other Artix provided components also provide JMX
instrumentation including:

� the Artix locator.

� the Artix session manager.
 509

CHAPTER 19 | Instrumenting a Service
� the HTTP transport.

For more information on accessing the properties exposed by Artix see
Configuring and Deploying Artix Solutions, C++ Runtime.

Adding custom instrumentation Artix allows the registration of additional MBeans with the Artix MBean
server. This makes it possible for you to add custom instrumentation to your
service implementations and mange it through the same management
console as the other Artix components.

There are two methods of instrumenting your service implementations:

� implement one of the JMX MBean interfaces and register it with Artix�s
MBean server.

� implement an Artix ManagedComponent interface.

Functionally there is no different between the two approaches. The decision
on which to use depends on ease of development, maintainability, and
portability.

Activating Artix management In order to manage the instrumented Artix components you need to add the
following to your service�s configuration scope:

For more information about Artix configuration see the Configuring and
Deploying Artix Solutions, C++ Runtime.

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.

plugins:bus:management:enabled="true";

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
510

../deploy/cpp/index.htm
../deploy/cpp/index.htm
../deploy/cpp/index.htm

Using the JMX APIs
Using the JMX APIs

Overview The Artix MBean server can be accessed through the Artix bus and allows
for the registration of user developed MBeans. This allows you to instrument
your service implementation by developing a custom MBean using one of
the JMX MBean interfaces and registering it with the Artix MBean server.
Your custom instrumentation will then be accessible through the same JMX
connection as the Artix internal components used by your service.

Creating your custom MBean When you use the JMX APIs to instrument your service implementation, you
follow the design methodology laid out by the JMX specification. This
involves the following steps:

1. Decide what type of MBean you wish to use.

♦ standard MBeans expose a management interface that is defined
at development time.

♦ dynamic MBeans expose their management interface at run time.

2. Create the MBean interface to expose the properties and operations
used to manage your service implementation.

♦ standard MBeans use the MBean interface.

♦ dynamic MBeans use the DynamicMBean interface.

3. Implement the MBean class.

For example, if you wanted to add instrumentation to the widget ordering
service, defined in Example 157 on page 252, that tracked the number of
orders placed and average time it takes for an order to be processed. You
could do this by creating a standard MBean that exposed the following
attributes:

� NumOrders

� AvgTime

Note: The default instrumentation provided with Artix can provide you
with statistics for the service as a whole, but to get statistics on the
operations you need to add custom instrumentation.
 511

CHAPTER 19 | Instrumenting a Service
Example 300 shows the interface for the MBean.

Example 301shows the class that implements the MBean.

The attributes, NumOrders and AvgTime, exposed by the MBean are only
readable from a management console because the interface only defines
their getter methods. The service implementation can use the setter
methods to update the values of the attributes.

Example 300: Widget Monitoring MBean Interface

public interface widgetMonitorMBean
{
 public int getNumOrders();
 public int getAvgTime();
}

Example 301: Widget Monitoring MBean

public class widgetMonitor implements widgetMonitorMBean
{
 int numOrders = 0;
 int avgTime = 0;

 public int getNumOrders()
 {
 return numOrders;
 }
 public void setNumOrders(int i)
 {
 numOrders = i;
 }

 public int getAvgTime()
 {
 return avgTime;
 }
 public void setAvgTime(int i)
 {
 avgTime = i;
 }
}

512

Using the JMX APIs
Registering the MBean For your MBean to be exposed to a management console, it must be
registered with the Artix MBean server. The Artix MBean server is accessible
through the bus� registry. Typically this will be done when your service is
initialized. For services that are deployed in an Artix container, you would
register you MBean in the service�s busInit() method. For a standalone
service, you would register your MBean in the service�s main() method
before calling bus.run().

To register a custom MBean do the following:

1. Instantiate your custom MBean.

2. Get an instance of the bus� registry using bus.getRegistry().

3. Get the Artix MBean server from the registry using the registry�s
getEntry() method as shown in Example 302.

4. Cast the returned Object object into an MBeanServer object.

5. Create an ObjectName object for your MBean.

6. Register the MBean with the MBean server using the server�s
registerMBean() method.

Example 303 shows code for registering a custom MBean with the Artix
MBean server.

Example 302: Getting the Artix MBean Server

Object obj = registry.getEntry(ManagementConstants.MBEAN_SERVER_INTERFACE_NAME);

Example 303: Registering a Custom MBean

import javax.management.*;
import com.iona.jbus.management.ManagementConstants;

1 widgetMonitor widgetMon = new widgetMonitor();

Bus bus = getBus();

2 BusRegistry registry = bus.getRegistry();

3 Object obj =
registry.getEntry(ManagementConstants.MBEAN_SERVER_INTERFACE_
NAME);
 513

CHAPTER 19 | Instrumenting a Service
4 MBeanServer mbeanServer = (MBeanServer)obj;

5 ObjectName name = new OBjectName("WidgetOrderMonitor");

6 mbeanServer.registerMBean(widgetMon, name);

Example 303: Registering a Custom MBean
514

Using the Artix ManagedComponent Interface
Using the Artix ManagedComponent Interface

Overview If you do not want to use the JMX interfaces to add custom instrumentation
to your service, you can use the Artix ManagedComponent interface. This
interface wraps the JMX subsystem in proprietary interfaces. You do not
need to access the Artix JMX server to add instrumentation to your service.

Procedure To add custom instrumentation to your service using the ManagedComponent
interface you need to do the following:

1. Implement an instrumentation class that implements both the
com.iona.jbus.managment.ManagedComponent interface and the
com.iona.jbus.management.Instrumentation interface.

2. Implement a support class for your instrumentation that implements
the com.iona.jbus.management.MBeanInfoGenerator interface.

3. In the service�s initialization routine, instantiate your instrumentation
object and register it with the bus.

4. In the service�s shutdown routine, unregister your instrumentation
object.

In this section This section discusses the following topics:

Note: If your service is designed to be a standalone service, you do not
need to do step 4.

Implementing the Instrumentation Class page 516

Implementing the Support Class page 520

Creating and Removing your Instrumentation page 524
 515

CHAPTER 19 | Instrumenting a Service
Implementing the Instrumentation Class

Overview Like an MBean, a ManagedComponent style instrumentation class is
responsible for providing access to the attributes you want to track and any
management operations you want to expose.

Unlike an MBean, you do not need to define an interface for your
instrumentation class. Instead, your instrumentation object implements two
Artix management interfaces and defines the operations required to expose
the attributes and operations you want.

Implementing the creator Your instrumentation class must have at least one public contrusctor that
takes no arguments. You can use the default constructor provided by Java to
fulfil this requirement.

Interfaces to implement Your instrumentation class needs to implement the following Artix
management interfaces:

� com.iona.jbus.management.ManagedComponent
� com.iona.jbus.management.Instrumentation

The Instrumentation interface is a marker interface that has no methods
that need to be implemented.

The ManagedComponent interface is the wrapper that allows the Artix runtime
to extract management information from your service. It has three methods
that need to be implemented: getInstrumentation(), getObjectName(),
and setObjectName().

Implementing the
ManagedComponent methods

You must provide the implementation for the three operations defined in the
ManagedComponent interface. For most applications, the implementations for
these operations can be boilerplate.

getInstrumentation()

getInstrumentation() is called by the bus to obtain an instance of your
instrumentation class. Its signature is shown in Example 304.

Example 304: getInstrumentation()

public Instrumentation getInstrumentation();
516

Using the Artix ManagedComponent Interface
For most cases, this method can simply return an instance of itself as shown
in Example 305. You can, however, do other initialization work in this
method.

setObjectName()

setObjectName() provides a mechanism for setting the name of an
instrumentation object. Its signature is shown in Example 306.

It takes a javax.management.ObjectName. If you don�t wish to expose this
functionality, you can implement this method to just return void. The name
of the instrumentation object can be completely handled by
getObjectName().

getObjectName()

getObjectName() returns the name of an instrumentation object. Its
signature is shown in Example 307.

It returns a javax.management.ObjectName. The name returned is the name
by which an instrumentation object is identified by a JMX console.

Defining attributes and operations Your instrumentation class is responsible for providing the methods used to
get and set the attributes exposed by your instrumentation. It is also
responsible for providing the methods used to implement any operations
exposed by your instrumentation. The methods to do this is not part of any
of the Artix management interfaces.

Example 305: Implementing getInstrumentation()

public Intrumentation getInstrumentation()
{
 return this;
}

Example 306: setObjectName()

public void setObjectName(ObjectName name);

Example 307: getObjectName()

public ObjectName getObjectName();
 517

CHAPTER 19 | Instrumenting a Service
The naming pattern for attributes and operations follow the same patterns
as those used by MBeans. Each attribute must have at least a setter or a
getter method. The setter methods use the naming pattern
setAttributeName(). The getter methods use the naming pattern
getAttributeName(). Operations can have any name you would like.

So, if you wanted to expose the attributes NumOrders and AvgTime you
would implement the following methods:

� getNumOrders()
� setNumOrders()
� getAvgTime()
� setAvgTime()

Example Example 308 shows a fully implemented instrumentation class.

Example 308: ManagedComponent Style Instrumentation Object

import com.iona.jbus.management.Intrumentation;
import com.iona.jbus.management.ManagedComponent;
import com.iona.jbus.management.ManagementException;

import javax.management.ObjectName;

public class WidgetManager
implements ManagedComponent, Instrumentation
{
 private ObjectName objName;
 private int numOrders;
 private float avgTime;
 private float totalTime;

 public WidgetManager()
 {
 objName = new ObjectName("WidgetManager");
 numOrders = 0;
 avgTime = 0.0;
 totalTime = 0.0;
 }

 public Instrumentation getInstrumentation()
 {
 return this;
 }
518

Using the Artix ManagedComponent Interface
 public void setObjectName(ObjectName name)
 {
 return;
 }

 public ObjectName getObjectName()
 {
 return objName;
 }

 public void setNumOrders(int num)
 {
 numOrders += num;
 }

 public int getNumOrders()
 {
 return numOrders;
 }

 public void setAvgTime(float time)
 {
 totalTime += time;
 avgTime = totalTime/numOrders;
 }

 public float getAvgTime()
 {
 return avgTime;
 }
}

Example 308: ManagedComponent Style Instrumentation Object
 519

CHAPTER 19 | Instrumenting a Service
Implementing the Support Class

Overview Under the covers, a ManagedComponent style instrumentation class is used
by Artix to generate a ModelMBean that is used by the Artix management
infrastructure. To facilitate the ModelMBean generation, you are required to
provide a support class for your instrumentation class. This support class is
responsible for creating a ModleMBeanInfo object that describes your
instrumentation class.

Naming convention Your support class must use the following naming convention to be
recognized by Artix:

For example, if your instrumentation class is named WidgetManager, the
corresponding support class must be named WidgetManagerSupport.

Interface to implement Your support class needs to implement the Artix interface
com.iona.jbus.management.MBeanInfoGenerator. It has one public
method, getModel(), that you need to implement.

getModel() is called by Artix when it creates that MBean for your
instrumentation. As shown in Example 309, it returns a
javax.management.ModelMBeanInfo object that fully describes the attributes
and operations exposed by your instrumentation class.

For more information on populating a ModelMBeanInfo object see
http://java.sun.com/products/JavaManagement.

Example Example 310 shows the support class for the instrumentation class defined
in Example 308 on page 518.

instrumentationClassNameSupport

Example 309: getModel()

public ModelMBeanInfo getModel(ObjectName objName,
 String displayName)
throws RuntimeOperationsException, MBeanException;
520

http://java.sun.com/products/JavaManagement/

Using the Artix ManagedComponent Interface
import com.iona.jbus.management.MBeanInfoGenerator;
import java.lang.reflect.Constructor;
import javax.management.Descriptor;
import javax.management.MBeanException;
import javax.management.ObjectName;
import javax.management.RuntimeOperationsException;
import javax.management.modelmbean.DescriptorSupport;
import javax.management.modelmbean.ModelMBeanAttributeInfo;
import javax.management.modelmbean.ModelMBeanConstructorInfo;
import javax.management.modelmbean.ModelMBeanInfo;
import javax.management.modelmbean.ModelMBeanInfoSupport;
import javax.management.modelmbean.ModelMBeanNotificationInfo;
import javax.management.modelmbean.ModelMBeanOperationInfo;

public class WidgetManagerSupport implements MBeanInfoGenerator
{
 public WidgetManagerSupport()
 {
 }

 protected ModelMBeanAttributeInfo[] getAttributes()
 {
 ModelMBeanAttributeInfo[] attributes =new ModelMBeanAttributeInfo[2];

 Descriptor orderDescriptor = new DescriptorSupport(new String[]
 {
 "name=NumOrders",
 "class=WidgetManager",
 "descriptorType=attribute",
 "getMethod=getNumOrders",
 "setMethod=setNumOrders",
 "value=0",
 "default=0",
 "displayName=Number of orders processed",
 "persistPolicy=NoMoreOftenThan",
 "persistPeriod=300",
 "currencyTimeLimit=0",
 "persistLocation=/data",
 "persistName=WidgetManager.ser",
 "default=0"
 });
 521

CHAPTER 19 | Instrumenting a Service
 Descriptor timeDescriptor = new DescriptorSupport(new String[]
 {
 "name=AvgTime",
 "class=WidgetManager",
 "descriptorType=attribute",
 "getMethod=getAvgTime",
 "setMethod=setAvgTime",
 "value=0",
 "default=0",
 "displayName=Average time to process an order",
 "persistPolicy=NoMoreOftenThan",
 "persistPeriod=300",
 "currencyTimeLimit=0",
 "persistLocation=/data",
 "persistName=WidgetManager.ser",
 "default=0"
 });

 attributes[0] = new ModelMBeanAttributeInfo("NumOrders",
 "java.lang.Integer",
 "",
 true,
 true,
 false,
 orderDescriptor);

 attributes[1] = new ModelMBeanAttributeInfo("AvgTime",
 "java.lang.Float",
 "",
 true,
 true,
 false,
 timeDescriptor);

 return attributes;
 }

 protected ModelMBeanOperationInfo[] getOperations()
 {
 ModelMBeanOperationInfo[] operations = new ModelMBeanOperationInfo[0];
 return operations;
 }
522

Using the Artix ManagedComponent Interface
 protected ModelMBeanNotificationInfo[] getNotifications()
 {
 ModelMBeanNotificationInfo[] notifications = new ModelMBeanNotificationInfo[0];
 return notifications;
 }

 public ModelMBeanInfo getModel(ObjectName objName, String displayName)
 throws RuntimeOperationsException, MBeanException
 {
 Descriptor modelDescriptor = new DescriptorSupport(new String[]
 {
 "name=WidgetManagerBean",
 "descriptorType=mbean"
 });

 ModelMBeanConstructorInfo[] constructors = new ModelMBeanConstructorInfo[0];

 ModelMBeanInfo model = new ModelMBeanInfoSupport("WidgetManager",
 "Widget Sales mbean",
 getAttributes(),
 constructors,
 getOperations(),
 getNotifications());

 model.setMBeanDescriptor(modelDescriptor);

 return model;
 }
}

 523

CHAPTER 19 | Instrumenting a Service
Creating and Removing your Instrumentation

Overview To make your custom instrumentation available to management consoles,
you must create an instance of your instrumentation class. Then you need to
tell the bus to create an MBean for your instrumentation. The bus
automatically registers the MBean with the Artix JMX server.

Unlike JMX-style instrumentation, ManagedComponent-style instrumentation
must be cleaned up. In your services shutdown() routine you need to tell the
bus to remove the MBean created for your instrumentation. This also cleans
up any other resources created to support the custom instrumentation.

Creating the instrumentation As with JMX-style instrumentation ManagedComponent-style instrumentation
is not available until an MBean is created and registered with the Artix
MBean server. However, when you create ManagedComponent-style
instrumentation you do not directly create an MBean or register it with the
MBean server. This is all handled by the bus.

To create an MBean for your instrumentation and register it with the MBean
server do the following:

1. Instantiate an instance of your instrumentation class.

2. Instantiate a ManagedComponentEvent using
ManagedComponentCreateEvent().

3. Send the event to the bus using Bus.sendEvent().

Example 310 shows code for creating an MBean for your custom
instrumentation.

Example 310: Creating a MBean for a Managed Component

public class WidgetPlugin extends BusPlugIn
{
 WidgetManager inst;

 public void busInit() throws BusException
 {
 Bus bus = getBus();

1 inst = new WidgetManager();
2 ManagedComponentEvent create = new

ManagedComponentCreatedEvent(inst);
524

Using the Artix ManagedComponent Interface
Removing your instrumentation To clean up your custom instrumentation you need to unregister the MBean
created to support it and destroy the MBean. This is all done using a bus
event.

To remove your custom instrumentation from the JMX serer do the
following:

1. Instantiate a ManagedComponentEvent using
ManagedComponentRemovedEvent().

2. Send the event to the bus using Bus.sendEvent().

Example 311 shows code for creating an MBean for your custom
instrumentation.

3 bus.sendEvent(create);
 ...
 }
...
}

Example 310: Creating a MBean for a Managed Component

Example 311: Removing the MBean for a Managed Component

public class WidgetPlugin extends BusPlugIn
{
 WidgetManager inst;

 ...

 public void busShutdown() throws BusException
 {
 Bus bus = getBus();

1 ManagedComponentEvent create = new
ManagedComponentRemovedEvent(inst);

2 bus.sendEvent(create);
 ...
 }
}

 525

CHAPTER 19 | Instrumenting a Service
526

CHAPTER 20

Developing
Plug-Ins
Plug-Ins can perform a number of tasks including registering
servants or implementing handlers.

Overview Developing and loading an Artix plug-in requires you to perform three tasks:

1. Extend the BusPlugIn class to implement your plug-in�s application
logic.

2. Implement the BusPlugInFactory interface.

3. Configure Artix to use the plug-in.

In this chapter This chapter discusses the following topics:

Understanding the Artix Plug-in Model page 528

Extending the BusPlugIn Class page 531

Implementing the BusPlugInFactory Interface page 534

Configuring Artix to Load a Plug-in page 536
 527

CHAPTER 20 | Developing Plug-Ins
Understanding the Artix Plug-in Model

In this section This section discusses the following topics:

Artix plug-ins An Artix plug-in is a well-defined component that can be independently
loaded into an Artix application. Artix defines a platform-independent
framework for loading plug-ins dynamically, based on the dynamic linking
capabilities of modern operating systems.

Plug-ins, due to the platform-independent nature of Artix, can be
implemented in either C++ or Java and be loaded into any Artix
application. Plug-ins developed in Java are packaged as independent JAR
files that are located by Artix using configuration information. Java based
plug-ins can be loaded into Artix applications developed in C++.

Configuration The plug-ins that an application should load are specified by the
orb_plugins configuration variable, which contains a list of plug-in names.

In addition, for each plug-in that is to be loaded, the bus needs to know
which factory class is used to create instances of the plug-in�s
implementation. You specify the name of a plug-in�s factory class using the
variable plugins:plugin_name:classname.

Artix plug-ins page 528

Configuration page 528

Loading the plug-in page 529

Initializing the plug-in page 530

BusPlugInFactory object page 530

BusPlugIn object page 530
528

Understanding the Artix Plug-in Model
For example, the following extract shows how to configure an application,
whose ORB name is plugin_example, to load a single plug-in,
sample_artix_interceptor.

Loading the plug-in Figure 12 shows how a plug-in is loaded as the application starts up. The
steps to load the plug-in are as follows:

1. The user launches the application, app, specifying the bus name as
plugin_example at the command line.

2. As the application starts up, it scans the Artix configuration file to
determine which plug-ins to load. Priority is given to the configuration
settings in the plugin_example configuration scope.

3. The Artix core loads the plug-ins specified by the application�s
configuration.

Artix domain configuration file
...
plugin_example {
 orb_plugins = ["sample_artix_interceptor"];

 plugins:sample_artix_interceptor:classname =
"samplePlugInFactory";

};

Figure 12: Loading a Plug-In
 529

CHAPTER 20 | Developing Plug-Ins
Initializing the plug-in Plug-ins are usually initialized when the bus is initialized. Figure 13 shows
the plug-in initialization sequence, which proceeds as follows:

1. The bus is initialized.

2. The Artix core iterates over all of the plug-ins in the orb_plugins list,
calling BusPlugInFactory.createBusPlugin() on each one.

3. The BusPlugInFactory object creates a BusPlugIn object, which
initializes the state of the plug-in for the current bus instance.

4. After all of the BusPlugIn objects have been created, the Artix core
calls busInit() on each BusPlugIn object.

BusPlugInFactory object A BusPlugInFactory object provides the basic hook for initializing an Artix
plug-in. A single static instance of the BusPlugInFactory object is created
when the plug-in is loaded into an application. See �Implementing the
BusPlugInFactory Interface� on page 534 for more details.

BusPlugIn object A BusPlugIn object caches the state of the plug-in for the current bus
instance. The BusPlugIn object is responsible for performing most of the
plug-in initialization and shutdown tasks. See �Extending the BusPlugIn
Class� on page 531 for more details.

Figure 13: Initializing a Plug-In
530

Extending the BusPlugIn Class
Extending the BusPlugIn Class

Overview The BusPlugIn class is the base class for all Artix plug-ins. It provides a
method, getBus(), that returns the bus with which the plug-in is
associated. In addition, it has two abstract classes that you must
implement:

� A constructor for your class.

� The busInit() method called by the bus to initialize the plug-in.

� The busShutdown() method called by the bus when it is shutting down
to allow the plug-in to perform any clean-up it needs before being
destroyed.

Implementing the constructor The constructor for your plug-in has two requirements:

1. Its first argument must be a bus instance.

2. It must call super() with the passed in bus reference.

Example 312 shows a constructor for a plug-in called BankPlugIn. It simply
calls super() on the bus instance. It could, however, have performed some
logging operations or initialized resources.

busInit() busInit() is called by every bus that loads your plug-in. Inside busInit(),
you perform all of the initialization needed for your plug-in to perform its job.
For example, if your plug-in implemented a service defined in WSDL you

Example 312: BusPlugIn constructor

// Java
public class BankPlugIn extends BusPlugIn
{
 public BankPlugIn(Bus bus)
 {
 super(bus);
 }
...
}

 531

CHAPTER 20 | Developing Plug-Ins
would create and register the servant in busInit(). If your plug-in
implemented a handler, you would register your handler factory in
busInit().

Example 313 shows a busInit() the registers two message handlers.

busShutdown() busShutdown() is called on the plug-in by the bus when the bus is shutting
down. Once busShutdown() completes, the bus calls destrotBusPlugIn()
on the plug-in factory object. This is good place to release instance specific
resources used by the plug-in or to do other house keeping. For example,
the bank service may need to force the account objects it created to finish
any running transactions and flush their information to the permanent store
before shutting down as shown as shown in Example 314.

Example 313: busInit()

// Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
 private BankImpl bank;
 ...
 public void busInit() throws BusException
 {
 Bus bus = getBus();

 bus.registerHandlerFactory(new firstHandFactory());
 bus.registerHandlerFactory(new secondHandFactory2());
 }

 ...
}

532

Extending the BusPlugIn Class
Example 314: busShutdown()

// Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import com.iona.schemas.references.Reference;

import javax.xml.namespace.QName;
import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
 private BankImpl bank;
 ...
 public void busShutdown() throws BusException
 {
 Account acctProxy;
 Reference ref;
 Bus bus = getBus()
 Iterator it = bank.accounts.values().interator();

 while(it.hasNext())
 {
 ref = (Reference)it.next();
 acctProxy = bus.createClient(ref, Account.class);
 acctProxy.closeDown();
 }
 }
}

 533

CHAPTER 20 | Developing Plug-Ins
Implementing the BusPlugInFactory Interface

Overview The BusPlugInFactory interface provides the methods used by the Artix bus
to manage a plug-in implementation. It has two methods you must
implement:

� createBusPlugIn() creates instances of the plug-in and its associated
resources and associate them with particular bus instances.

� destroyBusPlugIn() destorys plug-in instances and frees the resources
associated with them.

createBusPlugIn() createBusPlugIn() is called by a bus instance when it loads a plug-in. In
most instances, createBusPlugIn() will simply instaniate an instance of
your plug-in object and return it. However, you can use this method to
initialize any global resources used by the plug-in.

Example 315 shows the signature for createBusPlugIn().

destroyBusPlugIn() destroyBusPlugIn() is called by a bus instance when it is shutting down
and releasing its resources. In most instances, this method does not need to
do anything. However, if you created any global resources for your plug-in
this would be a convinient place to free them.

Example 316 shows the signature for destroyBusPlugIn().

Example For example, the BusPlugInFactory implementation for a plug-in
BankPlugIn would look similar to Example 317.

Example 315: createBusPlugIn()

public BusPlugIn createBusPlugIn(Bus bus) throws BusException;

Example 316: destroyBusPlugIn()

public void destroyBusPlugIn(BusPlugIn plugin);
534

Implementing the BusPlugInFactory Interface
Example 317: BankPlugInFactory

// Java
import com.iona.jbus.*;

public class BankPlugInFactory implements BusPlugInFactory
{
 public BusPlugIn createBusPlugIn(Bus bus) throws BusException
 {
 return new BankPlugIn(bus);
 }

 public void destroyBusPlugIn(BusPlugIn plugin)
 throws BusException
 {
 }
}

 535

CHAPTER 20 | Developing Plug-Ins
Configuring Artix to Load a Plug-in

Overview All Java based plug-in have some common configuration entries that are
required so that the bus can load the plug-in. These entries include:

� specifying the plug-in�s factory class.

� loading the Java plug-in loader.

� adding the plug-in to the list of Java plug-ins to load.

In addition, there is an optional variable that specifies the classloader
environment, if any, used by the plug-in.

Specifying a plug-in�s factory class To load a plug-in the bus needs to know which factory class is used to
create instances of the plug-in�s implementation. You specify the name of a
plug-in�s factory class using the variable plugins:plugin_name:classname.
It takes a single string that is the name of the plug-in�s factory class. You
can place this variable in either an application specific scope or in the global
scope. It is often better to place it in the global scope so that all applications
in the configuration domain have access to the information.

For example, if you created a plug-in to filter junk messages and called its
factory class JunkPluginFactory, you would add the configuration line
shown in Example 318 to the global scope of your Artix configuration file.
When configuring an application to load this plug-in, you would refer to it as
junk.

Note: The name you give the plug-in in this variable must match the
name you intend to use when listing the plug-in in the list of Java plug-ins
to be loaded.

Example 318: Configuring a Plug-in Factory Class

plugins:junk:classname="JunkPluginFactory";
536

Configuring Artix to Load a Plug-in
Loading the Java plug-in loader Java plug-ins require that a special Java plug-in loader be used by the bus.
You need to add this plug-in loader to the orb_plugins list of any
application that uses Java plug-ins as shown in Example 319.

Listing the Java plug-ins to be
loaded by an application

Unlike C++ plug-ins which are listed in an application�s orb_plugins list,
Artix Java plug-ins are listed in a separate configuration variable called
java_plugins. java_plugins is a list of comma separated plug-in names.
The plug-in names used in the list must correspond to the name given the
plug-in when specifying its factory class. For example to load the junk
message plug-in configured in Example 318, you would use the
configuration fragment shown in Example 320.

Specifying a classloading
environment

If you want your plug-in to use an Artix classloader environment, you specify
the classloading environment using the plugins:plugin_name:CE_Name
variable. The CE name is specified as a unique string.

In addition, you need to specify the location of the XML file describing the
classloader environment. This is done with the ce:ce_name:FileName
variable. ce_name is the CE name used when configuring the plug-in.

Example 321 shows a configuration fragment for loading the junk message
plug-in using a classloader environment.

For more information on using classloaders see �Using Artix Classloader
Environments� on page 633.

Example 319: The Java Plug-in Loader in orb_plugins

orb_plugins=[..., "java"];

Example 320: Loading a Java Plug-in

orb_plugins=["java"];
java_plugins=["junk"];

Example 321: Using a Classloader Environment

plugins:junk:CE_Name="junk_ce";
ce:junk_ce:FileName="\artix_ces\junk_ce.xml";
 537

CHAPTER 20 | Developing Plug-Ins
538

CHAPTER 21

Writing Handlers
Using the JAX-RPC Handler mechanism, developers can
access and manipulate messages as they pass along the
delivery chain.

In this chapter This chapter discusses the following topics:

Handlers: An Introduction page 540

Developing Request-Level Handlers page 543

Developing Message-Level Handlers page 546

Implementing a Handler as a Plug-in page 549

Handling Errors and Exceptions page 557

Configuring Endpoints to Use Handlers page 565
 539

CHAPTER 21 | Writing Handlers
Handlers: An Introduction

Overview When a service proxy invokes an operation on a service, the operations
parameters are passed to the Artix bus where they are built into a message
and placed on the wire. When the message is received by the service, the
Artix bus reads the message from the wire, reconstructs the message, and
then passes the operation parameters to the application code responsible for
implementing the operation. When the service is finished processing the
request, the reply message undergoes a similar chain of events on its trip to
the server. This is shown in Figure 14.

You can write handlers that work with a message at each stop along its
path. For example, if you wanted to compress a message before sending it
on the wire, you could write a handler that takes the message data from the

Figure 14: The Life of a Message
540

Handlers: An Introduction
binding and compresses it before the transport puts the message on the
wire. Likewise, you could write a handler that takes the message from the
transport and decompresses it before passing it on to the binding.

Handler levels The JAX-RPC specification outlines a mechanism for developers to write
custom handlers using the Handler interface. Using the handler
mechanism, you can intercept and work with message data at four points
along the request message�s life cycle and at four points along the reply
message�s life cycle. Both requests and replies can be handled at the client
request level, the client message level, the server message level, and the
server request level. These levels are shown in Figure 15.

On the client side of an application, you can write handlers to process
requests as they pass from the application to the binding and to process
responses as they passes from the binding to the application. These are
called request-level handlers. You can also write handlers to process

Figure 15: Handler Levels
 541

CHAPTER 21 | Writing Handlers
requests as they pass from the binding to the transport and to process
responses as they pass from the transport to the binding. These are called
message-level handlers.

On the server side of an application the direction of the message flow is
reversed, but the levels stay the same. For example, a request-level handler
on the server side would work with requests as they pass from the binding
to the application and a message-level handler would process with
responses as they passed from the binding to the transport.

Implementing a handler Handlers can be implemented as standalone Java classes or as Artix
plug-ins. Implementing your handlers as a standalone Java class is the
simplest method. This method only requires you to implement the JAX-RPC
Handler interface. Artix will load all of the handlers based on the endpoint�s
configuration scope and register them with the bus.

Implementing your handlers as plug-ins requires that you implement more
classes, but it also provides you some added control over your
implementation. In addition to the JAX-RPC Handler interface, this method
requires that you implement the BusPlugInFactory interface, extend the
BusPlugIn class, implement the HandlerFactory interface, and register the
handler factory with the bus. For information about implementing handlers
in a plug-in see �Implementing a Handler as a Plug-in� on page 549.

Your Handler implementation contains the logic for the handler you are
writing. The Handler interface has two methods that process messages:
handleRequest() and handleResponse(). handleRequest() is invoked
when a request message is passing through the handler. handleResponse()
in invoked when a response message is passing through the handler. These
methods are invoked in both request level handlers and message level
handlers.

Generic implementations To simplify implementing a handler, Artix supplies a GenericHandler class
and a GenericHandlerFactory class that you can extend to write your
handlers. These generic classes provide idle implementations of all of the
methods for the interfaces. By extending them you only to provide
implementations for the methods needed by your handler.
542

Developing Request-Level Handlers
Developing Request-Level Handlers

Overview Request-level handlers process messages as they pass between your
application code and the binding that formats the message that is being sent
on the wire. On the client side, request messages are processed immediately
after the application invokes a remote method on its service proxy and
before the binding formats the message. Responses are processed after the
message is decoded by the binding and before the data is returned to the
client application code. On the server side, requests are processed as they
pass from the binding to the service implementation. Replies are processed
as they pass from the server implementation to the binding.

Currently, handlers at the request level can access the following pieces of
data:

� The name of the invoked operation

� The parameters of the invoked operation

� The application�s message context

� Any Artix-specific context information that is set using the
IonaMessageContext

� The message�s SOAP headers

� The message�s security properties

For example, your application could have a client side handler that added a
custom SOAP header to its requests for authorization purposes. The server
could then use a handler to read the SOAP header and perform the
authorization before the request gets to the service implementation.

The handler implementation The easiest way to develop your handler logic is to extend the
com.iona.jbus.jaxrpc.handlers.GenericHandler class supplied with
Artix. The GenericHandler class provides implementations for all of the
methods in the JAX-RPC Handler interface, so all you need to do is override
the methods your handler requires. You can also implement the JAX-RPC
Handler interface if you desire.

The Handler interface has two methods that are used to process messages:
handleRequest() and handleResponse(). handleRequest() processes
request messages and handleResponse() processes reply messages. The
 543

CHAPTER 21 | Writing Handlers
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that reads a
SOAP header from a request in the server will not work if it is placed in the
client request chain.

The signatures for handleRequest() and handleResponse() are shown in
Example 322. Both methods have a MessageContext as an argument. For
information on using the message contexts see �Using Message Contexts�
on page 337. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

At the request-level, your handler can access the generic message context or
the Artix specific context. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your handler will use the Artix specific message context.
Properties set into the Artix specific message context at the request-level will
be propagated down the message chain and effect how the message is
formatted and transmitted. For example, security properties and SOAP
headers manipulated in a client request-level handler will change the
properties that are sent to the server. On the return side of the messaging
chain, such as in a server request handler or a client response handler, the
request-level is the level in which the SOAP header and security properties
are made available.

Example Example 323 shows the code for a client request-level handler that sets a
SOAP header on the request and reads the SOAP header returned with the
response. The object used to hold the SOAP header is of the generated type
SOAPHeaderInfo. This type is generated from a user supplied XML Schema
document that describes the contents of the SOAP header. For more
information see �Sending Message Headers� on page 365.

Example 322: handleRequest() and handleResponse()

boolean handleRequest(MessageContext context);
boolean handleResponse(MessageContext context);
544

Developing Request-Level Handlers
Example 323: Client Request Level Handler

// Java
import com.iona.jbus.IonaMessageContext;
import com.iona.jbus.ContextException;
com.iona.jbus.jaxrpc.handlers.GenericHandler;

import javax.xml.namespace.QName;

public class emoClientRequestHandler extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {
 IonaMessageContext mycontext = (IonaMessageContext)context;
 QName principalCtxName = new QName("", "SOAPHeaderInfo");
 SOAPHeaderInfo requestInfo = new SOAPHeaderInfo();
 requestInfo.setOriginator("Client");
 requestInfo.setMessage("Hello from Client!");
 mycontext.setRequestContext(principalCtxName,requestInfo);

 return true;
 }

 public boolean handleResponse(MessageContext context)
 {
 IonaMessageContext mycontext = (IonaMessageContext)context;
 QName ctxName = new QName("", "SOAPHeaderInfo");
 SOAPHeaderInfo replyInfo =

(SOAPHeaderInfo)mycontext.getReplyContext(ctxName);
 System.out.println("Header from Server: ");
 System.out.println("Originator - " +

replyInfo.getOriginator());
 System.out.println("Message - " + replyInfo.getMessage());

 return true;
 }
}

 545

CHAPTER 21 | Writing Handlers
Developing Message-Level Handlers

Overview Message-level handlers process messages as they pass between the binding
and the transport. On the client side, request messages are processed after
the binding formats the message and before the transport writes it to the
wire. Responses are processed after the message is read off of the wire and
before it is decoded by the binding. On the server side, requests are
processed after the message is read off of the wire and before it is decoded
by the binding. Replies are processed as they pass from the binding to the
transport.

Handlers at the message level have access to the raw message stream that
is being written out the wire. This data has been formatted into the
appropriate message type specified by the binding. Message-level handlers
can also access the applications message context. For example, your
application could have a client-side handler that compresses the message
data to enhance network performance. The server could then use a handler
to decompress the message data before it is sent to the binding for
decoding.

The handler implementation The easiest way to develop your handler logic is to extend the
GenericHandler class supplied with Artix. The GenericHandler class
provides implementations for all of the methods in the JAX-RPC Handler
interface, so all you need to do is override the methods your handler
requires. You can also implement the JAX-RPC Handler interface if you
desire.

The Handler interface has two methods that are used to process messages:
handleRequest() and handleResponse(). handleRequest() processes
request messages and handleResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that
compresses a request in the client will cause unpredictable results if it is
placed in the server message chain.

The signatures for handleRequest() and handleResponse() are shown in
Example 324. Both methods have a MessageContext as an argument. For
information on using the message contexts see �Using Message Contexts�
546

Developing Message-Level Handlers
on page 337. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

At the message level, your handler can access both the generic message
context and a special StreamMessageContext that provides access to the
raw message data that is to be written onto the wire. For more information
on using the stream message context, see �Manipulating Messages as a
Binary Stream� on page 578. In addition, if you are using the SOAP binding,
you can access the SOAP message context. For more information on
working with the SOAP message context, see �Working with SOAP
Messages� on page 575. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your message-level handlers will use either the raw
message data or the SOAP message context.

Example Example 325 shows the code for a client message-level handler that adds a
string onto the end of a SOAP request before sending it to the server and
removes an additional string from the end of the SOAP response before
passing the SOAP message to the binding. The complete code for this demo
can be found in the custom interceptor demo included in your Artix
installation.

Example 324: handleRequest() and handleResponse()

boolean handleRequest(MessageContext context);
boolean handleResponse(MessageContext context);

Example 325: Client Message-Level Handler

// Java
import com.iona.jbus.*;
com.iona.jbus.jaxrpc.handlers.GenericHandler;

import java.io.*;
import javax.xml.namespace.QName;
 547

CHAPTER 21 | Writing Handlers
public class firstHandClientMessageHandler extends
GenericHandler

{
 public boolean handleRequest(MessageContext context)
 {
 StreamMessageContext smc = (StreamMessageContext)context;
 InputStream ins = smc.getInputStream();
 ins = new TestInputStream(ins,
 TestInputStream.CLIENT_TO_SERVER);
 smc.setInputStream(ins);
 return true;
 }

 public boolean handleResponse(MessageContext context)
 {
 StreamMessageContext smc = (StreamMessageContext)context;
 InputStream ins = smc.getInputStream();
 ins.mark(1000);
 byte bytes[] = new

byte[TestInputStream.SERVER_TO_CLIENT.length];
 ins.read(bytes);
 String s = new String(bytes);
 System.out.println("Got string: "+s);
 return true;
 }
}

Example 325: Client Message-Level Handler
548

Implementing a Handler as a Plug-in
Implementing a Handler as a Plug-in

Overview If you choose to implement your handlers as Artix plug-in, you need to do
the following:

� Implement the Artix plug-in interfaces as described in �Developing
Plug-Ins� on page 527.

� Implement the HandlerFactory interface for the handlers loaded by
the plug-in.

In this section This section discusses the following topics:

Creating the Handler Plug-in page 550

Creating a Handler Factory page 553
 549

CHAPTER 21 | Writing Handlers
Creating the Handler Plug-in

Overview Artix handlers can be hosted in a plug-in. Creating a plug-in for your
handlers follows the same pattern as creating any other Java plug-in. The
difference is that in BusPlugin.busInit() you register the handler factories
used to instantiate your handlers.

Procedure To create a plug-in for your handlers do the following:

1. Implement a BusPluginFactory to load the plug-in that implements
your handler. See �Implementing the BusPlugInFactory Interface� on
page 534.

2. Extend BusPlugin to load your handler using the bus�
registerHandlerFactory() method.

If you wish to have a single plug-in load multiple handlers, make multiple
calls to registerHandlerFactory().

The plug-in The implementation of busInit() in your plug-in registers the handler
factories for the handlers used by the application. Handler factory
registration is done using the bus� registerHandlerFactory() method. The
signature for registerHandlerFactory() is shown in Example 326.

registerHandlerFactory() takes an instance of the handler factory for your
handler. Subsequent calls to registerHandlerFactory() add to the list of
registered handler factories. So, if you need to register multiple handler
factories you simply call registerHandlerFactory() with an instance of
each handler factory to be registered.

Example 326: registerHandlerFactory()

void registerHandlerFactory(HandlerFactory factory);
550

Implementing a Handler as a Plug-in
Example Example 327 shows a the plug-in code for a handler.

The code in Example 327 does the following:

1. Imports the Artix bus APIs.

2. Implements a constructor for the plug-in class.

3. Implements busInit() to register the handler factory.

4. Gets a handle for the plug-in�s bus.

5. Registers the handlers� factories with the bus using
registerHandlerFactory().

Example 327: Handler Plug-In

//Java

1 import com.iona.jbus.*;

public class HandlerPlugIn extends BusPlugIn
{

2 public HandlerPlugin(Bus bus)
 {
 super(bus);
 }

3 public void busInit() throws BusException
 {
 try
 {

4 Bus bus = getBus();

5 bus.registerHandlerFactory(new firstHandFactory());
 bus.registerHandlerFactory(new secondHandFactory2());
 }
 catch (Exception ex)
 {
 throw new BusException(ex);
 }
 }

6 public void busShutdown() throws BusException
 {
 }
}

 551

CHAPTER 21 | Writing Handlers
6. Implements busShutdown().
552

Implementing a Handler as a Plug-in
Creating a Handler Factory

Overview When you implement your handler in a plug-in, the bus calls the methods
provided by the HandlerFactory you register in the handler plug-in. You
implement a HandlerFactory for each set of handlers you are deploying in a
plug-in. The HandlerFactory interface has four methods:

� getClientRequestHandler() creates a client-side, request-level
handler.

� getServerRequestHandler() creates a server-side, request-level
handler.

� getClientMessageHandler() creates a client-side, message-level
handler.

� getServerMessageHandler() creates a server-side, message-level
handler.

If all four methods are implemented, one HandlerFactory can instantiate
one of each type of handler.

The GenericHandlerFactory The easiest way to develop your handler factory is to extend the
GenericHandlerFactory included with Artix. The GenericHandlerFactory
implements all of the methods in the HandlerFactory interface. You only
need to override the methods needed for your handlers and provide a
constructor for your handler factory.

Implementing the methods When using the GenericHandlerFactory as a base class, you only need to
implement the methods that relate to your application. For example if your
application only uses a server-side, message-level handler, you only need to
implement getServerMessageHandler(). If, however, your application also
uses a client-side. message-level handler, you will also need to implement
getClientMessgeHandler().
 553

CHAPTER 21 | Writing Handlers
The signatures for the HandlerFactory methods are shown in Example 328.
They take a single HandlerInfo object and return an instance of the class
HandlerInfo.

The factory methods need to supply the Class that implements your
handler. For example if your client-side handler is implemented by a class
called firstHandRequestHandler, you need to set the returned
HandlerInfo�s HanderClass field to firstHandClientRequestHandler.class
by invoking setHandlerClass() on the HandlerInfo object.

Example Example 329 shows code for implementing a handler factory.

Example 328: Handler Factory Methods

public HandlerInfo getClientRequestHandler(HandlerInfo info)
public HandlerInfo getServerRequestHandler(HandlerInfo info)
public HandlerInfo getClientMessageHandler(HandlerInfo info)
public HandlerInfo getServerMessageHandler(HandlerInfo info)

Example 329: Handler Factory For Request Level Handlers

//Java
import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

import javax.xml.rpc.handler.*;

1 public class firstHandFactory extends GenericHandlerFactory
{

2 public fristHandFactory()
 {
 super(new String("firstHand"));
 }

3 public HandlerInfo getClientRequestHandler(HandlerInfo info)
 {

4 info.setHandlerClass(firstHandClientRequestHandler.class);
 return info;
 }
554

Implementing a Handler as a Plug-in
The code in Example 329 does the following:

1. Extends GenericHandlerFactory.

2. Implements a constructor for the handler factory. The string set is the
string used by the bus to reference the handler factory. It is also the
value which is used in the configuration file to refer to the handler
factory.

3. Overrides getClientRequestHandler().

4. Sets the HandlerClass property to the class of the handler that will
process client requests.

HandlerInfo The HandlerInfo passed into the method contains the following
information:

� The current bus

� The QName of the service for which the handler is being created

� The name of the port for which the handler is being created

To retrieve this information you first need to get the configuration map from
the HandlerInfo object as shown in Example 330.

 public HandlerInfo getServerRequestHandler(HandlerInfo)
 {
 info.setHandlerClass(secondHandServerRequestHandler.class);
 return info;
 }
}

Example 329: Handler Factory For Request Level Handlers

Example 330: Getting a Configuration Map from a HandlerInfo

import java.util.Map;

Map config = info.getHandlerConfig();
 555

CHAPTER 21 | Writing Handlers
To access the properties stored in the configuration map use the Artix
handler constants shown in Table 33.

Example 331 shows code for getting all of the properties from a
HandlerInfo object.

Table 33: Configuration Map Properties

Property Description

HandlerContants.BUS Returns the current bus.

HandlerConstants.SERVICE_NAME Returns the QName of the service
for which the handler is being
created.

HandlerConstants.PORT_NAME Returns the name of the port
through which messages for this
handler will pass.

Example 331: Getting Configuration Information From a HandlerInfo

import java.util.Map;
import com.iona.jbus.*;
import com.iona.jbus.HandlerConstants;

Map config = info.getHandlerConfig();
Bus bus = (Bus)config.get(HandlerConstants.BUS);
QName serv = (QName)config.get(HandlerConstants.SERVICE_NAME);
String port = (String)config.get(HandlerConstants.PORT_NAME);
556

Handling Errors and Exceptions
Handling Errors and Exceptions

Overview Java handlers have three ways of generating errors when processing a
message:

� throw a runtime exception.

� throw a user-exception that is wrapped in a runtime exception.

� populate the message context with an error message and return false.

The behavior of the handler depends on if the message being processed is a
request or a response. The resulting behavior also depends on if the handler
is implemented on the client-side or the server-side of an application.

In this section This section discusses the following topics:

Handling Errors when Processing Requests page 558

Handling Errors when Processing Responses page 560

Throwing User Faults page 561

Processing Fault Messages page 563
 557

CHAPTER 21 | Writing Handlers
Handling Errors when Processing Requests

Overview As requests are passed down the messaging chain, they are processed by
each handler�s handleRequest() method. Regardless of where on the
messaging chain a request is, an error will prevent the request from making
it to the service implementation.

Client-side If an exception is thrown at any point in the client�s request processing
chain, it is returned immediately to the client. All handlers in the messaging
chain are skipped and no message processing is done.

If handleRequest() returns false, the handler is responsible for populating
the response buffer with an appropriate fault message. Artix then invokes
the handler�s response chain starting from the handler that created the fault
condition. The fault message will be processed as if it were a normal
response and each handler�s handleResponse() method will process it.

Server-side Error processing on the server-side is more complicated. The behavior of the
service depends on where in the messaging chain the error condition is
encountered.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler�s handleFault() method.

If a message-level request handler returns false, you must ensure that an
appropriate response message is created and placed in the response buffer.
A return of false from a message-level request handler will cause the bus to
stop processing the request and return the message in the response buffer to
the client. The response handler sequence is followed starting from the
handler that created the error condition. The messages are processed
through the handleResponse() method.

At the request-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will then send the response back
down the message chain starting from the handler that generated the
558

Handling Errors and Exceptions
exception. However, instead of calling handleResponse() on each handler,
the bus will call handleFault(). In this instance, the servant will never be
invoked.

Returning false will cause the messaging chain to stop processing the
request and forward the request straight to the servant for processing.
 559

CHAPTER 21 | Writing Handlers
Handling Errors when Processing Responses

Overview As responses are passed down the messaging chain, they are processed by
each handler�s handleResponse() method. At this point in the
request/response chain, it is expected that the response buffer is already
populated. However, the contents of the request buffer is not fixed.

Server-side On the server-side, request-level handlers can safely throw runtime
exceptions. The exception will stop the further processing of handlers along
the server�s message chain. The exception will be immediately sent to the
client as a fault message. As the fault message is passed back down the
message handler chain it is processed by each handler�s handleFault()
method.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler�s handleFault() method.

Server-side response handlers that return false, at both the request-level
and the message-level, have no effect on message processing. Regardless of
the return value from handleResponse(), the server will continue to send
the message along the messaging chain. The message will pass through all
of the handlers in the chain.
560

Handling Errors and Exceptions
Throwing User Faults

Overview In cases where you want to pass a user defined exception back to the client
application, you can wrap the user defined exception in a runtime exception
and send it back to the client. Artix will catch the runtime exception and
inspect its contents. If the runtime exception contains a user defined fault,
then Artix passes the user defined fault up the messaging chain. If not, Artix
just passes the runtime exception up the messaging chain.

Procedure To throw a user defined fault from a message handler do the following:

1. Ensure that your service definition, in the service�s contract, includes a
fault message. See �Describing User-defined Exceptions in an Artix
Contract� on page 230.

2. Create an instance of the user defined fault you want to throw. See
�Working with User-defined Exceptions in Artix Applications� on
page 235.

3. Throw a RuntimeException using the created instance of your user
defined fault as the parameter to the constructor.

When the Artix client transport layer receives the exception it will discover
that it contains a user defined exception, remove it from the
RuntimeException wrapper, and pass the user defined exception up the
messaging chain. As the message is passed up the messaging chain it will
be processed by the handleFault() method of the message handlers.

Example If you had a service that could return a user defined fault called Pied its
contract would contain a fragment similar to Example 332.

Example 332: Service Definition with a Fault

...
<message name="pied">
 <part name="flavor" type="xsd:string" />
</message>
 561

CHAPTER 21 | Writing Handlers
The contract fragment in Example 332 would cause Artix to generate a Java
class called Pied that extended the class Exception. Pied would contain a
single member variable called flavor. Because Pied extends Exception, it
inherits from Throwable which means it can be used as an argument the
RuntimeException object�s constructor.

If you wanted to throw a pied exception from a message handler, you would
use code similar to Example 333.

...
<portType name="brainService">
 <operation name="tonight">
 <input message="tns:marketData" name="plan" />
 <output message="tns:worldDominiation" name="goal" />
 <fault message="tns:pied" name="pinky" />
 </operation>
</portType>

Example 332: Service Definition with a Fault

Example 333: Throwing a User Defined Exception in a MessageHandler

public class cageBreak extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {
 ...
 Pied userFault = new Pied("bananaCream");
 throw RemoteException(userFault);
 ...
 return true;
 }

...
}

562

Handling Errors and Exceptions
Processing Fault Messages

Overview Fault messages are processed by the handleFault() method of a handler. It
is implemented in the same manner as the other message handler
functions.

Implementing the fault handler Like handleRequest() and handleResponse(), handleFault() receives a
generic MessageContext as a parameter. Its signature is shown in
Example 334.

The information available from the MessageContext depends on where in
the messaging chain the handler is placed. At the request-level, the fault
handler can access any information in the generic MessageContext and any
information in the IONAMessageContext. For information on using the
IONAMessageContext, see �Using Message Contexts� on page 337.

At the message-level, the fault handler can access the SOAPMessageContext,
if the service uses a SOAP payload format, or the StreamMessageContext.
For information on using the SOAPMessageContext or the
StreamMessageContext, see �Manipulating Messages in a Handler� on
page 569.

Reading the contents of the
exception

Server-side request-level message handlers can access the contents of an
exception thrown by the servant in handleFault() in much the same way
that they access the information about an operation in handleResponse().
You call the getProperties() method on the context using
ContextConstants.SERVER_RESPONSE_EXCEPTION as the property name. The
property is returned as a generic Java object that needs to be cast into either
the actual class of the specific exception or one of the generic subclasses
used to create the exception.

Example 334: handleFault()

public boolean handleFault(MessageContext context)
 563

CHAPTER 21 | Writing Handlers
Example 335 shows code for getting an exception in handleFault().

Return values handleFault() returns a boolean value. If handleFault() returns true, the
message continues along the massaging chain as normal. If handleFault()
returns false, the bus stops processing the message and returns it directly
to the client. In the case where handleFault() returns false, it is the
handler�s responsibility to ensure that the response message contains an
appropriate message.

Throwing exceptions If handleFault() throws an exception, the exception is returned directly to
the client. If the exception is thrown while in the server-side messaging
chain, the client-side messaging chain will process the returned fault
message normally. If the exception is thrown while in the client-side
messaging chain, the exception is immediately returned to the user code.

Example 335: Accessing an Exception

handleFault(MessageContext context)
{
 Throwable ex = (Throwable)context.getProperty(ContextConstants.SERVER_RESPONSE_EXCEPTION);

 //process the exception
 ...
}

564

Configuring Endpoints to Use Handlers
Configuring Endpoints to Use Handlers

Overview Configuring an endpoint to load and use handlers is a two step process.
First, you must specify the class that implements and associate it with a
name. Second, you must add the handler to one of the endpoint�s
interceptor chains.

Specifying the implementation
class

How you specify the implementation class for your handler depends on how
you implemented your handler.

Handlers implemented as a Java class

If you implemented your handler as a plain Java class, you specify the
implementation class using a configuration variable of the form:

The value you supply for handlerName is the name by which the handler will
be referred to in the interceptor chains. The value you supply for
handlerClassname is the fully qualified class name of your handler�s
implementation. For example, if you wrote a handler for scrubbing messages
in a class called com.squeaky.ScrubberHandler you would add the
configuration variable shown in Example 336 to your endpoint�s
configuration.

When adding the handler to the endpoint�s interceptor chain you would refer
to the handler using scrubber.

Handlers implemented as a Plug-in

If you implemented your handler as an Artix plug-in, you specify its
implementation using the method described in �Configuring Artix to Load a
Plug-in� on page 536.

handler:handlerName:classname="handlerClassname";

Example 336: Handler Class Specification

handler:scrubber:classname="com.squeaky.ScrubberHandler";
 565

CHAPTER 21 | Writing Handlers
Adding handlers to an interceptor
chain

Before your applications can use handlers, you must configure them to load
the handlers at the appropriate points in the message chain. This is done by
adding the following configuration variables into the application�s
configuration scope:

binding:artix:client_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a client.

binding:artix:client_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a client.

binding:artix:server_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a server.

binding:artix:server_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a server.

The handlers are placed in the list in the order they will be invoked on the
message as it passes through the messaging chain. For example, if the
server request interceptor list was specified as "Freeze+Dry", a message
would be passed into the handler Freeze as it left the binding. Once Freeze
processed the message, it would be passed into Dry for more processing.
Dry would then pass the message along to the application code.

Example 338 shows the configuration for an application that uses both
client and server handlers.

Example 337: Configuration with Handlers

java_interceptors
 client
 {
 binding:artix:client_request_interceptor_list =

"firstHand+secondHand";
 binding:artix:client_message_interceptor_list =

"firstHand+secondHand";
 };
566

Configuring Endpoints to Use Handlers
More information For more information on configuring Artix applications see Configuring and
Deploying Artix Solutions, C++ Runtime.

Example 338 shows the configuration for an application that uses both
client and server handlers.

 server
 {
 binding:artix:server_request_interceptor_list=

"secondHand+firstHand";
 binding:artix:server_message_interceptor_list =

"secondHand+firstHand";
 };
};

Example 337: Configuration with Handlers

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.

Example 338: Configuration with Handlers

java_interceptors
{
 plugins:first_hand:classname="FirstHandlerPlugInFactory";
 plugins:second_hand:classname="SecondhandlerPlugInFactory";
 java_plugins = ["first_handler", "second_hand"];
 orb_plugins = ["xmlfile_log_stream","java"];

 client
 {
 binding:artix:client_request_interceptor_list =

"firstHand+secondHand";
 binding:artix:client_message_interceptor_list =

"firstHand+secondHand";

 # override config settings for client here
 };
 567

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 21 | Writing Handlers
 server
 {
 binding:artix:server_request_interceptor_list=

"secondHand+firstHand";
 binding:artix:server_message_interceptor_list =

"secondHand+firstHand";

 # override config settings for server here
 };
};

Example 338: Configuration with Handlers
568

CHAPTER 22

Manipulating
Messages in a
Handler
One function of a handler may be to modify messages as they
pass between the application level code and the wire.

Overview Handlers often need to have a fine grained access to the messages they
process. Artix provides access to the message details in the handlers in
several ways. Request-level handlers can access the parameters passed as
part of an operation invocation. Message-level handlers can access the
message information as raw stream data using the StreamMessageContext.
In addition, if your application uses a SOAP binding, your message-level
handlers can also access message data using the JAXM SOAP APIs through
the SOAPMessageContext.

In this chapter This chapter discusses the following topics:

Working with Operation Parameters page 570

Working with SOAP Messages page 575

Manipulating Messages as a Binary Stream page 578
 569

CHAPTER 22 | Manipulating Messages in a Handler
Working with Operation Parameters

Overview Request-level handlers in Artix have access to the name of the operation
which generated the message and the message parts, which represent the
operation parameters, of both the request message and the response
message. You can use this information to determine how a message is to be
processed. You can also change the values of the message parts as they are
passed along the message chain.

Getting the operation name You get the name of the operation from which the message being processed
originated through the generic message context. It is stored in a property
accessed using the Artix constant ContextConstants.OPERATION_NAME. The
returned value is a String containing the operation name as listed in the
Artix contract.

For example, if you have a contract with the interface defined in
Example 339 the operation name returned from the context would be
forward.

WARNING: Changing this value can produce unpredictable results.

Example 339: Example Port Type

<message name="travelRequest">
 <part name="date" type="xsd:string"/>
</message>
<message name="travelResponse">
 <part name="arrived" type="xsd:boolean"/>
</message>
<portType name="tardis">
 <operation name="forward">
 <input message="travelRequest" name="request"/>
 <output message="travelResponse" name="outcome"/>
 </operation>
</portType>
570

Working with Operation Parameters
Example 340 shows the code for getting the operation name from the
message context.

Message part context properties Artix uses four separate context properties for storing message parts:

� CLIENT_REQUEST_VALUES holds the message parts for an outbound
request on the client-side of the messaging chain.

� SERVER_REQUEST_VALUES holds the message parts for an inbound
request on the server-side of the messaging chain.

� SERVER_RESPONSE_VALUES holds the message parts for an outbound
response on the server-side.

� CLIENT_RESPONSE_VALUES holds the message parts for an inbound
response on the client-side.

The values are stored as an array of generic Java Object objects that can be
cast back into their proper types for manipulation. The returned array
contains values for all parts in the message that are set. If a message part is
nillable, it will not be included in the returned array if was not populated.

In addition to storing message parts, Artix also stores a list of each parts
Java class. This list is an array of Class objects and it contains information
on all of the possible parts in a message. There are also four context
properties for storing the message parts� class list:

� CLIENT_REQUEST_CLASSES holds the class information for the message
parts of an outbound request on the client-side of the messaging chain.

� SERVER_REQUEST_CLASSES holds the class information for the message
parts of an inbound request on the server-side of the messaging chain.

Example 340: Getting the Operation Name

import com.iona.jbus.ContextConstants;

public class ServerRequestHandler extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {
 String opName = (String)

context.getProperty(ContextConstants.OPERATION_NAME);
 ...
 }
...
}

 571

CHAPTER 22 | Manipulating Messages in a Handler
� SERVER_RESPONSE_CLASSES holds the class information for the message
parts of an outbound response on the server-side.

� CLIENT_RESPONSE_CLASSES holds the class information for the message
parts of an inbound response on the client-side.

Accessing the message parts You can access the parts of a message using the getProperties() method
on the generic message context in request-level handlers. While, you can
pass in any of the message part property identifiers into getProperties(),
only the message parts appropriate to the position in the message chain
have valid values. For example, if your handler is a server-side response
handler, only the properties SERVER_RESPONSE_CLASSES and
SERVER_RESPONSE_VALUES have data. If you try to access any of the other
message part properties, getProperties() will return NULL.

Working with the message parts Artix returns the message parts as an array of Java Object objects when you
request the message part values. The returned array contains all of the
non-nill message parts. If a message part is nillable and not set, there will
not be a place holder in the returned array of objects.

To inspect or change any of the message parts, you can cast it to the
appropriate type and work with it as you would normally. All changes made
to the value of a message part are immediately reflected in the message.

The only restriction to manipulating message parts in Java handlers is that
you cannot add or remove a message parts. This also means that you
cannot change the value of a nill message part.

Working with message part class
information

Artix returns message part class information as an array of Class objects.
The returned array has an entry for every part specified in the WSDL
description of the message. If a message part is nillable and not set by the
operation, the message part�s class information will still be returned.

You should not change any of the values in the returned array. It is only
stored for information purposes. For instance you could compare the list of
parts to the list of classes to determine if a message part is not set.
572

Working with Operation Parameters
Example If you were developing an ordering system for kayak paddles for a
manufacturer in Europe that takes orders from retailers in the United States,
you may need to convert the paddle lengths from inches to centimeters. The
interface for such an ordering system is shown in Example 341.

Example 342 shows s server-side request handler that converts the length
part of an incoming request from inches to centimeters.

Example 341: Paddle Ordering Interface

<message name="order">
 <part name="amt" type="xsd:int" />
 <part name="length" type="xsd:int" />
</message>
<message name="bill">
 <part name="amtDue" type="xsd:float" />
</message>
<portType name="supplyPaddles">
 <operation name="orderPaddles">
 <input message="tns:order" name="order" />
 <output message="tns:bill" name="bill" />
 </operation>
</portType>

Example 342: Changing the Value of Message Parts

import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.namespace.QName;
import com.iona.jbus.ContextConstants;

public class ServerRequestHandler extends GenericHandler
{
 public boolean handleRequest(MessageContext context)
 {

1 Object[] parts = (Object[])
 context.getProperty(ContextConstants.SERVER_REQUEST_VALUES);

2 int length = (int)parts[1];
3 parts[1] = length * 2.54;

4 return true;
 }
}

 573

CHAPTER 22 | Manipulating Messages in a Handler
The code in Example 342 does the following:

1. Gets the server request message parts from the message context.

2. Gets the length part of the message. As shown in Example 341 on
page 573, length is the second part in the request.

3. Converts the length part from inches to centimeters.

4. Returns true to continue message processing.
574

Working with SOAP Messages
Working with SOAP Messages

Overview Message-level handlers in Artix can, if they are used by application with a
SOAP binding, access and modify the SOAP message being sent between
the participating services. Using the SOAPMessageContext class, developers
can get the message being passed as a javax.xml.soap.SOAPMessage object
and manipulate the message using the standard Java APIs.

SOAPMessageContext SOAPMessageContext extends the generic MessageContext class that is
passed into all message handlers. It is only available in message-level
handlers for applications that have a SOAP binding. If your application is not
using a SOAP binding and you attempt to use the SOAPMessageContext you
will get an exception.

SOAPMessageContext has two methods that allow you to retrieve and modify
the contents of the SOAP message being processed by a handler. They are
described in Table 34.

Table 34: SOAPMessageContext Methods

Signature Description

SOAPMessage getMessage() Returns the SOAPMessage
contained in the context.

void setMessage(SOAPMessage message) Sets the SOAPMessage
contained in the context to
the message specified.
 575

CHAPTER 22 | Manipulating Messages in a Handler
SOAPMessage Once you have the SOAPMessageContext, you can use it to manipulate the
SOAP message using the SOAPMessage APIs. The SOAPMessage
implementation in Artix conforms to the SOAP with Attachments API for
Java (SAA)J 1.2 specification. Using this API, you can access all parts of the
SOAP message elements. These are listed in Table 35.

For more information on the SOAPMessage APIs see the SAAJ 1.2
specification or the publicly available J2EE API documentation.

Table 35: SOAPMessage Elements

Element Description

SOAPPart Contains routing and identification
information for the message. All
SOAPMessages must have a valid
SOAPPart.

SOAPEnvelope Contained inside of the SOAPPart.
By default, this object contains an
empty SOAPHeader and an empty
SOAPBody.

SOAPBody Contains the data passed in the
SOAP message. All data must be
XML data.

SOAPHeader An optional element of the SOAP
message that contains XML data.
This element provides a container
for additional information such as
security information.

AttachmentPart Optional elements of a SOAP
message that can contain binary
data such as images or word
processing documents.
576

http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp

Working with SOAP Messages
Example Example 343 shows an example of using the SOAPMessageContext to add
an attachment to a SOAP message.

The code in Example 343 does the following:

1. Gets the SOAPMessageContext by casting the passed in
MessageContext.

2. Gets the SOAPMessage stored in the context.

3. Gets the image to store in the SOAP message.

4. Creates a new AttachmentPart to store the image.

5. Adds the new AttachmentPart to the message.

6. Updates the message�s data.

7. Sets the modified message back into the SOAPMessageContext.

Example 343: Using the SOAPContext

//Java
boolean handleRequest(MessageContext context)
{

1 SOAPMessageContext SOAPcontext = (SOAPMessageContext)context;

2 SOAPMessage message = SOAPcontext.getMessage();

3 Java.awt.Image image = getPicture();

4 AttachmentPart imagePart = message.createAttachmentPart(image,
 "img/gif");

5 message.addAttachmentPart(imagePart);

6 message.saveChanges();

7 SOAPcontext.setMessage(message);
}

Note: You are left to implement the getPicture() method.
 577

CHAPTER 22 | Manipulating Messages in a Handler
Manipulating Messages as a Binary Stream

Overview While the SOAPMessageContext provides a more convenient means of
accessing the contents of a message, it only works when the service is using
a SOAP payload format. If your service does not use a SOAP payload format
or you cannot be sure what payload format your service is going to use, you
can access the contents of messages using the StreamMessageContext.

The StreamMessageContext returns the contents of a message as either a
Java InputStream or a Java OutputStream. Using these binary streams, you
can then manipulate the contents of the message as needed. It is important
to remember, however, that the service receiving the message can accept
the alterations made to the message.

Getting the
StreamMessageContext

To get a StreamMessageContext you cast the MessageContext passed into
the handler method as shown in Example 344.

Getting message streams The StreamMessageContext has methods for getting and setting the input
and output streams used by the transport as shown in Example 345. While
StreamMessageContext provides methods for getting the output stream, you
should always work with the input stream provided. Artix will ensure that
data from the input stream is the data that gets propagated through the
message chain.

Example 344: Getting a StreamMessageContext

// Java
boolean handleResponse(MessageContext context)
{
 StreamMessageContext myCtx = (StreamMessageContext)context;
 ...
}

Example 345: StreamMessageContext

package com.iona.jbus;
578

Manipulating Messages as a Binary Stream
Example Example 346 shows code for adding a string to the end of a message.

import javax.xml.rpc.handler.MessageContext;
import java.io.InputStream;
import java.io.OutputStream;

public interface StreamMessageContext extends MessageContext
{
 public static final String INPUT_STREAM_PROPERTY =

"StreamMessageContext.InputStream";
 public static final String OUTPUT_STREAM_PROPERTY =

"StreamMessageContext.OutputStream";

 public InputStream getInputStream();
 public void setInputStream(InputStream ins);
 public OutputStream getOutputStream();
 public void setOutputStream(OutputStream out);
}

Example 345: StreamMessageContext

Example 346: Using StreamMessageContext

class TestInputStream extends InputStream
{
 InputStream in;
 ByteArrayInputStream bin;

 TestInputStream(InputStream i2, byte bytes[])
 {
 in = i2;
 bin = new ByteArrayInputStream(bytes);
 }
 579

CHAPTER 22 | Manipulating Messages in a Handler
 public int read() throws IOException
 {
 if (bin != null)
 {
 int i = bin.read();
 if (i == -1) bin = null;
 else return i;
 }

 return in.read();
 }
}
...
boolean handleResponse(MessageContext context)
{
 String message = "San Dimas High School Football Rules!";
 byte bytes[] = message.getBytes();

 StreamMessageContext smc = (StreamMessageContext)context;
 InputStream ins = smc.getInputStream();
 ins = new TestInputStream(ins, bytes);
 smc.setInputStream(ins);
}

Example 346: Using StreamMessageContext
580

CHAPTER 23

Developing
Custom Artix
Transports
Artix provides a number of standard transport plug-ins.
However, your applications my use a custom transport that is
not provided. Using the Artix plug-in mechanism, developing
custom transports in Java is a straightforward procedure.

In this chapter This chapter discusses the following topics:

Developing a Transport: The Big Picture page 582

Making a Schema for the Transport Attributes page 584

Developing and Registering the Transport Factory page 588

Developing the Client Transport page 597

Developing the Server Transport page 605

Using your Custom Transport page 622
 581

CHAPTER 23 | Developing Custom Artix Transports
Developing a Transport: The Big Picture

Overview All of the transports used by Artix are implemented as plug-ins that are
loaded based on cues from an application�s Artix contract. The
implementation of transports in plug-ins makes it easy to develop custom
Artix transports. This is useful in situations where you have applications that
use a homegrown transport.

What does a transport do? Artix transports are responsible for reading data from and writing data to an
Artix endpoint. A transport first establishes a connection with the target
endpoints and then waits to perform work. When reading data from the
wire, a transport plug-in reads the raw binary data, decodes any transport
specific header information, and passes the message to the binding as a
binary buffer. When writing data to the wire, a transport plug-in receives a
formatted message from the binding as a binary buffer, adds any transport
specific headers, and sends the binary data to the target endpoint.

The transport WSDL definition Every transport requires some piece of information from the user before it
can connect two endpoints. In the simplest case, the only information
needed is the address where messages are sent and received. More complex
transports may require more information such as persistence and security
settings. In all cases, this information is supplied in an application�s Artix
contract. Transport configuration is supplied inside the WSDL port element
that defines an endpoint.

For each Transport used by Artix there is a corresponding XML Schema
document describing the WSDL extension element that defines the transport
attributes. When designing a custom transport, you will also need to define
the transport attributes in an XML Schema document.

Procedure To develop a custom Artix transport you need to do the following:

1. Make an XML Schema document defining the attributes needed to
define an endpoint for your transport.

2. Extend the TransportFactory class.

3. Implement an Artix plug-in that registers your transport factory.
582

Developing a Transport: The Big Picture
4. Implement the ClientTransport interface as shown in �Developing the
Client Transport� on page 597.

5. Implement the ServerTransport interface as shown in �Developing the
Server Transport� on page 605.
 583

CHAPTER 23 | Developing Custom Artix Transports
Making a Schema for the Transport Attributes

Overview Like most parts of Artix, transport endpoints are defined by an application�s
contract. The transports, other than SOAP/HTTP, are defined using an XML
Schema document that defines an extension to WSDL. When you create a
custom transport you must also define the WSDL extensions for defining an
endpoint for the newly developed transport. The XML Schema document
defining your transport�s attributes will also be specify the namespace
identifying your transport so that Artix can load it dynamically.

Transport namespace The namespace you assign to a transport is important for two reasons. First
it allows you to validate your endpoint definition against the XML Schema
you develop to define its WSDL extensions. Second, and more important, it
informs Artix to load your transport at runtime. When Artix parses an
application�s contract it decides what transport and binding plug-ins to load
based on the namespaces used in the contract�s port elements and their
corresponding xmlns entries in the contract�s definition element.

For example, when using the Artix IIOP tunnel transport you include
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel" in the
contract�s definition element. When defining the endpoint you use the
service element shown in Example 347.

When parsing the port element, Artix would resolve the iiop tag to the
namespace specified in the definition element and then know to load the
IIOP tunnel transport plug-in. For more information on how to specify the
configuration for a transport see, �Using your Custom Transport� on
page 622.

Example 347: Endpoint Definition

<service name="IIOPservice">
 <port name="IIOPport" binding="tns:IIOPbinding">
 <iiop:address location="file:///objref.ior" />
 <iiop:policy persistent="true" />
 </port>
</service>
584

Making a Schema for the Transport Attributes
When writing the XML Schema for your transport�s attributes you specify the
transport�s namespace as the target namespace. This is done using the
targetNamespace attribute of the XML Schema document�s schema element,
as shown in Example 348.

When defining an endpoint that uses the transport defined with the
statement in Example 348, your contract needs to include
xmlns:sock="http://widgetVendor.com/trasnport/socket" in its
definition element. The port element defining the endpoint�s attributes
would contain elements prefixed sock to specify that they used the custom
transport.

Defining the transport attributes Transport attributes are defined as WSDL extensibility elements according to
the WSDL 1.1 specification. To properly define your transport�s attributes as
WSDL extensions your XML Schema definition must conform to the
following rules:

1. It must import the WSDL 1.1 XML Schema document defined in the
namespace http://schemas.xmlsoap.org/wsdl/.

2. All the elements that define attributes to be listed in the Artix contract
must be of a type that extends the abstract
wsdl:tExtensibilityElement type.

Beyond these two restrictions your transport�s attributes can be as complex
or as simple as needed to fully define an endpoint. For example, the IIOP
tunnel transport has a single required element to specify the endpoint�s
address. However, the MQ transport has two elements each of which can
take a number of attributes to define an endpoint.

Example 348: Specifying the Transport�s Namespace

<xs:schema
 targetNamespace="http://widgetVendor.com/transport/socket"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sock="http://widgetVendor.com/transport/socket"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 585

CHAPTER 23 | Developing Custom Artix Transports
Example Example 349 shows an example of an XML Schema document for a
transport that uses a single element, sock:address, to define an endpoint.

Example 349 does the following:

1. Defines the target namespace for the transport�s attributes.

2. Imports the WSDL XML Schema definition.

3. Defines a complex type, addressType, that extends
wsdl:tExtensibilityElement and has one required attribute,
location.

4. Defines the element address.

When you wanted to define an endpoint for the transport defined in
Example 349 you would include
xmlns:sock="http://widgetVendor.com/transport/socket" in the
contract�s definition element and a service element similar to
Example 350.

Example 349: Sample Transport XML Schema

<xsd:schema
 targetNamespace="http://widgetVendor.com/transport/socket"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sock="http://widgetVendor.com/transport/socket"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:import namespace="http://schemas.xmlsoap.org/wsdl/"/>
 <xsd:complexType name="addressType">
 <xsd:complexContent>
 <xsd:extension base="wsdl:tExtensibilityElement">
 <xsd:attribute name="host" type="xsd:string"
 use="required">
 <xsd:attribute name="port" type="xsd:string"
 use="required">
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="address" type="sock:addressType"/>
</xsd:schema>
586

Making a Schema for the Transport Attributes
Example 350: Socket Endpoint Definition

<service name="widgetSocketService">
 <port name="widgetSocketPort> binding="tns:widgetSOAPbinding">
 <sock:address host="localhost" port="8090" />
 </port>
</service>
 587

CHAPTER 23 | Developing Custom Artix Transports
Developing and Registering the Transport
Factory

Overview Transports are created and managed by the bus, so each transport must
have a transport factory. You create a transport factory by extending
TransportFactory. The transport factory is responsible for creating any
resources needed by the transport and setting the threading model used by
the transport.

Transports are loaded by the Artix bus using the plug-in mechanism. So to
use a transport you must write a plug-in that instantiates a transport factory
for your transport. The plug-in must also register the transport factory with
the bus. For a detailed discussion of implementing a plug-in see �Developing
Plug-Ins� on page 527.

In this section This section discusses the following topics:

Creating a Transport Factory page 589

Transport Policies page 592

Registering and Unregistering a Transport Factory page 595
588

Developing and Registering the Transport Factory
Creating a Transport Factory

Overview Transports are managed by the bus using a transport factory. The transport
factory allows the bus to create transport instances, to initialize the
transport with the desired policies, and to eventually shutdown the
transport. You create a transport factory for your transport by extending the
abstract com.iona.jbus.TransportFactory class.

TransportFactory methods TransportFactory has six methods that must be implemented. These are
explained in Table 36.

Table 36: Method for Transport Factory

Method Function

ClientTransport createClientTransport() This method is responsible for instantiating
an instance of your ClientTransport
implementation. In addition, you can
initialize any resources needed by your client
transport.

void destroyClientTransport(ClientTransport transport) This method is responsible for cleaning up
any resources used by your
ClientTransport implementation.

ThreadingModel getClientThreadingModel() This method is responsible for specifying the
threading model used by your client
transport. For details about the available
threading models see �Transport threading
models� on page 592.

ServerTransport createServerTransport() This method is responsible for instantiating
an instance of your ServerTransport
implementation. In addition, you can
initialize any resources needed by your
server transport.

void destroyServerTransport(ServerTransport transport) This method is responsible for cleaning up
any resources used by your
ServerTransport implementation.
 589

CHAPTER 23 | Developing Custom Artix Transports
Example Example 351 shows a transport factory for a custom transport.

ServerTransportPolicies getServerTransportPolicies() This method is responsible for specifying the
threading model used by your server
transport, who supplies threads to the
transport, and if the transport can support
concurrent requests. For details about the
available threading models see �Transport
Policies� on page 592.

Table 36: Method for Transport Factory

Method Function

Example 351: SocketTransportFactory

import com.iona.jbus.*;

public class SocketTransportFactory extends TransportFactory
{
 private final ServerTransportPolicies serverPolicies = new DemoServerTransportPolicies();

 public ClientTransport createClientTransport()
 {
 return new SocketClientTransport();
 }

 public void destroyClientTransport(ClientTransport transport)
 {
 }

 public ThreadingModel getClientThreadingModel()
 {
 return ThreadingModel.MULTI_THREADED;
 }

 public ServerTransport createServerTransport()
 {
 return new SocketServerTransport();
 }

 public void destroyServerTransport(ServerTransport transport)
 {
 }
590

Developing and Registering the Transport Factory
 public ServerTransportPolicies getServerTransportPolicies()
 {
 return serverPolicies;
 }
 private class DemoServerTransportPolicies implements ServerTransportPolicies
 {
 public void setThreadingResourcesPolicy(ServerTransportThreadingResourcesPolicy policy)
 {
 }

 public ServerTransportThreadingResourcesPolicy getThreadingResourcesPolicy()
 {
 return ServerTransportThreadingResourcesPolicy.ARTIX_DRIVEN;
 }

 public void setMessagingPortThreadingPolicy(ThreadingModel policy)
 {
 }

 public ThreadingModel getMessagingPortThreadingPolicy()
 {
 return ThreadingModel.MULTI_THREADED;
 }

 public void setRequiresConcurrentDispatchPolicy(Boolean requiresConcurrentDispatch)
 {
 }

 public Boolean getRequiresConcurrentDispatchPolicy()
 {
 return Boolean.TRUE;
 }
 }
}

Example 351: SocketTransportFactory
 591

CHAPTER 23 | Developing Custom Artix Transports
Transport Policies

Overview Both client and server transports have policies that are used to control how
the bus manages the transport and how the transport handles messages.
Client transports have only one policy. The policy controls its threading
model. This policy is set in the transport factory�s
getClientThreadingModel() method.

Server transports on the other hand, have three policies that need to be set.
One policy, the threading policy uses the same values as the client
transport. The other policies determine who controls the threads used by the
transport, if the transport is able to optimize its calls to the messaging
chain, and if the transport requires all calls to be handled synchronously or
asynchronously.

Transport threading models Artix transports can use one of the three threading models listed in
Table 37.

Table 37: Transport Threading Models

Threading Model Behavior

MULTI_INSTNACE A new instance of the transport will be created for
each thread that uses this particular type of
transport.

MULTI_THREADED One instance of the transport is created by the bus
and all threads that use this particular type of
transport use the same instance. When writing
transports with this threading model, you are
responsible for ensuring that the code is thread
safe.

SINGLE_THREADED One instance of the transport is created and only
one thread can access the instance.
592

Developing and Registering the Transport Factory
Server transport policies You establish the server transport�s policies in the transport factory�s
getServerTransportPolicies() method. getServerTransportPolicies()
returns an instance of the com.iona.jbus.ServerTransportPolicies
interface. As shown in Example 351, you need to implement this interface
for a custom transport.

ServerTransportPolicies has getter and setter methods for each of the
server transport policies. You only need to provide implementaitons for the
getter methods of the interface. For each policy, the value returned in the
getter method is the value that the bus will use to set-up the transport. So
the transport in Example 351 has the following policy settings:

� Message port threading policy is MULTI_THREADED.

� Threading resource policy is ARTIX_DRIVEN.

� Requires concurrent dispatch policy is true.

Message port threading policy The message port threading policy determines the threading model used by
the server transport. It is set in
ServerTransportPolicies.getMessagePortThreadingPolicy(). It takes the
same values as the client transport threading model. For more information
see, �Transport threading models� on page 592.

Threading resource policy The threading resource policy determines from where the threads used by
the server transport are provided. It is set in
ServerTransportPolicies.getThreadingResourcePolicy(). Server
transports can either use threads provided by the bus from an Artix
managed thread pool, it can directly access the bus� work queue thread, or
it can manage its own thread pool.
 593

CHAPTER 23 | Developing Custom Artix Transports
Artix includes a static class called
com.iona.jbus.ServerTransportThreadingResourcesPolicy that contains
the values for the threading resource policy. Table 38 explains these values.

Requires concurrent dispatch
policy

The requires concurrent dispatch policy specifies if the transport can handle
concurrent requests. The setting is used by Artix to determine what
optimizations can be made when processing requests. It is set using
ServerTransportPolicies.getRequiresConcurrentDsipatchPolicy().

Setting the requires concurrent dispatch policy to true informs Artix that
multiple threads can call the transport�s dispatch() method at one time.
Setting it to false will inform Artix that the transport can process only one
dispatch() call at a time.

Table 38: Threading Resource Policy Values

Policy Value Description

ARTIX_DRIVEN Artix provides the transport with threads for
processing requests. When using this setting, you
may need to implement the run() method of the
ServerTransport class depending on the setting
of the message port threading policy.

USES_WORKQUEUE Artix provides the transport with one of its work
queues. The work queue will then process the
incoming requests asynchronously.

TRANSPORT_DRIVEN The transport is responsible for providing its own
thread pool. It is also fully responsible for
processing all incoming requests and ensuring that
responses are returned to the client.
594

Developing and Registering the Transport Factory
Registering and Unregistering a Transport Factory

Register the transport factory You must register the transport factory for your transport with the bus before
it can be used. You register the transport factory in the busInit() method of
the plug-in that loads your transport. The method for registering a transport
factory with the bus is bus.registerTransportFactory().
registerTransportFactory() takes two arguments. The first is the
namespace under which the transport will be registered. The second is an
instance of the transport�s transport factory.

Unregister the transport factory When your transport is no longer needed, it should be unregistered by the
transport plug-in�s busShutdown() method. You unregister a transport using
the bus.deregisterTransportFactory(). deregisterTransportFactory()
takes the namespace of the transport to be unregistered as its only
argument.

Example Example 352 shows a transport plug-in that registers and unregisters a
transport factory with the bus.

Example 352: Transport Plug-in

import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class DemoTransportPlugIn extends BusPlugIn
{
 public DemoTransportPlugIn(Bus bus)
 {
 super(bus);
 }
 595

CHAPTER 23 | Developing Custom Artix Transports
For more information on plug-in development see �Developing Plug-Ins� on
page 527.

 public void busInit() throws BusException
 {
 TransportFactory factory = new SocketTransportFactory();
 getBus().registerTransportFactory(
 "http://widgetVendor.com/transport/socket",
 factory);
 }

 public void busShutdown() throws BusException
 {
 getBus().deregisterTransportFactory(
 "http://widgetVendor.com/transport/socket");

}

Example 352: Transport Plug-in
596

Developing the Client Transport
Developing the Client Transport

Overview The client transport is invoked by client proxies. It is responsible for writing
requests to a server and for passing the response, if one is expected, back to
the proxy�s binding. Requests are received from the binding, or the last
request-level handler if any exists, as a stream whose contents are placed
on the wire for transmission. Responses are read from the wire into a stream
that is passed back up through the messaging chain.

You create a client transport by implementing the
com.iona.jbus.ClientTransport interface. ClientTransport has six
methods that need to be implemented. describes them.

Table 39: ClientTransport Methods

Method Description

initialize() Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the client transport.

connect() Establishes the connection between the transport
and the physical hardware responsible for
carrying the message.

disconnect() Disables the connection and releases any system
resources used by the connection.

getOutputStream() Creates an output stream to which outgoing data
written.

invoke() Writes information out to the network and waits
for a response from the server.

invokeOneway() Performs similar duties to invoke() but it is
called when the operation is defined as a oneway
operation in the endpoints contract. It writes the
request out to the network, but does not wait for
a response.
 597

CHAPTER 23 | Developing Custom Artix Transports
Initializing a client transport The initialize() method of the client transport is responsible for
initializing any resources needed by the transport and for determining the
transports initial settings. The signature for initialize() is shown in
Example 353.

It takes three parameters: wsdlPath is the absolute path to the Artix contract
containing the transport details to be used in configuring the connection.
serviceName is the QName of the service containing the definition for the
endpoint. wsdlPortName is the name of the port defining the details of the
endpoint.

The transport details of an endpoint are specified using a port element in an
application�s Artix contract and your client transport will need to parse the
contract to get the information defined in this <port> element. The elements
in which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APIs. The
demo parses the contract in following steps:

1. Find the service element with the service name specified by
serviceName.

2. Find the port element specified by wsdlPortName.

3. Get the address element from the port.

4. Get the value for the port attribute.

5. Get the value for the host attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

Example 353: initialize()

void initialize(String wsdlPath, QName serviceName,
 String wsdlPortName)
throws BusException;
598

Developing the Client Transport
Example 354 shows the initialize() method for the custom transport
demo.

Example 354: Initialization Method for Custom Transport

public void initialize(String wsdlPath, QName serviceName,
 String wsdlPortName) throws BusException
{

1 try
 {
 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder builder = factory.newDocumentBuilder();
 File file = new File(new URI(wsdlPath));
 Document wsdl = builder.parse(file);

2 NodeList nodes =
wsdl.getElementsByTagNameNS("http://schemas.xmlsoap.org/wsdl/
", "service");

 Element serviceEl = null;

 for(int i = 0; i < nodes.getLength(); ++i)
 {
 serviceEl = (Element)nodes.item(i);
 String name = serviceEl.getAttribute("name");
 if(serviceName.getLocalPart().equals(name))
 {
 break;
 }
 }
 599

CHAPTER 23 | Developing Custom Artix Transports
The code in Example 354 does the following:

1. Loads the application�s contract into the DOM.

2. Finds the correct service element.

3. Finds the correct port element.

4. Finds the address element that defines the connection information for
a port using the custom transport.

5. Sets the transport�s port number to the value set in the port attribute.

3 nodes =
serviceEl.getElementsByTagNameNS("http://schemas.xmlsoap.org/
wsdl/", "port");

 Element portEl = null;

 for(int i = 0; i < nodes.getLength(); ++i)
 {
 portEl = (Element)nodes.item(i);
 String name = portEl.getAttribute("name");
 if(wsdlPortName.equals(name))
 {
 break;
 }
 }

4 nodes =
portEl.getElementsByTagNameNS("http://schemas.iona.com/transp
orts/socket", "address");

 Element addressEl = (Element)nodes.item(0);

5 String port = addressEl.getAttribute("port");
 // m_portnum is defined elsewhere in this class.
 m_portnum = (new Integer(port)).intValue();

6 // m_host is defined elsewhere in this class.
 m_host = addressEl.getAttribute("host");
 }
 catch(Exception ex)
 {
 throw new BusException(ex);
 }
}

Example 354: Initialization Method for Custom Transport
600

Developing the Client Transport
6. Sets the transport�s hostname to the value set in the host attribute.

Making and breaking connections
in a transport

Client transport connections are made when the bus invokes the transport�s
connect() method. Its signature is shown in Example 355. connect() is
called immediately after initialize() and is only called once per transport
instance.

Client transport connections are broken when the bus invokes the
transport�s disconnect() method. Its signature is shown in Example 356.
disconnect() is called just before the bus destroys the resources used by
the transport�s plug-in.

Example 357 shows code for making and breaking a socket connection.

Example 355: connect()

void connect() throws BusException

Example 356: disconnect()

void disconnect() throws BusException

Example 357: Making and Breaking a Socket Connection

public void connect() throws BusException
{
 try
 {
 // m_socket is defined elsewhere in this class.
 mySocket = SocketChannel.open();
 mySocket.connect(new InetSocketAddress(m_host, m_portnum));
 mySocket.finishConnect();
 }
 catch(IOException ioex)
 {
 throw new BusException(ioex);
 }
}

 601

CHAPTER 23 | Developing Custom Artix Transports
Getting an output stream When a client proxy invokes an operation, the bus passes the request
message down the messaging chain until it reaches the client transport. At
this point, Artix needs a Java OutputStream to use for writing the request
out to the wire. The client transport�s getOutputStream() method is
responsible for instantiating the output stream to which the request is
written. So, when creating your transport you will need to create the
appropriate type of stream for your transport. For example, the custom
transport demo creates socket streams to read and write data.

getOutputStream(), shown in Example 358, is called imediately before the
bus calls invoke() or invokeOneway().Once getOutputStream() returns,
the bus writes the request message into the returned output stream and
then calls the proper invocation method on the transport.

public void disconnect() throws BusException
{
 try
 {
 mySocket.close();
 }
 catch(IOException ioex)
 {
 throw new BusException(ioex);
 }
}

Example 357: Making and Breaking a Socket Connection

Example 358: getOutputStream()

OutputStream getOutputStream(MessageContext context)
throws TransportException;
602

Developing the Client Transport
Example 359 shows the getOutputStream() implementation in custom
transport demo.

Invoking an operation After writing the request, the bus calls either the client transport�s invoke()
method or the client transport�s invokeOneway() method depending upon
how the operation is defined in the application�s contract.

The bus calls invoke() when the operation definition in the application�s
contract has both an input message and an output message. If the operation
is defined as a oneway operation, meaning that it only has an input
message, then the bus calls invokeOneway().

Both operations receive the OutputStream to which the bus wrote the
request and the MessageContext object associated with the invocation.
Depending on the type of output stream used, invoke() and invokeOneway()
may need to push the request out to the wire. For example, a transport the
uses ByteArrayOutputStream output streams will need to push the data to
the wire. However, if the transport uses a socket output stream, like the
custom transport demo, the data is pushed to the wire as soon as it is
written into the output stream.

Example 359: Custom Transport Demo getOutputStream()

private static final String CLIENT_TRANSPORT_CONTEXT_KEY =
 DemoClientTransport.class.getName() + ".SOCKET";

public OutputStream getOutputStream(MessageContext context)
throws TransportException
{
 try {
 Socket socket = new Socket(m_host, m_portnum);
 context.setProperty(CLIENT_TRANSPORT_CONTEXT_KEY, socket);
 return socket.getOutputStream();
 } catch (IOException ioex) {
 throw new TransportException(ioex);
 }
}

Note: For information on accessing information in a message context, see
�Using Message Contexts� on page 337.
 603

CHAPTER 23 | Developing Custom Artix Transports
The difference between the operations is that invoke() waits for a response
to be returned and passes the response back the bus as a Java
InputBuffer. invokeOneway() simply returns after pushing the message to
the wire.

The signatures for invoke() and invokeOneway() are shown in
Example 360.

Example 361 shows he implementation of invoke() used in the custom
transport demo. The code gets the socket created for the invocation in
getOutputStream(). It then gets the response from the socket as an
InputStream.

Example 360: Invoking Operations From the Transport

InputStream invoke(OutputStream request, MessageContext context)
throws TransportException
void invokeOneway(OutputStream request, MessageContext context)
throws TransportException

Example 361: invoke() for a Socket Transport

public InputStream invoke(OutputStream request,
 MessageContext context)
throws TransportException
{
 try {
 final Socket socket =

(Socket)context.getProperty(CLIENT_TRANSPORT_CONTEXT_KEY);
 socket.shutdownOutput();

 //close the socket when done
 return new FilterInputStream(socket.getInputStream()) {
 public void close() throws IOException {
 super.close();
 socket.close();
 }
 };
 } catch (IOException ioex) {
 throw new TransportException(ioex);
 }
}

604

Developing the Server Transport
Developing the Server Transport

Overview The server transport is responsible for reading requests from the wire,
passing it to the server binding, and then writing the replies back to the wire
for delivery. Requests are read from the wire using input streams that are
passed on to any request-level handlers and then to the binding. Replies are
returned to the transport as an output stream that is then placed back on
the wire.

You create a server transport by implementing the
com.iona.jbus.ServerTransport interface. ServerTransport has six
methods as shown in Table 40.

Table 40: ServerTransport Methods

Method Description

activate() Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the server transport. If the
transport�s message port threading policy is
MULTI_INSTANCE and the transport�s threading
resource policy is ARTIX_DRIVEN, activate() is
also responsible for request processing.

run() Reads requests off of the wire and dispatches
them to the transport callback object. The
callback object then passed the message up the
messaging chain.

getOutputStream() Creates the output stream to which the bus
writes responses.

postDispatch() Called by the transport callback object after it
writes the response to the output stream.
Depending on the type of output stream used,
postDispacth() may have to push the response
to the wire. postDispatch() can also be used to
clean up any resources used in processing the
request.
 605

CHAPTER 23 | Developing Custom Artix Transports
Depending on the server transport policies set for the transport, you do not
need to implement all of the methods. At a minimum, you will need to
provide implementations for activate(), getOutputStream(),
deactivate(), and shutdown().

In this section This section discusses the following topics:

deactivate() Stops the transport listener and allows any
requests that are already in process to complete.

shutdown() Disables the connection and releases any system
resources used by the connection.

Table 40: ServerTransport Methods

Method Description

Activating a Server Transport page 607

Processing Requests page 612

Shutting Down a Server Transport page 620
606

Developing the Server Transport
Activating a Server Transport

Overview The activate() method of the server transport is responsible for initializing
any resources needed by the transport and for determining the transports
initial settings. Depending on the threading policies set on the transport,
activate() may also have other responsibilities such as request processing.

activate() The signature for activate() is shown in Example 353.

activate() takes five parameters: wsdlPath is the absolute path to the Artix
contract containing the transport details to be used in configuring the
connection. serviceName is the QName of the service containing the definition
for the endpoint. port is the name of the port defining the details of the
endpoint. callback is a reference to a bus managed callback object that
passes the request up the message chain and returns the output stream
containing the reply. queue is the Artix WorkQueue that will be used by the
transport to process requests if the threading resource policy is set to
USES_WORKQUEUE.

Contract parsing The transport details of an endpoint are specified using a port element in an
application�s Artix contract and your client transport will need to parse the
contract to get the information defined in this port element. The elements in
which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

Example 362: activate()

void activate(String wsdlPath, QName service, String port,
 TransportCallback callback, WorkQueue queue)
throws TransportException

Note: You do not need to implement the callback object because it is
implemented and managed by the bus. However, your transport does need
to maintain a handle to the callback object to pass requests up the
message chain.
 607

CHAPTER 23 | Developing Custom Artix Transports
For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APIs. The
demo parses the contract in following steps:

1. Find the service element with the service name specified by
serviceName.

2. Find the port element specified by wsdlPortName.

3. Get the address element from the port.

4. Get the value for the port attribute.

5. Get the value for the host attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

Threading policies and activate() The threading policies set on the server transport will determine, to some
extent, how you code activate(). In all cases, activate() will need to
parse the contract and set-up the transport�s resources. However, the
threading policy settings determine what activate() needs to do after the
transport resources are set-up.

Table 41 shows what activate() needs to do for all combinations of
message port threading policy settings and threading resource policy
settings.

Table 41: activate() Responsibilities by Threading Policies

Message Port Thread Policy Threading Resource Policy activate() Responsibilities

MULTI_THREADED USES_WORKQUEUE activate() spawns a new thread
to host the WorkQueue provided by
the queue parameter. The new
thread processes requests.

MULTI_INSTANCE USES_WORKQUEUE

SINGLE_THREADED USES_WORKQUEUE

MULTI_THREADED ARTIX_DRIVEN activate() can exit once the
transport�s resources are set-up.

MULTI_INSTANCE ARTIX_DRIVEN activate() must block and
process requests from the wire.
608

Developing the Server Transport
Notifying the bus Once the server transport is activated, the transport needs to inform the bus
that the transport is going to begin dispatching messages. The transport
callback object�s transportActivated() method notifies the bus that the
transport is active and ready to begin dispatching messages up the message
chain. transportActivated() must be called before you begin dispatching
messages.

Example Example 363 shows the activate() method for the custom server transport
demo. The transport used in the custom transport demo uses the
MUTLI_THREADED message port threading policy and the ARTIX_DRIVEN
threading resource policy. Therefore, it does not use the WorkQueue passed
into it and does not block.

SINGLE_THREADED ARTIX_DRIVEN activate() can exit once the
transport�s resources are set-up.

MULTI_THREADED TRANSPORT_DRIVEN activate() creates the threads
used by the transport to process
requests and hands control off to
them.

MULTI_INSTANCE TRANSPORT_DRIVEN

SINGLE_THREADED TRANSPORT_DRIVEN

Table 41: activate() Responsibilities by Threading Policies

Message Port Thread Policy Threading Resource Policy activate() Responsibilities

Example 363: Activation Method for Custom Server Transport

// Java
import com.iona.jbus*;
...

public class SocketServerTransport implements ServerTransport
{
private TransportCallback theCallback;
private ServerSocket serverSocket;
...

public void activate(String wsdlPath, QName serviceName,
 String wsdlPortName,
 TransportCallback callback, WorkQueue queue)
throws TransportException
{

 609

CHAPTER 23 | Developing Custom Artix Transports
1 theCallback = callback;

2 try
 {
 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder builder = factory.newDocumentBuilder();
 File file = new File(new URI(wsdlPath));
 Document wsdl = builder.parse(file);

3 NodeList nodes =
wsdl.getElementsByTagNameNS("http://schemas.xmlsoap.org/wsdl/
", "service");

 Element serviceEl = null;

 for(int i = 0; i < nodes.getLength(); ++i)
 {
 serviceEl = (Element)nodes.item(i);
 String name = serviceEl.getAttribute("name");
 if(serviceName.getLocalPart().equals(name))
 {
 break;
 }
 }

4 nodes =
serviceEl.getElementsByTagNameNS("http://schemas.xmlsoap.org/
wsdl/", "port");

 Element portEl = null;

 for(int i = 0; i < nodes.getLength(); ++i)
 {
 portEl = (Element)nodes.item(i);
 String name = portEl.getAttribute("name");
 if(wsdlPortName.equals(name))
 {
 break;
 }
 }

Example 363: Activation Method for Custom Server Transport
610

Developing the Server Transport
The code in Example 354 does the following:

1. Saves a handle to the transport callback in a private data member.

2. Loads the application�s contract into the DOM.

3. Finds the correct service element.

4. Finds the correct port element.

5. Finds the address element that defines the connection information for
a port using the custom transport.

6. Sets the transport�s port number to the value set in the port attribute.

7. Sets the transport�s hostname to the value set in the host attribute.

8. Creates a ServerSocket to connect to the endpoint.

9. Notifies the bus that the transport is active and ready to dispatch
messages.

5 nodes =
portEl.getElementsByTagNameNS("http://schemas.iona.com/transp
orts/socket", "address");

 Element addressEl = (Element)nodes.item(0);

6 String port = addressEl.getAttribute("port");
 int portnum = (new Integer(port)).intValue();

7 String host = addressEl.getAttribute("host");

8 serverSocket = new ServerSocket(portnum, 0,
 InetAddress.getByName(host));

9 theCallback.transportActivated();
 }
 catch(Exception ex)
 {
 throw new TransportException(ex);
 }
...
}

Example 363: Activation Method for Custom Server Transport
 611

CHAPTER 23 | Developing Custom Artix Transports
Processing Requests

Overview Server transport process requests by reading the data off of the wire,
dispatching the request to the transport callback object in an input stream,
and then writing the response to the wire. Which method is responsible for
reading the request from the wire and dispatching the request to the
transport callback object depends on the transport�s policy settings. For
example, in a mulit-instance transport with a thread resource policy of
ARTIX_DRIVEN, reading the request and dispatching the request to the
transport callback would be handled in activate(). However, in a transport
with a thread resource policy of USES_WORKQUEUE, the message reading is
done in a WorkItem object.

The method responsible for writing the response to the wire depends on the
type of output stream used to write the response. If you use an output
stream that automatically writes the message to the wire, such as a socket
output stream or a file output stream, the request is put on the wire when
the transport callback puts the message into the output stream. However, if
your transport uses an output stream type that does not write to the wire,
such as a ByteArrayOutputStream, postDispatch() will need to push the
response to the wire. See �Writing the response� on page 616.

Dispatching messages to the
messaging chain

Server transports use a callback mechanism to pass messages to the
messaging chain. The TransportCallback object provided to activate() is
used to dispatch requests to the messaging chain and return the responses.
The TransportCallback object has one method dispatch() that takes an
input stream containing a request message and the active MessageContext
object as input parameters. The signature for dispatch() is shown in
Example 364.

When the message chain returns the response to the transport callback
object, the transport callback object calls getOutputStream() on the server
transport to get an output stream. The transport callback object writes the
response into the returned output stream and then calls postDispatch() on
the server transport. See �Writing the response� on page 616.

Example 364: TransportCalback.dispatch()

void dispatch(InputStream request, MessageContext ctx);
612

Developing the Server Transport
Reading requests with a
USES_WORKQUEUE threading
resource policy

When a transport�s threading resource policy is set to USES_WORKQUEUE, you
implement a thread to read requests off of the wire and place them on the
WorkQueue. The requests are dispatched to the messaging chain by a
WorkItem object that you implement.

The first step is to extend the Thread class for your transport. In the thread�s
run() method, three things need to happen.

1. Requests are read into an input stream.

2. The stream is packed into a WorkItem object.

3. The WorkItem is placed onto the work queue using the work queue�s
enqueue() method.

Example 365 shows a thread for a server transport with a threading
resource policy of USES_WORKQUEUE.

Example 365: Server Transport Thread

class demoListenerThread extends Thread
{
 private final WorkQueue theQueue;
 private final Socket theSocket;
 private final TransportCallback theCallback;

 public listenerThread(WorkQueue workQueue,
 ServerSocket serverSocket,
 TransportCallback callback)
 {
 theQueue = workQueue;
 theSocket = serverSocket.accept();
 theCallback = callback;
 }

 public void run()
 {
 while (true)
 {
 InputStream request = theSocket.getInoutStream();
 WorkItem item = new demoWorkItem(request, theCallback);
 theQueue.enqueue(item, -1);
 }
 }
}

 613

CHAPTER 23 | Developing Custom Artix Transports
The second thing you need to do is implement the com.iona.jbus.WorkItem
interface for your transport. WorkItem has two methods: execute() and
destroy().

execute() is called when the work queue processes this work item. In
execute(), your work item needs to dispatch the request message to the
messaging chain using the transport callback�s dispatch() method.

destroy() is called by the work queue when the work item is finished being
processed. It is is responsible for cleaning up any resources used by the
work item.

Example 366 shows a work item for a server transport.

Reading requests with a
ARTIX_DRIVEN threading
resource policy

When a transport�s threading resource policy is set to ARTIX_DRIVEN and its
message port threading policy is set to MULTI_THREADED, run() is
responsible for pulling requests off of the wire and dispatching them to the

Example 366: Transport Work Item

import com.iona.jbus.BusException;
import com.iona.jbus.WorkItem;

public class demoWorkItem implements WorkItem
{
 private final TransportCallback theCallback;
 private final ByteBuffer theMessage;

 public demoWorkItem(InputStream message,
 TransportCallback callback)
 {
 theMessage = message;
 theCallback = callback;
 }

 public void execute() throws BusException
 {
 MessageContext context = theCallback.getCurrentContext();

theCallback.dispatch(requestBuf, context);
 }

 public void destroy() throws BusException
 {
 }
}

614

Developing the Server Transport
messaging chain. run() is called once per thread that uses the transport
and must loop for as long as the connection is open. Inside the loop, run()
reads requests off of the wire and passes the requests up the messaging
chain using the transport callback�s dispatch() method.

When a transport�s threading resource policy is set to ARTIX_DRIVEN and its
message port threading policy is set to MULTI_INSTANCE, activate() is
responsible for pulling requests off of the wire and dispatching them to the
transport callback method. In this case, activate() must block by looping
as long as the connection is open. Inside the loop, activate() reads
requests off the wire and dispatching them to the messaging chain.

Example 367 shows the code for implementing run() for a multi-threaded
transport.

Example 367: run() for a Custom Server Transport

// Java
import iona.com.jbus.*;

public class SocketServerTransport implements ServerTransport
{
...

 public void run() throws TransportException
 {
 try
 {
 ++connectionCount;

1 while (!serverSocket.isClosed())
 {
 Socket socket;

2 synchronized(serverSocket)
 {

3 if (!serverSocket.isClosed())
 {
 socket = serverSocket.accept();
 } else
 {
 break;
 }
 }

4 MessageContext dispatchContext =
theCallback.getCurrentContext();
 615

CHAPTER 23 | Developing Custom Artix Transports
The code in Example 367 does the following:

1. Loop for as long as the socket opened in activate() remain open.

2. Synchronizes access to the socket to ensure thread safety.

3. Blocks until a socket channel is accepted.

4. Gets the message context.

5. Stores the socket in the message context for later use.

6. Dispatches the request to the transport callback object.

Reading requests with a
TRANSPORT_DRIVEN threading
resource policy

When the threading resource policy is set to TRANSPORT_DRIVEN, your
transport is responsible for implementing its own threads for processing
messages. The implementation details would be similar to implementing a
transport with the USES_WORKQUEUE threading resource policy. In your
thread�s run(), you would pull messages off of the wire and dispatch them
to the messaging chain using the transport callback object. Where the
response were written to the wire would depend on the type of output
streams used and how your transport pushes data to the wire.

Writing the response When the message chain returns a response to the transport callback
object, the transport callback object does the following:

1. Invokes getOutputStream() on the server transport to get an
appropriate output steam for writing the response.

2. Writes the response into the returned output stream.

5 dispatchContext.setProperty(SERVER_TRANSPORT_CONTEXT_KEY,
 socket);

6 theCallback.dispatch(socket.getInputStream(),
 dispatchContext);
 }
 } catch (Exception ex)
 {
 throw new TransportException(ex);
 }
 }
}

Example 367: run() for a Custom Server Transport
616

Developing the Server Transport
3. Invokes postDispatch() on the server transport to allow for any post
processing that need to be done.

4. Closes the output stream.

You are responsible for providing implementations of getOutputStream()
and postDispatch() for your server transport.

getOutputStream(), as shown in Example 368, takes a message context as
a parameter and returns a Java OutputStream into which the transport
callback object will write the response.

Example 369 shows the implementation of getOutputStream() used in the
custom transport demo. It creates a socket output stream using a socket
stored in the request�s message context. The resulting output stream
provides a direct connection to the client who made the request.

Example 368: ServerTransport.getOutputStream()

public OutputStream getOutputStream(MessageContext ctx)
throws TransportException;

Example 369: Socket Transport Server Side getOutputStream()

public OutputStream getOutputStream(MessageContext ctx)
throws TransportException
{
 try
 {
 Socket socket =

(Socket)ctx.getProperty(SERVER_TRANSPORT_CONTEXT_KEY);
 return socket.getOutputStream();
 } catch (Exception ex)
 {
 throw new TransportException(ex);
 }
}

 617

CHAPTER 23 | Developing Custom Artix Transports
postDispatch() is called by the transport callback object after the response
is written to the output stream. It is used to do any post-processing and
clean-up required after a request is fully processed. As shown in
Example 370, postDispatch() takes the OutputStream containing the
response and the request�s message context.

shows the implementation of postDispatch() used in the custom transport
demo. Because this transport uses socket streams, postDispatch() does
not need to do anything to with the output stream. The response was
delivered when the transport callback object wrote it to the output stream.
However, if your transport uses some other mechanism for pushing the
response to the wire, postDispatch() would be the method to place that
logic.

Using message contexts If your transport uses a header block to pass transport information, like the
header used by JMS, that the application code may be interested in, you
can pass this information up the messaging chain using the Artix message
context mechanism.

Example 370: postDispatch()

public void postDispatch(OutputStream request,
 MessageContext ctx)
throws TransportException;

Example 371: Custom Transport postDispatch()

public void postDispatch(OutputStream request,
 MessageContext ctx)
throws TransportException
{
 try
 {
 Socket socket =

(Socket)ctx.getProperty(SERVER_TRANSPORT_CONTEXT_KEY);
 socket.close();
 } catch (Exception ex)
 {
 throw new TransportException(ex);
 }
}

618

Developing the Server Transport
To get access to the application�s message context, you use the
getCurrentContext() method of the transport callback object.
getCurrentContext() returns a JAX-RPC MessageContext object. To pass
custom header information back to the application level, you will need to
cast the JAX-RPC message context to an IonaMessageContext object and
set the appropriate context properties. The transport callback will
automatically pass the context information up the messaging chain where
the handlers and application level code can access it.

For more information on using contexts see �Using Message Contexts� on
page 337.
 619

CHAPTER 23 | Developing Custom Artix Transports
Shutting Down a Server Transport

Overview When the bus shuts a servant down it calls shutdown() on the transports
used by that servant. shutdown() is responsible for closing any open
connections used by the transport and cleaning up the resources used by
the transport.

Shutting down a transport using a
TRANSPORT_DRIVEN threading
resource policy

When your transport uses the TRANSPORT_DRIVEN threading resource policy,
Artix does not automatically clean up the transport�s threads. Your
shutdown() implementation must clean-up all of the threads spawned by
the transport.

Notifying the bus When the transport has finished cleaning up its resources and is ready to be
fully shutdown, it need to notify the bus that it can no longer send or receive
messages. The transport callback�s transportShutdownComplete() method
notifies the bus when the transport is done shutting itself down and cannot
accept any more messages. Typically this is the last thing your server will do
before shutdown() exits.

Example Example 372 shows the code used to disconnect a socket server transport.
The code simply loops through all of the open sockets and closes them.
Once the sockets are closed the loop in connect() is broken and it will exit.

Example 372: Disconnecting a Custom Server Transport

// Java
import iona.com.jbus.*;

public class SocketServerTransport implements ServerTransport
{
...
620

Developing the Server Transport
 public void disconnect() throws Exception
 {
 if(--connectionCount <=0)
 {
 m_SSChannel.close();
 }

 m_callback.transportShutdownComplete();
 }
}

Example 372: Disconnecting a Custom Server Transport
 621

CHAPTER 23 | Developing Custom Artix Transports
Using your Custom Transport

Overview To use a custom transport you need to add the appropriate entries in you
application�s contract and add some configuration to your Artix configuration
file. The entries in the application�s contract inform the bus that your
application uses the transport and describes how the endpoint is to be
established. The configuration information tells Artix how to load the plug-in
that implements the transport.

Adding the transport to an Artix
contract

To make an application use your custom transport, you must create an
endpoint that is defined as using the custom transport in the application�s
contract. You add an endpoint description to a contract in two steps:

1. Add an XML namespace declaration to the definition element of the
contract so that the contract can include elements defined by the
schema defining your transport.

2. Add a service element and port element to describe an endpoint that
uses your transport to the contract.

Example 373 shows a fragment from a contract that uses the custom socket
transport defined in this chapter. Notice that the namespace declaration for
the socket transport,
xmlns:sock="http://widgetVendor.com/transport/socket", uses the
target namespace from the schema definition of defining the WSDL
extensions for describing a the transport.

Example 373: Contract using a Custom Transport

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetSocketVendor"
 targetNamespace="http://schemas.iona.com/widgetVendor"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/widgetVendor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sock="http://widgetVendor.com/transport/socket"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
...
622

Using your Custom Transport
For more information on defining endpoints in an Artix contract see Bindings
and Transports, C++ Runtime.

Configuring Artix to load the
transport

To use a custom transport plug-in, you must make three modifications to
the application�s configuration:

1. Add the Java plug-in to your application�s orb_plugins list.

2. Specify the namespace for the transport plug-in in the global scope of
the Artix configuration file.

3. Specify the plug-in factory for the plug-in that implements the plug-in.

Specifying the namespace for a transport plug-in

The bus identifies which transport plug-ins to load based on the endpoints
defined in an application�s contract. To do this the bus looks through its
configuration for a namespace match and then loads the specified plug-in.
The namespaces are specified using variables pre-fixed with namespace and
have the syntax shown in Example 374.

 <service name="widgetService">
 <port binding="tns:widgetSOAPBinding" name="widgetPort">
 <sock:address host="localhost" port="8080"/>
 </port>
 </service>
</definitions>

Example 373: Contract using a Custom Transport

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.

Example 374: Specifying a Transport Namespace

namespace:xml_namespace:plugin="plugin_name";
 623

../bindings/cpp/index.html
../bindings/cpp/index.html

CHAPTER 23 | Developing Custom Artix Transports
xml_namespace is the target namespace in the XML Schema used to define
your transport�s attributes. plugin_name is the name by which the plug-in is
configured in the Artix configuration file. For example to specify the
namespace for the socket transport implemented in this chapter you would
use a configuration entry similar to Example 375.

For more information on configuring Artix plug-ins see �Configuring Artix
Plug-Ins� on page 625.

Example 375: Socket Transport Namespace Specification

namespace:http://widgetVendor.com/transport/socket:plugin="sock"
;

plugin:sock:classname="SocketPluginFactory";
624

CHAPTER 24

Configuring Artix
Plug-Ins
Artix plug-ins can use the Artix runtime configuration file to
receive configuration information.

In this chapter This chapter discusses the following topics:

Understanding Artix Configuration page 626

Adding Custom Configuration for a Plug-in page 630
 625

CHAPTER 24 | Configuring Artix Plug-Ins
Understanding Artix Configuration

Overview Artix is built upon IONA�s Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code may be run�and may exhibit different
capabilities�in different configuration environments.

In this section This section discusses the following:

Configuration domains An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in:

You can also manually create new Artix configuration domains to
compartmentalize your applications. These new configuration domains can
import information from other configuration domains using a #include
statement in your configuration. This provides a convenient way of
compartmentalizing your application specific configuration from the global
Artix configuration information contained in the default domain.

Configuration domains page 626

Configuration scopes page 627

Specifying configuration scopes page 628

Configuration namespaces page 628

Configuration variables page 628

Configuration data types page 629

Windows %IT_PRODUCT_DIR%\artix\artix_version\etc\domains\artix.c
fg

UNIX $IT_PRODUCT_DIR/artix/artix_version/etc/domains/artix.cf
g

626

Understanding Artix Configuration
Configuration scopes An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Applications read their configuration information from a given scope based
on the ORB name passed into the application�s bus.init() call.
Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables.

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

Example 376 shows the nested configuration scope demo. In each nested
scope, orb_plugins is redefined so that an application starting up in one
scope will load a different set of plug-ins from one starting in another scope.
In addition, each scope sets application-specific configuration variables.

Example 376: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream"];
 };
 telco
 {
 orb_plugins = ["xml_log_stream", "router"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunnel";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop�, "ots"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
}

 627

CHAPTER 24 | Configuring Artix Plug-Ins
Specifying configuration scopes To make an Artix process run under a particular configuration scope, you
specify that scope using the -ORBname parameter. Configuration scope
names are specified using the format scope.subscope.

For example, the scope for the telco server demo shown in Example 376 is
specified as demo.telco.server. During process initialization, Artix
searches for a configuration scope with the same name as the -ORBname
parameter. To specify an -ORBname, you use the following syntax:

If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the ORBname parameter, the Artix process runs under the
global scope. For example, if the nested tibrv scope does not exist, the
Artix process uses the configuration specified in the demo scope; if the demo
scope does not exist, the process runs under the default global scope.

Configuration namespaces Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

To set the location of the routing plug-in�s contract, set the following
variable:

Configuration variables Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb_plugins variable would override a

<processName> [application parameters] -ORBname configScope

plugins:artix_service:iiop:port

plugins:routing:wsdl_url
628

Understanding Artix Configuration
company.orb_plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

Configuration data types Each configuration variable has an associated data type that determines the
variable�s value.

Data types can be categorized into two types:

� Primitive types

� Constructed types

Primitive types

There are three primitive types: boolean, double, and long,.

Constructed types

Artix supports two constructed types: string and ConfigList (a sequence
of strings).

� In an Artix configuration file, the string character set is ASCII.

� The ConfigList type is simply a sequence of string types. For
example:

orb_plugins = ["local_log_stream", "iiop_profile",
 "giop","iiop"];
 629

CHAPTER 24 | Configuring Artix Plug-Ins
Adding Custom Configuration for a Plug-in

Overview Artix provides an API that allows you to access the Artix configuration
mechanism from with in Java plug-ins. This API makes it easy to place any
configuration information required by a custom plug-in into the standard
Artix configuration file.

Variable scoping The configuration APIs search for configuration variables using fully qualified
variable names similar to the ones used in the common configuration
elements. This means that your custom variables are subject to the same
scoping rules as common configuration elements. So, variables in local
scopes override variables set in more global scopes.

Variable naming For consistency, it is recommended that you make your configuration
variable names consistent with the naming scheme applied to standard Artix
configuration elements. So, the variables for your plug-ins would also use
the syntax shown in Example 377.

plugin_name is the name used to refer to the plug-in throughout the
configuration file. var_name is the name of the configuration variable and
value is the value of the variable.

Supported variable types The Artix configuration APIs allow you to use either string configuration
variables or list configuration variables. Example 378 shows a variable with
a string value.

Example 377: Plug-in Variable Syntax

plugins:plugin_name:var_name=value;

Example 378: String Value

plugins:junk:junkyard="\etc\junkyard";
630

Adding Custom Configuration for a Plug-in
Example 379 shows a variable with a list value.

Getting the configuration The bus provides access to the configuration using getConfiguration().
getConfiguration() returns a Configuraiton object that provides access to
the application�s configuration.

Example 380 shows code for getting the configuration in a plug-in.

The code in Example 380 does the following:

1. Gets a reference to the plug-ins bus.

2. Gets the bus� configuration information.

Reading string values To read a configuration variable with a string value you use the
Configuration object�s getString() method. The signature for
getString() is shown in Example 381. If it finds the specified variable, it
returns the value as a string. If it does not find the variable, it returns a null
string.

Example 379: List Value

plugins:junk:filters=["spam", "adult", "blacklist"];

Example 380: Getting Access to Configuration Details

//Java
import com.iona.jbus.*;

public void busInit() throws BusException
{
 Bus bus = getBus();

 Configuration config=bus.getConfiguration();

 ...
}

Example 381: getString()

String getString(String name);
 631

CHAPTER 24 | Configuring Artix Plug-Ins
Example 382 shows the code for reading the variable
plugins.junk.junkyard.

Reading list values To read a configuration variable with a list value you use the Configuration
object�s getList() method. The signature for getList() is shown in
Example 381. If it finds the specified variable, it returns the entries in the
list as an array of strings. If it does not find the variable, it returns a null
array.

Example 382 shows the code for reading the variable
plugins.junk.filters and printing out the values.

Example 382: Reading a String Value

// Java
String junkyard = config.getString("plugins:junk:junkyard");

Example 383: getString()

String[] getlist(String name);

Example 384: Reading a String Value

// Java
String[] filterList = config.getList("plugins:junk:filters");

for (int i = 0; 1 < filterList.length ; ++)
{
 System.out("Filter: "+filterList[i]);
}

632

CHAPTER 25

Using Artix
Classloader
Environments
Artix Classloader Environments provide an easily configurable
mechanism for overcoming some of the shortcomings in Java�s
default class loading scheme. In particular, they give you finer
control over which classes are visible to each classloader in
an application�s classloader chain.

In this chapter This chapter discusses the following topics:

Class Loading: An Overview page 634

Artix�s Classloader Hierarchy page 637

Using Artix�s Classloader Environment page 641
 633

CHAPTER 25 | Using Artix Classloader Environments
Class Loading: An Overview

Introduction Part of the mechanism that allows Java�s platform independence is the way
the Java Virtual Machine, or JVM, loads the binary data that makes up a
Java application. Java binary code is stored as a class file that stores the
binary code for a Java Class object. When the JVM needs to create an
instance of a Class object it loads the class� binary representation using a
classloader. The classloader reads in the binary data, transforms the data
into usable machine code, and creates a generic java.lang.Class object for
the class.

To enhance the performance of the JVM, classloaders only load a class the
first time it is needed and then cache the data in case it is needed again.
Classloaders are also split into a hierachical structure to provide a level of
security for the JVM. This hierarchical structure prevents classloaders in the
application space from loading corrupt versions of core Java classes.

When are classes loaded? Any of the following events can trigger a class to be loaded:

� The creation of a new instance of a class.

� The dependency of one class on another class. For example, if class
Foo has a member of class Bar, then Bar will need to be loaded along
with Foo.

� An explicit call to a classloader�s loadClass() method.

Classloader chaining Classloaders link together to form a chain where each classloader holds a
link to the classloader that created it. When a classloader attempts to load a
class, it first checks its local cache. If the class is not in the local cache, the
classloader then checks with its parent classloader to find the class. Finally,
if the class has not been loaded by any of the existing classloaders, the
classloader loads the class from an external source.
634

Class Loading: An Overview
So, if your application has three classloaders, A, B, and C, as shown in
Figure 16, classloader C will always check with classloaders A and B before
loading a class from an external source. For example, if class c3 has a
dependency on class a1, class a1 will not need to be loaded because it is
supplied by classloader A.

Default classloader hierachy The JVM provides a default classloader hierachy to supply a minimal
guarantee that the JVM�s core classes do not get corrupted or overwritten by
application specific class implementations. The JVM�s classloader hierachy
consists of three levels as shown in Figure 17.

Figure 16: Classloader Chain

Classloader A

Classloader B

Classloader C

a1 a2

b1 b2 b3

c1 c2 c3

Figure 17: Default Classloader Hierarchy

Bootstrap Classloader

Extension Classloader

System Classloader $CLASSPATH

$JAVA_HOME\jre\lib\rt.jar

$JAVA_HOME\jre\lib\ext*.jar
 635

CHAPTER 25 | Using Artix Classloader Environments
The bootstrap classloader is responsible for loading the core Java classes
such as java.lang.Object. The extension classloader then loads any
runtime extension classes such as the ones that provide localization support.
Finally, the system classloader loads the remainder of the classes needed by
an application.

Limitations of classloaders While the design of the class loading system is effective in ensuring that the
core Java classes are not hijacked and that user defined classes are not
isolated it does not address two key issues. These are:

� Using multiple versions of the same library in a single application.

� Classes becoming inaccessible.

In large applications where some of the core functionality is provided by
vendor supplied libraries, you may run into a situation where multiple
versions of a core library, such as Xerces or log4j, are desired. For example,
the vendor supplied libraries may use Xerces 1.0 while your application
code uses Xerces 2.0. In this instance, the first version of the library loaded
will be the version used.

Classes can also become inaccessible because it is possible for a class to
have dependencies on classes that are only available to a classloader further
down the classloader chain. Because the classloader mechanism only
checks up the chain, the dependencies cannot be resolved.
636

Artix�s Classloader Hierarchy
Artix�s Classloader Hierarchy

Overview You can configure Artix to add two additional layers to the JVM�s default
classloader hierachy when the bus, or any Artix plug-in, is loaded. The first
additional classloader is a firewall classloader that can be configured to
block access to classes loaded by classloaders higher up the chain. The
second is a classloader that can be configured to load all of the classes
needed by the bus or the plug-in from a specified set of resources. This is
shown in Figure 18.

Why use the added classloaders? Adding these two classloaders solves both of the problems of Java�s
classloader system. The classloader firewall solves the problem of using
multiple versions of a library by blocking the bus�, or the plug-in�s,
classloader from classes loaded by other classloaders. The Artix classloader
will load versions of the blocked classes based on the resources specified.

Figure 18: Artix Bus Classloader Chain

Bootstrap Classloader

Extension Classloader

System Classloader

Bus Classloader

Bus Classloader

Firewall

$CLASSPATH

$JAVA_HOME\jre\lib\rt.jar

$JAVA_HOME\jre\lib\ext*.jar

Path configured by user
 637

CHAPTER 25 | Using Artix Classloader Environments
It solves the problem of inaccessible classes because the bus, or the plug-in,
has a dedicated classloader, all of the classes needed by it are accessible.

In addition, the Artix classloader environment�s dedicated classloader
removes an application�s dependency in listing all of the required classes in
the CLASSPATH. You can specify where the classes to be loaded by the Artix
classloader are located. The location of the resources used by the dedicated
classloader can be specified using absolute paths or valid URLs. Thus you
can load classes over the web or from a central repository if needed.

Where do plug-ins fit into the
hierarchy?

If a plug-in is configured to use the optional Artix classloaders, the parent
classloader of the plug-in�s firewall classloader will be the classloader that
loaded the bus as shown in Figure 19. If the bus is loaded by the system
classloader, then the plug-in�s firewall classloader will block classes from
the system classloader and above. If the bus is configured to use the Artix
638

Artix�s Classloader Hierarchy
classloading environment, the bus� classloader becomes the parent
classloader for the plug-in. In this instance, the plug-in will only have access
to the classes that are allowed through the bus� classloader firewall.

If the bus blocks a system class from the plug-ins, it creates problems for
the plug-ins. Therefore you must be careful when creating the rules defining
what classes are allowed through the bus� classloader firewall.

Optionally, you can also use the plug-in�s classloader to load the needed
classes from the system. However, these loaded classes will not inherit from
the class instances loaded by other plug-ins or components that are loaded
by the system classloader.

Classloader chaining If you are using multiple plug-ins that are configured to use the Artix
classloader environment, or the bus itself is using the Artix classloader
environment, you can specify the order in which the classloaders are placed
into the classloader hieracrchy. The bus� classloader will always be the

Figure 19: Artix Plug-In Classloader Chain

Default Classloader

Bus Classloader

Bus Classloader

Firewall

Plug-In1 Classloader

Plug-In1 Classloader

Firewall
Plug-In2 Classloader

Plug-In2 Classloader

Firewall
 639

CHAPTER 25 | Using Artix Classloader Environments
parent of the first plug-in loaded, but the order in which the plug-in�s
classloaders are placed into the hierarchy can be specified in the classloader
configuration files.

By default, all of the plug-in classloaders are children of the classloader that
loaded the Artix bus. However, inside the each plug-in�s classloader
configuration you can specify which classloader will be the current
classloader�s parent. This can be useful if you have a number of plug-ins
that share a common set or restrictions or that need a particular chain of
inheritance to remain intact.
640

Using Artix�s Classloader Environment
Using Artix�s Classloader Environment

Overview The Artix classloader environment provides a powerful mechanism for
controlling what classes are used by the Artix bus and the plug-ins that
make up your applications. Despite its power, the classloader environment
is easy to configure. You simply add the appropriate configuration
information the Artix configuration file to tell your code to use the Artix
classloader environment. Then you configure the classloader firewall and
resource locations in a CE file that is written in XML.

Using the firewall with optimized
types

Artix uses some generated code to optimize performance the performance of
the runtime. This generated code is used when a user registers a
TypeFactory with the bus. The Artix firewall classloader should not be used
in conjunction with these generated classes. It is extremely difficult to create
the proper filters to allow all of the generated classes through the firewall.

In order to use the firewall classloader you need to tell the Artix runtime to
not use the generated classes and to fall back on dynamic runtime support.
To use the firewall classloader when you have registered a TypeHandler
with the Bus, do one of the following:

� Set a Java system property.

� Set a configuration property in the Artix configuration file.

� Set a Bus property.

Creating the CE file The Artix classloader environment is configured using CE files. Each plug-in
that uses the Artix classloader environment will have a CE file that defines
the parent of its classloader in the classloader hierarchy, the filters used by
its classloader firewall, and where the its classloader looks for resources.

-Dgenerated_type_handler.disabled=true

java:generated_type_handler:disabled=true

hashtable.put("generated_type_handler.disabled", "true");
Bus bus = Bus.init(args, hashtable);
 641

CHAPTER 25 | Using Artix Classloader Environments
CE files are written in XML and use a small number of elements to define
the environments behavior. Each CE file has four parts. The first part is
common to all CE files. It defines the encoding style used, the type of XML
document being specified, and a namespace shortcut. The entries for this
section are shown in Example 385.

The second section is contained in the ce:environment element of the file.
This element is the only child of the top-level ce:classloader-environment
element. This section specifies the classloader environment�s name using
the name attribute of ce:environment as shown in Example 386. In
addition, you can use the optional parent attribute to define the
classloader�s parent as discussed in �Chaining classloaders� on page 643.

The third section of the CE file defines the filters used by the classloader
firewall. It consists of both positive and negative filter definitions defined
inside of the ce:firewall element. The ce:firewall element is the first
child of the ce:environment element and has one or more ce:filter child
elements. Defining firewall filters is described in �Configuring the classloader
firewall� on page 643.

The forth section of the CE file defines the locations where the plug-in
classloader searches for the resources it needs. This section is contained in
the ce:loader element, which is also a child of the ce:environment
element. The resource locations are specified in a ce:location element, a
ce:url element, and two other elements as described in �Specifying the
locations for the classloader� on page 645.

Example 385: CE File Preamble

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ce:classloader-environment PUBLIC "-//IONA//DTD IONA Classloading Environment 2.0//EN"
 "http://www.iona.com/dtds/classloader-environment_2_0.dtd">
<ce:classloader-environment xmlns:ce="http://www.iona.com/ns/classloader-environment"
 loglevel="info">

Example 386: Naming a Classloader Environment

<ce:classloader-environment>
 <ce:environment name="sifter_ce">
...
 </ce:environment>
</ce:classloader-environment>
642

Using Artix�s Classloader Environment
Chaining classloaders You chain a classloader by setting the parent attribute in the
ce:environment element. The possible settings are:

� Attribute not set.

If the parent attribute is not set, the classloader responsible for loading
the bus is the parent of the plug-in�s classloader firewall.

� parent="ParentCEName"

The classloader whose name is ParentCEName is the parent of the
plug-in�s classloader firewall. If the specified classloader does not exist,
the bus� classloader is used.

� parent="system-classloader"

The system classloader is the parent of the plug-in�s classloader
firewall.

Configuring the classloader
firewall

The classloader firewall assumes that all classes not specified by a positive
filter are to be blocked from the Artix runtime�s classloader. You define
positive filters using one of the two ce:filter element�s attributes:
type="discover" and type="pattern".

Using type=�discover�

The discover filter type specifies that the classloader firewall will allow
access to all classes from the location specified in the discover-source
attribute. Table 42 shows the values for discover-source.

Table 42: discover-source values for the Classloader Firewall

Value Meaning

jre Allow access to all of the classes for the currently running
JRE. It is highly recommended that this filter is included in
your firewall definition.

jar Allow access to all of the classes from the specified jar file.
Jar file locations can be given using relative or absolute file
names. For example to access all of the classes in myApp.jar,
you could define a filter like <ce:filter type="discover"
discover-source="jar">.\myApp.jar</ce:filter>.
 643

CHAPTER 25 | Using Artix Classloader Environments
Using type=�pattern�

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application�s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java import
statements. For example, to specify that all classes from javax.xml.rpc are
to be allowed through the firewall you could use a filter like <ce:filter
type="pattern">javax.xml.rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce:filter
type="pattern">javax.xml.rpc.</ce:filter>.

Negative filters

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with the package com.iona.jbus. The Artix runtime needs
to share a number of resources from this package with the application code,
but it also needs to ensure that some of its resources are loaded from the
Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negative-pattern for
the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system�s
JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce:filter
type="negative-pattern">com.iona.jbus.jaxrpc.<\ce:filter>.

jar-of Allow access to the specified resources. This option makes it
possible to discover the contents of jar files that you know are
reachable through the class loading system, but that you do
not know the actual location. Resources can be classes,
properties files, or HTML files. For example to load the
libraries for the EJBHome class, you could use a filter like
<ce:filter type="discover"
discover-source="jar-of">javax/ejb/EJBHome.class</ce:
filter>.

Table 42: discover-source values for the Classloader Firewall

Value Meaning
644

Using Artix�s Classloader Environment
Specifying the locations for the
classloader

The ce:loader element in the CE file specifies where the classloader will
look for the resources it needs. These resources can be located on the local
machine, on a networked machine, or even on the Web. You can specify
their location using either pathnames or URLs.

To specify a resource�s location using a pathname you use the ce:location
element. Pathnames can be either absolute or relative. In addition they can
include system variables. For example, the resource definition in
Example 387 will use the value of LIB to resolve the specified path.

To specify a resource�s location using a URL you use the ce:url element.
The classloader will use the URL to locate the classes specified.

In addition to ce:location and ce:url you can use two special elements to
include resources:

ce:inherit-parent-locations specifies that the classloader will also use the
resources defined in its parent classloader.

ce:tools-tar specifies that the current JDK�s tools.jar is a resource for the
classloader.

Example Example 388 shows a sample CE file.

Example 387: Resource Location Using a Variable

<ce:location>$(LIB)\xml-apis.jar</ce:location>

Example 388: Simple CE File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ce:classloader-environment PUBLIC "-//IONA//DTD IONA Classloading Environment 2.0//EN"
 "http://www.iona.com/dtds/classloader-environment_2_0.dtd">
<ce:classloader-environment xmlns:ce="http://www.iona.com/ns/classloader-environment"
 loglevel="info">

<ce:classloader-environment>
 <ce:environment name="sifter_ce">
 645

CHAPTER 25 | Using Artix Classloader Environments
Configuring your applications To configure the plug-ins in your application to use the Artix classloader
environment you need to modify the application�s configuration scope in the
Artix configuration file, artix.cfg. For each plug-in that will use the Artix
classloader environment you need to add two configuration variables:

plugins:plugin_name:CE_Name specifies the name of the classloader that
the plug-in specified will use to load. The CE name is defined in the
classloader�s configuration file.

ce:ce_name:FileName specifies the name of the classloader�s configuration
file. ce_name must match the name specified in the plug-in�s CE name
configuration.

 <ce:firewall>
 <ce:filter type="discover" discover-source="jre"/>
 <ce:filter type="negative-pattern">com.iona.jbus.jms.</ce:filter>
 <ce:filter type="negative-pattern">com.iona.jbus.runtime.</ce:filter>
 <ce:filter type="negative-pattern">com.iona.jbus.types.</ce:filter>
 <ce:filter type="negative-pattern">com.iona.jbus.jaxrpc.</ce:filter>
 <ce:filter type="negative-pattern">com.iona.jbus.ntv.</ce:filter>
 <ce:filter type="negative-pattern">com.iona.jbus.util.</ce:filter>
 <ce:filter type="pattern">com.iona.jbus.</ce:filter>
 <ce:filter type="pattern">com.iona.jbus.servants.</ce:filter>
 <ce:filter type="pattern">com.iona.webservices.reflect.types.</ce:filter>
 <ce:filter type="pattern">com.iona.schemas.references</ce:filter>
 <ce:filter type="pattern">javax.xml.rpc.</ce:filter>
 <ce:filter type="pattern">javax.xml.namespace.QName</ce:filter>
 </ce:firewall>
 <ce:loader>
 <ce:location>/usr/iona/artix/lib/apache/jakarta-log4j/1.2.6/log4j.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/apache/xerces/2.5.0/xercesImpl.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/artix/java_runtime/3.0/it_bus.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/artix/ws_common/3.0/it_wsdl.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/artix/ws_common/3.0/saaj-api.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/artix/ws_common/3.0/it_saaj.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/artix/ws_common/3.0/it_ws_reflect.jar</ce:location>
 <ce:location>/usr/iona/artix/lib/common/ifc/1.1/ifc.jar</ce:location>
 </ce:loader>
 </ce:environment>
</ce:classloader-environment>

Example 388: Simple CE File
646

Using Artix�s Classloader Environment
For example, if your application loads a plug-in called sifter that uses the
Artix classloader environment and the classloader environment is configured
using a file called sifter_ce.xml, then your application�s configuration
would look similar to Example 389.

The entries in Example 389 do the following:

1. Configures the application to load the Java plug-in sifter.

2. Specifies that sifter uses a classloader environment named sifter_ce.

3. Specifies that the file defining sifter_ce is located at
..\etc\sifter_ce.xml.

For more information on configuring Artix applications to use plug-ins see
�Configuring Artix Plug-Ins� on page 625 and Configuring and Deploying
Artix Applications, C++ Runtime.

Example 389: Configuring a Plug-In to use the Classloader Environment

#artix.cfg
pluginApp
{

1 orb_plugins=[...,"java"];
java_plugins=["sifter"];
plugins:sifter:classname="sifterFactory";

2 plugins:sifter:CE_Name="sifter_ce";
3 ce:sifter_ce:FileName="..\etc\sifter_ce.xml";

...
}

Note: The JAX-RPC APIs are implemented on top of the Artix ESB C++
Runtime using a JNI layer.
 647

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 25 | Using Artix Classloader Environments
648

Index

A
activate() 605, 607, 615
Adaptive Runtime architecture 626
AnyType

getBoolean() 277
getByte() 277
getDecimal() 277
getDouble() 277
getFloat() 277
getInt() 277
getLong() 277
getSchemaTypeName() 276
getShort() 277
getString() 277
getType() 278
getUByte() 277
getUInt() 277
getULong() 277
getUShort() 277
setBoolean() 274
setByte() 274
setDecimal() 275
setDouble() 274
setFloat() 274
setInt() 274
setLong() 274
setShort() 274
setString() 274
setType() 275
setUByte() 274
setUInt() 275
setULong() 275
setUShort() 274

anyType 272
arrayType attribute 214
ART 626
Artix bus 21

initializing 40, 75
starting 77

ARTIX_DRIVEN 594, 608
atomic types

XML Schema 124

B
BigDecimal 127
binding name

specifying to code generator 26, 36, 59
Bus

createClient() 43
createEndpointReference() 290
deregisterTransportFactory() 595
getTypeFactoryMap() 265
init() 40, 75
registerTransportFactory() 595
registerTypeFactory() 265
run() 77
shutdown() 45

bus
getConfiguration() 631
registerHandlerFactory() 550

busInit() 66
BusPlugIn 531
BusPlugIn.busInit() 531
BusPlugIn.busShutdown() 532
BusPlugIn.getBus() 531
BusPlugInFactory 534
BusPlugInFactory().createBusPlugIn() 534
busShutdown() 66, 69

C
ce:ce_name:FileName 537
choice type

occurrence constraints 192
circular references 105
client

developing 39
ClientNamingPolicy

setReplyFileLifecycle() 460
ClientNamingPolicyType 460

setFilenameFactory() 460
client proxy

instantiating 41
client stub code 25, 36, 59
ClientTransport 589

getOutputStream() 602
initialize() 598
 649

INDEX
ClientType 400
code generation 25, 59

consumer stubs 36
from the command line 26

consumer 36
service 59

impl flag 62
server flag 75
service plug-in 65
types flag 62

code generator
command-line 26, 36, 59
files generated 25

consumer 38
service 61

com.iona.jbus.db 473
com.iona.jbus.db.collections 473
com.iona.jbus.Servant 71, 76
com.iona.jbus.utils.XMLUtils 326, 331
com.iona.jbus package 33
com.iona.webservices.reflect.types.AnyType 273
com.iona.webservices.reflect.types.TypeFactory 26

3, 273
complex choice type

receiving 154
transmitting 154

complex types
attribute groups 158
attributes 158
derivation by extension 184
derivation by restriction 180
deriving from simple 180
description in XML Schema 148
mapping to Java 148

Configuration
getList() 632
getString() 631

configuration
data type 629
domain 626
namespace 628
scope 627
variables 628

ConnectionModeType 454
ConnectionPolicyType 454

setConnectionTimeout() 456
setRecieveTimeoutl() 456
setScanInterval() 456

constructed types 629

ContextConstants 347, 391
CLIENT_REQUEST_CLASSES 571
CLIENT_REQUEST_VALUES 571
CLIENT_RESPONSE_CLASSES 572
CLIENT_RESPONSE_VALUES 571
OPERATION_NAME 570
SERVER_REQUEST_CLASSES 571
SERVER_REQUEST_VALUES 571
SERVER_RESPONSE_CLASSES 572
SERVER_RESPONSE_EXCEPTION 563
SERVER_RESPONSE_VALUES 571

ContextContainer 398
getContext() 399
setContext() 399

ContextRegistry 342
getConfigurationContext() 398

context registry 342
contexts

stub files, generating 368
type factories for 369

contract type descriptions 148
correlationID 363
CorrelationStyleType 436
createClient() 43, 53, 293
createClientTransport() 589
createEndpointReference() 290, 291
createServerTransport() 589
createService() 41
creating a dynamic proxy 42
creating a Service object 41
creating a service proxy

from UDDI 53
CredentialsType 458

setName() 458
setPassword() 458

CustomHeader 423
Name 423
Value 423

CustomHeaders 400, 423
getCustom_headers() 424
setCustom_headers() 424

D
DatabaseConfig 494

markAsWriteOperations() 496
DataBaseManager

close() 476
DatabaseManager 476

closeIterator() 487, 491
650

INDEX
getConfiguration() 494
deactivate() 606
DeliveryType 437
deregisterTransportFactory() 595
destroyClientTransport() 589
destroyServerTransport() 589
dynamic proxies 39
dynamic proxy

instantiating 41

E
enumeration facet 134
exceptions

associating to an operation 231
describing in a contract 230

F
facets 130

enumeration 134
length 132
maxLength 133
minLength 133

FaultException 110
fault message 23
FormatType 438
fractionDigits facet 134
fromString() 136
fromValue() 136
fromXML() 326, 328, 329
FTP_CONNECTION_POLICY 454

G
generated getter method 150
generated setter method 149
generated types

getter method 150
setter method 149

GenericHandler 542, 543, 546
GenericHandlerFactory 542, 553
getBoolean() 277
getBus() 66
getByte() 277
getClass() 276
getClientMessageHandler() 553
getClientRequestHandler() 553
getClientThreadingModel() 589, 592
getConfigurationContext() 398
getContextRegistry() 342

getCorrelationID() 363
getCurrent() 344
getDecimal() 277
getDouble() 277
getFloat() 277
getInt() 277
getJavaType() 269
getJavaTypeForElement() 270
getLong() 277
getMessagePortThreadingPolicy() 593
getProperties() 572
getReplyContext() 360
getRequestContext() 360
getRequiresRequiresDispatchPolicy() 594
getSchemaType() 268
getSchemaTypeName() 276
getServerMessageHandler() 553
getServerRequestHandler() 553
getServerTransportPolicies() 590, 593
getServiceWSDL() 93
getShort() 277
getString() 277
getSupportedNamespaces() 267
getThreadingResourcePolicy() 593
getType() 278
getTypeFactoryMap() 265
getTypeResourceLocation() 270
getUByte() 277
getUInt() 277
getULong() 277
getUShort() 277
getValue() 136

H
handleFault() 563
Handler 543, 546

handleFault() 563
handleRequest() 543, 546
handleResponse() 543, 546

HandlerConstants.PORT_NAME 556
HandlerConstants.SERVICE_NAME 556
HandlerContants.BUS 556
handleRequest() 543, 546, 558
handleResponse() 543, 546, 560
HandlerFactory 553

getClientMessageHandler() 553
getClientRequestHandler() 553
getServerMessageHandler() 553
getServerRequestHandler() 553
 651

INDEX
HandlerInfo 555
setHandlerClass() 554

HTTP headers
property name 423
property value 423

I
infinite recursion 105
init() 40, 75
initialize() 598
initializing the bus

client side 40
server side 75

input message 23
InputStream 578
instantiating a client proxy 41
Instrumentation 516
IONAMessageContext 544, 563
isOneway() 362
itemType 141
itemType attribute 143

J
java.io.* package 34
java.net.* package 34
java.rmi.Remote 30
java.rmi.RemoteException exception 31
java.util.Collection 487
java.util.ListIterator 491
java.util.Set 487
Java Exception class 232
Java Holder class 31
java_plugins 54, 537
java_uddi_proxy 54
javax.activation.DataHandler 224
javax.xml.namespace.QName package 33
javax.xml.rpc.* package 33
javax.xml.rpc.holders 217
javax.xml.rpc.holders.Holder interface 217
javax.xml.rpc.holders package 31
javax.xml.rpc.security.auth.password 49
javax.xml.rpc.security.auth.username 49
javax.xml.rpc.service.endpoint.address 50
javax.xml.rpc.ServiceFactory 41
javax.xml.rpc.Service interface 41
javax.xml.soap.Name 208
javax.xml.soap.Node 209
javax.xml.soap.SOAPElement 207

javax.xml.soap.Text 209
JMS

using a secure connection 451
JMS_CLIENT_CONTEXT 447
JMSClientHeadersType 447
JMSClientHeadersType:TimeOut 447
JMS header properties

inspecting request values 450
inspecting response values 448
setting request values 447
setting response values 449

JMSProperyType 445
JMS_SERVER_CONTEXT 449
JMSServerHeadersType 449
jstring 127

L
length facet 132
list types 141
logical contract 20

M
ManagedComponent 516

getInstrumentation() 516
getObjectName() 517
setObjectName() 517

ManagedComponentEvent 524, 525
ManagedComponentCreateEvent() 524, 525

maxExclusive facet 134
maxInclusive facet 134
maxLength facet 133
MBeanInfoGenerator 520

getModel() 520
MessageContext 344, 345, 544, 546, 563, 603

getProperties() 563
getProperty() 350
removeProperty() 351
setProperty() 349

message context 344
message parts

client request 571
client response 571
server request 571
server response 571

message part sharing 217
message port threading policy 593, 605, 614, 615

MULTI_INSTANCE 615
MULTI_THREADED 614
652

INDEX
MIME multi-part related message 221
minExclusive facet 134
minInclusive facet 134
minLength facet 133
MQConnetionAttributesContextType 429
MQ_INCOMING_MESSAGE_ATTRIBUTES 433
MQMessageAttributesType 433
MQ_OUTGOING_MESSAGE_ATTRIBUTES 433
Multi-dimensional arrays 215

O
obtaining a ServiceFactory 41
occurrence constraints

choice type 192
on 197

oneway 362
operation name

getting in handler 570
-ORBname parameter 628
orb_plugins 54
output message 23
OutputStream 578

P
partially transmitted arrays

SOAP arrays
partially transmitted 216

pattern facet 134
PerInvocationServant 85
PersistentList 474

add(int index, Object obj) 489
add(Object obj) 489
addAll(Collection col) 489
addAll(int index, Collection col) 489
clear() 490
close() 492
get() 490
iterator() 491
listIterator() 491
listIterator(int index) 491
remove(Collection col) 490
remove(int index) 490
remove(Object obj) 490

PersistentMap 473
clear() 486
close() 487
entrySet() 487
get() 486

put() 485
putAll() 486
remove() 486
values() 487

physical contract 20
plugins:artix:db:env_name 498
plugins:artix:db:home 498
plugins:plugin_name:CE_Name 537
plugins:plugin_name:classname 536
port name

specifying to code generator 26, 36, 59
portType 26, 36, 60
postDispatch() 605
primitive types 629

Java 124

R
receiving choice types 154
registerContext() for CORBA 372
registerContext() for SOAP 370
registerHandlerFactory() 550
registering a servant instance 77
registerServant() 72, 77, 80
registerServiceActivator() 67
registerTransientServant() 82
registerTransportFactory() 595
registerTypeFactory() 265
reply context container 355
ReportOptionType 440
request context container 355
required java packages 33
requires concurrent dispatch policy 594
run() 77, 605, 614

S
sequence complex types 149
SerializedServant 85
SerialPersistentList 474

creating 483
SerialPersistentMap 473

creating 479
server

implementation class 62
ServerNamingPolicy

setRequestFileLifecycle() 461
ServerNamingPolicyType 461

setFilenameFactory() 461
server skeleton code 25, 36, 59
 653

INDEX
ServerTransport 589, 605
activate() 605, 607, 615
deactivate() 606
getOutputStream() 605, 612, 617
postDispatch() 605, 612, 618
run() 605, 614
shutdown() 606, 620

ServerTransportPolicies 593
getMessagePortThreadingPolicy() 593
getRequiresConcurrentDispatchPolicy() 594
getThreadingResourcePolicy() 593

server transport policies
message port threading policy 593, 605, 614,

615
requires concurrent dispatch policy 594
threading resource policy 593, 605, 607, 614,

615
ServerTransportThreadingResourcesPolicy 594
ServerType 400
Service 53
service

main() function 75
Service.getPort() 42
ServiceFactory.newInstance() 41
service name

specifying to code generator 26, 36, 59
setBoolean() 274
setByte() 274
setDecimal() 275
setDouble() 274
setFloat() 274
setHandlerClass() 554
setInt() 274
setLong() 274
setReplyContext() 357
setRequestContext() 357
setShort() 274
setString() 274
setType() 275
setUByte() 274
setUInt() 275
setULong() 275
setUShort() 274
shutdown() 45, 606, 620
shutting down the bus 45
SingleInstanceServant 83
skeleton code

generating with wsdltojava 27
SOAP arrays

sparse 215
syntax 213

SOAPElement.getChildElements() 209
SOAPElement.getElementName() 208
SOAP-ENC:Array type 213
SOAPFaultException 116
SOAPMessage 575

AttachmentPart 576
message elements 576
SOAPBody 576
SOAPEnvelope 576
SOAPHeader 576
SOAPPart 576

SOAPMessageContext 547, 563, 569, 575
getMessage() 575
setMessage() 575

SOAP with attachments 221
sparse arrays 215
stack overflow 105
static servant 80
StreamMessageContext 547, 563, 569, 578
StreamUtils 326, 331
StringSerialPersistentMap 473

creating 480
StringXMLPersistentMap 473

creating 480
Stub._getProperty() 48
Stub._setProperty() 48
Stub interface 48

T
ThreadingModel 589
ThreadingResourcePolicy

ARTIX_DRIVEN 605, 608, 614, 615
TRANSPORT_DRIVEN 609
USES_WORKQUEUE 607, 608

threading resource policy 593, 605, 607, 614, 615
ARTIX_DRIVEN 594
artix driven 605
TRANSPORT_DRIVEN 594
USES_WORKQUEUE 594
use workqueue 607

thread_pool:high_water_mark 83
thread_pool:initial_threads 83
thread_pool:low_water_mark 83
toString() 136, 150, 232
totalDigits facet 134
TransactionType 431
transient servant 81
654

INDEX
transmitting choice types 154
transportActivated() 609
TransportCallback

dispatch() 612
getCurrentContext() 619

TRANSPORT_DRIVEN 594, 609
TransportFactory 588, 589

createClientTransport() 589
createServerTransport() 589
destroyClientTransport() 589
destroyServerTransport() 589
getClientThreadingModel() 589, 592
getServerTransportPolicies() 590, 593

transportShutdownComplete() 620
type derivation

by extension 180, 184
by restriction 180

type factories 262
and contexts 369
generating 262
instantiating 264
registering 265

TypeFactory
getJavaType() 269
getJavaTypeForElement() 270
getSchemaType() 268
getSupportedNamespaces() 267
getTypeResourceLocation() 270

U
UDDI

building queries 52
configuring your applicaiton to use 54
looking up services 53

UDDI URL 52
USES_WORKQUEUE 594, 608

W
whiteSpace facet 134
wsdl:arrayType 213
wsdl:arrayType attribute 214
WSDL fault element 31, 231

message attribute 231
WSDL input element 31
WSDL message element 22, 31, 230

name attribute 232
WSDL operation element 22, 31

name attribute 31

parameterOrder attribute 31
WSDL output element 31
WSDL part element 22
WSDL port element

name attribute 30
WSDL portType element 22, 30
wsdltojava 26, 59, 62

command-line switches 26
consumer generation 36
-datahandlers 224
files generated 25

consumer 38
service 61

generating a service plug-in 65
-ser flag 479, 483
service generation 59
XML schemas, generating from 368

WSDL types element 22, 148, 272

X
XMLDataHandler 476
XML Schema

all element 149, 200
anyAttribute element 166
attribute element 128, 158

default attribute 128, 158
fixed attribute 128, 158
name attribute 158
type attribute 158
use attribute 128, 158

attributeGroup element 158
name attribute 160
ref attribute 160

XML Schema choice element 154, 200
maxOccurs attribute 192
minOccurs attribute 192

XML Schema complexContent element 184
XML Schema complexType element 148

name attribute 149
XML Schema element element 128, 200

maxOccurs attribute 128, 150, 197, 200, 214
minOccurs attribute 128, 197, 200
nillable attribute 128
type attribute 170

XML Schema extension element 180, 184
base attribute 184

XML Schema facets 130
XML Schema group element 200

name attribute 200
 655

INDEX
ref attribute 201
XML Schema restriction element 130, 184

base attribute 130, 184
XML Schema sequence element 149, 200

maxOccurs attribute 188
minOccurs attribute 188

XML Schema simpleContent element 180
XML Schema simpleType element 130

name attribute 130, 136, 145
XML Schema union element 144

memberTypes attributes 144
XMLUtil

referenceFromXML() 335
XMLUtils 326, 331

fromXML() 326
referenceToXML() 335
toXML() 331

xsd:anyType 272
and context types 367

xsd:list 141
656

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Fundamentals of Artix Programming
	The Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java
	Generating Java Code
	Mapping Contract Elements to Java
	Java Package Naming

	Developing Artix Consumers
	Generating the Stub Code
	Writing the Consumer Code
	Initializing an Artix Bus
	Creating a Service Proxy Using the JAX-RPC Method
	Creating a Service Proxy Using Artix APIs
	Shutting Down the Artix Bus
	Full Consumer Code

	Setting Connection Attributes Using the Stub Interface
	Creating a Service Proxy Using UDDI
	Building an Artix Consumer

	Developing Artix Services
	Generating the Skeleton Code
	Developing a Service Implementation
	Developing a Container Based Service
	Generating Starting Point Code
	Implementing the Service’s Plug-in Class
	Implementing the Service’s Activator Class

	Developing a Standalone Service
	Servant Registration
	Static Servant Registration
	Transient Servant Registration

	Servant Threading Models
	Building an Artix Service

	Finding Contracts and References at Runtime
	Finding Initial References
	Finding Artix Contracts

	Things to Consider when Developing Artix Applications
	Getting a Bus
	Ensuring a Server Uses a Unique Bus
	Class Loading
	Avoid Circular References

	Handling Artix Generated Exceptions
	Generic Exception Handling
	Overview of Fault Exceptions
	Processing Fault Exceptions
	Throwing Fault Exceptions

	Using the SOAP Binding

	Working with Artix Data Types
	Including and Importing Schema Definitions
	XML Schema Elements
	Using XML Schema Simple Types
	Atomic Type Mapping
	Special Atomics Type Mappings
	Defining Simple Types by Restriction
	Using Enumerations
	Using Lists
	Using XML Schema Unions

	Using XML Schema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Undeclared Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Occurrence Constraints
	Using Model Groups

	Using XML Schema any Elements
	SOAP Arrays
	Holder Classes
	Using SOAP with Attachments
	Unsupported XML Schema Constructs

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Using Substitution Groups
	Substitution Groups in XML Schema
	Using Substitution Groups with Artix
	Widget Vendor Example
	Widget Server
	Widget Client

	Working with Artix Type Factories
	Introduction to Type Factories
	Registering Type Factories
	Getting Type Information From Type Factories

	Working with XML Schema anyTypes
	Introduction to Working with XML Schema anyTypes
	Setting anyType Values
	Retrieving Data from anyTypes

	Using Endpoint References
	Introduction to Endpoint References
	Endpoint Reference Basic Concepts
	Using Endpoint References in Artix Contracts
	Creating a NULL Endpoint Reference
	Creating Endpoint References for a Service
	Instantiating Service Proxies Using an Endpoint Reference

	Using Endpoint References in a Factory Pattern
	Bank Service Contract
	Bank Service Implementation
	Bank Service Client

	Using Endpoint References to Implement Callbacks
	The Accounting Contract
	The Accounting Client
	The Accounting Server

	Migration Scenarios

	Using Native XML
	Populating Artix Objects with XML
	Converting Artix Objects Into XML
	Converting References into XML

	Using Message Contexts
	Understanding Message Contexts in Artix
	Getting the Context Registry
	Getting the MessageContext Object for a Thread
	Working with JAX-RPC MessageContext Objects
	Working with IonaMessageContext Objects
	How Properties are Stored in Artix Message Contexts
	Setting a Property into an Artix Message Context
	Working with Properties from an Artix Message Context
	Special Artix Properties

	Sending Message Headers
	Defining Context Data Types
	Registering Context Types
	Registering a Context for Use as a SOAP Header
	Registering a Context for Use as a CORBA Header

	SOAP Header Example
	The Contract
	Generating the Classes for the Header
	The Client
	The Service

	Working with Transport Attributes
	How Artix Stores Transport Attributes
	Getting Transport Attributes from an Artix Context
	Getting IP Attributes
	Setting Configuration Attributes
	Using the Standard Contexts
	Using the Configuration Context

	Setting HTTP Attributes
	Client-side Configuration
	Server-side Configuration
	Setting the Server’s Endpoint URL
	Adding Custom HTTP Header Properties

	Setting CORBA Attributes
	Setting WebSphere MQ Attributes
	Working with Connection Attributes
	Working with MQ Message Descriptor Attributes

	Setting JMS Attributes
	Using JMS Message Headers and Properties
	Using Client-side JMS Attributes
	Using Server-side JMS Attributes
	Setting JMS Broker Security Information

	Setting FTP Attributes
	Setting FTP Connection Policies
	Setting the Connection Credentials
	Setting the Coordination Policies

	Setting i18n Attributes

	Advanced Artix Programming
	Using Persistent Datastores
	Introduction to Artix Persistent Datastores
	Creating a Persistent Datastore
	Creating Persistent Maps
	Creating Persistent Lists

	Working with Data in a Persistent Datastore
	Using Persistent Maps
	Using Persistent Lists

	Supporting High-Availability
	Configuring Artix to Use Persistent Datastores

	Using the Call Interface for Dynamic Invocations
	DII and the Call Interface
	Building Invocations using the Call Interface
	Printer Service Demo

	Instrumenting a Service
	Overview of Artix Instrumentation
	Using the JMX APIs
	Using the Artix ManagedComponent Interface
	Implementing the Instrumentation Class
	Implementing the Support Class
	Creating and Removing your Instrumentation

	Developing Plug-Ins
	Understanding the Artix Plug-in Model
	Extending the BusPlugIn Class
	Implementing the BusPlugInFactory Interface
	Configuring Artix to Load a Plug-in

	Writing Handlers
	Handlers: An Introduction
	Developing Request-Level Handlers
	Developing Message-Level Handlers
	Implementing a Handler as a Plug-in
	Creating the Handler Plug-in
	Creating a Handler Factory

	Handling Errors and Exceptions
	Handling Errors when Processing Requests
	Handling Errors when Processing Responses
	Throwing User Faults
	Processing Fault Messages

	Configuring Endpoints to Use Handlers

	Manipulating Messages in a Handler
	Working with Operation Parameters
	Working with SOAP Messages
	Manipulating Messages as a Binary Stream

	Developing Custom Artix Transports
	Developing a Transport: The Big Picture
	Making a Schema for the Transport Attributes
	Developing and Registering the Transport Factory
	Creating a Transport Factory
	Transport Policies
	Registering and Unregistering a Transport Factory

	Developing the Client Transport
	Developing the Server Transport
	Activating a Server Transport
	Processing Requests
	Shutting Down a Server Transport

	Using your Custom Transport

	Configuring Artix Plug-Ins
	Understanding Artix Configuration
	Adding Custom Configuration for a Plug-in

	Using Artix Classloader Environments
	Class Loading: An Overview
	Artix’s Classloader Hierarchy
	Using Artix’s Classloader Environment

	Index

