
Artix ESB
Developing Applications in JavaScript

Version 5.1
December 2007

Making Software Work Together™



Developing Applications in JavaScript
IONA Technologies

Version 5.1

Published 28 Mar 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.



Table of Contents
Preface ................................................................................................................................. 9

What is Covered in This Book ........................................................................................... 10
Who Should Read This Book ............................................................................................ 11
How to Use This Book .................................................................................................... 12
The Artix ESB Documentation Library ................................................................................. 13

Using ECMAScript to Implement Services ................................................................................... 15
Implementing a Service in JavaScript .................................................................................. 16

Defining the Metadata ............................................................................................. 17
Implementing the Service Logic ................................................................................. 19

Implementing a Service in ECMAScript for XML (E4X) ............................................................. 20
Publishing Services Developed in a Dynamic Language .................................................................. 21

Deploying JavaScript Services ........................................................................................... 22
Index .................................................................................................................................. 25

3



4



List of Tables
1. Optional Arguments to ServerApp ........................................... 22

5



6



List of Examples
1. JavaScript Web Service Metadata ............................................ 18
2. JavaScript Service Implementation ........................................... 19
3. E4X Service Implementation ................................................... 20
4. Deploying a Service at a Specified Address ................................. 23
5. Deploying a Group of Services to a Base Address ......................... 23
6. Combining the Command Line Arguments .................................. 23

7



8



Preface

Table of Contents
What is Covered in This Book ................................................................................................... 10
Who Should Read This Book .................................................................................................... 11
How to Use This Book ............................................................................................................ 12
The Artix ESB Documentation Library ......................................................................................... 13

9



What is Covered in This Book
This book describes how to use the Artix ESB APIs to develop applications.

10

What is Covered in This Book



Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you
have a good understanding of the following:

• general programming concepts.

• general SOA concepts.

• JavaScript.

• the runtime environment into which you are deploying services.

11

Who Should Read This Book



How to Use This Book
This book is organized so that it follows the general workflow for developing
and deploying services with Artix ESB. It begins with a discussion of
implementing your services, progresses through how to set up the physical
details of how your service will be exposed as an endpoint, and concludes by
discussing how to deploy endpoints into Artix ESB.

12

How to Use This Book



The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

13

The Artix ESB Documentation Library

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm


14



Using ECMAScript to Implement Services
Summary

JavaScript, also known by its formal name ECMAScript, is one of the many dynamic languages that are growing
in prevalence in development environments. It provides a quick and lightweight means of creating functionality
that can be run on a number of platforms. Another strength of JavaScript is that applications can be quickly
rewritten.

Table of Contents
Implementing a Service in JavaScript .......................................................................................... 16

Defining the Metadata ..................................................................................................... 17
Implementing the Service Logic ......................................................................................... 19

Implementing a Service in ECMAScript for XML (E4X) ..................................................................... 20

Artix ESB provides support for developing services using JavaScript and
ECMAScript for XML(E4X). The pattern used to develop these services are
similar to JAX-WS Provider implementations that handle their requests and

responses (either SOAP messages or SOAP payloads) as DOM documents.

15



Implementing a Service in JavaScript

Table of Contents
Defining the Metadata ............................................................................................................. 17
Implementing the Service Logic ................................................................................................. 19

Writing a service in JavaScript is a two step process:

1. Define the JAX-WS style metadata.

2. Implement the service's business logic.

16

Implementing a Service in JavaScript



Defining the Metadata
Java based service providers typically use annotations to specify JAX-WS
metadata. Since JavaScript does not support annotations, you use ordinary
JavaScript variables to specify metadata for JavaScript implementations. Artix
ESB treats any JavaScript variable in your code whose name equals or begins
with WebServiceProvider as a JAX-WS metadata variable.

Required properties
Properties of the variable are expected to specify the same metadata that the
JAX-WS WebServiceProvider annotation specifies, including:

• wsdlLocation specifies a URL for the WSDL document that defines the

service.

• serviceName specifies the name of the service.

• portName specifies the service's port/interface name.

• targetNamespace specifies the target namespace of the service.

Optional properties
The JavaScript WebServiceProvider can also specify the following optional

properties:

• ServiceMode indicates whether the specified service handles SOAP payload

documents or full SOAP message documents. This property mimics the
JAX-WS ServiceMode annotation. The default value is PAYLOAD.

• BindingMode indicates the service binding ID URL. The default is the

SOAP 1.1/HTTP binding.

• EndpointAddress indicates the URL consumer applications use to

communicate with this service. The property is optional but has no default.

Example
Example 1, “JavaScript Web Service Metadata” shows a metadata description
for a JavaScript service implementation.

17

Defining the Metadata



Example 1. JavaScript Web Service Metadata
var WebServiceProvider1 = {

'wsdlLocation': 'file:./wsdl/hello_world.wsdl',
'serviceName': 'SOAPService1',
'portName': 'SoapPort1',
'targetNamespace': 'http://object

web.org/hello_world_soap_http',
};

18

Defining the Metadata



Implementing the Service Logic
You implement the service's logic using the required invoke property of the

WebServiceProvider variable. This property is a function that accepts one

input argument, a javax.xml.transform.dom.DOMSource node, and returns

a document of the same type. The invoke function can manipulate either

the input or output documents using the regular Java DOMSource class

interface just as a Java application would.

Example
Example 2, “JavaScript Service Implementation” shows an invoke function

for a simple JavaScript service implementation.

Example 2. JavaScript Service Implementation
WebServiceProvider.invoke = function(document) {

var ns4 = "http://apache.org/hello_world_soap_http/types";
var list = document.getElementsByTagNameNS(ns4, "requestType");
var name = list.item(0).getFirstChild().getNodeValue();
var newDoc = document.getImplementation().createDocument(ns4, "ns4:greetMeResponse",

null);
var el = newDoc.createElementNS(ns4, "ns4:responseType");
var txt = newDoc.createTextNode("Hi " + name);
el.insertBefore(txt, null);
newDoc.getDocumentElement().insertBefore(el, null);
return newDoc;

}

19

Implementing the Service Logic



Implementing a Service in ECMAScript for XML (E4X)
Developing a service using E4X is very similar to developing a service using
JavaScript. You define the JAX-WS metadata using the same
WebServiceProvider variable in JavaScript. You also implement the service's

logic in the WebServiceProvider variable's invoke property.

The only difference between the two approaches is the type of document the
implementation manipulates. When working with E4X, the implementation
receives requests as an E4X XML document and returns a document of the
same type. These documents are manipulated using built-in E4X XML features.

Example
Example 3, “E4X Service Implementation” shows an invoke function for a

simple E4X service implementation.

Example 3. E4X Service Implementation
var SOAP_ENV = new Namespace('SOAP-ENV',

'http://schemas.xmlsoap.org/soap/envelope/');
var xs = new Namespace('xs', 'http://www.w3.org/2001/XMLSchema');
var xsi = new Namespace('xsi', 'http://www.w3.org/2001/XMLSchema-instance');
var ns = new Namespace('ns', 'http://apache.org/hello_world_soap_http/types');

WebServiceProvider1.invoke = function(req) {
default xml namespace = ns;
var name = (req..requestType)[0];
default xml namespace = SOAP_ENV;
var resp = <SOAP-ENV:Envelope xmlns:SOAP-ENV={SOAP_ENV} xmlns:xs={xs} xmlns:xsi={xsi}/>;

resp.Body = <Body/>;
resp.Body.ns::greetMeResponse = <ns:greetMeResponse xmlns:ns={ns}/>;
resp.Body.ns::greetMeResponse.ns::responseType = 'Hi ' + name;
return resp;

}

20

Implementing a Service in ECMAScript
for XML (E4X)



Publishing Services Developed in a
Dynamic Language
Summary

Most dynamic languages require an interpreter to run. Artix ESB provides a lightweight container for hosting
services developed using dynamic languages.

Table of Contents
Deploying JavaScript Services ................................................................................................... 22

Exposing a scripted service through Artix ESB's runtime is handled by a
lightweight container. The container loads the required runtime interpreters
for the service, runs the code, and connects the application's logic to the
underlying runtime. The scripted services can take advantage of most of the
features offered by the runtime through the container.

21



Deploying JavaScript Services
Artix ESB provides a lightweight container that allows you to deploy your
JavaScript and E4X services and take advantage of Artix ESB's pluggable
transport infrastructure.

Important
JavaScript based services work with SOAP messages. So, while they
are multi-transport, they can only use the SOAP binding.

Deployment command
You deploy them into the container using the following command:

java org.apache.cxf.js.rhino.ServerApp [ -a addressURL ] [ -b

baseAddressURL ] { file ...}

The org.apache.cxf.js.rhino.ServerApp class, shorted to ServerApp

below, takes one or more JavaScript files, suffixed with a .js, or E4X files,

suffixed with a .jsx, and loads them into the Artix ESB runtime. If ServerApp

locates JAX-WS metadata in the files it creates and registers a JAX-WS
Provider<DOMSource> object for each service. The Provider<DOMSource>

object delegates the processing of requests to the implementation stored in
the associated file. ServerApp can also take the name of a directory

containing JavaScript and E4X files. It will load all of the scripts that contain
JAX-WS metadata, load them, and publish a service endpoint for each one.

ServerApp has three optional arguments:

Table 1. Optional Arguments to ServerApp

DescriptionArgument

Specifies the address at which ServerApp publishes the service endpoint implementation

found in the script file following the URL.

-a addressURL

Specifies the base address used by ServerApp when publishing the service endpoints

defined by the script files. The full address for the service endpoints is formed by appending
the service's port name to the base address.

-b baseAddressURL

22

Deploying JavaScript Services



DescriptionArgument

Specifies that ServerApp is to run in verbose mode.-v

The optional arguments take precedence over any addressing information
provided in EndpointAddress properties that appear in the JAX-WS metadata.

Examples
For example, if you deployed a JavaScript service using the command shown
in Example 4, “Deploying a Service at a Specified Address”, your service
would be deployed at http://cxf.apache.org/goodness.

Example 4. Deploying a Service at a Specified Address
java org.apache.cxf.js.rhino.ServerApp -a http://cxf.apache.org/goodness hello_world.jsx

To deploy a number of services using a common base URL you could use the
command shown in Example 5, “Deploying a Group of Services to a Base
Address”. If the service defined by hello_world.jsx had port name of

helloWorld, ServerApp would publish it at

http://cxf.apache.org/helloWorld. If the service defined by

goodbye_moon.js had a port name of blue, ServerApp would be published

at http://cxf.apache.org/blue.

Example 5. Deploying a Group of Services to a Base Address
java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx goodbye_moon.js

You can also combine the arguments as shown in Example 6, “Combining
the Command Line Arguments”. Your service would be deployed at
http://cxf.apache.org/goodness. ServerAppwould publish three service

endpoints:

Example 6. Combining the Command Line Arguments
java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx goodbye_moon.js -a
http://cxf.apache.org/goodness chocolate.jsx

1. The service defined by hello_world.jsx at

http://cxf.apache.org/helloWorld.

23

Deploying JavaScript Services



2. The service defined by goodbye_moon.js at

http://cxf.apache.org/blue.

3. The service defined by chocolate.jsx at

http://cxf.apache.org/goodness.

24

Deploying JavaScript Services



Index
B
BindingMode property, 17

D
deploying, 22
DOMSource, 19

E
endpoint

specifying the address, 17
EndpointAddress property, 17

I
invoke(), 19, 20

J
JAX-WS

WebServiceProvider annotation, 17

M
message manipulation, 19, 20

P
portName property, 17

S
ServerApp, 22
service metadata, 17

optional, 17
reqired, 17

ServiceMode property, 17
serviceName property, 17

T
targetNamespace property, 17

W
WebServiceProvider variable, 17
wsdlLocation property, 17

X
XML documents, 20

25



26


	Developing Applications in JavaScript
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Using ECMAScript to Implement Services
	Implementing a Service in JavaScript
	Defining the Metadata
	Implementing the Service Logic

	Implementing a Service in ECMAScript for XML (E4X)

	Publishing Services Developed in a Dynamic Language
	Deploying JavaScript Services

	Index

