
Artix ESB®

Management Guide, C++
Runtime

Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This
publication and features described herein are subject to change without notice.

Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: February 20, 2009

Contents

List of Figures 7

Preface 9

Part I Introduction

Chapter 1 Artix C++ Runtime Management 15
Introduction to Artix C++ Management 16
Artix C++ Management Integrations 21

Part II Java Management Extensions

Chapter 2 Monitoring and Managing with JMX 27
Introduction 28
Managed Bus Components 33
Managed Service Components 39
Managed Port Components 47

Chapter 3 Configuring JMX in Artix C++ 51
Artix JMX Configuration 52

Chapter 4 Managing Artix Services with JMX Consoles 55
Managing Artix Services with JConsole 56
Managing Artix Services with the JMX HTTP adaptor 60
Managing Artix Services with MC4J 63

Chapter 5 Managing WS-RM Persistence with JMX 81
WS-RM Persistence Management 82
Viewing Messages in the WS-RM Persistence Database 84
3

CONTENTS
Part III Progress Actional

Chapter 6 Artix�Actional Integration 93
Artix�Actional Interaction Architecture 94

Chapter 7 Configuring Artix�Actional Integration 101
Prerequisites 102
Configuring Actional for Artix Integration 103
Configuring Artix Java Services for Actional Integration 106
Viewing Artix Endpoints in Actional 109

Chapter 8 Artix�Actional Deployment Scenarios 115
Deployment with IBM WebSphere and J2EE Connector 116
Native Deployment with IBM WebSphere 119

Part IV AmberPoint

Chapter 9 Integrating with AmberPoint 13
AmberPoint Proxy Agent 14
Artix AmberPoint Agent 17

Chapter 10 Configuring the Artix AmberPoint Agent 25
Installing AmberPoint 26
Configuring AmberPoint for Artix Integration 27
Configuring Artix C++ Services for AmberPoint Integration 30

Part V BMC Patrol

Chapter 11 Integrating with BMC Patrol� 37
Introduction 38
The Artix BMC Patrol Integration 42
4

CONTENTS
Chapter 12 Configuring Artix for BMC Patrol 45
Setting up your Artix Environment 46

Chapter 13 Using the Artix BMC Patrol Integration 49
Setting up your BMC Patrol Environment 50
Using the Artix Knowledge Module 52

Chapter 14 Extending to a BMC Production Environment 59
Configuring an Artix Production Environment 60

Index 63
5

CONTENTS
6

List of Figures

Figure 1: Artix C++ Runtime Management Architecture 17

Figure 2: Artix Service Endpoint in JConsole 22

Figure 3: Actional Server Administration Console 23

Figure 4: Artix JMX Architecture 29

Figure 5: Managed Service in JConsole 57

Figure 6: Managed Port in JConsole 58

Figure 7: Managed Locator in JConsole 59

Figure 8: HTTP Adaptor Main View 61

Figure 9: HTTP Adaptor Bus View 62

Figure 10: Connecting to a Server 64

Figure 11: Server Connection Details 65

Figure 12: Creation of Server Connection 66

Figure 13: New Server Connection 67

Figure 14: Viewing Service Properties 68

Figure 15: Viewing Service Counters Properties 69

Figure 16: Stopping a Service 69

Figure 17: Deactivated Service 70

Figure 18: Activated a Service 71

Figure 19: Viewing Port Properties 72

Figure 20: Viewing Interceptor Properties 73

Figure 21: Using My Wizard to View Logging Levels 75

Figure 22: Providing a Subsystem Name 75

Figure 23: My Wizard Displays Logging Level 76

Figure 24: Setting a Logging Level 77

Figure 25: Logging Level Set Successfully 78

Figure 26: Propagating a Logging Level 79
7

LIST OF FIGURES
Figure 27: Connecting to a JMX Agent 85

Figure 28: WS-RM Persistence Enabled Endpoint 86

Figure 29: WS-RM Sequence Attributes 88

Figure 30: Messages in the WS-RM Persistence database 89

Figure 31: Artix�Actional Integration Architecture 95

Figure 32: Actional Server Administration Console 99

Figure 33: Actional Server Network Overview 110

Figure 34: Actional Server Path Explorer 111

Figure 35: Service Facade in Path Explorer 112

Figure 36: Service Facade in More Detail 113

Figure 37: Service Facade Extra Hop 114

Figure 38: Specifying a New Shared Library 121

Figure 39: Specifying Application Properties 123

Figure 40: AmberPoint Proxy Agent Integration 14

Figure 41: AmberPoint Proxy Agent Service Network 15

Figure 42: Artix AmberPoint Agent Integration 17

Figure 43: Artix AmberPoint Agent Embedded in Service Endpoint 19

Figure 44: Artix AmberPoint Agent Service Network 21

Figure 45: Overview of the Artix BMC Patrol Integration 40

Figure 46: IONA Server Running in BMC Patrol 43

Figure 47: BMC Patrol Displaying Alarms 44

Figure 48: Graphing for IONAAvgResponseTime 55

Figure 49: Alarms for IONAAvgResponseTime 56
 8

Preface
What is covered in this book
This guide describes the enterprise management features for Artix
applications that use the C++ runtime. It explains how to integrate and
manage Artix applications with the following:

� Java Management Extensions (JMX)

� Progress Actional

� AmberPoint

� BMC Patrol

This guide applies to Artix applications written using in C++ or JAX-RPC
(Java XML-Based APIs for Remote Procedure Calls) only.

For information on Artix applications written in JAX-WS (Java XML-Based
APIs for Web Services) or JavaScript, see the Artix Management Guide, Java
Runtime.

Who should read this book
This guide is aimed at system administrators managing distributed
enterprise environments, and developers writing distributed enterprise
applications. Administrators do not require detailed knowledge of the
technology that is used to create distributed enterprise applications.ns.

This book assumes that you already have a good working knowledge of at
least one of the management technologies mentioned in �What is covered in
this book�.
9

../java_mgmt/index.htm
../java_mgmt/index.htm

PREFACE
Organization of this book
This book contains the following parts:

Part I

� Chapter 1 introduces the Artix C++ management architecture and
features.

Part II

� Chapter 2 introduces the JMX features supported by the Artix C++
runtime, and describes the Artix components that can be managed
using JMX.

� Chapter 3 explains how to configure an Artix C++ runtime for JMX.

� Chapter 4 explains how to manage and monitor Artix services using
JMX consoles.

� Chapter 5 shows how to manage Web Services Reliable Messaging
persistence in Artix using a JMX console

Part III

� Chapter 6 describes the architecture of the Artix C++ runtime
integration with Actional.

� Chapter 7 explains how to configure integration between Artix and
Actional SOA management products.

� Chapter 8 shows examples of monitoring Artix services using Actional.

Part IV

� Chapter 9 describes the architecture of the Artix C++ runtime
integration with AmberPoint.

� Chapter 10 explains how to configure integration with the Artix
AmberPoint Agent, and shows examples from the Artix AmberPoint
integration demo.
 10

PREFACE
Part V

� Chapter 11 introduces Enterprise Management Systems, and the Artix
integration with BMC Patrol.

� Chapter 12 describes how to configure your Artix environment for
integration with BMC Patrol.

� Chapter 13 describes how to configure your BMC Patrol environment
for integration with Artix.

� Chapter 14 describes how to extend an Artix BMC Patrol integration
from a test environment to a production environment

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
11

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 12

Part I
Introduction

In this part This part contains the following chapters:

Artix C++ Runtime Management page 15
13

14

CHAPTER 1

Artix C++
Runtime
Management
Artix provides support for integration with a range of
management systems. This chapter introduces the
management architecture for the Artix C++ runtime and the
supported integrations.

In this chapter This chapter includes the following section:

Introduction to Artix C++ Management page 16

Artix C++ Management Integrations page 21
15

CHAPTER 1 | Artix C++ Runtime Management
Introduction to Artix C++ Management

Overview This section introduces the Artix ESB C++ runtime management
architecture and explains its various components. This applies to Artix
applications written in C++ and JAX-RPC.

Management architecture The Artix ESB C++ management architecture provides:

� Integration with third-party enterprise management and SOA
management systems

� Instrumentation used to monitor system status and potential problems

� Flexible runtime configuration

� Tools for developers without access to management systems.

Figure 1 shows a basic overview of the Artix C++ management
architecture. The Artix C++ runtime uses Artix plug-ins and interceptors to
send management instrumentation data to third-party management
systems.

In addition, the Artix instrumentation data can also be monitored using
JMX-compliant consoles.

Integration with third-party
management systems

Integrations with third-party enterprise management and SOA management
systems are critical to large corporations. Artix provides integration with the
Actional and AmberPoint SOA management systems, and the BMC Patrol
Enterprise Management System (EMS).

These management systems give a top-to-bottom view of enterprise
infrastructure. For example, this means that instead of getting 100 different
messages when services are not responding, you get a single message
saying your services on these hosts are not working because the following
network segment is dead.
16

Introduction to Artix C++ Management
If you integrate with an enterprise management or SOA management
system, your product can also be hooked into higher-level monitoring tools
such as Business Activity Monitoring (BAM), Service Level Agreement
monitoring, and impact analysis tools. For example, when something goes
wrong, the relevant administrators are automatically notified, trouble tickets
are created, and service level impact is analyzed.

For more details on integration with third-party management systems, see
�Artix C++ Management Integrations� on page 21.

Figure 1: Artix C++ Runtime Management Architecture
17

CHAPTER 1 | Artix C++ Runtime Management
Instrumentation Management instrumentation refers to application code used to monitor
specific components in a system (for example, code that outputs logging or
performance data to a management console). Instrumentation is used to
reflect the state of a system and view potential problems with the normal
operation of the system, while imposing minimal overhead. If you are using
instrumentation to view problems, it is important that the act of observing
the system causes minimal disturbance.

The main types of instrumentation supported by Artix include:

� Object-based instrumentation (for example, JMX)

� Logging

Object-based instrumentation

Artix supports object-based instrumentation using Java Management
Extensions (JMX). The main purpose of this object-based instrumentation is
to enable monitoring and management of Artix applications by JMX-aware
third-party management consoles such as JConsole (see Figure 1).

Artix has been instrumented to allow Java runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an Artix Java
runtime to be monitored and managed either in process or remotely using
the JMX Remote API. Managed components are exposed using an Object
interface with attributes and methods.

Artix Java runtime components can be exposed as JMX MBeans
out-of-the-box (for example, Artix C++ service endpoints and Artix C++
bus). In addition, the Artix C++ runtime supports the registration of custom
MBeans. Java developers can create their own MBeans and register them
either with their JMX MBean server of choice, or with a default MBean
server created by Artix

For more details on JMX object-based instrumentation, see Part II �Java
Management Extensions�.
18

Introduction to Artix C++ Management
Logging

Logging in the Artix C++ runtime is controlled by the event_log:filters
configuration variable, and by the log stream plug-ins. For example, the
local_log_stream sends logging to a text file, and the xmlfile_log_stream
directs logging to an XML file.

The event_log:filters configuration variable is used to specify logging
severity levels�for information, warning, error, and fatal error messages.
You can also use the event_log:filters variable to set fine-grained logging
for specific Artix subsystems. For example, you can set logging for the Artix
core, specific transports, bindings, or services. You can set logging for Artix
services, such as the locator, and for services that you have implemented.

For more details on Artix C++ runtime logging, see Configuring and
Deploying Artix Solutions, C++ Runtime.

Flexible configuration The Artix C++ runtime is based on the highly flexible and scalable Adaptive
Runtime (ART). This is a plug-in based architecture in which runtime
behavior is configured using common and application-specific settings that
are applied during application start up. This means that the same
application code can be run, and can exhibit different capabilities, in
different configuration environments.

You can change default behavior, enable specific functionality, or fine-tune
behavior using a number of different configuration mechanisms. These
include configuration file, command line, or programmatic configuration.

Artix configuration files are typically organized into a hierarchy of scopes,
whose fully-qualified names map directly to Artix bus names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

For more details on ART-based configuration, see Configuring and Deploying
Artix Solutions, C++ Runtime.
19

CHAPTER 1 | Artix C++ Runtime Management
Developer-based tools Large corporations use third-party enterprise management and SOA
management systems to monitor Artix applications in production
environments. However, the following users need to use more lightweight
management tools:

� Application developers who need to test the effects of their changes in
a running test environment.

� Application developers who do not have access to an enterprise
management or SOA management system.

� Support engineers who need to diagnose or correct problems raised by
customers or management systems.

For facilitate such users, Artix provides out-of-the-box integration with
JConsole. For more details, see �JMX� on page 21.
20

Artix C++ Management Integrations
Artix C++ Management Integrations

Overview Artix has been designed to integrate with a range of third-party management
systems. These include enterprise management systems, SOA management
systems, and developer-focused tools. This section introduces Artix
integrations with the following systems:

� �JMX�

� �Progress Actional�

� �AmberPoint�

� �BMC Patrol�

JMX The JMX instrumentation provided in Artix enables Artix service endpoints
and the Artix bus to be monitored by any JMX-compliant management
console (for example, JConsole or MC4J).

You can use JMX consoles to monitor and manage key Artix Java runtime
components both locally and remotely. For example, using any
JMX-compliant client, you can perform tasks such as:

� View service status

� View a service endpoint�s address

� Stop or start a service

� Shutdown an Artix Java bus

Artix provides out-of-the-box integration with JConsole, which is the
JMX-based management console provided with JDK 1.5.
21

CHAPTER 1 | Artix C++ Runtime Management
Figure 2 shows an example Artix service endpoint monitored in JConsole.
For more details on Artix integration with JMX, see Part II.

Progress Actional Integration between Artix and Progress Actional enables Actional SOA
management systems to monitor Artix services. For example, you can use
Actional monitoring, auditing, and reporting on Artix services. You can also
correlate and track messages through your network to perform dependency
mapping and root cause analysis.

The Artix�Actional integration is deployed on Artix endpoints to enable
reporting of management data back to the Actional server. The data reported
back to Actional includes system administration metrics such as response
time, fault location, auditing, and alerts based on policies and rules.

This integration uses the following components to monitor your services and
report data back to the Actional SOA management tools:

Figure 2: Artix Service Endpoint in JConsole
22

Artix C++ Management Integrations
Actional agents

An Actional agent is run on each Artix node that you wish to manage.
Actional agents are used to provide instrumentation data back to the
Actional server. Actional agents are provisioned from the Actional server to
establish initial contact and send configuration to the Actional agent.

Artix interceptors

Artix interceptors are added to an endpoint's messaging chain that send the
instrumentation data to the Actional agent using an Actional-specific API.
These interceptors essentially push events to the Actional agent. The data is
analyzed and stored in the Actional agent for retrieval by the Actional server.

Figure 3 shows an example system monitored in the Actional Server
Administration Console.

For more details on Artix integration with Progress Actional, see Part III.

Figure 3: Actional Server Administration Console
23

CHAPTER 1 | Artix C++ Runtime Management
AmberPoint Integration between Artix and AmberPoint enables the AmberPoint SOA
management system to monitor Artix services. An Artix AmberPoint Agent
can be deployed in Artix endpoints that use SOAP over HTTP to enable
reporting of performance metrics back to AmberPoint.

The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

� Dynamic discovery of Artix clients and services using SOAP over HTTP.

� Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

� Mapping Qualities of Service to customer Service Level Agreements
(SLAs).

� Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

� Centralized logging and performance statistics.

For more details on Artix integration with AmberPoint, see Part IV.

BMC Patrol Integration between Artix and BMC Patrol enables the BMC Patrol
Enterprise Management System (EMS) to monitor Artix services. You can
use the Artix integration with BMC Patrol to track key server metrics, such
as server response times. You can also set up alarms and post events when
a server crashes to enable specific recovery actions to be taken.

The Artix ESB C++ runtime integration with BMC Patrol, key server metrics
are logged by the Artix performance logging plug-ins. Log file interpreting
utilities are then used to analyze the logged data. Artix provides BMC
Knowledge Modules (KM), which conform to standard BMC Patrol KM
design and operation. These modules tell the BMC Patrol console how to
interpret the data obtained from the Artix interceptors.

The Artix server metrics tracked by the Artix BMC Patrol integration include
the number of invocations received, and the average, maximum and
minimum response times. The Artix BMC Patrol integration also enables you
to track these metrics for individual operations. Events can be generated
when any of these parameters go out of bounds.

For more details on Artix integration with BMC Patrol, see Part V.
24

Part II
Java Management

Extensions

In this part This part contains the following chapters:

Monitoring and Managing with JMX page 27

Configuring JMX in Artix C++ page 51

Managing Artix Services with JMX Consoles page 55
25

26

CCHAPTER 2

Monitoring and
Managing with
JMX
This chapter explains how to monitor and manage an Artix
C++ runtime using Java Management Extensions (JMX). It
applies to applications written using both C++ and Java API
for XML-Based Remote Procedure Call (JAX-RPC).

In this chapter This chapter discusses the following topics:

Introduction page 28

Managed Bus Components page 33

Managed Service Components page 39

Managed Port Components page 47
27

CHAPTER 2 | Monitoring and Managing with JMX
Introduction

Overview You can use Java Management Extensions (JMX) to monitor and manage
key Artix runtime components both locally and remotely. For example, using
any JMX-compliant client, you can perform the following tasks:

� View bus status.

� Stop or start a service.

� Change bus logging levels dynamically.

� Monitor service performance details.

� View the interceptors for a selected port.

How it works Artix has been instrumented to allow runtime components to be exposed as
JMX Managed Beans (MBeans). This enables an Artix runtime to be
monitored and managed either in process or remotely with the help of the
JMX Remote API.

Artix runtime components can be exposed as JMX MBeans, out-of-the-box,
for both C++ and JAX-RPC Artix servers. In addition, support for registering
custom MBeans is also available. Java developers can create their own
MBeans and register them either with their MBeanServer of choice, or with
a default MBeanServer created by Artix (see �Relationship between runtime
and custom MBeans� on page 30).

Figure 4 shows an overview of how the various components interact. The
Java custom MBeans are optional components that can be added as
required.

28

Introduction
Figure 4: Artix JMX Architecture
29

CHAPTER 2 | Monitoring and Managing with JMX
What can be managed Both Artix C++ and JAX-RPC servers can have their runtime components
exposed as JMX MBeans. The following components can be managed:

� Bus

� Service

� Port

All runtime components are registered with an MBeanServer as Open
Dynamic MBeans. This ensures that they can be viewed by third-party
management consoles without any additional client-side support libraries.

All MBeans for Artix runtime components conform with Sun�s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use com.iona.instrumentation as their domain name
when creating ObjectNames.

See also �Further information� on page 32 for details of how to access
MBean Server hosting runtime MBeans either locally and remotely.

Relationship between runtime
and custom MBeans

The Artix runtime instrumentation provides an out-of-the-box JMX view of
C++ and JAX-RPC services. Java developers can also create custom JMX
MBeans to manage Artix Java components such as services.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status and update
performance counters, while a custom MBean can provide details on the
status of a business loan request processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already (for example, calculating
service performance counters).

Note: An MBeanServerConnection, which is an interface implemented by
the MBeanServer is used in the examples in this chapter. This ensures that
the examples are correct for both local and remote access.
30

http://java.sun.com/products/JavaManagement/best-practices.html

Introduction
It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans are
named so that containment relationships can be easily established. For
example:

Using these names, you can infer the relationships between ports, services
and buses, and display or process a complete tree in the correct order. For
example, assuming that you write a custom MBean for a loan approval Java
service, you could name this MBean as follows:

For details on how to write custom MBeans, see Developing Artix
Applications in JAX-RPC.

Accessing the MBeanServer
programmatically

Artix runtime support for JMX is enabled using configuration settings only.
You do not need to write any additional Artix code. When configured, you
can use any third party console that supports JMX Remote to monitor and
manage Artix servers.

If you wish to write your own JMX client application, this is also supported.
To access Artix runtime MBeans in a JMX client, you must first get a handle
to the MBeanServer. The following code extract shows how to access the
MBeanServer locally:

// Bus :
com.iona.instrumentation:type=Bus,name=demos.jmx_runtime

Service :
com.iona.instrumentation:type=Bus.Service,name="{http://ws.iona.

com}SOAPService",Bus=demos.jmx_runtime

// Port :
com.iona.instrumentation:type=Bus.Service.Port,name=SoapPort,Bus

.Service="{http://ws.iona.com}SOAPService",Bus=demos.jmx_runt
ime

com.iona.instrumentation:type=Bus.Service.LoanApprovalManager,na
me=LoanApprovalManager,Bus.Service="{http://ws.iona.com}SOAPS
ervice",Bus=demos.jmx_runtime

Bus bus = Bus.init(args);
MBeanServer mbeanServer =

(MBeanServer)bus.getRegistry().getEntry(ManagementConstants.M
BEAN_SERVER_INTERFACE_NAME);
31

../../jaxrpc_pguide/index.html
../../jaxrpc_pguide/index.html

CHAPTER 2 | Monitoring and Managing with JMX
The following shows how to access the MBeanServer remotely:

Please see the following demo for a complete example on how to access,
monitor and manage Artix runtime MBeans remotely:

Further information For further information, see the following URLs:

JMX

http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote

http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/pac
kage-summary.html

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServerConnection

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerCo
nnection.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml

// The address of the connector server
String url = "service:jmx:rmi://host:1099/jndi/artix";
JMXServiceURL address = new JMXServiceURL(url);

// Create the JMXConnectorServer
JMXConnector cntor = JMXConnectorFactory.connect(address, null);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc = cntor.getMBeanServerConnection();

InstallDir\cxx_java\samples\advanced\management\jmx_runtime
32

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Managed Bus Components
Managed Bus Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix bus components. For example, you
can use any JMX client to perform the following tasks:

� View bus attributes.

� Enable monitoring of bus services.

� Dynamically change logging levels for known subsystems.

If you wish to write your own JMX client, this section describes methods
that you can use to access Artix logging levels and subsystems, and provides
a JMX code example.

Bus MBean registration When an Artix bus is initialized, a corresponding JMX MBean is created and
registered for that bus with an MBeanServer.

JAX-RPC

For example, in an Artix Java application, this occurs after the following call:

C++

For example, in an Artix C++ application, this occurs after the following
call:

When a bus is shutdown, a corresponding MBean is unregistered from the
MBeanServer.

Bus naming convention An Artix bus ObjectName uses the following convention:

String[] args = ...;
Bus serverBus = Bus.init(args);

Bus_var server_bus = Bus.init(argc, argv);

com.iona.instrumentation:type=Bus,name=busIdentifier
33

CHAPTER 2 | Monitoring and Managing with JMX
Bus attributes The following bus component attributes can be managed by any JMX client:

servicesMonitoring is a global attribute which applies to all services and
can be used to change a performance monitoring status.

services is a list of object names that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered service
MBeans that belong to this bus.

For examples of bus attributes displayed in a JMX console, see �Managing
Artix Services with JMX Consoles� on page 55.

Table 1: Managed Bus Attributes

Name Description Type Read/Write

scope Bus scope used to initialize a
bus.

String No

identifier Bus identifier, typically the
same as its scope.

String No

arguments Bus arguments, including the
executable name.

String[] No

servicesMonitoring Used to enable/disable
services performance
monitoring.

Boolean Yes

services A list of object names
representing services on this
bus.

ObjectName[] No

Note: By default, service performance monitoring is enabled when JMX
management is enabled in a standalone server, and disabled in an
it_container process.

When using a JMX console to manage a it_container server, you can
enable performance monitoring by setting the serviceMonitoring attribute
to true.
34

Managed Bus Components
Bus methods If you wish to write your own JMX client, you can use the following bus
methods to access logging levels and subsystems:

All the attributes and methods described in this section can be determined
by introspecting MBeanInfo for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.htm)

Example JMX client The following code extract from an example JMX client application shows
how to access bus attributes and logging levels:

Table 2: Managed Bus Methods

Name Description Parameters Return Type

getLoggingLevel Returns a logging level for
a subsystem.

subsystem (String) String

setLoggingLevel Sets a logging level for a
subsystem.

subsystem (String),
level (String)

 Boolean

setLoggingLevelPropagate Sets a logging level for a
subsystem with
propagation.

subsystem (String),
level (String),
propagate (Boolean)

 Boolean

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName busName = new ObjectName("com.iona.instrumentation:type=Bus,name=" + busScope);

if (mbsc.isRegistered(busName)) {
 throw new MBeanException("Bus mbean is not registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(busName);

// bus scope
String scope = (String)mbsc.getAttribute(busName, "scope");
// bus identifier
String identifier = (String)mbsc.getAttribute(busName, "identifier");
// bus arguments
String[] busArgs = (String[])mbsc.getAttribute(busName, "arguments");
35

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 2 | Monitoring and Managing with JMX
// check servicesMonitoring attribute, then disable and reenable it
Boolean status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be enabled by default");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.FALSE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.FALSE)) {
 throw new MBeanException("Service monitoring should be disabled now");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.TRUE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be reenabled now");
}

// list of service MBeans
ObjectName[] serviceNames = (ObjectName[])mbsc.getAttribute(busName, "services");

// logging
String level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS logging level");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS.INITIAL_REFERENCE logging level");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("Wrong IT_BUS.CORE logging level");
}
36

Managed Bus Components
Boolean result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevel",
 new Object[] {"IT_BUS", "LOG_WARN"},
 new String[] {"subsystem", "level"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("IT_BUS.CORE logging level should not be changed");
}

// propagate
result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevelPropagate",
 new Object[] {"IT_BUS", "LOG_SILENT", Boolean.TRUE},
 new String[] {"subsystem", "level", "propagate"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
37

CHAPTER 2 | Monitoring and Managing with JMX
Further information For information on Artix logging levels and subsystems, see Configuring and
Deploying Artix Solutions, C++ Runtime.

if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new Exception("IT_BUS.INITIAL_REFERENCE logging level has not been set properly");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS.CORE logging level shouldve been set to LOG_SILENT");
}
38

Managed Service Components
Managed Service Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix service components. For example,
you can use any JMX client to perform the following tasks:

� View managed services.

� Dynamically change a service status.

� Monitor service performance data.

� Manage service ports.

The Artix locator and session manager services, have also been
instrumented. These provide an additional set of attributes on top of those
common to all services. For information on WS-RM persistence
instrumentation, see Chapter 5.

If you wish to write your own JMX client, this section describes methods
that you can use and provides a JMX code example.

Service MBean registration When an Artix servant is registered for a service, a JMX Service MBean is
created and registered with an MBeanServer.

JAX-RPC

For example, in an Artix Java application, this occurs after the following call:

Bus bus = Bus.init(args);

QName bankServiceName = new
QName("http://www.iona.com/bus/tests", "BankService");

Servant servant = new SingleInstanceServant(new BankImpl(),
serviceWsdlURL, bus);

bus.registerServant(servant, bankServiceName, "BankPort");
39

CHAPTER 2 | Monitoring and Managing with JMX
C++

For example, in an Artix C++ application, this happens after the following
call:

When a service is removed, a corresponding MBean is unregistered from the
MBeanServer.

Service naming convention An Artix service ObjectName uses the following convention:

In this format, a name has an expanded service QName as its value. This
value includes double quotes to permit for characters that otherwise would
not be allowed.

Service attributes The following service component attributes can be managed by any JMX
client:

Bus_var server_bus = Bus.init(argc, argv);

BankServiceImpl servant;
bus->register_servant(
 servant,
 wsdl_location,
 QName("http://www.iona.com/bus/tests", "BankService")
);

com.iona.instrumentation:type=Bus.Service,name="{namespace}local
name",Bus=busIdentifier

Table 3: Managed Service Attributes

Name Description Type Read/Write

name Service QName in expanded
form.

String No

state Service state. String No

serviceCounters Service performance data. CompositeData No

ports A list of ObjectNames
representing ports for this
service.

ObjectName[] No
40

Managed Service Components
name is an expanded QName, such as
{http://www.iona.com/bus/tests}BankService.

state represents a current service state that can be manipulated by stop
and start methods.

ports is a list of ObjectNames that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered Port
MBeans which happen to belong to this Service.

serviceCounters attributes

The following service performance attributes can be retrieved from the
serviceCounters attribute:

For examples of service attributes displayed in a JMX console, see
�Managing Artix Services with JMX Consoles� on page 55

Table 4: serviceCounters Attributes

Name Description Type

averageResponseTime Average response time in
milliseconds.

Float

requestsOneway Total number of oneway requests
to this service.

Long

requestsSinceLastCheck Number of requests happened
since last check.

Long

requestsTotal Total number of requests
(including oneway) to this service.

Long

timeSinceLastCheck Number of seconds elapsed since
last check.

Long

totalErrors Total number of
request-processing errors.

Long
41

CHAPTER 2 | Monitoring and Managing with JMX
Service methods If you wish to write your own JMX client, you can use the following service
methods to manage a specific service:

All the attributes and methods described in this section can be accessed by
introspecting MBeanInfo for the Service component.

Example JMX client The following code extract from an example JMX client application shows
how to access service attributes and methods:

Table 5: Managed Service Attributes

Name Description Parameters Return Type

name Start (activate) a service. None Void

state Stop (deactivate) a service. None Void

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://www.iona.com/hello_world_soap_http}SOAPService\""

+",Bus=" + busScope);

if (!mbsc.isRegistered(serviceName)) {
 throw new MBeanException("Service MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(serviceName);

// service name
String name = (String)mbsc.getAttribute(serviceName, "name");

// check service state attribute then reset it by invoking stop and start methods

String state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated");
}

mbsc.invoke(serviceName, "stop", null, null);
42

Managed Service Components
Further information MBeanInfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CompositeData

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/Co
mpositeData.html

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("DEACTIVATED")) {
 throw new MBeanException("Service should be deactivated now");
}

mbsc.invoke(serviceName, "start", null, null);

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated again");
}

// check service counters

CompositeData counters = (CompositeData)mbsc.getAttribute(serviceName, "serviceCounters");
Long requestsTotal = (Long)counters.get("requestsTotal");
Long requestsOneway = (Long)counters.get("requestsOneway");
Long totalErrors = (Long)counters.get("totalErrors");
Float averageResponseTime = (Float)counters.get("averageResponseTime");
Long requestsSinceLastCheck = (Long)counters.get("requestsSinceLastCheck");
Long timeSinceLastCheck = (Long)counters.get("timeSinceLastCheck");

// ports
ObjectName[] portNames = (ObjectName[])mbsc.getAttribute(serviceName, "ports");
43

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

CHAPTER 2 | Monitoring and Managing with JMX
Artix Locator Service

Overview The Artix locator can also be exposed as a JMX MBean. A locator managed
component is a service managed component that can be managed like any
other bus service with the same set of attributes and methods. The Artix
locator also exposes it own specifc set of attributes.

Locator attributes An Artix locator MBean exposes the following locator-specific attributes:

Table 6: Locator MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceLookups Number of service lookup
requests.

Integer

serviceLookupErrors Number of service lookup
failures.

Integer

registeredNodeErrors Number of node (peer ping)
failures.

Integer
44

Managed Service Components
Example JMX client The following code extract from an example JMX client application shows
how to access locator attributes and methods:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://ws.iona.com/2005/11/locator}LocatorService\""

+",Bus=" + busScope);

// use common attributes and methods, see an example above

// Locator specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer nodeErrors = (Integer)mbsc.getAttribute(servicetName, "registeredNodeErrors");
Integer lookupErrors = (Integer)mbsc.getAttribute(serviceName, "serviceLookupErrors");
Integer lookups = (Integer)mbsc.getAttribute(serviceName, "serviceLookups");
45

CHAPTER 2 | Monitoring and Managing with JMX
Artix Session Manager Service

Overview The Artix session manager can also be exposed as a JMX MBean. A session
manager component is a service managed component that can be managed
like any other bus service with the same set of attributes and methods. The
Artix session manager also exposes it own specifc set of attributes.

Session manager attributes An Artix session manager MBean exposes the following session
manager-specific attributes:

Example JMX client The following code extract from an example JMX client application shows
how to access session manager attributes and methods:

Table 7: Session Manager MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceGroups Number of service groups. Integer

serviceSessions Number of service sessions Integer

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +

",name=\"{http://ws.iona.com/sessionmanager}SessionManagerService\"" +",Bus=" +
busScope);

// use common attributes and methods, see an example above

// SessionManager specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer serviceGroups = (Integer)mbsc.getAttribute(serviceName, "serviceGroups");
Integer serviceSessions = (Integer)mbsc.getAttribute(serviceName, "serviceSessions");
46

Managed Port Components
Managed Port Components

Overview This section describes the attributes that you can use to manage JMX
MBeans representing Artix port components. For example, you can use any
JMX client to perform the following tasks:

� Monitor managed ports.

� View message and request interceptors.

If you wish to write your own JMX client, this section also shows an example
of accessing these attributes in JMX code.

Port MBean registration Port managed components are typically created as part of a service servant
registration. When service is activated, all supported ports will also be
registered as MBeans.

When a service is removed, a corresponding Service MBean, as well as all
its child Port MBeans are unregistered from the MBeanServer.

Naming convention An Artix port ObjectName uses the following convention:

Port attributes The following bus component attributes can be managed by any JMX client:

com.iona.instrumentation:type=Bus.Service.Port,name=portName,Bus
.Service="{namespace}localname",Bus=busIdentifier

Table 8: Supported Service Attributes

Name Description Type Read/Write

name Port name. String No

address Transport specific address
representing an endpoint.

String No

interceptors List of interceptors for this
port.

String[] No
47

CHAPTER 2 | Monitoring and Managing with JMX
interceptors

The interceptors attribute is a list of interceptors for a given port.
Internally, interceptors is an instance of TabularData that can be
considered an array/table of CompositeData. However, due to a current
limitation of CompositeData, (no insertion order is maintained, which makes
it impossible to show interceptors in the correct order), the interceptors are
currently returned as a list of strings, where each String has the following
format:

In this format, type can be CPP or Java; level can be Message or Request.

It is most likely that this limitation will be fixed in a future JDK release,
probably JDK 1.7 because the enhancement request has been accepted by
Sun. In the meantime, interceptors details can be retrieved by parsing a
returned String array.

For examples of port attributes displayed in a JMX console, see �Managing
Artix Services with JMX Consoles� on page 55

transport An optional attribute
representing a transport for
this port.

ObjectName[] No

Table 8: Supported Service Attributes

Name Description Type Read/Write

[name]: name [type]: type [level]: level [description]: optional
description
48

Managed Port Components
Example JMX client The following code extract from an example JMX client application shows
how to access port attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName portName = new ObjectName("com.iona.instrumentation:type=Bus.Service.Port" +
 ",name=SoapPort" +

",Bus.Service=\"{http://www.iona.com/hello_world_soap_http}SOAPService\"" +",Bus=" +
busScope);

if (!mbsc.isRegistered(portName)) {
 throw new MBeanException("Port MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(portName);

// port name
String name = (String)mbsc.getAttribute(portName, "name");

// port address
String address = (String)mbsc.getAttribute(portName, "address");

// check interceptors

String[] interceptors = (String[])mbsc.getAttribute(portName, "interceptors");
if (interceptors.length != 6) {
 throw new MBeanException("Number of port interceptors is wrong");
}

handleInterceptor(interceptors[0],
 "MessageSnoop",
 "Message",
 "CPP");
handleInterceptor(interceptors[1],
 "MessagingPort",
 "Request",
 "CPP");
handleInterceptor(interceptors[2],
 "http://schemas.xmlsoap.org/wsdl/soap/binding",
 "Request",
 "CPP");
49

CHAPTER 2 | Monitoring and Managing with JMX
For example, the handleInterceptor() function may be defined as follows:

handleInterceptor(interceptors[3],
 "TestInterceptor",
 "Request",
 "Java");
handleInterceptor(interceptors[4],
 "bus_response_monitor_interceptor",
 "Request",
 "CPP");
handleInterceptor(interceptors[5],
 "ServantInterceptor",
 "Request",
 "CPP");

private void handleInterceptor(String interceptor,
 String name,
 String level,
 String type) throws Exception {
 if (interceptor.indexOf("[name]: " + name) == -1 ||
 interceptor.indexOf("[type]: " + type) == -1 ||
 interceptor.indexOf("[level]: " + level) == -1) {

 throw new MBeanException("Wrong interceptor details");
 }
 // analyze this interceptor further
}

50

CHAPTER 3

Configuring JMX in
Artix C++
This chapter explains how to configure an Artix C++ runtime
to be managed with Java Management Extensions (JMX).

In this chapter This chapter discusses the following topic:

Artix JMX Configuration page 52
51

CHAPTER 3 | Configuring JMX in Artix C++
Artix JMX Configuration

Overview This section explains the Artix configuration variable settings that you must
configure to enable JMX monitoring of the Artix runtime, and access for
remote JMX clients.

Enabling the management plugin To expose the Artix runtime using JMX MBeans, you must enable a
bus_management plug-in as follows:

This setting enables local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into Open Dynamic
MBeans and registers them with a local MBeanServer.

Configuring remote JMX clients To enable remote JMX clients to access runtime MBeans, use the following
configuration settings:

These settings allow for both local and remote access.

Specifying a remote access URL

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. Using this configuration, you can use the following
JNDI-based JMXServiceURL to connect remotely:

jmx_local
{
 plugins:bus_management:enabled="true";
};

jmx_remote
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
};

service:jmx:rmi:///jndi/rmi://host:1099/artix
52

Artix JMX Configuration
Configuring a remote access port

To specify a different port for remote access, use the following configuration
variable:

You can then use the following JMXServiceURL:

Configuring a stub-based
JMXServiceURL

You can also configure the connector to use a stub-based JMXServiceURL
as follows:

See the javax.management.remote.rmi package for more details on remote
JMX.

Publishing the JMXServiceURL to
a local file

You can also request that the connector publishes its JMXServiceURL to a
local file:

The following entry can be used to override the default file name:

plugins:bus_management:connector:port="2000";

service:jmx:rmi:///jndi/rmi://host:2000/artix

jmx_remote_stub
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
 plugins:bus_management:connector:registry:required="false";
};

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:file="../../service.url";
53

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

CHAPTER 3 | Configuring JMX in Artix C++
Further information For further information, see the following:

RMI Connector

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/pack
age-summary.html
54

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

CHAPTER 4

Managing Artix
Services with JMX
Consoles
You can use third-party management consoles that support
JMX Remote to monitor and manage Artix services (for
example, JConsole and MC4J). You can view the status of a
bus instance, stop or start a service, change bus logging levels,
or view interceptor chains.

In this chapter This chapter discusses the following topics:

Managing Artix Services with JConsole page 56

Managing Artix Services with the JMX HTTP adaptor page 60

Managing Artix Services with MC4J page 63
55

CHAPTER 4 | Managing Artix Services with JMX Consoles
Managing Artix Services with JConsole

Overview You can use JConsole, which is provided with JDK 1.5, to monitor and
manage Artix applications. JConsole displays Artix runtime managed
components in a hierarchical tree, as shown in Figure 5.

Using JConsole To use JConsole:

1. Start up JConsole using the following command:
JDK_HOME/bin/jconsole

2. Select the Advanced tab.

3. Enter or paste a JMXServiceURL (either the default URL, or one copied
from a published connector.url file).
56

Managing Artix Services with JConsole
Managing services Figure 5 shows the attributes displayed for a managed service component
(for example, the serviceCounters performance metrics displayed in the
right pane). For detailed information on these attributes, see �Service
attributes� on page 40.

Figure 5: Managed Service in JConsole
57

CHAPTER 4 | Managing Artix Services with JMX Consoles
Managing ports Figure 6 shows the attributes displayed for a managed port component (for
example, the interceptors list displayed in the right pane). For detailed
information on these attributes, see �Port attributes� on page 47.

Figure 6: Managed Port in JConsole
58

Managing Artix Services with JConsole
Managing containers Figure 7 shows an example of a locator service deployed into an Artix
container. For more information, see �Locator attributes� on page 44.

Further information For more information on using JConsole, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Figure 7: Managed Locator in JConsole

Note: When using a JMX console to manage a service running in an Artix
container, set the serviceMonitoring attribute to true to enable service
performance monitoring (see �Bus attributes� on page 34).
59

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

CHAPTER 4 | Managing Artix Services with JMX Consoles
Managing Artix Services with the JMX HTTP
adaptor

Overview You can also manage Artix services using the default HTTP adaptor console
that is provided with the JMX reference implementation. This console is
browser-based, as shown in Figure 8.

Using the JMX HTTP adaptor To use the JMX HTTP adaptor:

1. Specify following configuration settings:

2. Enter the following URL in your browser:

http://localhost:7659

plugins:bus_management:http_adaptor:enabled="true";
plugins:bus_management:http_adaptor:port="7659";
60

Managing Artix Services with the JMX HTTP adaptor
This displays the main HTTP adaptor management view, as shown in
Figure 8.

Figure 8: HTTP Adaptor Main View
61

CHAPTER 4 | Managing Artix Services with JMX Consoles
Figure 9 shows the attributes displayed for a managed bus component (for
example, the services that it includes). For detailed information on these
attributes, see �Bus attributes� on page 34.

Further information For further information on using the HTTP JMX adaptor, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Figure 9: HTTP Adaptor Bus View
62

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Managing Artix Services with MC4J
Managing Artix Services with MC4J

Overview You can use the open source MC4J management console to view service
attributes and operations, stop or start a service, view interceptor chains,
and change bus logging levels dynamically. This section uses the
jmx_runtime Artix sample to show a detailed walk-through example of how
to use MC4J to monitor and manage an Artix server.

Artix installs MC4J into the InstallDir\cxx_java\mc4j directory. This
section uses the jmx_runtime Artix sample to show a detailed walk-through
example of how to use MC4J to monitor and manage an Artix server.

Starting the MC4J console To start the MC4J management console, perform the following steps:

1. Change directory to InstallDir\cxx_java\bin.

2. Run the following command:

Running the JMX sample Before creating a new server connection in the MC4J console, do the
following:

1. Change to the sample directory:

2. Build the C++ or Java sample:

3. Run the C++ or Java server:

Windows > start_mc4j.bat

UNIX % ./start_mc4j

cd InstallDir\cxx_java\samples\advanced\management\jmx_runtime

C++ nmake

Java ant

C++ run_cxx_server.bat

Java run_java_server.bat
63

CHAPTER 4 | Managing Artix Services with JMX Consoles
Creating a new server connection To create a new server connection in the MC4J console:

1. Select MC4J Connections, and right click, as shown in Figure 10.

Figure 10: Connecting to a Server
64

Managing Artix Services with MC4J
2. Click Connection server� to launch the My wizard dialog, as shown in
Figure 11.

3. In the My Wizard dialog, select JSR160 as your server connection type.

4. Enter JMX demo as your connection Name.

5. Enter the contents of the following file as the Server URL:
InstallDir/cxx_java/samples/advanced/management/jmx_runtime/

etc/connector.url

Figure 11: Server Connection Details
65

CHAPTER 4 | Managing Artix Services with JMX Consoles
6. Click Next to go to the next screen, as shown in Figure 12.

7. Click Finish to finish the creation of a new server connection.

8. In the left panel of the MC4J console, a new server connection named
JMX demo is created, as shown in Figure 13:

Figure 12: Creation of Server Connection
66

Managing Artix Services with MC4J
Figure 13: New Server Connection
67

CHAPTER 4 | Managing Artix Services with JMX Consoles
Monitoring and managing a
service

To monitor and manage an example service in the Mc4J console:

1. Expand the MBeans tree node in the left panel of MC4J.

2. Double click on the following tree node, as shown in Figure 14:

name='{http://www.iona.com/jmx_runtime}SOAPService',type=Bus.

Service

This displays the attributes and operations of the SOAPService in the
service properties dialog.

Figure 14: Viewing Service Properties
68

Managing Artix Services with MC4J
3. Click the � button at the right of the serviceCounters attribute in the
service properties dialog. This displays the details for the
serviceCounters attribute, as shown in Figure 15.

4. Click the � button at right of the stop operation on the service
properties dialog. This displays a dialog for the stop operation, as
shown in Figure 16.

Figure 15: Viewing Service Counters Properties

Figure 16: Stopping a Service
69

CHAPTER 4 | Managing Artix Services with JMX Consoles
5. Click Execute� to stop the service. In the SOAPservice properties
dialog, the state attribute of the service becomes DEACTIVATED, as
shown in Figure 17.

6. Click the � button at the right of start operation on SOAP service
properties. This displays a dialog for the start operation, which is the
same as the one shown in Figure 16.

Figure 17: Deactivated Service
70

Managing Artix Services with MC4J
7. Click Execute� to restart the service. In the service properties dialog,
the state of the SOAPService becomes ACTIVATED, as shown in
Figure 18.

Figure 18: Activated a Service
71

CHAPTER 4 | Managing Artix Services with JMX Consoles
Monitoring a service port To monitor an example service port in the Mc4J console:

1. Click the following node in the left panel of the MC4J console:

name=SoapPort,tyoe=Bus.Service.Port

This displays the attributes for SoapPort, as shown in Figure 19.

Figure 19: Viewing Port Properties
72

Managing Artix Services with MC4J
2. Click the � button at the right of the interceptors attribute in
Figure 19. This displays the interceptors properties for the selected
bus, as shown in Figure 20.

Further information For full details on using the MC4J management console, see the MC4J
documentation:

http://mc4j.org/confluence/display/MC4J/User+Guide

Figure 20: Viewing Interceptor Properties
73

http://mc4j.org/confluence/display/MC4J/User+Guide

CHAPTER 4 | Managing Artix Services with JMX Consoles
Managing Logging Levels with MC4J

Overview This section uses the jmx_runtime Artix sample to show a detailed
walk-through example of how to use the MC4J console to manage Artix bus
logging levels dynamically at runtime.

Defined demo logging
configuration

The following logging configuration is defined in the demos.jmx_runtime
configuration scope:

This means that the logging level for IT_BUS, and all of its child subsystems,
is to display errors only. The only exception is IT_BUS.CORE, where logging is
set to display informational messages.

Viewing logging levels for a
subsystem

To view logging levels for a specified Artix logging subsystem in MC4J:

1. Expand the following tree node in the left panel of MC4J:

name=demos.jmx_runtime.server,type=Bus

2. Expand the Operations node.

Logging Subsystem Logging Level

IT_BUS FATAL+ERROR

IT_BUS.CORE INFO
74

Managing Artix Services with MC4J
3. Double click getLoggingLevel to display the My Wizard screen.

4. In the Parameters section, click the ... button next to subsystem.

5. In the <display name of node> - subsystem dialog box, type IT_BUS
and click OK.

6. Back in the My Wizard screen click Next.

Figure 21: Using My Wizard to View Logging Levels

Figure 22: Providing a Subsystem Name
75

CHAPTER 4 | Managing Artix Services with JMX Consoles
7. The logging level for the IT_BUS subsystem is returned as LOG_ERROR.

8. Now, use the My Wizard screen to enter a logging subsystem of
IT_BUS.CORE.

9. Click Next. The logging level for IT_BUS.CORE is displayed as
LOG_INFO_LOW. The logging level for IT_BUS.CORE has been configured
differently from its IT_BUS parent (see �Defined demo logging
configuration� on page 74).

Figure 23: My Wizard Displays Logging Level
76

Managing Artix Services with MC4J
Setting the logging level for a
subsystem

To set the logging level for a specified logging subsystem:

1. Double click the setLoggingLevel node in the left panel of the MC4J
console. This displays the My Wizard screen, as show in Figure 24.

2. Enter IT_BUS for the subsystem, and LOG_FATAL for the logging level,
as show in Figure 24.

Figure 24: Setting a Logging Level
77

CHAPTER 4 | Managing Artix Services with JMX Consoles
3. Click Next. This displays true, as shown in Figure 25, which means
that the logging level has been set successfully.

4. View the logging level of the IT_BUS subsystem to verify your setting
(as described in �Viewing logging levels for a subsystem� on page 74).
The logging level for IT_BUS is now LOG_FATAL.

5. View the logging level for the IT_BUS.INITIAL_REFERENCE subsystem.
The logging level for IT_BUS.INITIAL_REFERENCE is also LOG_FATAL.

6. View the logging level for IT_BUS.CORE. The logging level of
IT_BUS.CORE is still LOG_INFO_LOW. It does not inherit the LOG_FATAL
level from its parent because its logging level has been configured
separately (see �Defined demo logging configuration� on page 74).

Figure 25: Logging Level Set Successfully
78

Managing Artix Services with MC4J
Setting a logging level for a
subsystem with propagation

To set a logging level to override a child subsystem with a separately
configured logging level:

1. Double-click the setLoggingLevelPropagate tree node in the left panel
of MC4J. This displays the My Wizard screen.

2. Enter IT_BUS as the subsystem, and LOG_SILENT as the logging level.

3. Click Next. The returned value is true, which means that the logging
level is set successfully.

4. View the logging level for IT_BUS (as described in �Viewing logging
levels for a subsystem� on page 74). The logging level for IT_BUS is
LOG_SILENT.

Figure 26: Propagating a Logging Level
79

CHAPTER 4 | Managing Artix Services with JMX Consoles
5. View the logging level for IT_BUS.INITIAL_REFERENCE. The logging
level for IT_BUS.INITIAL_REFERENCE is also LOG_SILENT.

6. View the logging level for IT_BUS.CORE. The logging level for
IT_BUS.CORE is also LOG_SILENT. Specifying propagation overrides log
levels for all child logging subsystems.

Further information For detailed information on Artix logging, see Configuring and Deploying
Artix Solutions, C++ Runtime.

For more information on using MC4J, see:

http://mc4j.org/confluence/display/MC4J/Home
80

http://mc4j.org/confluence/display/MC4J/Home

CHAPTER 5

Managing WS-RM
Persistence with
JMX
You can manage Web Services Reliable Messaging
persistence in Artix using any JMX console.

In this chapter This chapter discusses the following topics:

WS-RM Persistence Management page 82

Viewing Messages in the WS-RM Persistence Database page 84
81

CHAPTER 5 | Managing WS-RM Persistence with JMX
WS-RM Persistence Management

Overview You can use any JMX console to view messages in the WS-RM persistence
database both locally and remotely. You also can monitor the WS-RM
persistence enabled endpoint, the WS-RM acksTo endpoint URI, and the
client�s RM source endpoint. This section explains the WS-RM persistence
information that can be managed in a JMX console.

Managed WS-RM persistence
components

The following WS-RM persistence components can be managed in a JMX
console:

� Managed WS-RM persistence endpoints
(RMEndpointPersistentStore)

� Managed WS-RM persistence sequences
(RMSequencePersistentStore)

Managed WS-RM persistence
endpoints

WS-RM persistence endpoint managed components are used to represent
WS-RM persistence enabled endpoints. When a WS-RM persistence
destination endpoint is created, it is registered as an MBean. When an
WS-RM persistence destination endpoint is closed, the MBean is
unregistered from the MBeanServer.

The MBean naming convention is as follows:

WS-RM persistence endpoint attributes

You can view the following attributes for a WS-RM persistence endpoint in a
JMX console:

com.iona.instrumentation:type=Bus.Service.Port.EndpointPersistent,
name=WSRM_ENDPOINT_PERSISTENCE,
Bus.Service.Port=portName,
Bus.Service="{namespace}localname",
Bus=busIdentifier

Name Description Type

service name WS-RM persistence enabled service name String

port name WS-RM persistence enabled port String
82

WS-RM Persistence Management
Managed WS-RM persistence
sequences

WS-RM persistence sequence managed components are used to represent
WS-RM sequences. A destination sequence with a unique ID is created for
each client. When a WS-RM persistence destination sequence is created, it
is registered as an MBean. When a WS-RM persistence destination
sequence is recovered from database, it is also registered as an MBean.
When a WS-RM persistence destination sequence is terminated, it is
unregistered from the MBeanServer.

The MBean naming convention is as follows:

In this syntax, sequenceName includes the string sequence_id and the
sequence ID.

WS-RM persistence sequence attributes

You can view the following attributes for a WS-RM persistence sequence in
a JMX console:

The messages attribute is a list of messages in the WS-RM persistence
database. The messages are returned as a list of strings, where each string
has the following format:

com.iona.instrumentation:type=Bus.Service.Port.EndpointPersistent.SequencePersistent,
name=sequenceName,
Bus.Service.Port.EndpointPersistent=WSRM_ENDPOINT_PERSISTENCE,
Bus.Service.Port=portName,
Bus.Service="{namespace}localName",
Bus=busIdentifier

Name Description Type

acksto uri WS-RM acknowledgement URI String

messages Messages in the WS-RM persistence database String[]

sequence id Sequence unique ID representing a client String

[message id]: messageId [message]: soapMessage
83

CHAPTER 5 | Managing WS-RM Persistence with JMX
Viewing Messages in the WS-RM Persistence
Database

Overview Before you start viewing in the WS-RM persistence database, you must set
your Artix configuration to enable JMX management for WS-RM persistence.
This section uses the Artix WS-RM sample application to explain how to
view and monitor messages in the WS-RM persistence database.

Enable JMX management for
WS-RM persistence

To enable JMX management for WS-RM persistence in your Artix
configuration file, perform the following steps:

1. Open the following file:

2. Edit the demos.wsrm_persistence_enabled.server scope as follows:

ArtixInstallDir\cxx_java\samples\advanced\wsrm\etc\wsrm.cfg

server {
 plugins:artix:db:home = "./server_db";
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
 plugins:bus_management:connector:url:file="../../etc/connector.url";

 # optional port, default is 1099
 plugins:bus_management:connector:port="5008";
};

Note: Enabling JMX management for WS-RM persistence is similar to
enabling JMX management for other Artix components.
84

Viewing Messages in the WS-RM Persistence Database
Start the server 3. To start the server, go to the following directory:

4. Run the following command:

run_cxx_server_persistence.bat

This starts the server using following example command:

When the server runs, a file named connector.url is created in the
...samples\advanced\wsrm\etc\ directory.

Start a JMX console You can start any JMX console. For example, to start JConsole, execute the
following command:

This displays the JConsole: Connect to Agent dialog, as shown in
Figure 27.

Copy the contents of the connector.url file into the JMX URL field, and
click Connect. This displays the J2SE 5.0 Monitoring and Management
Console, as shown in Figure 28.

InstallDir\cxx_java\samples\advanced\wsrm\bin\

start server.exe -ORBname demos.wsrm_persistence_enabled.server

%jdk1.5_home%\bin\jconsole.exe

Figure 27: Connecting to a JMX Agent
85

CHAPTER 5 | Managing WS-RM Persistence with JMX
View WS-RM persistence enabled
endpoints

You can view a WS-RM persistence enabled endpoint in the MBeans tab of
the JMX console, as shown in Figure 28:

In this example, PingPort is a WS-RM persistence enabled port. You can
view the port and service name in the Attributes tab on the right of the
console.

Figure 28: WS-RM Persistence Enabled Endpoint
86

Viewing Messages in the WS-RM Persistence Database
View messages in the WS-RM
persistence database

To view messages in the WS-RM persistence database, perform the
following steps:

1. Edit the client code in
...\samples\advanced\wsrm\cxx\client\PingClientSample.cxx as
follows:

This adds a loop to the client that invokes the server 10 times in order
to easily view messages in WS-RM persistence database.

2. Start the client. For example, go to the
...\samples\advanced\wsrm\bin directory, and run the following
command:

run_cxx_client_persistence.bat

int
 run_persistence_client(
 int argc,
 char* argv[]
)
...
 for (int i=0; i < 10; i++)
 {
 cout << "Invoking PingOneway " << i << endl;
 PingType param1;
 param1.setText("PingOneway message from client");
 client1.PingOneway(param1);
 cout << i << " PingOneway invoked" << endl;
 }
...
87

CHAPTER 5 | Managing WS-RM Persistence with JMX
3. You can view the attributes for the WS-RM sequence in the JMX
console, as shown in Figure 26. The WS-RM sequence name consists
of the sequence_guid string and a sequence ID.

Figure 29: WS-RM Sequence Attributes
88

Viewing Messages in the WS-RM Persistence Database
4. You can view all the messages in WS-RM persistence database by
clicking in the Attributes tab on the right of the console, as shown in
Figure 30. Each message consists of a message ID and a SOAP
message.

You can click the Refresh button to view the current messages in
WS-RM persistence database.

Figure 30: Messages in the WS-RM Persistence database
89

CHAPTER 5 | Managing WS-RM Persistence with JMX
90

Part III
Progress Actional

In this part This part contains the following chapters:

Artix�Actional Integration page 93

Configuring Artix�Actional Integration page 101

Artix�Actional Deployment Scenarios page 115
91

92

CHAPTER 6

Artix�Actional
Integration
Artix provides support for integration with Progress Actional
SOA management products.

In this chapter This chapter includes the following section:

Artix�Actional Interaction Architecture page 94
93

CHAPTER 6 | Artix�Actional Integration
Artix�Actional Interaction Architecture

Overview Integration between Artix and Actional enables Artix services to be
monitored by Actional SOA management products. For example, you can
use Actional SOA management tools to perform discovery, monitoring,
auditing, and reporting on Artix services and consumers. You can also
correlate and track all messages through your SOA network to perform
dependency mapping and root cause analysis.

The Artix�Actional integration is deployed on Artix systems to enable
reporting of management data back to the Actional server. The data reported
back to Actional includes system administration metrics such as response
time, fault location, auditing, and alerts based on policies and rules.

This guide explains how to integrate Artix applications written in Java
(JAX-RPC). For details on integrating JAX-WS applications, see the Artix
Management Guide, Java Runtime.

Artix�Actional integration
architecture

The Actional SOA management system includes an Actional server and an
Actional agent. The Actional agent is run on each node that you wish to
manage. A node is defined as a system on the current network. A node with
an Actional agent installed is referred to as an instrumented node or a
managed node.

The managed node uses Actional�s interceptor API to send monitoring data
to the Actional agent. The Actional server pings the Actional agent
periodically to retrieve the monitoring data. It analyzes this data and
represents it in the Actional SOA management GUI tools. In addition, any
alerts triggered at the Actional agent are sent immediately to the Actional
server.

Figure 31 shows how Artix Web service applications are integrated with
Actional using this architecture.
94

../java_mgmt/index.htm
../java_mgmt/index.htm

Artix�Actional Interaction Architecture

The main components in this architecture are:

� �Actional server�

� �Actional agent�

� �Artix interceptors�

� �Actional agent interceptor API�

� �Artix service endpoints�

� �Service consumers�

Figure 31: Artix�Actional Integration Architecture
95

CHAPTER 6 | Artix�Actional Integration
Actional server The Actional server is a central management server that manages nodes
containing an Actional agent.

The Actional server hosts a database and pings Actional agents to obtain
management data at configured time intervals. It analyzes the management
data and displays it in an Actional console�for example, the Actional
Server Administration Console. This is a Web application deployed on
Apache Tomcat, runtime management and agent configuration modes.

By default, the Actional server uses port 4040. The default Actional server
database is Apache Derby.

Actional agent An Actional agent is run on each Artix node that you wish to manage.
Actional agents are used to provide instrumentation data back to the
Actional server.

Actional agents are provisioned from the Actional server to establish initial
contact and send configuration to the Actional agent. There is one Actional
agent per managed node. By default, the Actional agent uses port 4041.

Artix interceptors At the level of a managed node, Artix interceptors send the instrumentation
data to the Actional agent using an Actional-specific API. These interceptors
essentially push events to the Actional agent.

The data is analyzed and stored in the Actional agent for retrieval later by
the Actional server. However, any alerts triggered at the Actional agent are
sent immediately to the Actional server.

Artix Java handlers

In Artix Java, interceptors are also known as Java handlers. For example, at
the implementation level, Java handlers are used as follows:

1. Artix initializes a Java plug-in that loads a Java handler factory.

2. The handler factory creates client-side request and message handlers,
and server-side request and message handlers.
96

Artix�Actional Interaction Architecture
3. When the Artix client-side request handler is invoked, Artix initiates an
client Actional interaction object, and sets the following data on this
object:

♦ Service name

♦ Port name

♦ Operation name

♦ Endpoint URL

♦ IP address

♦ Correlation ID

4. When client message handler is invoked, Artix gets the message
payload and sets it in the client Actional interaction object.

5. On the Artix server side, when the request reaches the server-side
message handler, Artix starts a server Actional interaction object and
sets the message payload.

6. When the server-side request handler is invoked, Artix sets the same
data listed in step 3 on the server Actional interaction object.

Actional agent interceptor API The Actional Agent Interceptor SDK is an Actional-specific API used to send
the management instrumentation data from the service endpoint to the
Actional agent.

The Artix service application to be managed by Actional must use the
Actional Agent Interceptor SDK to send monitoring data to the Actional
agent. For detailed information on how to use this API, see the Actional
product documentation.
97

CHAPTER 6 | Artix�Actional Integration
Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented in Java (JAX-RPC). However, the
main characteristic of an Artix service endpoint is that it can be described in
WSDL, and classified as a service, which can be consumed.

Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

Actional SOA management
system

In this document, Actional is the general term used to describe the Actional
SOA management system in which all data is stored and viewed. This
simplifies the architecture of Actional for the sake of this discussion.

Figure 32 shows an example of the Actional Server Administration Console.
Managed nodes are displayed as orange boxes, and unmanaged nodes are
displayed as grey boxes. The green arrow indicates the message flow
through various nodes.

Clicking on each of the nodes shows more in-depth information regarding
the response time, alerts and warnings, and so on. The organization of the
information in this web console is in the form of Node�Group�Service�
Operation. In Artix, this translates to Node�Service�Port�Operation.
98

Artix�Actional Interaction Architecture

Further information For detailed information on using Actional features, see the Actional product
documentation.

For more information on Artix Java request/response handlers, see
Developing Artix Applications with JAX-RPC.

Figure 32: Actional Server Administration Console
99

../jaxrpc_pguide/index.htm

CHAPTER 6 | Artix�Actional Integration
100

CHAPTER 7

Configuring Artix�
Actional
Integration
This chapter explains how to configure integration between
Artix and Actional SOA management products, and shows
examples from Artix-Actional integration demos.

In this chapter This chapter includes the following sections:

Prerequisites page 102

Configuring Actional for Artix Integration page 103

Configuring Artix Java Services for Actional Integration page 106

Viewing Artix Endpoints in Actional page 109
101

CHAPTER 7 | Configuring Artix�Actional Integration
Prerequisites

Overview This section describes prerequisites for integration between Artix and
Actional SOA management products.

The Actional for SOA Operations product is aimed at a technical audience
(for example, system administrators managing services on the network).
While the Actional for Continuous Service Optimization (Actional CSO)
product is aimed at a business audience.

Supported product versions Artix supports integration with the following Actional product versions:

� Actional for SOA Operations 7.1 and 7.2.

� Actional for Continuous Service Optimization 7.1 and 7.2.

Supported protocols and
transports

The following protocols and transports are supported:

� SOAP over HTTP

� SOAP over JMS

Actional agents The Actional agent component is also known as the Actional Point of
Operational Visibility.

You must ensure that Actional agents have been set up on each Artix node
that you wish to manage. The provisioning of Actional agents is performed
using the Actional server. For some basic details, see �Configuring Actional
for Artix Integration� on page 103.

For information on how to set up Actional agents on managed nodes, see
the Actional product documentation.

Further information For information on the full range of platform versions and database versions
supported by Actional, see the Actional product documentation.

This Artix integration with Actional supports the full range of operating
system platforms supported by Artix. For more details, see the Artix
Installation Guide.
102

http://www.iona.com/support/docs/artix/4.2/install_guide/index.htm
http://www.iona.com/support/docs/artix/4.2/install_guide/index.htm

Configuring Actional for Artix Integration
Configuring Actional for Artix Integration

Overview These section provides some basic configuration guidelines for Actional
agent and server configuration. For full details, see the Actional product
documentation.

This basic configuration will help to set up the Artix�Actional integration
demos. For information on how to run these demos, see the readme.txt
files in the following directories:

Actional agent configuration No specific Actional agent configuration settings are required for integration
with Artix. For example, for the purposes of the Actional-Artix integration
demos, the Actional agent can be started with the default configuration
settings.

Actional server configuration The following sample configuration steps describe how to set up the
Actional server to run an simple Artix-Actional demo:

1. Install the Actional server with typical installation options, and select
the Apache Derby database.

2. Specify the following URL in your browser:

http://localhost:4040/lgserver

3. If this is a new installation click Start, and follow new the Actional
server setup steps.

Otherwise, if the Actional server is already installed, perform the
following steps:

i. In the Actional console Web interface, select the Configure radio
button in the top left of the screen.

ii. Select Platform tab. This displays the general configuration
settings.

ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_http_handler
ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_jms_handler
103

CHAPTER 7 | Configuring Artix�Actional Integration
Creating a managed node To create a managed node for a simple Artix demo, perform the following
steps:

1. In the Actional Configure view menu bar, open the Network tab. This
displays the Network Nodes.

2. Select Add. This displays Node Creation / Managing Agents.

3. Click Managed Node.

Configuring a new node To configure a managed node for the demo, perform the following steps in
the wizard:

Step 1: New Node - Identification

1. Specify the Name as agent1.

2. Specify the Display icon as auto-discover (you can select IONA Artix
from the drop down list, if desired).

3. Click Next.

Step 2: New Node - Management

1. Specify the Transport as HTTP/S.

2. Supply the Actional agent user name and password.

3. Ensure that Override Agent Database is checked.

4. Click Next.

Step 3: New Node - Agents

1. Specify the following URL:

http://HostName:4041/lgagent

You can specify a host name or an IP_ADDRESS.

2. Click Add. The agent URL is added.

3. Click Next.

Step 4: New Node - Endpoints

1. For Endpoints, add the hostname, fully qualified hostname, and IP
address.

2. Click Next.
104

Configuring Actional for Artix Integration
Step 5: New Node - Filters

1. Do not specify any filters for the demo.

2. Click Next.

Step 6: New Node - Trust Zone

1. Do not specify a trust zone the demo.

2. Click Finish

The node is created, and needs to be provisioned.

Provisioning a new node To provision the new node, perform the following steps:

1. Select the Deployment tab from the Configure menu bar.

2. The Provisioning page is displayed, and agent1 is listed as not
provisioned.

3. Select the agent1 check box.

4. Click Provision. This displays a message when complete:
Successfully provisioned.

5. Click the Manage radio button on the Actional Web interface. You
should see agent1 added to the Network Overview screen.
105

CHAPTER 7 | Configuring Artix�Actional Integration
Configuring Artix Java Services for Actional
Integration

Overview This section explains how to configure Artix Java (JAX-RPC) services for
integration with Actional. It shows some examples from the Artix�Actional
integration demos:

Configuring the Artix monitoring
plug-in

Configuring the Artix monitoring plug-in includes the following steps:

� Specifying the plug-in name

� Adding the Java handlers to the interceptor chain

� Configuring the monitoring tool

You can configure the monitoring plug-in by editing your Artix configuration
(artix.cfg) file.

Specifying the plug-in name

To set the monitoring plug-in factory class, and load the plug-in name, add
the following settings:

ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_http_handler
ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_jms_handler

Configure the plug-in factory class:
plugins:monitoring_plugin:classname =
 "com.iona.jbus.management.monitoring.interceptors.MonitoringPlugInFactory";

Load the java plug-in:
orb_plugins = ["soap", "java"];

Load the monitoring plug-in:
java_plugins = ["monitoring_plugin"];
106

Configuring Artix Java Services for Actional Integration
Adding the monitoring handlers to the interceptor chain

You must specify monitoring handlers to the request-level and message-level
interceptor lists, on both the client side and server side:

For more details on configuring binding lists and interceptors, see Artix
Configuration Reference.

Configuring the monitoring tool

You must also configure the name of the reporting tool (in this case,
actional). actional is currently the only supported value. For example:

Optimizing your Actional
integration

Artix provides the following configuration options to enable you to fine-tune
the behavior of the monitoring plug-in.

Reporting the message payload

You can enable reporting of the message payload on the server side (for
example, a SOAP message over HTTP). If this option is set to false, only
the payload size is reported. The default value is:

Specifying the maximum size of the payload

You can specify the maximum size in bytes of the message payload to
report. If a message payload exceeds this value, only its size is reported,
regardless of the value of the enable_si_payload option. An example setting
is:

The default value is -1 (unlimited).

Add the client-side handlers to the interceptors chain.
binding:artix:client_request_interceptor_list= "monitoring_handler";
binding:artix:client_message_interceptor_list= "monitoring_handler";

Add the server-side handlers to the interceptors chain.
binding:artix:server_request_interceptor_list= "monitoring_handler";
binding:artix:server_message_interceptor_list= "monitoring_handler";

plugins:monitoring_plugin:know_report_tool= "actional";

plugins:monitoring_plugin:enable_si_payload = "true";

plugins:monitoring_plugin:max_reported_payload_size= "1024";
107

../config_ref/index.html
../config_ref/index.html

CHAPTER 7 | Configuring Artix�Actional Integration
Enabling a service facade

The service facade feature enables reporting of all interactions with an extra
representation of the target service on the client side. This is also known
informally as an extra hop. This is useful when it is impossible to report
what service is being invoked by the client (for example, where a JMS queue
exists in the invocation chain). The default value is:

Sample configuration The following sample configuration shows some example settings in a
my_app configuration scope:

plugins:monitoring_plugin:show_service_facade= "false";

my_app {

 monitoring_jms_handler {

 plugins:monitoring_plugin:classname =
 "com.iona.jbus.management.monitoring.interceptors.MonitoringPlugInFactory";

 orb_plugins = ["soap", "java"];
 java_plugins = ["monitoring_plugin"];

 # Name of the report tool
 plugins:monitoring_plugin:know_report_tool= "actional";

 # Enable the report of the payload (default = "true")
 plugins:monitoring_plugin:enable_si_payload = "true";

 # Maximum size of the reported payload (default is -1 unlimited)
 plugins:monitoring_plugin:max_reported_payload_size= "-1";

 client {
 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";

 # Enable service Facade representation
 plugins:monitoring_plugin:show_service_facade= "true";
 };

 server {
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";
 };
};
108

Viewing Artix Endpoints in Actional
Viewing Artix Endpoints in Actional

Overview When your Artix service endpoints and consumers have been configured for
integration with Actional, they can be monitored using the Actional SOA
management tools.

For example, when you run the Artix�Actional SOAP over JMS demo, the
Actional Server Administration Console displays the server queues and
agent nodes. Invocations are displayed as arrows flowing to and from the
queues. For details on how to run this demo, see the readme.txt file in the
following directory:

Network overview Figure 33 shows a running SOAP over JMS demo displayed in the Network
Overview screen of the Actional Server Administration Console.

ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_jms_handler
109

CHAPTER 7 | Configuring Artix�Actional Integration
In Figure 33, the JMS queue is displayed on top, and the instrumented Artix
application is displayed below. The interactions between the client and
server applications are recorded by agent100, which is installed on the
machine that runs the demo. This agent reports monitoring data back to the
Actional server.

The arrows between the agent and the JMS queue represent the
invocations: out to the queue from the client application, and back from the
queue showing the message received by the service from the queue.

The arrow that loops from agent100 back to itself is the extra hop, or service
facade call. For more details, see �Enabling a service facade� on page 108.

Figure 33: Actional Server Network Overview
110

Viewing Artix Endpoints in Actional
Path Explorer Figure 34 shows the example JMS queue displayed in the Path Explorer
screen of the Actional Server Administration Console.

To view this screen, select the JMS queue object in Figure 33, and select
the Path Explorer tab at the top left. This example shows the invocations
from the point of view of the JMS queue.

Figure 34: Actional Server Path Explorer
111

CHAPTER 7 | Configuring Artix�Actional Integration
Viewing a service facade Figure 35 shows what is displayed when you expand agent100 in
Figure 34, and select the FACADEsayHI operation.

In Figure 35, the facade service appears to make a call to the JMS queue.
However, the consumer is the actor that performs the invocation. Without
the facade, you would only see an arrow from the consumer directly to the
JMS queue. You would not know what service port or operation is invoked
through the queue. This is because the queue acts as an opaque buffer for
all messages.

Adding the service facade enables you to represent where the call is going.
The small arrow head displayed to the right of consumer is the extra hop
invocation from the consumer to the facade. The small arrow head
displayed to the left of the FACADEsayHi operation is the other end of the
invocation. The Actional console displays the call to the JMS queue as if it
originates from the service facade.

Figure 35: Service Facade in Path Explorer
112

Viewing Artix Endpoints in Actional
Figure 36 shows the display when you expand the agent100 object on the
right of Figure 35. This represents the call from the JMS queue to the
service being invoked. The names used for the facade in Figure 35 are
constructed from the names for the service, endpoint and operation by
prefixing them with FACADE.

Figure 37 shows the interaction from the point of view of agent100. In this
example, the agent has central position, and calls to and from the JMS
queue are displayed. The arrow looping back to agent100 is the internal
extra hop interaction with the service facade.

Figure 36: Service Facade in More Detail
113

CHAPTER 7 | Configuring Artix�Actional Integration

For more information on service facades, see �Enabling a service facade� on
page 108.

Further information Actional

For information on how to set up and run the Actional server, Actional
agent, and Actional Server Administration Console, see the Actional product
documentation.

Artix

For more information on Artix configuration, see the following:

� Configuring and Deploying Artix Solutions, C++ Runtime

� Artix Configuration Reference, C++ Runtime

Figure 37: Service Facade Extra Hop
114

../deploy/index.htm
../config_ref/index.html

CHAPTER 8

Artix�Actional
Deployment
Scenarios
This chapter gives general guidelines on deploying an Artix�
Actional integration in example production environments.

In this chapter This chapter includes the following sections:

Deployment with IBM WebSphere and J2EE Connector page 116

Native Deployment with IBM WebSphere page 119
115

CHAPTER 8 | Artix�Actional Deployment Scenarios
Deployment with IBM WebSphere and J2EE
Connector

Overview This section gives basic guidelines for integrating Artix and Actional in an
example deployment scenario that includes an IBM WebSphere 5.1
environment with an Artix J2EE Connector.

Artix J2EE Connector is a resource adaptor that enables J2EE applications
and Artix Web services to talk to each other. It is also used to manage
connections, transactions, and security.

For more details on WebSphere, see the IBM WebSphere product
documentation. For more details on Artix J2EE Connector, see Artix for
J2EE.

IBM WebSphere deployment Follow these general guidelines when deploying IBM WebSphere:

� Before starting WebSphere, ensure that the Artix environment script
(artix_env) has been sourced.

� Deploy the Artix J2EE Connector resource adapter archive (artix.rar)
on WebSphere. Instructions for deploying on WebSphere are described
in Artix for J2EE.

� Follow the instructions in the Actional Interceptor Guide to enable
WebSphere instrumentation.

� Ensure that a copy of actional-sdk.jar is present in your
$WAS_HOME/classes directory.
116

../j2ee?index.htm
../j2ee?index.htm
../j2ee?index.htm

Deployment with IBM WebSphere and J2EE Connector
Artix J2EE Connector deployment In this example deployment scenario, which includes an Artix J2EE
Connector, you also need to update your Artix J2EE Connector classloader
firewall configuration file (artix_j2ee_ce.xml).

� Add the following entries under the ce:environment element:

� Add the following entries under the ce:loader element (using the fully
qualified path):

Artix deployment When deploying an Artix and Actional integration, you need to add some
configuration entries to your Artix configuration file (artix.cfg). For
example, you must configure the Artix monitoring plug-in; you can also set
additional options such as payload reporting and service facade.

For full details, see �Configuring Artix Java Services for Actional Integration�
on page 106.

Example Artix configuration scope

The following example shows a j2ee configuration scope from an Artix
configuration file (.cfg):

<ce:filter type="pattern" > com.actional. </ce:filter>
<ce:filter type="negative-pattern"> javax.xml.soap. </ce:filter>
<ce:filter type="negative-pattern"> com.iona.jbus.jms. </ce:filter>
<ce:filter type="negative-pattern"> com.iona.jbus.management. </ce:filter>

<ce:location> path/to/it_bus_management_monitoring.jar </ce:location>
<ce:location> $IT_PRODUCT_DIR/lib/sun/saaj/1.2.1/saaj-api.jar </ce:location>
117

CHAPTER 8 | Artix�Actional Deployment Scenarios
j2ee {

plugins:monitoring_plugin:classname="com.iona.jbus.management.monitoring.intercept
ors.MonitoringPlugInFactory";

 plugins:monitoring_plugin:know_report_tool= "actional";

 event_log:filters = ["*=*"];

 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop", "soap",
"java"];

 java_plugins = ["monitoring_plugin"];

 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";

 plugins:monitoring_plugin:enable_si_payload="true";
 plugins:monitoring_plugin:max_reported_payload_size="-1";
 plugins:monitoring_plugin:show_service_facade="true";

 tx {

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop",

 "ws_coordination_service", "soap", "ots", "java"];

 plugins:bus:default_tx_provider:plugin = "wsat_tx_provider";

 xa {
 poa:j2ee_rm:direct_persistent="true";
 poa:j2ee_rm:well_known_address:port="58502";
 initial_references:TransactionFactory:plugin = "ots_encina";
 };
 };
};
118

Native Deployment with IBM WebSphere
Native Deployment with IBM WebSphere

Overview This section gives basic guidelines for integrating Artix and Actional in an
example deployment scenario that includes a native IBM WebSphere 5.1
environment (without Artix J2EE Connector).

For more details on WebSphere, see the IBM WebSphere product
documentation.

Native WebSphere deployment Using Artix natively with WebSphere requires specific WebSphere
configuration settings. For example, WebSphere classloaders do not use the
system classpath. This means that you must specify classloader
configuration to WebSphere without causing class clashes�WebSphere has
some common components with Artix; but different versions.

Here are some important deployment considerations:

� The WebSphere server runs as a single process with multiple threads.
Because Artix limits creation of only one Artix bus per process by
default, you must initialize different Artix buses in WebSphere with
different ORB IDs. Different ORB names are not sufficient.

� WebSphere reads the shared library path from the starting shell. You
must start a shell environment, source your Artix environment, and
then start WebSphere from that shell. If your Artix environment is not
set before starting the WebSphere server, this results in failure.

� �WebSphere configuration steps� on page 120 describes how to add
core Artix JARs to the WebSphere extended classloader, but it does not
include all Artix JARs. If you use a non-standard Artix subsystem (for
example, AmberPoint), you may need to add additional JARs to the
list.
119

CHAPTER 8 | Artix�Actional Deployment Scenarios
Before you begin Follow these general guidelines:

� Before starting WebSphere, ensure that the Artix environment script
(artix_env) has been sourced.

� Follow the instructions in the Actional Interceptor Guide to enable
WebSphere instrumentation.

� Ensure that a copy of actional-sdk.jar is present in your
$WAS_HOME/classes directory.

WebSphere configuration steps In a native IBM WebSphere deployment, perform the following steps.

1. Start WebSphere server from a console that has already has the Artix
environment set (using the artix_env script).

2. Launch the WebSphere administration console. This is generally
available on: HostName:9090/admin. If no security is turned on, enter
any user name to login

3. In the main menu on the left, select Environment|Shared Libraries.

4. On the Shared Libraries screen, in the Scope definition, select the
Server radio button. This causes the shared library definition to
applicable only the server level.

5. Click Apply.

6. To create a new shared library entry, select New.
120

Native Deployment with IBM WebSphere
7. In the Configuration tab, enter a shared library name in Name text box;
for example, Artix Environment (see Figure 38).

8. In the Classpath text box, paste the full path to the following Artix JAR
libraries:

Figure 38: Specifying a New Shared Library
121

CHAPTER 8 | Artix�Actional Deployment Scenarios
9. Select Apply and Save.

10. In the main menu, select Application|Enterprise Applications.

11. Select the application that will use Artix natively (for example,
DefaultApplication in Figure 39).

12. On the Configuration tab, in General Properties, set the Classloader
Mode to PARENT_LAST.

13. Set the WAR Classloader Policy to Application.

14. Scroll down to Additional Properties, and select Libraries.

ArtixInstallDir/etc
ArtixInstallDir/cxx_java/lib/apache/jakarta-log4j/1.2.6/log4j.jar
ArtixInstallDir/cxx_java/etc
ArtixInstallDir/cxx_java/lib/common/ifc/1.3/ifc.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_bus.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_bus-api.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_context_library.jar
ArtixInstallDir/cxx_java/lib/ws_common/jaxrpc/1.3/it_jaxrpc.jar
ArtixInstallDir/cxx_java/lib/ws_common/saaj/1.3/it_saaj.jar
ArtixInstallDir/cxx_java/lib/ws_common/reflect/1.3/it_ws_reflect.jar
ArtixInstallDir/cxx_java/lib/ws_common/reflect/1.3/it_ws_reflect_types.jar
ArtixInstallDir/cxx_java/lib/ws_common/wsdl/1.3/it_wsdl.jar
ArtixInstallDir/cxx_java/lib/jaxrpc/jaxrpc/1.1/jaxrpc-api.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/jms.jar
ArtixInstallDir/cxx_java/lib/sun/saaj/1.2.1/saaj-api.jar
ArtixInstallDir/cxx_java/lib/apache/xalan/2.3.1/xalan.jar
ArtixInstallDir/cxx_java/lib/apache/xerces/2.5.0/xercesImpl.jar
ArtixInstallDir/cxx_java/lib/apache/xerces/2.5.0/xmlParserAPIs.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_jms_transport.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_bus_management.jar
ArtixInstallDir/cxx_java/lib/artix/java_runtime/5.1/it_bus_management_monitoring.jar
ArtixInstallDir/cxx_java/lib/activemq/activemq/4.1.2.5/incubator-activemq-4.1.2.5.jar
122

Native Deployment with IBM WebSphere

15. Select Add. This displays a list of predefined shared libraries, including
the one you defined earlier.

16. Select the shared library you defined (for example, Artix
Environment).

17. Select Apply and Save.

Figure 39: Specifying Application Properties
123

CHAPTER 8 | Artix�Actional Deployment Scenarios
18. In the main menu, select Servers|Application
Servers|server1|Process Definition.

19. In Generic JVM Arguments, add the following:

20. Select Apply and Save.

Artix deployment When deploying an Artix and Actional integration, you must specify some
configuration entries in your Artix configuration file (artix.cfg). For
example, you must configure the Artix monitoring plug-in; you can also set
additional options such as payload reporting and service facade.

For full details, see �Configuring Artix Java Services for Actional Integration�
on page 106.

Example Artix configuration scope

The following shows an example configuration scope from an Artix
configuration file (.cfg):

-Dorg.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

demos {

 hello_world_soap_http {

plugins:monitoring_plugin:classname="com.iona.jbus.management.monitoring.
interceptors.MonitoringPlugInFactory";

 plugins:monitoring_plugin:know_report_tool= "actional";

 orb_plugins = ["local_log_stream", "xmlfile_log_stream", "soap", "java"];

 java_plugins = ["monitoring_plugin"];

 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";

 plugins:monitoring_plugin:enable_si_payload="true";
 plugins:monitoring_plugin:max_reported_payload_size="-1";
 plugins:monitoring_plugin:show_service_facade="false";
 };
};
124

Native Deployment with IBM WebSphere
Further information Actional

For information on how to set up and run the Actional server, Actional
agent, and Actional Server Administration Console, see the Actional product
documentation.

Artix

For more information on Artix configuration, see the following:

� Configuring and Deploying Artix Solutions, C++ Runtime

� Artix Configuration Reference, C++ Runtime

IBM WebSphere

For more details on WebSphere, see the IBM WebSphere product
documentation.

Artix J2EE Connector

For more details on Artix J2EE Connector, see Artix for J2EE.
125

../deploy/index.htm
../config_ref/index.html
../j2ee?index.htm

CHAPTER 8 | Artix�Actional Deployment Scenarios
126

Part IV
AmberPoint

In this part This part contains the following chapters:

Integrating with AmberPoint page 13

Configuring the Artix AmberPoint Agent page 25
127

128

CHAPTER 9

Integrating with
AmberPoint
Artix provides support for integration with the AmberPoint SOA
management system. This chapter describes two approaches
to integrating Artix services with AmberPoint.

In this chapter This chapter includes the following sections:

AmberPoint Proxy Agent page 14

Artix AmberPoint Agent page 17
13

CHAPTER 9 | Integrating with AmberPoint
AmberPoint Proxy Agent

Overview There are two possible approaches to integrating Artix with the AmberPoint
SOA management system:

� AmberPoint Proxy Agent

� Artix AmberPoint Agent

AmberPoint Proxy Agent
architecture

AmberPoint provides the AmberPoint Proxy Agent, which acts as a proxy for
Web service endpoints by making the service endpoint WSDL available to
the service consumer (client). Figure 40 shows a simple AmberPoint Proxy
Agent architecture:

Figure 40: AmberPoint Proxy Agent Integration
14

AmberPoint Proxy Agent
In this architecture, the following restrictions apply:

� All messages between the service consumer and service endpoint must
be routed through the AmberPoint Proxy Agent.

� All messages must use SOAP over HTTP.

� The service consumer is unaware of the back-end service endpoint,
and views its relationship as being with the proxy only.

If you can work within these limits, the AmberPoint monitoring and
management features can be used out-of-the box with Artix. However, if you
require a more flexible integration (for example, with increased performance
and scalability), you should use the Artix AmberPoint Agent.

AmberPoint Proxy Agent in a
service network

Figure 41 shows the AmberPoint Proxy Agent deployed in a service network
with multiple service consumers and service endpoints.

Figure 41: AmberPoint Proxy Agent Service Network
15

CHAPTER 9 | Integrating with AmberPoint
Because all messages are routed through the AmberPoint Proxy Agent, the
additional network hops may impact on performance. In addition, the proxy
involves the risk of a single point of failure.

If these are important issues for your system, you should use the Artix
AmberPoint Agent instead.

Further information For information on using the AmberPoint Proxy Agent, see the AmberPoint
product documentation.
16

Artix AmberPoint Agent
Artix AmberPoint Agent

Overview The Artix AmberPoint Agent enables Artix endpoints to be discovered and
monitored by AmberPoint. This is the recommended approach to integrating
Artix services with AmberPoint, and can be used with Artix services
implemented in C++, JAX-RPC, JAX-WS, and scripting languages.

The Artix AmberPoint Agent can be deployed with Artix endpoints that use
SOAP over HTTP to enable reporting of performance metrics back to
AmberPoint. The Artix AmberPoint Agent offers significant benefits over the
AmberPoint Proxy Agent. For example, these include increased performance
and scalability, dynamic discovery, and the use of callbacks. This section
describes the Artix AmberPoint Agent in detail.

Artix AmberPoint Agent
architecture

Figure 42 shows how Artix can be integrated with AmberPoint using the
Artix AmberPoint Agent.

Figure 42: Artix AmberPoint Agent Integration
17

CHAPTER 9 | Integrating with AmberPoint
The main components in this architecture are:

� �Artix AmberPoint Agent�

� �Artix interceptor�

� �Artix service endpoints�

� �Service consumers�

� �AmberPoint SOA Management System�

� �AmberPoint Nano Agent API�

Artix AmberPoint Agent An Artix AmberPoint Agent consists of components developed by IONA and
AmberPoint (the Artix interceptor, and the AmberPoint Nano Agent API).
You can deploy multiple agents into your SOA network to capture data for
the AmberPoint management system. Artix AmberPoint Agents gather
performance data for all Artix endpoint types, as well as normal Web service
endpoints.

Deployment modes

Artix AmberPoint Agents can be deployed in different ways in your system,
for example:

� Embedded in Artix consumers intercepting traffic. This is suitable if
Artix is deployed on the client side only, and the service endpoints do
not support AmberPoint. This requires configuration for the consumer
only.

� Embedded in Artix service endpoints intercepting traffic. This is
suitable if Artix is used to implement the service endpoint. This works
even when the consumers are third party products. This requires
configuration for the service endpoint only. This is the most common
and recommended approach, as shown in Figure 43.

� Deployed as standalone Artix intermediaries (proxies) on your service
network. This option is suitable if you do not want touch your existing
system and you do not want to update your endpoints or consumers.
This approach is also necessary if Artix is not deployed at either the
consumer or service endpoints.

Note: Integration with the Artix AmberPoint Agent currently applies to
SOAP over HTTP, and services that have one endpoint only.
18

Artix AmberPoint Agent

Artix interceptor An Artix interceptor is deployed on the dispatch path of all messages
exchanged between Artix service endpoints and consumers. It may be
deployed in the same process as the consumer and/or the endpoint, or as an
intermediary between the consumer and service.

The Artix interceptor captures all data in the dispatch path. The Artix
interceptor then reports performance metrics using the AmberPoint nano
agent API.

Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented using C++, JAX-RPC, JAX-WS,
or even a scripting language, such as JavaScript. However, its main
characteristic is that it can be described in WSDL, and classified as a
service, which can therefore be consumed. The Artix AmberPoint Agent
provides a WSDL contract describing the endpoint that is being monitored.

Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

Figure 43: Artix AmberPoint Agent Embedded in Service Endpoint
19

CHAPTER 9 | Integrating with AmberPoint
AmberPoint SOA Management
System

In this document, AmberPoint is the general term used to describe the
system in which all performance metrics are stored and viewed. For the
purposes of this document, all interactions are made using the AmberPoint
Nano Agent API, and the AmberPoint graphical tools are used to view the
Artix data. This simplifies the architecture of AmberPoint for the sake of this
discussion.

AmberPoint Nano Agent API The AmberPoint Nano Agent API is a Java public API provided by
AmberPoint that enables customers to monitor their endpoints. This is the
API that Artix uses to notify AmberPoint of the existence of the service
endpoint. Artix also uses the AmberPoint nano agent API at runtime to
report performance metrics about a previously registered endpoint.

The AmberPoint Nano Agent API enables the Artix interceptor to do the
following:

� Allow dynamic discovery of new Artix endpoints without manual
registration of the endpoints by the user. This registration process
assumes that the Artix interceptor has the required configuration for
the nano agent to contact AmberPoint. When the Artix AmberPoint
Agent becomes active, it uses the Nano Agent API to register a new
endpoint.

� Allow periodic reporting of messages using the Artix interceptor. These
reports contain performance data about the endpoint and the
messages being exchanged.
20

Artix AmberPoint Agent
Artix AmberPoint Agent in a
service network

Figure 44 shows the Artix AmberPoint Agent deployed in a service network
with multiple service consumers and service endpoints.

This loosely-coupled architecture has the following benefits:

� Because the Artix AmberPoint Agent is collocated and embedded in
the service endpoint, there are no additional network hops, so
performance is maximized.

� Unlike with the AmberPoint Proxy Agent, there is no risk of a single
point of failure, so reliability and scalability are also improved.

� An Artix AmberPoint Agent can be embedded into an Artix router.This
enables it to dynamically discover and monitor the Artix service
endpoints and consumers that the router creates and manages.

� Because the client is aware of the back-end service endpoint, the use
of callbacks is supported.

Figure 44: Artix AmberPoint Agent Service Network
21

CHAPTER 9 | Integrating with AmberPoint
Supported AmberPoint features The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

� Dynamic discovery of Artix clients and services using SOAP over HTTP.

� Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

� Mapping Qualities of Service (QoS) to customer Service Level
Agreements (SLAs).

� Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

� Centralized logging and performance statistics.

Further information For detailed information on using AmberPoint features, see the AmberPoint
product documentation.
22

Artix AmberPoint Agent
23

CHAPTER 9 | Integrating with AmberPoint
24

CHAPTER 10

Configuring the
Artix AmberPoint
Agent
This chapter explains how to set up integration with the Artix
AmberPoint Agent, and shows examples from the Artix
AmberPoint integration demos.

In this chapter This chapter includes the following sections:

Installing AmberPoint page 26

Configuring AmberPoint for Artix Integration page 27

Configuring Artix C++ Services for AmberPoint Integration page 30
25

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Installing AmberPoint

Overview The Artix ESB C++ runtime supports integration with version 5.1 of the
AmberPoint SOA management system. This section explains how to install
AmberPoint to enable integration with the Artix AmberPoint Agent.

Installation steps When installing the AmberPoint runtime, perform the following steps:

1. In the AmberPoint installation wizard, choose a suitable HTTP port
number for the J2EE application server in which the AmberPoint server
will be deployed (for example, 9090).

2. AmberPoint comes bundled with Tomcat application server, so for the
demo purposes, choose to install Tomcat.

3. Select Deploy AmberPoint into the container.

4. Select Install a Java VM specifically for this application.

5. Select Deploy a new sphere with the SOA Management System. This
deploys the persistence runtime into the J2EE application server, and
configures it to use the embedded Tomcat HSQL relational database
management system.

6. You can also install AmberPoint sample Web services, but these are
not required.

7. Provide a user name and password with administrative privileges (for
example, admin/admin).

8. When installation is complete, copy the AmberPoint Nano Agent Server
into the deployment directory of the application server. For example,
for Tomcat, use the following command:

If you are not using Tomcat, use the vendor�s visual tools to deploy
apsocketconverter.war into the application server.

copy AP_InstallDir/add_ons/socket_converter/apsocketconverter.war
AP_InstallDir/server/webapps
26

Configuring AmberPoint for Artix Integration
Configuring AmberPoint for Artix Integration

Overview This section explains how to configure the AmberPoint SOA management
system for integration with Artix.

Starting the AmberPoint Server When you have completed the AmberPoint installation steps, run the
AmberPoint server using Window's Start menu.

Alternatively, execute the following script:

You can see how your application server starts up and deploys the
AmberPoint server in the log files in the AP_InstallDir/server/logs
directory.

Configuring the AmberPoint Nano
Agent Sever

When the application server has started and deployed all the AmberPoint
.war files, perform the following steps:

1. Open a web browser and specify the following URL:
http://hostname:port/apasc/

2. Login using the admin user name and password that you provided
when installing AmberPoint.

3. When logged in, click Network|Infrastructure in the tabbed menu.
This displays a list of registered Deployments with this application
server's container.

4. Ensure that one of the deployed items is named apsocketconverter
and has a green button beside it This indicates that the AmberPoint
Nano Agent Server has been successfully deployed and is ready to be
configured.

Windows AP_InstallDir\server\bin\startup.bat

UNIX AP_InstallDir/server/bin/startup.sh
27

CHAPTER 10 | Configuring the Artix AmberPoint Agent
5. In the left pane, click the Register button.

From the drop-down menu, select Message Source|Simple Message
Source: This displays the Register Message Source form.

6. In the Register Message Source form, enter the following:

The source Name can be any string value. The Location specifies the
location of the log file for incoming messages. The default Criteria for
this policy applies this message source to all active services that this
AmberPoint system is aware of.

7. Without modifying the Criteria for this policy, click Preview Services
to see which services this message Source applies to. If you have no
services currently registered, only one service named MonitorEnabler is
displayed.

8. Click the Go button at the top left of the screen, and wait until the
Policy Status is Applied.

9. Return to a command window to build an Artix AmberPoint demo (see
�Configuring Artix C++ Services for AmberPoint Integration� on
page 30).

Name Artix Message Source

Type of Message Source File

Start At At present

Location AmberPointInstallDir\server\amberpoint\
apsocketconverter\logdir
28

Configuring AmberPoint for Artix Integration
Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, change the following attributes to the new port number:

� messageLogWriter logLocation in your Artix
apobserver.configuration file

� messageLogReader logLocation in:

Whenever you update values in the Artix apobserver.configuration file,
you must restart the services already being monitored by the Artix
AmberPoint Agent for the changes to take effect.

If you update the Nano Agent Server port, you may need to restart the
application server for changes to take effect (except for those servers that
support hot deployment).

For example, these settings appear as follows in the Artix
apobserver.configuration file:

AP_InstallDir/server/webapps/apsocketconverter.war@/WEB-INF/
application/resources/readerConfig.xml

...
<ap:messageLogWriter

logWriterImplClass="com.amberpoint.msglog.socketimpl.SocketLogWriter"
 logName="{hostname}" <!-- default = localhost -->
 logLocation="{port}" <!-- default = 33333 -->
 syncEverySoManyEntries="50">
</ap:messageLogWriter>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:requestURL"/>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:wsdlUrl"/>
 ...
29

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Configuring Artix C++ Services for
AmberPoint Integration

Overview This section explains how to configure Artix C++ and JAX-RPC services to
support the Artix AmberPoint Agent. It describes Artix AmberPoint demo
configuration settings in detail. However, if your AmberPoint installation and
demo run on the same host, you do not need to make any configuration
changes to run the demo. If you wish to run the demo now, skip this
section, and see the readme.txt in the following directory:

This amberpoint demo is based on the
.../samples/routing/content_based demo, with some modifications to
enable Artix and AmberPoint integration.

Configuring the AmberPoint Nano
Agent plug-in

You must enable the AmberPoint Nano Agent plug-in for the Artix runtime.
For example, the configuration scope in which the demo servers run
includes an Artix plug-in named ap_nano_agent. This is loaded into the Artix
runtime, and enables discovery and monitoring by AmberPoint of services
and consumers running inside Artix processes.

In this demo, there are three server instances, each exposing the same
interface but running under different service and endpoint name pairs. These
are as follows:

ArtixInstallDir/cxx_java/samples/integration/amberpoint

demos {
 content_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http", "ap_nano_agent"];
 ...
 }
 ...
}

{TargetService1, TargetPort1}
{TargetService2, TargetPort2}
{TargetService3, TargetPort3}
30

Configuring Artix C++ Services for AmberPoint Integration
Configuring the Artix router To enable router support, you must also add the AmberPoint Nano Agent
plug-in to the router�s configuration. For example, the demo configuration
scope in which the Artix router runs includes additional configuration for the
Artix routing plug-in. Its orb_plugins list includes the ap_nano_agent
plug-in, which enables the router�s endpoints and consumers to be
discovered and monitored by AmberPoint.

The ap_nano_agent plug-in must precede the routing plug-in. This is
because the Artix AmberPoint Agent must register itself in the interceptor
chain before the routing plug-in instantiates and activates the services that it
manages.

Setting plugins:routing:use_pass_through to false disables passing data
through the router without parsing. The ap_nano_agent plug-in requires that
the underlying payload is parsed in the Artix type format.

Configuring the consumer
hostname

plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host address that
an Artix service consumer (proxy) runs on. This variable takes the following
values:

demos {
 content_based {
 ...
 router {
 orb_plugins = ["xmlfile_log_stream", "ap_nano_agent", "routing"];
 plugins:routing:use_pass_through="false";
 ...
 }
 }
}

unqualified The host name in short form, without the domain name
(hostname).

ipaddress The host name in the form of an IP address (for example,
123.4.56.789). This is the default.

canonical The host name takes a fully qualified form
(hostname.domainname).

true same as unqualified

false same as ipaddress
31

CHAPTER 10 | Configuring the Artix AmberPoint Agent
plugins:ap_nano_agent:hostname_address:local_hostname is an arbitrary
string used as the client hostname instead of trying to resolve it using the
underlying IP runtime. This is undefined by default.

To report the correct service consumer address invoking to an Artix service
monitored by this agent, specify the following setting in the client and server
configuration scope:

Configuring the service hostname The server-side host name resolution is driven by the specific transport.
Because the HTTP transport is the only one currently supported the
following variables must be configured:

� policies:soap:server_address_mode_policy:publish_hostname
� policies:at_http:server_address_mode_policy:publish_hostname

Possible values are the same as those for
plugins:ap_nano_agent:hostname_address:publish_hostname.

These variables specify the format that a service endpoint address is
published to service consumers. AmberPoint discovers Artix services by
consuming a published WSDL contract. It correlates the address in the
WSDL with the inflow of log messages that describe operations invoked on
an endpoint. This means that you must synchronize these configuration
values with the configuration values of the AmberPoint Client Nano Agent.

Configuring the AmberPoint
hostname

The default Artix hostname resolution setting is ipaddress, which is the
same as that for the configuration of AmberPoint Client Nano Agent.
However, if you change the Artix hostname resolution, you must also update
the AmberPoint Client Nano Agent configuration file. For example:

To update the hostname resolutions setting, open the file in a text editor and
find the two occurrences of the hostMapper algorithm attribute.

You must update the value of hostMapper algorithm attribute if you change
the value of
policies:soap:server_address_mode_policy:publish_hostname and
policies:at_http:server_address_mode_policy:publish_hostname
configuration variables.

plugins:bus:register_client_context="true";

ArtixInstallDir/cxx_java/etc/amberpoint/5.1/nanoagent/conf/apobserver.configuration
32

Configuring Artix C++ Services for AmberPoint Integration
The equivalent AmberPoint values are as follows:

To avoid updating the AmberPoint Nano Agent Client configuration each
time you change the Artix configuration, simply use hostMapper
algorithm="asSent".

If you are running your Artix services and the AmberPoint Nano Agent Server
on different machines, you must also update the messageLogWriter
logName attribute to point the host name or IP address where the Nano
Agent Server is running.

Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, you can update your AmberPoint configuration file to the new port
number. For more details, see �Configuring the AmberPoint port� on
page 29.

Viewing Artix services in
AmberPoint

When you run the demo, and start the Artix router and servers, and make
client invocations to the router, these calls are in turn forwarded on to the
servers.

AmberPoint dependency diagrams

While the demo is running, in the AmberPoint GUI, select the
Network|Services|Dependencies screen. AmberPoint tracks the call flow,
as it happens, between Artix services with the Artix AmberPoint Agent in
their runtime. The dependency flow diagram is a directed graph, and can be
of any complexity. For example, a client makes three calls to the source
service implemented by the router. Each call is routed to the intended
destination service, defined by the routing rules. Each TargetService
receives a single call out of the three made. And each dependency tracking
is shown in relation to the service selected in the Selector list, which is
referred as a primary service.You can manually create dependencies
between services using the AmberPoint tools if so desired. See the

Artix publish_hostname variable AmberPoint hostMapper
algorithm

ipaddress useIpAddr or asSent

canonical useFQN or asSent

unqualified asSent
33

CHAPTER 10 | Configuring the Artix AmberPoint Agent
AmberPoint user documentation for details on what you can do with
dependency diagrams (for example, using the
Network|Services|Dependencies screen).

AmberPoint performance diagrams

You can use the AmberPoint Performance|Activity screen to view
performance statistics. See the AmberPoint user documentation for details
on what you can do with performance statistics.

AmberPoint logging policies

You can collect call logs by adding an AmberPoint logging policy using the
Exceptions|Services screen. To add an AmberPoint logging policy, click the
Add Logging Policy button at the top of the screen. This displays the Add
Policy form,. Use this form to specify a meaningful name, and tune its
parameters to your needs. If you wish to log messages for all available
services, edit the policy rules at the bottom of this form.

When the log policy is created, you must wait until it is applied, like when
you created a Message Source (see �Configuring the AmberPoint Nano
Agent Sever� on page 27). After the log policy has been applied and turns
green, send some more traffic using the demo. You can then watch the
Message Log using the Exceptions|Services|Message Log tab.

Further information There are many other AmberPoint features that you can use with Artix. For
example, when AmberPoint has captured the Artix traffic, you can use its
runtime to define customers and their SLAs, and map these SLAs to the
services in the network. You can also create reactions (alerts) if an SLA
violation has occurred and so on. See the AmberPoint user documentation
for more details.

Artix AmberPoint demo

For more details on the Artix AmberPoint integration demo, see:

Artix C++ configuration

� Configuring and Deploying Artix Solutions, C++ Runtime

� Artix Configuration Reference, C++ Runtime

ArtixInstallDir\cxx_java\samples\integration\amberpoint\README.txt
34

../deploy/cpp/index.htm
../config_ref/cpp/index.html

Part V
BMC Patrol

In this part This part contains the following chapters:

Integrating with BMC Patrol� page 37

Configuring Artix for BMC Patrol page 45

Using the Artix BMC Patrol Integration page 49

Extending to a BMC Production Environment page 59
35

36

CHAPTER 11

Integrating with
BMC Patrol�
This chapter introduces Artix ESB�s integration with the BMC
Patrol� Enterprise Management System. It describes the
requirements and main components of this integration.

In this chapter This chapter contains the following sections:

Introduction page 38

The Artix BMC Patrol Integration page 42
37

CHAPTER 11 | Integrating with BMC Patrol�
Introduction

Overview Artix ESB supports integration with Enterprise Management Systems such
as BMC Patrol. This section includes the following topics:

� �The application life cycle�

� �Enterprise Management Systems�

� �Artix BMC Patrol features�

� �How it works�

The application life cycle Most enterprise applications go through a rigorous development and testing
process before they are put into production. When applications are in
production, developers rarely expect to manage those applications. They
usually move on to new projects, while the day-to-day running of the
applications is managed by a production team. In some cases, the
applications are deployed in a data center that is owned by a third party,
and the team that monitors the applications belongs to a different
organization.

Enterprise Management Systems Different organizations have different approaches to managing their
production environment, but most will have at least one Enterprise
Management System (EMS).

For example, the main Enterprise Management Systems include BMC
Patrol� and IBM Tivoli�. These systems are popular because they give a
top-to-bottom view of every part of the IT infrastructure.

This means that if an application fails because the /tmp directory fills up on
a particular host, for example, the disk space is reported as the fundamental
reason for the failure. The various application errors that arise are
interpreted as symptoms of the underlying problem with disk space. This is
much better than being swamped by an event storm of higher-level failures
that all originate from the same underlying problem. This is the fundamental
strength of integrated management.
38

Introduction
Artix BMC Patrol features The Artix ESB BMC Patrol integration performs the following key enterprise
management tasks:

� Posting an event when a server crashes. This enables programmed
recovery actions to be taken.

� Tracking key server metrics (for example, server response times).
Alarms are triggered when these go out of bounds.

The server metrics tracked by the Artix BMC Patrol integration include the
number of invocations received, and the average, maximum and minimum
response times. The Artix BMC Patrol integration also enables you to track
these metrics for individual operations. Events can be generated when any
of these parameters go out of bounds. You can also perform a number of
actions on servers including stopping, starting and restarting.

How it works In the BMC Patrol integration, key server metrics are logged by the Artix
performance logging plug-ins. Log file interpreting utilities are then used to
analyze the logged data.

Artix also provides Knowledge Modules, which conform to standard BMC
Knowledge Module design and operation. These modules tell the BMC
Patrol console how to interpret the logging data received from the Artix
services. Figure 45 on page 40 shows a simplified view of how the
Knowledge Modules work. In this example, an alarm is triggered in the BMC
Patrol console when a locator becomes unresponsive, and this results in an
action to restart the locator.
39

CHAPTER 11 | Integrating with BMC Patrol�
Figure 45: Overview of the Artix BMC Patrol Integration
40

Introduction
The performance logging plug-ins collect data relating to server response
times and log it periodically in the performance logs. The Knowledge
Module executes parameter collection periodically on each host, using the
log file interpreter running on each host to collect and summarize the logged
data.

The Knowledge Module compares the response times and other values
against the defined alarm ranges, and issues an alarm event if a threshold
has been breached. These events can be analyzed and appropriate action
taken automatically (for example, restart a server). Alternatively, the user
can intervene manually and execute a BMC Patrol menu command to stop,
start or restart the offending server.
41

CHAPTER 11 | Integrating with BMC Patrol�
The Artix BMC Patrol Integration

Overview This section describes the requirements and main components of the Artix
BMC Patrol integration. It includes the following topics:

� �BMC Patrol requirements�

� �Main components�

� �Example metrics�

� �Further information�

BMC Patrol requirements To use the Artix BMC Patrol integration, you must have BMC Patrol 3.4 or
higher. The BMC Patrol integration is compatible with the BMC Patrol 7
Central Console.

Main components The BMC Patrol integration consists of the following Knowledge Modules
(KM):

� IONA_SERVERPROVIDER
� IONA_OPERATIONPROVIDER

IONA_SERVERPROVIDER.km tracks key metrics associated with your Artix
servers on a particular host. It also enables servers to be started, stopped, or
restarted, if suitably configured.

IONA_OPERATIONPROVIDER.km tracks key metrics associated with individual
operations on each server.
42

The Artix BMC Patrol Integration
Example metrics Figure 46 shows an example of the IONA_SERVERPROVIDER Knowledge
Module displayed in BMC Patrol. The window in focus shows the IONA
performance metrics that are available for an operation named
query_reservation, running on a machine named stimulator.

Figure 46: IONA Server Running in BMC Patrol
43

CHAPTER 11 | Integrating with BMC Patrol�
The IONA server performance metrics include the following:

� IONAAvgResponseTime
� IONAMaxResponseTime
� IONAMinResponseTime
� IONANumInvocations
� IONAOpsPerHour

For more details, see �Using the Artix Knowledge Module� on page 52.

Figure 47 shows alarms for server metrics, for example,
IONAAvgResponseTime. This measures the average response time of all
operations on this server during the last collection cycle.

Further information For a detailed description of Knowledge Modules, see your BMC Patrol
documentation.

Figure 47: BMC Patrol Displaying Alarms
44

CHAPTER 12

Configuring Artix
for BMC Patrol
This chapter explains the steps that you need to perform in
your IONA product to configure integration with BMC Patrol.

In this chapter This chapter contains the following sections:

Setting up your Artix Environment page 46
45

CHAPTER 12 | Configuring Artix for BMC Patrol
Setting up your Artix Environment

Overview The best way to learn how to use the BMC Patrol integration is to start with
a host that has both BMC Patrol and Artix installed. This section explains
how to make your Artix servers visible to BMC Patrol. It includes the
following topics:

� �EMS configuration files�

� �Creating a servers.conf file�

� �Creating a server_commands.txt file�

� �Further information�

EMS configuration files You need to create two text files that are used to configure the BMC Patrol
integration:

� servers.conf
� server_commands.txt

These files are used to track your Artix applications in BMC Patrol. You will
find starting point files in the IONA_km.zip located in the following directory
of your Artix installation:

When you unzip, the starting point files are located in the lib/iona/conf
directory.

Creating a servers.conf file The servers.conf file is used to instruct BMC Patrol to track your Artix
servers. It contains the locations of performance log files for specified
applications. Each entry must take the following format:

This example entry instructs BMC Patrol to track the myapplication server,
and reads performance data from the following log file:

ArtixInstallDir\cxx_java\management\BMC\IONA_km.zip

my_application, 1, /path/to/myproject/log/myapplication_perf.log

/path/to/myproject/log/myapplication_perf.log
46

Setting up your Artix Environment
You must add entries for the performance log file of each Artix server on this
host that you wish BMC Patrol to track. BMC Patrol uses the servers.conf
file to locate these log files, and then scans the logs for information about
the server's key performance indicators.

The following example is taken from the Artix Java sample application for
BMC Patrol integration:

Creating a server_commands.txt
file

The server_commands.txt file is used to instruct BMC Patrol how to start,
stop, and restart your Artix servers. It contains the locations of the relevant
scripts for specified servers. Each entry must take the following format:

In this example, each entry specifies a script that can be used to stop, start,
or restart the myapplication server. When BMC Patrol receives an
instruction to start myapplication, it looks up the server_commands.txt
file, and executes the script specified in the appropriate entry.

You must add entries that specify the relevant scripts for each server on this
host that you wish BMC Patrol to track.

management-bmc-patrol-demo-server,1,%ARTIX_HOME%\java\samples\advanced
\management\bmc-patrol\BMCCounterServer.log

management-bmc-patrol-demo-client,1,%ARTIX_HOME%\java\samples\advanced
\management\bmc-patrol\BMCCounterClient.log

myapplication,start=/path/to/myproject/bin/start_myapplication.sh
myapplication,stop=/path/to/myproject/bin/stop_myapplication.sh
myapplication,restart=/path/to/myproject/bin/restart_myapplication.sh
47

CHAPTER 12 | Configuring Artix for BMC Patrol
Copy the EMS files to your BMC
installation

When you have added content to your servers.conf and
server_commands.txt files, copy these files into your BMC installation, for
example:

This enables tracking of your Artix server applications in BMC Patrol.

Further information For details of how to configure your Artix servers to use performance logging,
see �Configuring an Artix Production Environment� on page 60.

For a complete explanation of configuring performance logging, see
Configuring and Deploying Artix Solutions, C++ Runtime.

$PATROL_HOME/lib/iona/conf
48

CHAPTER 13

Using the Artix
BMC Patrol
Integration
This chapter explains the steps the that you must perform in
your BMC Patrol environment to monitor Artix applications. It
also describes the Artix Knowledge Module and how to use it
to monitor servers and operations. It assumes that you already
have a good working knowledge of BMC Patrol.

In this chapter This chapter contains the following sections:

Setting up your BMC Patrol Environment page 50

Using the Artix Knowledge Module page 52
49

CHAPTER 13 | Using the Artix BMC Patrol Integration
Setting up your BMC Patrol Environment

Overview To enable monitoring of the Artix servers on your host, you must first
perform the following steps in your BMC Patrol environment:

1. �Install the Knowledge Module�

2. �Set up your Java environment�

3. �Set up your EMS configuration files�

4. �View your servers in the BMC Console�

Install the Knowledge Module The Artix BMC Patrol Knowledge Module is shipped in two formats:

To install the Artix Knowledge Module:

Windows

Use WinZip to unzip IONA_km.zip. Extract this file into your %PATROL_HOME%
directory.

If this is successful, the following directory is created:

UNIX

Copy the IONA_km.tgz file into $PATROL_HOME, and enter the following
commands:

Windows ArtixInstallDir\cxx_java\management\BMC\IONA_km.zip

UNIX ArtixInstallDir/cxx_java/management/BMC/IONA_km.tgz

%PATROL_HOME%\lib\iona

$ cd $PATROL_HOME
$ gunzip IONA_km.tgz
$ tar xvf IONA_km.tar
50

Setting up your BMC Patrol Environment
Set up your Java environment The Artix Knowledge Module requires a Java Runtime Environment (JRE). If
your BMC Patrol installation already has a $PATROL_HOME/lib/jre directory,
it should work straightaway. If not, you must setup a JRE (version 1.3.1 or
later) on your machine as follows:

1. Copy the jre directory from your Java installation into
$PATROL_HOME/lib. You should now have a directory structure that
includes $PATROL_HOME/lib/jre.

2. Confirm that you can run $PATROL_HOME/lib/jre/bin/java.

Set up your EMS configuration
files

In Chapter 12, you generated the following EMS configuration files:

� servers.conf
� server_commands.txt

Copy these generated files to $PATROL_HOME/lib/iona/conf.

View your servers in the BMC
Console

To view your servers in the BMC Console, and check that your setup is
correct:

1. Start your BMC Console and connect to the BMC Patrol Agent on the
host where you have installed the IONA Knowledge Module.

2. In the Load KMs dialog, open the $PATROL_HOME/lib/knowledge
directory, and select the IONA_SERVER.kml file. This will load the
IONA_SERVERPROVIDER.km and IONA_OPERATIONPROVIDER.km
Knowledge Modules.

3. In your Main Map, the list of servers that were configured in the
servers.conf file should be displayed. If they are not currently
running, they are shown as offline.

You are now ready to manage these servers using BMC Patrol.
51

CHAPTER 13 | Using the Artix BMC Patrol Integration
Using the Artix Knowledge Module

Overview This section describes the Artix Knowledge Module and explains how to use
it to monitor servers and operations. It includes the following topics:

� �Server Provider parameters�

� �Monitoring servers�

� �Monitoring operations�

� �Operation parameters�

� �Starting, stopping and restarting servers�

� �Troubleshooting�

Server Provider parameters The IONA_SERVERPROVIDER class represents instances of Artix server or client
applications. The parameters exposed in the Knowledge Module are shown
in Table 9.

Table 9: Artix Server Provider Parameters

Parameter Name Default Warning Default Alarm Description

IONAAvgResponseTime 1000�5000 > 5000 The average response time (in
milliseconds) of all operations on
this server during the last collection
cycle.

IONAMaxResponseTime 1000�5000 > 5000 The slowest operation response
time (in milliseconds) during the
last collection cycle.

IONAMinResponseTime 1000�5000 > 5000 The quickest operation response
time (in milliseconds) during the
last collection cycle.

IONANumInvocations 10000�100000 > 100000 The number of invocations received
during the last collection period.

IONAOpsPerHour 1000000�10000000 > 10000000 The throughput (in Operations Per
Hour) based on the rate calculated
from the last collection cycle.
52

Using the Artix Knowledge Module
Monitoring servers You can use the parameters shown in Table 9 to monitor the load and
response times of your Artix servers.

The Default Alarm ranges can be overridden on any particular instance, or
on all instances, using the BMC Patrol 7 Central console. You can do this as
follows:

1. In the PATROL Central console�s Main Map, right click on the selected
parameter and choose the Properties menu item.

2. In the Properties pane, select the Customization tab.

3. In the Properties drop-down list, select ranges.

4. You can customize the alarm ranges for this parameter on this
instance. If you want to apply the customization to all instances, select
the Override All Instances checkbox.

Monitoring operations In the same way that you can monitor the overall performance of your
servers and clients, you can also monitor the performance of individual
operations. In Artix, an operation relates to a WSDL operation defined on a
port.

In many cases, the most important metrics relate to the execution of
particular operations. For example, it could be that the
make_reservation(), query_reservation() calls are the operations that
you are particularly interested in measuring. This means updating your
servers.conf file as follows:

In this example, the addition of the bold text enables the make_reservation
and query_reservation operations to be tracked by BMC Patrol.

Note: The IONANumInvocations parameter is a raw, non-normalized
metric and can be subject to sampling errors. To minimize this, keep the
performance logging period relatively short, compared to the poll time for
the parameter collector.

mydomain_myserver,1,/var/mydomain/logs/myserver_perf.log,[make_reservation,query_reservation]
53

CHAPTER 13 | Using the Artix BMC Patrol Integration
Operation parameters Table 10 shows the Artix parameters that are tracked for each operation
instance:

Table 10: Artix Operation Provider Parameters

Parameter Name Default Warning Default Alarm Description

IONAAvgResponseTime 1000�5000 > 5000 The average response time (in
milliseconds) for this operation
on this server during the last
collection cycle.

IONAMaxResponseTime 1000�5000 > 5000 The slowest invocation of this
operation (in milliseconds)
during the last collection cycle.

IONAMinResponseTime 1000�5000 > 5000 The quickest invocation (in
milliseconds) during the last
collection cycle.

IONANumInvocations 10000�100000 > 100000 The number of invocations of
this operation received during
the last collection period.

IONAOpsPerHour 1000000�100000000 > 10000000 The number of operations
invoked in a one hour period
based on the rate calculated
from the last collection cycle.
54

Using the Artix Knowledge Module
Figure 48 shows BMC Patrol graphing the value of the
IONAAvgResponseTime parameter on a query_reservation operation call.

Figure 48: Graphing for IONAAvgResponseTime
55

CHAPTER 13 | Using the Artix BMC Patrol Integration
Figure 49 shows warnings and alarms issued for the IONAAvgResponseTime
parameter.

Figure 49: Alarms for IONAAvgResponseTime
56

Using the Artix Knowledge Module
Starting, stopping and restarting
servers

The server_commands.txt file contains the details about the commands for
services that you are deploying on your host (see Chapter 12). To execute
commands in this file, perform the following steps:

1. Right click on an instance in the BMC Patrol Console Main Map.

2. Select Knowledge Module Commands|IONA|Commands.

3. Select one of the following commands:

Troubleshooting If you have difficulty getting the Artix BMC Patrol integration working, you
can use the menu commands to cause debug output to be sent to the
system output window.

To view the system output window for a particular host, right click on the
icon for your selected host in the BMC Patrol Main Map, and choose
System Output Window.

You can change the level of diagnostics for a particular instance by right
clicking on that instance and choosing:

Knowledge Module Commands|IONA|Log Levels

You can choose from the following levels:

� Set to Error

� Set to Info

� Set to Debug

Set to Debug provides the highest level of feedback and Set to Error
provides the lowest.

Start Starts a server.

Stop Stops a server.

Restart Executes a stop followed by a start.
57

CHAPTER 13 | Using the Artix BMC Patrol Integration
58

CHAPTER 14

Extending to a
BMC Production
Environment
This section describes how to extend an Artix BMC Patrol
integration from a test environment to a production
environment.

In this chapter This chapter contains the following sections:

Configuring an Artix Production Environment page 60
59

CHAPTER 14 | Extending to a BMC Production Environment
Configuring an Artix Production Environment

Overview This section describes the steps that you need to take when extending the
BMC Patrol integration from an Artix test environment to a production
environment. It includes the following sections:

� �Monitoring your Artix applications�

� �Monitoring Artix applications on multiple hosts�

� �Monitoring multiple Artix applications on the same host�

Monitoring your Artix applications You must add configuration settings to your Artix server configuration files.

For C++ and JAX-RPC applications, add the following example
configuration settings to your Artix application�s .cfg file:

// my_app.cfg

my_application {

Ensure that it_response_time_collector is in your orb_plugins list.
orb_plugins = [...,"it_response_time_collector"];

Enable performance logging.
use_performance_logging = true;

Collector period (in seconds). How often performance information is logged.
plugins:it_response_time_collector:period = "60";

Set the name of the file which holds the performance log
plugins:it_response_time_collector:filename =

"/opt/myapplication/log/myapplication_perf.log"

};

Note: The specified plugins:it_response_time_collector:period
should divide evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).
60

Configuring an Artix Production Environment
Monitoring Artix applications on
multiple hosts

To monitor your Artix applications on multiple hosts, you must distribute the
Artix KM to your hosts. The best approach to distributing the Artix
Knowledge Module to a large number of machines is to use the Knowledge
Module Distribution Service (KMDS).

Using the KMDS to distribute the IONA KM

To create a deployment set for machines that run Patrol Agents (but not the
Patrol Console), perform the following steps:

1. Choose a machine with the Patrol Developer Console installed. Follow
the procedure for installing the Artix KM on this machine (see �Setting
up your BMC Patrol Environment� on page 50).

2. Start the Patrol Developer Console and choose Edit Package from the
list of menu Items.

3. Open the following file:

You will see a list of all the files that need to be installed on machines
that run the Patrol Agent.

4. Now select Check In Package from the File menu to check the
package into the KMDS.

5. You can now use the KMDS Manager to create a deployment set based
on this KM package, and distribute it to all the machines that Artix
installed and that also have a Patrol Agent.

6. You repeat this process for the
IONA_Server_KM_Console_Resources.pkg file.

This creates a deployment set for all machines that have both the Patrol
Agent and Patrol Console installed, and which will be used to monitor Artix
applications.

For further details about using the KMDS, see your BMC Patrol
documentation.

$PATROL_HOME/archives/IONA_Server_KM_Agent_Resources.pkg file
61

CHAPTER 14 | Extending to a BMC Production Environment
Monitoring multiple Artix
applications on the same host

Sometimes you may need to deploy multiple Artix applications on the same
host. The solution is simply to merge the servers.conf and
server_commands.txt files from each of the applications into single
servers.conf and server_commands.txt files.

For example, if the servers.conf file from the UnderwriterCalc application
looks as follows:

And the servers.conf file for the ManagePolicy application looks as
follows:

The merged servers.conf file will then include the following two lines:

You can now copy this merged file to your $PATROL_HOME/lib/iona/conf
directory and BMC Patrol will monitor both applications.

Exactly the same procedure applies to the server_commands.txt file.

Further information For more detailed information on the BMC Patrol consoles, see your BMC
Patrol documentation.

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log

ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log
ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log
62

Index

A
acksto uri 83
Actional agent 96, 102
Actional Agent Interceptor SDK 97
Actional CSO 102
Actional for Continuous Service Optimization 102
Actional for SOA Operations 102
Actional interaction object 97
Actional Point of Operational Visibility 102
actional-sdk.jar 116, 120
Actional server 96
Actional server, configuration 103
Actional Server Administration Console 23, 96, 98,

109
ACTIVATED 71
Additional Properties 122
Add Logging Policy 34
Add Policy 34
address 47
alarms 39, 41, 56
alerts 94, 96
AmberPoint Nano Agent API 20
AmberPoint Nano Agent Client 33
AmberPoint Nano Agent Server 26, 33
AmberPoint Proxy Agent 14
AmberPoint server 27
Apache Derby 96, 103
Apache Tomcat 96
ap_nano_agent 30, 31
apobserver.configuration 29, 32
application server 26
apsocketconverter 27
apsocketconverter.war 26
arguments 34
artix.cfg 106
artix.rar 116
Artix AmberPoint agent 17, 18
artix_env 116, 120
Artix interceptor 19
Artix interceptors 96
artix_j2ee_ce.xml 117
Artix J2EE Connector 116, 119
Artix Java handlers 96

Artix router 21, 31
Artix service endpoint 98, 19
asSent 33
Attributes tab 86
averageResponseTime 41

B
binding:artix:client_message_interceptor_list 107
binding:artix:client_request_interceptor_list 107
binding:artix:server_message_interceptor_list 107
binding:artix:server_request_interceptor_list 107
BMC Console 51
BMC Patrol Agent 51
bus

attributes 34
ObjectName 33

bus_management 52

C
callbacks 21
canonical 31
ce:environment 117
ce:loader 117
Check In Package 61
Classloader Mode 122
collector 53
commands 57
CompositeData 48
connection server 65
connector.url 56
consumer 98, 19
correlation ID 97
Criteria for this policy 28
Customization tab 53
custom JMX MBeans 30
cycle time 60

D
database 96, 103
DEACTIVATED 70
Dependencies 33, 34
dependency diagrams 22
63

INDEX
dependency mapping 94
deployment modes 18
Deployments 27
diagnostics 57
dynamic discovery 20, 22

E
Edit Package 61
EMS 38
endpoint 98, 19
endpoint URL 97
Enterprise Management System 38
event_log:filters 19
extra hop 108, 113

F
facade 108, 112
factory class 106
File menu 61

G
General Properties 122
Generic JVM Arguments 124
getLoggingLevel 35, 75
Go 28

H
handler factory 96
handlers 96
hostMapper algorithm 32
HSQL 26
HTTP adaptor 60
HTTP port 26

I
IBM WebSphere 116, 119, 125
identifier 34
Infrastructure 27
instrumented node 94
interceptor 19
interceptor chain 106
interceptors 47, 58, 73
IONAAvgResponseTime 44, 52, 54, 55, 56
IONA_km.tgz 50
IONA_km.zip 46, 50
IONAMaxResponseTime 44, 52, 54
IONAMinResponseTime 44, 52, 54

IONANumInvocations 44, 52, 53, 54
IONA_OPERATIONPROVIDER 42, 51
IONAOpsPerHour 44, 52, 54
IONA_SERVER.kml 51
IONA_Server_KM_Agent_Resources.pkg 61
IONA_Server_KM_Console_Resources.pkg 61
IONA_SERVERPROVIDER 42, 51, 52
IP address 97
ipaddress 31
IT_BUS 74
IT_BUS.CORE 74
it_bus_management_monitoring.jar 117
it_response_time_collector 60

J
J2EE Connector 116, 119
J2SE 5.0 Monitoring and Management Console 85
Java, requirements 51
Java handlers 96, 106
Java Management Extensions 27, 51
java_plugins 106
JAX-RPC configuration 60
JConsole 56, 85

Connect to Agent 85
JMX 27, 51
JMX HTTP adaptor 60
JMX Remote 31
JMXServiceURL 52

K
KMDS 61
Knowledge Module Distribution Service 61
Knowledge Modules 44

L
Load KMs dialog 51
local_log_stream 19
locator

managed attributes 44
log file interpreter 41
logging 124

levels 35
subsystems 35

logging levels 74
logging period 53
logging policies 34
LOG_INFO_LOW 74, 76
Log Levels 57
64

INDEX
LOG_WARN 77

M
Main Map 51, 57
Managed Beans 18, 28
managed node 104
managed node, configuration 104
management consoles 55
MBeans 18, 28, 68
MBeanServer 28, 82
MBeanServerConnection 30
MBeans tab 86
MC4J 63
MC4J Connections 64
menu commands 41, 57
message handlers 96
Message Log 34
messageLogReader logLocation 29
messageLogWriter logLocation 29
messages 83
MonitorEnabler 28
monitoring 22
monitoring plug-in 106
My Wizard dialog 65

N
Nano Agent API 20
Network Overview 105, 109

O
operation

parameters 54
WSDL 53

operation name 97
Operations 74
ORB IDs 119
ORB names 119
orb_plugins 106, 60
Override All Instances checkbox 53

P
parameter collector 53
parameters 52, 54
PARENT_LAST 122
Path Explorer 111
Patrol Agents 61
PATROL Central 53

Patrol Developer Console 61
Performance 21
performance log files 46
performance logging

period 53
plugins 41

persistence endpoint 82
plugins:ap_nano_agent:hostname_address:local_hos

tname 32
plugins:ap_nano_agent:hostname_address:publish_

hostname 31
plugins:artix:db

home 84
plugins:bus:register_client_context 32
plugins:bus_management:connector:enabled 52,

84
plugins:bus_management:connector:port 84
plugins:bus_management:connector:registry:require

d 53
plugins:bus_management:connector:url:file 53, 84
plugins:bus_management:connector:url:publish 53
plugins:bus_management:enabled 52, 84
plugins:bus_management:http_adaptor:enabled 60
plugins:bus_management:http_adaptor:port 60
plugins:it_response_time_collector:filename 60
plugins:it_response_time_collector:period 60
plugins:monitoring_plugin:classname 106
plugins:monitoring_plugin:enable_si_payload 107
plugins:monitoring_plugin:know_report_tool 107
plugins:monitoring_plugin:max_reported_payload_si

ze 107
plugins:monitoring_plugin:show_service_facade 10

8
plugins:routing:use_pass_through 31
policies:at_http:server_address_mode_policy:publish

_hostname 32
policies:soap:server_address_mode_policy:publish_h

ostname 32
Policy Status 28
port 26

name 47
ObjectName 47

port, WSDL 53
port name 82, 97
ports 40
Preview Services 28
Process Definition 124
Properties 53
Properties menu 53
65

INDEX
provisioning 105
proxy agent 14

R
Register 28
registeredEndpoints 44, 46
registeredNodeErrors 44
registeredServices 44, 46
Register Message Source 28
relational database 26
remote access port 53
remote JMX clients 52
reporting 20
requestsOneway 41
requestsSinceLastCheck 41
requestsTotal 41
resource adapter archive 116
response time 94
response times 24, 39
Restart 57
RMEndpointPersistentStore 82
RMI Connector 52
RMSequencePersistentStore 82
router 21, 31
runtime MBeans 30

S
scope 34
Selector 33
sequence_guid 88
sequence ID 88
sequence id 83
server_commands.txt 47, 62
server parameters 52
servers.conf 46, 62
service

attributes 40
managed components 39
methods 42
name 40
ObjectName 40

service consumer 98, 19
serviceCounters 40, 69
service endpoint 98, 19
service facade 108, 112
serviceGroups 46
Service Level Agreements 22, 34
serviceLookupErrors 44

serviceLookups 44
service name 82, 97
services 34
serviceSessions 46
servicesMonitoring 34
session manager

managed attributes 46
setLoggingLevel 35, 77
setLoggingLevelPropagate 35
Set to Debug 57
Set to Error 57
Set to Info 57
Shared Libraries 120
Simple Message Source 28
SLAs 22, 34
SOA management 14
SOAP/HTTP 15
SOAP over HTTP 102
SOAP over JMS 102
Start 57
start_mc4j 63
state 40
Stop 57
System Output Window 57

T
TabularData 48
timeSinceLastCheck 41
Tomcat 96, 26
totalErrors 41
transport 48
troubleshooting 57

U
UNIX 50
unqualified 31
useFQN 33
useIpAddr 33
use_performance_logging 60

W
WAR Classloader Policy 122
warnings 56
WebSphere 116, 119, 125
Windows 50
WSDL

operation 53
port 53
66

INDEX
WS-RM persistence 82 X
xmlfile_log_stream 19
67

INDEX
68

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Documentation Library

	Introduction
	Artix C++ Runtime Management
	Introduction to Artix C++ Management
	Artix C++ Management Integrations

	Java Management Extensions
	Monitoring and Managing with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Managed Port Components

	Configuring JMX in Artix C++
	Artix JMX Configuration

	Managing Artix Services with JMX Consoles
	Managing Artix Services with JConsole
	Managing Artix Services with the JMX HTTP adaptor
	Managing Artix Services with MC4J

	Managing WS-RM Persistence with JMX
	WS-RM Persistence Management
	Viewing Messages in the WS-RM Persistence Database

	Progress Actional
	Artix-Actional Integration
	Artix-Actional Interaction Architecture

	Configuring Artix- Actional Integration
	Prerequisites
	Configuring Actional for Artix Integration
	Configuring Artix Java Services for Actional Integration
	Viewing Artix Endpoints in Actional

	Artix-Actional Deployment Scenarios
	Deployment with IBM WebSphere and J2EE Connector
	Native Deployment with IBM WebSphere

	AmberPoint
	Integrating with AmberPoint
	AmberPoint Proxy Agent
	Artix AmberPoint Agent

	Configuring the Artix AmberPoint Agent
	Installing AmberPoint
	Configuring AmberPoint for Artix Integration
	Configuring Artix C++ Services for AmberPoint Integration

	BMC Patrol
	Integrating with BMC Patrol™
	Introduction
	The Artix BMC Patrol Integration

	Configuring Artix for BMC Patrol
	Setting up your Artix Environment

	Using the Artix BMC Patrol Integration
	Setting up your BMC Patrol Environment
	Using the Artix Knowledge Module

	Extending to a BMC Production Environment
	Configuring an Artix Production Environment

	Index

