
Artix ESB®

Configuring and Deploying
Artix Solutions, C++ Runtime

Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: December 9, 2008

Contents

List of Tables 7

List of Figures 9

Preface 11
What is Covered in this Book 11
Who Should Read this Book 11
How to Use this Book 12
The Artix Documentation Library 13

Part I Configuring Artix

Chapter 1 Getting Started 17
Setting your Artix Environment 18
Artix Environment Variables 21
Customizing your Environment Script 24

Chapter 2 Artix Configuration 27
Artix Configuration Concepts 28
Configuration Data Types 32
Artix Configuration Domain Files 33
Command-Line Configuration 37

Chapter 3 Artix Logging 41
Configuring Artix Logging 42
Logging for Subsystems and Services 49
Dynamic Artix Logging 58
Configuring Message Snoop 62
Configuring Log4J Logging 64
Configuring SNMP Logging 67
3

CONTENTS
Chapter 4 Enterprise Performance Logging 73
Enterprise Management Integration 74
Configuring Performance Logging 76
Performance Logging Message Formats 80
Remote Performance Logging 83
Configuring Remote Performance Logging 86

Chapter 5 Using Artix with International Codesets 91
Introduction to International Codesets 92
Working with Codesets using SOAP 95
Working with Codesets using CORBA 96
Working with Codesets using Fixed Length Records 99
Working with Codesets using Message Interceptors 102
Routing with International Codesets 111

Part II Deploying Artix Services

Chapter 6 Deploying Services in an Artix Container 117
Introduction to the Artix Container 118
Generating a Plug-in and Deployment Descriptor 123
Running an Artix Container Server 128
Running an Artix Container Administration Client 132
Deploying Services on Restart 137
Running an Artix Container as a Windows Service 141
Debugging Plug-ins Deployed in a Container 146

Chapter 7 Deploying an Artix Transformer 151
The Artix Transformer 152
Standalone Deployment 155
Deployment as Part of a Chain 158
Optional Configuration 161

Chapter 8 Deploying a Service Chain 163
The Artix Chain Builder 164
Configuring the Artix Chain Builder 166
4

CONTENTS
Chapter 9 Deploying High Availability 171
Introduction 172
Setting up a Persistent Database 175
Configuring Persistent Services for High Availability 176
Configuring Locator High Availability 180
Configuring Client-Side High Availability 183

Chapter 10 Deploying WS-Reliable Messaging 191
Introduction 192
Enabling WS-RM 195
Configuring WS-RM Attributes 197
Configuring WS-RM Threading 205
Configuring WS-RM Persistence 207

Part III Accessing Artix Services

Chapter 11 Configuring WS-Addressing 211
Introduction 212
Configuring a WS-A Message Exchange Pattern 215

Chapter 12 Publishing WSDL Contracts 219
Artix WSDL Publishing Service 220
Configuring the WSDL Publishing Service 222
Querying the WSDL Publishing Service 226

Chapter 13 Accessing Contracts and References 231
Introduction 232
Enabling Server and Client Applications 235
Accessing WSDL Contracts 239
Accessing Endpoint References 245
Accessing Artix Services 251

Chapter 14 Accessing Services with UDDI 253
Introduction to UDDI 254
Configuring UDDI Proxy 257
5

CONTENTS
Configuring a jUDDI Repository 258

Chapter 15 Embedding Artix in a BEA Tuxedo Container 259
Embedding an Artix Process in a Tuxedo Container 260

Index 263
6

List of Tables

Table 1: Options to artix_env Script 19

Table 2: Artix Environment Variables 21

Table 3: Artix Logging Severity Levels 44

Table 4: Artix Logging Subsystems 49

Table 5: ART Core Logging Subsystems 53

Table 6: Performance Logging Plug-in 76

Table 7: Artix log message arguments 80

Table 8: Orbix log message arguments 81

Table 9: Simple life cycle message formats arguments 82

Table 10: IANA Charset Names 93

Table 11: Configuration Variables for CORBA Native Codeset 96

Table 12: Configuration Variables for CORBA Conversion Codesets 97

Table 13: Required Arguments to wsdd 126

Table 14: Optional Arguments to wsdd 126

Table 15: Artix Endpoint Configuration 155

Table 16: Artix Service Configuration 167

Table 17: Configuration for Hosting the Artix Chain Builder 169
7

LIST OF TABLES
 8

List of Figures

Figure 1: Overview of an Artix and IBM Tivoli Integration 75

Figure 2: Remote Logging Framework 84

Figure 3: Routing Internationalized Requests 112

Figure 4: Artix Container Architecture 119

Figure 5: Installed Windows Service 144

Figure 6: Service Properties 145

Figure 7: Project Settings in Visual C++ 146

Figure 8: Visual C++ Debug Exception 147

Figure 9: Eclipse Debug Screen 149

Figure 10: Artix Transformer Deployed as a Servant 153

Figure 11: Artix Transformer Loaded by a Client 153

Figure 12: Artix Transformer Deployed with the Chain Builder 154

Figure 13: Chaining Four Servers to Form a Single Service 164

Figure 14: Artix Master Slave Replication 172

Figure 15: Web Services Reliable Messaging 192

Figure 16: Creating References with the WSDL Publishing Service 221
9

LIST OF FIGURES
 10

Preface
What is Covered in this Book
Configuring and Deploying Artix Solutions, C++ Runtime explains how to
configure and deploy and Artix services in a C++ environment. This book
also applies to systems using the Artix Java API for XML-Based Remote
Procedure Call (JAX-RPC). It provides detailed descriptions of the specific
tasks involved in configuring and launching Artix applications and services.

For details of using Artix in a pure Java environment, see Configuring and
Deploying Artix Solutions, Java Runtime. This book applies to systems that
use the Artix Java API for XML-Based Web Services (JAX-WS).

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. Any discussion about the
features of specific middleware products or transports relates to how Artix
interacts with these features. It is assumed that you have a working
knowledge of the specific middleware products and transports you are
using.

Who Should Read this Book
The main audience of Configuring and Deploying Artix Solutions, C++
Runtime is Artix system administrators. However, anyone involved in
designing a large scale Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.
11

../../deploy/java/index.htm
../../deploy/java/index.htm

PREFACE

How to Use this Book
Part I, Configuring Artix

This part includes the following:

• Chapter 1 describes how to set an Artix system environment using the
artix_env script.

• Chapter 2 describes Artix configuration concepts such as configuration
scopes, namespaces, and variables. It also explains how to use
configuration files and commands to deploy your applications.

• Chapter 3 explains how to configure Artix logging. It also explains Artix
support for Java log4j and SNMP (Simple Network Management
Protocol).

• Chapter 4 explains how to configure integration with third-party
Enterprise Management Systems (EMS), such as IBM Tivoli and BMC
Patrol.

• Chapter 5 explains how to configure Artix support for
internationalization.

Part II, Deploying Artix Services

If you are deploying Artix services, you may want to read one or more of the
following:

• Chapter 6 explains how to use the Artix container to deploy and
manage Artix Web services.

• Chapter 7 explains how to deploy the Artix transformer service.

• Chapter 8 explains how to deploy an Artix service chain.

• Chapter 9 explains how to deploy Artix high availability (for example,
server-side replication and client-side failover).

• Chapter 10 explains how to deploy WS-Reliable Messaging in Artix.

Note: When deploying Artix in a distributed architecture with other
middleware, please see the documentation for that middleware product.
You may require access to an administrator. For example, a Tuxedo
administrator is required to complete a Tuxedo distributed architecture.
 12

PREFACE
Part III, Accessing Artix Services

This part describes several different ways to access Artix services:

• Chapter 11 explains how to configure WS-Addressing Message
Exchange Patterns in Artix.

• Chapter 12 explains how to use the Artix WSDL Publishing service to
to publish WSDL contracts.

• Chapter 13 explains how to use Artix configuration to access Artix
WSDL contracts and endpoint references.

• Chapter 14 explains how to use Universal Description, Discovery and
Integration (UDDI) with Artix.

• Chapter 15 describes how to deploy Artix into a BEA Tuxedo
environment.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
13

../../library_intro/index.htm
../../library_intro/index.htm

PREFACE
 14

Part I
Configuring Artix

In this part This part contains the following chapters:

Getting Started page 17

Artix Configuration page 27

Artix Logging page 41

Enterprise Performance Logging page 73

Using Artix with International Codesets page 91
15

16

CHAPTER 1

Getting Started
This chapter explains how to set up an Artix C++ runtime
environment. It also applies to systems based on JAX-RPC.

In this chapter This chapter discusses the following topics:

Setting your Artix Environment page 18

Artix Environment Variables page 21

Customizing your Environment Script page 24
17

CHAPTER 1 | Getting Started
Setting your Artix Environment

Overview To use the Artix tools and runtime environment, the host computer must
have several Artix-specific environment variables set. These variables can be
configured during installation, or later using the artix_env script, or
configured manually. This section shows how to run the artix_env script
and explains the available options.

Running the artix_env script The Artix installation process creates a script named artix_env, which
captures the information required to set your host’s environment variables.
Running this script configures your system to use Artix. The script is located
in the following directory:

IT_PRODUCT_DIR\cxx_java\bin
18

Setting your Artix Environment
Command-line arguments

The artix_env script takes the following optional arguments:

Table 1: Options to artix_env Script

Option Description

-compiler Specifies the C++ compiler version for your operating
system (for example, on Windows, use -compiler
vc60 to specify Microsoft Visual C++ 6.0).

The -compiler option includes the following
parameters:

Windows
• vc60—specifies Microsoft Visual C++ 6.0

(Visual Studio .NET 2003). The default is
Microsoft Visual C++ 7.1.

• vc71—resets to Microsoft Visual C++ 7.1.

• vc80—specifies Microsoft Visual C++ 8.0. The
default is Microsoft Visual C++ 7.1.

Linux

• gcc34—specifies GNU Compiler Collection (GCC)
3.4. The default is GCC 3.2.

• gcc32—resets to GCC 3.2.

AIX

• xlc70—specifies XL C/C++ 7.0. The default is
XL C/C++ 6.0.

• xlc60—resets to XL C/C++ 6.0.

HP-UX

• acca0331cios—specifies the Classic C++
runtime. The default is Standard C++ runtime.

• acca0331—resets to Standard C++ runtime.
19

CHAPTER 1 | Getting Started
-preserve Preserves the settings of any environment variables
that have already been set. When this argument is
specified, artix_env does not overwrite the values of
variables that are already set. This option applies to
the following environment variables:

• IT_PRODUCT_DIR

• IT_LICENSE_FILE

• IT_CONFIG_DIR

• IT_CONFIG_DOMAINS_DIR

• IT_DOMAIN_NAME

• IT_ART_ADMIN_PATH

• IT_IDL_CONFIG_FILE

• CLASSPATH

• PATH

• LIBPATH (AIX)

• LD_LIBRARY_PATH (Solaris, Linux)

• LD_PRELOAD (Linux)

• SHLIB_PATH (HP-UX)

For more detailed information, see “Artix Environment
Variables” on page 21.

Note: Before using the -preserve option, always
ensure that the existing environment variable values
are set correctly.

-verbose artix_env outputs an audit trail of all its actions to
stdout.

Table 1: Options to artix_env Script

Option Description
20

Artix Environment Variables
Artix Environment Variables

Overview This section describes the following environment variables in more detail:

• JAVA_HOME

• IT_PRODUCT_DIR

• IT_LICENSE_FILE

• IT_CONFIG_DIR

• IT_CONFIG_DOMAINS_DIR

• IT_DOMAIN_NAME

• IT_IDL_CONFIG_FILE

• IT_WSDLGEN_CONFIG_FILE

• IT_ART_ADMIN_PATH

• PATH

The environment variables are explained in Table 2:

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided artix_env script.

Table 2: Artix Environment Variables

Variable Description

JAVA_HOME The directory path to your system’s JDK is specified with the
system environment variable JAVA_HOME. This must be set to
use the Artix Designer GUI.

This defaults to the JVM installed with Artix
(IT_PRODUCT_DIR\jre). The Artix installer also enables you to
specify a previously installed JVM.
21

CHAPTER 1 | Getting Started
IT_PRODUCT_DIR IT_PRODUCT_DIR points to the top level of your product
installation. For example, on Windows, if you install Artix into
the C:\Artix directory, IT_PRODUCT_DIR should be set to that
directory.

Note: If you have other IONA products installed and you
choose not to install them into the same directory tree, you
must reset IT_PRODUCT_DIR each time you switch IONA
products.

You can override this variable using the -BUSproduct_dir
command-line parameter when running Artix applications.

IT_LICENSE_FILE IT_LICENSE_FILE specifies the location of your Artix license
file. The default value is IT_PRODUCT_DIR\etc\licenses.txt.

You can override this variable using the -BUSlicense_file
command-line parameter when running Artix applications.

IT_CONFIG_DIR IT_CONFIG_DIR specifies the root configuration directory. The
default root configuration directory on UNIX is
/etc/opt/iona, and IT_PRODUCT_DIR\cxx_java\etc on
Windows.

You can override this variable using the -BUSconfig_dir
command-line parameter when running Artix applications.

IT_CONFIG_DOMAINS_DIR IT_CONFIG_DOMAINS_DIR specifies the directory where Artix
searches for its configuration files. The configuration domain’s
directory defaults to IT_CONFIG_DIR\domains.

You can override it using the -BUSconfig_domains_dir
command-line parameter when running Artix applications.

IT_DOMAIN_NAME IT_DOMAIN_NAME specifies the name of the configuration
domain used by Artix to locate its C++ configuration. This
variable also specifies the name of the file in which the
configuration is stored. For example, the artix domain is
stored in IT_CONFIG_DIR\domains\artix.cfg.

You can override this variable with the -BUSdomain_name
command-line parameter when running Artix applications.

Table 2: Artix Environment Variables

Variable Description
22

Artix Environment Variables
IT_IDL_CONFIG_FILE IT_IDL_CONFIG_FILE specifies the configuration used by the
Artix IDL compiler. If this variable is not set, you will be
unable to run the IDL to WSDL tools provided with Artix. This
variable is required for an Artix development installation.The
default location is:

IT_PRODUCT_DIR\cxx_java\etc\idl.cfg

Note: Do not modify the default IDL configuration file.

IT_WSDLGEN_CONFIG_FILE IT_WSDLGEN_CONFIG_FILE specifies the location of the
WSDLGen configuration file. WSDLGen is a tool used to
generate C++ and JAX-RPC code from WSDL. The default
location of the WSDLGen configuration file is:

IT_PRODUCT_DIR\tools\etc\wsdlgen.cfg

This file is used to specify the location of templates used for
C++ and JAX-RPC code generation.

IT_ART_ADMIN_PATH IT_ART_ADMIN_PATH specifies the location of an internal
configuration script used by administration tools. Defaults to
IT_CONFIG_DIR\admin.

PATH The Artix bin directories are prepended on the PATH to ensure
that the proper libraries, configuration files, and utility
programs (for example, the IDL compiler) are used. These
settings avoid problems that might otherwise occur if Orbix
and/or Tuxedo (both include IDL compilers and CORBA class
libraries) are installed on the same host computer.

The default Artix bin directory is:

UNIX

$IT_PRODUCT_DIR/cxx_java/bin

Windows

%IT_PRODUCT_DIR%\cxx_java\bin
%IT_PRODUCT_DIR%\bin

Table 2: Artix Environment Variables

Variable Description
23

CHAPTER 1 | Getting Started
Customizing your Environment Script

Overview The artix_env script sets the Artix environment variables using values
obtained from the Artix installer and from the script’s command-line options.
The script checks each one of these settings in sequence, and updates
them, where appropriate.

The artix_env script is designed to suit most needs. However, if you want
to customize it for your own purposes, please note the following points in
this section.

Before you begin You can only run the artix_env script once in any console session. If you
run this script a second time, it exits without completing. This prevents your
environment from becoming bloated with duplicate information (for
example, on your PATH and CLASSPATH).

In addition, if you introduce any errors when customizing the artix_env
script, it also exits without completing. This feature is controlled by the
IT_ARTIXENV variable, which is local to the artix_env script. IT_ARTIXENV is
set to true the first time you run the script in a console; this causes the
script to exit when run again.

Environment variables The following applies to the environment variables set by the artix_env
script:

• The JAVA_HOME environment variable defaults to the value obtained
from the Artix installer. If you do not manually set this variable before
running artix_env, it takes its value from the installer. The default
location for the JRE supplied with Artix is IT_PRODUCT_DIR\jre.
24

Customizing your Environment Script
• The following environment variables are all set with default values
relative to IT_PRODUCT_DIR:
♦ JAVA_HOME

♦ IT_CONFIG_FILE

♦ IT_IDL_CONFIG_FILE

♦ IT_CONFIG_DIR

♦ IT_CONFIG_DOMAINS_DIR

♦ IT_LICENSE_FILE

♦ IT_ART_ADMIN_PATH

If you do not set these variables manually, artix_env sets them with
default values based on IT_PRODUCT_DIR. For example, the default for
IT_CONFIG_DIR on Windows is IT_PRODUCT_DIR\etc.

• The IT_IDL_CONFIG_FILE environment variable is a required only for an
Artix Development installation. All other environment variables are
required for both Development and Runtime installations.

• Before artix_env sets each environment variable, it checks if the
-preserve command-line option was supplied when the script was
run. This ensures that your preset values are not overwritten. Before
using the -preserve option, always check the existing values for these
variables are set correctly.
25

CHAPTER 1 | Getting Started
26

CHAPTER 2

Artix Configuration
This chapter introduces the main concepts and components
in the Artix C++ runtime configuration (for example,
configuration domains, scopes, variables, and data types). It
also explains how to use Artix configuration files and
commands to manage your applications.

In this chapter This chapter includes the following sections:

Artix Configuration Concepts page 28

Configuration Data Types page 32

Artix Configuration Domain Files page 33

Command-Line Configuration page 37
27

CHAPTER 2 | Artix Configuration
Artix Configuration Concepts

Overview The Artix C++ runtime is built upon IONA’s Adaptive Runtime architecture
(ART). This can be used with both C++ and JAX-RPC applications.

Runtime behavior is established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code can be run, and can exhibit different
capabilities, in different configuration environments. This section includes
the following:

• Configuration domains.

• Configuration scopes.

• Specifying configuration scopes.

• Configuration namespaces.

• Configuration variables.

Configuration domains An Artix configuration domain is a collection of configuration information in
an Artix C++ runtime environment. This information consists of
configuration variables and their values. A default Artix configuration is
provided when Artix is installed. The default Artix configuration domain file
has the following location:

The contents of this file can be modified to affect aspects of Artix behavior
(for example, logging or routing).

Configuration scopes An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to bus names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Windows %IT_PRODUCT_DIR%\cxx_java\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/cxx_java/etc/domains/artix.cfg
28

Artix Configuration Concepts
Local configuration scopes

Configuration scopes apply to a subset of services or to a specific service in
an environment. For example, the Artix demo configuration scope includes
example local configuration scopes for demo applications.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
scopeNameTag {�};

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "G2", "tunnel",
 "mq", "ws_orb", "fml"];
 };
 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop�, "iiop�, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunnel";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop�, "ots", "soap", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
29

CHAPTER 2 | Artix Configuration
Specifying configuration scopes To make an Artix process run under a particular configuration scope, you
specify that scope using the -BUSname parameter. Configuration scope
names are specified using the following format

scope.subscope

For example, the scope for the telco server demo shown in Example 1 is
specified as demo.telco.server. During process initialization, Artix
searches for a configuration scope with the same name as the -BUSname
parameter.

There are two ways of supplying the -BUSname parameter to an Artix
process:

• Pass the argument on the command line.

• Specify the -BUSname as the third parameter to IT_Bus::init().

For example, to start an Artix process using the configuration specified in the
demo.tibrv scope, you can start the process using the following syntax:

Alternately, you can use the following code to initialize the Artix bus:

 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};

Note: The orb_plugins list is redefined within each configuration scope.

Example 1: Demo Configuration Scope

processName [application parameters] -BUSname demo.tibrv

IT_Bus::init (argc, argv, �demo.tibrv�);
30

Artix Configuration Concepts
If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the -BUSname parameter, the Artix process runs under the
default global scope. For example, if the nested tibrv scope does not exist,
the Artix process uses the configuration specified in the demo scope; if the
demo scope does not exist, the process runs under the default global scope.

Configuration namespaces Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

To set the location of the routing plug-in’s contract, set the following
variable:

Configuration variables Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb_plugins variable would override a
company.orb_plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

Further information For detailed information on Artix configuration namespaces and variables,
see the Artix Configuration Reference.

plugins:artix_service:iiop:port

plugins:routing:wsdl_url
31

../../config_ref/cpp/index.htm

CHAPTER 2 | Artix Configuration
Configuration Data Types

Overview Each Artix configuration variable has an associated data type that
determines the variable’s value.

Data types can be categorized as follows:

• Primitive types

• Constructed types

Primitive types Artix supports the following three primitive types:

• boolean
• double
• long

Constructed types Artix supports two constructed types: string and ConfigList (a sequence
of strings).

• In an Artix configuration domain file (.cfg), the string character set is
ASCII.

• The ConfigList type is simply a sequence of string types. For
example:

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];
32

Artix Configuration Domain Files
Artix Configuration Domain Files

Overview This section explains how to use Artix configuration domain files to manage
applications in your environment. These files use the .cfg extension. This
section includes the following:

• “Default configuration file”.

• “Importing configuration settings”.

• “Working with multiple installations”.

• “Using symbols as configuration file parameters”.

Default configuration file The Artix configuration domain file contains all the configuration settings for
the domain. The default configuration domain file is found in the following
location:

You can edit the settings in an Artix configuration domain file to modify
different aspects of Artix behavior (for example, routing, or levels of logging).

Importing configuration settings You can manually create new Artix configuration domain files to
compartmentalize your applications. These new configuration domain files
can import information from other configuration domains using an include
statement in your configuration file.

This provides a convenient way of compartmentalizing your
application-specific configuration from the global ART configuration
information that is contained in the default configuration domain file. It also
means that you can easily revert to the default settings in the default Artix
configuration domain file. Using separate application-specific configuration
files is the recommended way of working with Artix configuration.

Windows %IT_PRODUCT_DIR%\cxx_java\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/cxx_java/etc/domains/artix.cfg
33

CHAPTER 2 | Artix Configuration
Example 2 shows an include statement that imports the default
configuration file. The include statement is typically the first line the
configuration file.

For complete working examples of Artix applications that use this import
mechanism, see the configuration files provided with Artix demos. These
demo applications are available from the following directory:

ArtixInstallDir\cxx_java\samples

Working with multiple
installations

If you are using multiple installations or versions of Artix, you can use your
configuration files to help manage your applications as follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the artix.cfg file from whichever Artix release you want to use
into another directory (for example, an application directory).

4. In your application’s local configuration file, include the artix.cfg file
from your copy location.

This enables you to switch between Artix versions by copying the
corresponding artix.cfg file into a common location. This avoids having to
update the directory information in your configuration file whenever you
want to switch between Artix versions.

Example 2: Configuration file include statement

include "../../../../../etc/domains/artix.cfg";

my_app_config {
...
}

34

Artix Configuration Domain Files
Using symbols as configuration
file parameters

You can define arbitrary symbols for use in Artix .cfg files, for example:

These symbols can then be reused as parameters in configuration settings,
for example:

You can use configuration symbols to customize your file depending on the
environment. This enables you to use the same basic configuration file in
different environments (for example, development, test, and production).

Using configuration symbols in a string

You can use symbols within a string using a syntax of %{SYMBOL_NAME}. For
example, if you define the following symbol:

This can be used within a string as follows:

You can also combine multiple symbols within a string as follows:

Configuration example

The configuration file in Example 3 contains some user-defined symbols:

SERVER_LOG = "my_server_log";

plugins:local_log_stream:filename = SERVER_LOG;

LOG_LEVEL = "FATAL+ERROR+WARNING+INFO_MED+INFO_HI";

event_log:filters = ["*=%{LOG_LEVEL}"];

plugins:local_log_stream:filename = "%{APP_NAME}-%{CLIENT_LOG}";

Example 3: Defining Configuration Symbols

#mydomain.cfg

INSTALL_CFG = "../../artix.cfg";

CLIENT_LOG = "my_client.log";
SERVER_LOG = "my_server.log";
APP_NAME = "myapp";
LOG_LEVEL = "FATAL+ERROR+WARNING+INFO_MED+INFO_HI";

include "template.cfg";
35

CHAPTER 2 | Artix Configuration
The configuration file in Example 4 uses the predefined symbols in
configuration variable settings:

This example shows a user-defined symbol in an include statement. It
shows a simple example of using a symbol in an configuration setting, and
more complex examples of using symbols in strings.

For details of using configuration symbols on the command line, see
“Command-Line Configuration” on page 37.

Example 4: Using Configuration Symbols

#template.cfg

include INSTALL_CFG

myapps {
 orb_plugins = ["local_log_stream", "soap", "http"];

 server {
 #Simple user-defined symbol.
 plugins:local_log_stream:filename = SERVER_LOG;

 #Using a symbol within a string.
 event_log:filters = ["*=%{LOG_LEVEL}"];
 }

 client {
 #Combining symbols within a string.
 plugins:local_log_stream:filename = "%{APP_NAME}-%{CLIENT_LOG}";
 };
};
36

Command-Line Configuration
Command-Line Configuration

Overview This section explains how to configure the following options on the
command line:

• Configuration variables

• Configuration scopes

• User-defined configuration symbols

• Environment variables

• Location of WSDL and references

• Multiple bus instances

Setting configuration variables Artix enables you to override configuration variables at runtime by using
arguments on the command line. These arguments are then passed to the
Artix IT_Bus::init() call. Setting configuration variables on the command
line takes precedence over variables in a configuration file.

Command-line arguments for configuration variables take the following
format:

For example:

For detailed information on Artix configuration variable settings, see the Artix
Configuration Reference.

-BUSCONFIG_VariableName Value

client -BUSCONFIG_plugins:local_log_stream:filename client.log
-BUSCONFIG_orb_plugins ["local_log_stream","soap","http"]
-BUSCONFIG_event_log:filters ["*=*"]
37

../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm

CHAPTER 2 | Artix Configuration
Setting configuration scopes You can specify configuration scopes when starting an application on the
command line using the -BUSname argument.

For example, to start a process using the configuration specified in the
demo.myapp scope, you would start the process with the following syntax:

For more details, see “Specifying configuration scopes” on page 30.

Setting configuration symbols You can also override user-defined configuration symbols on the command
line. Setting configuration symbols on the command line takes precedence
over symbols in a configuration file.

For example, you can override the log file name in Example 3 on page 35
using command-line arguments as follows:

This successfully creates a log file named test2.logdate. For more details,
see “Using symbols as configuration file parameters” on page 35.

Setting environment variables You can use command-line arguments to pass the value of environment
variables to configuration files.

For example, you can specify the directory where Artix searches for its
configuration files using the -BUSconfig_domains_dir argument. For more
details on Artix environment variables, see Chapter 1.

Specifying locations of WSDL and
references

You can specify the location of WSDL contracts and Artix references using
the following command-line arguments:

For example:

For more details, see Chapter 13.

ProcessName [application parameters] -BUSname demo.myapp

client -BUSCONFIG_CLIENT_LOG test2.log

-BUSservice_contract URL
-BUSservice_contract_dir Directory
-BUSinitial_reference url

./server -BUSservice_contract ../../etc/hello.wsdl
38

Command-Line Configuration
Specifying multiple bus instances
in a JVM

You can use the -ORBId command-line parameter to specify multiple bus
instances in same Java Virtual Machine (JVM)—for example in an
application server or an Apache Tomcat servlet engine.

By default, Artix creates a single bus instance per JVM. This means that if
you deploy multiple Artix services into a single servlet container, application
server, Artix container or Artix server, all services use the same bus instance.
However, you can use the -ORBId command-line parameter to specify a
unique bus instance. This parameter is passed to the Bus.init() method
used to instantiate the service’s bus instance.

For example, the following command uses the -ORBId parameter to
associate a server with a specific bus instance:

If a bus instance with the specified ORB identifier exists, the JVM returns
that instance. If an appropriate bus instance does not exist in the JVM, a
new instance is created for the server.

You can also specify this programmatically using an -ORBId argument to
Bus.init() when creating a new bus instance for a service. For more
information, see Developing Artix Applications with JAX-RPC.

Note: You can not specify multiple bus instances in an Artix container.

java com.iona.demo.HelloWorldServer -ORBId HelloBus
39

../../jaxrpc_pguide/index.htm

CHAPTER 2 | Artix Configuration
40

CHAPTER 3

Artix Logging
This chapter describes how to configure Artix logging. It shows
how to configure logging for specific Artix subsystems and
services, how to control dynamic logging on the command line
and Artix message snoop. It also explains the Artix support for
Java log4j and the Simple Network Management Protocol.

In this chapter This chapter includes the following sections:

Configuring Artix Logging page 42

Logging for Subsystems and Services page 49

Dynamic Artix Logging page 58

Configuring Message Snoop page 62

Configuring Log4J Logging page 64

Configuring SNMP Logging page 67
41

CHAPTER 3 | Artix Logging
Configuring Artix Logging

Overview Logging in Artix is controlled by the event_log:filters configuration
variable, and by the log stream plug-ins (for example, local_log_stream
and xmlfile_log_stream). This section explains the following:

• “Configuring logging levels”.

• “Logging severity levels”.

• “Configuring logging output”.

• “Using a rolling log file”.

• “Buffering the output stream”.

• “Configuring HTTP trace logging”

• “Configuring precision logging”

• “Logging the thread ID”

Configuring logging levels You can set the event_log:filters configuration variable to provide a wide
range of logging levels. The event_log:filters variable can be set in your
Artix configuration domain file:

ArtixInstallDir\cxx_java\etc\domains\artix.cfg.

Displaying errors

The default event_log:filters setting displays errors only:

Displaying warnings

The following setting displays errors and warnings only:

Displaying request/reply messages

Adding INFO_MED causes all request/reply messages to be logged (for all
transport buffers):

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];
42

Configuring Artix Logging
Displaying trace output

The following setting displays typical trace statement output (without the
raw transport buffers):

Displaying all logging

The following setting displays all logging:

The default configuration settings enable logging of only serious errors and
warnings. For more exhaustive information, select a different filter list at the
default scope, or include a more expansive event_log:filters setting in
your configuration scope.

Logging severity levels Artix supports the following levels of log message severity:

• Information

• Warning

• Error

• Fatal error

Information

Information messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and details of
administrative actions.

Information messages provide a history of events that can be valuable in
diagnosing problems. Information messages can be set to low, medium, or
high verbosity.

Warning

Warning messages are generated when Artix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];

event_log:filters = ["*=*"];
43

CHAPTER 3 | Artix Logging
Error

Error messages are generated when Artix encounters an error. Artix might be
able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error

Fatal error messages are generated when Artix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
Artix cannot find its configuration file.

Table 3 shows the syntax used by the event_log:filters variable to specify
Artix logging severity levels.

Table 3: Artix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] Medium verbosity informational messages.

INFO_HI[GH] High verbosity informational messages.

INFO[_ALL] All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.
44

Configuring Artix Logging
Configuring logging output In addition to setting the event log filter, you must ensure that a log stream
plug-in is set in your artix.cfg file. These include the local_log_stream,
which sends logging to a text file, and the xmlfile_log_stream, which
directs logging to an XML file. The xmlfile_log_stream is set by default.

Using text log files

To configure the local_log_stream, set the following variables in your
configuration file:

If you do not specify a text log file name, logging is sent to stdout.

Using XML log files

To configure the xmlfile_log_stream, set the following variables in your
configuration file:

You must ensure that your application can detect the configuration settings
for the log stream plug-ins. You can either set them at the global scope, or
configure a unique scope for use by your application, for example:

IT_Bus::init(argc, argv, "demo.myscope");

This enables you to place the necessary configuration in the demo.myscope
scope.

//Ensure these plug-ins exist in your orb_plugins list
orb_plugins = ["local_log_stream", ...];

//Optional text filename
plugins:local_log_stream:filename = "/var/mylocal.log";

//Ensure this plug-in is in your orb_plugins list
orb_plugins = ["xmlfile_log_stream", ...];

// Optional filename; can be qualified.
plugins:xmlfile_log_stream:filename = "artix_logfile.xml";

// Optional process ID added to filename (default is false).
plugins:xmlfile_log_stream:use_pid = "false";

Note: The xmlfile_log_stream plug-in is included in the default
orb_plugins list, but not in the orb_plugins lists in some demo
configuration scopes. To enable logging to an XML file for the applications
that you develop, include this plug-in your orb_plugins list.
45

CHAPTER 3 | Artix Logging
Using a rolling log file By default, a logging plug-in creates a new log file each day to prevent the
log file from growing indefinitely. In this model, the log stream adds the
current date to the configured filename. This produces a complete filename,
for example:

A new log file begins with the first event of the day, and ends each day at
23:59:59.

Specifying the date format

You can configure the format of the date in the rolling log file, using the
following configuration variables:

• plugins:local_log_stream:filename_date_format
• plugins:xmlfile_log_stream:filename_date_format

The specified date must conform to the format rules of the ANSI C
strftime() function. For example, for a text log file, use the following
settings:

On the 31st January 2006, this results in a log file named
my_log_2006_01_31.

The equivalent settings for an XML log file are:

/var/adm/my_artix_log.01312006

plugins:local_log_stream:rolling_file="true";
plugins:local_log_stream:filename="my_log";
plugins:local_log_stream:filename_date_format="_%Y_%m_%d";

plugins:xmlfile_log_stream:rolling_file="true";
plugins:xmlfile_log_stream:filename="my_log";
plugins:xmlfile_log_stream:filename_date_format="_%Y_%m_%d";
46

Configuring Artix Logging
Disabling rolling log files

To disable rolling file behavior for a text log file, set the following variable to
false:

To disable rolling file behavior for an XML log file, set the following variable
to false:

Buffering the output stream You can also set the output stream to a buffer before it writes to a local log
file. To specify this behavior, use either of the following variables:

plugins:local_log_stream:buffer_file
plugins:xmlfile_log_stream:buffer_file

When set to true, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

For example, the following configuration writes the log output to a log file
every 400 milliseconds if there are more than 20 log messages in the buffer.

Using text log files

Using XML log files

plugins:local_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:rolling_file = "false";

Note: To ensure that the log buffer is sent to the log file, you must always
shutdown your applications correctly.

plugins:local_log_stream:filename = "/var/adm/artix.log";
plugins:local_log_stream:buffer_file = "true";
plugins:local_log_stream:milliseconds_to_log = "400";
plugins:local_log_stream:log_elements = "20";

plugins:xml_log_stream:filename = "/var/adm/artix.xml";
plugins:xml_log_stream:buffer_file = "true";
plugins:xml_log_stream:milliseconds_to_log = "400";
plugins:xml_log_stream:log_elements = "20";
47

CHAPTER 3 | Artix Logging
Configuring HTTP trace logging HTTP trace logging shows the full HTTP buffers (headers and body) as they
go to and from the wire. This feature is disabled by default. You can enable
HTTP-specific trace logging using the following setting:

You should also set log filtering as follows to pick up the HTTP additional
messages, and then resend the logs:

For example, you could enable HTTP trace logging to verify that basic
authentication headers are written to the wire correctly.

Similarly, to enable HTTPS-specific trace logging, use the following setting:

Configuring precision logging You can also specify whether events are logged with time precision in
nanoseconds, or at the granularity of seconds. By default, precision logging
is disabled, and Artix logs in seconds. To enable precision logging, use the
following setting:

Logging the thread ID You can also specify whether a thread ID is logged in the log message, for
example:

The default is false. When this setting has been enabled, the following
example logging message shows the thread ID in bold:

policies:http:trace_requests:enabled="true";

event_log:filters = ["IT_HTTP=*"];

policies:https:trace_requests:enabled="true";

plugins:local_log_stream:precision_logging = "true";

plugins:local_log_stream:log_thread_id = "true";

Wed, 26 Sep 2007 12:22:26.0000000 [homer600:6870:1269287216]
(IT_BUS.CORE:0) I - Registering Bus plugin SOAPServicePluginFactory
48

Logging for Subsystems and Services
Logging for Subsystems and Services

Overview You can use the event_log:filters configuration variable to set
fine-grained logging for specified Artix logging subsystems. For example, you
can set logging for the Artix core, specific transports, bindings, or services.
You can set logging for Artix services, such as the locator, and for services
that you have developed.

This section lists the Artix-specific logging subsystems and those for the
underlying Adaptive Runtime (ART) core, and shows examples of how to
use them.

=Artix logging subsystems Artix logging subsystems are organized into a hierarchical tree, with the
IT_BUS subsystem at the root. Example logging subsystems include:

Table 4 shows a list of available Artix logging subsystems.

IT_BUS.CORE
IT_BUS.TRANSPORT.HTTP
IT_BUS.BINDING.SOAP

Table 4: Artix Logging Subsystems

Subsystem Description

IT_BUS Artix bus

IT_BUS.BINDING All bindings

IT_BUS.BINDING.COLOC Collocated binding

IT_BUS.BINDING.CORBA CORBA binding

IT_BUS.BINDING.CORBA.CONTEXT CORBA context

IT_BUS.BINDING.FIXED Fixed binding

IT_BUS.BINDING.HTTP HTTP binding

IT_BUS.BINDING.SOAP SOAP binding

IT_BUS.BINDING.SOAP12 SOAP 1.2 binding
49

CHAPTER 3 | Artix Logging
IT_BUS.BINDING.SOAP_COMMON Common SOAP binding

IT_BUS.BINDING.TAGGED Tagged binding

IT_BUS.CORE Artix core

IT_BUS.CORE.CONFIG Artix core configuration

IT_BUS.CORE.CONTEXT Artix core contexts

IT_BUS.CORE.INITIAL_REFERENCE Artix initial references

IT_BUS.CORE.PLUGIN Artix plug-ins

IT_BUS.CORE.RESOURCE_RESOLVER Artix resource resolver

IT_BUS.FOUNDATION.AFC Artix Foundation Classes (Artix-specific data
type extensions)

IT_BUS.FOUNDATION.CONTEXT_LIBRARY Artix Foundation context library

IT_BUS.I18N.INTERCEPTOR Internationalization

IT_BUS.INTEGRATION.AP_NANO_AGENT AmberPoint SOA management agent

IT_BUS.INTEGRATION.CA_WSDM_OBSERVER CA Web Services Distributed Management
observer

IT_BUS.JNI.GENERIC_PLUGIN Java generic service

IT_BUS.JNI.JBUS Java Message Service

IT_BUS.JNI.JBUS.TRANSACTION JMS transactions

IT_BUS.JNI.JNI_UTIL Java utilities

IT_BUS.JNI.TRANSACTION Java transactions

IT_BUS.JVM_MANAGER JVM manager

IT_BUS.LOGGING Artix logging

IT_BUS.LOGGING.LOG4J Log4J logging

IT_BUS.LOGGING.RESPONSE_TIME Response time logging

Table 4: Artix Logging Subsystems

Subsystem Description
50

Logging for Subsystems and Services
IT_BUS.LOGGING.SNMP Simple Network Management Protocol
logging

IT_BUS.MANAGEMENT Artix management

IT_BUS.MESSAGING_PORT Artix messaging port

IT_BUS.SERVICE All Artix services.

IT_BUS.SERVICE.ACTIVATOR.REGISTRY Artix service activator registry

IT_BUS.SERVICE.CHAIN Artix chain service

IT_BUS.SERVICE.CONTAINER Artix container service

IT_BUS.SERVICE.DB Artix database wrapper (server-side high
availability based on Berkeley DB)

IT_BUS.SERVICE.DB.ENV Artix database environment

IT_BUS.SERVICE.DB.REPLICA.IMPL Artix database replication messages

IT_BUS.SERVICE.DB.REPLICA.MGR Artix database replication manager

IT_BUS.SERVICE.DB.REPLICA.MONITOR Artix database replication monitor

IT_BUS.SERVICE.DB.REPLICA.SYNC Artix database synchronization manager

IT_BUS.SERVICE.LOCATOR Artix locator service

IT_BUS.SERVICE.PEER_MANAGER Artix peer manager service

IT_BUS.SERVICE.ROUTING Artix router

IT_BUS.SERVICE.ROUTING.XPATH XPath routing expressions

IT_BUS.SERVICE.SECURITY Artix security service

IT_BUS.SERVICE.SECURITY.CERT_VALIDATOR Security certificate validator

IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.CLIENT Security login client

IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.SERVICE Security login service

IT_BUS.SERVICE.SECURITY.SECURITY_INTERCEPTOR Security interceptor

Table 4: Artix Logging Subsystems

Subsystem Description
51

CHAPTER 3 | Artix Logging
IT_BUS.SERVICE.SECURITY.WSS SOAP Partial Message Protection

IT_BUS.SERVICE.SESSION_MANAGER Artix session manager service

IT_BUS.SERVICE.WSDL_PUBLISH Artix WSDL publishing service

IT_BUS.SERVICE.XSLT Artix transformer service

IT_BUS.TRANSACTIONS Transactions

IT_BUS.TRANSACTIONS.OTS CORBA Object Transaction Service
transactions

IT_BUS.TRANSACTIONS.WSAT Web Services Atomic Transactions

IT_BUS.TRANSACTIONS.XA XA transactions

IT_BUS.TRANSPORT.HTTP HTTP transport

IT_BUS.TRANSPORT.MQ MQ transport

IT_BUS.TRANSPORT.STUB_TRANSPORT Artix simple stub transport

IT_BUS.TRANSPORT.TIBRV Tibco Rendezvous transport

IT_BUS.TRANSPORT.TUNNELL Tunnel transport

IT_BUS.TRANSPORT.TUXEDO Tuxedo transport

IT_BUS.VERSION Artix version

IT_BUS.WSRM Web Services Reliable Messaging

IT_BUS.WSRM_DB Web Services Reliable Messaging
persistence

IT_BUS.XA_SWITCH XA transactions switch

IT_WSRM Web Services Reliable Messaging

Note: This list may change in future releases.

Table 4: Artix Logging Subsystems

Subsystem Description
52

Logging for Subsystems and Services
ART core logging subsystems Table 4 shows a list of available logging subsystems for the underlying ART
core.

Table 5: ART Core Logging Subsystems

Subsystem Description

IT_ATLI2_IOP Abstract Transport Layer Interface,
version 2 with Inter-ORB Protocol

IT_ATLI2_IP Abstract Transport Layer Interface 2.0
with Internet Protocol

IT_ATLI2_IP_TUNNEL Abstract Transport Layer Interface,
with Internet Tunnel Protocol

IT_ATLI_TLS Abstract Transport Layer Interface
with Transport Security Layer

IT_COBOL_PLI Artix Mainframe only

IT_CODESET Internationalization

IT_CONNECTION_FILTER Connection filter

IT_CORE ART core

IT_CSI Common Secure Interoperability

IT_GSP CORBA binding security

IT_GenericSecurityToolkit Baltimore and z/OS SystemSLL toolkit

IT_GIOP General Inter-ORB Protocol

IT_HTTP Hypertext Transfer Protocol

IT_HTTPS HTTP with Secure Socket Layer

IT_IIOP Internet Inter-ORB Protocol

IT_IIOP_TLS Internet Inter-ORB Protocol with
Transport Layer Security

IT_LICENSING Licensing

IT_MESSAGING Messaging
53

CHAPTER 3 | Artix Logging
Subsystem filter syntax The event_log:filters variable takes a list of filters, where each filter sets
logging for a specified subsystem using the following format:

Subsystem is the name of the Artix subsystem that reports the messages;
while SeverityLevel represents the severity levels that are logged by that
subsystem. For example, the following filter specifies that only errors and
fatal errors for the HTTP transport should be reported:

IT_MGMT_LOGGING Management service

IT_OBJECT_KEY_REPLACER Object key replacer

IT_OTS Object Transaction Layer

IT_OTS_LITE Object Transaction Layer Lite

IT_POA Portable Object Adaptor

IT_POA_LOCATOR Portable Object Adaptor with locator

IT_REQUEST_LOGGER Request logger

IT_SCHANNEL Schannel security

IT_SECURITY Security

IT_TLS Transport Layer Security

IT_WORKQUEUE Multi-threading

IT_XA XA transactions

MESSAGE_SNOOP Message snooping.

Note: This list may change in future releases.

Table 5: ART Core Logging Subsystems

Subsystem Description

Subsystem=SeverityLevel[+SeverityLevel]...

IT_BUS.TRANSPORT.HTTP=ERR+FATAL
54

Logging for Subsystems and Services
In a configuration file, event_log:filters is set as follows:

The following entry in a configuration file explicitly sets severity levels for a
list of subsystem filters:

Setting the Artix bus pre-filter The Artix bus pre-filter provides filtering of log messages that are sent to the
EventLog before they are output to the LogStream. This enables you to
minimize the time spent generating log messages that will be ignored. For
example:

In this example, only WARNING, ERROR and FATAL priority log messages are
sent to the EventLog. This means that no processing time is wasted
generating strings for INFO log messages. The EventLog then only sends
FATAL and ERROR log messages to the LogStream for the IT_BUS subsystem.

Setting logging for specific
subsystems

You can set logging filters for specific Artix subsystems. A subsystem with
no configured filter value implicitly inherits the value of its parent. The
default value at the root of the tree ensures that each node has an implicit
filter value. For example:

This means that all subsystems under IT_BUS have a filter of FATAL+ERROR,
except for IT_BUS.BINDING.CORBA which has WARN+FATAL+ERROR.

event_log:filters=["LogFilter"[,"LogFilter"]...]

event_log:filters=["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";

event_log:filters = ["IT_BUS=FATAL+ERROR", "IT_BUS.BINDING=*"];

Note: event_log:filters:bus:pre_filter defaults to * (all messages).
Setting this variable to WARN+ERROR+FATAL improves performance
significantly.

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];
55

CHAPTER 3 | Artix Logging
Setting multiple subsystems with
a single filter

Using the IT_BUS subsystem means you can adjust the logging for Artix
subsytems with a single filter. For example, you can turn off logging for the
tunnel transport (IT_BUS.TRANSPORT.TUNNEL=FATAL) and/or turn up logging
for the HTTP transport (IT_BUS.TRANSPORT.HTTP=INFO_LOW+...), as show in
the following example:

Configuring service-based logging You can use Artix service subsystems to log for Artix services, such as the
locator, and also for services that you have developed. This can be useful
when you are running many services, and need to filter services that are
particularly noisy. Using service-based logging involves some performance
overheads and extra configuration. This feature is disabled by default.

To enable logging for specific services, perform the following steps:

1. Set the following configuration variables:

2. Set the event log filters as appropriate, for example:

Service name format

In these examples, the service name must be specified in the following
format:

"{NamespaceURI}LocalPart"

For example:

event_log:filters= ["IT_BUS=FATAL+ERROR",
 "IT_BUS.TRANSPORT.TUNNEL=FATAL",
 "IT_BUS.TRANSPORT.HTTP=INFO_LOW+INFO_HI+WARN"];

event_log:log_service_names:active = "true";
event_log:log_service_names:services = ["ServiceName1",

"ServiceName2"];

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "ServiceName1=WARN+ERROR+FATAL", "ServiceName2=ERROR+FATAL",
 "ServiceName2.IT_BUS.BINDING.CORBA=INFO+WARN+ERROR+FATAL"
];

"{http://www.my-company.com/bus/tests}SOAPHTTPService"
56

Logging for Subsystems and Services
Setting parameterized configuration

The following example shows setting service-based logging in your
application using the -BUSCONFIG_event_log:filters parameter:

Logging per bus For C++ applications, you can configure logging per bus by specifying your
logging configuration in an application-specific scope. However, you must
also specify logging per bus in your server code, for example:

• Include the following file:
ArtixInstallDir/cxx_java/include/it_bus/bus_logger.h

• Pass a valid bus to the BusLogger (for example, using BusLogger
macros, such as IT_INIT_BUS_LOGGER_MEM).

For full details on how to specify that logging statements are sent to a
particular Artix bus, see Developing Advanced Artix Plug-ins in C++.

Programmatic logging
configuration

C++ and JAX-RPC applications can use a logging API to query, add, or
cancel logging filters for subsystems, as well as adding and removing
services from per-service logging. For example, you can access a C++
IT_Bus::Logging::LoggingConfig class by calling
bus->get_pdk_bus()->get_logging_config().

For full details, see Developing Artix Applications in C++ or Developing
Artix Applications with JAX-RPC

const char* bus_argv[] = {"-BUSname", "my_spp_logging",
 "-BUSCONFIG_event_log:filters", "{IT_BUS=ERR},
 {{http://www.my-company/my_app}SOAPHTTPService.IT_BUS.BINDING.SOAP=INFO}"
57

../../plugin_guide/index.htm
../../prog_guide/index.htm
../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm

CHAPTER 3 | Artix Logging
Dynamic Artix Logging

Overview At runtime, you can use it_container_admin commands to dynamically get
and set logging levels for specific subsystems and services. This section
explains how to use the it_container_admin -getlogginglevel and
-setlogginglevel options.

Getting logging levels The -getlogginglevel option gets the logging level for specified a subsystem
or service. This command has the following syntax:

Get logging for a specific subsystem

The following example gets the logging level for the CORBA binding only:

Get logging for multiple subsystems

The following example uses a wildcard to get the logging levels for all
subsystems:

This outputs a list of subsystems that have been explicitly set in a
configuration file or by -setlogginglevel.

For example, if IT_BUS.BINDING=LOG_INFO is output, this means that
IT_BUS.BINDING is set to LOG_INFO, and that no child subsystems of
IT_BUS.BINDING are explicitly set. In this case, all child subsystems inherit
LOG_INFO from their parent.

-getlogginglevel [-subsystem SubSystem] [-service
{Namespace}LocalPart]

it_container_admin -getlogginglevel -subsystem
IT_BUS.BINDING.CORBA

it_container_admin -getlogginglevel -subsystem *
58

Dynamic Artix Logging
Get logging for a specific service

The following example gets the logging level for a locator service that is
running in a container:

Setting logging levels The -setlogginglevel option sets the logging level for a specified
subsystem. This command has the following syntax:

The possible logging levels are:

Set logging for a specific subsystem

The following example sets the logging level for the HTTP transport only:

Set logging for multiple subsystems

You can set logging for multiple subsystems by using the -propagate
option. The following example sets the logging level for all transports (IIOP,
HTTP, and so on):

it_container_admin -getlogginglevel -subsystem
IT_BUS.BINDING.SOAP -service
{http://ws.iona.com/locator}LocatorService

-setlogginglevel -subsystem SubSystem -level Level [-propagate]
[-service {Namespace}Localpart]

LOG_FATAL
LOG_ERROR
LOG_WARN
LOG_INFO_HIGH
LOG_INFO_MED
LOG_INFO_LOW
LOG_SILENT
LOG_INHERIT

it_container_admin -getlogginglevel -subsystem
IT_BUS.TRANSPORT.HTTP -level LOG_WARN

it_container_admin -setlogginglevel -subsystem IT_BUS.TRANSPORT
-level LOG_WARN -propagate true
59

CHAPTER 3 | Artix Logging
Override child subsystem levels

You can use the -propagate option to override child subsystem levels that
have been set previously. For example, take the simple case where IT_BUS
is set to LOG_INFO, and no other subsystems are set. If the IT_BUS level is
changed, it is automatically propagated to all IT_BUS children.

However, take the case where IT_BUS.CORE is set to LOG_WARN, and
IT_BUS.TRANSPORT is set to LOG_INFO_LOW. Setting IT_BUS to LOG_ERROR
affects IT_BUS and all its children, except for IT_BUS.CORE and
IT_BUS.TRANSPORT. In this case, you can use -propagate true to override
the child subsystem levels set previously. For example:

Set logging for services

The following example sets the logging level for the SOAP binding when
used with the locator service:

The -propagate option can also be used when setting logging for service.
For example, if you have service-specific logging enabled for
IT_BUS.BINDING and IT_BUS.BINDING.SOAP, setting a service-specific log
level for IT_BUS.BINDING with -propagate true also sets the service level
for IT_BUS.BINDING.SOAP.

it_container_admin -setlogginglevel -subsystem IT_BUS -level
LOG_ERROR -propagate true

it_container_admin -setlogginglevel -subsystem
IT_BUS.BINDING.SOAP -level LOG_INFO_HIGH -service
{http://ws.iona.com/locator}LocatorService

it_container_admin -setlogginglevel -subsystem IT_BUS.BINDING
-level LOG_INFO_LOW -propagate true -service
{http://ws.iona.com/locator}LocatorService
60

Dynamic Artix Logging
Inheriting a logging level You can use the LOG_INHERIT level to cancel the current logging level and
inherit from the parent subsystem instead.

For example, if the IT_BUS.CORE subsystem is set to LOG_INFO_LOW, and its
parent (IT_BUS) is set to LOG_ERROR, setting IT_BUS.CORE to LOG_INHERIT
results in IT_BUS.CORE logging at LOG_ERROR. This is shown in the following
example:

By default, all subsystems are effectively in LOG_INHERIT mode because they
inherit a level from their parent subsystem.

Silent logging You can use the LOG_SILENT level to specify that a given subsystem does not
perform any logging, for example:

Further information For more details on using the it_container_admin command, see
“Deploying Services in an Artix Container” on page 117.

For more details on subsystems, see “Logging for Subsystems and Services”
on page 49.

it_container_admin -setlogginglevel -subsystem IT_BUS.CORE
-level LOG_INHERIT

it_container_admin -setlogginglevel -subsystem
IT_BUS.TRANSPORT.TUNNEL -level LOG_SILENT
61

CHAPTER 3 | Artix Logging
Configuring Message Snoop

Overview Message snoop is an ART-based message interceptor that sends
input/output messages to the Artix log to enable viewing of the message
content. This is a useful debugging tool when developing and testing an
Artix system.

Message snoop is enabled by default. It is automatically added as the last
interceptor before the binding to detect any changes that other interceptors
might make to the message. By default, message_snoop logs at INFO_MED in
the MESSAGE_SNOOP subsystem. You can change these settings in
configuration.

Disabling message snoop Message snoop is invoked on every message call, twice in the client and
twice in the server (assuming Artix is on both sides). This means that it can
impact on performance. More importantly, message snoop involves risks to
confidentiality. You can disable message snoop using the following setting:

Setting a message snoop log level You can set a message snoop log level globally or for a service port. The
following example sets the level globally:

The following example sets the level for a service port:

artix:interceptors:message_snoop:enabled = "false";

WARNING: For security reasons, it is strongly recommended that
message snoop is disabled in production deployments.

artix:interceptors:message_snoop:log_level = "WARNING";
event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",

"MESSAGE_SNOOP=WARNING"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "INFO_MED";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];
62

Configuring Message Snoop
Setting a message snoop
subsystem

You can set message snoop to a specific subsystem globally or for a service
port. The following example sets the subsystem globally:

The following example sets the subsystem for a service port:

If message snoop is disabled globally, but configured for a service/port, it is
enabled for that service/port with the specified configuration only. For
example:

Setting message snoop in conjunction with log filters is useful when you
wish to trace only messages that are relevant to a particular service, and you
do not wish to see logging for others (for example, the container, locator,
and so on).

artix:interceptors:message_snoop:log_subsystem = "MY_SUBSYSTEM";
event_log:filters = ["*=INFO_MED", "IT_BUS=",

"MY_SUBSYSTEM=INFO_MED"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MESSAGE_SNOOP";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];

artix:interceptors:message_snoop:enabled = "false";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "WARNING";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MY_SUBSYSTEM";

event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",
"MY_SUBSYSTEM=WARNING"];
63

CHAPTER 3 | Artix Logging
Configuring Log4J Logging

Overview For Artix JAX-RPC applications, you have the option of using log4J, which is
a standard Java logging tool. This enables you to control Artix logging with
the same logging tool used by many Java applications. This section includes
the following:

• “Specifying the log4j plug-in”.

• “Setting the log4j properties file”.

Specifying the log4j plug-in You must first add the log4j_log_stream plug-in to the Artix orb_plugins
list in your Artix .cfg file. For example:

The log4j_log_stream plug-in reroutes all Artix logging to the log4j tool.

Setting the log4j properties file When using log4j with Artix, the LogConfig.properties file controls your
Artix logging settings. This file is located in the following directory:

ArtixInstallDir\cxx_java\etc

Enabling log4j logging for Artix

To enable log4j logging, add the following line to the start of your
LogConfig.properties file:

In this file, all Artix logging is set to a root logger named com.iona. Unlike
Artix logging, specifying a logging level does not mean to log only that level
(for example, DEBUG). Instead, specifying a level means to log all messages
with that level or higher. For example, setting the log level to DEBUG means
to log all DEBUG, WARNING, ERROR, and FATAL messages.

Note: log4j logging overrides Artix logging. Settings in the
LogConfig.properties file completely override settings in the artix.cfg
file.

orb_plugins = ["log4j_log_stream", "iiop_profile", "giop",
"iiop", java];

log4j.logger.com.iona=DEBUG
...
64

Configuring Log4J Logging
Enabling log4j logging for Artix subsystems

The following setting outputs all Artix logs to log4j:

However, Artix also supports a more fine grained approach whereby you can
specify a particular Artix subsystem that you want logged (see “Logging for
Subsystems and Services” on page 49). For example, the
LogConfig.properties file could be as follows:

Configuring XML log4j messages

If you wish to output XML format log messages (for example, to run scripts,
style sheets, or reports on the logs), you can also configure this in your
LogConfig.properties file. For example:

For details on using Artix XML log messages, see “Configuring logging
output” on page 45.

log4j.logger.com.iona=DEBUG
...

log4j.logger.com.iona.ARTIX=FATAL
log4j.logger.com.iona.ARTIX.IT_BUS=INFO
log4j.logger.com.iona.ARTIX.IT_CODESET=DEBUG
log4j.logger.com.iona.jbus.util.Log4JUtils=DEBUG

log4j.logger.com.iona=DEBUG
log4j.rootCategory= DEBUG, xml
...

XML File appender properties.
log4j.appender.xml=org.apache.log4j.RollingFileAppender
log4j.appender.xml.File=c:/Tomcat4/logs/log4j.xml
log4j.appender.xml.MaxFileSize=1024KB
log4j.appender.xml.MaxBackupIndex=12
log4j.appender.xml.layout=org.apache.log4j.xml.XMLLayout
65

CHAPTER 3 | Artix Logging
Using log4j with JAX-RPC
applications

If you wish to combine the log4J logging in your JAX-RPC application with
log4j logging in Artix, you must initialize log4j with the
LogConfig.properties file in your Java application code.

However, you can still use your own properties file to initialize log4j, and
you do not have to use LogConfig.properties.

Redirecting log4j to standard error You can optionally redirect the log4j log stream to standard error using the
following setting in your Artix .cfg file:

You must also ensure that the local_log_stream plug-in is present in your
orb_plugins list.

Further information For more information about using log4j, see the Apache documentation at:

http://logging.apache.org/log4j/docs/documentation.html

Note: log4j does not support C++ directly, however, using the Artix
log4j_log_stream plug-in enables Artix C++ log events to be redirected
to log4j.

plugins:log4j_log_stream:use_stderr = "true";
66

http://logging.apache.org/log4j/docs/documentation.html

Configuring SNMP Logging
Configuring SNMP Logging

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library net-snmp
(v.5.0.7) to emit SNMP v1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

Artix Management Information
Base (MIB)

A Management Information Base (MIB) file is a database of objects that can
be managed using SNMP. It has a hierarchical structure, similar to a DOS or
UNIX directory tree. It contains both pre-defined values and values that can
be customized. The Artix MIB is shown below:

Example 5: Artix MIB

IONA-ARTIX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32,
 Unsigned32,
 NOTIFICATION-TYPE FROM SNMPv2-SMI
 DisplayString FROM RFC1213-MIB
;

-- v2 s/current/current

 iona OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) 3027 }

 ionaMib MODULE-IDENTITY
 LAST-UPDATED "200303210000Z"

 ORGANIZATION "IONA Technologies PLC"
67

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging
 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used and format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

Example 5: Artix MIB
68

Configuring SNMP Logging

-- iona(3027)

-- |
-- ionaMib(1)
-- |
-- __
-- | | |
-- orbix3(2) IONAAdmin (3) Artix (4)
- |
-- --------------------
-- | |
-- ArtixEventLogMibObjects(0) ArtixEventLogMibTraps (1)
-- | |
-- -- -----------------------
-- |- eventSource (1) |- ArtixbaseTrapDef (1)
-- |- eventId (2)
-- |- eventPriority (3)
-- |- timeStamp (4)
-- |- eventDescription (5)

 Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
 ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix 0 }
 ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
 ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
 eventSource OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component or subsystem which generated the event."
 ::= { ArtixEventLogMibObjects 1 }

Example 5: Artix MIB
69

CHAPTER 3 | Artix Logging
 eventId OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The event id for the subsystem which generated the event."

 ::= { ArtixEventLogMibObjects 2 }

 eventPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The severity level of this event. This maps to IT_Logging::EventPriority types. All
 priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL_ERROR (F)"

 ::= { ArtixEventLogMibObjects 3 }

 timeStamp OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The time when this event occurred."

 ::= { ArtixEventLogMibObjects 4 }

 eventDescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component/application description data included with event."

 ::= { ArtixEventLogMibObjects 5 }

-- SNMPv1 TRAP definitions
-- ArtixEventLogBaseTraps TRAP-TYPE
-- OBJECTS {
-- eventSource,
-- eventId,
-- eventPriority,

Example 5: Artix MIB
70

Configuring SNMP Logging
IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a log stream plug-in called snmp_log_stream. The shared
library name of the SNMP plug-in found in the artix.cfg file is:

-- timestamp,
-- eventDescription
-- }

-- STATUS current
-- ENTERPRISE iona
-- VARIABLES { ArtixEventLogMibObjects }
-- DESCRIPTION "The generic trap generated from an Artix Event Log."
-- ::= { ArtixBaseTrapDef 1 }

-- SNMPv2 Notification type

 ArtixEventLogNotif NOTIFICATION-TYPE
 OBJECTS {
 eventSource,
 eventId,
 eventPriority,
 timestamp,
 eventDescription
 }

 STATUS current
 ENTERPRISE iona
 DESCRIPTION "The generic trap generated from an Artix Event Log."
 ::= { ArtixBaseTrapDef 1 }

END

Example 5: Artix MIB

plugins:snmp_log_stream:shlib_name = "it_snmp"
71

CHAPTER 3 | Artix Logging
Configuring the SNMP plug-in The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

Configuring the Enterprise Object
Identifier

The last plug-in described, oid, is the Enterprise Object Identifier. This is
assigned to specific enterprises by the Internet Assigned Numbers Authority
(IANA). The first six numbers correspond to the prefix:
iso.org.dod.internet.private.enterprise (1.3.6.1.4.1). Each
enterprise is assigned a unique number, and can provide additional
numbers to further specify the enterprise and product.

For example, the oid for IONA is 3027. IONA has added 1.4.1.0 for Artix.
Therefore the complete OID for IONA’s Artix is 1.3.6.1.4.1.3027.1.4.1.0.
To find the number for your enterprise, visit the IANA website at
http://www.iana.org.

The SNMP plug-in implements the IT_Logging::LogStream interface and
therefore acts like the local_log_stream plug-in.

plugins:snmp_log_stream:community = "public";
plugins:snmp_log_stream:server = "localhost";
plugins:snmp_log_stream:port = "162";
plugins:snmp_log_stream:trap_type = "6";
plugins:snmp_log_stream:oid = "your IANA number in dotted decimal notation"
72

http://www.iana.org

CHAPTER 4

Enterprise
Performance
Logging
Artix’ performance logging plug-ins enable it to integrate
effectively with third-party Enterprise Management Systems
(EMS).

In this chapter This chapter contains the following sections:

Enterprise Management Integration page 74

Configuring Performance Logging page 76

Performance Logging Message Formats page 80

Remote Performance Logging page 83

Configuring Remote Performance Logging page 86
73

CHAPTER 4 | Enterprise Performance Logging
Enterprise Management Integration

Overview The performance logging plug-ins enable both Artix and Orbix to integrate
effectively with Enterprise Management Systems (EMS), such as IBM
Tivoli™, HP OpenView™, or BMC Patrol™. The performance logging
plug-ins can also be used in isolation or as part of a bespoke solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

Performance logging When performance logging is configured, you can see how each Artix server
is responding to load. The performance logging plug-ins log this data to file
or syslog. Your EMS (for example, IBM Tivoli) can read the performance
data from these logs, and use it to initiate appropriate actions, (for example,
issue a restart to a server that has become unresponsive, or start a new
replica for an overloaded cluster).

Example EMS integration Figure 1 shows an overview of the IONA and IBM Tivoli integration at work.
In this example, a restart command is issued to an unresponsive server.

In Figure 1, the performance log files indicate a problem. The IONA Tivoli
Provider uses the log file interpreter to read the logs. The provider sees when
a threshold is exceeded and fires an event. The event causes a task to be
activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging
plug-ins. It also explains the format of the performance logging messages.

For details on how to integrate your EMS environment with Artix, see the
Artix Management Guide, C++ Runtime.
74

../../mgmt/cpp/index.htm
../../mgmt/cpp/index.htm

Enterprise Management Integration
Figure 1: Overview of an Artix and IBM Tivoli Integration
75

CHAPTER 4 | Enterprise Performance Logging
Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:

• “Performance logging plug-in”.

• “Monitoring Artix requests”.

• “Specifying a log file”.

• “Monitoring clusters”.

• “Configuring a server ID”.

• “Configuring a client ID”.

• “Configuring with the Artix Designer GUI”.

Performance logging plug-in The performance logging component includes the following plug-ins:

Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.

Table 6: Performance Logging Plug-in

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.
76

Configuring Performance Logging
Monitoring Artix requests You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus_response_monitor
plug-in to the orb_plugins list in the global configuration scope. For
example:

To configure performance logging on the client side only, specify this setting
in a client scope only.

Logging to a file or memory You can specify whether logging is output to a file or stored in memory using
plugins:bus_response_monitor:type variable. Specifying file outputs
performance logging data to a file, while specifying memory places the data
into memory so it can be retrieved using the Artix container service. When
file is enabled, memory is also enabled. For example:

Specifying a log file You can configure the collector plug-in to log data to a specific file location.

The following example configuration results in performance data being
logged to /var/log/my_app/perf_logs/treasury_app.log:

Monitoring clusters You can configure your EMS to monitor a cluster of servers. You can do this
by configuring multiple servers to log to the same file. If the servers are
running on different hosts, the log file location must be on an NFS mounted
or shared directory.

orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
"bus_response_monitor"];

plugins:bus_response_monitor:type = file;

plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";
77

CHAPTER 4 | Enterprise Performance Logging
Alternatively, you can use syslogd as a mechanism for monitoring a cluster.
You can do this by choosing one syslogd to act as the central logging server
for the cluster. For example, say you decide to use a host named teddy as
your central log server. You must edit the /etc/syslog.conf file on each
host that is running a server replica, and add a line such as the following:

Some syslog daemons will not accept log messages from other hosts by
default. In this case, it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is
necessary and what flags to use.

Configuring a server ID You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

Configuring a client ID You can also configure a client ID that will be reported in your log messages,
for example:

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

Substitute the name of your log server
 user.info @teddy

plugins:it_response_time_collector:server-id = "Locator-1";

plugins:it_response_time_collector:server-id = "my_client_app";
78

Configuring Performance Logging
Configuration example The following simple example configuration file is from the management
demo supplied in your Artix installation:

In this example, the bus_response_monitor plug-in is set in the global
scope. This specifies settings for both the client and server applications.

Configuring with the Artix
Designer GUI

The Artix Designer GUI tool automatically generates performance logging
configuration for the Artix services. The generated server-id defaults to the
following format: DomainName_ServiceName_Hostname (for example,
artix_locator_myhost).

For details on how to automatically generate performance logging, see the
Artix Management Guide, C++ Runtime.

include "../../../../../etc/domains/artix.cfg";

demos {

 management
 {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
 "bus_response_monitor"];

 client {
 plugins:it_response_time_collector:server-id=
 "management-demo-client";

 plugins:it_response_time_collector:filename=
 "management_demo_client.log";
 };

 server {
 plugins:it_response_time_collector:server-id=
 "management-demo-server";

 plugins:it_response_time_collector:filename=
 "management_demo_server.log";
 };
 };
};
79

../../mgmt/cpp/index.htm

CHAPTER 4 | Enterprise Performance Logging
Performance Logging Message Formats

Overview This section describes the performance logging message formats used by
IONA products. It includes the following:

• “Artix log message format”.

• “Orbix log message format”.

• “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,
this format is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n oph=n

Table 7: Artix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

namespace The Artix namespace.

service The Artix service.

port The Artix port.

operation The name of the operation for CORBA
invocations or the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for
this operation or URI during the last interval.
80

Performance Logging Message Formats
The combination of namespace, service and port above denote a unique
Artix endpoint.

Orbix log message format The format for Orbix log messages is as follows:

max The longest response time (milliseconds) for
this operation or URI during the last interval.

min The shortest response time (milliseconds) for
this operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 7: Artix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID [operation=Name] count=n
avg=n max=n min=n int=n oph=n

Table 8: Orbix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

operation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this
operation or URI during the last interval.
81

CHAPTER 4 | Enterprise Performance Logging
Simple life cycle message formats The server will also log simple life cycle messages. All servers share the
following common format.

min The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 8: Orbix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID status=CurrentStatus

Table 9: Simple life cycle message formats arguments

Argument Description

server The server ID of the process that is logging the
message.

status A text string describing the last known status of
the server (for example, starting_up, running,
shutting_down).
82

Remote Performance Logging
Remote Performance Logging

Overview The performance logging plug-ins can be configured to log data to a local file
or to a remote endpoint. Depending on your specific architecture, it might
not always be desirable or feasible to deploy the required management tools
on a particular platform (for example, on z/OS). In this case, it would not be
appropriate to persist the performance logging data to a local file, because
there would be no local application to consume it.

In some situations, NFS or a similar file sharing mechanism might be used
to persist data across your distributed system. However, security and
performance concerns often prevent the use of such protocols. In such
cases, Artix provides a remote logging facility for the purposes of sending
logging data to a remote endpoint where the data can be persisted and
subsequently consumed by an application that is native to that remote
system.

Components of a remote logging
framework

The components of a remote logging framework are as follows:

• The performance logging collector plug-in runs within a deployed
application on the source host. This is the host that sends its logging
data to a remote endpoint. The collector is configured to harvest the
required performance logging data and to write this data to a remote
CORBA endpoint (instead of, for example, to a local file on the source
host).

• The remote logger daemon is an Artix application that is deployed on
the remote target host. It loads the remote log receiver servant, which
is accepts the performance logging data from the source applications
and logs this data to a local file on the target host.

• The EMS component (for example, a Tivoli or BMC Patrol agent) runs
on the remote target host. It consumes the data from the file and
propagates the performance information to the centralized region
manager.

Note: Remote logging is only supported in the C++ version of the
performance logging collector plug-in.
83

CHAPTER 4 | Enterprise Performance Logging
Figure 2 shows how remote logging works in Artix.

Figure 2: Remote Logging Framework
84

Remote Performance Logging
Deploying a remote logger
daemon

As explained in “Components of a remote logging framework” on page 83,
the remote logger daemon loads the remote log receiver servant, which
accepts the performance logging data from the source application(s), and
logs this data to a local file on the target host. You may deploy the remote
logger plug-in in any Artix application. The remote logger plug-in should be
deployed in a standalone container whose sole purpose is to log data from
one or more source applications. The local file on the remote host can then
be consumed by the EMS agent running on that host, or used as part of
some custom-made solution.

Points to note The following points should be noted:

• IIOP is used for the data communication between the collector and the
remote logger daemon. This adds very low overhead to the logging
payload, because it uses a binary protocol on the wire (CDR).

• To secure the message transfer, IIOP/TLS can be used for data
communication between the collector and the remote logger daemon.

• The timestamps embedded in the remote logging data are localized to
the specific source system on which the monitored application is
running. You must ensure that the system clocks on all participating
systems are synchronized to an acceptable level, as governed by your
EMS or your custom-made solution.
85

CHAPTER 4 | Enterprise Performance Logging
Configuring Remote Performance Logging

Overview This section explains how to configure remote logging, which enables you to
send logging data to a remote endpoint on another host rather than to a
local file.

Configuring the Remote Logger
Daemon

To configure the remote logger daemon that runs on the remote target host,
add the following configuration scope and settings to the Artix configuration
domain:

�
remote_logger_daemon
{

orb_plugins = ["local_log_stream", "remote_log_receiver"];
event_log:filters = ["IT_MGMT_LOGGING=*"];

plugins:remote_log_receiver:log_filename =
"/var/logs/remote_perflogs.txt";

plugins:remote_log_receiver:ior_filename =
"/var/publish/logger_ref.txt";

plugins:remote_log_receiver:iiop:addr_list = ["host:port"];
plugins:remote_log_receiver:prerequisite_plugins =

["iiop_profile", "giop", "iiop"];
};
�

Note: You may add this configuration scope directly to your Artix
configuration domain in artix.cfg, or you may create a separate
configuration file that includes artix.cfg.
86

Configuring Remote Performance Logging
Remote logging configuration settings

The settings for the remote_log_receiver plug-in are explained as follows:

TLS security

If you are using TLS security:

• Ensure that you replace the plugins:remote_log_receiver:iiop:
addr_list configuration item with plugins:remote_log_receiver:
iiop_tls:addr_list.

• Ensure that the plugins:remote_log_receiver:prerequisite_
plugins configuration item lists "iiop_tls" rather than "iiop".

Running the remote logger daemon

To run the remote logger daemon, run the Artix container as follows:

plugins:remote_log_receiver:
log_filename

This is the local file on the remote host
to which all logs are directed.

plugins:remote_log_receiver:
ior_filename

When the remote logger daemon is
started, it writes a stringified
Interoperable Object Reference (IOR) to
the file specified by this configuration
item. This IOR may be subsequently
made available to the source
applications that are acting as clients of
the remote logger. However, this is not
required if the source applications use a
corbaloc URL rather than an IOR to
contact the remote logger.

plugins:remote_log_receiver:
iiop:addr_list

This specifies the hostname or IP
address of the host on which the remote
logger is running, and the port that it
uses to listen for logging requests.

plugins:remote_log_receiver:
prerequisite_plugins

This must specify the IIOP plug-ins that
the remote logger needs for
communication with the source host(s).

it_container -ORBname remote_logger_daemon

Note: This is assuming that the relevant configuration scope is called
remote_logger_daemon.
87

CHAPTER 4 | Enterprise Performance Logging
Configuring a deployed
application on the source host

You must also configure your deployed application to use performance
logging with the remote logger capability. For the purposes of illustration, it
describes the steps that are required to configure an Artix for z/OS
application.

Configuration steps

To enable a deployed application (for example, on z/OS) to use performance
logging with the remote logger capability:

1. Ensure that the remote logger daemon has been configured correctly
and deployed on the target host, as described in “Configuring the
Remote Logger Daemon” on page 86.

2. Open the configuration domain for your deployed application (by
default, this is artixhlq.CONFIG(ARTIX) for Artix for z/OS
applications).

3. Go to the appropriate configuration scope for your application.

4. Add it_response_time_logger to the end of the ORB plug-ins list
setting. Also, ensure that IIOP is enabled for the application, for
example:

5. Add it_response_time_logger to the server binding list for the
application. For example:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop", �, "it_response_time_logger"];

Note: Ensure that you have a management license available.

binding:server_binding_list =
["SOAP+it_response_time_logger",

 "it_response_time_logger"];
88

Configuring Remote Performance Logging
6. Add the following collector plug-in configuration variables:

Example output

The following is example output from the performance log on the remote file
system where a number of different operations have been run against the
application:

update the log every 30 seconds
plugins:it_response_time_collector:period = "30";

the id of the server for the log output
plugins:it_response_time_collector:server-id = "server-id";

the remote endpoint details:
plugins:it_response_time_collector:remote_logging_enabled =

"true";
initial_references:IT_PerfLoggingReceiver:reference =

"corbaloc:iiop:1.2@remote_host:1234/IT_PerfLoggingReceiver ";

Note: Ensure that the server-id value is replaced with the actual server
ID for the log output (for example, cics-server-adapter-1).

2006-10-18 10:08:22 server=cics-server-adapter-1 status=starting_up
2006-10-18 10:08:22 server=cics-server-adapter-1 status=running
2006-10-18 10:08:52 server=cics-server-adapter-1 status=running
2006-10-18 10:09:22 server=cics-server-adapter-1 status=running
2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test_bounded] count=1 avg=110

max=110 min=110
int=30001 oph=119
2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test_unbounded] count=1 avg=809

max=809 min=809
int=30001 oph=119
2006-10-18 10:09:52 server=cics-server-adapter-1 status=running
2006-10-18 10:09:52 server=cics-server-adapter-1 [operation=call_me] count=1 avg=793 max=793

min=793
int=29998 oph=120
2006-10-18 10:10:22 server=cics-server-adapter-1 status=running
2006-10-18 10:10:22 server=cics-server-adapter-1 [operation=_get_currentMappings] count=1 avg=0

max=0 min=0
int=30000 oph=120
2006-10-18 10:10:52 server=cics-server-adapter-1 status=running
2006-10-18 10:11:22 server=cics-server-adapter-1 status=running
2006-10-18 10:11:52 server=cics-server-adapter-1 status=running
2006-10-18 10:12:22 server=cics-server-adapter-1 status=running
89

CHAPTER 4 | Enterprise Performance Logging
2006-10-18 10:12:22 server=cics-server-adapter-1 [operation=resolve] count=1 avg=0 max=0 min=0
int=29999 oph=120

2006-10-18 10:12:52 server=cics-server-adapter-1 status=running
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_started
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_complete
90

CHAPTER 5

Using Artix with
International
Codesets
The Artix SOAP and CORBA bindings enable you to transmit
and receive messages in a range of codesets.

In this chapter This chapter includes the following:

Introduction to International Codesets page 92

Working with Codesets using SOAP page 95

Working with Codesets using CORBA page 96

Working with Codesets using Fixed Length Records page 99

Working with Codesets using Message Interceptors page 102

Routing with International Codesets page 111
91

CHAPTER 5 | Using Artix with International Codesets
Introduction to International Codesets

Overview A coded character set, or codeset for short, is a mapping between integer
values and characters that they represent. The best known codeset is ASCII
(American Standard Code for Information Interchange). ASCII defines 94
graphic characters and 34 control characters using the 7-bit integer range.

European languages The 94 characters defined by the ASCII codeset are sufficient for English,
but they are not sufficient for European languages, such as French, Spanish,
and German.

To remedy the situation, an 8-bit codeset, ISO 8859-1, also known as
Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The
extra characters in the upper 8-bit range cover those languages used widely
in Western Europe.

Many other codesets are defined under ISO 8859 framework. These cover
languages in other regions of Europe, as well as Russian, Arabic and
Hebrew. The most recent addition is ISO 8859-15, which is a revision of
ISO 8859-1. This adds the Euro currency symbol and other letters while
removing less used characters.

For further information about ISO-8859-x encoding, see the following web
site: “The ISO 8859 Alphabet Soup”
(http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets/).

Ideograms Asian countries that use ideograms in their writing systems need more
characters than fit in an 8-bit integer. Therefore, they invented double-byte
codesets, where a character is represented by a bit pattern of 2 bytes.

These languages also needed to mix the double-byte codeset with ASCII in a
single text file. So, character encoding schemas, or simply encodings, were
invented as a way to mix characters of multiple codesets.

Some of the popular encodings used in Japan include:

• Shift JIS

• Japanese EUC

• Japanese ISO 2022
92

http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets
http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets

Introduction to International Codesets
Unicode Unicode is a new codeset that is gaining popularity. It aims to assign a
unique number, or code point, to every character that exists (and even once
existed) in all languages. To accomplish this, Unicode, which began as a
double-byte codeset, has been expanded into a quadruple-byte codeset.

Unicode, in pure form, can be difficult to use within existing computer
architectures, because many APIs are byte-oriented and assume that the
byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or
UTF-8, is frequently used. When browsers list “Unicode” in its encoding
selection menu, they usually mean UTF-8, rather than the pure form of
Unicode.

For more information about Unicode and its variants, visit Unicode
(http://www.unicode.org/).

Charset names To address the need for computer networks to connect different types of
computers that use different encodings, the Internet Assigned Number
Authority, or IANA, has a registry of encodings at
http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,
and XML. Table 10 lists IANA names for some popular charsets.

Table 10: IANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme
93

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets
CORBA names

In CORBA, codesets are identified by numerical values registered with the
Open Group’s registry, OSF Codeset Registry:
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt.

Java names

Java has its own names for charsets. For example, ISO-8859-1 is named
ISO8859_1, Shift_JIS is named SJIS, and UTF-8 is named UTF8.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK
1.3 and above recognizes both names.

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

Note: Artix uses IANA charset names even for CORBA codesets.
94

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Working with Codesets using SOAP
Working with Codesets using SOAP

Overview Because SOAP messages are XML based, they are composed primarily of
character data that can be encoded using any of the existing codesets. If the
applications in a system are using different codesets, they can not interpret
the messages passing between them. The Artix SOAP plug-in uses the XML
prologue of SOAP messages to ensure that it stays in sync with the
applications that it interacts with.

Making requests When making requests or broadcasting a message, the SOAP plug-in
determines the codeset to use from its Artix configuration scope. You can set
the SOAP plug-in’s character encoding using the plugins:soap:encoding
configuration variable. This takes the IANA name of the desired codeset.
The default value is UTF-8.

For more information on this configuration variable, see the Artix
Configuration Reference. For general information on configuring Artix
applications, see “Getting Started” on page 17.

Responding to SOAP requests When an Artix server receives a SOAP message, it checks the XML prologue
to see what encoding codeset the message uses. If the XML prologue
specifies the message’s codeset, Artix uses the specified codeset to read the
message and to write out its response to the request. For example, an Artix
server that receives a request with the XML prologue shown in Example 6
decodes the message using UTF-16 and encodes its response using UTF-16.

If an Artix server receives a SOAP message where the XML prologue does
not include the encoding attribute, the server will use whatever default
codeset is specified in its configuration to decode the message and encode
the response.

Example 6: XML Prologue

<?xml version="1.0" encoding="UTF-16"?>
95

../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm

CHAPTER 5 | Using Artix with International Codesets
Working with Codesets using CORBA

Overview The Artix CORBA plug-in supports both wide characters and narrow
characters to accommodate an array of codesets. It also supports codeset
negotiation. Codeset negotiation is the process by which two CORBA
processes which use different native codesets determine which codeset to
use as a transmission codeset. Occasionally, the process requires the
selection of a conversion codeset to transmit data between the two
processes. The algorithm is defined in section 13.10.2.6 of the CORBA
specification (http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf).

Native codeset A native codeset (NCS) is a codeset that a CORBA program speaks natively.

For JAX-RPC, this is UTF-8 (0x05010001) for char and String, and UTF-16
(0x00010109) for wchar and wstring.

For C and C++, this is the encoding that is set by setlocale(), which in
turn depends on the LANG and LC_xxxx environment variables.

You can configure the Artix CORBA plug-in’s native codesets using the
configuration variables listed in Table 11.

Note: For CORBA programing with JAX-RPC, you can specify a codeset
other than the true native codeset.

Table 11: Configuration Variables for CORBA Native Codeset

Configuration Variable Description

plugins:codeset:char:ncs Specifies the native codeset for narrow
character and string data.

plugins:codeset:wchar:ncs Specifies the native codeset for wide
character and string data.
96

http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf

Working with Codesets using CORBA
Conversion codeset A conversion codeset (CCS) is an alternative codeset that the application
registers with the ORB. More than one CCS can be registered for each of the
narrow and wide interfaces. CCS should be chosen so that the expected
input data can be converted to and from the native codeset without data
loss. For example, Windows code page 1252 (0x100204e4) can be a
conversion codeset for ISO-8859-1 (0x00010001), assuming only the
common characters between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion codesets
using the configuration variables listed in Table 12.

Transmission codeset A transmission codeset (TCS) is the codeset agreed upon after the codeset
negotiation. The data on the wire uses this codeset. It is either the native
codeset, one of the conversion codesets, or UTF-8 for the narrow interface
and UTF-16 for the wide interface.

Negotiation algorithm Codeset negotiation uses the following algorithm to determine which
codeset to use in transferring data between client and server:

1. If the client and server are using the same native codeset, no
translation is required.

2. If the client has a converter to the server’s codeset, the server’s native
codeset is used as the transmission codeset.

3. If the client does not have an appropriate converter and the server does
have a converter to the client’s codeset, the client’s native codeset is
used as the transmission codeset.

Table 12: Configuration Variables for CORBA Conversion Codesets

Configuration Variable Description

plugins:codeset:char:ccs Specifies the list of conversion codesets
for narrow character and string data.

plugins:codeset:wchar:ccs Specifies the list of conversion codesets
for wide character and string data.
97

CHAPTER 5 | Using Artix with International Codesets
4. If neither the client nor the server has an appropriate converter, the
server ORB tries to find a conversion codeset that both server and
client can convert to and from without loss of data. The selected
conversion codeset is used as the transmission codeset.

5. If no conversion codeset can be found, the server ORB determines if
using UTF-8 (narrow characters) or UTF-16 (wide characters) will
allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission
codeset. If not, a CODESET_INCOMPATIBLE exception is raised.

Codeset compatibility The final steps involve a compatibility test, but the CORBA specification
does not define when a codeset is compatible with another. The
compatibility test algorithm employed in Orbix is outlined below:

1. ISO 8859 Latin-n codesets are compatible.

2. UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x
are compatible.

3. All other codesets are not compatible with any other codesets.

This compatibility algorithm is subject to change without notice in future
releases. Therefore, it is best to configure the codeset variables as explicitly
as possible to reduce dependency on the compatibility algorithm.
98

Working with Codesets using Fixed Length Records
Working with Codesets using Fixed Length
Records

Overview Artix fixed record length support enables Artix to interact with mainframe
systems using COBOL. For example, many COBOL applications send fixed
length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to concrete fixed
record length messages. This binding enables you to specify attributes such
as encoding style, justification, and padding character.

Encoding attribute The Artix fixed binding provides an optional encoding attribute for both its
fixed:binding and fixed:body elements. The encoding attribute specifies
the codeset used to encode the text data. Valid values are any IANA codeset
name. See http://www.iana.org/assignments/character-sets for details.

The encoding attribute for the fixed:binding element is a global setting;
while the fixed:body attribute is per operation. Both settings are optional. If
you do not set either, the default value is UTF-8.

For more details, see fixed-binding.xsd, available in
ArtixInstallDir\cxx_java\schemas.

Fixed binding example The following WSDL example shows a fixed binding with encoding
attributes for fixed:body elements. This binding includes two operations,
echoVoid and echoString.

Example 7: Fixed Length Record Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
xmlns:mq="http://schemas.iona.com/transports/mq"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
99

http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets
 xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.iona.com/artix/test/I18nBase" name="I18nBaseService"

 targetNamespace="http://www.iona.com/artix/test/I18nBase/"

 <message name="echoString">
 <part name="stringParam0" type="xsd:string"/>
 </message>

 <message name="echoStringResponse">
 <part name="return" type="xsd:string"/>
 </message>

 <message name="echoVoid"/>
 <message name="echoVoidResponse"/>

 <portType name="I18nBasePortType">
 <operation name="echoString">
 <input message="tns:echoString" name="echoString"/>
 <output message="tns:echoStringResponse" name="echoStringResponse"/>
 </operation>
 <operation name="echoVoid">
 <input message="tns:echoVoid" name="echoVoid"/>
 <output message="tns:echoVoidResponse" name="echoVoidResponse"/>
 </operation>
 </portType>

 <binding name="I18nFIXEDBinding" type="tns:I18nBasePortType">
 <fixed:binding/>
 <operation name="echoString">
 <fixed:operation discriminator="discriminator"/>
 <input name="echoString">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field bindingOnly="true" fixedValue="01" name="discriminator"/>
 <fixed:field name="stringParam0" size="50"/>
 </fixed:body>
 </input>
 <output name="echoStringResponse">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field name="return" size="50"/>
 </fixed:body>
 </output>
 </operation>

Example 7: Fixed Length Record Binding
100

Working with Codesets using Fixed Length Records
Further information For more details on the Artix fixed length binding, see Artix Bindings and
Transports, C++ Runtime.

 <operation name="echoVoid">
 <fixed:operation discriminator="discriminator"/>
 <input name="echoVoid">
 <fixed:body>
 <fixed:field name="discriminator" fixedValue="02" bindingOnly="true"/>
 </fixed:body>
 </input>
 <output name="echoVoidResponse">
 <fixed:body/>
 </output>
 </operation>
 </binding>
</definitions>

Example 7: Fixed Length Record Binding
101

../../bindings/cpp/index.html
../../bindings/cpp/index.html

CHAPTER 5 | Using Artix with International Codesets
Working with Codesets using Message
Interceptors

Overview Artix provides support for codeset conversion for transports that do not have
their own concept of headers. For example, IBM Websphere MQ, BEA
Tuxedo, and Tibco Rendezvous. This generic support is implemented using
an Artix message interceptor and WSDL port extensors.

For example, an Artix C++ client could use Artix Mainframe to access a
mainframe system, using a binding for fixed length record over MQ. In this
scenario, an Artix message interceptor can be configured to enable codeset
conversion between ASCII and EBCDIC (Extended Binary Coded Decimal
Interchange Code).

You can enable this codeset conversion simply by editing your WSDL file, or
by using accessor methods in your application code. This section explains
how to use both of these approaches.

Codeset conversion attributes This generic support for codeset conversion is implemented using a message
interceptor. This message interceptor manipulates the following codeset
conversion attributes:

You can specify these attributes to convert client-side requests and
server-side responses. All three attributes are optional.

Note: Codeset conversion set in application code takes precedence over
the same settings in a WSDL file.

LocalCodeSet Specifies the codeset used locally by a client or
server application.

OutboundCodeSet Specifies the codeset used by the application for
outgoing messages.

InboundCodeSet Specifies the codeset used by the application for
incoming messages.
102

Working with Codesets using Message Interceptors
Configuring codeset conversion in
a WSDL file

You can configure codeset conversion by setting the codeset conversion
attributes in a WSDL file. Example 8 shows the contents of the Artix
internationalization schema (i18n-context.xsd).

Example 8: Artix i18n Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://schemas.iona.com/bus/i18n/context"
 xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:import namespace = "http://schemas.xmlsoap.org/wsdl/"
schemaLocation="wsdl.xsd"/>

 <xs:element name="client" type="i18n-context:ClientConfiguration" />

 <xs:complexType name="ClientConfiguration">

 <xs:annotation>
 <xs:documentation> I18n Client Context Information
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement" >
 <xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
103

CHAPTER 5 | Using Artix with International Codesets
The Artix internationalization message interceptor uses this schema as a
port extensor. This enables you to configure codeset conversion attributes in
a WSDL file.

Client/server WSDL example The following example shows codeset conversion settings for a client and a
server application specified in a sample WSDL file:

 <xs:element name="server" type="i18n-context:ServerConfiguration"/>

 <xs:complexType name="ServerConfiguration" >
 <xs:annotation>
 <xs:documentation> I18n Server Context Information
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement" >
 <xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

</xs:schema>

Example 8: Artix i18n Schema

Example 9: i18n Specified in a WDSL File

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="I18nBaseService"

targetNamespace="http://www.iona.com/artix/test/I18nBase/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 xmlns:xsd1="http://www.iona.com/artix/test/I18nBase">
104

Working with Codesets using Message Interceptors
This sample WSDL file shows a single service named I18nService, with two
bindings and two ports named I18nFIXED_HTTPPort and I18nFIXED_MQPort.
The binding in both cases is fixed length record, each with a single
operation.

 <import namespace="http://www.iona.com/artix/test/I18nBase"
location="./I18nServiceBindings.wsdl"/>

 <service name="I18nService">

 <port binding="tns:I18nFIXEDBinding" name="I18nFIXED_HTTPPort">
 <http:address location="http://localhost:0"/>
 <i18n-context:client LocalCodeSet="ISO-8859-1" InboundCodeSet="UTF-8"/>
 <i18n-context:server LocalCodeSet="UTF-8" OutboundCodeSet="ISO-8859-1"/>
 </port>

 <port binding="tns:I18nFIXEDBinding" name="I18nFIXED_MQPort">

 <mq:client QueueManager="MY_DEF_QM" QueueName="MY_FIRST_Q" AccessMode="send"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueName="REPLY_Q"
 CorrelationStyle="messageId copy" />

 <mq:server QueueManager="MY_DEF_QM" QueueName="MY_FIRST_Q"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueName="REPLY_Q" AccessMode="receive"
 CorrelationStyle="messageId copy" />
 <i18n-context:client LocalCodeSet="UTF-8" InboundCodeSet=""/>
 <i18n-context:server LocalCodeSet="ISO-8859-1"/>
 </port>

 </service>

</definitions>

Example 9: i18n Specified in a WDSL File
105

CHAPTER 5 | Using Artix with International Codesets
Enabling codeset conversion in
application code

You can also enable codeset conversion attributes by calling the following
accessor methods in your C++ application code:

An Artix ContextContainer in the message interceptor, and the WSDL
configuration are checked for each attribute. This is performed during the
client’s intercept_invoke() method and the server’s
intercept_dispatch() method. The client request buffer or server response
buffer can be converted to another encoding as needed. This conversion can
occur on the outbound or inbound intercept points.

The interceptor refers to the current context on a per-thread basis. For
detailed information on Artix contexts, see Developing Artix Applications
with C++.

Linking with the context library The message interceptor uses a common type library of Artix context
attributes. The application must be linked with this common library, and
with any transports that use this context to set or get attributes. The
generated header files for this common library are available in the following
directory:

You must ensure that your application links with the context library that
contains the generated stub code for i18n-context.xsd.

void setLocalCodeSet(const IT_Bus::String * val);
void setLocalCodeSet(const IT_Bus::String & val);

void setOutboundCodeSet(const IT_Bus::String * val);
void setOutboundCodeSet(const IT_Bus::String & val);

void setInboundCodeSet(const IT_Bus::String * val);
void setInboundCodeSet(const IT_Bus::String & val);

ArtixInstallDir\cxx_java\include\it_bus_pdk\context_attrs
106

../../prog_guide/index.htm
../../prog_guide/index.htm

Working with Codesets using Message Interceptors
Client code example Example 10 shows an example of the code that you need to add to your
C++ client application:

Example 10: Accessing i18n in C++ Client Code

void
I18nTest::echoString(
 I18nBaseClient* client, const String& instr)
{
 String outstr;
 try
 {

 // Set the i18n request context to match the fixed binding encoding setting

 IT_Bus::Bus_var bus = client->get_bus();
 ContextRegistry * reg = bus->get_context_registry();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request_contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME, true);
 ClientConfiguration & i18n_ctx_cfg = dynamic_cast<ClientConfiguration&> (i18n_ctx_info);

 // Set the Inbound codeset to match the binding encoding

 static const String LOCAL_CODE_SET = "ISO-8859-1";
 i18n_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SET);

 const String & local_codeset = (*i18n_ctx_cfg.getLocalCodeSet());

 client->echoString(instr, outstr);

 // Read the i18n reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_ctx_reply_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME, true);

 const ClientConfiguration & i18n_ctx_reply_cfg =
 dynamic_cast<const ClientConfiguration&> (i18n_ctx_reply_info);
107

CHAPTER 5 | Using Artix with International Codesets
Server code example Example 10 shows example of the code that you need to add to your C++
servant application.

 const String * local_codeset_reply = i18n_ctx_reply_cfg.getLocalCodeSet();
 const String * outbound_codeset_reply = i18n_ctx_reply_cfg.getOutboundCodeSet();
 const String * inbound_codeset_reply = i18n_ctx_reply_cfg.getInboundCodeSet();

 if(local_codeset_reply)
 cout << "client LocalCodeSet reply context:" << local_codeset_reply->c_str() << endl;
 if(outbound_codeset_reply)
 cout << "client OutboundCodeSet reply context:"<< outbound_codeset_reply->c_str << endl;
 if(inbound_codeset_reply)
 cout << "client InboundCodeSet reply context" << inbound_codeset_reply->c_str() << endl;
 }

 catch (IT_Bus::ContextException& ce)
 {
 ...
 }
 catch (IT_Bus::Exception& ex)
 {
 ...
 }
 catch (...)
 {
 ...
 }
}

Example 10: Accessing i18n in C++ Client Code

Example 11: Accessing i18n in C++ Server Code

void
I18nServiceImpl::echoString(
 const String& stringParam0,
 String & var_return) IT_THROW_DECL((IT_Bus::Exception))
{

 var_return = stringParam0;
108

Working with Codesets using Message Interceptors
 try
 {
 // Read the i18n reply context

 ContextRegistry * reg = m_bus->get_context_registry();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request_contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME, false);
 const ServerConfiguration & i18n_ctx_cfg =
 dynamic_cast<const ServerConfiguration&> (i18n_ctx_info);

 const String * local_codeset = i18n_ctx_cfg.getLocalCodeSet();
 const String * outbound_codeset = i18n_ctx_cfg.getOutboundCodeSet();
 const String * inbound_codeset = i18n_ctx_cfg.getInboundCodeSet();

 if(local_codeset)
 cout << "server LocalCodeSet request context:" << local_codeset->c_str() << endl;
 if(outbound_codeset)
 cout << "server OutboundCodeSet request context:" << outbound_codeset->c_str() << endl;
 if(inbound_codeset)
 cout << "server InboundCodeSet request context:" << inbound_codeset->c_str() << endl;

 // Add code to change the reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_reply_ctx =
registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME, true);

 ServerConfiguration & i18n_reply_ctx_cfg =
 dynamic_cast<ServerConfiguration&> (i18n_reply_ctx);

 // Set the local codeset to match the binding encoding

 static const String LOCAL_CODE_SET = "ISO-8859-1";
 i18n_reply_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SET);

 String & set_local_context = (*i18n_reply_ctx_cfg.getLocalCodeSet());

 assert(set_local_context == LOCAL_CODE_SET);
 }

Example 11: Accessing i18n in C++ Server Code
109

CHAPTER 5 | Using Artix with International Codesets
Artix configuration settings Finally, you must also enable the i18n message interceptor in your
artix.cfg file. Example 12 shows the required settings:

Further information For more information details on writing Artix C++ applications and on Artix
contexts, see Developing Artix Applications with C++.

 catch (IT_Bus::ContextException& ex)
 {
 cout << "Error with server context" << ex.message() << endl;
 }
 catch (IT_Bus::Exception& ex)
 {
 cout << "Error with server context" << ex.message() << endl;
 }
 catch (...)
 {
 cout << "Unknown Error with server context" << endl;
 }
}

Example 11: Accessing i18n in C++ Server Code

Example 12: Artix Configuration Settings

// Add to a demo/application scope.
interceptor{
 binding:artix:client_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 binding:artix:server_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 orb_plugins = ["xmlfile_log_stream", "i18n_interceptor"];

 event_log:filters = ["*=WARN+ERROR+FATAL"];
};
110

../../prog_guide/index.htm

Routing with International Codesets
Routing with International Codesets

Overview When routing between applications, Artix attempts to correctly map
between different codesets. If both endpoints use bindings that support
internationalization (i18n), Artix uses codeset conversion. If only one of the
endpoints supports internationalization, the Artix endpoint supporting
internationalization attempts to use codeset conversion on the messages.

The following bindings do not natively support internationalization:

• Tagged

• G2++

• XML

However, for these bindings you can use the Artix i18n interceptor to
perform codeset conversion on the message buffer before it is placed on the
wire. For more details, see Artix Bindings and Transports, C++ Runtime.

Routing between
internationalized endpoints

When Artix is routing between internationalized endpoints, the receiving
endpoint and the sending endpoint both behave independently of each
other.

For example, if one endpoint of a router receives a request in Shift_JIS and
the router is configured to use ISO-8859-1, the Shift_JIS request is properly
decoded by the router.

However, when the request is passed on by the router, it is passed on in
ISO-8859-1. If the two codesets are not compatible, there is a good chance
that data will be lost in the conversion and the request will not be properly
handled.

Note: If the codesets are not compatible, and data is lost in the router,
Artix does not generate a warning.
111

../../bindings/cpp/index.html

CHAPTER 5 | Using Artix with International Codesets
Routing from
non-internationalized to
internationalized bindings

When Artix is routing from a non-internationalized endpoint to an
internationalized endpoint, it uses the default codeset specified in the
router’s configuration for writing messages to internationalized endpoints. If
the Artix router is configured to encode messages using a codeset that is
different from the one used by the endpoint, you will lose data.

For example, if a Tibco application makes a request on a Web service
through a router, the router receives non-internationalized data from the
Tibco application. And the router then writes the SOAP message using the
codeset specified in its configuration. If the Web service and the router are
both configured to write in us-dk, the operation proceeds without a problem.
The router receives the encoded response from the server and passes it back
to the Tibco binding.

However, if the Web service is configured to accept data using us-dk, and
the router is configured to encode data using Chinese, data may be lost
between the router and the Web service due to codeset incompatibility.

Routing from internationalized to
non-internationalized bindings

When Artix is routing SOAP messages to a non-SOAP endpoint, such as a
Tuxedo server on a mainframe using the fixed plug-in, Artix handles the
message transformations so that the SOAP application receives responses in
the correct codeset.

For example, a Web service client in a Chinese locale encodes its requests in
eucTW and invokes on a service that is hosted on a mainframe that is
behind an Artix router, as shown in Figure 3.

Figure 3: Routing Internationalized Requests
112

Routing with International Codesets
The Artix router would process the request as follows:

1. On receiving the SOAP request, the router inspects the XML prologue
and decodes the message using the specified codeset (in this case,
eucTW).

2. The fixed binding plug-in then writes out the message to the
mainframe service.

3. When the mainframe sends its response back to the router, the fixed
binding decodes the message and passes it back to the SOAP plug-in.

4. The SOAP plug-in inspects the message and determines the request to
that corresponds it.

5. The SOAP plug-in then encodes the message using the codeset
specified in the request (in this case, eucTW), and passes the response
to the client.
113

CHAPTER 5 | Using Artix with International Codesets
114

Part II
Deploying Artix Services

In this part This part contains the following chapters:

Deploying Services in an Artix Container page 117

Deploying an Artix Transformer page 151

Deploying a Service Chain page 163

Deploying High Availability page 171

Deploying WS-Reliable Messaging page 191
115

116

CHAPTER 6

Deploying Services
in an Artix
Container
The Artix container enables you to deploy and manage C++
and JAX-RPC services dynamically. For example, you can
deploy a new service into a running container, or perform
runtime tasks such as start, stop, and list existing services in
a container.

In this chapter This chapter discusses the following topics:

Introduction to the Artix Container page 118

Generating a Plug-in and Deployment Descriptor page 123

Running an Artix Container Server page 128

Running an Artix Container Administration Client page 132

Deploying Services on Restart page 137

Running an Artix Container as a Windows Service page 141

Debugging Plug-ins Deployed in a Container page 146
117

CHAPTER 6 | Deploying Services in an Artix Container
Introduction to the Artix Container

Overview The Artix container provides a consistent mechanism for deploying and
managing Artix services. This section provides an overview the Artix
container architecture and its main components. The Artix container is the
recommended way to deploy Artix services. To use the container, your
services should be developed as Artix plug-ins.

Artix plug-ins You can write Artix Web service implementations as C++ and JAX-RPC
plug-ins. An Artix plug-in is a code library that can be loaded into an Artix
application at runtime.

Artix provides a platform-independent framework for loading plug-ins
dynamically, based on the dynamic linking capabilities of modern operating
systems (using shared libraries, DLLs, and Java classes).

Benefits Writing your application as an Artix plug-in means that you need to write
less code, and that you can deploy your services into an Artix container.
When you deploy your service into a container, this eliminates the need to
write your own C++ or JAX-RPC server mainline. Instead, you can deploy
your service by simply passing the location of a generated deployment
descriptor to an Artix container’s administration client. This provides a
powerful programming model where the code is location independent.

In addition, the Artix container retains information about the services that it
deploys. This enables the container to reload services dynamically when it
restarts.

Main components The Artix container architecture includes the following main components:

• Artix container server

• Artix container service

• Artix service plug-in

• Artix deployment descriptor

• Artix container administration client

• WSDL contract
118

Introduction to the Artix Container
How it works Figure 4 shows an simple overview of how the main Artix container
components interact. Some user-defined service plug-ins are deployed into
an Artix container server, along with an Artix container service.

When the Artix container service is running, you can then use a container
administration client to communicate with it at runtime. This client enables
you to deploy and manage your services dynamically.

An Artix container service can run inside any Artix bus. Because it is
implemented as an Artix plug-in, it can be loaded into any application. The
recommended approach is to deploy it into an Artix container server, as
shown in Figure 4.

Figure 4: Artix Container Architecture
119

CHAPTER 6 | Deploying Services in an Artix Container
Artix container server An Artix container server is a simple Artix application that hosts the
container service. It consists of a server mainline that initializes a bus and
loads the Artix container service, which enables you to remotely deploy and
manage your services.

You can run an Artix container server using the it_container command. If
your application requires some configuration, you can start an Artix
container server with a configuration scope. For more details, see “Running
an Artix Container Server” on page 128.

Artix deployment descriptor When deploying a user-defined service into an Artix container, you must
pass in a generated Artix deployment descriptor. This is a simple XML file
that specifies the details such as:

• Service name.

• Plug-in that implements the service.

• Whether the plug-in is C++ or JAX-RPC.

You can generate a C++ or JAX-RPC deployment descriptor by using Artix
code generation commands. For more details, see “Generating a Plug-in and
Deployment Descriptor” on page 123.

Artix container service The Artix container service is a remote interface that supports the following
operations:

• List all services in the application.

• Stop a running service.

• Start a dormant service.

• Remove a service.

• Deploy a new service.

• Get an endpoint reference for a service.

• Get the WSDL for a service.

• Get the URL to a service’s WSDL.

• Shut down the container service.

When an Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.
120

Introduction to the Artix Container
The Artix container service assumes that the plug-ins are available in your
application environment, so you must ensure that they are in the expected
library path. The Artix container service supports C++ and JAX-RPC
applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so can be used
with any binding or transport.

Artix container administration
client

Because the Artix container service has a WSDL-based interface with a
SOAP/HTTP binding, you can communicate with it using any client. Artix
provides a command-line tool that uses the Artix container stub code, and
which enables you to manage the container service easily. The Artix
container administration client currently supports SOAP/HTTP only.

You can run an Artix container administration client using the
it_container_admin command. This client makes all the container service
operations available through simple command-line options. For more
details, see “Running an Artix Container Administration Client” on
page 132.

Multiple Artix services and
containers

You can deploy single or multiple Artix services in a single Artix container.
How many containers you should have depends on the needs of your
system. In general, it is recommended that you deploy services that need to
co-exist into the same container. Otherwise, you should partition your
services into different Artix containers.

Artix container demos The following demos in your Artix installation show use of the Artix
container:

• ...\samples\advanced\container\deploy_plugin

This shows how starting with a .wsdl file, you can use the artix
wsdltocpp or wsdltojava command-line tool to generate a C++ or
JAX-RPC plug-in and deployment descriptor. It then shows how to
deploy the plug-in into the Artix container.
121

CHAPTER 6 | Deploying Services in an Artix Container
• ...\samples\advanced\container\deploy_routes

This shows how routes are simply advanced services that happen to be
implemented by the router plug-in, and whose implementation is just a
proxy to a different service. It shows how you can dynamically deploy
and manage routes in the Artix container.

• ...\samples\advanced\container\secure_container

This shows how to run a container server in a secure mode with client
authentication and authorization. It shows how to restart a service in
secure mode, and how to shutdown a container by requesting a user
name and password from a console. For details of securing a
container, see the Artix Security Guide.

Several other advanced Artix demos also use the Artix container, for
example:

• ...\samples\advanced\locator
• ...\samples\advanced\session_management
• ...\samples\routing
122

../../security_guide/index.htm

Generating a Plug-in and Deployment Descriptor
Generating a Plug-in and Deployment
Descriptor

Overview Artix services are implemented by C++ or JAX-RPC plug-ins. When you
want to deploy a service into an Artix container, the first step is to generate
a plug-in from a WSDL contract.

For a C++ service, this generates a dynamic library (Windows), or shared
library (UNIX), and a dependencies file. For a JAX-RPC service, this
generates the Java classes required to implement the plug-in. An XML
deployment descriptor is also generated for both C++ and JAX-RPC service.
You can generate a plug-in and deployment descriptor using any of the
following commands:

• wsdltocpp
• wsdltojava
• wsdd

Using wsdltocpp For example, to generate a C++ plug-in library and a deployment descriptor
for a specified .wsdl file, use the following command:

The -plugin and -deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_cpp_bus_plugin). If a name is specified, the generated
plug-in library uses this name. The name is ignored if the .wsdl file contains
more than one service definition. If no plug-in name is set or ignored, the
plug-in name takes the following format: ServiceNamePortTypeName.

wsdltocpp -n deploy_plugin -impl -server -m NMAKE:library
-plugin:it_simple_service_cpp_bus_plugin -deployable simple_service.wsdl
123

CHAPTER 6 | Deploying Services in an Artix Container
In this example, -impl generates the skeleton code for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -m generates a makefile.

For full details on using the wsdltocpp command, see the Artix Command
Line Reference, or Developing Artix Applications in C++.

C++ deployment descriptor

The deployment descriptor generated for the example C++ service is as
follows:

The type element tells the Artix container that this is a C++ service.

Using wsdltojava For example, to generate a JAX-RPC plug-in library and a deployment
descriptor for a specified .wsdl file, use the following command:

The -plugin and deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.The name of the Java class that implements the
plug-in factory is derived from the port type name in the WSDL file.

In this example, -impl generates the skeleton class for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -ant generates an Ant build.xml file.

For more details on using the wsdltojava command, see the Artix
Command Reference, or Developing Artix Applications with JAX-RPC.

Note: You specify all as the make target; the default target does not
generate the dependencies file (.dps).

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_cpp_bus_plugin</name>
 <type>Cxx</type>
 </plugin>
</m1:deploymentDescriptor>

wsdltojava -impl -server -ant -plugin -deployable simple_service.wsdl
124

../../command_ref/index.html
../../command_ref/index.html
../../prog_guide/index.htm
../../command_ref/index.html
../../command_ref/index.html
../../jaxrpc_pguide/index.html

Generating a Plug-in and Deployment Descriptor
Java deployment descriptor

The deployment descriptor generated for the example Java service is as
follows:

The type element tells the Artix container that this is a Java service.

Using wsdd For more complex deployment descriptors, you can use the Web services
deployment descriptor (wsdd) command as an alternative to wsdltocpp and
wsdltojava.

The descriptors generated by artix wsdltocpp and wsdltojava do not
include all the possible information that descriptors can have—for example,
provider_namespace (see the advanced/container/deploy_routes demo).

The following example uses the wsdd command:

The full syntax of the wsdd command is as follows:

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>

wsdd -service {http://www.iona.com/test}CustomService
-pluginName testplugin -pluginType Cxx

wsdd -service QName -pluginName PluginName -pluginType Cxx|Java
[-pluginImpl Library/ClassName] [-pluginDir Dir] [-wsdlurl
WsdlLocation] [-provider ProviderNamespace] [-file
OutputFile] [-d OutputDir] [-h] [-v] [-verbose] [-quiet]
125

CHAPTER 6 | Deploying Services in an Artix Container
The following arguments are required:

The following arguments are optional:

Table 13: Required Arguments to wsdd

-service QName Specifies the name of a service to be
deployed.

-pluginName PluginName Specifies the name that a plug-in is
registered as.

-pluginType Cxx|Java Specifies the name of a plug-in type.

Table 14: Optional Arguments to wsdd

-pluginImpl
Library/ClassName

Specifies either a library name (.dll/.so)
for a C++ plug-in, or a class name of the
plug-in factory for JAX-RPC plug-ins

-pluginDir Dir Specifies the location where plug-in
library/classes are located. This option, if
specified, has no effect on deployment.

-wsdlurl WsdlLocation Specifies a URL to a service WSDL.

-provider
ProviderNamespace

Specifies the provider namespace. Used in
the container/deploy_routes demo. For
example, this can be used by plug-ins to
provide servant implementations for more
than one service.

-file OutputFile Specifies the name of the generated
descriptor file. The default is
deployserviceLocalName. For example, if
-service
{http://www.iona.com/test}CustomServic
e is used, it is deployCustomService.xml

-d OutputDir The location where a descriptor should be
generated.

-h[elp] Displays detailed help information for each
option.
126

Generating a Plug-in and Deployment Descriptor
Adding business logic For both C++ and JAX-RPC applications, you must still add your business
logic code to the servant implementation class.

The supplied Artix demos include a fully implemented servant file instead of
the generated file.

Artix deployment descriptors As well as hosting user-defined services, an Artix container can be used to
host Artix services such as the locator. The following is an example
generated deployment descriptor for the locator service:

For details on deploying a locator in the container, see the Artix Locator
Guide.

-v[ersion] Displays the version of the tool.

-verbose Displays output in verbose mode.

-quiet Displays output in quiet mode.

Table 14: Optional Arguments to wsdd

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>
127

../../locator_guide/index.htm
../../locator_guide/index.htm

CHAPTER 6 | Deploying Services in an Artix Container
Running an Artix Container Server

Overview An Artix container server is an Artix server mainline that initializes an Artix
bus, and loads an Artix container service.

As well as hosting your own service plug-ins, the Artix container server can
also be used to host Artix services, such as the locator, session manager,
router, and so on. You can run as many instances of the Artix container
server as your applications require.

This section explains how to run an Artix container server process using the
it_container command.

it_container command To run an Artix container server, use the it_container command. This has
the following syntax:

it_container [-s[ervice] Options] [-d[aemon]] [-p[ort]
PortNumber] [-publish [-file Filename]] [-deploy
DeploymentDescriptor] [-deployfolder] [-env Name=Value]
[-v[ersion]] [-h[elp]]

-s[ervice] On Windows, runs the container server as a
Windows service. Without this parameter, it
runs in foreground. See “Running an Artix
Container as a Windows Service” on
page 141.

-d[aemon] On UNIX, runs the container server as a
daemon in the background. Without this
parameter, it runs in the foreground.

-p[ort] PortNumber Specifies the port number for the container
service. There is no default port number.

-publish [-file Filename] Specifies the location to export the container
service URL. By default, this is
/ContainerService.url. You can override
the default using -file.
128

Running an Artix Container Server
Running the container server in
the background

On UNIX, to run a container server in the background, use the it_container
-daemon command.

If the -daemon option is not specified, the container server runs in the
foreground of the active command window. This option does not apply on
Windows.

Publishing the container service
URL in a file

To publish a container service URL, use the -publish option, for example:

The -publish option tells the container server to publish the container
service URL in a local file. This URL can then be later retrieved by the
it_container_admin command, which uses it to contact the container
service, and initialize a container service client proxy.

By default, a ContainerService.url file is created in the local directory.
Use the -file option to override this behavior.

-deploy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with the
container service (see “Using the
it_container_admin command” on
page 132).

-deployfolder Path Specifies the location of a local folder to store
deployment descriptors. This enables
redeployment of existing services on restart
(see “Deploying Services on Restart” on
page 137).

-env Name=Value Specifies arguments passed to the container
server process such as environment variables
(see “Specifying arguments to the container
server” on page 131).

-v[ersion] Prints version information and exits.

-h[elp] Prints usage summary and exits.

it_container -publish -file
my_directory/my_container_service.url
129

CHAPTER 6 | Deploying Services in an Artix Container
Running the container server on a
specified port

To run a container server on a specific port, specify the -port option, for
example:

This port is used for the container service. This is also the port for the
wsdl_publish plug-in. The container administrative client uses
wsdl_publish to get contracts for the container service and for all other
services hosted by the container.

This port number can then be used by a container service administration
client when contacting the container server, for example:

Specifying configuration to the
container server

You can run it_container without any configuration, and this is sufficient
for many simple applications. However, if your application requires
additional settings, you can start it_container with command-line
configuration.

For simple applications, the container server loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container with command-line configuration.

The following example is from the ..samples\advanced\locator demo and
shows running the locator service in the container server:

In this example, the locator service picks up specific configuration from its
demo.locator.service scope. For more details, see the demos for the
locator, session manager, and router.

it_container -port 1111
it_container -port 2222

it_container_admin -port 1111

it_container -BUSname demo.locator.service -BUSdomain_name
locator -BUSconfig_domains_dir ../../etc -publish -file
../../etc/ContainerService.url
130

Running an Artix Container Server
Specifying arguments to the
container server

You can use the -env option to specify arguments passed to the container
server process as follows:

All arguments passed to the container process are set before Bus::init() is
called.

For example, you can use the -env option to set environment variables as
follows:

You can specify the -env option multiple times to add more than one change
to the environment, for example:

See also “Installing a container as a Windows service” on page 143

it_container �env foo=bar

it_container -env PATH="c:\myApp;%PATH%"

it_container �env foo=bar �env foo2=bar2 �env foo3=bar3

Note: Due to operating system dependent limitations, not all environment
variables can be set on all platforms (for example, LD_LIBRARY_PATH on
Solaris).
131

CHAPTER 6 | Deploying Services in an Artix Container
Running an Artix Container Administration
Client

Overview This section explains how to use the Artix container administration client to
perform tasks such as deploying a generated plug-in into the Artix container
server, and retrieving a service URL. It explains the full syntax of the
it_container_admin command, which is used to control the Artix container
administration client.

Using the it_container_admin
command

The full syntax for the it_container_admin command is as follows:

-deploy -file dd.xml Deploys a new service into the container
server. This involves loading a plug-in
that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-file option.

-listservices Displays all services in the application.
Shows the state of each service (for
example, initialized, activated,
de-activated, or shutting down).

-startservice -service
{Namespace}LocalPart

Restarts the specified service that is
visible but dormant, or that has been
previously stopped.

-stopservice -service
{Namespace}LocalPart

Stops the specified running service.

-removeservice -service
{Namespace}LocalPart

Removes and undeploys all trace of the
specified service from the application.

-publishreference -service
{Namespace}LocalPart
[-file Filename]

Gets an endpoint reference for the
specified service. The -file option
publishes the reference to a local file.
This can then be used to initialize a
client application.
132

Running an Artix Container Administration Client
-publishwsdl -service
{Namespace}LocalPart
[-file Filename]

Gets the WSDL for the specified service.
The -file option publishes the WSDL to
a local file. This can then be used to
initialize a client application.

-publishurl -service
{Namespace}LocalPart
[-file Filename]

Gets an HTTP URL for the specified
service from which you can then
download the WSDL. The -file option
publishes the URL to a local file. This
can then be used to initialize a client
application.

-shutdown [-soft] Shuts down the entire application. The
-soft option shuts down gracefully.

-port ContainerPort Contacts the container server on the
specified port. There is no default
container port. See “Running the
container server on a specified port” on
page 130. This can be used with other
options instead of -container.

-host ContainerHostname Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The -host option is for use
with -port only.

-container File.url Runs the specified container service.
This can be used with other options
instead of -port and -host.

-getlogginglevel [-subsystem
SubSystem] [-service
{Namespace}LocalPart]

Gets the dynamic logging level for the
specified subsystem or service. See
“Dynamic Artix Logging” on page 58.

-setlogginglevel -subsystem
SubSystem -level Level
[-propagate] [-service
{Namespace}Localpart]

Sets the logging level for a specified
subsystem of a specified service. See
“Dynamic Artix Logging” on page 58.

Note: By default, it_container_admin looks in the local directory for the
ContainerService.url file. If this file is not local, use the -container
option, or the -port and -host options, to contact the container.
133

CHAPTER 6 | Deploying Services in an Artix Container
Deploying the generated plug-in To deploy a generated plug-in into the container server, use the -deploy
option, for example:

The -file option specifies a generated deployment descriptor. This lists the
service that this plug-in can provide, the plug-in name, and plug-in type. In
this example, the portable C++ plug-in library name is expected to be the
same as the plug-in name. The library is expected to be located in the
../plugin directory.

When a container service loads the plug-in, it registers a servant for the
service that is described in the deployment descriptor.

Getting service WSDL To get the WSDL for a deployed service from the container, use the
-publishwsdl option, for example:

The -publishurl option gets the service’s WSDL contract. The -file option
publishes the URL to a local file. When the client runs, it reads the
published WSDL from the local file, and uses it to initialize a client stub,
and communicate with a deployed service.

Using the -publishreference, -publishwsdl, and -publishurl options
means that you can write WSDL contracts without hard-coded ports, and
that your clients will still be able to call against them.

it_container_admin -deploy -file
../plugin/deploySimpleServiceService.xml

it_container_admin -publishwsdl -service
{http://www.iona.com/bus/demos}WellWisherService -file
my_service
134

Running an Artix Container Administration Client
Getting a service URL To get a URL for a deployed service from the container service, use the
-publishurl option, for example:

The -publishurl option gets a URL to the service’s WSDL contract. The
-file option publishes the URL to a local file. When the client runs, it reads
the published WSDL URL from the local file, and uses it to initialize a client
stub, and then communicate with a deployed service.

Listing deployed services To display a list of the services in your application, use the -listservices
option, for example:

This example shows the output listed under the it_container_admin
-listservices command. The ACTIVATED service state indicates that a
service is running and accepting requests. In this example, the -port option
is used to contact a container server that was already started on port 2222.

Service states

The possible service states are as follows:

it_container_admin -publishurl -service
{http://www.iona.com/bus/tests}SimpleServiceService -file
my_service

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService ACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

NOT_INITIALIZED Service has not yet initialized an implementation
object or work queue.

INITIALIZED A transient service state. A service remaining in this
state indicates that activation failed, and the service
was not removed from the bus.

ACTIVATED Service implementation object and work queue
created, listener accepting requests.

DEACTIVATED Service not accepting requests, but still in memory,
and can return to ACTIVATED state.
135

CHAPTER 6 | Deploying Services in an Artix Container
Stopping deployed services To stop a currently deployed service, use the -stopservice option, for
example:

This following example shows the output from -listservices after the
service has been stopped.

The WellWisherService is now listed as DEACTIVATED.

Specifying configuration to the
administration client

You can run it_container_admin without any configuration. This is
sufficient for most simple applications. However, if your application requires
additional settings, you can start it_container_admin with command-line
configuration.

For simple applications, the container service loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container_admin with command-line
configuration.

The following example shows shutting down the locator service using the
it_container_admin -shutdown option:

For more details, see the demos for the locator, session manager, and
router.

SHUTDOWN_PENDING Service waiting to complete any pending requests, but
stopped accepting new requests.

SHUTDOWN_COMPLETE Service work queue stopped, and unloaded from
memory.

it_container_admin -port 2222 -stopservice -service
{http://www.iona.com/demos/wellwisher}WellWisherService

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService DEACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

it_container_admin -BUSdomain_name locator -BUSconfig_domains_dir
../../etc -container ../../etc/ContainerService.url -shutdown
136

Deploying Services on Restart
Deploying Services on Restart

Overview The Artix container can be configured to retain information about the service
plug-ins that it has deployed. This enables it to reload services automatically
on restart. This ability to remember deployed services is known as
persistent deployment.

To enable persistent deployment, you must configure the container to use a
local folder to store deployment descriptors. These descriptors specify what
the container should deploy at startup. The container ensures that this folder
accurately reflects what is deployed in case of a restart.

How it works To reload services that have been deployed by the container service before
shutdown, the container persists all deployment descriptors when
processing new deployment requests. The container needs to know the
location of a local folder where deployment descriptor files are saved to, and
where to read them from on restart.

The container finds the location of this folder from either:

• A command-line argument passed to the container.

• A configuration variable in an artix.cfg file.

At startup, the container looks in the configured deployment folder and
deploys the contents of the folder. It deploys all services that it finds in the
folder where possible. If any deployment fails, the container fails to start.

Note: The command-line arguments take precedence over the
configuration variables.
137

CHAPTER 6 | Deploying Services in an Artix Container
Persistent deployment modes You can configure the deployment descriptor folder for either read/write or
read-only deployment.

Dynamic read/write deployment

In this case, the container adds and removes files from the deployment
folder dynamically as services are deployed or removed from the container.
When a call to deploy a service is made, a descriptor file is added to the
folder. When a call to remove a service is made, a descriptor file is removed,
and the service is not redeployed upon restart.

Read-only deployment

The deployment descriptor folder can also be used as a read-only
initialization folder that predeploys the same required set of services after
every restart.

When a deployment folder is read-only, the container predeploys the same
set of services on restart. No deployment descriptors are removed from, or
saved into, a read only deployment folder by the container.

By making a deployment folder read-only, you can share deployment
descriptors between multiple container instances. In this scenario, you can
enable a single container instance to modify the contents of this folder, and
all container instances are affected after restart.

Enabling dynamic read/write
deployment

You can enable a read/write deployment folder using the following
command-line arguments:

Alternatively, you can set the following variable in a configuration file:

This means that the ../etc folder is used for predeploying services and
persisting new descriptors.

it_container -deployfolder ../etc

plugins:container:deployfolder="../etc";
138

Deploying Services on Restart
Enabling read-only deployment You can enable a read-only deployment folder using the following
command-line arguments:

Alternatively, you can set the following variables in a configuration file:

This means that the ../etc folder is used for predeploying services only.

Predeploying a service on startup The it_container command also provides a -deploy argument, which can
be used to predeploy a single service on startup, for example:

The -deploy and -deployfolder arguments can be used together, for
example:

This means that MyService identified by deployMyService.xml, and all
services identified by descriptors in the ../etc folder, are deployed. The
deployMyService.xml that is specified using the -deploy argument is not
copied into a deployment folder. If you wish to copy a descriptor to the
deployment folder, use the following command:

Naming conventions The Artix container uses the following format when persisting deployment
descriptors into files:

You should follow the same pattern when generating custom descriptors
where possible. The container expects that all files in the deployment folder
that have the .xml extension are valid deployment descriptors.

it_container -deployfolder -readonly ../etc

plugins:container:deployfolder="../etc";
plugins:container:deployfolder:readonly="true";

it_container -deploy deployCORBAService.xml

it_container -deploy deployMyService.xml -deployfolder ../etc

it_container_admin -deploy -file deployMyService.xml
-deployfolder -deployfolder ../etc

deployLocalServiceName.xml
139

CHAPTER 6 | Deploying Services in an Artix Container
By default, deployment descriptors generated by Artix tools use the name of
the service’s local part. If you have two services with the same local part but
different namespaces, you should use the wsdd -file option to avoid the
name clashing. For more details, see “Using wsdd” on page 125.

Removing a service When using a read/write deployment folder, you can remove a service by
calling it_container_admin -removeservice on a running container. For
example:

Alternatively, you can remove the deployment descriptor file from the folder.
Both of these approaches ensure that the container does not reload the
service at startup.

When using a read-only folder, removing a service using -removeservice
does not prevent it from being redeployed after a restart. Only removing a
descriptor file from the folder prevents it from being redeployed.

Warnings and exceptions It is possible that using different descriptors might lead to the container
attempting to deploy the same service twice.

In this case, the container logs a warning message and proceeds with
deploying other services. An exception is thrown if an attempt to deploy the
same service is made from an administration console.

Further information For a working example of persistent deployment, see the following Artix
demo:

.../samples/advanced/container/deploy_plugin

it_container_admin -removeservice -service
{http://www.iona.com/bus/tests}SimpleServiceService

Note: Copying or removing files from the deployment folder has no
impact if the container is already running. The container cannot react to
these events. The contents of the folder is read once at startup. This only
applies to services that are started using deployment descriptors.
140

Running an Artix Container as a Windows Service
Running an Artix Container as a Windows
Service

Overview On Windows, you can install instances of an Artix container server as a
Windows service. By default, this means that the installed container will
start up when your system restarts.

This feature also enables you to manage the container using the Windows
service controls. For example, you can start or stop a container using the
Windows Control Panel, or Windows net commands, such as net stop
ServiceName.

Format of service names When a container is installed as a Windows service, the container name
takes the following format in the Windows registry:

For example, if you call your service test_service, the name generated by
the install command that appears in the registry is:

This name is stored under the following entry in the registry:

Setting your environment
variables

Before installing the Artix container as a Windows service, you must ensure
that your system environment variables have been set correctly, and that
your machine has rebooted. These steps can be performed either when
installing Artix, or at any time prior to installing the container as a Windows
service.

Your environment variables enable the container to find all the information it
needs on restart. They must be set as follows:

ITArtixContainer ServiceName

ITArtixContainer test_service

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
141

CHAPTER 6 | Deploying Services in an Artix Container
Environment
Variable

Setting

IT_PRODUCT_DIR Your Artix installation directory (for example,
c:\artix).

Note: This is needed only if your PATH specifies
%IT_PRODUCT_DIR%, instead of the full path to any
Artix directories.

PATH Should include the following:

• Any C++ plug-ins that will be deployed by
the container.

• ArtixInstallDir\cxx_java\bin.

• The JRE libraries, JDKInstallDir\jre\bin
and JDKInstallDir\jre\bin\server.

CLASSPATH Should include the following:

• Any JAX-RPC plug-ins that will be deployed
by the container. If the plug-in is packaged
in a JAR, you must list the .jar file. If
.class files are used, only the directory
needs to be listed.

• The Artix C++ runtime JAR,
ArtixInstallDir\cxx_java\lib\artix-rt.

jar

• ArtixInstallDir\etc and
ArtixInstallDir\cxx_java\etc.

• Your JDK/JRE runtime JAR (for example,
JDKInstallDir\jre\lib\rt.jar).

Note: If you used Microsoft Visual C++ 7.1 to create your service
plug-in, include the following in your PATH, in this order:

InstallDir\bin\vc71;InstallDir\bin;InstallDir\cxx_java\bin\vc71;
142

Running an Artix Container as a Windows Service
Installing a container as a
Windows service

To install a container as a Windows service, use the it_container
-service install command:

These parameters are described as follows:

In addition to these -service install parameters, the following
it_container parameters also apply:

it_container -service install [-BUSParamName [ParamValue]]
-displayname Name -svcName ServiceName

-BUSParamName Represents zero or more -BUSParamName command-line
options (for example, -BUSlicense_file). These
specify the location of the Artix license file, domain
name, configuration directory, or Artix bus name.

These values must be specified either as command-line
parameters or environment variables. However,
specifying on the command line allows easier
deployment of multiple it_container instances as
multiple Windows services.

-displayname Specifies the name that is displayed in the Windows
Services dialog (select Start|Settings|Control
Panel|Application Tools|Services). The -displayname
parameter is required.

-svcName Specifies the service name that is listed in the Windows
registry (select Start|Run, and type regedit). The
-svcName parameter is required.

-port Specifies the port that the container will run on (see
“Running the container server on a specified port” on
page 130). This parameter is required.

-deployfolder Specifies a local folder to store deployment descriptors.
This enables redeployment on startup (see “Deploying
Services on Restart” on page 137). This parameter is
optional.

-env Name=Value Specifies arguments passed to the container process,
which are also passed to the Windows service
command line. For example, -env
PATH="c:\myApp;%PATH%". See “Specifying arguments
to the container server” on page 131
143

CHAPTER 6 | Deploying Services in an Artix Container
Example command

The following example shows all the parameters needed to install a
container instance as a Windows service:

If you do not set your license file, domain name, and configuration directory,
as environment variables, you must set them as -BUSParamName entries (the
recommended approach). The -BUSname parameter is optional.

Example service

The installed Windows service is listed in the Services dialog, as shown in
Figure 5.

it_container -service install -BUSlicense_file c:\InstallDir\etc\licenses.txt
-BUSconfig_dir c:\InstallDir\cxx_java\etc -BUSdomain_name artix
-displayName "My Test Service" -svcName my_test_service -port 2222
-deployfolder C:\deployed_files

Figure 5: Installed Windows Service
144

Running an Artix Container as a Windows Service
Clicking on My Test Service displays the properties shown in Figure 6.

After running the it_container -service install command, you must
start the services manually. However, when your computer is restarted, the
installed services are configured to restart automatically.

Uninstalling a container To uninstall a container as a Windows service, use the it_container
uninstall command.

For example:

Figure 6: Service Properties

it_container -service uninstall -svcName ServiceName

it_container -service uninstall -svcName my_artix_test
145

CHAPTER 6 | Deploying Services in an Artix Container
Debugging Plug-ins Deployed in a Container

Overview When developing and testing Artix plug-ins, you may need to debug your
plug-in code while it runs in the Artix container. This section explains how to
debug C++ and JAX-RPC plug-ins deployed in an Artix container.

Debugging Artix C++ plug-ins The easiest option is to create an empty project in your development
environment (for example, Microsoft Visual C++ or Sun Workshop), and set
up a debug session. To debug an Artix C++ plug-in, perform the following
steps:

1. Start your development tool from an environment that is initialized for
Artix (for example, a shell that has already run the artix_env script).

2. When configuring the debug session, provide the same details for the
executable and parameters as when starting the Artix container from
command line. Figure 7 shows a Visual C++ example based on the
Artix hello_world_soap_http demo.

Figure 7: Project Settings in Visual C++
146

Debugging Plug-ins Deployed in a Container
3. Load the application plug-in source code into your development
environment, and set the breakpoints accordingly.

4. Start the debug session. On Windows, using Visual C++, starting the
debug session may raise the exception shown in Figure 8:

This is because the Artix container executable does not contain any
debug information, and as a result, Visual C++ disables all previously
set breakpoints. When the container has started in the debugger, you
may need to re-enable the breakpoints in the application code.

Debugging Artix JAX-RPC plug-ins The Artix container creates an internal Java Virtual Machine (JVM) to run
Artix JAX-RPC code. Because this JVM runs in-process with the Artix
container, unlike with C++, you can not setup a local Java debug session in
your Java development environment.

Instead, you must attach your debugger to the JVM running in the Artix
container. You can do this using the Java Platform Debugging Architecture
(JPDA), supported by most JVM implementations, and Java development
environments, such as Eclipse. JPDA must be explicitly enabled in the JVM.
For example, the following JVM options enable JPDA on port 8787:

To debug an Artix JAX-RPC plug-in, perform the following steps:

1. Instruct the Artix container to set the JVM options for the JVM that it
creates internally. You can do this by setting the Artix jvm_options
configuration variable in the artix.cfg file, as follows:

Figure 8: Visual C++ Debug Exception

-Xdebug -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y

jvm_options = ["-Xdebug", "-Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y"];
147

CHAPTER 6 | Deploying Services in an Artix Container
2. When starting the Artix container, the execution stops at the creation of
the internal JVM until a debugger attaches to the specified port. If you
do not want the JVM to halt its execution at startup, set suspend=n.

Using JDK 1.5

When using JDK 1.5, the JVM confirms the settings by logging the
following to standard output.

While the Artix container process should write:

Using JDK 1.4

When using JDK 1.4.x, this second line is not printed. However you
can confirm that a listener was created on port 8787 by using netstat
or a similar tool.

3. Create a remote debug session in your development environment and
connect to the Artix container internal JVM. This is straightforward in
Eclipse (other tools use similar approaches), as shown in Figure 8.

4. Specify the hostname and port number in the Connect tab of the
wizard.

5. Specify the directory containing the Java source code to the session
using the Source tab. This enables Eclipse to load the application
source code of your Artix plug-in.

6. Click Debug and the remote debugging session starts.

7. Set your breakpoints and test your code.

Listening for transport dt_socket at address: 8787

IONA Artix container server startingListening for transport
dt_socket at address: 8787to the console
148

Debugging Plug-ins Deployed in a Container
Further information For more information on JPDA, refer to
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/.

Figure 9: Eclipse Debug Screen
149

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

CHAPTER 6 | Deploying Services in an Artix Container
150

CHAPTER 7

Deploying an Artix
Transformer
Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

In this chapter This chapter discusses the following topics:

The Artix Transformer page 152

Standalone Deployment page 155

Deployment as Part of a Chain page 158

Optional Configuration page 161
151

CHAPTER 7 | Deploying an Artix Transformer
The Artix Transformer

Overview The Artix transformer provides a means of processing messages without
writing application code. The transformer processes messages based on
XSLT scripts and returns the result to the requesting application. XSLT
stands for Extensible Stylesheet Language Transformations.

These XLST scripts can perform message transformations, such as
concatenating two string fields, reordering the fields of a complex type, and
truncating values to a given number of decimal places. XSLT scripts can also
be used to validate data before passing it onto a Web service for processing,
and a number of other applications.

Deployment Patterns The Artix transformer is implemented as an Artix plug-in. Therefore, it can
be loaded into any Artix process. This makes it extremely flexible in how it
can be deployed in your environment. If the speed of calls or security is an
issue, the transformer can be loaded directly into an application. If you need
to spread resources across a number of machines, the transformer plug-in
can be loaded in a separate process.

There are two main patterns for deploying the Artix transformer:

• Standalone deployment

• Deployment as part of a chain

Standalone deployment The first pattern is to deploy the transformer by itself. This is useful if your
application is doing basic data manipulation that can be described in an
XSLT script. The transformer replaces the server process and saves you the
cost of developing server application code. This style of deployment can also
be useful for performing data validation before passing requests to a server
for processing.
152

The Artix Transformer
The most straightforward way to deploy the transformer is to deploy it as a
separate servant process hosted by the Artix container server. When
deployed in this way the transformer receives requests from a client,
processes the message based on supplied XSLT scripts, and replies with the
results of the script. In this configuration, shown Figure 10, the transformer
becomes the server process in the Artix solution.

You can modify the deployment pattern shown in Figure 10 by eliminating
the Artix container server and having your client directly load the
transformer’s plug-in as shown in Figure 11. This saves the overhead of
making calls outside of the client process to reach the transformer However,
it can reduce the overall efficiency of your system if the transformer requires
a large amount of resources to perform its work.

Figure 10: Artix Transformer Deployed as a Servant

Figure 11: Artix Transformer Loaded by a Client
153

CHAPTER 7 | Deploying an Artix Transformer
Deployment as part of a chain The second pattern is to deploy the Artix transformer as part of a Web
service chain controlled by the Web service chain builder. This deployment
is useful if you need to connect legacy clients to updated servers whose
interfaces may have changed or are connecting applications that have
different interfaces. It can also be useful for a range of applications where
data transformation is needed as part of a larger set of business logic.

Figure 12 shows an example of this type of deployment where the
transformer and the chain builder are both hosted by the Artix container
server. The chain builder directs the requests to the transformer which
transforms messages. When the transformer returns the processed data, the
chain builder then passes it onto the server. In this example, the server
returns the results to the client without further processing, but the results
can also be passed back through the transformer. Neither the client nor the
server need to be aware of the processing.

You could modify this deployment pattern in a number of ways, depending
on how you allocate resources. For example, you can configure the client
process to load the chain builder and the transformer. You can also load the
chain builder and the transformer into separate processes.

Figure 12: Artix Transformer Deployed with the Chain Builder
154

Standalone Deployment
Standalone Deployment

Overview To deploy an instance of the Artix transformer you must first decide what
process is hosting the transformer’s plug-in. You must then add the
following to the process configuration scope:

• The transformer plug-in, xslt.

• An Artix endpoint configuration to represent the transformer.

• The transformer’s configuration information.

Updating the orb_plugins list Configuring the application to load the transformer requires adding it to the
application’s orb_plugins list. The plug-in name for the transformer is xslt.
Example 13 shows an orb_plugins list for a process hosting the
transformer.

Adding an Artix endpoint
definition

The transformer is defined as a generic Artix endpoint. To instantiate it as a
servant, Artix must know the following details:

• The location of the Artix contract that defines the transformer’s
endpoint.

• The interface that the endpoint implements.

• The physical details of its instantiation.

This information is configured using the configuration variables in the
artix:endpoint namespace. These variables are described in Table 15.

Example 13: Plug-in List for Using XSLT

orb_plugins={"xslt", "xml_log_stream"};

Table 15: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint_list Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint:endpoint_name:wsdl_location Specifies the location of the contract describing this
endpoint.
155

CHAPTER 7 | Deploying an Artix Transformer
Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate
itself as a servant process and perform its work.

• Configuring the list of servants.

• Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is
specified in plugins:xslt:servant_list. The endpoint identifier is one of
the endpoints defined in artix:endpoint:endpoint_list entry. The
transformer uses the endpoint’s configuration information to instantiate the
appropriate servants

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is
specified in plugins:xslt:endpoint_name:operation_map. Each endpoint
specified in the servant list has a corresponding operation map entry. The
operation map is specified as a list using the syntax shown in Example 14.

artix:endpoint:endpoint_name:wsdl_port Specifies the port that this endpoint can be
contacted on. Use the following syntax:

[{service_qname}]service_name[/port_name]

For example:

{http://www.mycorp.com}my_service/my_port

Table 15: Artix Endpoint Configuration

Variable Function

Note: artix:endpoint:endpoint_list must be specified in the same
configuration scope.

Example 14: Operation Map Syntax

plugins:xslt:endpoint_name:operantion_map = ["wsdlOp1@filename1"
, "wsdlOp2@filename2", ..., "wsdlOpN@filenameN"];
156

Standalone Deployment
Each entry in the map specifies a logical operation that is defined in the
service’s contract by an operation element, and the XSLT script to run
when a request is made on the operation. You must specify an XSLT script
for every operation defined for the endpoint. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

Configuration example Example 15 shows the configuration scope of an Artix application,
transformer, that loads the Artix Transformer to process messages. The
transformer is configured as an Artix endpoint named hannibal and the
transformer uses the endpoint information to instantiate a servant to handle
requests.

Example 15: Configuration for Using the Artix Transformer

transformer
{
orb_plugins = ["local_log_stream","xslt"];

artix:endpoint:endpoint_list = ["hannibal"];

artix:endpoint:hannibal:wsdl_location = "transformer.wsdl";
artix:endpoint:hannibal:wsdl_port = "{http://transformer.com/xslt}WhiteHat/WhitePort";

plugins:xslt:servant_list=["hannibal"]
plugins:xslt:hannibal:operation_map = ["op1@../script/op1.xsl", "op2@../script/op2.xsl",

"op3@../script/op3.xsl"]
}

157

CHAPTER 7 | Deploying an Artix Transformer
Deployment as Part of a Chain

Overview Deploying the Artix Transformer as part of Web service chain allows you to
use it as part of an integration solution without needing to necessarily
modify your applications. The Artix Web service chain builder facilitates the
placement of the transformer into a series of Web service calls managed by
Artix.

The plug-in architecture of the transformer and the chain builder allow for
you to deploy this type of solution in a variety of ways depending on what is
the best fit for your particular solution. The most straightforward way to
deploy this type of solution is to deploy both the transformer and the chain
builder into the same process. This is the deployment that will be used to
outline the steps for configuring the transformer to be deployed as part of a
Web service chain. In general, you will need to complete all of the same
steps regardless of how you choose to deploy your solution.

Procedure To deploy the transformer as part of a Web service chain you need to
complete the following steps:

1. Modify your process’s configuration scope to load the transformer and
the chain builder.

2. Configure Artix endpoints for each of the applications that will be part
of the chain.

3. Configure an Artix endpoint to represent the transformer.

4. Configure the transformer.

5. Configure the service chain to include the transformer at the
appropriate place in the chain.
158

Deployment as Part of a Chain
Updating the orb_plugins list Configuring the application to load the transformer plug-in and the chain
builder plug-in requires adding them to the process’s orb_plugins list. The
plug-in name for the transformer is xslt and the plug-in name for the chain
builder is ws_chain. Example 16 shows an orb_plugins list for a process
hosting the transformer and the chain builder.

Configuring the endpoints in the
chain

The Artix Web service chain builder uses generic Artix endpoints to
represent all of the applications in a chain, including the transformer.
Table 15 on page 155 shows the configuration variables used to configure a
generic Artix endpoint.

Configuring the transformer The transformer requires the same configuration information regardless of
how it is deployed. You must provide it with the name of the endpoints it
will instantiate from the list of endpoints and provide each instantiation with
an operation map. For more information about providing this information
see “Configuring the transformer” on page 156.

Placing the transformer in the
chain

The chain builder instantiates a servant for each endpoint specified in its
servant list. Each servant can have a multiple operations. For each operation
that will be involved in a Web service chain, you need to specify a list of
endpoints and their operations that make up the chain. This list is specified
using plugins:chain:endpoint_name:operation_name:service_chain.

To include the transformer in one of the chains, you add the appropriate
operation and endpoint names for the transformer at the appropriate place
in the service chain.

For more information on configuring the chain builder see “Deploying a
Service Chain” on page 163.

Configuration example Example 17 shows a configuration scope that contains configuration
information for deploying the transformer as part of a Web service chain.

Example 16: Loading the Artix Transformer as Part of a Chain

orb_plugins={"xslt", "ws_chain", "xml_log_stream"};
159

CHAPTER 7 | Deploying an Artix Transformer
Example 17: Configuring the Artix Transformer in a Web Service Chain

transformer
{
 orb_plugins = ["ws_chain", "xslt"];

 event_log:filters = ["*=FATAL+ERROR+WARNING", "IT_XSLT=*"];

 bus:qname_alias:oldClient = "{http://bank.com}ATM";
 bus:initial_contract:url:oldClient = "bank.wsdl";

 bus:qname_alias:newServer = "{http://bank.com}newATM";
 bus:initial_contract:url:newServer = "bank.wsdl";

 artix:endpoint:endpoint_list = ["transformer"];

 artix:endpoint:transformer:wsdl_location = "bank.wsdl";
 artix:endpoint:transformer:wsdl_port =

"{http://bank.com}transformer/transformer_port";

 plugins:xslt:servant_list = ["transformer"];
 plugins:xslt:transformer:operation_map =

["transform@transformer.xsl"];

 plugins:chain:servant_list = ["oldClient"];
 plugins:chain:oldClient:client_operation:service_chain =

["transform@transformer", "withdraw@newServer"];
};

Note: Even though a list of servants can be specified, only one servant is
currently supported in a process.
160

Optional Configuration
Optional Configuration

Overview You can also use the following optional configuration settings:

• “Specifying an XSLT trace filter”

• “Specifying message part element names”

Specifying an XSLT trace filter You can use the plugins:xslt:endpoint_name:trace_filter variable to
trace and debug the output of the XSLT engine. For example:

These settings are described as follows:

Specifying message part element
names

You can use the plugins:xslt:endpoint_name:use_element_name variable
to specify whether to use the message part element name or message part
name when performing transformations. The default value is false, which
means to use the message part name.

Using the message part element name matches the behavior of Artix
content-based routing. To use the message part element name, specify the
following setting:

plugins:xslt:endpoint_name:trace_filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT";

INPUT Traces the XML input passed to the XSLT engine.

TEMPLATE Traces template matches in the XSLT script.

ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

plugins:xslt:endpoint_name:use_element_name = "true";
161

CHAPTER 7 | Deploying an Artix Transformer
The following WSDL file extract shows an example message part element
name and part name:

The following XSL file extract shows the example part element name when
this variable is set to true:

If this variable is set to false, the part name is used instead (in this case,
client_request).

<message name="client_request_message">
 <part element="tns:client_request_type" name="client_request"/>
</message>

<xsl:template match="client_request_type">
 <xsl:value-of select="first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last_name"/>
</xsl:template>
162

CHAPTER 8

Deploying a
Service Chain
Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:

The Artix Chain Builder page 164

Configuring the Artix Chain Builder page 166
163

CHAPTER 8 | Deploying a Service Chain
The Artix Chain Builder

Overview The Artix chain builder enables you to link together a series of services into a
multi-part process. This is useful if you have processes that require a set
order of steps to complete, or if you wish to link together a number of
smaller service modules into a complex service.

Chaining services together For example, you may have four services that you wish to combine to
service requests from a single client. You can deploy a service chain like the
one shown in Figure 13.

Figure 13: Chaining Four Servers to Form a Single Service
164

The Artix Chain Builder
In this scenario, the client makes a single request and the chain builder
dispatches the request along the chain starting at Server1. The chain
builder takes the response from Server1 and passes that to the next
endpoint in the chain, Server2. This continues until the end of the chain is
reached at Server4. The chain builder then returns the finished response to
the client.

The chain builder is implemented as an Artix plug-in so it can be deployed
into any Artix process. The decision about which process that you deploy it
in depends on the complexity of your system, and also how you choose to
allocate resources for your system.

Assumptions To make the discussion of deploying the chain builder as straightforward as
possible, this chapter assumes that you are deploying it into an instance of
the Artix container server. However, the configuration steps for configuring
and deploying a chain builder are the same no matter which process you
choose to deploy it in.
165

CHAPTER 8 | Deploying a Service Chain
Configuring the Artix Chain Builder

Overview To configure the Artix chain builder, complete the following steps:

1. Add the chain builder’s plug-in to the orb_plugins list.

2. Configure all the services that are a part of the chain.

3. Configure the chain so that it knows what servants to instantiate and
the service chain for each operation implemented by the servant.

Adding the chain builder in the
orb_plugins list

Configuring the application to load the chain builder’s plug-in requires
adding it to the application’s orb_plugins list. The plug-in name for the
chain builder is ws_chain. Example 18 shows an orb_plugins list for a
process hosting the chain builder.

Configuring the services in the
chain

Each service that is a part of the chain, and the client that makes requests
through the chain service, must be configured in the chain builder’s
configuration scope. For example, you must supply the service name and
the location of its contract.

This provides the chain builder with the necessary information to instantiate
a servant that the client can make requests against. It also supplies the
information needed to make calls to the services that make up the chain.

Example 18: Plug-in List for Using a Web Service Chain

orb_plugins={"ws_chain", "xml_log_stream"};
166

Configuring the Artix Chain Builder
To configure the services in the chain, use the configuration variables in
Table 16.

Configuring the service chains The chain builder requires you to provide the following details

• A list of services that are clients to the chain builder.

• A list of operations that each client can invoke.

• Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to
instantiate, the interfaces that the servants must support, and the physical
details of how the servants are contacted. You specify this using the
plugins:chain:servant_list variable. This takes a list of service names
from the list of Artix services that you defined earlier in the configuration
scope.

Specifying the operation list

The second part of the chain builder’s configuration is a list of the operations
that each client to the chain builder can invoke. You specify this using
plugins:chain:endpoint:operation_list where endpoint refers to one of
the endpoints in the chain’s service list.

Table 16: Artix Service Configuration

Variable Function

bus:qname_alias:service Specifies a service name using the
following syntax:

{service_qname}service_name

For example:

{http://www.mycorp.com}my_service

bus:initial_contract:url:service Specifies the location of the contract
describing this service. The default is the
current working directory.
167

CHAPTER 8 | Deploying a Service Chain
plugins:chain:endpoint:operation_list takes a list of the operations that
are defined in <operation> tags in the endpoint’s contract. You must list all
of the operations for the endpoint or an exception will be thrown at runtime.
You must also be sure to enter a list of operations for each endpoint
specified in the chain’s service list.

Specifying the service chain

The third piece of the chain builder’s configuration is to specify a service
chain for every operation defined in the endpoints listed in
plugins:chain:servant_list. This is specified using the
plugins:chain:endpoint:operation:service_chain configuration variable.
The syntax for entering the service chains is shown in Example 19.

For each entry, the syntax is as follows:

Example 19: Entering a Service Chain

plugins:chain:endpoint:operation:service_chain=["op1@endpt1", "op2@endpt2", ..., "opN@endptN"];

endpoint Specifies the name of an endpoint from the chain builder’s
servant list

operation Specifies one of the operations defined by an operation entry
in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an operation entry
in the contract defining the service specified by endptN. The
operations in the service chain are invoked in the order
specified. The final result is returned back to the chain
builder which then responds to the client.
168

Configuring the Artix Chain Builder
Instantiating proxy services The chain invokes on other services, and for this reason, it instantiates proxy
services. It can instantiate proxies when the chain servant starts (the
default), or later, when a call is made. The following configuration variable
specifies to instantiate proxy services when a call is made:

This defaults to false, which means that proxies are instantiated when the
chain servant starts. However, you might not be able to instantiate proxies
when the chain servant is started because the servant to call has not
started. For example, this applies when using the Artix locator or UDDI.

Configuration example Example 17 shows the contents of a configuration scope for a process that
hosts the chain builder.

plugins:chain:init_on_first_call ="true";

Table 17: Configuration for Hosting the Artix Chain Builder

colaboration {
 orb_plugins = ["ws_chain"];

 bus:qname_alias:customer= "{http://needs.com}POC";
 bus:initial_contract:url:customer = "order.wsdl";

 bus:qname_alias:pm = "{http://ORBSrUs.com}prioritize";
 bus:initial_contract:url:pm = "manager.wsdl";

 bus:qname_alias:designer = "{http://ORBSrUs.com}design";
 bus:initial_contract:url:designer = "designer.wsdl";

 bus:qname_alias:builder = "{http://ORBSrUs.com}produce";
 bus:initial_contract:url:builder = "engineer.wsdl";

 plugins:chain:servant_list = ["customer"];

 plugins:chain:customer:requestSolution:service_chain =
 ["estimatePriority@pm", "makeSpecification@designer",
 "buildORB@builder"];
};
169

CHAPTER 8 | Deploying a Service Chain
Configuration guidelines When Web services are chained, the following rules must be obeyed:

• The input type of the chain service (in this example, customer) must
match the input of the first service in the chain (pm).

• The output type of a previous service in the chain must match the
input type of the next service in the chain.

• The output type of the last service in the chain must match the output
of the chain service.

• One configuration entry must exist for each operation in the portType
of the chain service (for example, customer). This simple example
shows only one entry, and the portType for the customer endpoint has
only one operation (requestSolution).

• The chain service can invoke only on services that have one port.

• Finally, not all operations must be configured in the chain, only those
that are invoked upon. This means that no check is made when all
operations are mapped to a chain. If a client invokes on an unmapped
operation, the chain service throws a FaultException.
170

CHAPTER 9

Deploying High
Availability
Artix uses Berkeley DB high availability to provide support for
replicated services. This chapter explains how to configure and
deploy high availability in Artix.

In this chapter This chapter discusses the following topics:

Introduction page 172

Setting up a Persistent Database page 175

Configuring Persistent Services for High Availability page 176

Configuring Locator High Availability page 180

Configuring Client-Side High Availability page 183
171

CHAPTER 9 | Deploying High Availability
Introduction

Overview Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service; and together, these act as a single logical service. Clients
invoke requests on the replicated service, and Artix routes the requests to
one of the member replicas. The routing to a replica is transparent to the
client.

How it works Artix high availability support is built on Berkeley DB, and uses its
replication features. Berkeley DB has a master-slave replica model where a
single replica is designated the master, and can process both read and write
operations from clients. All other replicas are slaves and can only process
read operations. Slaves automatically forward write requests to masters, and
masters push all updates out to slaves, as shown in Figure 14.

Figure 14: Artix Master Slave Replication
172

Introduction
Electing a master Using Artix high availability, when members of a replicated cluster start up,
they all start up as slaves. When the cluster members start talking to each
other, they hold an election to select a master.

Election protocol

The protocol for selecting a master is as follows:

1. For an election to succeed, a majority of votes must be cast. This
means that for a group of three replicas, two replicas must cast votes.
For a group of four, three replicas must cast votes; for a group of five,
three must cast votes, and so on.

2. If a slave exists with a more up-to-date database than the other slaves,
it wins the election.

3. If all the slaves have equivalent databases, the election result is based
on the configured priority for each slave. The slave with the highest
priority wins.

After the election

When a master is selected, elections stop. However, if the slaves lose
contact with the master, the remaining slaves hold a new election for
master. If a slave can not get a majority of votes, nobody is promoted.

At this point, the database remains as a slave, and keeps holding elections
until a master can be found. If this is the first time for the database to start
up, it blocks until the first election succeeds, and it can create a database
environment on disk.

If this is not the first time that the database has started up, it starts as a
slave (using the database files already on disk from its previous run), and
continues holding elections in the background anyway.

Auto-demotion

In the event of a network partition, by default, the master replica is
configured to automatically demote itself to a slave when it loses contact
with the replica cluster. This prevents the creation of duplicate masters.

Note: Because voting is done by majority, it is recommended that high
availability clusters have an odd number of members. The recommended
minimum number of replicas is three.
173

CHAPTER 9 | Deploying High Availability
Request forwarding Slave replicas automatically forward write requests to the master replica in a
cluster. Because slaves have read-only access to the underlying Berkeley DB
infrastructure, only the master can make updates to the database. This
feature works as follows:

1. When a replicated server starts up, it loads the request_forwarder
plug-in.

2. When the client invokes on the server, the request_forwarder plug-in
checks if it should forward the operation, and where to forward it to.
The server programmer indicates which operations are write operations
using an API.

3. If the server is running as a slave, it tries to forward any write
operations to the master. If no master is available, an exception is
thrown to the client, indicating that the operation cannot be processed.

Because the forwarding works as an interceptor within a plug-in, there is
minimal code impact to the user. No servant code is impacted. For details
on how to configure request forwarding, see “Specifying your orb_plugins
list” on page 177.

Setting up high availability You can configure all the necessary settings in an artix.cfg file (see
“Configuring Persistent Services for High Availability” on page 176).

Replication is supported for C++ and JAX-RPC service development, and
by the Artix locator (see “Configuring Locator High Availability” on
page 180).

Master and replicas must share
same architecture

Master and slave replicas must share the same architecture. For example, if
you configure your master service to run on a 32-bit Sparc station all
replicas must also run on a 32-bit Sparc station.
174

Setting up a Persistent Database
Setting up a Persistent Database

Overview To enable a service able to take advantage of high availability, it needs to
work with a persistent database. This is created using a C++ or JAX-RPC
API. There are no configuration steps required. The Artix configuration
variables for persistent databases are set with default values that should not
need to be changed.

Using the Persistence API Artix provides set of C++ and JAX-RPC APIs for manipulating persistent
data. For example, the C++ API uses the PersistentMap template class.
This class stores data as name value pairs. This API is defined in
it_bus_pdk\persistent_map.h.

This API enables you to perform tasks such as the following:

• Create a PersistentMap database.

• Insert data into a PersistentMap.

• Get data from a PersistentMap.

• Remove data from a PersistentMap.

For more details, see the Developing Artix Applications in C++. For details
of the JAX-RPC implementation, see Developing Artix Applications with
JAX-RPC.

Further information For detailed information on the Berkeley DB database environment, see
http://www.oracle.com/database/berkeley-db/index.html

Artix ships Berkeley DB 4.2.52. Alternatively, you can download and build
Berkeley DB to obtain additional administration tools (for example, db_dump,
db_verify, db_recover, db_stat).
175

http://www.oracle.com/database/berkeley-db/index.html
../../prog_guide/index.htm
../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm

CHAPTER 9 | Deploying High Availability
Configuring Persistent Services for High
Availability

Overview For a service to participate in a high availability cluster, it must first be
designed to use persistent maps (“Setting up a Persistent Database” on
page 175). However, services that use persistent maps are not replicated
automatically; you must configure your service to be replicated.

Configuring a service for
replication

To replicate a service, you must add a replication list to your configuration,
and then add configuration scopes for each replicated instance of your
service. Typically, you would create a scope for your replica cluster, and
then create sub-scopes for each replica. This avoids duplicating
configuration settings that are common to all replicas, and separates the
cluster from any other services configured in your domain.

Specifying a replication list To specify a cluster of replicas, use the following configuration variable:

This takes a list of replicas specified using the following syntax:

For example, the following entry configures a cluster of three replicas spread
across machines named jimi, noel, and mitch.

plugins:artix:db:replicas

ReplicaName=HostName:PortNum

plugins:artix:db:replicas=[�rep1=jimi:2000�, �rep2=mitch:3000�,
�rep3=noel:4000�];

Note: It is recommended that you set ReplicaName to the same value as
the replica’s sub-scope (see “Configuration example” on page 178).
176

Configuring Persistent Services for High Availability
Specifying your orb_plugins list Because IIOP is used for communication between replicas, you must include
the following plug-ins in your replica’s orb_plugins list:

• iiop_profile
• giop
• iiop

In addition, to enable automatic forwarding of write requests from slave to
master replicas, include the request_forwarder plug-in. You must also
specify this plug-in as a server request interceptor. The following example
shows the required configuration:

This configuration is loaded when the replica service starts up. It applies to
both C++ and JAX-RPC applications.

Specifying replica priorities In each of the sub-scopes for the replicas, you must give each replica a
priority, and configure the IIOP connection used by the replicas to conduct
elections. This involves the following configuration variables:

orb_plugins = ["xmlfile_log_stream", "local_log_stream",
"request_forwarder", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list=
"request_forwarder";

Note: To enable forwarding of write requests, programmers must have
already specified in the server code which operations can write to the
database. For details, see “Forwarding write requests” on page 188.
177

CHAPTER 9 | Deploying High Availability
Configuration example

The following example shows a simple example in an artix.cfg file:

plugins:artix:db:priority Specifies the replica priority. The
higher the priority the more likely the
replica is to be elected as master. You
should set this variable if you are using
replication.

There is no guarantee that the replica
with the highest priority is elected
master. The first consideration for
electing a master is who has the most
current database.

Note: Setting a replica priority to 0
means that the replica is never elected
master.

plugins:artix:db:iiop:port Specifies the IIOP port the replica
starts on. This entry must match the
corresponding entry in the replica list.

ha_cluster{

 plugins:artix:db:replicas = [�rep1=jimi:2000�,
�rep2=mitch:3000�, �rep3=noel:4000�];

 rep1{
 plugins:artix:db:priority = 80;
 plugins:artix:db:iiop:port = 2000;
 };
 rep2{
 plugins:artix:db:priority = 20;
 plugins:artix:db:iiop:port = 3000;
 };
 rep3{
 plugins:artix:db:priority = 0;
 plugins:artix:db:iiop:port = 4000;
 };
};
178

Configuring Persistent Services for High Availability
Configuration guidelines

You should keep the following in mind:

• By default, the DB home directory defaults to ReplicaConfigScope_db
(for example, rep1_db), where ReplicaConfigScope is the inner-most
replica configuration scope. If this directory does not already exist, it
will be created in the current working directory.

• All replicas must be represented by separate WSDL ports in the same
WSDL service contract. By default, you should specify the inner-most
replica scope as the WSDL port name (for example, rep1).

Configuring a minority master It is recommended that high availability clusters have an odd number of
members, and the recommended minimum number is three. However, it is
possible to use a cluster with two members if you specify the following
configuration:

This allows a lone slave to promote itself if it sees that the master is
unavailable. This is only allowed when the replica cluster has two members.
This variable defaults to false (which means it is not allowed by default). If
it is set to true, a slave that cannot reach its partner replica will promote
itself to master, even though it only has fifty per cent of the votes (one out of
two).

Configuring request forward
logging

You can also specify to output logging from the request_forwarder plug-in.

To do this, specify the following logging subsystem in your event log filter:

plugins:artix:db:allow_minority_master=true;

WARNING: This variable must be used with caution. If it is set to true,
and the two replicas in the cluster become separated due to a network
partition, they both end up as master. This can be very problematic
because both replicas could make database updates, and resolving those
updates later could be very difficult, if not impossible.

event_log:filters =
["IT_BUS.SERVICE.REQUEST_FORWARDER=INFO_LOW+WARN+ERROR+FATAL"];
179

CHAPTER 9 | Deploying High Availability
Configuring Locator High Availability

Overview Replicating the locator involves specifying the same configuration that you
would use for other Artix services, as described in “Configuring Persistent
Services for High Availability” on page 176. However, there are some
additional configuration variables that also apply to the locator.

Setting locator persistence To enable persistence in the locator, set the following variable:

This specifies whether the locator uses a persistent database to store
references. This defaults to false, which means that the locator uses an
in-memory map to store references.

When replicating the locator, you must set persist_data to true. If you do
not, replication is not enabled.

Setting load balancing When persist_data is set to true, the load balancing behavior of the
locator changes. By default, the locator uses a round robin method to hand
out references to services that are registered with multiple endpoints.
Setting persist_data to true causes the locator to switch from round robin
to random load balancing.

You can change the default behavior of the locator to always use random
load balancing by setting the following configuration variable:

plugins:locator:persist_data="true";

plugins:locator:selection_method = �random�;
180

Configuring Locator High Availability
Configuration example The following example shows the configuration required for a cluster of three
locator replicas.

Using multiple locator replica
groups

A highly available locator consists of a group of locators, one of which is
active. The rest are replicas, which are used only when the active locator
becomes unavailable. The locator group is represented by a locator WSDL
file that contains multiple endpoints—one for each locator. When the
ha_conf plug-in is loaded by Artix clients, it uses this WSDL file to resolve
and connect to a locator. It tries the first endpoint, and if this does not yield
a valid connection, it tries the second endpoint, and so on.

Example 20:Settings for Locator High Availability

service {
...
bus:initial_contract:url:locator = "../../../etc/locator.wsdl";

orb_plugins = ["local_log_stream", "wsdl_publish", "request_forwarder",
"service_locator", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list= "request_forwarder";

plugins:locator:persist_data = "true";

plugins:artix:db:replicas = ["Locator1=localhost:7876",
"Locator2=localhost:7877", "Locator3=localhost:7878"];

Locator1{
 plugins:artix:db:priority = "100";
 plugins:artix:db:iiop:port = "7876";
};
Locator2{
 plugins:artix:db:priority = "75";
 plugins:artix:db:iiop:port = "7877";
};
Locator3{
 plugins:artix:db:priority = "0";
 plugins:artix:db:iiop:port = "7878";
};
181

CHAPTER 9 | Deploying High Availability
Using the ha_conf plug-in, Artix client applications can failover between
locators in the same replica group. However, if you are using two separate
replica locator groups, you want your clients to try one group first, and then
the other. In this case, you can use one of the following approaches to
failover between two separate replica locator groups:

Combine the two groups

You can combine two groups by taking the locator endpoints from the
second replica group's WSDL file, and adding them to the list of endpoints in
the first replica group's WSDL file. You now have a single WSDL file that
contains all the locator endpoints. The ha_conf plug-in will try to contact
locators in the order specified in this WSDL file.

Change the configured contract

First, set your Artix configuration so that group1.wsdl is the first replica
group's WSDL file, for example:

Then if a connection cannot be made to any endpoint from this file, change
the configured WSDL file to group2.wsdl, re-initialize the bus, and try again.

In this way, by using an extra try/catch statement in the client, you can
achieve failover between two replica locator groups.

Further information For a working example of Artix locator high availability, see the
...advanced/high_availability_locator demo.

bus:initial_contract:url:locator = "group1.wsdl";
182

Configuring Client-Side High Availability
Configuring Client-Side High Availability

Overview When you have implemented a highly available service using a group of
replica servers, a suitably configured client can talk to the master replica. In
the event that the master replica fails, one of the other replicas takes over as
master, and the client fails over to one of the other replicas.

As far as the client application logic is concerned, there is no discernible
interruption to the service. This section shows how to configure the client to
use high availability features. It also explains the impact on the server.

Configuration steps In most cases, configuring high availability on the client side consists of two
steps:

• Create a service contract that specifies the replica group.

• Configure the client to use the high availability service.

Specifying the replica group in
your contract

Before your client can contact the replicas in a replica group, you must tell
the client how to contact each replica in the group. You can do this by
writing the WSDL contract for your service in a particular way.

Example 21 shows the hello_world.wsdl contract from the
...\advanced\high_availability_persistent_servers demo.

Example 21: Specifying a Replica Group in a Contract

?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
183

CHAPTER 9 | Deploying High Availability
In Example 21, the SOAPService service contains three ports, all of the
same port type. The contract specifies fixed port numbers for the endpoints.
By convention, you should ensure that the first port specified by the service
corresponds to the master server.

 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:boolean"/>
 <element name="requestType" type="xsd:string"/>
 <element name="overwrite_if_needed" type="xsd:boolean"/>
 </schema>
 </wsdl:types>
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server1">
 <soap:address location="http://localhost:9551/SOAPService/Server1"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server2">
 <soap:address location="http://localhost:9552/SOAPService/Server2"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server3">
 <soap:address location="http://localhost:9553/SOAPService/Server3"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Example 21: Specifying a Replica Group in a Contract
184

Configuring Client-Side High Availability
Configuring the client to use high
availability

To configure your client for high availability, perform the following steps:

1. In your client scope, add the high availability plug-in (ha_conf) to the
orb_plugins list. For example:

2. Configure the client so that the Artix bus can resolve the service
contract. You can do this by specifying the following configuration in
the client scope:

Alternatively, you can also do this using the -BUSservice_contract
command line parameter as follows:

For more details on configuring initial contracts, see Chapter 13.

Impact on the server In Example 21, the contract specifies three separate ports in the same
service named SOAPService. The implication is that each port is
implemented by a different process, and if one of these processes fails, the
client switches to one of the others.

client {
 orb_plugins = [...,"ha_conf"];
};

client {
 bus:qname_alias:soap_service = "{http://www.iona.com/hello_world_soap_http}SOAPService";
 bus:initial_contract:url:soap_service = "../../etc/hello_world.wsdl";
};

myclient -BUSservice_contract ../../etc/hello_world.wsdl
185

CHAPTER 9 | Deploying High Availability
Because the servers use the same contract, the server-side code must be
written so that the server can be instructed to instantiate a particular port.
Example 22 shows some relevant code. Depending on which argument the
server is started with (1, 2, or 3), it instantiates either Server1, Server2 or
Server3.

Example 22: Server Code Chooses which Port to Instantiate

//C++
String cfg_scope = "demos.high_availability_persistent_servers.server.";
String wsdl_url = "../../etc/hello_world.wsdl";
String server_number = argv[1];
String service_name = "SOAPService";
String port_name = "Server";

if (server_number == "1")
{
 cfg_scope += "one";
 port_name += "1";
}
else if (server_number == "2")
{
 cfg_scope += "two";
 port_name += "2";
}
else if (server_number == "3")
{
 cfg_scope += "three";
 port_name += "3";
}

else
{
 cerr << "Error: you must pass 1, 2 or 3 as a command line argument" <<

endl;
 return -1;
}

 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv, cfg_scope.c_str());

 IT_Bus::QName service_qname(
 "",
 service_name,
 "http://www.iona.com/hello_world_soap_http"
);
186

Configuring Client-Side High Availability
Server-side state

Client-side failover can be used with both stateful and stateless servers. If
your servers are stateful, server-side high availability must be enabled for
the servers. This has no impact on the client configuration.

If your servers are stateless, no server-side configuration is necessary.
However, your servers can share state using some other mechanism (for
example, a shared database). In this case, client-side failover can still be
used.

GreeterImpl servant(bus, service_qname, port_name, wsdl_url);

 bus->register_servant(
 servant,
 wsdl_url,
 service_qname,
 port_name
);

 cout << "Server Ready" << endl;
 IT_Bus::run();
}
catch (const IT_Bus::Exception& e)
{
 cerr << "Error occurred: " << e.message() << endl;
 return -1;
}
catch (...)
{
cerr << "Unknown exception!" << endl;
return -1;
}
return 0;

Example 22: Server Code Chooses which Port to Instantiate
187

CHAPTER 9 | Deploying High Availability
Forwarding write requests When a client sends a write request to a slave replica, the slave must
forward the write request to the master replica. The server programmer
must use the mark_as_write_operations() method specify which WSDL
operations can write to the database.

C++

The C++ function is as follows:

JAX-RPC

The method is as follows:

For a detailed example, see Developing Artix Applications in C++ and
Developing Artix Applications with JAX-RPC.

Random endpoint selection for
clients

The client-side ha_conf plug-in supports random endpoint selection. This
can be very useful if you want your client applications to pick a random
server each time they connect.

The random behavior can be applied all the time, so that the client always
picks a random server. This approach should be used if you want your
clients to be uniformly load-balanced across different servers. To use this
approach, set the following configuration:

// C++
void
mark_as_write_operations(
 const IT_Vector<IT_Bus::String> operations,
 const IT_Bus::QName& service,
 const IT_Bus::String& port,
 const IT_Bus::String& wsdl_url
) IT_THROW_DECL((DBException));

// Java
void
markAsWriteOperations(
 String[] operations,
 QName service,
 String portName,
 String wsdlUrl);

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="always";
188

../../prog_guide/index.htm

../../jaxrpc_pguide/index.htm

Configuring Client-Side High Availability
Alternatively, the random behavior can be applied only after the client loses
connectivity with the first server in the list. This approach should be used to
make your clients favour a particular server for their initial connectivity. To
use this approach, set the following configuration:

Further information For working examples of high availability in Artix, see the following demos:

• ...advanced/high_availability_persistent_servers
• ...advanced/high_availability_locator

For full details of all database environment and high availability
configuration settings, see the Artix Configuration Reference, C++ Runtime.

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="subsequent";
189

../../config_ref/cpp/index.htm

CHAPTER 9 | Deploying High Availability
190

ZCHAPTER 10

Deploying
WS-Reliable
Messaging
Artix supports Web Services Reliable Messaging (WS-RM) for
C++ and JAX-RPC applications. This chapter explains how to
deploy WS-RM in an Artix runtime environment.

In this chapter This chapter discusses the following topics:

Introduction page 192

Enabling WS-RM page 195

Configuring WS-RM Attributes page 197

Configuring WS-RM Threading page 205

Configuring WS-RM Persistence page 207
191

CHAPTER 10 | Deploying WS-Reliable Messaging
Introduction

Overview Web Services Reliable Messaging (WS-RM) is a standard protocol that
ensures the reliable delivery of messages in a distributed environment. It
enables messages to be delivered reliably between distributed applications
in the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order. Web
Services Reliable Messaging is also known as WS-ReliableMessaging.

How it works WS-RM ensures the reliable delivery of messages between a source and
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 15.

Figure 15: Web Services Reliable Messaging
192

Introduction
The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the source endpoint that
receives acknowledgements (wsrm:AcksTo endpoint).

2. The RM destination sends a CreateSequenceResponse protocol
message back to the RM source. This contains the sequence ID for the
RM sequence session.

3. The RM source adds an RM Sequence header to each message sent by
the application source. This contains the sequence ID, and a unique
message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the
RM source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination
in an exactly-once-in-order fashion.

7. The RM source retransmits a message for which it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made after a linear
interval, or an exponential backoff interval (the default behavior). For
more details, see “Configuring WS-RM Attributes” on page 197.

WS-RM delivery assurances WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. The source or destination endpoint
raises an error if reliable delivery can not be assured.

The default Artix WS-RM delivery assurance policy is ExactlyOnceInOrder.
This means that every message that is sent is delivered without duplication.
If not, an error is raised on at least one endpoint. In addition, messages are
delivered in the same order that they are sent.

Artix also supports the ExactlyOnceConcurrent and
ExactlyOnceReceivedOrder delivery assurance policies. For more details,
see “Message delivery assurance policies” on page 203.
193

CHAPTER 10 | Deploying WS-Reliable Messaging
Supported specifications Artix supports the 2005/02 version of the WS-ReliableMessaging
specification, which is based on the WS-Addressing 2004/08 specification.

Artix supports both the WS-Addressing 2004/08 specification and the
WS-Addressing 2005/03 specification. However, WS-Addressing 2004/08
must be used with WS-ReliableMessaging.

For more information on WS-Addressing, see “Configuring a WS-A Message
Exchange Pattern” on page 215.

Further information For detailed information on WS-RM, see the specification at:
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
194

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Enabling WS-RM
Enabling WS-RM

Overview This section describes the steps required to enable WS-RM in the Artix
runtime. All the necessary settings are specified in an artix.cfg file. These
settings apply to Web services implemented in both C++ and JAX-RPC.

Prerequisites When you enable WS-RM, this automatically enables a WS-Addressing
2004 Message Exchange Pattern, which is required for WS-RM. For full
details on how to manually configure WS-Addressing, see Chapter 11.

In addition, if you wish to make a two-way invocation, you must configure a
WS-RM-enabled WSDL port with a non-anonymous reply-to endpoint. For
full details, see “Configuring a non-anonymous reply-to endpoint” on
page 216.

Setting your orb_plugins list To use Artix WS-RM, you must first specify the wsrm plug-in on the
orb_plugins lists for your client and server. For example:

Note: A WS-Addressing 2004 MEP must be used with WS-RM. You can
not use a WS-Addressing 2005 MEP with WS-RM.

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "wsrm"];
195

CHAPTER 10 | Deploying WS-Reliable Messaging
Configuring WS-RM WS-RM can be enabled in an artix.cfg file either at the bus-level or a
specific WSDL port level. Port-specific configuration overrides bus-specific
configuration.

Bus configuration

To enable WS-RM for a specific bus, use the following setting:

WSDL port configuration

To enable WS-RM for a specific WSDL port, specify the WSDL service
QName and the WSDL port name, for example:

plugins:messaging_port:wsrm_enabled = "true";

plugins:messaging_port:wsrm_enabled:http://www.iona.com/bus/tests:
SOAPHTTPService:SOAPHTTPPort="true";
196

Configuring WS-RM Attributes
Configuring WS-RM Attributes

Overview You can specify various Artix WS-RM attributes in an artix.cfg file at the
bus-level or WSDL port level. Port-specific configuration overrides
bus-specific configuration. These settings apply to Web services
implemented in both C++ and JAX-RPC.

The configurable WS-RM attributes are as follows:

• “WS-RM acknowledgement endpoint URI”

• “Use replyTo endpoint for acknowledgement”

• “Use server endpoint for acknowledgement”

• “Base retransmission interval”

• “Exponential backoff for retransmission”

• “Maximum unacknowledged messages threshold”

• “Max retransmission attempts threshold”

• “Acknowledgement interval”

• “Number of messages in an RM sequence”

• “Message delivery assurance policies”

• “Per-thread RM session”

You can also set these attributes in your client code (see “Configuring
attributes in WS-RM contexts” on page 204).

WS-RM acknowledgement
endpoint URI

This attribute specifies the endpoint at which the WS-RM source receives
acknowledgements. This is also known as the wsrm:AcksTo endpoint.

The default value is the WS-A anonymous URI:

Bus configuration

The following example shows how to configure the acknowledgement
endpoint for a specific bus:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

plugins:wsrm:acknowledgement_uri =
"http://localhost:0/WSASource/DemoAcksTo/";
197

CHAPTER 10 | Deploying WS-Reliable Messaging
WSDL port configuration

The following example shows how to configure the acknowledgement
endpoint for a specific WSDL port:

Use replyTo endpoint for
acknowledgement

If a proxy is used to make two-way invocations, you can configure the proxy
so that its decoupled reply-to endpoint (wsa:replyTo), which receives the
application response, also receives acknowledgements for application
requests. In this way, the wsa:replyTo endpoint acts as a wsrm:AcksTo
endpoint.

Bus configuration

The following example shows how to configure this for a specific Artix bus:

WSDL port configuration

The following example shows how to configure this for a specific WSDL
port:

Use server endpoint for
acknowledgement

If a service is used to make two-way invocations, you can configure the
service so that the server endpoint, which receives the application request,
also receives acknowledgements for the application response. In other
words, the server acts as a wsrm:AcksTo endpoint for the reverse WS-RM
channel.

Bus configuration

The following example shows how to configure for a specific Artix bus:

plugins:wsrm:acknowledgement_uri:http://www.iona.com/bus/tests:SOAPHTTPService:
SOAPHTTPPort = "http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement =
"true";

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement:
http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement =
"true";
198

Configuring WS-RM Attributes
WSDL port configuration

The following example shows how to configure for a specific WSDL port:

Order of preference for acknowledgement endpoints

The order of preference in which a wsrm:AcksTo endpoint is chosen for a RM
source endpoint is as follows:

1. If the RM source endpoint is explicitly configured (in a configuration file
or code) to use a non-anonymous wsrm:AcksTo endpoint, it is chosen.

2. On the client-side, if the RM source endpoint is configured to use the
wsa:replyTo endpoint as wsrm:AcksTo, it is chosen for the application
request.

On the server-side, if the RM source endpoint is configured to use the
server endpoint as wsrm:AcksTo, it is chosen for the application
response.

3. If neither 1 or 2 is specified, the anonymous wsrm:AcksTo endpoint is
chosen.

Base retransmission interval This attribute specifies the interval at which a WS-RM source retransmits a
message that has not yet been acknowledged. The default value is 2000
milliseconds.

Bus configuration

The following example shows how to set the base retransmission interval for
a specific bus:

WSDL port configuration

The following example shows how to set the base retransmission interval for
a specific WSDL port:

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement:http:
//www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";

plugins:wsrm:base_retransmission_interval = "3000";

plugins:wsrm:base_retransmission_interval:http://www.iona.com/bus
/tests:SOAPHTTPService:SOAPHTTPPort = "3000";
199

CHAPTER 10 | Deploying WS-Reliable Messaging
Exponential backoff for
retransmission

This attribute determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals. The
default value is false, which means that they are attempted at exponential
intervals.

If the value is true (exponential backoff disabled), the retransmission of
unacknowledged messages is performed at the base retransmission interval.

Bus configuration

The following example shows how to set the exponential backoff for
retransmission for a specific bus:

WSDL port configuration

The following example shows how to set the exponential backoff for
retransmission for a specific WSDL port:

Maximum unacknowledged
messages threshold

This attribute specifies the maximum permissible number of
unacknowledged messages at the WS-RM source. When the WS-RM source
reaches this limit, it sends the last message with a wsrm:AckRequested
header indicating that a WS-RM acknowledgement should be sent by the
WS-RM destination as soon as possible.

In addition, when the WS-RM source has reached this limit, it does not
accept further messages from the application source. This means that the
caller thread (making the invocation on the proxy) is blocked until the
number of unacknowledged messages drops below the threshold.

The default value is -1 (no limit on number of unacknowledged messages).

Bus configuration

The following example shows how to set the maximum unacknowledged
messages threshold for a specific bus:

plugins:wsrm:disable_exponential_backoff_retransmission_interval
= "true";

plugins:wsrm:disable_exponential_backoff_retransmission_interval
:http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";

plugins:wsrm:max_unacknowledged_messages_threshold = "50";
200

Configuring WS-RM Attributes
WSDL port configuration

The following example shows how to set the maximum unacknowledged
messages threshold for a specific WSDL port:

Max retransmission attempts
threshold

This attribute specifies the maximum number of retransmission attempts
that the RM source session makes for an unacknowledged message. If the
number of retransmission attempts reaches this threshold, the RM source
session sends a wsrm:SequenceTerminated fault to the peer RM destination
session, and closes the session. Any subsequent attempt to send a message
on this session results in an IT_Bus::Exception. The default value is -1 (no
limit on the number of retransmission attempts).

Bus configuration

The following example shows how to set the maximum number of
retransmission attempts for a specific bus:

WSDL port configuration

The following example shows how to set the maximum number of
retransmission attempts for a specific WSDL port:

Acknowledgement interval This attribute specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous
acknowledgements that it sends upon receipt of an incoming message. The
default asynchronous acknowledgement interval is 3000 milliseconds.

Asynchronous acknowledgements are sent by the RM destination only if
both of the following conditions are met:

1. The RM destination is using a non-anonymous wsrm:AcksTo endpoint.

2. The RM destination is waiting for some messages to be received from
the RM source.

plugins:wsrm:max_unacknowledged_messages_threshold:http://www.iona.
com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "50";

plugins:wsrm:max_retransmission_attempts = "8";

plugins:wsrm:max_retransmission_attempts:http://www.iona.com/bus
/tests:SOAPHTTPService:SOAPHTTPPort = "8";
201

CHAPTER 10 | Deploying WS-Reliable Messaging
For example, the RM destination receives five messages with message IDs
of 1, 2, 3, 4, and 5. This means that it has received all messages up to the
highest received message (5). There are no missing messages in this case,
so the RM destination will not send an asynchronous acknowledgement.

However, take the case where the RM destination receives 5 messages with
message IDs of 1, 2, 4, 5, and 7. This means that messages 3 and 6 are
missing, and the RM destination is still waiting to receive them. This is the
case where the RM destination sends asynchronous acknowledgements.

Bus configuration

The following example shows how to set the acknowledgement interval for a
specific bus:

WSDL port configuration

The following example shows how to set the acknowledgement interval for a
specific WSDL port:

Number of messages in an RM
sequence

This attribute specifies the maximum number of user messages that are
permitted in a WS-RM sequence. The default is unlimited; and this is
sufficient is for most cases.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all the acknowledgements for
the messages previously sent. The new message is then sent using the new
sequence.

Bus configuration

The following example shows how to set the maximum number of messages
for a specific bus

Note: The RM destination still sends synchronous acknowledgements
upon receipt of a message from the RM source.

plugins:wsrm:acknowledgement_interval = "2500";

plugins:wsrm:acknowledgement_interva:http://www.iona.com/bus/tests
:SOAPHTTPService:SOAPHTTPPort = "2500";

plugins:wsrm:max_messages_per_sequence = "1";
202

Configuring WS-RM Attributes
WSDL port configuration

The following example shows how to set the maximum number of messages
for a specific WSDL port:

Message delivery assurance
policies

You can configure the RM destination to use the following delivery
assurance policies:

ExactlyOnceInOrder: The RM destination delivers the messages to the
application destination exactly once, and in increasing order of RM message
ID. The calls to the application destination are therefore serialized. This is
the default.

ExactlyOnceConcurrent: The RM destination delivers the messages to the
application destination exactly once. But instead of a serialized message
delivery (as in ExactlyOnceInOrder), messages are delivered concurrently,
so they may not be delivered in order. However, for a message with ID n
that is being delivered, all the messages in the range of 1 to n are received
and acknowledged by the RM destination.

ExactlyOnceReceivedOrder: The RM destination delivers the messages to
the application destination exactly once, and as soon as it is received from
the underlying transport. The RM destination makes no attempt to ensure
that either the messages are delivered in the order of message ID, or all the
previous messages have been received/acknowledged. The benefit of this
policy is that it avoids a context-switch during dispatch in the RM layer, and
messages are not stored in the in-memory undelivered messages map.

Bus configuration

The default delivery assurance policy is ExactlyOnceInOrder. You can
specify a different policy at bus level using the following variable:

plugins:wsrm:max_messages_per_sequence:http://www.iona.com/bus/tests
:SOAPHTTPService:SOAPHTTPPort = "1";

plugins:wsrm:delivery_assurance_policy =
"ExactlyOnceConcurrent";
203

CHAPTER 10 | Deploying WS-Reliable Messaging
WSDL port configuration

The following example shows how to set this policy at the WSDL port level:

Per-thread RM session When an RM source endpoint is concurrently invoked, by default, the RM
session is shared by all threads. However, with the per-thread RM session
attribute enabled, the RM source endpoint transparently creates a different
RM sequence session for each invoking thread.

Enabling this setting eliminates the possibility of indeterminate message ID
allocation. All messages sent by a particular thread are allocated a message
ID in increasing order. When the RM source endpoint is closed, it closes all
the open RM sequence sessions. The default value is false (disabled).

Bus configuration

The following example shows how to enable a per-thread RM session for a
specific bus:

WSDL port configuration

The following example shows how to enable a per-thread RM session for a
specific WSDL port:

Configuring attributes in WS-RM
contexts

For C++ applications, you can also specify Artix WS-RM attributes
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by another
proxy created subsequently. For full details and examples, see Developing
Artix Applications with C++.

The order of precedence for setting WS-RM attributes is as follows:

1. Configuration context (programmatic).

2. WSDL port (configuration file).

3. Artix bus (configuration file).

plugins:wsrm:delivery_assurance_policy:http://www.iona.com/bus/tests:
SOAPHTTPService:SOAPHTTPPort = "ExactlyOnceConcurrent";

plugins:wsrm:enable_per_thread_sequence_scope = "true";

plugins:wsrm:enable_per_thread_sequence_scope:http://www.iona.com
/bus/tests:SOAPHTTPService:SOAPHTTPPort = "true";
204

../../prog_guide/index.htm
../../prog_guide/index.htm

Configuring WS-RM Threading
Configuring WS-RM Threading

Overview The Artix WS-RM layer maintains a bus-specific internal thread pool. It uses
this work queue to borrow execution resources for various asynchronous
tasks. For example, these tasks include:

• Retransmission scheduling at the RM source.

• Retransmissions at the RM source.

• Asynchronous acknowledgement scheduling at the RM destination.

• Asynchronous acknowledgement at the RM destination.

• Concurrent message dispatches to the application destination.

Configuring a WS-RM thread pool You can configure the WS-RM thread pool using the following variables:

initial_threads specifies the number of initial threads in the WS-RM thread
pool. The default is:

high water mark specifies the maximum number of threads allowed in the
WS-RM thread pool. The default is:

low water mark specifies the minimum number of threads allowed in the
WS-RM thread pool. The default is:

plugins:wsrm:thread_pool:initial_threads="5";

plugins:wsrm:thread_pool:high_water_mark="-1";

plugins:wsrm:thread_pool:low_water_mark="-1";
205

CHAPTER 10 | Deploying WS-Reliable Messaging
max queue size specifies the maximum number of request items that can
be queued on the WS-RM thread work queue. The default is:

stack size specifies the stack size for each thread. The stack size is
specified in bytes. The default is:

plugins:wsrm:thread_pool:max_queue_size="-1";

plugins:wsrm:thread_pool:stack_size="OS-specificDefault
ThreadStackSize";
206

Configuring WS-RM Persistence
Configuring WS-RM Persistence

Overview The Artix WS-RM features already described in this chapter provide
reliability for cases such as network failures. Enabling WS-RM persistence
improves the Quality of Service by providing reliability across other types of
failures such as an RM source or destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints when reincarnated to
continue sending and receiving messages as before the crash.

Artix enables WS-RM persistence for at bus level in a configuration file, or in
code using an Artix context. The WS-RM persistence store implementation
uses a Berkeley DB, and is available as a separate plug-in. In addition, the
persistent store is also exposed using a C++ API. If you wish to implement
your own persistence mechanism, you can implement this API with your
preferred DB (see Developing Artix Applications with C++).

How it works Artix WS-RM persistence works as follows:

• At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

• After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that
point, the RM sequence is closed.

• At the RM destination endpoint, an incoming message is persisted,
and upon a successful store, the acknowledgement is sent. When a
message is successfully dispatched, it is evicted from the persistent
store.

• After a recovery from crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

Note: WS-RM persistence is supported for oneway calls only. It is
disabled by default.
207

../../prog_guide/index.htm

CHAPTER 10 | Deploying WS-Reliable Messaging
Enabling WS-RM persistence To enable WS-RM persistence for a specific Artix bus, perform the following
steps:

1. Add the wsrm_db plug-in to the orb_plugins list. For example:

The wsrm_db plug-in is the plug-in that implements the RM persistent
store API. The wsrm plug-in is loaded automatically when wsrm_db is
specified in the orb_plugins list.

2. Configure the Berkeley DB store used by the wsrm_db plug-in as
follows:

The default value is the current directory (.).

Further details For working examples of reliable messaging in Artix, see the
.../advanced/wsrm demo.

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "wsrm_db"];

plugins:artix:db:home = "db_directory";
208

Part III
Accessing Artix Services

In this part This part contains the following chapters:

Configuring WS-Addressing page 211

Publishing WSDL Contracts page 219

Accessing Contracts and References page 231

Accessing Services with UDDI page 253

Embedding Artix in a BEA Tuxedo Container page 259
209

210

CHAPTER 11

Configuring
WS-Addressing
Artix supports WS-Addressing for C++ and JAX-RPC
applications. This chapter explains how to configure
WS-Addressing Message Exchange Patterns in an Artix
runtime environment.

In this chapter This chapter discusses the following topics:

Introduction page 212

Configuring a WS-A Message Exchange Pattern page 215
211

CHAPTER 11 | Configuring WS-Addressing
Introduction

Overview Web Services Addressing (WS-A) provides a mechanism to identify and
locate Web services and messages, which is independent of the transports
used. This section explains the WS-Addressing Message Exchange Patterns
(MEPs) used by Artix.

WS-Addressing Message
Exchange Patterns

Artix supports WS-Addressing 2004 and 2005 Message Exchange Patterns
in SOAP message headers. These enable Artix to send a request to an
endpoint specified by a wsa:To header, and to receive a reply at an endpoint
specified by a wsa:ReplyTo header.

Anonymous URI

If a wsa:ReplyTo header is not specified, by default, Artix uses the
anonymous URI to synchronously receive the reply. For example, the
WS-Addressing 2004 anonymous URI is:

While the WS-Addressing 2005 anonymous URI is

Non-anonymous address

When a non-anonymous wsa:ReplyTo header is used, the reply is received
asynchronously at the reply-to endpoint. The reply is matched with the
request using wsa:MessageId and wsa:RelatesTo message headers. From
the user's perspective, this is still a two-way synchronous call, and the
asynchronicity is handled by Artix. For oneway calls, the reply-to endpoint is
not needed.

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

http://www.w3.org/2005/08/addressing/anonymous
212

Introduction
How it works Artix WS-A MEPs follow a typical request-response pattern. At the HTTP
connection level, when an anonymous wsa:ReplyTo header is used, the
response is returned on the same HTTP connection.

However, when a non-anonymous wsa:ReplyTo is used, the response is
returned on a separate connection. This also means that an Artix client
listens on the endpoint denoted by the wsa:ReplyTo header. The following
steps show this decoupled request-response MEP in more detail:

1. The Artix client creates an HTTP listener specified by the wsa:ReplyTo
header. If the listener can not be created, it throws an
IT_Bus::Exception.

2. The Artix client sends an HTTP request containing the application
request to the service.

3. The Artix runtime treats the application request as one-way. This
means the Artix HTTP stack expects to receive an HTTP response with
status code 202 (Accepted).

4. The Artix client receives the application response from the service as a
HTTP request on a decoupled HTTP connection.

5. The Artix runtime treats the application response as one-way and
sends back a HTTP response with status code 202 (Accepted) on the
decoupled HTTP connection.

This decoupled mechanism means there can be multiple outstanding
application requests at any time. The request and response are correlated
using wsa:MessageId and wsa:RelatesTo headers.

In addition, the requesting client thread blocks and creates a listener before
sending the request. This is important in the event of firewalls, port
conflicts, and so on.
213

CHAPTER 11 | Configuring WS-Addressing
WS-Addressing and security In a decoupled interaction, when a non-anonymous wsa:ReplyTo is used,
the security configuration for the request is the same as a normal Artix
client-server security scenario.

However, the roles are reversed for the response. The client creates an
HTTP listener corresponding to the wsa:replyTo endpoint, and the server
creates an HTTP connection to send back the response. Therefore, the
security role is reversed in this scenario. The client should be configured for
server-side security, and the server should be configured for client-side
security.

For full details of how to configure Artix client-server security, see the Artix
Security Guide.

WS-Addressing and WS-RM When WS-Reliable Messaging is enabled in the Artix runtime, this
automatically enables a WS-Addressing 2004 MEP.

For information on how to configure WS-Reliable Messaging, see
Chapter 10.

Supported specifications Artix supports both the WS-Addressing 2004/08 specification and the
WS-Addressing 2005/03 specification. However, WS-Addressing 2004/08
must be used with WS-Reliable Messaging (WS-RM).

For details of how to configure a MEP, see “Configuring a WS-A Message
Exchange Pattern” on page 215.

Further information For detailed information, see the WS-Addressing WSDL Binding
specification at:

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/

Note: A WS-Addressing 2004 MEP must be used with WS-RM. You can
not use a WS-Addressing 2005 MEP with WS-RM.
214

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
../../security/index.htm
../../security/index.htm

Configuring a WS-A Message Exchange Pattern
Configuring a WS-A Message Exchange
Pattern

Overview This section explains how to configure a WS-Addressing Message Exchange
Pattern in the Artix runtime. These configuration settings apply to Web
services implemented in both C++ and JAX-RPC.

Enabling a WS-Addressing 2004
MEP

You can enable a WS-Addressing 2004 MEP in an Artix .cfg file either at
the Artix bus-level or a specific WSDL port level. Port-specific configuration
overrides bus-specific configuration. When WS-RM is enabled, a
WS-Addressing 2004 MEP is enabled automatically (see “WS-Addressing
and WS-RM” on page 214).

Bus configuration

To enable a WS-Addressing MEP at bus level, use the following setting:

WSDL port configuration

To enable WS-A at a specific WSDL port level, specify the WSDL service
QName and the WSDL port name, for example:

Enabling a WS-Addressing 2005
MEP

Similarly, you can enable a WS-Addressing 2005 MEP in an Artix .cfg file
either at the Artix bus-level or a specific WSDL port level. Port-specific
configuration overrides bus-specific configuration.

Bus configuration

To enable a WS-Addressing MEP at bus level, use the following setting:

plugins:messaging_port:supports_wsa_mep = "true";

plugins:messaging_port:supports_wsa_mep:http://www.iona.com/bus/tests
:SOAPHTTPService:SOAPHTTPPort="true";

plugins:messaging_port:supports_wsa_2005_mep = "true";
215

CHAPTER 11 | Configuring WS-Addressing
WSDL port configuration

To enable WS-A at a specific WSDL port level, specify the WSDL service
QName and the WSDL port name, for example:

Configuring a non-anonymous
reply-to endpoint

The WS-A reply-to endpoint specifies a URI for receiving acknowledgement
messages from the destination. The scope of a reply-to endpoint is at the
proxy level. In Artix, two proxies can not share the same endpoint. This
means that each proxy has its own reply-to endpoint.

There are two ways of configuring a reply-to endpoint:

• “Setting a reply-to endpoint in configuration”

• “Setting a reply-to endpoint in a context”

Setting a reply-to endpoint in configuration

The WS-A reply-to endpoint can be set in an Artix .cfg file, at the Artix bus
level or WSDL port level.

Because reply-to endpoints must have a unique URI per-proxy, a base URI
is specified in configuration. For example, if the base URI is specified as:

And if two proxies are instantiated, the first proxy has a reply-to endpoint
whose URI is as follows:

Similarly, the second proxy has a reply-to endpoint whose URI is as follows:

plugins:messaging_port:supports_wsa_2005_mep:http://www.iona.com
/bus/tests:SOAPHTTPService:SOAPHTTPPort="true";

Note: Either WS-A 2004 or WS-A 2005 should be enabled. If both are
enabled, Artix enables WS-A 2005, and ignores WS-A 2004, and logs a
MessagingPort warning message.

plugins:messaging_port:base_replyto_url=
"http://localhost:0/WSATestClient/BaseReplyTo/";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0001";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0002";
216

Configuring a WS-A Message Exchange Pattern
Setting a reply-to endpoint in a context

For C++ applications, you can also set a WS-A reply-to endpoint
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by a proxy
created subsequently. You must also ensure that it is deleted after use. For
full details and examples, see Developing Artix Applications with C++.

Further details For detailed information, see the WS-Addressing WSDL Binding
specification at:

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
217

../../prog_guide/index.htm
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/

CHAPTER 11 | Configuring WS-Addressing
218

CHAPTER 12

Publishing WSDL
Contracts
This chapter describes how to publish WSDL files that
correspond to specific Web services. This enables clients to
access the WSDL file and invoke on the service.

In this chapter This chapter discusses the following topics:

Artix WSDL Publishing Service page 220

Configuring the WSDL Publishing Service page 222

Querying the WSDL Publishing Service page 226
219

CHAPTER 12 | Publishing WSDL Contracts
Artix WSDL Publishing Service

Overview The Artix WSDL publishing service enables Artix processes to publish WSDL
files for specific Web services. Published WSDL files can be downloaded by
other Artix processes (for example, especially clients), or viewed in a Web
browser. They can also be downloaded by Web service processes created by
other vendor tools (for example, Systinet).

The WSDL publishing service enables Artix applications to be used in
various deployment models, (for example, J2EE), without the need to
specify file system locations. It is the recommended way to publish WSDL
for Artix services.

The WSDL publishing service is implemented by the wsdl_publish plug-in.
This plug-in can be loaded by any Artix process that hosts a Web service
endpoint. This includes server applications, Artix routing applications, and
applications that expose a callback object.

Use with endpoint references It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
client must have access to the WSDL contract referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 16 shows an example of creating references with the WSDL
publishing service. The wsdl_publish plug-in automatically opens a port,
from which clients can download a copy of the server’s dynamically updated
WSDL file. Generated references have their WSDL location set to the
following URL:

Hostname is the server host, WSDLPublishPort is a TCP/IP port used to serve
up WSDL contracts, and QueryString is a string that requests a particular
WSDL contract (see “Querying the WSDL Publishing Service” on page 226).
If a client accesses the WSDL location URL, the server converts the WSDL
model to XML on the fly and returns the WSDL contract in a HTTP message.

For more details on references, see Developing Artix Applications in C++,
or Developing Artix Applications with JAX-RPC.

http://Hostname:WSDLPublishPort/QueryString
220

../../prog_guide/index.htm

../../jaxrpc_pguide/index.htm

Artix WSDL Publishing Service

Multiple transports The WSDL publishing service makes the WSDL file available through an
HTTP URL. However, the Web service described in the WSDL file can use a
transport other than HTTP.

For example, when the wsdl_publish plug-in is loaded into an Artix server
process that hosts a Web service using IIOP, it publishes the service’s
WSDL file at an HTTP URL.

Figure 16: Creating References with the WSDL Publishing Service
221

CHAPTER 12 | Publishing WSDL Contracts
Configuring the WSDL Publishing Service

Overview This section describes how to load the wsdl_publish plug-in, and configure
it to suit your needs.

Loading the wsdl_publish plug-in To load the wsdl_publish plug-in, add the wsdl_publish string to your
orb_plugins setting, in the process configuration scope. For example, if
your configuration scope is samples.server, you might use the following
orb_plugins list:

When the process starts, the WSDL file is available at an HTTP URL that
uses a TCP/IP port assigned by the operating system. This URL is
embedded in the WSDL location value in an endpoint reference. Processes
receiving the reference can download the WSDL file from this URL.
However, there is no easy way to determine the port assigned by the
operating system. This makes it difficult to view the WSDL file in a web
browser, or to open this port through a firewall. You can solve this problem
by configuring a port for publishing WSDL.

Note: In a production environment, it is strongly recommended that you
set a wsdl_publish port and hostname format.

artix.cfg

demos{
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
 ...
 };
};
222

Configuring the WSDL Publishing Service
Specifying a port for publishing
WSDL

To enable viewing of WSDL files in a web browser, configure the
wsdl_publish plug-in to use a specified port instead of a one assigned by
the operating system. The plugins:wsdl_publish:publish_port
configuration variable specifies the TCP/IP port that WSDL files are
published on. For example,

When specifying a publish_port, you must confirm that the specified port
is not already in use. If the port is in use, the server process will still start,
but the following error message will be displayed

The default value is 0, which means that the port is assigned by the
operating system at runtime.

Viewing the WSDL file in a web
browser

If you know either the wsdl_publish plug-in or the TCP/IP port used by the
service, you can view or download the WSDL file in a web browser.

In the browser address box, enter one of the following URLs, where
WSDLPublishPort is the TCP/IP port used by the wsdl_publish plug-in:

The Artix process returns a web page that lists all of its services. Click on an
entry to retrieve the corresponding WSDL file.

Alternatively, you can enter one of the following URLs, where ServicePort
is the TCP/IP port used by the Web service:

The Artix process returns the WSDL file for the service. The
http://HostNameOrIP:ServicePort/service?wsdl format is used in the
JAX-WS specification.

plugins:wsdl_publish:publish_port="2222";

ConnectionFailed on HTTP Port 2222 return 3: Unknown socket error: 0

http://HostNameOrIP:WSDLPublishPort/get_wsdl?
http://HostNameOrIP:WSDLPublishPort

http://HostNameOrIP:ServicePort/service?wsdl
http://HostNameOrIP:ServicePort/service
223

CHAPTER 12 | Publishing WSDL Contracts
Specifying a hostname format The plugins:wsdl_publish:hostname variable specifies how the hostname
is constructed in the wsdl_publish URL. This is the URL that the
wsdl_publish plug-in uses to retrieve WSDL contracts.

This variable has the following possible values:

By default, the unqualified primary hostname is used.

plugins:wsdl_publish:hostname specifies only how to construct the URL
used by the wsdl_publish plug-in to access the WSDL.

Whereas,
policies:soap:server_address_mode_policy:publish_hostname and
policies:at_http:server_address_mode_policy:publish_hostname
specify how to construct the URL in the published WSDL contract.

You must be aware of both sets of configuration entries when using the
wsdl_publish plug-in (for example, to avoid publishing a WSDL file that
does not contain a complete URL).

canonical The fully qualified hostname (for example,
http://myhost.mydomain.com).

unqualified The unqualified local hostname (for example,
http://myhost).

ipaddress The host’s IP address (for example,
http://10.1.2.3).

SecondaryHostName For multi-homed machines, the specified literal string
of a secondary hostname. Specify a logical name or a
virtual IP address (for example,
http://myhost.mydomain.com or http://10.1.2.3).
Any leading or trailing white spaces are stripped out.

Note: This variable should not be confused with the following:

• policies:soap:server_address_mode_policy:publish_hostname
• policies:at_http:server_address_mode_policy:publish_hostname

These specify how endpoint URLs are published in WSDL contracts.
224

Configuring the WSDL Publishing Service
Specifying WSDL preprocessing You can use the plugins:wsdl_publish:processor variable to specify the
kind of preprocessing done before publishing a WSDL contract.

Because published contracts are intended for client consumption, by
default, all server-side WSDL artifacts are removed from the published
contract. You can also specify to remove all IONA-specific extensors.
Preprocessing can also be disabled; the only modification is updating the
location and schemaLocation attributes to HTTP based URLs.

This variable has the following possible values:

For example:

artix Remove server-side artifacts. This is the default setting.

standard Remove server-side artifacts and IONA proprietary extensors.

none Disable preprocessing.

plugins:wsdl_publish:processor="standard";
225

CHAPTER 12 | Publishing WSDL Contracts
Querying the WSDL Publishing Service

Overview If you know the TCP/IP port used by either the wsdl_publish plug-in or the
Web service, you can view or download the WSDL file in a web browser.

This section shows examples of querying the WSDL Publishing service. It
also describes its HTML menu and WSIL support.

Example query syntax Assume you configured wsdl_publish using the following values on a
system with an IP address of 10.1.2.3:

The wsdl_publish base URL is http://10.1.2.3:1234. And requests on the
following types of URLs are serviced:

• http://10.1.2.3:1234/get_wsdl, http://10.1.2.3:1234/get_wsdl/,
http://10.1.2.3:1234/get_wsdl?, or
http://10.1.2.3:1234/get_wsdl/? returns the HTML Menu (see
“Using the HTML menu” on page 227).

• http://10.1.2.3:1234/get_wsdl?service=name&scope=EncodedUrl
returns the contract for the service specified in the query string.

• http://10.1.2.3:1234/get_wsdl?stub=EncodedUrl returns the
contract for IONA specific services.

• http://10.1.2.3:1234/inspection.wsil returns a WSIL document
containing information about active Web services (see “WSIL support”
on page 228).

• http://10.1.2.3:1234/get_wsdl/context/filename.wsdl returns the
specified WSDL contract. The value of context is generated at
runtime.

• http://10.1.2.3:2000/service or
http://10.1.2.3:2000/service?wsdl returns the contract for the
specified service. The value of the URL is the same as the one
specified in the WSDL as the soap:address of the service.

test.scope {
 plugins:wsdl_publish:publish_port = 1234;
 plugins:wsdl_publish:hostname = "ipaddress";
};
226

Querying the WSDL Publishing Service
If an invalid URL is provided, wsdl_publish returns an HTTP 404 (File Not
Found) Error.

For more details, see “Viewing the WSDL file in a web browser” on
page 223.

Querying CORBA services

Use the following wsdl_publish URL format when using CORBA-only
services:

For example, a client could use the following setting:

For more details, see Artix for CORBA.

Using the HTML menu The WSDL publishing service provides an HTML menu page that contains
links to the contracts of activated services. This page shows all services
activated on the current bus associated with a specified wsdl_publish
instance.

For example, an it_container instance is started on port 2000, and the
wsdl_publish port is configured as 1234. The HTML menu available at
http://10.1.2.3:1234/get_wsdl is as follows:

WSDLPublishURL/get_wsdl?service=Name&scope=NS

bus:initial_contract:url:greeter =
 "http://localhost:9005/get_wsdl?service=GreeterService&scope=http://www.iona.com/demo";

Note: A process might have more than one active bus, and so more Web
services might be activated in that process. Contracts for other Web
services can be obtained from the wsdl_publish instance associated with
their buses.

WSDL Services available

ContainerService(http://ws.iona.com/container)

ContainerService(http://ws.iona.com/container)
227

../../corba_ws/index.htm

CHAPTER 12 | Publishing WSDL Contracts
The HTML source is as follows:

The first entry downloads the WSDL from the wsdl_publish port, while the
second downloads the WSDL from the service's port.

The hostname format assigned to plugins:wsdl_publish:hostname affects
the syntax of the first entry's URL, while the server_address_mode_policy
variables affect the syntax of the second entry's URL. For more details, see
“Specifying a hostname format” on page 224.

WSIL support The Web Services Inspection Language (WSIL) specification, available at
http://wow-128.ibm.com/developerworks/library/specification/ws-wsilspec,
provides a standard way of inspecting a Web service, and getting the
contracts of active Web services.

<html>
 <body>
 <h1>WSDL Services available</h1>
 <a href=

"http://10.1.2.3:2000/get_wsdl/WPabcd/container.wsdl">Contain
erService(http://ws.iona.com/container)

 <a href=

"http://10.1.2.3:2000/services/container/ContainerService?wsd
l">ContainerService(http://ws.iona.com/container)

 </body>
</html>
228

http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec/

Querying the WSDL Publishing Service
For example, the WSIL document available from
http://10.1.2.3:1234/inspection.wsil has the following content:

HTTP transport For an Artix process that exposes a Web service over HTTP, the WSDL
Publishing service provides an alternative way to view or download the
WSDL file.

Artix distinguishes between HTTP POST and HTTP GET calls. HTTP POST
calls are used to invoke on the target Web service. HTTP GET calls return
the WSDL file.

<?xml version="1.0"?>
<inspection targetNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 xmlns:wsilwsdl="http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl/">
 <service>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://10.1.2.3:1234/get_wsdl/WPabcd/container.wsdl">
 <wsilwsdl:reference>
 <wsilwsdl:referencedService xmlns:ns1="http://ws.iona.com/container">
 ns1:ContainerService
 </wsilwsdl:referencedService>
 </wsilwsdl:reference>
 </description>
 </service>
 <service>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://10.1.2.3:2000/services/container/ContainerService?wsdl">
 <wsilwsdl:reference>
 <wsilwsdl:referencedService xmlns:ns1="http://ws.iona.com/container">
 ns1:ContainerService
 </wsilwsdl:referencedService>
 </wsilwsdl:reference>
 </description>
 </service>
</inspection>
229

CHAPTER 12 | Publishing WSDL Contracts
In the following WSDL file, the port element specifies the HTTP transport
and makes the Web service available at a specified HTTP URL.

If the Artix server hosting this service loads the wsdl_publish plug-in, the
WSDL file may be viewed or downloaded using a web browser.

In the browser’s address box, enter:

For this approach to work, the service’s HTTP URL must include a unique
context (in this example case, /test).

Servant registration When the WSDL Publishing service publishes a WSDL file for a service
using a statically registered servant, the published file contains valid
connection details. This is true even if the WSDL file originally specified
dynamic port assignment (for example, an HTTP transport with a location
URL of the form http://HostName:0, or an IIOP transport with a location
entry of the form ior:).

The HTTP URL is revised to http://HostName:ServicePort, where
ServicePort is a TCP/IP port assigned by the operating system. The IIOP
location entry is revised to IOR:..., where ... is the string representation of
the CORBA object reference.

However, when the wsdl_publish plug-in publishes a WSDL file for a
service using a transiently registered servant, the published file does not
contain valid connection details. Valid connection details can only be
obtained from the endpoint reference corresponding to the service.

For more details on servant registration, see Developing Artix Applications in
C++, or Developing Artix Applications with JAX-RPC.

<definitions name="HelloWorld"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
...>
. . .
<service name="SOAPService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://hostname:9000/test"/>
</port>
</service>
</definitions>

http://hostname:9000/test
230

../../prog_guide/index.htm

../../prog_guide/index.htm

../../jaxrpc_pguide/index.htm

CHAPTER 13

Accessing
Contracts and
References
Artix enables you to decouple the location of WSDL contracts
and endpoint references from your server and client. This
avoids hard-coding the location of WSDL files in your
applications. This chapter explains the benefits, and shows
how to use the different ways of accessing WSDL contracts
and endpoint references.

In this chapter This chapter discusses the following topics:

Introduction page 232

Enabling Server and Client Applications page 235

Accessing WSDL Contracts page 239

Accessing Endpoint References page 245

Accessing Artix Services page 251
231

CHAPTER 13 | Accessing Contracts and References
Introduction

Overview Artix enables client and server applications to access WSDL service
contracts and endpoint references in a variety of ways (for example, by
specifying their location on the command line, or in a configuration file).
This section explains the benefits of using these features.

Hard coding WSDL in servers Hard coding WSDL in servers limits the portability of your application, and
can make it more difficult to develop and deploy.

For example, you have developed a Web service application that includes a
client and a service implemented in a server process. When you first write
the application, you have a local copy of the WSDL, and you have hard
coded the WSDL location into your application.

Example C++ server

Example JAX-RPC server

// C++
QName service_qname("", "SOAPService",

http://www.iona.com/hello_world_soap_http);

HelloWorldImpl servant(bus);
 bus->register_servant(
 "../../etc/hello.wsdl",
 service_qname
);

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

Servant servant = new SingleInstanceServant(new SoapImpl(),
"../../etc/hello.wsdl", bus);

 bus.registerServant(servant,serviceQName,"SoapPort");
232

Introduction
Hard coding WSDL in clients Similarly, you have also hard-coded your client with the location of your
local WSDL:

Example C++ client

Example JAX-RPC client

// C++
HelloWorldClient proxy("../../etc/hello.wsdl");
proxy.sayHello();

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

URL wsdlLocation = null;
 try {
 wsdlLocation = new URL("../../etc/hello.wsdl");
 } catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
 }

Soap impl =
(Soap)bus.createClient(wsdlLocation,serviceQName,portName,Soap.class);

String returnVal = impl.sayHi();

Note: For simplicity, this example uses the Artix bus helper to create
proxies. You can also use JAX-RPC.
233

CHAPTER 13 | Accessing Contracts and References
Deploying your application However, when your application is no longer a demo, and you want to
deploy it in multiple locations, your hard-coded application may make this
difficult. For example, if your client is no longer run from the same directory
or machine as the server.

To solve this problem, Artix enables you to write code that is location
independent, and therefore easy to distribute and deploy.

Note: These features are designed for WSDL-based services. They do not
provide mechanisms for resolving local objects. For details of how to do
this, see Developing Artix Applications with C++ and Developing Artix
Applications with JAX-RPC.
234

../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm
../../prog_guide/index.htm

Enabling Server and Client Applications
Enabling Server and Client Applications

Overview Artix addresses two typical use case scenarios:

• Enabling server applications to access WSDL contracts.

• Enabling client applications to access endpoint references.

Artix supports both of these use cases for C++ and JAX-RPC applications.

Enabling servers to access WSDL When you want to activate your service in a mainline or a plug-in, you
should not hard code the WSDL location. Instead, you can use Artix APIs to
decouple the WSDL location from your application logic.

C++ example

The C++ get_service_contract() function takes the QName of the
desired service as a parameter, and returns a pointer to the specified
service. When you change your old hard-coded application to use this
method, your C++ server becomes:

For simplicity, this example does not show any error handling. For details,
see Developing Artix Applications with C++.

// C++
IT_Bus::QName service_qname(
 "", "SOAPService", "http://www.iona.com/hello_world_soap_http"
);
// Find the WSDL contract.
IT_WSDL::WSDLService* wsdl_service = bus->get_service_contract(
 service_qname
);

// Register the servant
bus->register_servant(
 servant,
 *wsdl_service
);
235

../../prog_guide/index.htm

CHAPTER 13 | Accessing Contracts and References
JAX-RPC example

The Java getServiceWSDL() method takes the QName of the desired service
as a parameter, and returns the URL for the specified service WSDL. Your
Java server becomes:

Associating your server with a specific WSDL contract is not addressed in
your application code. This is specified at runtime instead. The available
options are explained in “Accessing WSDL Contracts” on page 239.

Enabling clients to access
endpoint references

When you want to initialize your client proxies in your applications, you
should no longer depend on local WSDL files or static stub code information
to properly instantiate a proxy. Instead, you can use Artix APIs to decouple
the location of client references from your application logic.

C++ example

The C++resolve_initial_reference() function takes the QName of the
desired service as a parameter, and returns the endpoint reference for the
specified service.

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

String hwWsdl = bus.getServiceWSDL(serviceQName);

Servant servant = new SingleInstanceServant(new SoapImpl(), hwWsdl, bus);
bus.registerServant(servant,serviceQName,"SoapPort");

Note: The Artix 3.0 APIs for resolving initial references have been
deprecated in Artix 4.0. These APIs are supported for backwards
compatibility, however, it is recommended that you update your
applications to use the new WS-Addressing APIs in Artix 4.0.
236

Enabling Server and Client Applications
You can change your old hard-coded client application as follows:

JAX-RPC example

The Java resolveInitialEndpointReference() method takes the QName
of the desired service as a parameter, and returns the endpoint reference for
the specified service. You can change your old hard-coded Java client as
follows:

The association of your client with a specific endpoint reference is not
addressed in your application code. This is specified at runtime instead. The
available options are explained in “Accessing Endpoint References” on
page 245.

// C++
IT_Bus::QName service_qname(
 "", "SOAPService", "http://www.iona.com/hello_world_soap_http"
);

WS_Addressing::EndpointReferenceType ref;

// Find the initial reference.
bus->resolve_initial_reference(
 service_qname,
 ref
);
// Create a proxy and use it
GreeterClient proxy(ref);
proxy.sayHi();

// Java
QName name = new QName("http://www.iona.com/hello_world_soap_http",

"SOAPService");

EndpointReferenceType ref;

// Find the initial reference.
ref = bus.resolveInitialReference(name);

// Create a proxy and use it.
GreeterClient proxy = (GreeterClient)bus.CreateClient(ref,

GreeterClient.class);
proxy.sayHi();
237

CHAPTER 13 | Accessing Contracts and References
Accessing WSDL and references
for clients or servers

These APIs can be used by both clients and servers. For example, typically,
Java clients use the resolveInitialEndpointReference() method and
servers use the getServiceWSDL() method. However, both application types
can use either of these methods. The same applies to their C++
equivalents.

For example, a Java client could also use the getServiceWSDL() method to
locate a WDSL file.
238

Accessing WSDL Contracts
Accessing WSDL Contracts

Overview When your application calls the Artix bus to access a WSDL contract for a
service, the Artix bus uses several available options to access the requested
WSDL. Artix tries each resolver mechanism in turn until it finds an
appropriate contract, and returns the first result. If one of these is configured
with a bad contract URL, no others are called.

Accessing WSDL is a two-step process:

1. You must first use the C++ or Java API to resolve the WSDL (see
“Enabling servers to access WSDL” on page 235).

2. You must then use one of the resolvers to configure the WSDL at
runtime. These are explained in this section.

Accessing WSDL at runtime The possible ways of accessing WSDL at runtime are as follows:

1. Command line.

2. Configuration file (artix.cfg).

3. Well-known directory.

4. Stub WSDL shared library.

These resolver mechanisms are listed in order of priority, which means that
if you configure more than one, those higher up in the list override those
lower down. See “Order of precedence for accessing WSDL” on page 243.

Configuring WSDL on the
command line

You can configure WSDL by passing URLs as parameters to your application
at startup. WSDL URLs passed at application startup take precedence over
settings in a configuration file. The syntax for passing in WSDL to any Artix
application is:

For example, assuming your application is using the
get_service_contract() method, you can avoid configuration files by
starting your application as follows:

-BUSservice_contract url

./server -BUSservice_contract ../../etc/hello.wsdl
239

CHAPTER 13 | Accessing Contracts and References
This means that the Artix bus parses the URLs that you pass into it on
startup. It finds any services that are in this WSDL, and caches them for any
users that want WSDL for any of those services.

Parsing WSDL on demand

If you do not want the Artix bus to parse the document until it is needed,
you can specify what services are contained in the WSDL, which results in
the URL being parsed only on demand. The syntax for this is:

For example, the application would be started as follows:

Specifying the WSDL URL on startup enables the Artix bus to avoid parsing
the WSDL until it is requested.

Configuring WSDL in a
configuration file

You can also configure the location of your WSDL in an artix.cfg file, using
the following syntax.

These configuration variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the WSDL contract.
The WSDL location syntax is "url". This can be any valid URL, it does
not need to be a local file.

The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

-BUSservice_contract {namespace}localpart@url

./server -BUSservice_contract
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.wsdl

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_contract:url:service-name = "url";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.wsdl";
240

Accessing WSDL Contracts
Configuring WSDL in a
well-known directory

You can also configure an Artix application to search in a well-known
directory when it needs to access WSDL. This enables you to configure
multiple documents without explicitly configuring every document on the
command line, or in configuration. If you specify a well-known directory, you
only need to copy the WSDL documents into this directory before the
application uses them.

You can configure the directory location in a configuration file or by passing
a command-line parameters to your C++ or JAX-RPC application.

Configuring a WSDL directory in a configuration file

To set the directory in configuration, use the following variable:

The value "." means use the directory from where the application was
started. The specified value is a list of directories, which enables you to
specify multiple directories.

Configuring a WSDL directory using command-line parameters

If you do not wish to use a configuration file, you can configure the WSDL
directory using command line parameters. The command line overrides any
settings in a file. The syntax is as follows:

For example, to configure Artix to look in the current directory, and in the
"../../etc" directory, use the following command:

Configuring multiple WSDL directories

You can configure multiple well-known directories for your application to
search. However, it is not recommended that you put too many files in the
directory.

The more files you put in the directory, the longer it may take to find the
contract that you are looking for. The directory search is optimized to first do
a quick file scan to see if any of the files potentially contain the target
service requested. The documents are not parsed unless a match has been
found.

bus:initial_contract_dir=["."];

-BUSservice_contract_dir directory

server -BUSservice_contract_dir . -BUSservice_contract_dir ../../etc/
241

CHAPTER 13 | Accessing Contracts and References
If you use multiple directories, the ordering makes a difference if both
directories contain the same service definitions. The WSDL resolvers search
the directories in the order that they are configured in.

You can add WSDL documents to the well-known directories after the
application has started. The file must only be present in the directory before
the application requests it.

Configuring a stub WSDL shared
library

It is also possible to encode a WSDL document inside a C++ shared library.
Just like in Java, where resources are added to a .jar file, Artix can embed
a WSDL document inside a shared library. This enables you to resolve
WSDL contracts for Artix services without using a file system or any remote
calls.

When a WSDL document is encoded inside a shared library, this is called a
stub WSDL shared library. Artix provides stub WSDL shared libraries for the
following Artix services:

• locator

• session manager

• peer manager

• container

This means that you can deploy these services into environments without
using any other resources like WSDL documents. Artix does not provide
APIs to enable you to encode your own documents into stub libraries.

Stub WSDL shared libraries are the last resolver mechanisms to be called. If
you configure any others, the stub WSDL shared library is not used.

All the Artix stub WSDL libraries contain WSDL endpoints with SOAP HTTP
port addresses of 0. This means that if these versions are used to activate a
service, the endpoint is instantiated on a dynamic port. This is the
recommended approach for internal services like the container and peer
manager.
242

Accessing WSDL Contracts
Order of precedence for accessing
WSDL

Because there are several available options for accessing WSDL, Artix
searches each resolver in turn for a suitable document. It returns the first
successful result to the user.

The order of precedence for accessing WSDL is as follows:

1. Contract passed on the command line.

2. Contract specified in a configuration file.

3. Well-known directory passed on the command line.

4. Well-known directory specified in a configuration file.

5. Stub WSDL shared library.

Example

You have four WSDL contracts that contain a definition for a service named
SimpleService:

1. Configure the following in your configuration file:

2. Start your server as follows:

The contract in one/simple.wsdl is returned to the application because
WSDL configured using -BUSservice_contract takes precedence over all
other sources.

one/simple.wsdl
two/simple.wsdl
three/simple.wsdl
four/simple.wsdl

bus:qname_alias:simple_service =
"{http://www.iona.com/bus/tests}SimpleService";

bus:initial_contract:url:simple_service = "two/simple.wsdl";
bus:initial_contract_dir=["four"];

server -BUSservice_contract_dir three -BUSservice_contract one/simple.wsdl
243

CHAPTER 13 | Accessing Contracts and References
If you start your server as follows:

The contract in two/simple.wsdl is returned to the application because the
order that the resolvers are called means that the contract specified in a
configuration file is the first successful one.

Accessing standard Artix services For details of accessing WSDL for standard Artix services such as the locator
or session manager, see “Accessing Artix Services” on page 251.

server
244

Accessing Endpoint References
Accessing Endpoint References

Overview An endpoint reference is an object that encapsulates the endpoint and
contract information for a particular WSDL service. A serialized reference is
an XML document that refers to a running service instance, and contains a
URL pointer to where the service WSDL can be retrieved. You can serialize a
reference to any service by deploying it into the Artix container and calling
it_container_admin -publishreference. Alternatively, you can use APIs
to publish an endpoint reference directly.

For example, when your client application uses the Artix bus to look up a
endpoint reference using the service QName, it calls the
resolveInitialEndpointReference() method. Accessing endpoint
references works the same way as accessing WSDL, and you have several
options for configuring the reference that the client uses. Like with WSDL
contracts, Artix tries each resolver in turn until it gets a successful result or
an error. If any of these return null, the core tries the next one. If you have a
badly configured reference, the resolver returns an error or exception.

Accessing endpoint references is a two-step process:

1. You must first use the C++ or Java API to resolve the reference (see
“Enabling clients to access endpoint references” on page 236).

2. You must then use one of the resolvers to configure the reference at
runtime. This is explained in this section.

For details of how to use the Artix container to publish endpoint references
for a client, see Chapter 6.

Endpoint reference resolver
mechanisms

The possible ways of configuring endpoint references at runtime are as
follows:

1. Colocated service.

2. C++ programmatic configuration.

3. Command line

4. Configuration file.

5. WDSL contract.
245

CHAPTER 13 | Accessing Contracts and References
These are listed in order of precedence, so if you configure more than one,
those higher up in the list override those lower down. Artix searches each in
turn for a suitable match and returns the first successful result.

Using a colocated service The most convenient place to find a endpoint reference to a service that a
client has requested is in the local Artix bus. When the activated service is
colocated (available locally in the same process), the client can easily find a
local reference to invoke. In this case, the client’s
resolve_initial_reference() method returns a reference to the colocated
service.

This is the first resolver that the runtime checks. You can expect resolution
to always succeed for services that are activated locally.

Specifying endpoint references in
C++ code

In C++, you can register an initial reference programmatically using the
Artix bus. You can register an reference in one C++ plug-in that would
enable another plug-in (JAX-RPC or C++) to resolve that reference using
the bus API.

Artix checks the bus for local services, so it would be unusual for an
application to require the programmatic configuration unless it uses multiple
buses. You can not programmatically configure a reference in one bus and
have it resolved in another.

In addition, you can not activate a service in one bus, and have it resolved in
another. If you wish a client in one bus to use a reference from an active
service in another bus you should programmatically register the reference
from one bus to the next.
246

Accessing Endpoint References
For example:

Specifying endpoint references on
the command line

You can also pass in reference URLs as parameters to the application on
startup. Endpoint reference URLs passed to the application on startup take
precedence over settings in an artix.cfg file. The syntax for passing in a
reference to any Artix application is:

For example, assuming your application is using
resolve_initial_reference(), you could avoid configuration files by
starting your application as follows:

This means that the Artix bus parses the URLs passed into it on startup. It
caches them for any users that request references of this type at runtime.

\\ C++
QName service_qname("", "SOAPService",

http://www.iona.com/hello_world_soap_http);

// Activate the service on bus one
HelloWorldImpl servant(bus_one);

WSDLService* contract = bus_one->get_service_contract(service_qname);

bus_one->register_servant(
 *contract,
 servant
);

Service_var service = bus_one->get_service(service_qname);

// Register the service reference on bus two
bus_two->register_initial_reference(service->get_endpoint_reference());

-BUSinitial_reference url

./client -BUSinitial_reference ../../etc/hello.xml
247

CHAPTER 13 | Accessing Contracts and References
Parsing endpoint references on demand

If you do not want to parse the reference XML until it is needed, you can
specify the service name that the reference maps to. This means that the
XML is not parsed until it is first requested. The syntax for this is

For example, the application is started as follows:

Specifying endpoint references in
a configuration file

You can also specify an endpoint reference in a configuration file. The
reference must be serialized in an XML format (for example, output to a file
using itcontainer -publishreference).

You can use configuration variable syntax to configure a URL or the contents
of a serialized reference.

Specifying serialized reference URLs

You can configure the location of your WSDL in an artix.cfg file, using the
following configuration variable syntax.

These variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the endpoint
reference. The XML location syntax is "url". The URL value can be any
valid URL, it does not have to be a local file, but under most
circumstances the endpoint reference is local.

-BUSinitial_reference {namespace}localpart@url

./client -BUSinitial_reference
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.xml

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_references:url:service-name = "url";
248

Accessing Endpoint References
The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

Specifying inline references

Instead of configuring a URL, you can also inline the endpoint reference
XML in a configuration file. This is similar to configuring CORBA initial
references in Orbix, and it effectively hard codes the addressing. This should
only be used for static services where you do not expect anything to change
(for example, details such as the endpoint address and transport
information).

The following is an example inline endpoint reference:

The endpoint reference appears on one line in an XML document.

Specifying endpoint references
using WSDL

How Artix finds endpoint references is built on how it finds WSDL. When
configuring a reference, you can use all the options available for configuring
WSDL. When you locate a WSDL document that contains the wsdl:service
you are looking for, you can convert it to a reference and return it to the
client.

If Artix fails to find a suitable reference using the reference resolver
mechanisms, it falls back to those used for WSDL. This is useful in certain
scenarios. For example, when you only want to configure well-known Artix
services (such as the locator). If you configure the WSDL, both the service
and the client can benefit from a single configuration source.

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.xml";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_references:inline:simple_service = "<?xml version='1.0' encoding='utf-8'?>";
249

CHAPTER 13 | Accessing Contracts and References
Implications of resolving references using WSDL

When no references are found, Artix calls the WSDL resolver mechanisms.
This means that you can rely on WSDL to configure client references.

However, the default WSDL contracts for well-known Artix services have
SOAP/HTTP endpoints with a port of zero. For example:

If you resolve a reference with a port of zero, you get an error when you try
to invoke the proxy created from the reference. The exception says that the
address is invalid.

These contracts with ports of zero are intended for use by servers rather
than clients, and enable servers to run on a dynamic port. Therefore, in
general, your client should not rely these contracts. If the server is using this
type of contract, you should publish the activated form of the contract,
which contains the port assigned dynamically at startup. Your client can
then access this activated version of the contract instead.

Further information For more detailed information on endpoint references, see Developing Artix
Applications in C++, or Developing Artix Applications with JAX-RPC.

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding" name="LocatorServicePort">
 <soap:address location="http://localhost:0/services/locator/LocatorService"/>
 </port>
</service>
250

../../prog_guide/index.htm
../../prog_guide/index.htm
../../jaxrpc_pguide/index.htm

Accessing Artix Services
Accessing Artix Services

Overview Artix includes WSDL contracts for all of the services that it ships (for
example, the locator and session manager). This section shows the default
configuration provided for these services.

Pre-configured WSDL Artix provides pre-configured aliases and WSDL locations for all of its
services. By default, the artix.cfg file includes the following entries:

In your application, if you resolve the WSDL or an endpoint reference for any
of these services, by default, the WSDL from these values is used. Most of
these services are configured to use a port of zero. If you do not want to use
the default WSDL for any of these services, you must override the default.

Well known Services QName aliases
bus:qname_alias:container = "{http://ws.iona.com/container}ContainerService";
bus:qname_alias:locator = "{http://ws.iona.com/locator}LocatorService";
bus:qname_alias:peermanager = "{http://ws.iona.com/peer_manager}PeerManagerService";
bus:qname_alias:sessionmanager = "{http://ws.iona.com/sessionmanager}SessionManagerService";
bus:qname_alias:sessionendpointmanager =

"{http://ws.iona.com/sessionmanager}SessionEndpointManagerService";
bus:qname_alias:uddi_inquire = "{http://www.iona.com/uddi_over_artix}UDDI_InquireService";
bus:qname_alias:uddi_publish = "{http://www.iona.com/uddi_over_artix}UDDI_PublishService";
bus:qname_alias:login_service = "{http://ws.iona.com/login_service}LoginService";

bus:initial_contract:url:container = "install_root/artix/Version/wsdl/container.wsdl";
bus:initial_contract:url:locator = "install_root/artix/Version/wsdl/locator.wsdl";
bus:initial_contract:url:peermanager = "install_root/artix/Version/wsdl/peer-manager.wsdl";
bus:initial_contract:url:sessionmanager =

"install_root/artix/Version/wsdl/session-manager.wsdl";
bus:initial_contract:url:sessionendpointmanager =

"install_root/artix/Version/wsdl/session-manager.wsdl";
bus:initial_contract:url:uddi_inquire = "install_root/artix/Version/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:uddi_publish = "install_root/artix/Version/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:login_service =

"install_root/artix/Version/wsdl/login_service.wsdl";
251

CHAPTER 13 | Accessing Contracts and References
Further information For more details on the configuration variables for accessing WSDL
contracts and endpoint references, see the Artix Configuration Reference,
C++ Runtime.

For more examples of accessing WSDL and references in Artix applications,
see the following demos:

• ..samples\basic\bootstrap
• ..samples\advanced\container\deploy_plugin
• ..samples\advanced\container\deploy_routes
• ..samples\advanced\locator
• ..samples\advanced\locator_query
252

../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm

CHAPTER 14

Accessing Services
with UDDI
Artix provides support for Universal Description, Discovery and
Integration (UDDI). This chapter explains the basics, and
shows how to configure UDDI proxy support in Artix
applications. It also shows how to configure jUDDI repository
settings.

In this chapter This chapter includes the following sections:

Introduction to UDDI page 254

Configuring UDDI Proxy page 257

Configuring a jUDDI Repository page 258
253

CHAPTER 14 | Accessing Services with UDDI
Introduction to UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet.

Instead of making your WSDL contract available to clients in the form of a
file, you can publish the WSDL contract to a UDDI registry. Clients can then
query the UDDI registry and retrieve the WSDL contract at runtime.

Publishing WSDL to UDDI You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com or
http://uddi.microsoft.com.

To publish your WSDL contract, navigate to one of the public UDDI Web
sites and follow the instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html)

Artix UDDI URL format Artix uses UDDI query strings that take the form of a URL. The syntax for a

UDDI URL is as follows:

uddi:UDDIRegistryEndpointURL?QueryString

The UDDI URL is built from the following components:

• UDDIRegistryEndpointURL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).
254

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://uddi.microsoft.com
http://uddi.ibm.com

Introduction to UDDI
• QueryString—a combination of attributes used to query the UDDI
database for the Web service endpoint data. Currently, Artix only
supports the tmodelname attribute. An example of a query string is:

Within a query component, the characters ;, /, ?, :, @, &, =, +, ,, and $
are reserved.

Examples of valid UDDI URLs

Initializing a client proxy with
UDDI

To initialize a client proxy with UDDI, simply pass a valid UDDI URL string
to the proxy constructor.

For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have
registered the WSDL contract from the HelloWorld demonstration, you can
initialize the GreeterClient proxy as follows:

C++

tmodelname=helloworld

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld
uddi:http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

// C++
...
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld");

String string_out;

// Invoke sayHi operation
hw.sayHi(string_out);
255

CHAPTER 14 | Accessing Services with UDDI
Java

//Java
String wsdlPath = "uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld";
...........
Bus bus = Bus.init((String[])orbArgs.toArray(new String[orbArgs.size()]));
QName name = new QName("http://www.iona.com/hello_world_soap_http","SOAPService");
QName portName = new QName("","SoapPort");
URL wsdlLocation = null;
try {
 wsdlLocation = new URL(wsdlPath);
} catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
}

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsdlLocation,name);
Soap impl = (Soap)service.getPort(portName,Soap.class);
256

Configuring UDDI Proxy
Configuring UDDI Proxy

Overview Artix UDDI proxy service can be used by applications to query endpoint
information from a UDDI repository. This section explains how to configure
UDDI proxy support for both C++ and Java client applications.

C++ configuration To configure an Artix C++ application for UDDI proxy support, add
uddi_proxy to the application’s orb_plugins list. For example:

Java configuration To configure an Artix Java application for UDDI proxy support, perform the
following steps:

1. Add java to the application’s orb_plugins list.

2. Add java_uddi_proxy to the application’s java_plugins list. For
example:

artix.cfg

my_application_scope {
 orb_plugins = [..., "uddi_proxy"];
 ...
};

artix.cfg

my_application_scope {
 orb_plugins = [..., "java", ...];

 java_plugins=["java_uddi_proxy"];
 ...
};
257

CHAPTER 14 | Accessing Services with UDDI
Configuring a jUDDI Repository

Overview The Artix demos use an open source UDDI repository implementation
named jUDDI. These demos use the HSQLDB database to store UDDI
information. For convenience, this is configured to run in file (embedded)
mode by default.

Setting jUDDI properties You can configure jUDDI properties, such as your database settings, in your
juddi.properties file. This file is located in the following directory:

For example, the HSQLDB database settings in the default
juddi.properties file are as follows:

If you want change your database to MySQL, uncomment all the mysql
settings, and use the following instead:

Further information For more details, see: http://ws.apache.org/juddi/.

ArtixInstallDir\cxx_java\samples\integration\juddi\artix_server\etc

hsqldb
juddi.useConnectionPool=true
juddi.jdbcDriver=org.hsqldb.jdbcDriver
juddi.jdbcURL=jdbc:hsqldb:etc/juddi_db
juddi.jdbcUser=sa
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10

mysql
juddi.useConnectionPool=true
juddi.jdbcDriver=com.mysql.jdbc.Driver
juddi.jdbcURL=jdbc:mysql://10.129.9.101:3306/juddi
juddi.jdbcUser=root
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10
258

http://ws.apache.org/juddi/

CHAPTER 15

Embedding Artix
in a BEA Tuxedo
Container
Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Embedding an Artix Process in a Tuxedo Container page 260
259

CHAPTER 15 | Embedding Artix in a BEA Tuxedo Container
Embedding an Artix Process in a Tuxedo
Container

Overview To enable Artix to interact with native BEA Tuxedo applications, you must
embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo
configuration file, and registering your Artix processes with the Tuxedo
bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a
Tuxedo server when running tmboot.

This section explains these steps in detail.

Procedure To embed an Artix process in a Tuxedo container, complete the following
steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. You can add the Tuxedo plug-in, tuxedo, to your Artix process’s
orb_plugins list.

However, the tuxedo plug-in is loaded transparently when the process
parses the WSDL file.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the
directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for
your Artix process.

Note: A Tuxedo administrator is required to complete a Tuxedo
distributed architecture. When deploying Artix in a distributed architecture
with other middleware, please also see the documentation for those
middleware products.

orb_plugins=[... "tuxedo"];
260

Embedding an Artix Process in a Tuxedo Container
For example, if the executable of your Artix process is ringo, add the
following entry in the SERVERS section:

This associates ringo with the Tuxedo group called BEATLES in your
configuration and assigns ringo a server ID of 1. You can modify the
server’s properties as needed.

6. Edit your Tuxedo configuration’s SERVICES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry, even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the Artix
contract for the process.

For example, given the port definition shown in Example 23, the
SERVICES entry would be personalInfoService.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TUXCONFIG with tmload.

When you have configured Tuxedo, it manages your Artix process as if it
were a regular Tuxedo server.

ringo SVRGRP=BEATLES SVRID=1

Example 23: Sample Service Entry

<service name="personalInfoService">
 <port name="tuxInfoPort" binding="tns:personalInfoBinding">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService"/>
 </tuxedo:server>
 </port>
</service>
261

CHAPTER 15 | Embedding Artix in a BEA Tuxedo Container
262

Index

A
acca0331 19
acca0331cios 19
acknowledgement endpoint URI 197
acknowledgement interval 201
ACTIVATED 135
Adaptive Runtime architecture 28
AIX compilers 19
anonymous URI 197, 212
ANSI C strftime() function 46
application source 193
arbitrary symbols 35
ART 28
Artix 220
artix.cfg 28, 33, 110
artix:endpoint 155
artix:endpoint:endpoint_list 155
artix:endpoint:endpoint_name:wsdl_location 155
artix:endpoint:endpoint_name:wsdl_port 156
artix:interceptors:message_snoop:enabled 62
artix:interceptors:message_snoop:log_level 62
Artix bus pre-filter 55
Artix chain builder 164
Artix container 117
artix_env 146
artix_env script 18
Artix high availability 172
Artix IDL compiler 23
Artix transformer 152
Artix WSDL publishing service 220
ASCII 92
asynchronous acknowledgements 201
auto-demotion of masters 173
avg 80

B
base retransmission interval 199
Berkeley DB 171
binding:artix:client_message_interceptor_list 110
binding:artix:server_message_interceptor_list 110
binding:artix:server_request_interceptor_list 177
binding:server_binding_list 88
browser 223, 226

Bus.init() 39
bus:initial_contract:url:service 167
bus:initial_contract:url:service-name 240
bus:initial_contract_dir 241
bus:initial_references:url:service-name 248
bus:qname_alias:service 167
bus:qname_alias:service-name 240, 248
-BUSCONFIG_ 37, 38
-BUSconfig_dir 22, 144
-BUSconfig_domains_dir 22, 38
-BUSdomain_name 22, 144
-BUSinitial_reference 38, 247
-BUSlicense_file 22, 144
BusLogger 57
-BUSname 30, 144
-BUSname parameter 30
-BUSproduct_dir 22
bus_response_monitor 77
-BUSservice_contract 38, 239
-BUSservice_contract_dir 38, 241

C
C++ compilers 19
C++ debugging 146
canonical 224
chain builder 154, 158, 163
character encoding schema 92
Classic C++ runtime 19
CLASSPATH 142
client ID, configuring 78
cluster 173
codeset 92
CODESET_INCOMPATIBLE 98
codeset negotiation 96, 97
Collector 76
collector 83
colocated service 246
command line configuration 37
-compiler 19
configuration

command line 37
data type 32
domain 28
263

INDEX
files 33
namespace 31
scope 28
symbols 35
variables 31

configuration context 204, 217
constructed types 32
-container 133
container 117, 242

administration client 121
persistent deployment 137
server 120
service 120
Windows service 141

ContainerService.url 128, 129
content-based routing 161
context 204, 217
ContextContainer 106
contracts 231
Conversion codeset 97
count 80
CreateSequence 193
CreateSequenceResponse 193

D
-d 126
-daemon 128
date format, rolling log file 46
db_dump 175
db_recover 175
db_stat 175
db_verify 175
DEACTIVATED 135
debugging 146
delivery assurance policies 203
delivery assurances 193
dependencies file 123, 124
-deploy 129, 132, 134
-deployable 124
-deployfolder 129, 138, 143
deployment descriptor 120, 123
destination 192
-displayname 143
double-byte Unicode 98
dynamic logging 58, 133
dynamic read/write deployment 138

E
EBCDIC 102
echoString 99
echoVoid 99
Eclipse 147
election protocol 173
EMS, definition 74
encodings 92
endpoint references 220, 231, 235, 245
Enterprise Management Systems 74
Enterprise Object Identifier 72
-env 129, 143
environment variables 141
ERROR 44
EUC-JP 93
event_log:filters 42, 48, 110, 179
event_log:filters:artix:pre_filter 55
event_log:log_service_names:active 56
event_log:log_service_names:services 56
ExactlyOnceConcurrent 193, 203
ExactlyOnceInOrder 193, 203
ExactlyOnceReceivedOrder 193, 203
exponential backoff for retransmission 200
exponential backoff interval 193
Extended Binary Coded Decimal Interchange

Code 102
Extensible Stylesheet Language

Transformations 152

F
FATAL_ERROR 44
-file 126, 132
filters 49
fixed:binding 99
fixed:body 99
four-byte Unicode 98

G
GCC 19
gcc32 19
gcc34 19
get_logging_config() 57
-getlogginglevel 58, 133
get_service_contract() 235, 239
getServiceWSDL() 236
GNU Compiler Collection 19
264

INDEX
H
ha_conf 181, 185
hard coded WSDL 232
-help 126, 129
high availability 172

clients 183
locator 180

high water mark 205
-host 133
hostname format 224
HP-UX compilers 19
HSQLDB database 258
HTML menu 227
HTTP GET 229
HTTP POST 229
HTTP trace logging 48
HTTP transport 229

I
i18n-context.xsd 103, 106
i18n_interceptor 110
IANA 72, 93
IBM Tivoli integration 74
IBM WebSphere MQ, internationalization 102
ideograms 92
idl.cfg 23
IDL configuration file 23
InboundCodeSet 102
include statement 33
INFO_ALL 44
INFO_HIGH 44
INFO_LOW 44
INFO_MEDIUM 44
INITIALIZED 135
initial sender 192
initial_threads 205
inline references 249
int 81
intercept_dispatch() 106
intercept_invoke() 106
internationalization

CORBA 96
MQ 102
SOAP 95

Internet Assigned Number Authority 93
Internet Assigned Numbers Authority 72
Interoperable Object Reference 87
IONA Tivoli Provider 74

IOR 87
ipaddress 224
ISO-2022-JP 93
ISO 8859 92
ISO-8859-1 93
it 132
ITArtixContainer 141
IT_ARTIXENV 24
IT_ATLI2_IOP 53
IT_ATLI2_IP 53
IT_ATLI2_IP_TUNNEL 53
IT_ATLI_TLS 53
IT_BUS 49
IT_BUS.BINDING 49
IT_BUS.BINDING.COLOC 49
IT_BUS.BINDING.CORBA 49
IT_BUS.BINDING.CORBA.CONTEXT 49
IT_BUS.BINDING.FIXED 49
IT_BUS.BINDING.HTTP 49
IT_BUS.BINDING.SOAP 49
IT_BUS.BINDING.SOAP_COMMON 50
IT_BUS.BINDING.TAGGED 50
IT_BUS.CORE 50
IT_BUS.CORE.CONFIG 50
IT_BUS.CORE.CONTEXT 50
IT_BUS.CORE.INITIAL_REFERENCE 50
IT_BUS.CORE.PLUGIN 50
IT_BUS.CORE.RESOURCE_RESOLVER 50
IT_BUS.FOUNDATION.AFC 50
IT_BUS.FOUNDATION.CONTEXT_LIBRARY 50
IT_BUS.I18N.INTERCEPTOR 50
IT_BUS.INTEGRATION.AP_NANO_AGENT 50
IT_BUS.INTEGRATION.CA_WSDM_OBSERVER 50
IT_BUS.JNI.GENERIC_PLUGIN 50
IT_BUS.JNI.JBUS 50
IT_BUS.JNI.JBUS.TRANSACTION 50
IT_BUS.JNI.JNI_UTIL 50
IT_BUS.JNI.TRANSACTION 50
IT_BUS.JVM_MANAGER 50
IT_BUS.LOGGING 50
IT_BUS.LOGGING.LOG4J 50
IT_BUS.LOGGING.RESPONSE_TIME 50
IT_BUS.LOGGING.SNMP 51
IT_BUS.MANAGEMENT 51
IT_BUS.MESSAGING_PORT 51
IT_BUS.SERVICE 51
IT_BUS.SERVICE.ACTIVATOR.REGISTRY 51
IT_BUS.SERVICE.CHAIN 51
IT_BUS.SERVICE.CONTAINER 51
265

INDEX
IT_BUS.SERVICE.DB 51
IT_BUS.SERVICE.DB.ENV 51
IT_BUS.SERVICE.DB.REPLICA.IMPL 51
IT_BUS.SERVICE.DB.REPLICA.MGR 51
IT_BUS.SERVICE.DB.REPLICA.MONITOR 51
IT_BUS.SERVICE.DB.REPLICA.SYNC 51
IT_BUS.SERVICE.LOCATOR 51
IT_BUS.SERVICE.PEER_MGR 51
IT_BUS.SERVICE.ROUTING 51
IT_BUS.SERVICE.SECURITY 51
IT_BUS.SERVICE.SECURITY.CERT_VALIDATOR 51
IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.CLIE

NT 51
IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.SERV

ICE 51
IT_BUS.SERVICE.SECURITY.SECURITY_INTERCEP

TOR 51
IT_BUS.SERVICE.SECURITY.WSS 52
IT_BUS.SERVICE.SESSION_MGR 52
IT_BUS.SERVICE.WSDL_PUBLISH 52
IT_BUS.SERVICE.XSLT 52
IT_BUS.TRANSACTIONS.OTS 52
IT_BUS.TRANSACTIONS.WSAT 52
IT_BUS.TRANSACTIONS.XA 52
IT_BUS.TRANSPORT.HTTP 52
IT_BUS.TRANSPORT.MQ 52
IT_BUS.TRANSPORT.STUB_TRANSPORT 52
IT_BUS.TRANSPORT.TIBRV 52
IT_BUS.TRANSPORT.TUNNELL 52
IT_BUS.TRANSPORT.TUXEDO 52
IT_BUS.VERSION 52
IT_BUS.WSRM 52
IT_BUS.WSRM_DB 52
IT_BUS.XA_SWITC 52
IT_Bus::Exception 201
IT_Bus::init() 30, 37, 45
IT_COBOL_PLI 53
IT_CODESET 53
IT_CONFIG_DIR 22
IT_CONFIG_DOMAINS_DIR 22
IT_CONNECTION_FILTER 53
it_container 120, 128
it_container_admin 58, 121, 132, 245
IT_CORE 53
IT_CSI 53
IT_DOMAIN_NAME 22
IT_GenericSecurityToolkit 53
IT_GIOP 53
IT_GSP 53

IT_HTTP 53
IT_HTTPS 53
IT_IDL_CONFIG_FILE 23
IT_IIOP 53
IT_IIOP_TLS 53
IT_INIT_BUS_LOGGER_MEM 57
IT_LICENSE_FILE 22
IT_LICENSING 53
IT_Logging::LogStream 72
IT_MESSAGING 53
IT_MGMT_LOGGING 54
IT_OBJECT_KEY_REPLACER 54
IT_OTS 54
IT_OTS_LITE 54
IT_POA 54
IT_POA_LOCATOR 54
IT_PRODUCT_DIR 22, 142
IT_REQUEST_LOGGER 54
it_response_time_logger 88
IT_SCHANNEL 54
IT_SECURITY 54
IT_TLS 54
IT_WORKQUEUE 54
IT_WSDLGEN_CONFIG_FILE 23
IT_WSRM 52
IT_XA 54

J
Japanese EUC 92
Japanese ISO 2022 92
Java API for XML-Based Remote Procedure Call 11
Java API for XML-Based Web Services 11
Java configuration 77
Java debugging 147
JAVA_HOME 21
Java logging 64
Java Platform Debugging Architecture 147
java_plugins 257
java_uddi_proxy 257
JAX-RPC 11
JAX-WS 11
JDK 142
JPDA 147
JRE 142
jUDDI 258
juddi.properties 258
JVM 39
JVM options 147
jvm_options 147
266

INDEX
L
Latin-1 92
life cycle message formats 82
Linux compilers 19
-listservices 132, 135, 136
LocalCodeSet 102
local_log_stream 42
locator 242
locator, load balancing 180
log4J logging 64
log4j_log_stream 64
LogConfig.properties 64
log date format 46
log file, rolling 46
log file interpreter 74
logging 179

API 57
inheritance 61
message severity levels 43
per bus 57
precision 48
service-based 56
set filters for subsystems 49
silent 61

logging collector 83
LoggingConfig 57
logging levels

getting 57, 58, 133
setting 42, 57, 59, 133

logging message formats 80
LOG_INHERIT 61
LOG_SILENT 61
low water mark 205

M
mark_as_write_operations() 188
master-slave replication 172
max 81
maximum messages in RM sequence 202
maximum unacknowledged messages

threshold 200
max queue size 206
MEP 214
Message Exchange Pattern 212, 215
message part element 161
MESSAGE_SNOOP 54
message snoop 62
MIB, definition 67

Microsoft Visual C++ 19, 146
min 81
minority master 179
MQ, internationalization 102
multi-homed 224
MySQL 258

N
namespace 80
naming conventions 139
native codeset 96
NCS 96
NOT_INITIALIZED 135

O
oneway calls 207
operation 80
oph 81
-ORBId 39
orb_plugins 77, 155, 159, 166, 208
OSF CodeSet Registry 94
OutboundCodeSet 102

P
part element 161
PATH 142
peer manager 242
performance logging 74
performance logging collector 83
persistence 207
persistent database 175
persistent deployment 137
PersistentMap 175
per-thread RM session 204
-pluginDir 126
-pluginImpl 126
-pluginName 126
plugins:artix:db:allow_minority_master 179
plugins:artix:db:home 208
plugins:artix:db:iiop:port 178
plugins:artix:db:priority 178
plugins:artix:db:replicas 176
plugins:bus_response_monitor:type 77
plugins:chain:endpoint:operation:service_chain 168
plugins:chain:endpoint:operation_list 167
plugins:chain:endpoint_name:operation_name:servic

e_chain 159
plugins:chain:init_on_first_call 169
267

INDEX
plugins:chain:servant_list 167
plugins:codeset:char:ccs 97
plugins:codeset:char:ncs 96
plugins:codeset:wchar:ccs 97
plugins:codeset:wchar:ncs 96
plugins:container:deployfolder 138
plugins:container:deployfolder:readonly 139
plugins:ha_conf:random:selection 188
plugins:ha_conf:strategy 188
plugins:it_response_time_collector:filename 77
plugins:it_response_time_collector:server-id 78
plugins:local_log_stream:buffer_file 47
plugins:local_log_stream:filename_date_format 46
plugins:local_log_stream:log_thread_id 48
plugins:local_log_stream:precision_logging 48
plugins:local_log_stream:rolling_file 47
plugins:locator:persist_data 180
plugins:locator:selection_method 180
plugins:messaging_port:base_replyto_url 216
plugins:messaging_port:supports_wsa_2005_mep

215
plugins:messaging_port:supports_wsa_mep 215
plugins:messaging_port:wsrm_enabled 196
plugins:remote_log_receiver:iiop

addr_list 87
plugins:remote_log_receiver:ior_filename 87
plugins:remote_log_receiver:log_filename 87
plugins:remote_log_receiver:prerequisite_plugins 87
plugins:snmp_log_stream:community 72
plugins:snmp_log_stream:oid 72
plugins:snmp_log_stream:port 72
plugins:snmp_log_stream:server 72
plugins:snmp_log_stream:trap_type 72
plugins:soap:encoding 95
plugins:wsdl_publish:hostname 224
plugins:wsdl_publish:processor 225
plugins:wsdl_publish:publish_port 223
plugins:wsrm:acknowledgement_interval 202
plugins:wsrm:acknowledgement_uri 197
plugins:wsrm:base_retransmission_interval 199
plugins:wsrm:delivery_assurance_policy 203
plugins:wsrm:disable_exponential_backoff_retransmi

ssion_interval 200
plugins:wsrm:enable_per_thread_sequence_scope 2

04
plugins:wsrm:max_messages_per_sequence 202
plugins:wsrm:max_retransmission_attempts 201
plugins:wsrm:max_unacknowledged_messages_thre

shold 200

plugins:wsrm:thread_pool:high_water_mark 205
plugins:wsrm:thread_pool:initial_threads 205
plugins:wsrm:thread_pool:low_water_mark 205
plugins:wsrm:thread_pool:max_queue_size 206
plugins:wsrm:thread_pool:stack_size 206
plugins:xmlfile_log_stream:buffer_file 47
plugins:xmlfile_log_stream:filename 45
plugins:xmlfile_log_stream:filename_date_format 4

6
plugins:xmlfile_log_stream:rolling_file 47
plugins:xmlfile_log_stream:use_pid 45
plugins:xslt:endpoint_name:operation_map 156
plugins:xslt:endpoint_name:trace_filter 161
plugins:xslt:endpoint_name:use_element_name 161
plugins:xslt:servant_list 156
-pluginType 126
policies:at_http:server_address_mode_policy:publish

_hostname 224
policies:http:trace_requests:enabled 48
policies:https:trace_requests:enabled 48
policies:soap:server_address_mode_policy:publish_h

ostname 224
-port 128, 133, 143
port 80
precedence, finding references 246
precedence, finding WSDL 243
precision logging 48
pre-filter 55
preprocessing 225
-preserve 20
primitive types 32
programmatic configuration 246
-propagate 59
-provider 126
proxy 217
-publish 128
-publishreference 132, 134, 248
-publishurl 133, 134, 135
-publishwsdl 133, 134

Q
QName 235
QueryString 255
-quiet 127

R
random endpoint selection 188
read-only deployment 138
268

INDEX
references 220, 231
remote logger daemon 83
remote logging 83
remote_log_receiver 87
-removeservice 132, 140
replica group 183
replica priorities 177
replicas, minimum number 173, 179
replicated services 172
reply-to endpoint 216
request_forwarder 174
resolveInitialEndpointReference() 237, 245
resolve_initial_reference() 236, 246
Response monitor 76
retransmission 200
rolling log file 46
running 82

S
secondary hostname 224
SequenceAcknowledgement 193
serialized reference 248
servant registration 226
server ID 80, 82
server-id 78
server ID, configuring 78
-service 126, 132
service 80
-service install 143
Services dialog 144
service states 135
-service uninstall 145
session manager 242
setInboundCodeSet 106
setLocalCodeSet 106
setlocale() 96
-setlogginglevel 58, 133
setOutboundCodeSet 106
Shift JIS 92
Shift_JIS 93
-shutdown 133, 136
SHUTDOWN_COMPLETE 136
SHUTDOWN_PENDING 136
shutting_down 82
SNMP

definition 67
Management Information Base 67

snmp_log_stream 71
source 192

stack size 206
Standard C++ runtime 19
starting_up 82
-startservice 132
stateless servers 187
status 82
-stopservice 132, 136
strftime() 46
stub WSDL shared library 242
-svcName 143
symbols 35

T
TCS 97
thread pool 205
Tivoli integration 74
Tivoli Task Library 74
tmodelname 255
trace logging 48
transformer 152
transmission codeset 96, 97

U
UCS-2 98
UCS-4 98
UDDI 253
uddi_proxy 257
UDDIRegistryEndpointURL 254
ultimate receiver 192
unacknowledged messages 200
Unicode 93
unqualified 224
US-ASCII 93
UTF-16 93, 95
UTF-8 93

V
vc60 19
vc71 19
vc80 19
-verbose 20, 127
-version 127, 129
Visual C++ 146
Visual Studio .NET 2003 19

W
WARNING 44
269

INDEX
web browser 223, 226
Web service chain builder 154, 158, 164
Web Services Inspection Language 228
Web Services Reliable Messaging 191
WebSphere MQ, internationalization 102
Windows compilers 19
Windows service 141
work queue 135
wsa:MessageId 212
wsa:RelatesTo 212
wsa:ReplyTo 212
wsa:replyTo 199
wsa:To 212
WS-Addressing 212
WS-Addressing Message Exchange Pattern 214
ws_chain 166
wsdd 125
WSDL contracts 231, 235
wsdlgen.cfg 23
WSDL preprocessing 225
wsdl_publish 220
WSDL publishing service 220
wsdltocpp 125
wsdltojava 124

-wsdlurl 126
WSIL 228
WS-ReliableMessaging 192
WS-RM 191
wsrm 195, 208
wsrm:AckRequested 200
wsrm:AcksTo 193, 197, 199, 201
wsrm:SequenceTerminated 201
WS-RM acknowledgement endpoint URI 197
wsrm_db 208
WS-RM persistence 207
WS-RM threading 205

X
XL C/C++ 19
xlc60 19
xlc70 19
xmlfile_log_stream 42
XSLT service 151

Z
z/OS 83
270

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Part I
	Getting Started
	Setting your Artix Environment
	Artix Environment Variables
	Customizing your Environment Script

	Artix Configuration
	Artix Configuration Concepts
	Configuration Data Types
	Artix Configuration Domain Files
	Command-Line Configuration

	Artix Logging
	Configuring Artix Logging
	Logging for Subsystems and Services
	Dynamic Artix Logging
	Configuring Message Snoop
	Configuring Log4J Logging
	Configuring SNMP Logging

	Enterprise Performance Logging
	Enterprise Management Integration
	Configuring Performance Logging
	Performance Logging Message Formats
	Remote Performance Logging
	Configuring Remote Performance Logging

	Using Artix with International Codesets
	Introduction to International Codesets
	Working with Codesets using SOAP
	Working with Codesets using CORBA
	Working with Codesets using Fixed Length Records
	Working with Codesets using Message Interceptors
	Routing with International Codesets

	Part II
	Deploying Services in an Artix Container
	Introduction to the Artix Container
	Generating a Plug-in and Deployment Descriptor
	Running an Artix Container Server
	Running an Artix Container Administration Client
	Deploying Services on Restart
	Running an Artix Container as a Windows Service
	Debugging Plug-ins Deployed in a Container

	Deploying an Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain
	Optional Configuration

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying High Availability
	Introduction
	Setting up a Persistent Database
	Configuring Persistent Services for High Availability
	Configuring Locator High Availability
	Configuring Client-Side High Availability

	Deploying WS-Reliable Messaging
	Introduction
	Enabling WS-RM
	Configuring WS-RM Attributes
	Configuring WS-RM Threading
	Configuring WS-RM Persistence

	Part III
	Configuring WS-Addressing
	Introduction
	Configuring a WS-A Message Exchange Pattern

	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Querying the WSDL Publishing Service

	Accessing Contracts and References
	Introduction
	Enabling Server and Client Applications
	Accessing WSDL Contracts
	Accessing Endpoint References
	Accessing Artix Services

	Accessing Services with UDDI
	Introduction to UDDI
	Configuring UDDI Proxy
	Configuring a jUDDI Repository

	Embedding Artix in a BEA Tuxedo Container
	Embedding an Artix Process in a Tuxedo Container

	Index

