
Artix ESB®

Management Guide, Java
Runtime

Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2009 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: February 20, 2009

Contents

List of Figures 5

Preface 7
What is covered in this book 7
Who should read this book 7
Organization of this book 8
The Artix Documentation Library 9

Part I Introduction

Chapter 1 Artix Java Management 13

Part II Java Management Extensions

Chapter 2 Monitoring and Managing with JMX 25

Chapter 3 Instrumenting Artix Java Services 33

Chapter 4 Configuring JMX in Artix Java 45

Chapter 5 Managing Java Services with JMX Consoles 51

Part III Progress Actional

Chapter 6 Integrating with Progress Actional� 61
3

CONTENTS
Chapter 7 Configuring Artix�Actional Integration 69

Chapter 8 Monitoring Artix Services with Actional 79

Part IV AmberPoint

Chapter 9 Integrating with AmberPoint� 91

Chapter 10 Configuring the Artix AmberPoint Agent 101

Part V BMC Patrol

Chapter 11 Integrating with BMC Patrol� 115

Chapter 12 Configuring your Artix Environment for BMC 121

Chapter 13 Using the Artix BMC Patrol Integration 125

Chapter 14 Extending to a BMC Production Environment 135

Index 139
4

List of Figures

Figure 1: Artix Java Management Architecture 15

Figure 2: Artix Java Service Endpoint in JConsole 20

Figure 3: Actional Server Administration Console 21

Figure 4: Artix Java Runtime JMX Architecture 27

Figure 5: Managed Bus Info in JConsole 53

Figure 6: Managed Bus Operation in JConsole 54

Figure 7: Managed Endpoint Attributes in JConsole 55

Figure 8: Managed Endpoint Operations in JConsole 56

Figure 9: Custom MBean Attributes in JConsole 57

Figure 10: Custom MBean Operations in JConsole 58

Figure 11: Artix�Actional Integration Architecture 63

Figure 12: Artix�Actional Interception Points 65

Figure 13: Actional Server Administration Console 67

Figure 14: Actional Server Network Overview 80

Figure 15: Actional Node Details 81

Figure 16: Actional Server Path Explorer 82

Figure 17: Service Details in Actional 83

Figure 18: Artix Java Consumer Call in Actional 84

Figure 19: Artix Java Router Processing in Actional 85

Figure 20: Artix Java Service Endpoint in Actional 86

Figure 21: Artix CORBA Call in Actional 87

Figure 22: CORBA Service Details in Actional 88

Figure 23: AmberPoint Proxy Agent Integration 92

Figure 24: AmberPoint Proxy Agent Service Network 93

Figure 25: Artix AmberPoint Agent Integration 96

Figure 26: Artix AmberPoint Agent Embedded in Service Endpoint 97
5

LIST OF FIGURES
Figure 27: Artix AmberPoint Agent Service Network 99

Figure 28: Artix Server Running in BMC Patrol 119

Figure 29: BMC Patrol Displaying Alarms 120

Figure 30: BMC Graphing for IONAAvgResponseTime 131

Figure 31: BMC Alarms for IONAAvgResponseTime 132
 6

Preface
What is covered in this book
This guide describes the enterprise management features for Artix Java
applications. It explains how to integrate and manage Artix Java
applications with the following:

� Java Management Extensions (JMX)

� Progress Actional

� AmberPoint

� BMC Patrol

This guide applies to Artix applications written using JAX-WS (Java
XML-Based APIs for Web Services) and JavaScript only.

For information on Artix applications written in C++ or JAX-RPC (Java
XML-Based APIs for Remote Procedure Call), see the Artix Management
Guide, C++ Runtime.

Who should read this book
This guide is aimed at system administrators managing distributed
enterprise environments, and developers writing distributed enterprise
applications. Administrators do not require detailed knowledge of the
technology that is used to create distributed enterprise applications.

This book assumes that you already have a good working knowledge of at
least one of the management technologies mentioned in �What is covered in
this book�.
7

../cpp_mgmt/index.htm
../cpp_mgmt/index.htm

PREFACE
Organization of this book
This book contains the following parts:

Part I

� Chapter 1 introduces the Artix Java runtime�s management
architecture and features.

Part II

� Chapter 2 introduces the JMX features supported by the Artix Java
runtime, and describes the Artix components that can be managed
using JMX.

� Chapter 3 explains how to instrument your Artix Java services using
custom MBeans.

� Chapter 4 explains how to configure an Artix Java runtime for JMX.

� Chapter 5 explains how to manage and monitor Artix Java services
using JMX consoles.

Part III

� Chapter 6 describes the architecture of the Artix Java integration with
Actional.

� Chapter 7 explains how to configure integration between Artix Java
and Actional SOA management products.

� Chapter 8 shows examples of monitoring Artix Java services using
Actional.

Part IV

� Chapter 9 describes the architecture of the Artix Java integration with
AmberPoint.

� Chapter 10 explains how to configure integration with the Artix
AmberPoint Agent, and shows examples from the Artix AmberPoint
integration demo.
 8

PREFACE
Part V

� Chapter 11 introduces Enterprise Management Systems, and the Artix
integration with BMC Patrol.

� Chapter 12 describes how to configure your Artix Java environment for
integration with BMC Patrol.

� Chapter 13 describes how to configure your BMC Patrol environment
for integration with Artix.

� Chapter 14 describes how to extend an Artix BMC Patrol integration
from a test environment to a production environment

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
9

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 10

Part I
Introduction

In this part This part contains the following chapters:

Artix Java Management page 13
11

12

CHAPTER 1

Artix Java
Management
Artix provides support for integration with a range of
management systems. This chapter introduces the
management architecture for the Artix Java runtime and the
supported integrations.

In this chapter This chapter includes the following section:

Introduction to Artix Java Management page 14

Artix Java Management Integrations page 19
13

CHAPTER 1 | Artix Java Management
Introduction to Artix Java Management

Overview This section introduces the Artix Java management architecture and
explains its various components.

Management architecture The Artix Java management architecture provides:

� Integration with third-party enterprise management and SOA
management systems

� Instrumentation used to monitor system status and potential problems

� Flexible XML-based configuration

� Tools for developers without access to management systems.

Figure 1 shows a basic overview of the Artix Java management architecture.
The Artix Java runtime uses interceptors to send management
instrumentation data to third-party management systems.

In addition, the Artix instrumentation data can also be monitored using
JMX-compliant consoles.

Integration with third-party
management systems

Integrations with third-party enterprise management and SOA management
systems are critical to large corporations. Artix provides integration with the
Actional and AmberPoint SOA management systems, and the BMC Patrol
Enterprise Management System (EMS).

These management systems give a top-to-bottom view of enterprise
infrastructure. For example, this means that instead of getting 100 different
messages when services are not responding, you get a single message
saying your services on these hosts are not working because the following
network segment is dead.

If you integrate with an enterprise management or SOA management
system, your product can also be hooked into higher-level monitoring tools
such as Business Activity Monitoring (BAM), Service Level Agreement
monitoring, and impact analysis tools. For example, when something goes
wrong, the relevant administrators are automatically notified, trouble tickets
are created, and service level impact is analyzed.
14

Introduction to Artix Java Management
For more details on integration with third-party management systems, see
�Artix Java Management Integrations� on page 19.

Figure 1: Artix Java Management Architecture
15

CHAPTER 1 | Artix Java Management
Instrumentation Management instrumentation refers to application code used to monitor
specific components in a system (for example, code that outputs logging or
performance data to a management console). Instrumentation is used to
reflect the state of a system and view potential problems with the normal
operation of the system, while imposing minimal overhead. If you are using
instrumentation to view problems, it is important that the act of observing
the system causes minimal disturbance.

The main types of instrumentation supported by Artix include:

� Object-based instrumentation (for example, JMX)

� Logging

Object-based instrumentation

Artix supports object-based instrumentation using Java Management
Extensions (JMX). The main purpose of this object-based instrumentation is
to enable monitoring and management of Artix applications by JMX-aware
third-party management consoles such as JConsole (see Figure 2 on
page 20).

Artix has been instrumented to allow Java runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an Artix Java
runtime to be monitored and managed either in process or remotely using
the JMX Remote API. Managed components are exposed using an Object
interface with attributes and methods.

Artix Java runtime components can be exposed as JMX MBeans
out-of-the-box (for example, Artix Java service endpoints and Artix Java
bus). In addition, the Artix Java runtime supports the registration of custom
MBeans. Java developers can create their own MBeans and register them
either with their JMX MBean server of choice, or with a default MBean
server created by Artix

For more details on JMX object-based instrumentation, see Part II, Java
Management Extensions.
16

Introduction to Artix Java Management
Artix Java logging

The Artix Java runtime uses the standard Java logging utility,
java.util.logging. For example, this can be used to display logging in a
console, or to write to a log file or e-mail. Artix Java logging is configured in
a logging configuration file, using the standard java.util.Properties
format. You can also specify logging programmatically, or define
command-line properties that point to the logging configuration file when
you start an application.

The Artix Java runtime provides a default logging.properties file in the
ArtixInstallDir/java/etc directory. This specifies the location for log
output messages and the message level published. The default
logging.properties file configures the Artix Java loggers to print log
messages of level WARNING to the console. You can use this file without
changing any configuration, or you can change the configuration to suit your
application.

For more details on Artix Java logging, see Configuring and Deploying Artix
Solutions, Java Runtime.

For more details on the java.util.logging utility, see:
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

Flexible configuration The Artix Java runtime supports a number of configuration mechanisms to
enable you to change the default behavior, enable specific functionality, or
fine-tune behavior. The supported configuration mechanisms include XML
configuration files, WS-Policy, and WSDL extensions. XML configuration
files are the most flexible way to configure the Artix Java runtime and are the
recommended approach to use.

The following example shows a simplified Artix Java configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/
 spring-beans-2.0.xsd">
 <!-- your configuration goes here! -->
</beans>
17

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
../deploy/java/index.html
../deploy/java/index.html

CHAPTER 1 | Artix Java Management
Artix Java runtime configuration is based on the Spring Framework. This
means that an Artix Java configuration file is really a Spring XML file. You
must include an opening Spring beans element that declares the
namespaces and schema files for the child elements that are encapsulated
by the beans element.

The contents of your configuration depends on the behavior you want the
Artix Java runtime to exhibit. You can also use the either of the following
XML syntax:

� Plain Spring XML�the child elements of the Spring beans element are
Spring beans elements.

� A simplified beans syntax�the child elements of the Spring beans
element can be any one of a number of custom namespaces. For
example, you can use jaxws:endpoint elements.

For a specific example of configuring Artix Java management integration,
see �Configuring Artix�Actional Integration� on page 69.

For more details on Artix Java configuration, see Configuring and Deploying
Artix Solutions, Java Runtime.

For more details on Spring, see www.springframework.org.

Developer-based tools Large corporations use third-party enterprise management and SOA
management systems to monitor Artix applications in production
environments. However, the following users need to use more lightweight
management tools:

� Application developers who need to test the effects of their changes in
a running test environment.

� Application developers who do not have access to an enterprise
management or SOA management system.

� Support engineers who need to diagnose or correct problems raised by
customers or management systems.

For facilitate such users, Artix provides out-of-the-box integration with
JConsole. This is the JMX-based management console provided with JDK
1.5 to monitor and manage Java applications. For more details, see �JMX�
on page 19.
18

www.springframework.org
../deploy/java/index.html
../deploy/java/index.html

Artix Java Management Integrations
Artix Java Management Integrations

Overview Artix has been designed to integrate with a range of third-party management
systems. These include enterprise management systems, SOA management
systems, and developer-focused tools. This section introduces Artix
integrations with the following systems:

� �JMX�

� �Progress Actional�

� �AmberPoint�

� �BMC Patrol�

JMX The JMX instrumentation provided in Artix enables Artix service endpoints
and the Artix bus to be monitored by any JMX-compliant management
console (for example, JConsole or MC4J).

You can use JMX consoles to monitor and manage key Artix Java runtime
components both locally and remotely. For example, using any
JMX-compliant client, you can perform tasks such as:

� View service status

� View a service endpoint�s address

� Stop or start a service

� Shutdown an Artix Java bus

Artix provides out-of-the-box integration with JConsole, which is the
JMX-based management console provided with JDK 1.5.
19

CHAPTER 1 | Artix Java Management
Figure 2 shows an Artix Java service endpoint being monitored in JConsole.
For more details on Artix integration with JMX, see Part II.

Progress Actional Integration between Artix and Actional enables Artix services to be
monitored by Actional SOA management systems. For example, you can use
Actional SOA management tools to perform monitoring, auditing, and
reporting on Artix services. You can also correlate and track messages
through your network to perform dependency mapping and root cause
analysis.

The Artix�Actional integration is deployed on Artix endpoints to enable
reporting of management data back to the Actional server. The data reported
back to Actional includes system administration metrics such as response
time, fault location, auditing, and alerts based on policies and rules.

This integration uses the following components to monitor Artix services and
report data back to the Actional SOA management tools:

Figure 2: Artix Java Service Endpoint in JConsole
20

Artix Java Management Integrations
Actional agents

An Actional agent is run on each Artix node that you wish to manage.
Actional agents are used to provide instrumentation data back to the
Actional server. Actional agents are provisioned from the Actional server to
establish initial contact and send configuration to the Actional agent.

Artix interceptors

Artix interceptors are added to an endpoint's messaging chain that send the
instrumentation data to the Actional agent using an Actional-specific API.
These interceptors essentially push events to the Actional agent. The data is
analyzed and stored in the Actional agent for retrieval by the Actional server.

Figure 3 shows an example system monitored in the Actional Server
Administration Console.

For more details on Artix integration with Progress Actional, see Part III.

Figure 3: Actional Server Administration Console
21

CHAPTER 1 | Artix Java Management
AmberPoint Integration between Artix and AmberPoint enables Artix services to be
monitored by the AmberPoint SOA management system. An Artix
AmberPoint Agent can be deployed in Artix endpoints that use SOAP over
HTTP to enable reporting of performance metrics back to AmberPoint.

The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

� Dynamic discovery of Artix clients and services using SOAP over HTTP.

� Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

� Mapping Qualities of Service to customer Service Level Agreements
(SLAs).

� Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

� Centralized logging and performance statistics.

For more details on Artix integration with AmberPoint, see Part IV.

BMC Patrol Integration between Artix and BMC Patrol enables Artix services to be
monitored by the BMC Patrol Enterprise Management System (EMS). You
can use the Artix integration with BMC Patrol to track key server metrics (for
example, server response times). You can also set up alarms and post
events when a server crashes to enable specific recovery actions to be taken.

The Artix Java runtime integration with BMC Patrol obtains server metrics
using JMX-based Artix interceptors. Artix provides BMC Knowledge Modules
(KM), which conform to standard BMC Patrol KM design and operation.
These modules tell the BMC Patrol console how to interpret the data
obtained from the Artix interceptors.

The Artix server metrics tracked by the Artix BMC Patrol integration include
the number of invocations received, and the average, maximum and
minimum response times. The Artix BMC Patrol integration also enables you
to track these metrics for individual operations. Events can be generated
when any of these parameters go out of bounds.

For more details on Artix integration with BMC Patrol, see Part V.
22

Part II
Java Management

Extensions

In this part This part contains the following chapters:

Monitoring and Managing with JMX page 25

Instrumenting Artix Java Services page 33

Configuring JMX in Artix Java page 45

Managing Java Services with JMX Consoles page 51
23

24

CHAPTER 2

Monitoring and
Managing with
JMX
This chapter explains how to monitor and manage Artix Java
runtime components using Java Management Extensions
(JMX).

In this chapter This chapter discusses the following topics:

Introduction page 26

Managed Runtime Components page 30
25

CHAPTER 2 | Monitoring and Managing with JMX
Introduction

Overview You can use Java Management Extensions (JMX) to monitor and manage
key Artix Java runtime components both locally and remotely. For example,
using any JMX-compliant client application, you can perform tasks such as:

� View service status

� View a service endpoint�s address

� Stop or start a service

� Shutdown an Artix Java bus

How it works Artix has been instrumented to allow Java runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an Artix Java
runtime to be monitored and managed either in process or remotely using
the JMX Remote API.

Artix Java runtime components can be exposed as JMX MBeans
out-of-the-box (for example, Artix Java service endpoints and the Artix Java
bus). In addition, the Artix Java runtime supports the registration of custom
MBeans. Java developers can create their own MBeans and register them
either with their JMX MBean server of choice, or with a default MBean
server created by Artix (see �Relationship between runtime and custom
MBeans� on page 28).

Artix Java services can be monitored and managed by any JMX-compliant
client application (for example JConsole). Figure 4 shows an overview of
how the various components interact.
26

Introduction

The custom MBeans shown in Figure 4 are optional components that can be
implemented as required (for details, see Chapter 3).

Figure 4: Artix Java Runtime JMX Architecture
27

CHAPTER 2 | Monitoring and Managing with JMX
Enabling JMX Artix runtime JMX support is enabled using configuration settings only. You
do not need to write any additional Artix code to enable JMX support. When
configured, you can use any third party console that supports JMX Remote
to monitor and manage Artix services.

For details on how to configure JMX support in Artix applications, see
Chapter 4.

What can be managed Artix JAX-WS servers can have the following runtime components exposed
as JMX MBeans:

� Artix Java bus

� Service endpoint

All runtime components are registered with an MBean server as dynamic
MBeans. This ensures that they can be viewed by third-party management
consoles without any additional client-side support libraries.

Naming conventions

All MBeans for Artix runtime components conform with Sun�s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use org.apache.cfx as their domain name when creating
managed components.

Relationship between runtime
and custom MBeans

The Artix Java runtime instrumentation provides an out-of-the-box JMX view
of JAX-WS services. Java developers can also create custom JMX MBeans to
manage Artix Java components such as service endpoint attributes and
operations.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status, while a custom
MBean can provide details on the status of a business loan request
processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already. For more details, see
Chapter 3.
28

http://java.sun.com/products/JavaManagement/best-practices.html

Introduction
Further information For further information, see the following:

JMX

http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote

http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/DynamicMBean
.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml
29

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/DynamicMBean.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

CHAPTER 2 | Monitoring and Managing with JMX
Managed Runtime Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix Java runtime components. For
example, you can use any JMX console or client to perform the following
tasks:

� Shutdown an Artix Java bus

� View service status

� View a service endpoint�s address

� Stop or start a service

Artix bus operations The following Artix Java bus method can be accessed using any JMX
console or client:

Endpoint attributes The following Artix service endpoint attributes can be managed by any JMX
console or client:

Table 1: Managed Bus Methods

Name Description Parameters

shutdown() Shuts down the current Artix Java bus. boolean

Table 2: Managed Endpoint Attributes

Name Description Type

Address Endpoint address (for example,
http://localhost:9000/SoapContext/SoapPort).

String

State Current service state manipulated by stop and
start methods. Possible values are STARTED or
STOPPED.

String

TransportID Endpoint transport ID (for example,
http://schemas.xmlsoap.org/soap/http for the
HTTP transport).

String
30

Managed Runtime Components
Endpoint operations The following Artix service endpoint operations can be managed by any JMX
console or client:

For examples of operations and attributes displayed in a JMX console, see
Chapter 5

MBeanInfo All the attributes and methods described in this section can also be
determined by introspecting the MBeanInfo for the component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.htm)

Table 3: Managed Endpoint Operations

Name Description Parameters Return Type

getAddress() Get the service address (for example,
http://localhost:9000/SoapContext/
SoapPort).

None String

getState() Get the current service state. Possible
values are STARTED or STOPPED.

None String

getTransportID() Get the service transport ID (for
example,
http://localhost:9000/SoapContext/
SoapPort).

None String

start() Activate a service. None Void

stop() Deactivate a service. None Void
31

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 2 | Monitoring and Managing with JMX
32

CHAPTER 3

Instrumenting
Artix Java Services
This chapter explains how to instrument your Artix Java
services using custom MBeans. There are two different
approaches. You can use either the JMX MBean interfaces or
the Artix ManagedComponent interface. This applies to
applications written using the Java API for XML-Based Web
Services (JAX-WS).

In this chapter This chapter discusses the following topics:

Using the JMX MBean Interfaces page 34

Using the Artix ManagedComponent Interface page 37
33

CHAPTER 3 | Instrumenting Artix Java Services
Using the JMX MBean Interfaces

Overview This section shows how to implement a JMX MBean interface and register it
with the Artix MBean server.

The Artix MBean server can be accessed through the Artix Java bus and
enables the registration of custom MBeans. You can instrument your service
implementation by developing a custom MBean using one of the JMX
MBean interfaces and registering it with the Artix MBean server. Your
custom instrumentation can be accessed using the same JMX connection as
the Artix internal components used by your service.

Creating your custom MBean When using the JMX APIs to instrument your service implementation, follow
the design methodology laid out by the JMX specification. This involves the
following steps:

1. Decide what type of MBean you wish to use.

♦ Standard MBeans expose a management interface defined at
development time.

♦ Dynamic MBeans expose their management interface at runtime.

2. Create the MBean interface to expose the properties and operations
used to manager your service implementation.

♦ Standard MBeans use the MBean interface.

♦ Dynamic MBeans use the DynamicMBean interface.

3. Implement the MBean class.

Example 1 shows the interface for a standard MBean.

Example 1: Standard MBean Interface

public interface ServerNameMBean
{
 String getServiceName();
 String getAddress();
}

34

Using the JMX MBean Interfaces
Example 2 shows a class that implements the MBean defined in Example 2.

Registering the MBean To expose your MBean in a JMX management console, it must be registered
with the Artix MBean server. The Artix MBean server can be accessed
through the Artix Java bus. Typically, this happens when your service is
initialized.

To register a custom MBean, perform the following steps:

1. Instantiate your custom MBean.

2. Get an instance of the bus.

3. Get the Artix MBean server from the bus.

4. Create an ObjectName for your MBean.

5. Register your MBean server using the server�s registerMBean()
method.

Example 3 shows the steps for registering a custom MBean with the Artix
MBean server.

Example 2: Standard MBean Implementation Class

public class ServerName{

 String getServiceName()
 {
 return "mySOAPservice";
 }

 String getAddress()
 {
 return "myServiceAddress";
 }
}

Note: It is recommended that your MBeans follow the �Naming
conventions� on page 28. However, you can choose any naming scheme.
35

CHAPTER 3 | Instrumenting Artix Java Services

Alternatively, you do not have to register the MBean directly with the
MBeanServer. You can also use the register(Object, ObjectName) utility
method on the InstrumentationManager to register a StandardMBean.

Further information For further information, see the following:

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml

JMX specifications

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/d
ocs.jsp.

Example 3: Registering a Custom MBean

import javax.management.MBeanServer;
import javax.management.ObjectName;
import org.apache.cfx.Bus;

...

//Instantiate the MBean
ServerName sName = new ServerName();

//Get the MBean server from the bus
InstrumentationManager im =

BusFactory.getDefaultBus().getExtension(org.apache.cxf.manage
ment.InstrumentationManager.class);

MBeanServer server = im.getMBeanServer();

//Create ObjectName for the MBean
ObjectName name = new

ObjectName(my..instrumentation:type=CustomMBean,Bus="+
bus.getBusID() + name="ServerNameMBean");

//Register the MBean
server.registerMBean(sName, name);
36

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/docs.jsp
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/docs.jsp
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Using the Artix ManagedComponent Interface
Using the Artix ManagedComponent Interface

Overview If you do not wish to use the JMX APIs to add instrumentation to your
service, you can use the Artix ManagedComponent interface. This interface
wraps the JMX subsystem in an Artix-specific API. You do not need to
access the Artix MBean server to register your managed components
because the Artix wrappers take care of this for you. This approach uses
JMX annotations to specify which methods and attributes are exposed.

Adding custom instrumentation using the Artix ManagedComponent interface
involves the following steps:

1. Write an instrumentation class that implements the
org.apache.cxf.management.ManagedComponent interface.

2. When your service is starting up, activate your ManagedComponent
object by instantiating it and registering it with the
InstrumentationManager.

3. When your service is shutting down, deactivate your
ManagedComponent by unregistering it and cleaning it up.

This section shows how to implement the Artix ManagedComponent interface
using JMX annotations. It uses example code from the Artix jmx sample
application:

Writing the instrumentation class Like an MBean, an Artix instrumentation class is responsible for providing
access to the attributes that you wish to track, and implementing any
management operations that you want to expose. Unlike an MBean, an Artix
instrumentation class does not implement a user-defined interface. Instead,
it implements the Artix-defined ManagedComponent interface, and defines the
operations required to expose your managed attributes and operations.

ArtixInstallDir\java\samples\management\jmx
37

CHAPTER 3 | Instrumenting Artix Java Services
JMX annotations

The Artix management API uses JDK 5.0 annotations to create an object
that implements the ModelMBeanInfo interface. This reads the Artix
annotations to identify the attributes and operations that are exposed. It
then uses this information to create a ModelMBean and registers it with the
MBean server.

Table 4 lists the JDK 5.0 annotations that can be used when implementing
your instrumentation class.

Annotation parameters

Table 5 lists parameters that can be supplied to the JMX annotations.

Table 4: JDK 5.0 JMX Annotations

Annotation Type Description

@ManagedResource Class Marks all instances of a class as a
JMX managed resource.

@ManagedOperation Method Marks a method as a JMX
operation.

@ManagedAttribute Method Marks a getter or a setter as one
half of a JMX attribute.

@ManagedNotification Method Marks a JMX notification issued by
an MBean.

@ManagedOperationParameter

@ManagedOperationParameters

Method Describes the parameters of a
managed operation.

Table 5: JMX Annotation Metadata

Parameter Annotation Description

componentName @ManagedResource Specifies the name of the managed
resource.

description @ManagedResource

@ManagedAttribute

@ManagedOperation

ManagedNotification

@ManagedOperationParameter

Specifies a user-friendly
description of the resource,
attribute, or operation.
38

Using the Artix ManagedComponent Interface
currencyTimeLimit @ManagedResource

@ManagedAttribute

Specifies how long in seconds a
cached value is valid (0 for never,
=0 for always, or >0).

defaultValue @ManagedAttribute Specifies a default cached value.

log @ManagedResource

@ManagedNotification

Enables logging. Specify true to
log all notifications or false to log
no notifications.

logFile @ManagedResource

@ManagedNotification

Specifies the a fully qualified
filename to log events to.

persistPolicy @ManagedResource Specifies the persistence policy.
Values are:

OnUpdate
OnTimer
NoMoreOftenThan
Always
Never

persistPeriod @ManagedResource Specifies the frequency of the
persist cycle in seconds for the
OnTime and NoMoreOftenThan
policies.

persistLocation @ManagedResource Specifies the filename in which the
MBean should be persisted.

persistName @ManagedResource Specifies the name that is
persisted.

name @ManagedOperationParameter Specifies the display name of an
operation parameter.

index @ManagedOperationParameter Specifies the index of an operation
parameter.

Table 5: JMX Annotation Metadata

Parameter Annotation Description
39

CHAPTER 3 | Instrumenting Artix Java Services
Adding annotations

When implementing your custom MBean�s instrumentation class using the
ManagedComponent interface, you should annotate the class with the
@ManagedResource attribute. Any management operation that you wish to
expose in your class should be annotated with the @ManagedOperation
attribute. Any attributes that you wish to expose should have their getter
and setter methods annotated with the @ManagedAttribute attribute. If you
want to make an attribute read-only or write-only, you can omit the
annotation from either its setter method or its getter method.

Example 4 shows an custom MBean class taken from the Artix jmx sample
application.

Example 4: Example Artix Instrumentation Class

// GreaterImpl.java

package demo.hw.server;

import java.util.logging.Logger;

import javax.management.JMException;
import javax.management.ObjectName;

import org.apache.cxf.management.ManagedComponent;
import org.apache.cxf.management.annotation.ManagedAttribute;
import org.apache.cxf.management.annotation.ManagedOperation;
import org.apache.cxf.management.annotation.ManagedResource;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.types.FaultDetail;

@ManagedResource(componentName = "GreeterImpl",
 description = "A typical Greeter implementation.")

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")
40

Using the Artix ManagedComponent Interface
public class GreeterImpl implements Greeter, ManagedComponent {

 private static final Logger LOG = Logger.getLogger(GreeterImpl.class.getPackage().getName());
 private int count;

 /* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#greetMe(java.lang.String)
 */
 public String greetMe(String me) {
 LOG.info("Executing operation greetMe");
 count++;
 System.out.println("Executing operation greetMe");
 System.out.println("Message received: " + me + "\n");
 return "Hello " + me;
 }

/* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#greetMeOneWay(java.lang.String)
 */
 public void greetMeOneWay(String me) {
 LOG.info("Executing operation greetMeOneWay");
 count++;
 System.out.println("Executing operation greetMeOneWay\n");
 System.out.println("Hello there " + me);
 }

 /* (non-Javadoc)
 * @see org.apache.hello_world_soap_http.Greeter#sayHi()
 */
 public String sayHi() {
 LOG.info("Executing operation sayHi");
 count++;
 System.out.println("Executing operation sayHi\n");
 return "Bonjour";
 }

 public void pingMe() throws PingMeFault {
 count++;
 FaultDetail faultDetail = new FaultDetail();
 faultDetail.setMajor((short)2);
 faultDetail.setMinor((short)1);
 LOG.info("Executing operation pingMe, throwing PingMeFault exception");
 System.out.println("Executing operation pingMe, throwing PingMeFault exception\n");
 throw new PingMeFault("PingMeFault raised by server", faultDetail);
 }
41

CHAPTER 3 | Instrumenting Artix Java Services
Registering your custom MBean To make your custom instrumentation available to JMX management
consoles, you must create an instance of your custom class and register it
with the bus. This handles the creation of the ModelMBean to represent your
custom MBean. It also handles the registration of the MBean with the
MBean server.

To activate your custom MBean, do the following:

1. Get the current Artix Java bus instance.

2. Get the InstrumentationManager from the bus using
bus.getExtension().

3. Create an instance of your instrumentation class.

4. Register your custom MBean instance with the
InstrumentationManager.

Example 5 shows these steps in the sample server code for activating a
custom MBean.

 public ObjectName getObjectName() throws JMException {
 return new ObjectName("samples:name=GreeterImpl");
 }

 @ManagedAttribute(description = "The Count Attribute", currencyTimeLimit = 15)
 public int getCount() {
 return count;
 }

 @ManagedOperation(description = "Add Two Numbers Together")
 public void resetCount() {
 count = 0;
 }
}

42

Using the Artix ManagedComponent Interface
Example 5: Example Server Code

// Server.java

package demo.hw.server;

import javax.xml.ws.Endpoint;
import org.apache.cxf.Bus;
import org.apache.cxf.bus.spring.SpringBusFactory;
import org.apache.cxf.management.InstrumentationManager;
import org.apache.cxf.management.ManagedComponent;

public class Server {

 protected Server() throws Exception {
 System.out.println("Starting Server");

 SpringBusFactory factory = new SpringBusFactory();
 Bus bus = factory.createBus();
 InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
 ManagedComponent component = new GreeterImpl();
 im.register(component);
 String address = "http://localhost:9000/SoapContext/SoapPort";
 Endpoint.publish(address, component);
 }

 public static void main(String args[]) throws Exception {
 new Server();
 System.out.println("Server ready...");

 Thread.sleep(10 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

43

CHAPTER 3 | Instrumenting Artix Java Services
Deactivating your custom
instrumentation

You can explicitly tell the bus to remove the ModelMBean created for your
instrumentation using the InstrumentationManager.unregister() method.
This method removes the MBean from the Artix MBean server, destroys the
associated ModelMBean, and frees up any resources used by it.

In the Artix jmx sample application MBean is not explicitly unregistered, but
is destroyed when the server process is destroyed.

Further information For further information, see the following:

ModelMBeanInfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/modelmbean/M
odelMBeanInfo.html
44

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/modelmbean/ModelMBeanInfo.html

CHAPTER 4

Configuring JMX in
Artix Java
This chapter explains how to configure an Artix Java runtime
for JMX using the XML-based Spring Framework.

In this chapter This chapter discusses the following topic:

Artix JMX Configuration page 46
45

CHAPTER 4 | Configuring JMX in Artix Java
Artix JMX Configuration

Overview JMX support in an Artix Java runtime is enabled using configuration settings
only. You do not need to write any Artix code to enable JMX support in the
Artix runtime.

JMX is not configured by default. When configured, you can use any third
party console that supports JMX Remote to monitor and manage Artix
services. This section shows the Artix configuration settings required to
enable JMX monitoring of the Artix runtime, and access for remote JMX
clients.

Configuring Artix JMX features The Artix Java configuration mechanism uses the XML-based Spring
Framework. In the Artix jmx sample application, the JMX support is
configured using the
org.apache.cxf.management.jmx.InstrumentationManagerImpl class. This
class includes the following properties:

bus Specifies the name of the Artix bus. The name of the Artix
Java bus is cfx.

enabled Specifies whether JMX monitoring and management is
enabled. Possible values are true or false. Specifying true
enables remote JMX clients to access runtime and custom
MBeans.

JMXServiceURL Specifies the connection URL for the JMX server. The
default URL is:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
/server
46

Artix JMX Configuration
Example 6 shows the JMX configuration settings taken from the
managed_server.xml file in the Artix jmx sample application:

The InstrumentationManagerImpl class extends JMXConnectorPolicyType.
For more details, see �Artix JMX schema� on page 48.

Accessing Artix Java configuration You can make your configuration available to the Artix Java runtime in one
of the following ways:

� Use one of the following command-line flags to point to your XML
configuration file:

♦ -Dcxf.config.file=<myCfgResource>

♦ -Dcxf.config.file.url=<myCfgURL>

This enables you to save your XML configuration file anywhere on your
system and avoid adding it to your CLASSPATH. This is the approach
used in most of the Artix Java samples (for example,
managed_server.xml).

ArtixInstallDir\java\samples\management\jmx

Example 6: Contents of managed_server.xml

?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2007 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:im="http://cxf.apache.org/management"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- InstrumetationManager's setting -->
 <bean id="InstrumentationManager"

class="org.apache.cxf.management.jmx.InstrumentationManagerImpl">
 <property name="bus" ref="cxf" />
 <property name="enabled" value="true" />
 <property name="JMXServiceURL"

value="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server"/>
 </bean>
</beans>
47

CHAPTER 4 | Configuring JMX in Artix Java
� Specify the XML configuration file on your CLASSPATH.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:
 (new SpringBusFactory()).createBus(URL myCfgURL)
 (new SpringBusFactory()).createBus(String myCfgResource)

Artix JMX schema The complete schema for configuring JMX in an Artix Java runtime is
contained in the instrumentation.xsd file shown in Example 7:

These attributes are explained as follows:

Example 7: JMX Configuration Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://cxf.apache.org/management"
 xmlns:tns="http://cxf.apache.org/management"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 jaxb:version="2.0">

 <xs:complexType name="JMXConnectorPolicyType">
 <xs:attribute name="Enabled" type="xs:boolean" use="required" />
 <xs:attribute name="Threaded" type="xs:boolean" use="required" />
 <xs:attribute name="Daemon" type="xs:boolean" use="required" />
 <xs:attribute name="JMXServiceURL" type="xs:string"

default="service:jmx:rmi:///jndi/rmi://localhost:9913/jmxrmi"/>
 </xs:complexType>

 <xs:element name="JMXConnectorPolicy"

type="tns:JMXConnectorPolicyType"/>

</xs:schema>

Enabled Specifies whether the JMX infrastructure is available to the
Artix Java runtime. JMX is disabled by default. The MBean
server is an unnecessary overhead if you do not require
JMX.

Threaded Specifies whether the JMX server starts in a separate
thread.
48

Artix JMX Configuration
Further information For more information, see the following:

Artix Java configuration

� Configuring and Deploying Artix Solutions, Java Runtime

� Artix Configuration Reference, Java Runtime

Spring Framework

www.springframework.org

RMI Connector

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

Daemon If the JMX server is running in a separate thread, specifies
whether it is run as daemon thread

JMXServiceURL Specifies the JMXServiceURL to connect to remotely.
Remote access is performed using JMX Remote, using an
RMI Connector on a default port of 1099. Use the following
JNDI-based JMXServiceURL to connect remotely:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
/server
49

www.springframework.org
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
../../deploy/java/index.htm
../../config_ref/java/index.html

CHAPTER 4 | Configuring JMX in Artix Java
50

CHAPTER 5

Managing Java
Services with JMX
Consoles
You can use any third-party management console that supports
JMX Remote to monitor and manage Artix services (for
example, JConsole or MC4J).

In this chapter This chapter discusses the following topics:

Managing Artix Services with JConsole page 52
51

CHAPTER 5 | Managing Java Services with JMX Consoles
Managing Artix Services with JConsole

Overview The JConsole management console is provided with JDK 1.5 to monitor and
manage Artix Java applications. For convenience, Artix installs JConsole,
which can be run out-of-the-box with the Artix jmx sample application:

Using JConsole with Artix Artix runtime MBeans can be accessed remotely using JMXRemote. This
means that any management console that supports JMXRemote can be
used to monitor and manage Artix-enabled applications.

To view the management information for a deployed Artix-enabled
application using JConsole, perform the following steps:

1. Launch the JConsole application using the following command:

ArtixInstallDir/java/bin/jmx_console_start

Alternatively, you can use:

JDK_HOME/bin/jconsole

2. Select the Advanced tab.

3. Enter the URL of your Artix MBean server in the JMXServiceURL field.
This will either be the default Artix JMXServiceURL
(service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server),
or the value specified by the JMXServiceURL property in your
application�s Spring configuration file.

ArtixInstallDir\java\samples\management\jmx

Note: When running the jmx sample application, steps 2 and 3 are not
necessary.
52

Managing Artix Services with JConsole
Managing runtime components JConsole displays managed Artix runtime components in a hierarchical tree,
as shown in Figure 5. This shows the MBean information displayed for the
managed bus component (for example, the MBean name and Java class).

Figure 5: Managed Bus Info in JConsole
53

CHAPTER 5 | Managing Java Services with JMX Consoles
Figure 6 shows the shutdown() operation for the managed bus displayed in
JConsole.

Figure 6: Managed Bus Operation in JConsole
54

Managing Artix Services with JConsole
Figure 7 shows the attributes displayed for a managed service endpoint
displayed in JConsole.

Figure 7: Managed Endpoint Attributes in JConsole
55

CHAPTER 5 | Managing Java Services with JMX Consoles
Figure 8 shows the operations displayed for managed a service endpoint
displayed in JConsole.

Figure 8: Managed Endpoint Operations in JConsole
56

Managing Artix Services with JConsole
Managing custom MBeans Figure 9 shows the attributes displayed for the sample custom MBean
displayed in JConsole.

Figure 9: Custom MBean Attributes in JConsole
57

CHAPTER 5 | Managing Java Services with JMX Consoles
Figure 8 shows the operations displayed for the sample custom MBean
displayed in JConsole.

Further information For detailed information on Artix runtime attributes and operations see
�Managed Runtime Components� on page 30.

For more information on using JConsole, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Figure 10: Custom MBean Operations in JConsole
58

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Part III
Progress Actional

In this part This part contains the following chapters:

Integrating with Progress Actional� page 61

Configuring Artix�Actional Integration page 69

Monitoring Artix Services with Actional page 79
59

60

CHAPTER 6

Integrating with
Progress
Actional�
Artix provides support for integration with Progress Actional
SOA management products. This chapter provides an overview
of the integration architecture

In this chapter This chapter includes the following section:

Artix�Actional Integration Architecture page 62
61

CHAPTER 6 | Integrating with Progress Actional�
Artix�Actional Integration Architecture

Overview Integration between Artix and Actional enables Artix services to be
monitored by Actional SOA management products. For example, you can
use Actional SOA management tools to perform monitoring, auditing, and
reporting on Artix services. You can also correlate and track messages
through your network to perform dependency mapping and root cause
analysis.

The Artix�Actional integration is deployed on Artix systems to enable
reporting of management data back to the Actional server. The data reported
back to Actional includes the following system administration metrics:

� response time

� fault location

� auditing

� alerts based on policies and rules

The Artix�Actional integration can be used with Artix Web service
applications implemented in JAX-WS, JavaScript, and JAX-RPC. This guide
explains how to integrate JAX-WS and JavaScript applications. For details
on integrating JAX-RPC applications, see the Artix Management Guide,
C++ Runtime.

Integration architecture The Actional SOA management system includes an Actional server and an
Actional agent. The Actional agent is run on each node that you wish to
manage. A node is defined as a system on the current network. A node with
an Actional agent installed is referred to as an instrumented node or a
managed node.

The managed node uses Actional�s interceptor API to send monitoring data
to the Actional agent. The Actional server pings the Actional agent
periodically to retrieve the monitoring data. It analyzes this data and
represents it in the Actional SOA management GUI tools. In addition, any
alerts triggered at the Actional agent are sent immediately to the Actional
server.
62

../cpp_mgmt/index.htm
../cpp_mgmt/index.htm

Artix�Actional Integration Architecture
Figure 11 shows how Artix Web service applications are integrated with
Actional using this architecture.

The main components in this architecture are:

� �Actional server�

� �Actional agent�

� �Artix interceptors�

� �Actional agent interceptor API�

� �Artix service endpoints�

� �Service consumers�

Figure 11: Artix�Actional Integration Architecture
63

CHAPTER 6 | Integrating with Progress Actional�
Actional server The Actional server is a central management server that manages nodes
containing an Actional agent. The Actional server hosts a database and
pings Actional agents to obtain management data at configured time
intervals. It analyzes the management data and displays it in an Actional
console; for example, the Actional Server Administration Console. This
console is a Web application deployed on Apache Tomcat. It has a runtime
management mode and agent configuration mode (for example, for setting
up policies). By default, the Actional server uses port 4040. The default
Actional server database is Apache Derby.

Actional agent An Actional agent is run on each Artix node that you wish to manage.
Actional agents are used to provide instrumentation data back to the
Actional server.

Actional agents are provisioned from the Actional server to establish initial
contact and send configuration to the Actional agent. There is one Actional
agent per managed node. By default, the Actional agent uses port 4041.

Artix interceptors At the level of a managed node, Artix interceptors send the instrumentation
data to the Actional agent using an Actional-specific API. These interceptors
essentially push events to the Actional agent.

The data is analyzed and stored in the Actional agent for retrieval later by
the Actional server. However, any alerts triggered at the Actional agent are
sent immediately to the Actional server.

Figure 12 shows the flow of information at the Artix interceptor points:

1. The outbound client interceptor is invoked, which starts a client
interaction, and records the outgoing message. All other management
data, such as the service, port, and operation names are stored. The
correlation ID used to track the message is assigned in the transport,
and the client interaction is marked as analyzed.

2. All the management data is sent to the local client-side Actional agent.

3. The outbound client interceptor sends the management data to the
server interceptor.
64

Artix�Actional Integration Architecture

4. The inbound server interceptor receives the request, starts a server
interaction, and the correlation ID is fetched from the transport. All
management data is set on the server side, and the interaction is
marked as analyzed. For one-way calls, the interaction is marked as
ended.

5. This shows the interaction with the Artix server.

6. All the management data is transmitted to the local server-side
Actional agent.

7. The outbound server interceptor point mimics the outbound client
interceptor, and sends the management data to the client interceptor.

8. The inbound client interceptor mimics the inbound server interceptor.

Figure 12: Artix�Actional Interception Points
65

CHAPTER 6 | Integrating with Progress Actional�
Actional agent interceptor API The Actional Agent Interceptor SDK is an Actional-specific API used to send
the management instrumentation data from the endpoint to the Actional
agent. The Artix service application to be managed by Actional must use the
Actional Agent Interceptor SDK to send monitoring data to the Actional
agent.

For detailed information on how to use this API, see the Actional product
documentation.

Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented using JAX-WS, or a scripting
language such as JavaScript. However, the main characteristic of an Artix
service endpoint is that it can be described in WSDL, and classified as a
service, which can be consumed.

Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

Actional SOA management
system

In this document, Actional is the general term used to describe the Actional
SOA management system in which all data is stored and viewed. This
simplifies the architecture of Actional for the sake of this discussion.

Figure 13 shows an example of the Actional Server Administration Console.
Managed nodes are displayed as orange boxes, and unmanaged nodes are
displayed as grey boxes. The green arrow indicates the message flow
through various nodes.

Clicking on each of the nodes shows more in-depth information regarding
the response time, alarms and warnings, and so on. The organization of the
information in this web console is in the form of Node�Group�Service�
Operation. In Artix, this translates to Node�Service�Port�Operation.
66

Artix�Actional Integration Architecture
Further information For detailed information on using Actional features, see the Actional product
documentation.

Figure 13: Actional Server Administration Console
67

CHAPTER 6 | Integrating with Progress Actional�
68

CHAPTER 7

Configuring Artix�
Actional
Integration
This chapter explains how to configure integration between
Artix and Actional SOA management products. It shows
examples from an Artix�Actional integration demo.

In this chapter This chapter includes the following sections:

Prerequisites page 70

Configuring Actional for Artix Integration page 71

Configuring Artix Java Services for Actional Integration page 74
69

CHAPTER 7 | Configuring Artix�Actional Integration
Prerequisites

Overview This section describes prerequisites for integration between Artix and
Actional SOA management products.

The Actional for SOA Operations product is aimed at a technical audience
(for example, system administrators managing services on the network).
While the Actional for Continuous Service Optimization (Actional CSO)
product is aimed at a business audience.

Supported product versions Artix supports integration with the following Actional product versions:

� Actional for SOA Operations 7.1 and 7.2.

� Actional for Continuous Service Optimization 7.1 and 7.2.

Supported protocols and
transports

The following protocols and transports are supported:

� SOAP over HTTP

� SOAP over JMS

� XML over HTTP

� XML over JMS

� CORBA

Actional agents The Actional agent component is also known as the Actional Point of
Operational Visibility.

You must ensure that Actional agents have been set up on each Artix node
that you wish to manage. The provisioning of Actional agents is performed
using the Actional server.

For information on how to set up Actional agents on managed nodes, see
the Actional product documentation.

Further information In addition, for information on the full range of platform versions and
database versions supported by Actional, see the Actional product
documentation.
70

Configuring Actional for Artix Integration
Configuring Actional for Artix Integration

Overview These section provides some basic configuration guidelines for Actional
agent and server configuration. For full details, see the Actional product
documentation.

This basic configuration will help to set up the Artix�Actional integration
samples. For information on how to run these samples, see the readme.txt
files in the following directories:

Actional agent configuration No specific Actional agent configuration settings are required for integration
with Artix. For example, for the purposes of the Actional-Artix integration
samples, the Actional agent can be started with the default configuration
settings.

Actional server configuration To set up the Actional server to run an Artix-Actional sample:

1. Install the Actional server with typical installation options, and select
the Apache Derby database.

2. Specify the following URL in your browser:

http://localhost:4040/lgserver

3. If this is a new installation click Start, and follow new the Actional
server setup steps.

Otherwise, if the Actional server is already installed, perform the
following steps:

i. In the Actional console Web interface, select the Configure radio
button in the top left of the screen.

ii. Select Platform tab. This displays the general configuration
settings.

ArtixInstallDir/java/samples/management/actional/corba
ArtixInstallDir/java/samples/management/actional/jms_queues
ArtixInstallDir/java/samples/management/actional/router
71

CHAPTER 7 | Configuring Artix�Actional Integration
Creating a managed node To create a managed node for a simple Artix sample application, perform
the following steps:

1. In the Actional Configure view menu bar, open the Network tab. This
displays the Network Nodes.

2. Select Add. This displays Node Creation / Managing Agents.

3. Click Managed Node.

Configuring a new node To configure a managed node for the Artix demo, perform the following
steps in the wizard:

Step 1: New Node - Identification

1. Specify the Name as agent1.

2. Specify the Display icon as auto-discover (you can select IONA Artix
from the drop down list, if desired).

3. Click Next.

Step 2: New Node - Management

1. Specify the Transport as HTTP/S.

2. Supply the Actional agent user name and password.

3. Ensure that Override Agent Database is checked.

4. Click Next.

Step 3: New Node - Agents

1. Specify the following URL:

http://HostName:4041/lgagent

You can specify a host name or an IP_ADDRESS.

2. Click Add. The agent URL is added.

3. Click Next.

Step 4: New Node - Endpoints

1. For Endpoints, add the hostname, fully qualified hostname, and IP
address.

2. Click Next.
72

Configuring Actional for Artix Integration
Step 5: New Node - Filters

1. Do not specify any filters for the demo.

2. Click Next.

Step 6: New Node - Trust Zone

1. Do not specify a trust zone the demo.

2. Click Finish

The node is created, and needs to be provisioned.

Provisioning a new node To provision the new node, perform the following steps:

1. Select the Deployment tab from the Configure menu bar.

2. The Provisioning page is displayed, and agent1 is listed as not
provisioned.

3. Select the agent1 check box.

4. Click Provision. This displays a message when complete:
Successfully provisioned.

5. Click the Manage radio button on the Actional Web interface. You
should see agent1 added to the Network Overview screen.
73

CHAPTER 7 | Configuring Artix�Actional Integration
Configuring Artix Java Services for Actional
Integration

Overview This section explains how to configure Artix services written using JAX-WS
for integration with Actional. It shows examples of Artix XML configuration
from the Artix�Actional jms_queues integration sample. For information on
how to run the sample, see the readme.txt file in the following directory:

This demo is based on .../java/samples/transports/jms_queues/, with
some modifications to illustrate Artix and Actional integration, and with two
JMS queues instead of one.

Service endpoint configuration The Artix Java configuration mechanism is based on the XML-based Spring
Framework. The following example from the server1.xml file in the Artix
jms_queues sample shows the XML configuration used by the Artix service
endpoint:

ArtixInstallDir/java/samples/management/actional/jms_queues

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/bindings/soap
 http://cxf.apache.org/schema/bindings/soap.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd"
 xmlns:mgmt="http://www.iona.com/management/cxf/">

74

Configuring Artix Java Services for Actional Integration
This example shows how an Artix service endpoint named GreeterPort1 is
configured for Artix and Actional integration using the jaxws:features
element. The mgmt:management capturePayload attribute must be set to
true to enable Artix and Actional integration.

 <bean name="{http://apache.org/hello_world_soap_http}SOAPService" abstract="true">
 <property name="properties">
 <map>
 <entry key="schema-validation-enabled" value="true" />
 </map>
 </property>
 </bean>

 <jaxws:endpoint name="{http://cxf.apache.org/jms_greeter}GreeterPort1"

createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
 <jaxws:features>
 <mgmt:management capturePayload="true" />
 </jaxws:features>
 </jaxws:endpoint>

</beans>
75

CHAPTER 7 | Configuring Artix�Actional Integration
Service consumer configuration The following example from the client.xml file in the Artix jms_queues
sample shows the client-side configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/bindings/soap
 http://cxf.apache.org/schema/bindings/soap.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd"
 xmlns:mgmt="http://www.iona.com/management/cxf/">

 <http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort9001.http-conduit">
 <http:client DecoupledEndpoint="http://localhost:9990/decoupled_endpoint"/>
 </http:conduit>

 <bean name="{http://apache.org/hello_world_soap_http}SOAPService" abstract="true">
 <property name="properties">
 <map>
 <entry key="schema-validation-enabled" value="true" />
 </map>
 </property>
 </bean>

 <jaxws:client name="{http://cxf.apache.org/jms_greeter}GreeterPort1" createdFromAPI="true">
 <jaxws:features>
 <mgmt:management capturePayload="true" />
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="{http://cxf.apache.org/jms_greeter}GreeterPort2" createdFromAPI="true">
 <jaxws:features>
 <mgmt:management capturePayload="true" />
 </jaxws:features>
 </jaxws:client>
</beans>
76

Configuring Artix Java Services for Actional Integration
Like on the server-side, the mgmt:management capturePayload attribute
must be set to true to enable Artix and Actional integration. This server and
client side configuration enables the appropriate interceptors to be loaded
into the Artix Java runtime to transmit the monitoring information to the
Actional agent.

Accessing Artix Java configuration You can make your Artix Java configuration available to the Artix Java
runtime in one of the following ways:

� Specify the XML configuration file on your CLASSPATH.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:

� Use one of the following command-line arguments to point to your
XML configuration file:

This enables you to save your XML configuration file anywhere on your
system and avoid adding it to your CLASSPATH.

Example commands

The following example command is used to start a server:

The following example command is used to start a client:

 (new SpringBusFactory()).createBus(URL myCfgURL)
 (new SpringBusFactory()).createBus(String myCfgResource)

 -Dcxf.config.file.url=<myCfgURL>
 -Dcxf.config.file=<myCfgResource>

start java
-Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=server.xml demo.hw.server.Server

start java
-Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=client.xml demo.hw.client.Client
.\wsdl\hello_world.wsdl
77

CHAPTER 7 | Configuring Artix�Actional Integration
Further information Actional

For information on how to set up and run the Actional server, Actional
agent, and Actional Server Administration Console, see the Actional product
documentation.

Artix Java configuration

� Configuring and Deploying Artix Solutions, Java Runtime

� Artix Configuration Reference, Java Runtime

Spring Framework

www.springframework.org
78

../deploy/java/index.htm
../config_ref/java/index.html
www.springframework.org

CHAPTER 8

Monitoring Artix
Services with
Actional
This chapter shows examples of monitoring Artix service
endpoints and consumers in Actional SOA management tools.

In this chapter This chapter includes the following sections:

Monitoring Artix Endpoints page 80

Monitoring Routing Patterns page 84

Monitoring CORBA Endpoints page 87
79

CHAPTER 8 | Monitoring Artix Services with Actional
Monitoring Artix Endpoints

Overview When your Artix service endpoints and consumers have been configured for
integration with Actional, they can be viewed in Actional SOA management
tools.

For example, when you run the Artix�Actional jms_queues sample, the
Actional Server Administration Console displays the server queues and
managed agent nodes. Monitoring information such as response times are
displayed as green arrows, while alarms are displayed as red arrows,
flowing to and from the queues. The implementation for server2 includes a
delayed response time, which can be viewed in the console.

Network overview Figure 14 shows a running jms_queues sample displayed in the Network
Overview screen of the Actional Server Administration Console.

Figure 14: Actional Server Network Overview
80

Monitoring Artix Endpoints
The Network Overview screen provides a high-level overview of the nodes in
your network, and displays details such as the flow of calls and alarms
between them.

Figure 15 shows the Details displayed for the wlinux2 managed node,
which was selected in Figure 14. The Details panel displays information
such as the total number of calls and alarms, and detailed analysis of
incoming and outgoing calls.

Figure 15: Actional Node Details
81

CHAPTER 8 | Monitoring Artix Services with Actional
Path Explorer Figure 16 shows the example queue1 in the Path Explorer view. This view
displays the relationships between different components in detail. For
example, you can view the call chain between services and consumers.
Summary statistics are displayed for selected components. These include
the number of calls and alarms, and average response time.

Figure 16: Actional Server Path Explorer
82

Monitoring Artix Endpoints
Figure 17 shows the Details displayed for the GreetMe operation for
JMSGreeterService1, which is selected in Figure 16.

Further information For detailed information on how to use the Actional Server Administration
Console, see the Actional product documentation.

Figure 17: Service Details in Actional
83

CHAPTER 8 | Monitoring Artix Services with Actional
Monitoring Routing Patterns

Overview Artix also supports Actional monitoring of Artix Java service endpoints and
Artix Java routes (based on Apache Camel). This enables end-to-end call
correlation between an Artix Java consumer, an Artix Java router, and an
Artix Java server.

You can use the Actional Server Administration Console to monitor a call as
it is sent from an Artix Java consumer. This console then shows which Artix
Java router processors have processed the call. Finally, it shows the call
being forwarded on to an Artix server.

This section shows examples from the Path Explorer screen when running
the Artix�Actional router sample application.

Viewing the Artix Java consumer Figure 18 shows the call chain starting in the Artix Java consumer displayed
in the Path Explorer. This also shows the summary statistics displayed for
the consumer.

Figure 18: Artix Java Consumer Call in Actional
84

Monitoring Routing Patterns
Viewing the Artix Java router Figure 19 shows the Artix Java router (based on Apache Camel) processing
calls between the consumer and service in the Path Explorer.

Figure 19: Artix Java Router Processing in Actional
85

CHAPTER 8 | Monitoring Artix Services with Actional
Viewing the Artix Java service
endpoint

Figure 20 shows the calls forwarded on to the Artix Java service from the
router displayed in the Path Explorer.

Figure 20: Artix Java Service Endpoint in Actional

Note: Actional monitoring of Apache Camel-based routes is supported in
the Artix camel-cxf component only.
86

Monitoring CORBA Endpoints
Monitoring CORBA Endpoints

Overview Artix also supports Actional monitoring of Artix Java CORBA service
endpoints and consumers. This use case involves a Web services consumer
talking to a Web services endpoint over the IIOP protocol.

You can use the Actional Server Administration Console to monitor calls
between the CORBA consumer and service endpoint.

This section shows examples from the Path Explorer screen when running
the Artix�Actional corba sample application.

Viewing CORBA consumers and
endpoints

Figure 21 shows the Artix CORBA consumer calling the Artix CORBA service
endpoint displayed in the Path Explorer.

Note: Actional monitoring is supported in the Artix CORBA binding only.
Orbix CORBA clients and servers do not currently support Actional
monitoring.

Figure 21: Artix CORBA Call in Actional
87

CHAPTER 8 | Monitoring Artix Services with Actional
Viewing an Artix CORBA service
endpoint

Figure 17 shows the Details displayed for the HelloWorldCORBAService
shown in Figure 16.

Figure 22: CORBA Service Details in Actional
88

Part IV
AmberPoint

In this part This part contains the following chapters:

Integrating with AmberPoint� page 91

Configuring the Artix AmberPoint Agent page 101
89

90

CHAPTER 9

Integrating with
AmberPoint�
Artix provides support for integration with the AmberPoint SOA
management system. This chapter describes two approaches
to integrating Artix services with AmberPoint.

In this chapter This chapter includes the following sections:

AmberPoint Proxy Agent page 92

Artix AmberPoint Agent page 95
91

CHAPTER 9 | Integrating with AmberPoint�
AmberPoint Proxy Agent

Overview There are two possible approaches to integrating Artix with the AmberPoint
SOA management system:

� Using the AmberPoint Proxy Agent.

� Using the Artix AmberPoint Agent.

AmberPoint Proxy Agent
architecture

AmberPoint provides the AmberPoint Proxy Agent, which acts as a proxy for
Web service endpoints by making the service endpoint WSDL available to
the service consumer (client). Figure 23 shows a simple AmberPoint Proxy
Agent architecture:

Figure 23: AmberPoint Proxy Agent Integration
92

AmberPoint Proxy Agent
In this architecture, the following restrictions apply:

� All messages between the service consumer and service endpoint must
be routed through the AmberPoint Proxy Agent.

� All messages must use SOAP over HTTP.

� The service consumer is unaware of the back-end service endpoint,
and views its relationship as being with the proxy only.

If you can work within these limits, the AmberPoint monitoring and
management features can be used out-of-the box with Artix. However, if you
require a more flexible integration (for example, with increased performance
and scalability), you should use the Artix AmberPoint Agent.

AmberPoint Proxy Agent in a
service network

Figure 24 shows the AmberPoint Proxy Agent deployed in a service network
with multiple service consumers and service endpoints.

Figure 24: AmberPoint Proxy Agent Service Network
93

CHAPTER 9 | Integrating with AmberPoint�
Because all messages are routed through the AmberPoint Proxy Agent, the
additional network hops may impact on performance. In addition, the proxy
involves the risk of a single point of failure.

If these are important issues for your system, you should use the Artix
AmberPoint Agent instead.

Further information For information on using the AmberPoint Proxy Agent, see the AmberPoint
product documentation.
94

Artix AmberPoint Agent
Artix AmberPoint Agent

Overview The Artix AmberPoint Agent enables Artix endpoints to be discovered and
monitored by AmberPoint. This is the recommended approach to integrating
Artix services with AmberPoint, and can be used with Artix services
implemented in JAX-WS, JavaScript, C++ and JAX-RPC.

The Artix AmberPoint Agent can be deployed with Artix endpoints that use
SOAP over HTTP to enable reporting of performance metrics back to
AmberPoint. The Artix AmberPoint Agent offers significant benefits over the
AmberPoint Proxy Agent. For example, these include increased performance
and scalability, dynamic discovery, and the use of callbacks. This section
describes the Artix AmberPoint Agent in detail.

Artix AmberPoint Agent
architecture

Figure 25 shows how Artix can be integrated with AmberPoint using the
Artix AmberPoint Agent.

The main components in this architecture are:

� �Artix AmberPoint Agent�

� �Artix interceptor�

� �Artix service endpoints�

� �Service consumers�

� �AmberPoint SOA Management System�

� �AmberPoint Nano Agent API�

Note: Integration with the Artix AmberPoint Agent currently applies to
SOAP over HTTP, and services that have one endpoint only.
95

CHAPTER 9 | Integrating with AmberPoint�

Artix AmberPoint Agent An Artix AmberPoint Agent consists of components developed by IONA and
AmberPoint (the Artix interceptor, and the AmberPoint Nano Agent API).
You can deploy multiple agents into your SOA network to capture data for
the AmberPoint management system. Artix AmberPoint Agents gather
performance data for all Artix endpoint types, as well as normal Web service
endpoints.

Deployment modes

Artix AmberPoint Agents can be deployed in different ways in your system,
for example:

� Embedded in Artix consumers intercepting traffic. This is suitable if
Artix is deployed on the client side only, and the service endpoints do
not support AmberPoint. This requires configuration for the consumer
only.

Figure 25: Artix AmberPoint Agent Integration
96

Artix AmberPoint Agent
� Embedded in Artix service endpoints intercepting traffic. This is
suitable if Artix is used to implement the service endpoint. This works
even when the consumers are third party products. This requires
configuration for the service endpoint only. This is the most common
and recommended approach, as shown in Figure 26.

� Deployed as standalone Artix intermediaries (proxies) on your service
network. This option is suitable if you do not want touch your existing
system and you do not want to update your endpoints or consumers.
This approach is also necessary if Artix is not deployed at either the
consumer or service endpoints.

Artix interceptor An Artix interceptor is deployed on the dispatch path of all messages
exchanged between Artix service endpoints and consumers. It may be
deployed in the same process as the consumer and/or the endpoint, or as an
intermediary between the consumer and service.

The Artix interceptor captures all data in the dispatch path. This applies to
the Artix Java and C++ core runtimes. The Artix interceptor then reports
performance metrics using the AmberPoint nano agent API.

Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented using C++, JAX-RPC, JAX-WS,
or even a scripting language, such as JavaScript. However, its main
characteristic is that it can be described in WSDL, and classified as a
service, which can therefore be consumed. The Artix AmberPoint Agent
provides a WSDL contract describing the endpoint that is being monitored.

Figure 26: Artix AmberPoint Agent Embedded in Service Endpoint
97

CHAPTER 9 | Integrating with AmberPoint�
Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

AmberPoint SOA Management
System

In this document, AmberPoint is the general term used to describe the
system in which all performance metrics are stored and viewed. For the
purposes of this document, all interactions are made using the AmberPoint
Nano Agent API, and the AmberPoint graphical tools are used to view the
Artix data. This simplifies the architecture of AmberPoint for the sake of this
discussion.

AmberPoint Nano Agent API The AmberPoint Nano Agent API is a Java public API provided by
AmberPoint that enables customers to monitor their endpoints. This is the
API that Artix uses to notify AmberPoint of the existence of the service
endpoint. Artix also uses the AmberPoint nano agent API at runtime to
report performance metrics about a previously registered endpoint.

The AmberPoint Nano Agent API enables the Artix interceptor to do the
following:

� Allow dynamic discovery of new Artix endpoints without manual
registration of the endpoints by the user. This registration process
assumes that the Artix interceptor has the required configuration for
the nano agent to contact AmberPoint. When the Artix AmberPoint
Agent becomes active, it uses the Nano Agent API to register a new
endpoint.

� Allow periodic reporting of messages using the Artix interceptor. These
reports contain performance data about the endpoint and the
messages being exchanged.
98

Artix AmberPoint Agent
Artix AmberPoint Agent in a
service network

Figure 27 shows the Artix AmberPoint Agent deployed in a service network
with multiple service consumers and service endpoints.

This loosely-coupled architecture has the following benefits:

� Because the Artix AmberPoint Agent is collocated and embedded in
the service endpoint, there are no additional network hops, so
performance is maximized.

� Unlike with the AmberPoint Proxy Agent, there is no risk of a single
point of failure, so reliability and scalability are also improved.

� An Artix AmberPoint Agent can be embedded into an Artix router.This
enables it to dynamically discover and monitor the Artix service
endpoints and consumers that the router creates and manages.

� Because the client is aware of the back-end service endpoint, the use
of callbacks is supported.

Figure 27: Artix AmberPoint Agent Service Network
99

CHAPTER 9 | Integrating with AmberPoint�
Supported AmberPoint features The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

� Dynamic discovery of Artix clients and services using SOAP over HTTP.

� Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

� Mapping Qualities of Service (QoS) to customer Service Level
Agreements (SLAs).

� Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

� Centralized logging and performance statistics.

Further information This guide explains how to integrate Artix services implemented in JAX-WS
and JavaScript with AmberPoint. For details of integrating Artix services
implemented in C++ and JAX-RPC, see the Artix Management Guide,
C++ Runtime.

For detailed information on using AmberPoint features, see the AmberPoint
product documentation.
100

CHAPTER 10

Configuring the
Artix AmberPoint
Agent
This chapter explains how to set up integration with the Artix
AmberPoint Agent, and shows examples from the Artix
AmberPoint integration demos.

In this chapter This chapter includes the following sections:

Installing AmberPoint page 102

Configuring AmberPoint for Artix Integration page 103

Configuring Artix Java Services for AmberPoint Integration page 106
101

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Installing AmberPoint

Overview Artix supports integration with version 5.1 of the AmberPoint SOA
management system. This section explains how to install AmberPoint to
enable integration with the Artix AmberPoint Agent.

Installation steps When installing the AmberPoint runtime, perform the following steps:

1. In the AmberPoint installation wizard, choose a suitable HTTP port
number for the J2EE application server in which the AmberPoint server
will be deployed (for example, 9090).

2. AmberPoint comes bundled with Tomcat application server, so for the
demo purposes, choose to install Tomcat.

3. Select Deploy AmberPoint into the container.

4. Select Install a Java VM specifically for this application.

5. Select Deploy a new sphere with the SOA Management System. This
deploys the persistence runtime into the J2EE application server, and
configures it to use the embedded Tomcat HSQL relational database
management system.

6. You can also install AmberPoint sample Web services, but these are
not required.

7. Provide a user name and password with administrative privileges (for
example, admin/admin).

8. When installation is complete, copy the AmberPoint Nano Agent Server
into the deployment directory of the application server. For example,
for Tomcat, use the following command:

If you are not using Tomcat, use the vendor�s visual tools to deploy
apsocketconverter.war into the application server.

copy AP_InstallDir/add_ons/socket_converter/apsocketconverter.war
AP_InstallDir/server/webapps
102

Configuring AmberPoint for Artix Integration
Configuring AmberPoint for Artix Integration

Overview This section explains how to configure the AmberPoint SOA management
system for integration with Artix.

Starting the AmberPoint Server When you have completed the AmberPoint installation steps, run the
AmberPoint server using Window's Start menu.

Alternatively, execute the following script:

You can see how your application server starts up and deploys the
AmberPoint server in the log files in the AP_InstallDir/server/logs
directory.

Configuring the AmberPoint Nano
Agent Sever

When the application server has started and deployed all the AmberPoint
.war files, perform the following steps:

1. Open a web browser and specify the following URL:
http://hostname:port/apasc/

2. Login using the admin user name and password that you provided
when installing AmberPoint.

3. When logged in, click Network|Infrastructure in the tabbed menu.
This displays a list of registered Deployments with this application
server's container.

Windows AP_InstallDir\server\bin\startup.bat

UNIX AP_InstallDir/server/bin/startup.sh
103

CHAPTER 10 | Configuring the Artix AmberPoint Agent
4. Ensure that one of the deployed items is named apsocketconverter
and has a green button beside it This indicates that the AmberPoint
Nano Agent Server has been successfully deployed and is ready to be
configured.

5. In the left pane, click the Register button.

From the drop-down menu, select Message Source|Simple Message
Source: This displays the Register Message Source form.

6. In the Register Message Source form, enter the following:

The source Name can be any string value. The Location specifies the
location of the log file for incoming messages. The default Criteria for
this policy applies this message source to all active services that this
AmberPoint system is aware of.

7. Without modifying the Criteria for this policy, click Preview Services
to see which services this message Source applies to. If you have no
services currently registered, only one service named MonitorEnabler is
displayed.

8. Click the Go button at the top left of the screen, and wait until the
Policy Status is Applied.

9. Return to a command window to build an Artix AmberPoint demo (see
�Configuring Artix Java Services for AmberPoint Integration� on
page 106).

Name Artix Message Source

Type of Message Source File

Start At At present

Location AmberPointInstallDir\server\amberpoint\
apsocketconverter\logdir
104

Configuring AmberPoint for Artix Integration
Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, change the following attributes to the new port number:

� messageLogWriter logLocation in your Artix
apobserver.configuration file.

� messageLogReader logLocation in:

Whenever you update values in the Artix apobserver.configuration file,
you must restart the services already being monitored by the Artix
AmberPoint Agent for the changes to take effect.

If you update the Nano Agent Server port, you may need to restart the
application server for changes to take effect (except for those servers that
support hot deployment).

For example, these settings appear as follows in the Artix
apobserver.configuration file:

AP_InstallDir/server/webapps/apsocketconverter.war@/WEB-INF/
application/resources/readerConfig.xml

...
<ap:messageLogWriter

logWriterImplClass="com.amberpoint.msglog.socketimpl.SocketLogWriter"
 logName="{hostname}" <!-- default = localhost -->
 logLocation="{port}" <!-- default = 33333 -->
 syncEverySoManyEntries="50">
</ap:messageLogWriter>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:requestURL"/>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:wsdlUrl"/>
 ...
105

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Configuring Artix Java Services for
AmberPoint Integration

Overview This section explains how to configure Artix JAX-WS services to support the
Artix AmberPoint Agent. It describes Artix AmberPoint demo configuration
settings. However, if your AmberPoint installation and demo run on the
same host, you do not need to make any configuration changes to run the
demo. If you wish to run the demo now, skip this section, and see the
readme.txt in the following directory:

This amberpoint demo is based on .../java/samples/basic/wsdl_first,
with some modifications to enable Artix and AmberPoint integration.

Server configuration The Artix Java configuration mechanism uses the XML-based Spring
Framework. The following code shows the server-side configuration taken
from the server.xml file in the Artix amberpoint demo:

ArtixInstallDir/java/samples/management/amberpoint

<?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2006 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <!-- wiring server life cycle listener for gathering the server's endpoint information -->
 <bean id="com.iona.cxf.management.amberpoint.ServerLifeCycleListenerImpl"
 class="com.iona.cxf.management.amberpoint.ServerLifeCycleListenerImpl">
 <property name="bus" ref="cxf" />
 </bean>
106

Configuring Artix Java Services for AmberPoint Integration
This example shows the configuration setting for the server lifecycle listener,
which gathers the server's endpoint information. It also shows how to log
the server to AmberPoint. And finally, the hello_world service endpoint is
configured for Artix AmberPoint integration, using the jaxws:endpoint
attribute.

For details on how to make your configuration available to the Artix Java
runtime, see �Configuring the AmberPoint hostname� on page 109.

 <!-- wiring the Nano Agent Logger factory for writing logger to apsocketconverter -->
 <bean id="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory"
 class="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory">
 <property name="bus" ref="cxf" />
 </bean>

 <!-- wiring the Amberpoint integration feature-->
 <jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <bean class="com.iona.cxf.management.amberpoint.interceptor.InvocationMessageFeature"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>
107

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Client configuration The following code shows the client-side configuration taken from the
client.xml file in the Artix amberpoint demo.

This example shows how to log the client to AmberPoint. It also shows how
the hello_world client is configured for Artix AmberPoint integration, using
the jaxws:client attribute.

For details on how to make your configuration available to the Artix Java
runtime, see �Configuring the AmberPoint hostname� on page 109.

?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2007 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <!-- wiring the Nano Agent Logger factory for writing logger to apsocketconverter -->
 <bean id="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory"
 class="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory">
 <property name="bus" ref="cxf" />
 </bean>

 <!-- wiring the Amberpoint integration feature-->
 <jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <bean class="com.iona.cxf.management.amberpoint.interceptor.InvocationMessageFeature"/>
 </jaxws:features>
 </jaxws:client>

</beans>
108

Configuring Artix Java Services for AmberPoint Integration
Configuring the AmberPoint
hostname

If you are running your Artix services and the AmberPoint Nano Agent Server
on different machines, you must update the hostname in your AmberPoint
Nano Agent Client configuration file. For example:

You should update the messageLogWriter logName attribute to point the
hostname or IP address where the AmberPoint Nano Agent Server is
running.

Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, you can update your AmberPoint configuration file to the new port
number. For more details, see �Configuring the AmberPoint port� on
page 105.

Accessing Artix Java configuration You can make your Artix Java configuration available to the Artix Java
runtime in one of the following ways:

� Use one of the following command-line arguments to point to your
XML configuration file:

This enables you to save your XML configuration file anywhere on your
system and avoid adding it to your CLASSPATH.

� Specify the XML configuration file on your CLASSPATH.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:

ArtixInstallDir/java/samples/management/amberpoint/apobserver.configuration

 -Dcxf.config.file.url=<myCfgURL>
 -Dcxf.config.file=<myCfgResource>

 (new SpringBusFactory()).createBus(URL myCfgURL)
 (new SpringBusFactory()).createBus(String myCfgResource)
109

CHAPTER 10 | Configuring the Artix AmberPoint Agent
Demo examples

The Artix Java sample applications uses the command-line approach. For
example, in the Artix AmberPoint demo, the following command is used to
start the server:

The following command is used to start the client:

Viewing the demo in AmberPoint You can use the following AmberPoint tools to view the demo application.

AmberPoint dependency diagrams

While the demo is running, in the AmberPoint GUI, select the
Network|Services|Dependencies screen. AmberPoint tracks the call flow,
as it happens, between Artix services with the Artix AmberPoint Agent in
their runtime. The dependency flow diagram is a directed graph, and can be
of any complexity. You can manually create dependencies between services
using the AmberPoint GUI tools if so desired. See the AmberPoint user
documentation for details on what you can do with dependency diagrams
(for example, using the Network|Services|Dependencies screen).

AmberPoint performance diagrams

You can use the AmberPoint Performance|Activity screen to view
performance statistics. See the AmberPoint user documentation for details
on what you can do with performance statistics.

AmberPoint logging policies

You can collect call logs by adding an AmberPoint logging policy using the
Exceptions|Services screen. To add an AmberPoint logging policy, click the
Add Logging Policy button at the top of the screen. This displays the Add
Policy form. Use this form to specify a meaningful name, and tune its
parameters to your needs. If you wish to log messages for all available
services, edit the policy rules at the bottom of this form.

 start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=server.xml demo.hw.server.Server

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=client.xml demo.hw.client.Client .\wsdl\hello_world.wsdl
110

Configuring Artix Java Services for AmberPoint Integration
When the log policy is created, you must wait until it is applied, like when
you created a Message Source (see �Configuring the AmberPoint Nano
Agent Sever� on page 103). After the log policy has been applied and turns
green, send some more traffic using the demo. You can then watch the
Message Log using the Exceptions|Services|Message Log tab.

Further information There are many other AmberPoint features that you can use with Artix. For
example, when AmberPoint has captured the Artix traffic, you can use its
runtime to define customers and their SLAs, and map these SLAs to the
services in the network. You can also create reactions (alerts) if an SLA
violation has occurred and so on. See the AmberPoint user documentation
for more details.

Artix AmberPoint demo

For more details on the Artix AmberPoint integration demo, see:

Artix Java configuration

� Configuring and Deploying Artix Solutions, Java Runtime

� Artix Configuration Reference, Java Runtime

Spring Framework

www.springframework.org

ArtixInstallDir/java/samples/management/amberpoint\README.txt
111

../deploy/java/index.htm
../config_ref/java/index.html
www.springframework.org

CHAPTER 10 | Configuring the Artix AmberPoint Agent
112

Part V
BMC Patrol

In this part This part contains the following chapters:

Integrating with BMC Patrol� page 115

Configuring your Artix Environment for BMC page 121

Using the Artix BMC Patrol Integration page 125

Extending to a BMC Production Environment page 135
113

114

CHAPTER 11

Integrating with
BMC Patrol�
This chapter introduces the integration of Artix with the BMC
Patrol� Enterprise Management System. It describes the
requirements and main components of this integration.

In this chapter This chapter contains the following sections:

Introduction page 116

The Artix BMC Patrol Integration page 118
115

CHAPTER 11 | Integrating with BMC Patrol�
Introduction

Overview Artix supports integration with the BMC Patrol Enterprise Management
System. This section includes the following topics:

� �The application life cycle�

� �Enterprise Management Systems�

� �Artix BMC Patrol integration�

� �How it works�

The application life cycle Most enterprise applications go through a rigorous development and testing
process before they are put into production. When applications are in
production, developers rarely expect to manage those applications. They
usually move on to new projects, while the day-to-day running of the
applications is managed by a production team. In some cases, the
applications are deployed in a data center that is owned by a third party,
and the team that monitors the applications belongs to a different
organization.

Enterprise Management Systems Different organizations have different approaches to managing their
production environment, but most will have at least one Enterprise
Management System (EMS). For example, the main Enterprise
Management Systems include BMC Patrol� and IBM Tivoli�. These
systems are popular because they give a top-to-bottom view of every part of
the IT infrastructure.

For example, if an application fails because the /tmp directory fills up on a
particular host, the disk space is reported as the fundamental reason for the
failure. The various application errors that arise are interpreted as symptoms
of the underlying problem with disk space. This is much better than being
swamped by an event storm of higher-level failures that all originate from
the same underlying problem. This is the fundamental strength of integrated
management.
116

Introduction
Artix is designed for EMS integration using a common management
instrumentation layer. This provides a base that can be used to integrate
with any EMS.

In addition, Artix provides packaged integrations that provide out-of-the-box
integration with major EMS products. This guide describes IONA�s
integration with BMC Patrol products.

Artix BMC Patrol integration The Artix BMC Patrol integration performs the following key enterprise
management tasks:

� Posting an event when a server crashes. This enables programmed
recovery actions to be taken.

� Tracking key server metrics (for example, server response times).
Alarms are triggered when metrics go out of bounds.

The server metrics tracked by the Artix BMC Patrol integration include the
number of invocations received, and the average, maximum and minimum
response times. The Artix BMC Patrol integration also enables you to track
these metrics for individual operations. Events can be generated when any
of these parameters go out of bounds.

How it works The Artix Java runtime integration with BMC Patrol obtains server metrics
using JMX-based Artix interceptors. Figure 1 on page 15 shows this overall
architecture.

Artix also provides BMC Knowledge Modules (KM), which conform to
standard BMC Patrol KM design and operation. These modules tell the BMC
Patrol console how to interpret the data obtained from the Artix interceptors.

The Artix BMC Knowledge Modules execute parameter collection
periodically on each host. The Knowledge Modules compare the response
times and other values against the defined alarm ranges, and issue an alarm
event if a threshold has been breached. These events can be analyzed and
appropriate action taken automatically.
117

CHAPTER 11 | Integrating with BMC Patrol�
The Artix BMC Patrol Integration

Overview This section describes the requirements and main components of the Artix
BMC Patrol integration. It includes the following topics:

� �Requirements�

� �Main components�

� �Example metrics�

� �Further information�

Requirements To use the BMC Patrol integration, you must have both Artix 5.x and BMC
Patrol 3.4 or higher installed. The Artix BMC Patrol integration is
compatible with the BMC Patrol 7 Central Console.

Main components The Artix BMC Patrol integration consists of the following Knowledge
Modules (KM):

� IONA_SERVERPROVIDER
� IONA_OPERATIONPROVIDER

IONA_SERVERPROVIDER.km tracks key metrics associated with your Artox
servers on a particular host. It also enables servers to be started, stopped, or
restarted, if suitably configured.

IONA_OPERATIONPROVIDER.km tracks key metrics associated with individual
operations on each server.
118

The Artix BMC Patrol Integration
Example metrics Figure 28 shows an example of the IONA_SERVERPROVIDER Knowledge
Module displayed in BMC Patrol. The window in focus shows the Artix
performance metrics that are available for an operation named
query_reservation, running on a machine named stimulator.

Figure 28: Artix Server Running in BMC Patrol
119

CHAPTER 11 | Integrating with BMC Patrol�
The Artix server performance metrics include the following:

� IONAAvgResponseTime
� IONAMaxResponseTime
� IONAMinResponseTime
� IONANumInvocations
� IONAOpsPerHour

For more details, see �Using the Artix Knowledge Module� on page 128.

Figure 29 shows alarms for server metrics, for example,
IONAAvgResponseTime. This measures the average response time of all
operations on this server during the last collection cycle.

Further information For a detailed description of Knowledge Modules, see your BMC Patrol
documentation.

Figure 29: BMC Patrol Displaying Alarms
120

CHAPTER 12

Configuring your
Artix Environment
for BMC
This chapter explains the steps that you need to perform in
your Artix environment to configure integration with BMC
Patrol.

In this chapter This chapter contains the following sections:

Setting up your Artix Environment page 122
121

CHAPTER 12 | Configuring your Artix Environment for BMC
Setting up your Artix Environment

Overview The best way to learn how to use the BMC Patrol integration is to start with
a host that has both BMC Patrol and Artix installed. This section explains
how to make your Artix servers visible to BMC Patrol. It includes the
following topics:

� �EMS configuration files�

� �Creating a servers.conf file�

� �Further information�

EMS configuration files You need to create a servers.conf text file to configure the BMC Patrol
integration. This file is used to track your Artix applications in BMC Patrol.
You will find a starting point file in the IONA_km.zip located in the following
directory of your Artix installation:

When you unzip this file, the starting point file is located in the following
directory:

ArtixInstallDir\cxx_java\management\BMC\IONA_km.zip

UnzipDir/lib/iona/conf
122

Setting up your Artix Environment
Creating a servers.conf file The servers.conf file is used to instruct BMC Patrol to track your Artix
servers. It contains the locations of performance log files for specified
applications. Each entry must take the following format:

This example entry instructs BMC Patrol to track the myapplication server,
and reads performance data from the following log file:

You must add entries for the performance log file of each Artix server on this
host that you wish BMC Patrol to track. BMC Patrol uses the servers.conf
file to locate these log files, and then scans the logs for information about
the server's key performance indicators.

The following example is taken from the Artix Java sample application for
BMC Patrol integration:

Copy the EMS file to your BMC
installation

When you have added content to your servers.conf file, copy this file into
your BMC installation, for example:

This enables tracking of your Artix server applications in BMC Patrol.

my_application, 1, /path/to/myproject/log/myapplication_perf.log

/path/to/myproject/log/myapplication_perf.log

management-bmc-patrol-demo-server,1,%ARTIX_HOME%\java\samples\management
\bmc-patrol\BMCCounterServer.log

management-bmc-patrol-demo-client,1,%ARTIX_HOME%\java\samples\management
\bmc-patrol\BMCCounterClient.log

$PATROL_HOME/lib/iona/conf
123

CHAPTER 12 | Configuring your Artix Environment for BMC
Further information For details of how to configure your Artix servers to use performance logging,
see �Configuring an Artix Production Environment� on page 136.

For a complete explanation of configuring performance logging, see
Configuring and Deploying Artix Solutions, Java Runtime.
124

../deploy/cpp/index.htm

CHAPTER 13

Using the Artix
BMC Patrol
Integration
This chapter explains the steps the that you must perform in
your BMC Patrol environment to monitor Artix applications. It
also describes the Artix Knowledge Module and how to use it
to monitor servers and operations. It assumes that you already
have a good working knowledge of BMC Patrol.

In this chapter This chapter contains the following sections:

Setting up your BMC Patrol Environment page 126

Using the Artix Knowledge Module page 128
125

CHAPTER 13 | Using the Artix BMC Patrol Integration
Setting up your BMC Patrol Environment

Overview To enable monitoring of Artix servers on your host, you must first perform
the following steps in your BMC Patrol environment:

1. �Install the Knowledge Module�

2. �Set up your Java environment�

3. �Set up your EMS configuration files�

4. �View your servers in the BMC Console�

Install the Knowledge Module The Artix BMC Patrol integration is shipped in two formats:

To install the Knowledge Module, do the following:

Windows

Use WinZip to unzip IONA_km.zip. Extract this file into your %PATROL_HOME%
directory.

If this is successful, the following directory is created:

UNIX

Copy the IONA_km.tgz file into $PATROL_HOME, and enter the following
commands:

Windows ArtixInstallDir\cxx_java\management\BMC\IONA_km.zip

UNIX ArtixInstallDir/cxx_java/management/BMC/IONA_km.tgz

%PATROL_HOME%\lib\iona

$ cd $PATROL_HOME
$ gunzip IONA_km.tgz
$ tar xvf IONA_km.tar
126

Setting up your BMC Patrol Environment
Set up your Java environment The Knowledge Module requires a Java Runtime Environment (JRE). If your
BMC Patrol installation already has a $PATROL_HOME/lib/jre directory, it
should work straightaway. If not, you must setup a JRE (version 1.3.1 or
later) on your machine as follows:

1. Copy the jre directory from your Java installation into
$PATROL_HOME/lib. You should now have a directory structure that
includes $PATROL_HOME/lib/jre.

2. Confirm that you can run $PATROL_HOME/lib/jre/bin/java.

Set up your EMS configuration
files

In Chapter 12, you generated the servers.conf EMS configuration file.
Copy this generated file to $PATROL_HOME/lib/iona/conf.

View your servers in the BMC
Console

To view your servers in the BMC Console, and check that your setup is
correct, perform the following steps:

1. Start your BMC Console and connect to the BMC Patrol Agent on the
host where you have installed the Knowledge Module.

2. In the Load KMs dialog, open the $PATROL_HOME/lib/knowledge
directory, and select the IONA_SERVER.kml file. This will load the
IONA_SERVERPROVIDER.km and IONA_OPERATIONPROVIDER.km
Knowledge Modules.

3. In your Main Map, the list of servers that were configured in the
servers.conf file should be displayed. If they are not currently
running, they are shown as offline.

You are now ready to manage these servers using BMC Patrol.
127

CHAPTER 13 | Using the Artix BMC Patrol Integration
Using the Artix Knowledge Module

Overview This section describes the Artix Knowledge Module and explains how to use
it to monitor servers and operations. It includes the following topics:

� �Server Provider parameters�

� �Monitoring servers�

� �Monitoring operations�

� �Operation parameters�

� �Troubleshooting�

Server Provider parameters The IONA_SERVERPROVIDER class represents instances of Artix server or client
applications. The parameters exposed in the Knowledge Module are shown
in Table 6.

Table 6: Artix Server Provider Parameters

Parameter Name Default Warning Default Alarm Description

IONAAvgResponseTime 1000�5000 > 5000 The average response time (in
milliseconds) of all operations on
this server during the last collection
cycle.

IONAMaxResponseTime 1000�5000 > 5000 The slowest operation response
time (in milliseconds) during the
last collection cycle.

IONAMinResponseTime 1000�5000 > 5000 The quickest operation response
time (in milliseconds) during the
last collection cycle.

IONANumInvocations 10000�100000 > 100000 The number of invocations received
during the last collection period.

IONAOpsPerHour 1000000�10000000 > 10000000 The throughput (in Operations Per
Hour) based on the rate calculated
from the last collection cycle.
128

Using the Artix Knowledge Module
Monitoring servers You can use the parameters shown in Table 6 to monitor the load and
response times of your Artix servers.

The Default Alarm ranges can be overridden on any particular instance, or
on all instances, using the BMC Patrol 7 Central console. You can do this as
follows:

1. In the PATROL Central console�s Main Map, right click on the selected
parameter and choose the Properties menu item.

2. In the Properties pane, select the Customization tab.

3. In the Properties drop-down list, select ranges.

4. You can customize the alarm ranges for this parameter on this
instance. If you want to apply the customization to all instances, select
the Override All Instances checkbox.

Monitoring operations In the same way that you can monitor the overall performance of your
servers and clients, you can also monitor the performance of individual
operations. In Artix, an operation relates to a WSDL operation defined on a
port.

In many cases, the most important metrics relate to the execution of
particular operations. For example, it could be that the
make_reservation(), query_reservation() calls are the operations that
you are particularly interested in measuring. This means updating your
servers.conf file as follows:

In this example, the addition of the bold text enables the make_reservation
and query_reservation operations to be tracked by BMC Patrol.

Note: The IONANumInvocations parameter is a raw, non-normalized
metric and can be subject to sampling errors. To minimize this, keep the
performance logging period relatively short, compared to the poll time for
the parameter collector.

mydomain_myserver,1,/var/mydomain/logs/myserver_perf.log,[make_reservation,query_reservation]
129

CHAPTER 13 | Using the Artix BMC Patrol Integration
Operation parameters Table 7 shows the Artix parameters that are tracked for each operation
instance:

Table 7: Artix Operation Provider Parameters

Parameter Name Default Warning Default Alarm Description

IONAAvgResponseTime 1000�5000 > 5000 The average response time (in
milliseconds) for this operation
on this server during the last
collection cycle.

IONAMaxResponseTime 1000�5000 > 5000 The slowest invocation of this
operation (in milliseconds)
during the last collection cycle.

IONAMinResponseTime 1000�5000 > 5000 The quickest invocation (in
milliseconds) during the last
collection cycle.

IONANumInvocations 10000�100000 > 100000 The number of invocations of
this operation received during
the last collection period.

IONAOpsPerHour 1000000�100000000 > 10000000 The number of operations
invoked in a one hour period
based on the rate calculated
from the last collection cycle.
130

Using the Artix Knowledge Module
Figure 30 shows BMC Patrol graphing the value of the
IONAAvgResponseTime parameter on a query_reservation operation call.

Figure 30: BMC Graphing for IONAAvgResponseTime
131

CHAPTER 13 | Using the Artix BMC Patrol Integration
Figure 31 shows warnings and alarms issued for the IONAAvgResponseTime
parameter.

Figure 31: BMC Alarms for IONAAvgResponseTime
132

Using the Artix Knowledge Module
Troubleshooting If you have difficulty getting the Artix BMC Patrol integration working, you
can use the menu commands to cause debug output to be sent to the
system output window.

To view the system output window for a particular host, right click on the
icon for your selected host in the BMC Patrol Main Map, and choose
System Output Window.

You can change the level of diagnostics for a particular instance by right
clicking on that instance and choosing:

Knowledge Module Commands|IONA|Log Levels

You can choose from the following levels:

� Set to Error

� Set to Info

� Set to Debug

Set to Debug provides the highest level of feedback and Set to Error
provides the lowest.
133

CHAPTER 13 | Using the Artix BMC Patrol Integration
134

CHAPTER 14

Extending to a
BMC Production
Environment
This section describes how to extend an Artix BMC Patrol
integration from a test environment to a production
environment.

In this chapter This chapter contains the following sections:

Configuring an Artix Production Environment page 136
135

CHAPTER 14 | Extending to a BMC Production Environment
Configuring an Artix Production Environment

Overview This section describes the steps that you need to take when extending the
Artix BMC Patrol integration from an Artix test environment to a production
environment. It includes the following sections:

� �Monitoring your Artix applications�

� �Monitoring Artix applications on multiple hosts�

� �Monitoring multiple Artix applications on the same host�

Monitoring your Artix applications For Artix JAX-WS applications, add the following example settings to your
Artix application�s Spring-based XML configuration file:

// managed_spring_server.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2007 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:im="http://cxf.apache.org/management"
 xsi:schemaLocation="http://www.springframework.org/schema/beans/

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- JMX InstrumetationManager settings -->
 <bean id="InstrumentationManager"

class="org.apache.cxf.management.jmx.InstrumentationManagerImpl">
 <property name="bus" ref="cxf" />
 <property name="enabled" value="true" />
 <property name="JMXServiceURL"

value="service:jmx:rmi:///jndi/rmi://localhost:9914/jmxrmi" />
 </bean>

 <!-- Wiring the counter repository -->
 <bean id="CounterRepository"

class="org.apache.cxf.management.counters.CounterRepository">
 <property name="bus" ref="cxf" />
 </bean>
136

Configuring an Artix Production Environment
The performance log file location is specified in the servers.conf
configuration file (see �Creating a servers.conf file� on page 123).

For a detailed JAX-WS sample application, see the following Artix demo:

Monitoring Artix applications on
multiple hosts

To monitor your Artix applications on multiple hosts, you must distribute the
Knowledge Module to your hosts. The best approach to distributing the
Knowledge Module (KM) to a large number of machines is to use the
Knowledge Module Distribution Service (KMDS).

Distributing the KM

To create a deployment set for machines that run Patrol Agents (but not the
Patrol Console), perform the following steps:

1. Choose a machine with the Patrol Developer Console installed. Follow
the procedure for installing the KM on this machine (see �Setting up
your BMC Patrol Environment� on page 126).

2. Start the Patrol Developer Console and choose Edit Package from the
list of menu Items.

3. Open the following file:

You will see a list of all the files that need to be installed on machines
that run the Patrol Agent.

4. Now select Check In Package from the File menu to check the
package into the KMDS.

 <!-- BMC counter monitor setting for writing the performance log file-->
 <bean id="BMCCounterMonitor"

class="com.iona.cxf.management.bmc.counters.BMCCounterMonitor">
 <property name="bus" ref="cxf" />
 <property name="serverID" value="management-bmc-patrol-demo-server" />
 <property name="fileName" value="BMCCounterServer.log" />
 <property name="granularityPeriod" value="30" />
 </bean>
</beans>

ArtixInstallDir\java\samples\management\bmc-patrol

$PATROL_HOME/archives/IONA_Server_KM_Agent_Resources.pkg
137

CHAPTER 14 | Extending to a BMC Production Environment
5. You can now use the KMDS Manager to create a deployment set based
on this KM package, and distribute it to all the machines that have
Artix installed and that also have a Patrol Agent.

6. You repeat this process for the
IONA_Server_KM_Console_Resources.pkg file.

This creates a deployment set for all machines that have both the Patrol
Agent and Patrol Console installed, and which will be used to monitor Artix.

For further details about using the KMDS, see your BMC Patrol
documentation.

Monitoring multiple Artix
applications on the same host

Sometimes you may need to deploy multiple Artix applications on the same
host. The solution is simply to merge the servers.conf files from each of
the applications into single servers.conf files.

For example, if the servers.conf file from the UnderwriterCalc application
looks as follows:

And the servers.conf file for the ManagePolicy application looks as
follows:

The merged servers.conf file will then include the following two lines:

You can now copy this merged file to your $PATROL_HOME/lib/iona/conf
directory and BMC Patrol will monitor both applications.

Further information For more detailed information on the BMC Patrol consoles, see your BMC
Patrol documentation.

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log

ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log
ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log
138

Index

Symbols
@ManagedAttribute 38, 40
@ManagedNotification 38
@ManagedOperation 38, 40
@ManagedOperationParameter 38
@ManagedOperationParameters 38
@ManagedResource 38, 40

A
Actional agent 64, 70
Actional Agent Interceptor SDK 66
Actional CSO 70
Actional for Continuous Service Optimization 70
Actional for SOA Operations 70
Actional Point of Operational Visibility 70
Actional server 64
Actional server, configuration 71
Actional Server Administration Console 21, 66, 80
Activity 110
Add Logging Policy 110
Add Policy 110
Address 30
Advanced tab 52
alarms 117, 132
alerts 64
AmberPoint Nano Agent API 98
AmberPoint Nano Agent Client 109
AmberPoint Nano Agent Server 102, 109
AmberPoint Proxy Agent 92
AmberPoint server 103
annotations 38
Apache Camel 84
Apache Derby 64, 71
Apache Tomcat 64
apobserver.configuration 105
application server 102
apsocketconverter 104
apsocketconverter.war 102
Artix AmberPoint agent 95, 96
Artix interceptor 97
Artix interceptors 64
Artix Java router 84
Artix router 99

Artix service endpoint 66, 97

B
BMC Console 127
BMC Patrol Agent 127
bus 46
bus.get.Extension() 42

C
callbacks 99
call correlation 84
camel-cxf component 86
capturePayload 75, 77
Check In Package 137
CLASSPATH 77
client 76, 108
collector 129
componentName 38
consumer 66, 98
CORBA 70
CORBA binding 87
corba demo 87
CORBA endpoints 87
correlation ID 64
createBus() 48, 77, 109
Criteria for this policy 104
currencyTimeLimit 39
Customization tab 129
custom JMX MBeans 28

D
Daemon 49
database 64, 71
-Dcxf.config.file 47, 77, 109
defaultValue 39
Dependencies 110
dependency diagrams 100
deployment modes 96
Deployments 103
description 38
diagnostics 133
dynamic discovery 98, 100
139

INDEX
dynamic MBeans 34

E
Edit Package 137
EMS 116
enabled 46, 48
endpoint 66, 97

attributes 30
operations 31

Enterprise Management System 116
Exceptions 111

F
File menu 137

G
getAddress() 31
getState() 31
getTransportID() 31
Go 104
GreeterPort1 75

H
HSQL 102
HTTP port 102

I
IIOP protocol 87
index 39
Infrastructure 103
InstrumentationManager 36, 42
InstrumentationManagerImpl 46
instrumented node 62
interceptor 97
IONAAvgResponseTime 120, 128, 130, 131, 132
IONA_km.tgz 126
IONA_km.zip 122, 126
IONAMaxResponseTime 120, 128, 130
IONAMinResponseTime 120, 128, 130
IONANumInvocations 120, 128, 129, 130
IONA_OPERATIONPROVIDER 118, 127
IONAOpsPerHour 120, 128, 130
IONA_SERVER.kml 127
IONA_Server_KM_Agent_Resources.pkg 137
IONA_Server_KM_Console_Resources.pkg 138
IONA_SERVERPROVIDER 118, 127, 128

J
Java, requirements 127
java.util.logging 17
Java logging 17
Java Management Extensions 25
JavaScript 62
JAX-RPC 62
JAX-WS 7, 62
jaxws:features 75
JConsole 52
jms_queues demo 74, 80
JMX 25
JMX annotations 38
jmx_console_start 52
JMX Remote 28, 46
JMXRemote 52
JMXServiceURL 46, 49, 52

K
KMDS 137
Knowledge Module Distribution Service 137
Knowledge Modules 120

L
Load KMs dialog 127
log 39
logFile 39
logging 17
logging period 129
logging policies 110
Log Levels 133

M
Main Map 127, 133
Managed Beans 16, 26
ManagedComponent 37
managed node 72
managed node, configuration 72
managed_server.xml 47
management consoles 51
MBeanInfo 31
MBean information 53
MBean Java class 53
MBean name 53
MBeans 16, 26
MBeanServer 36
Message Log 111
messageLogReader logLocation 105
140

INDEX
messageLogWriter logLocation 105
messageLogWriter logName 109
mgmt:management 75, 77
ModelMBean 38, 42, 44
ModelMBeanInfo 38
MonitorEnabler 104
monitoring 100

N
name 39
Nano Agent API 98
Network Overview 73, 80
Network Overview Details 81

O
ObjectName 35
operation

parameters 130
WSDL 129

Override All Instances checkbox 129

P
parameter collector 129
parameters 128, 130
Path Explorer 82, 84, 85, 86, 87
Path Explorer Details 83, 88
Patrol Agents 137
PATROL Central 129
Patrol Developer Console 137
Performance 99, 110
performance log files 123
performance logging

period 129
persistLocation 39
persistName 39
persistPeriod 39
persistPolicy 39
Policy Status 104
port 102
port, WSDL 129
Preview Services 104
Properties 129
Properties menu 129
provisioning 73
proxy agent 92

R
Register 104
register() 36
registerMBean() 35
Register Message Source 104
relational database 102
remote JMX clients 46
reporting 98
response times 22, 117
RMI Connector 49
router 99
router demo 84
routing patterns 84
runtime MBeans 28

S
server.xml 74, 106
server parameters 128
servers.conf 123, 138
service

attributes 30
operations 31

service consumer 66, 98
service endpoint 66, 97
Service Level Agreements 100, 111
Set to Debug 133
Set to Error 133
Set to Info 133
shutdown() 30, 54
Simple Message Source 104
SLAs 100, 111
SOA management 92
SOAP over HTTP 70, 93
SOAP over JMS 70
SpringBusFactory() 48, 77, 109
Spring Framework 46, 74, 106
StandardMBean 36
standard MBeans 34
start() 31
STARTED 30
State 30
stop() 31
STOPPED 30
summary statistics 84
System Output Window 133

T
Threaded 48
141

INDEX
Tomcat 64, 102
TransportID 30
troubleshooting 133

U
UNIX 126
unregister() 44

W
warnings 132
Windows 126
WSDL

operation 129
port 129

X
XML over HTTP 70
XML over JMS 70
142

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Documentation Library

	Introduction
	Artix Java Management
	Introduction to Artix Java Management
	Artix Java Management Integrations

	Java Management Extensions
	Monitoring and Managing with JMX
	Introduction
	Managed Runtime Components

	Instrumenting Artix Java Services
	Using the JMX MBean Interfaces
	Using the Artix ManagedComponent Interface

	Configuring JMX in Artix Java
	Artix JMX Configuration

	Managing Java Services with JMX Consoles
	Managing Artix Services with JConsole

	Progress Actional
	Integrating with Progress Actional™
	Artix-Actional Integration Architecture

	Configuring Artix- Actional Integration
	Prerequisites
	Configuring Actional for Artix Integration
	Configuring Artix Java Services for Actional Integration

	Monitoring Artix Services with Actional
	Monitoring Artix Endpoints
	Monitoring Routing Patterns
	Monitoring CORBA Endpoints

	AmberPoint
	Integrating with AmberPoint™
	AmberPoint Proxy Agent
	Artix AmberPoint Agent

	Configuring the Artix AmberPoint Agent
	Installing AmberPoint
	Configuring AmberPoint for Artix Integration
	Configuring Artix Java Services for AmberPoint Integration

	BMC Patrol
	Integrating with BMC Patrol™
	Introduction
	The Artix BMC Patrol Integration

	Configuring your Artix Environment for BMC
	Setting up your Artix Environment

	Using the Artix BMC Patrol Integration
	Setting up your BMC Patrol Environment
	Using the Artix Knowledge Module

	Extending to a BMC Production Environment
	Configuring an Artix Production Environment

	Index

