
Artix® ESB
Developing Applications in JavaScript

Version 5.5
December 2008

Developing Applications in JavaScript
Version 5.5

Published 15 Dec 2008
Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 9

What is Covered in This Book ... 10
Who Should Read This Book .. 11
How to Use This Book .. 12
The Artix ESB Documentation Library ... 13

Implementing a Service in JavaScript .. 15
Defining the Metadata ... 16
Implementing the Service Logic ... 18

Implementing a Service in ECMAScript for XML (E4X) ... 19
Developing Service Consumers ... 21

Generating Consumer Code .. 22
Understanding the Generated Code .. 24
Implementing the Callbacks ... 29
Invoking Operations on a Service ... 31

Deploying Applications ... 33
Publishing Services .. 34
Running Clients in a Browser .. 37

Index .. 41

3

4

List of Tables
1. Optional Arguments to ServerApp .. 34

5

6

List of Examples
1. JavaScript Web Service Metadata .. 17
2. JavaScript Service Implementation ... 18
3. E4X Service Implementation ... 19
4. HTML for Dynamically Accessing JavaScript Proxy Code 22
5. Calling the WSDL to JavaScript Tool ... 23
6. Calling the Java to JavaScript Tool ... 23
7. Schema for JavaScript Type Object ... 25
8. JavaScript Type Object .. 25
9. JavaScript Service Proxy Constructor ... 27
10. Two-Way Operation Stub .. 28
11. Response Callback ... 29
12. Error Callback ... 30
13. Setting up a JavaScript Service Proxy 31
14. Invoking a Service Proxy's Operations 31
15. Deploying a Service at a Specified Address 35
16. Deploying a Group of Services to a Base Address 35
17. Combining the Command Line Arguments 35
18. Web Page with a JavaScript Client .. 38

7

8

Preface
What is Covered in This Book ... 10
Who Should Read This Book .. 11
How to Use This Book .. 12
The Artix ESB Documentation Library ... 13

9

What is Covered in This Book
This book describes how to use the Artix ESB APIs to develop applications.

10

Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you
have a good understanding of the following:

• general programming concepts.

• general SOA concepts.

• JavaScript.

• the runtime environment into which you are deploying services.

11

How to Use This Book
This book is organized so that it follows the general workf low for developing
and deploying services with Artix ESB. It begins with a discussion of
implementing your services, progresses through how to set up the physical
details of how your service will be exposed as an endpoint, and concludes by
discussing how to deploy endpoints into Artix ESB.

12

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

13

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm

14

Implementing a Service in JavaScript
JavaSript is a dynamic and lightweight language growing in popularity. It enables developers to quickly create
functionality that runs on a large number of platforms.

Defining the Metadata ... 16
Implementing the Service Logic ... 18

Artix ESB supports services written in JavaScript. The pattern used to develop
these services is similar to JAX-WS Provider implementations that handle

requests and responses (either SOAP messages or SOAP payloads) as DOM
documents.

To write a service in JavaScript, you must:

1. Define the JAX-WS style metadata

2. Implement the service's business logic

15

Defining the Metadata
Java based service providers typically use annotations to specify JAX-WS
metadata. Since JavaScript does not support annotations, you must use
ordinary JavaScript variables to specify metadata for JavaScript
implementations. Artix ESB treats any JavaScript variable with a name that
equals or begins with WebServiceProvider as a JAX-WS metadata variable.

Required properties
Properties of the variable are expected to specify the same metadata that the
JAX-WS WebServiceProvider annotation specifies, including:

• wsdlLocation—Specifies a URL for the WSDL document that defines the

service

• serviceName—Specifies the name of the service

• portName—Specifies the service's port/interface name

• targetNamespace—Specifies the target namespace of the service

Optional properties
The JavaScript WebServiceProvider— can also specify the following optional

properties:

• ServiceMode—Indicates whether the specified service handles SOAP

payload documents or full SOAP message documents. This property mimics
the JAX-WS ServiceMode annotation. The default value is PAYLOAD.

• BindingMode—Indicates the service binding ID URL. The default is the

SOAP 1.1/HTTP binding.

• EndpointAddress—Indicates the URL consumer applications use to

communicate with this service. The property is optional and has no default.

Example
Example 1 on page 17 shows a metadata description for a JavaScript service
implementation.

16

Implementing a Service in JavaScript

Example 1. JavaScript Web Service Metadata

var WebServiceProvider1 = {
'wsdlLocation': 'file:./wsdl/hello_world.wsdl',
'serviceName': 'SOAPService1',
'portName': 'SoapPort1',
'targetNamespace': 'http://object

web.org/hello_world_soap_http',
};

17

Defining the Metadata

Implementing the Service Logic
Overview

You implement the service's logic using the required invoke property of the

WebServiceProvider variable. This property is a function that accepts one

input argument, a javax.xml.transform.dom.DOMSource node, and returns

a document of the same type. The invoke function can manipulate either

the input or the output documents using the regular Java DOMSource class

interface, just as a Java application would.

Example
Example 2 on page 18 shows an invoke function for a simple JavaScript

service implementation.

Example 2. JavaScript Service Implementation

WebServiceProvider.invoke = function(document) {
var ns4 = "http://apache.org/hello_world_soap_http/types";
var list = document.getElementsByTagNameNS(ns4, "requestType");
var name = list.item(0).getFirstChild().getNodeValue();
var newDoc = document.getImplementation().createDocument(ns4, "ns4:greetMeResponse",

null);
var el = newDoc.createElementNS(ns4, "ns4:responseType");
var txt = newDoc.createTextNode("Hi " + name);
el.insertBefore(txt, null);
newDoc.getDocumentElement().insertBefore(el, null);
return newDoc;

}

18

Implementing a Service in JavaScript

Implementing a Service in ECMAScript
for XML (E4X)
You can develop a service using ECMAScript for XML (E4X), much like you can do with JavaScript.

Overview
Developing a service using E4X is similar to developing a service using
JavaScript. You define the JAX-WS metadata using the same
WebServiceProvider variable in JavaScript. You also implement the service's

logic in the WebServiceProvider variable's invoke property.

The only difference between the two approaches is the type of document the
implementation manipulates. When working with E4X, the implementation
receives requests as an E4X XML document and returns a document of the
same type. These documents are manipulated using built-in E4X XML features.

Example
Example 3 on page 19 shows an invoke() function for a simple E4X service

implementation.

Example 3. E4X Service Implementation

var SOAP_ENV = new Namespace('SOAP-ENV',
'http://schemas.xmlsoap.org/soap/envelope/');

var xs = new Namespace('xs', 'http://www.w3.org/2001/XMLSchema');
var xsi = new Namespace('xsi', 'http://www.w3.org/2001/XMLSchema-instance');
var ns = new Namespace('ns', 'http://apache.org/hello_world_soap_http/types');

WebServiceProvider1.invoke = function(req) {
default xml namespace = ns;
var name = (req..requestType)[0];
default xml namespace = SOAP_ENV;
var resp = <SOAP-ENV:Envelope xmlns:SOAP-ENV={SOAP_ENV} xmlns:xs={xs} xmlns:xsi={xsi}/>;

resp.Body = <Body/>;
resp.Body.ns::greetMeResponse = <ns:greetMeResponse xmlns:ns={ns}/>;
resp.Body.ns::greetMeResponse.ns::responseType = 'Hi ' + name;
return resp;

}

19

20

Developing Service Consumers
Artix ESB provides a number of tools for writing service consumers in JavaScript. These include generating code
from existing applications and downloading JavaScript from Artix ESB-based services.

Generating Consumer Code .. 22
Understanding the Generated Code .. 24
Implementing the Callbacks ... 29
Invoking Operations on a Service ... 31

Artix ESB JavaScript client-side support allows you to create JavaScript service
consumers that can communicate natively with SOAP/HTTP service providers.
The code generators produce proxy code and support classes for
communicating directly with a service provider. Using the generated code,
you can use JavaScript to build Web applications that access the back-end
services. The consumers use asynchronous communication to access the
services, making interaction as smooth as possible.

To develop service consumers in JavaScript, you must:

1. Generate the proxy and support code

2. Implement the callback functions used by the client

3. Invoke the service's operations

21

Generating Consumer Code
Overview

Artix ESB provides three mechanisms for creating client-side JavaScript code
for a service. If you have a running service that was built using either Artix
ESB or Apache CXF, you can access the client-side JavaScript code
dynamically. If you want to start from a WSDL document, you can use the
wsdl2js tool. If you want to start from a Java SEI, you can use the java2ws
command.

When dealing with the command line code generators, you are responsible
for ensuring that the generated supported code and the Artix ESB JavaScript
utility code are available to any Web application that uses it. The dynamically
generated support code is available whenever the service is active.

Dynamic access
If the service you want to access is developed using Artix ESB, you can
dynamically access the proxy and support code for making remote invocations
using the ?js URI handler. For example, if your service provider's address is

http://my.widgets.example/WidgetService you would access the

JavaScript proxy code using the URI
http://my.widgets.example/WidgetService?js.

Example 4 on page 22 shows a fragment of HTML used to access the
JavaScript proxy code for the service on which requests are made.

Example 4. HTML for Dynamically Accessing JavaScript Proxy Code

<script type="text/javascript" src="/WidgetService?js"></script>

When using the standard cxf.xml file or cxf-servlet.xml file to configure

your service provider, the ?js URI handler is automatically loaded by the

Artix ESB's bus. If you provide your own Spring configuration file, include
META-INF/cxf/cxf-extension-javascript-client.xml in your bean

configuration.

For more information about configuring the Artix ESB bus, see Artix® ESB
Deployment Guide.

Starting from WSDL
If you are developing a JavaScript consumer from a WSDL document and you
want to store the support code on a machine that is local to the consumer,
you can use the wsdl2js command. This command takes a WSDL document
containing a valid interface definition and generates the JavaScript support

22

Developing Service Consumers

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

code needed to make invocations on a service provider implementing the
interface. The support code is generated into a single file.

Example 5 on page 23 shows how to call the wsdl2js command.

Example 5. Calling the WSDL to JavaScript Tool

wsdl2js widgets.wsdl

Important
The generated code does not contain the Artix ESB JavaScript utility
code. For more information see Artix ESB utility code on page 24.

For more information on using the wsdl2js command see artix wsdl2js in the
Artix® ESB Command Reference.

Starting from a Java SEI
If you are developing a JavaScript consumer from a Java SEI and you want
to store the support code on a machine that is local to the consumer, you
can use the java2js command. This command takes a compiled Java SEI,
and all of its supporting type classes, and generates the JavaScript support
code needed to make invocations on a service provider implementing the
interface. The support code will be generated into a single file.

Example 6 on page 23 shows how to call the java2js command.

Example 6. Calling the Java to JavaScript Tool

java2js org.widgets.examples.WidgetService

Important
By default, the tool does not add the Artix ESB JavaScript utility code
to the generated code. However, you can use the -jsutils option

to force the tool to add the utility code. For more information see
Artix ESB utility code on page 24.

For more information on using the java2js command see artix java2js in the
Artix® ESB Command Reference.

23

Generating Consumer Code

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf
http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

Understanding the Generated Code
Overview

The code used to support the Artix ESB JavaScript consumers falls into three
catagories:

Artix ESB utility code
The utility code provides the hooks needed to run inside a browser. It
also provides some XML management functions.

Schema generated type objects
The type objects serialize and deserialize the SOAP messages used by
the service.

Service proxy code
The proxy code is used to make requests on the remote service. It includes
methods for each operation defined by the interface.

Artix ESB utility code
JavaScript consumers require a set of JavaScript utility functions to run in a
Web browser. They also require a few XML management functions. These
utility functions are supplied by Artix ESB.

When you access the dynamically generated proxy code using the ?js URI

handler, the utility code is automatically included in the response. If you do
not want to incur the penalty for downloading the additional JavaScript, you
can access the proxy code by appending ?nojsutils.

The command line code generators do not include the utility code. However,
the java2js command's -jsutils does include the utility code in the

generated proxy code.

If the utility code is not included in the JavaScript proxy code you are using
to develop your consumer, then you must include the utility code. The utility
functions are included in the InstallDir/etc/cxf-utils.js file. Package

this file with the other JavaScript code used to implement your consumer.

Generated types
The JavaScript code generators create objects to support all of the schema
types used by your service. The generated objects have names derived from
their QName. For example, the schema type
http://widgets.examples.com/types/WidgetOrder is named

widgets_example_com_types_WidgetOrder.

24

Developing Service Consumers

Each generated type object has a constructor. It also has a getter and setter
for each property defined by the schema type. If the service's Java
implementation of the schema type has private properties, they are identified
by placing an underscore(_) in front of their names.

The code generator creates the JavaScript object shown in
Example 8 on page 25 for the schema type shown in Example 7 on page 25.

Example 7. Schema for JavaScript Type Object

<definitions ...>
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
...>

<complexType name="numInventory">
<sequence>
<element name="numLeft" type="xsd:int" />
<element name="size" type="xsd:string" />

</sequence>
</complexType>

</schema>
</types>
...

</definitions>

The schema type in Example 7 on page 25 is a basic sequence complex type
with two fields: numLeft and size. The generated object contains getters and
setters for both fields. The name generated for the object is also shortened
to use the namespace prefix xsd1 as the root.

Example 8. JavaScript Type Object

//
// Constructor for XML Schema item {http://widgetVendor.com/types/widgetTypes}numInventory
//
function XSD1_numInventory () { ❶

this.typeMarker = 'XSD1_numInventory';
this._numLeft = 0;
this._size = '';

}

//
// accessor is XSD1_numInventory.prototype.getNumLeft
// element get for numLeft
// - element type is {http://www.w3.org/2001/XMLSchema}int
// - required element
//

25

Understanding the Generated Code

// element set for numLeft
// setter function is is XSD1_numInventory.prototype.setNumLeft
//
function XSD1_numInventory_getNumLeft() { return this._numLeft;} ❷

XSD1_numInventory.prototype.getNumLeft = XSD1_numInventory_getNumLeft;

function XSD1_numInventory_setNumLeft(value) { this._numLeft = value;} ❸

XSD1_numInventory.prototype.setNumLeft = XSD1_numInventory_setNumLeft;
//
// accessor is XSD1_numInventory.prototype.getSize
// element get for size
// - element type is {http://www.w3.org/2001/XMLSchema}string
// - required element
//
// element set for size
// setter function is is XSD1_numInventory.prototype.setSize
//
function XSD1_numInventory_getSize() { return this._size;} ❹

XSD1_numInventory.prototype.getSize = XSD1_numInventory_getSize;

function XSD1_numInventory_setSize(value) { this._size = value;} ❺

XSD1_numInventory.prototype.setSize = XSD1_numInventory_setSize;

The generated code in Example 8 on page 25 has the following features:

❶ A constructor for the numInventory object

In addition to fields for the two defined properties, the generated object
has a typeMarker field. The typeMarker field is used to assist in serializing
and deserializing the SOAP messages.

❷ A getter method for the numLeft property

❸ A setter method for the numLeft property

❹ A getter method for the size property

❺ A setter method for the size property

Service proxy code
The code generators create a service proxy for the interface defined by the
service. Example 9 on page 27 shows a generated constructor for a service
proxy.

26

Developing Service Consumers

Example 9. JavaScript Service Proxy Constructor

function widgetVendor_com_widgetOrderForm_orderWidgets () {
this.jsutils = new CxfApacheOrgUtil();
this.jsutils.interfaceObject = this;
this.synchronous = false;
this.url = null;
this.client = null;
this.response = null;
this._onsuccess = null;
this._onerror = null;
this.globalElementSerializers = [];
this.globalElementDeserializers = [];
this.globalElementSerializers['{http://widgetVendor.com/types/widgetTypes}restrictedAd

dress'] = XSD1_restrictedAddress_serialize;
this.globalElementDeserializers['{http://widgetVendor.com/types/widgetTypes}restricte

dAddress'] = XSD1_restrictedAddress_deserialize;
this.globalElementSerializers['{http://widgetVendor.com/types/widgetTypes}numInventory']

= XSD1_numInventory_serialize;
this.globalElementDeserializers['{http://widgetVendor.com/types/widgetTypes}numInventory']

= XSD1_numInventory_deserialize;
this.globalElementSerializers['{http://widgetVendor.com/types/widgetTypes}Address'] =

XSD1_Address_serialize;
this.globalElementDeserializers['{http://widgetVendor.com/types/widgetTypes}Address']

= XSD1_Address_deserialize;
this.globalElementSerializers['{http://widgetVendor.com/types/widgetTypes}widgetOrder

BillInfo'] = XSD1_widgetOrderBillInfo_serialize;
this.globalElementDeserializers['{http://widgetVendor.com/types/widgetTypes}widgetOrder

BillInfo'] = XSD1_widgetOrderBillInfo_deserialize;
this.globalElementSerializers['{http://widgetVendor.com/types/widgetTypes}widgetOrder

Info'] = XSD1_widgetOrderInfo_serialize;
this.globalElementDeserializers['{http://widgetVendor.com/types/widgetTypes}widgetOrder

Info'] = XSD1_widgetOrderInfo_deserialize;
}

Most of the generated code is responsible for setting up the utility functions
needed by the proxy, and for setting up the type support used for serializing
and deserializing the data used by the service.

However, there are two important properties that you must use when setting
up your proxy:

synchronous

The synchronous property determines if the client communicates with
the provider synchronously or asynchronously. The proxy is designed to
use asynchronous communication because all operation stubs use
callback methods to receive responses. However, setting this property

27

Understanding the Generated Code

to true causes the client to block while it waits for a response from the
service provider.

url

The url property specifies the URL for contacting the service provider.

Important
Artix ESB does not support cross-scripting.

The code generator also produces stubs for each of the operations exposed
by the interface. For one-way operations, the parameter list of the generated
stub is identical to the parameter list defined in the interface. As shown in
Example 10 on page 28, the generated stubs for two-way operations take
two special parameters: successCallback and errorCallback. These

parameters are user implemented callback methods that are called by the
service provider when the response is ready.

Example 10. Two-Way Operation Stub

function widgetVendor_com_widgetOrderForm_placeWidgetOrder_op(successCallback, errorCallback,
widgetOrderForm, intSize) {
...
}

widgetVendor_com_widgetOrderForm_orderWidgets.prototype.placeWidgetOrder = wid
getVendor_com_widgetOrderForm_placeWidgetOrder_op;

For more information on implementing the callbacks see Implementing the
Callbacks on page 29.

28

Developing Service Consumers

Implementing the Callbacks
Overview

Artix ESB's JavaScript consumer support is designed to interact with service
providers asynchronously. To accomplish this each two-way operation takes
two callback objects when invoked:

• The response callback is invoked if the request is processed successfully

• The error callback is invoked if there is an error in processing the request

The response callback
The response callback is used by the service provider to return the response
to the consumer. It has a single parameter that corresponds to the output
message defined for the operation.

Note
Artix ESB JavaScript consumers only support document style
exchanges.

Example 11 on page 29 shows a response callback for an operation that
returns a response of the numInventory type shown in Example 8 on page 25.

Example 11. Response Callback

function inventoryUpdatetResponse(response) {
sizeSpan = document.getElementById('sizeHolder');
sizeSpan.firstChild.nodeValue = response.getSize(); ❶

numSpan = document.getElementById('numHolder');
numSpan.firstChild.nodeValue = response.getNumLeft(); ❷

}

The callback does the following:

❶ Retrieves the size property from the response and places it into a node
for display

❷ Retrieves the numLeft property from the response and places it into a
node for display

The error callback
The error callback is used by the service provider if there is an error in
processing the request. It takes two parameters. The first parameter is the
HTTP error code, and the second parameter is the HTTP error text.

29

Implementing the Callbacks

Example 12 on page 30 shows a simple error callback.

Example 12. Error Callback

function onerror(errorNum, errorText) {
alert('error ' + errorText);

}

30

Developing Service Consumers

Invoking Operations on a Service
Overview

Making requests on a remote service requires the following steps:

1. Instantiating a proxy object

2. Setting the proxy's url property to the appropriate URL

3. Invoking the proxy's operations

Setting up the proxy
Before you can make requests on a remote service you must instantiate and
set-up the proxy object. As shown in Example 13 on page 31 this is a
straightforward process.

Example 13. Setting up a JavaScript Service Proxy

var widgetProxy = new widgetVendor_com_widgetOrderForm_orderWidgets(); ❶

widgetProxy.url = "/widgetService"; ❷

The code in Example 13 on page 31 does the following:

❶ Instantiates a service proxy for the service

❷ Sets the proxy's url property to the URL for the service

Important
Artix ESB does not support cross-scripting.

Invoking operations
What needs to be passed to an operation depends on whether the operation
is one-way or two-way. One-way operations only need the parameters that
are defined by the service interface. Two-way operations require two additional
parameters that provide the service with the callback objects it uses to return
the results of the operation.

Example 14 on page 31 shows code for invoking an operation on a service
proxy.

Example 14. Invoking a Service Proxy's Operations

function inventoryUpdatetResponse(response) {
...

31

Invoking Operations on a Service

}

function errorCallback(errorNum, errorText){
...
}

...
function invokeService() {
...
// Proxy widgetProxy instantiated previously
widgetProxy.getInventory(inventoryUpdatetResponse, errorCallback, size, color);
...
}

32

Developing Service Consumers

Deploying Applications
JavaScript applications require an interpreter to run. Artix ESB provides a lightweight container for deploying
services. Client applications developed with Artix ESB can be deployed either directly in a browser or using the
Rhino engine.

Publishing Services .. 34
Running Clients in a Browser .. 37

33

Publishing Services
Overview

Artix ESB provides a lightweight container that allows you to deploy your
JavaScript and E4X services and take advantage of the Artix ESB's pluggable
transport infrastructure.

Important
JavaScript based services work with SOAP messages, and while they
are multi-transport, they can only use the SOAP binding.

Deployment command
You deploy services into the container using the following command:

java org.apache.cxf.js.rhino.ServerApp [-a addressURL] [-b

baseAddressURL] { file ...}

The org.apache.cxf.js.rhino.ServerApp class, shorted to ServerApp

below, takes one or more JavaScript files, suffixed with a .js, or E4X files

suffixed with a .jsx, and loads them into the Artix ESB runtime. If ServerApp

locates JAX-WS metadata in the files, it creates and registers a JAX-WS
Provider<DOMSource> object for each service. The Provider<DOMSource>

object delegates the processing of requests to the implementation stored in
the associated file. ServerApp can also take the name of a directory

containing JavaScript and E4X files. ServerApp loads all of the scripts that

contain JAX-WS metadata and publishes a service endpoint for each one.

ServerApp has three optional arguments:

Table 1. Optional Arguments to ServerApp

DescriptionArgument

Specifies the address where ServerApp publishes the service endpoint implementation

found in the script file that follows the URL.

-a addressURL

Specifies the base address used by ServerApp when publishing the service endpoints

defined by the script files. The full address for the service endpoints is formed by appending
the service's port name to the base address.

-b baseAddressURL

34

Deploying Applications

DescriptionArgument

Specifies that ServerApp runs in verbose mode.-v

The optional arguments take precedence over any addressing information
provided in EndpointAddress properties that appear in the JAX-WS metadata.

Examples
For example, if you deployed a JavaScript service using the command shown
in Example 15 on page 35, your service is deployed at
http://cxf.apache.org/goodness.

Example 15. Deploying a Service at a Specified Address

java org.apache.cxf.js.rhino.ServerApp -a http://cxf.apache.org/goodness hello_world.jsx

To deploy a number of services using a common base URL you invoke the
command shown in Example 16 on page 35. If the service defined by
hello_world.jsx has a port name of helloWorld, ServerApp publishes it

to http://cxf.apache.org/helloWorld. If the service defined by

goodbye_moon.js has a port name of blue, ServerApp publishes it to

http://cxf.apache.org/blue.

Example 16. Deploying a Group of Services to a Base Address

java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx goodbye_moon.js

You can also combine the arguments as shown in Example 17 on page 35.
Your service is deployed to http://cxf.apache.org/goodness.

Example 17. Combining the Command Line Arguments

java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx goodbye_moon.js -a
http://cxf.apache.org/goodness chocolate.jsx

ServerApp publishes three service endpoints:

1. The service defined by hello_world.jsx at

http://cxf.apache.org/helloWorld

2. The service defined by goodbye_moon.js at

http://cxf.apache.org/blue

35

Publishing Services

3. The service defined by chocolate.jsx at

http://cxf.apache.org/goodness

36

Deploying Applications

Running Clients in a Browser
Overview

The main use case for JavaScript client support is to facilitate the creation of
lightweight service consumers that can run inside of a browser. Artix ESB's
JavaScript client support is designed to work with the XMLHttpRequest

object.

Supported browsers
Consumer's developed using the Artix ESB JavaScript framework can be
deployed into any browser that supports the XMLHttpRequest object.

Browsers that support the XMLHttpRequest object include:

• Camino

• Firefox

• Flock

• Internet Explorer 7.x

• Konqueror

• Mozilla

• Opera 8.0 and newer

• Safari 1.2 and newer

• SeaMonkey

Note
There is experimental support for browsers that support
ActiveXObject(MSXML2.XMLHTTP.6.0"). This functionality is not

tested and it might be unpredictable.

Example
Example 18 on page 38 shows an HTML page that uses the Artix ESB
JavaScript client support to access a Web service.

37

Running Clients in a Browser

Example 18. Web Page with a JavaScript Client

<html>
<head>
<title>Hello World JavaScript Client Sample</title>

<script type="text/javascript" src="/SoapContext/SoapPort?js"></script> ❶
<script type="text/javascript">
var Greeter = new apache_org_hello_world_soap_http_Greeter(); ❷

Greeter.url = "/SoapContext/SoapPort"; ❸

var responseSpan;

function sayHiResponse(response) ❹
{
responseSpan.firstChild.nodeValue = response.getResponseType();

}

function sayHiError(error) ❺
{
alert('error ' + error);

}

function invokeSayHi() ❻
{
responseSpan = document.getElementById('sayHiResponse');
responseSpan.firstChild.nodeValue = " - pending - ";
Greeter.sayHi(sayHiResponse, sayHiError);

}
</script>

</head>
<body>

...
<p>Run sayHi</p>
<input type="button"

value="invoke" name="sayHi"
onClick="invokeSayHi()"> ❼

<p>sayHi response</p>
<p>- not yet invoked -</p>

</body>
</html>

Example 18 on page 38 does the following:

❶ Downloads the client-side JavaScript from the service provider

❷ Creates a new proxy object to access the service provider

38

Deploying Applications

❸ Sets the proxy object's url property to the URL used to access the service

Important
Cross-scripting is not supported

❹ Creates the callback object for receiving a response from the service

❺ Creates the callback object for receiving an Error from the service

❻ Creates a function that can be used to invoke the service

❼ Displays a button that will invoke the service when clicked

39

Running Clients in a Browser

40

Index
B
BindingMode property, 16

C
callbacks

error, 29
response, 29

client code
dynamic access, 22
generation from Java SEI, 23
generation from WSDL, 22
service proxy, 26
utility functions, 24

client communication, 27
cxf-jsutils.js, 24

D
deploying, 34
DOMSource, 18

E
endpoint

specifying the address, 16
EndpointAddress property, 16
error callback, 29

I
invoke(), 18, 19

J
java2js, 23

adding utility code, 24
JAX-WS

WebServiceProvider annotation, 16

M
message manipulation, 18, 19

P
portName property, 16

R
response callback, 29

S
ServerApp, 34
service metadata, 16

optional, 16
reqired, 16

service URL, 26, 28
ServiceMode property, 16
serviceName property, 16

T
targetNamespace property, 16

W
WebServiceProvider variable, 16
wsdl2js, 22
wsdlLocation property, 16

X
XML documents, 19

41

42

	Developing Applications in JavaScript
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Implementing a Service in JavaScript
	Defining the Metadata
	Implementing the Service Logic

	Implementing a Service in ECMAScript for XML (E4X)
	Developing Service Consumers
	Generating Consumer Code
	Understanding the Generated Code
	Implementing the Callbacks
	Invoking Operations on a Service

	Deploying Applications
	Publishing Services
	Running Clients in a Browser

	Index

