PROGRESS

SOFTWARE

Artix ESB

Java Router, Programmer's Guide

Version 5.5
December 2008

Java Router, Programmer's Guide
Progress Software

Version 5.5

Published 10 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

=1 - oL N 11
Open SOUICE ProJECT RESOUITESiuiiiii e e aeans 12
DocUMENT CONVENTIONS ... ettt e et e e e e e e et e e e e e e nenen 13

Understanding Message FOrmatsccccoiiiiiiiiiiiiiiis s s s s s s s s s s n s s s s s s nnns 15
XN S o et e 16
PSS e utututnttet ettt et et et et et et ettt ettt eaea ettt et e aeaeaeaeaeaeeeeeteteterararaans 18
BUIIE-IN TYPE CONVEITEIS ...ett ittt e e e e ettt e e e e e e aaaaaas 23

IMpPlemMENting @ PrOCESSOF ...uiuiiiiiiiiiri i r e s e s s s s s s sa s s s sa s s s ra s sansasasansasasansnsnnnnrns 27
ProCESSING MOGEIS . v.vite e e e e e e et aaas 28
IMplementing @ SIMPIE PrOCESSOLttt eenas 30
Implementing @ Delegate ProCESSOriuiui e e 32
Accessing Message CoNtENT ... e 35
The EXChangEHEIPE! ClaSSiuuenietiet et ettt e e e e e e e e ee e ens 37

TYPE CONVEI IS .eueeiiiiiiiiiiiiii it r e ettt rara st et e a e e s s s s s saeassrassrnsarasasasnsnsnnnnnnnnsnsnsnsnsnsns 41
Type Converter ArChItECIUIE ... e i e et e e e e e e aaenas 42
Implementing @ Custom Type CONVEITETcuiei it e e eene e 46

Implementing @ COMPONENTiiiiiiiiiiii v e e s s s s e s s s s s sasasarnsnnnannnnnnnnnnen 49
Component ArChItECIUIE ... e 50

Factory Patterns for @ Componentco.oiiiiii e 51
Using @ Component in @ ROULEenieie e e e e 54
CONSUMET PattBINSie e e e 56
ASYNCRIONOUS PrOCESSING «.ueniiiii e e et eenas 60
How to Implement @ ComMPONENT ... e 63
Auto-Discovery and ConfigUrationccooiiiiiiii s 66
Setting Up AUL0-DISCOVEIY ...uiriiit ettt e e e e aeneae 67
Configuring @ CoMPONENT ... e e e e e e a e aeanan 69

Component INEEIfaCecciiiiiiiii s raen 73
The ComPONENt INTEITACEeie et e e nene e 74
Implementing the Component INTEIfaCEoeiieiiii e 76

ENdpoint INterfacecociiiiiiiiiiiiiii et r e rernanarararararans 81
The Endpoint INtEIaCeveiii e 82
Implementing the Endpoint Interfaceoooiiiii i 85

L0074 0T 0 LY Gl 14T =T - o 93
The CoNSUMET INTEITACEttt e e e e e e e e e nenen 94
Implementing the Consumer INTEIace ..ot e 100

Producer INtErfaCeccieiiiieiiiiii i e r st r i r s r s raaanen 107
The ProdUCEr INTEITACE ...t e e e e e e e e 108
Implementing the Producer Interfacecoiiiii i 111

EXChange INterfacecoieieieieiiiii s r e s e s e s et ra i rarnnn 115
The EXChange INterfaceouinii e e 116
Implementing the Exchange INterface ..o e 121

Lo SF T= T 1 Y (=1 - oL P
The MesSage INteIaCE ...virir i et
Implementing the Message INterfaceoviriiiii i e

List of Figures

1. Exchange Object Passing through a Routeccocoiiiiiiinni. 16
2. Pipelining Modelouiiiii e 28
3. Chaining Modelouiiiii e 29
4. Type CONVEISION PrOCESScvuiuieiiieiie et ee e 44
5. Component Factory Patternsccooviiiii 51
6. Consumer and Producer Instances in a Routecocoeviiiiennnne. 54
7. Event-Driven CONSUMENiuuie e 57
8. Scheduled Poll CONSUMENviinieeiiie e 58
9. POIliNG CONSUMEY . \.ueit it aae 59
10. Synchronous ProducCerc.iuiiiiiiiii e, 60
11. Asynchronous ProdUcCerouiuiuiiiiiiiie e 61
12. Component Inheritance Hierarchycoooviiiiiiiiiiiiiiiiiens 74
13. Endpoint Inheritance Hierarchycccoooiiiiiiiiiiiin, 82
14. Consumer Inheritance Hierarchyccccoviiiiiiiiiiiiiiiiineenns 95
15. Producer Inheritance Hierarchycocooiiiiiiiiiin, 108
16. Exchange Inheritance Hierarchyccoooiiiiiiiiiiiiin, 116
17. Message Inheritance Hierarchycocooiviiiiiiiiiiiiienns 126

List of Tables

1. Scheduled Poll Parameters

List of Examples

1. Exchange Methods ... 16
2. Message INterfaceo.oeieiiiiiiiiiii 18
3. Processor INterfaceovveeeii i 30
4. Simple Processor Implementationcoooviiiiiiiiiiiin 30
5. DelegateProcessor Class ...o.vuiiiiiicie e 32
6. Delegate Processor Implementationcocoooiiiiiiiiinnn. 33
7. Accessing an Authorization Header ..o 35
8. Accessing the Message Body ..o 35
9. TypeConverter INterfaceooveiieiiiii e 42
10. Example of an Annotated Converter Classcccovvvieinennnnen. 46
11. Configuring a Component in Springccooiiiiiiiiiiieeene, 69
12. JMS Component Configuration in camel-context.xml 70
13. Component INterfacec.oevveiiiii 74
14. Implementation of createEndpoint()cooeeviiiiiiiiiiien, 78
15. FileComponent Implementationcoooviiiiiiiiiiiiiiienes 79
16. Endpoint Interfacecooiiiiiiiiiii 83
17. Implementing DefaultEndpointccoiiiiiiiii 85
18. ScheduledPollEndpoint Implementationcccoeeiiiiiiiiinant. 87
19. DefaultPollingEndpoint Implementationc.coiini, 89
20. BrowsableEndpoint Interfaceccoooiiiiiiii 90
21. SedaEndpoint Implementationcocoiiiiiiii 91
22. JMXConsumer Implementationcocooiiiiiiiiiiiinn, 100
23. ScheduledPollConsumer Implementationccoenil. 102
24. PollingConsumerSupport Implementationcocoviiiiinne. 104
25. Producer INterfaceocveiiiiiiiii e 108
26. AsyncProcessor Interfacec.oooviiiiiiiiii 109
27. AsyncCallback Interfacecoovviiiiiiiii e, 110
28. DefaultProducer Implementationccooiiiiiiiiiinn, 111
29. CollectionProducer Implementationoooooeiiiinl. 112
30. Exchange Interfaceooiiiiii i 116
31. Custom Exchange Implementationc.coooiiiin. 121
32. FileExchange Implementationcccoiiiiiiiiiiie 123
33. Message Interfaceccoovviiiiiiiiiiiice 126
34. Custom Message Implementationcooeviiiiiiiiniiiiininenns 129

10

Preface

Open Source Project Resources

Document Conventions

11

Open Source Project Resources

Apache Incubator CXF Web site: http://cxf.apache.org/

USEFS|Bt:<user@cxf.apache.org>

Apache T
pache Tomcat Web site: http://tomcat.apache.org/

USEFS|Bt:<users@tomcat.apache.org>

Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Apache Camel Web site:

http://activemq.apache.org/camel/enterprise-integration-patterns.htmi

User's list: <camel-user@activemq.apache.org>

Web site: http://servicemix.apache.org

User's list: <users@servicemix.apache.org>

12

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.apache.org

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

fixed width

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For

italic
example:
% cd /users/YourUserName
Italic Italic words in normal text represent emphasis and introduce new terms.
Bold Bold words in normal text represent graphical user interface components such as menu

commands and dialog boxes. For example: the User Preferences dialog.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple platforms, the command prompt is not
shown.

% A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

> The notation > represents the MS-DOS or Windows command prompt.

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format and syntax descriptions.

13

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed
in {} (braces).

Admonition conventions

This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause
damage to your data or your systems.

Q 4o ®

Warnings display information about errors that may cause damage to your systems. Possible damage from
these errors include system failures and loss of data.

14

Understanding Message Formats

Before you can start to program effectively with Java Router, you need to have a clear understanding of how
messages and message exchanges are modelled. Because Java Router needs the capability to process many
different kinds of message format, the basic message type is designed to have an abstract format. Various
programming APIs are provided, however, that enable you to access and transform the data formats that underly
message bodies and message headers.

BN S e et e 16
Y oT o Yo PPPPRPI 18
BUITE-IN TYPE CONVEITEIS .ottt et ettt et et e e e e et e et e e e e e e e e e e a e e e e eneaeenas 23

15

Understanding Message Formats

Exchanges

Overview

Exchange objects provide the primary means of accessing messages in Java
Router: an exchange object is effectively a wrapper that encapsulates a set
of related messages. For example, you can access /n, Out, and Fault messages
using the getIn (), getout (), and getFault () accessors defined on

Exchange. An important feature of exchanges in Java Router is that they

support lazy creation of messages. This can provide a significant optimization
in the case of routes that do not require explicit access to messages.

Figure 1. Exchange Object Passing through a Route

Exchange

n Mw
outlr] J

Target —#

—> Source

Processor

<—— Endpoint
Out

The Exchange interface

16

Endpoint<—

Out

Figure 1 on page 16 shows an exchange object passing through a route. In
the context of a route, an exchange object gets passed as the argument of
the Processor.process () method, which means that the exchange object

is directly accessible to the source endpoint, the target endpoint, and all of
the processors in between.

The org.apache.camel.Exchange interface defines methods to access /n,
Out and Fault messages, as shown in Example 1 on page 16.

Example 1. Exchange Methods

// Java
Message getIn() ;
void setIn(Message 1in);

Message getOut () ;
Message getOut (boolean lazyCreate) ;
void setOut (Message out);

Lazy creation of messages

Exchanges

Message getFault();
Message getFault (boolean lazyCreate);
void setFault (Message fault);

For a complete description of the methods in the Exchange interface, see
The Exchange Interface on page 116.

Java Router supports lazy creation of /n, Out, and Fault messages. This means
that message instances are not created until you try to access them (for
example, by calling getIn (), getout (), Or getFault ()). The lazy message

creation semantics are implemented by the
org.apache.camel.impl.DefaultExchange class.

If you call one of the no-argument accessors (getIn(), getout (), or
getFault ()) or if you call an accessor with the boolean argument equal to
true (that is, getIn (true), getOut (true), Of getFault (true)), the

default method implementation would create a new message instance, if one
does not already exist.

If you call an accessor with the boolean argument equal to false (thatis,
getIn(false), getOut (false), Or getFault (false)), the default method
implementation returns the current message value, which could be nu11.

17

Understanding Message Formats

Messages

Overview

The Message interface

18

Message objects represent messages using the following abstract model:
* Message body.

* Message headers.

* Message attachments.

The message body and the message headers can be of arbitrary type (they
are declared as type object) and the message attachments are declared to

be of type javax.activation.DataHandler
[http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html]
(which can contain arbitrary MIME types). If you need to obtain a concrete
representation of the message contents, you can convert the body and headers
to another type using the type converter mechanism (and also, possibly, using
the marshalling and unmarshalling mechanism).

One particularly important feature of Java Router messages is that they support
lazy creation of message bodies and headers. In some cases, this means that
a message can pass through a route without needing to be parsed at all.

The org.apache.camel.Message interface defines methods to access the

message body, message headers and message attachments, as shown in
Example 2 on page 18.

Example 2. Message Interface

// Java

Object getBody () ;

<T> T getBody (Class<T> type);

void setBody (Object body) ;

<T> void setBody (Object body, Class<T> type);

Object getHeader (String name) ;

<T> T getHeader (String name, Class<T> type);
void setHeader (String name, Object value);
Object removeHeader (String name) ;

Map<String, Object> getHeaders();

void setHeaders (Map<String, Object> headers);

javax.activation.DataHandler getAttachment (String id);
java.util.Map<String, javax.activation.DataHandler> getAttach

http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html
http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html

Lazy creation of bodies, headers,
and attachments

Initial message format

Messages

ments () ;

java.util.Set<String> getAttachmentNames () ;

void addAttachment (String id, javax.activation.DataHandler
content)

For a complete description of the methods in the Message interface, see The
Message Interface on page 126.

Java Router supports lazy creation of bodies, headers, and attachments. This
means that the objects that represent a message body, a message header,
or a message attachment are not created until the moment they are needed.

For example, consider the following route that accesses the foo message
header from the /n message:

from ("SourceURL") .filter (header ("foo") .isEqualTo ("bar")) .to (" Tar
getURL") ;

In this route, if we assume that the component referenced by SourceUrL

supports lazy creation, the /n message headers are not actually parsed until
the header ("foo™) call is executed. At that point, the underlying message

implementation parses the headers and populates the header map. The
message body is not parsed until you reach the end of the route, at the
to ("TargetURL") call. At that point, the body is converted into the format

required for writing to the target endpoint, TargetURL.

By waiting until the last possible moment before populating the bodies,
headers, and attachments, you can ensure that unnecessary type conversions
are avoided. In some cases, you can avoid parsing altogether: for example,
if a route contains no explicit references to message headers, a message could
traverse the route without parsing the headers at all.

Whether or not lazy creation is implemented in practice depends on the
underlying component implementation. In general, lazy creation is valuable
for those cases where creating a message body, a message header, or a
message attachment is an expensive operation. If the body is left in the form
of a raw buffer, it is probably not an expensive operation; on the other hand,
parsing headers always imposes a bit of an overhead. For details about
implementing a message type that supports lazy creation, see Implementing
the Message Interface on page 129.

The initial format of an /n message is determined by the source endpoint and
the initial format of an Out message is determined by the target endpoint. If

19

Understanding Message Formats

Type converters

Type conversion methods in
Message

20

lazy creation is supported by the underlying component, the message will
remain unparsed until it is accessed explicitly by the application. Most Java
Router components would create the message body in a relatively raw
form—for example, representing it using types such as byte[], ByteBuffer,

InputStream, Or OutputStream. This ensures that the overhead required

for creating the initial message is minimal. Where more elaborate message
formats are required, however, components usually rely on type converters
or marshalling processors.

Normally, it does not matter very much what the initial format of the message
is, because you can easily convert a message from one format to another

using the built-in type converters (see Built-In Type Converters on page 23).
There are various methods in the Java Router API that expose type conversion
functionality. For example, the convertBodyTo (Class type) method can

be inserted into a route in order to convert the body of an /n message, as
follows:

from (" SourceURL") .convertBodyTo (String.class) .to (" TargetURL") ;

Where the body of the /n message is converted to a java.lang.String. The

following example shows how to append a string to the end of the /In message
body:
from (" SourceURL") .setBody (bodyAs (String.class) .append ("My Spe

cial Signature")) .to("TargetURL") ;

Where the message body is converted to a string format before appending a
string to the end. As a matter of fact, it is not necessary to convert the message
body explicitly in this example. You could also write simply:

from (" SourceURL") .setBody (body () .append ("My Special Signa
ture")) .to (" TargetURL") ;

Where the append () method automatically converts the message body to a
string format before appending its argument.

The org.apache.camel.Message interface exposes some methods that
perform type conversion explicitly:

* getBody (Class<T> type)—treturn the message body as type, T.

Converting to XML

Marshalling and unmarshalling

Messages

® getHeader (String name, Class<T> type)—rteturn the named header
value as type, T.

For the complete list of supported conversion types, see Built-In Type
Converters on page 23.

In addition to supporting conversion between simple types (such as byte[],
ByteBuffer, String, and so on), the built-in type converter also supports

conversion to XML formats. For example, you can convert a message body
to the org.w3c.dom.Document type. This conversion is considerably more

expensive than the simple conversions, because it involves parsing the entire
message and creating a tree of nodes to represent the XML document structure.
You can convert to the following XML document types:

® org.w3c.dom.Document
® javax.xml.transform.sax.SAXSource

XML type conversions necessarily have narrower applicability than the simpler
conversions: not every message body conforms to an XML structure, so you
have to take into account that this type conversion might fail. On the other
hand, there are many scenarios where a router deals exclusively with XML
message types.

In general, marshalling involves converting a high-level format to a low-level
format and unmarshalling involves converting a low-level format to a high-level
format. The following two processors are used to perform marshalling or
unmarshalling in a route:

® marshal ()
® unmarshal ()

For example, to read a serialized Java object from a file and unmarshal it into
a Java object, you could use the following route definition:

from("file://tmp/appfiles/serialized") .unmarshal () .
serialization () .<FurtherProcessing>.to (" TargetURL") ;

21

Understanding Message Formats

Final message format

22

For details of how to marshal and unmarshal various data formats, see
Transforming Message Content in the Defining Routes .

When an /n message reaches the end of a route, the target endpoint must be
able to convert the message body into a format that can be written to the
physical endpoint (the same applies to Out messages that arrive back at the
source endpoint). This conversion is usually performed implicitly, using the
Java Router type converter. Typically, this involves converting from a low-level
format to another low-level format. For example, converting from a byte[]

array to an InputStream type.

../defining_routes/defining_routes.pdf

Built-In Type Converters

Built-In Type Converters

Overview

Basic type converters

This section describes the conversions supported by the master type converter.
While the conversions described here are built into the Java Router core, it
is also possible to extend the type conversion with custom converters (see
Type Converters on page 41).

Usually, the type converter is called indirectly through convenience functions,
SUChaSMessage.getBody(Class<T> type) Or

Message.getHeader (String name, Class<T> type). Itis also possible

to invoke the master type converter directly. For example, if you have an
exchange object, exchange, you could convert a given value to a string as

follows:

// Java

org.apache.camel.TypeConverter tc = exchange.getContext () .get
TypeConverter () ;

String str value = tc.convertTo(String.class, value);

Java Router provides built-in type converters to perform conversions to and
from the following basic types:

® java.io.File

® String

* byte[] and java.nio.ByteBuffer

® java.io.InputStream and java.io.OutputStream

* java.io.Reader and java.io.Writer

* java.io.BufferedReader and java.io.BufferedWriter
® java.io.StringReader

Not all conversions amongst these types are supported, however. The built-in
converter is focused mainly on providing conversions from the rile and

string types. The File type can be converted to any of the preceding types,

23

Understanding Message Formats

Collection type converters

Map type converters

DOM type converters

24

apart from Reader, Writer, and StringReader. The String type can be
convertedto File, byte[], ByteBuffer, InputStream, Of StringReader.
The conversion from string to File works by interpreting the string as a
file name. The trio of string, byte[], and ByteBuffer are completely
inter-convertible.

Java Router provides built-in type converters to perform conversions to and
from the following collection types:

® Object][]
® java.util.Set
® java.util.List

All permutations of conversions between the preceding collection types are
supported.

Java Router provides built-in type converters to perform conversions to and
from the following map types:

® java.util.Map

® java.util.HashMap

® java.util.Hashtable
® java.util.Properties

In addition to converting amongst themselves, the preceding map types can
also be converted into a set, of java.util.set type, where the set elements

are of MapEntry<k, v> type.

You can perform type conversions to the following Document Object Model
(DOM) types:

* org.w3c.dom.Document—convertible from byte[], String,

java.io.File, and java.io.InputStream.

SAX type converters

Custom type converters

Built-In Type Converters

® org.w3c.dom.Node
* javax.xml.transform.dom.DOMSource—convertible from string.
* javax.xml.transform.Source—convertible from byte[] and string.

All permutations of conversions between the preceding DOM types are
supported.

You can also perform conversions to the
javax.xml.transform.sax.SAXSource type, which supports the SAX

event-driven XML parser (see the SAX Web site [http://www.saxproject.org/]
for details). You can convert to saxsource from the following types: string,

InputStream, Source, StreamSource, and DOMSource.

Java Router also enables you to implement your own custom type converters.
For details of how to implement a custom type converter, see Type
Converters on page 41.

25

http://www.saxproject.org/
http://www.saxproject.org/

26

Implementing a Processor

Java Router allows you to implement a custom processor, which you can then insert into a route in order to
perform operations on exchange objects as they pass through the route.

ProCesSING IMOTEIS ... ettt e ettt et aaas 28
IMplementing @ SIMPIE PrOCESSONuiui ittt e et e e e e e e enen 30
Implementing @ Delegate ProCESSOL e 32
AcCESSING MESSAZE CONTENTie ittt e e e 35
L= (e = (=Y T o= G 0 37

27

Implementing a Processor

Processing Models

Overview

Pipelining model

Figure 2. Pipelining Model

Source endpoint

28

<

Before you start to implement a processor, you need to consider how the
processor is meant to fit into a Java Router route. The most important

processing models are, as follows:
¢ Pipelining model on page 28.

* Chaining model on page 29.

The pipelining model describes the way in which processors are arranged in
Pipes and Filters in the Implementing Enterprise Integration Patterns. This
is the most common way to process a sequence of endpoints (a producer

endpoint is just a special type of processor). When the processors are arranged
in this way, the exchange's /n and Out messages are processed as shown in

Figure 2 on page 28.

Processor A

Processor B

In

A

Processor C

A
Out In Out In

'y
Out

<«

Out

Target endpoint

The processors in the pipeline look like services, where the In message is
analogous to a request and the Out message is analogous to a reply. In fact,
in a realistic pipeline, the nodes in the pipeline are often implemented by

Web service endpoints (for example, using the CXF component).

For example, the following Java DSL route shows an example of a pipeline
constructed from a sequence of two processors, ProcessorA, ProcessorB,

and a producer endpoint, TargetURI:

../eip/eip.pdf

Chaining model

Figure 3. Chaining Model

In

from (SourceURI) .pipeline (ProcessorA,

ProcessorB,

Processing Models

TargetURI) ;

—»
Source endpoint

4—

Processor A

The chaining model describes an alternative model for arranging processors
in a route. In this model, the processors are arranged in a linked list or chain,
where each processor calls the process () method of the next processor in

the chain. When the processors are arranged in this way, the exchange's In
and Out messages are normally processed as shown in Figure 3 on page 29.

\ 4

Processor B

Ou

\ 4

Ou

Processor C

\ 4

Ou

Target endpoint

Ou

Because each processor processes the /n message before delegating the
exchange to the next node, the /n message gets processed in the order shown
in Figure 3 on page 29 (left to right). In addition, because each processor
process the Out message after delegating the exchange to the next node, the
Out message gets processed in the reverse order (right to left).

29

Implementing a Processor

Implementing a Simple Processor

Overview

Processor interface

Implementing the Processor
interface

30

If you need to write code that executes before an exchange is delegated to
the next processor, you can implement a simple processor, as explained in
this section. This kind of processor is suitable for use in a pipeline route.

Example 3 on page 30 shows the definition of the
org.apache.camel.Processor interface, which must be implemented by

a simple processor. The interface defines a single method, process (), which
processes the exchange object.

Example 3. Processor Interface

// Java
package org.apache.camel;

public interface Processor {
void process (Exchange exchange) throws Exception;

}

You implement a simple processor by inheriting from
org.apache.camel.Processor and implementing the process () method

Example 4 on page 30 shows the outline of a simple processor
implementation.
Example 4. Simple Processor Implementation

// Java
import org.apache.camel.Processor;

public class MyProcessor implements Processor {
public MyProcessor () { }

public void process (Exchange exchange) throws Exception
{
// Insert code that gets executed *before* delegating

// to the next processor in the chain.

Inserting the simple processor
into a route

Implementing a Simple Processor

Where all of the code in the body of the process () method gets executed

before the exchange object is delegated to the next processor in the chain.
Typically, this means that you cannot access the reply (if any) from the
endpoint of the route, because the exchange object does not reach the end
of the route until after the exchange is delegated to the next processor in the
route. This limitation can be overcome by implementing a delegate processor
instead—see Implementing a Delegate Processor on page 32.

For examples of how to access the message body and header values inside
a simple processor, see Accessing Message Content on page 35.

To insert a simple processor into a route, use the process () DSL command.

Create an instance of your custom processor and then pass this instance as
an argument to the process () method, as follows:

// Java
org.apache.camel.Processor myProc = new MyProcessor () ;

from (" SourceURL") .process (myProc) .to (" TargetURL") ;

31

Implementing a Processor

Implementing a Delegate Processor

Overview

DelegateProcessor class

32

If you need to write code that executes both before and after an exchange is
delegated to the next processor, you can implement a delegate processor, as
explained in this section. Delegate processors conform to the chaining model
for building routes.

Example 5 on page 32 shows a partial outline of the
org.apache.camel.processor.DelegateProcessor‘daSS.The main

difference between the DelegateProcessor class and the Processor class
is that the DelegateProcessor class has a bean property, processor,

which holds a reference to the next processor in the chain. This makes it
possible for you to call the next processor explicitly when you write the code
for the process () method. The most convenient way to call the next processor

in the chain is to call the processNext () method.

Example 5. DelegateProcessor Class

package org.apache.camel.processor;

import org.apache.camel.Exchange;

import org.apache.camel.Processor;

import org.apache.camel.impl.ServiceSupport;
import org.apache.camel.spi.Policy;

import org.apache.camel.util.ServiceHelper;

public class DelegateProcessor extends ServiceSupport imple
ments Processor {
protected Processor processor;

public DelegateProcessor () {

}

public Processor getProcessor () {
return processor;

}

public void setProcessor (Processor processor) {
this.processor = processor;

}

public void process (Exchange exchange) throws Exception

processNext (exchange) ;

Extending the DelegateProcessor
class

Implementing a Delegate Processor

}

protected void processNext (Exchange exchange) throws Ex
ception {
if (processor != null) {
processor.process (exchange) ;

Where the setProcessor () method enables the route builder to inject a
reference to the next processor in the chain and the process () method must
be overridden by your custom delegate processor class.

You implement a delegate processor by extending belegateProcessor and
implementing the process () method. Example 6 on page 33 shows the
outline of a delegate processor implementation.

Example 6. Delegate Processor Implementation

// Java
import org.apache.camel.processor.DelegateProcessor;

public class MyDelegateProcessor extends DelegateProcessor ({
public MyProcessor () { }

public void process (Exchange exchange) throws Exception
{
// Insert code that gets executed *before* delegating
// to the next processor in the chain.

processNext (exchange) ;

// Insert code that gets executed *after* delegating
// to the next processor in the chain.

Where the process () method contains code that gets executed before

delegating to the next processor in the chain, as well as code that gets
executed after delegating. If the processors in your route are chained according
to the chaining model (see Chaining model on page 29), this means that you

33

Implementing a Processor

Inserting the delegate processor
into a route

34

can access request messages before the call to processNext () and access
reply messages after the call.

For examples of how to access the message body and header values inside
a simple processor, see Accessing Message Content on page 35.

To insert a delegate processor into a route, use the intercept () DSL
command. Create an instance of your custom processor and then pass this
instance as an argument to the intercept () method, as follows:

// Java
org.apache.camel.processor.DelegateProcessor myProc = new
MyDelegateProcessor () ;

from (" SourceURL") .intercept (myProc) .to (" TargetURL") ;

Accessing Message Content

Accessing Message Content

Accessing message headers

Accessing the message body

Message headers typically contain the most useful message content from the
perspective of a router, because headers are often intended to be processed
in a router service. To access header data, first of all obtain the message from
the exchange object (for example, using Exchange.getIn()) and then use

the Message interface to retrieve the individual headers (for example, using

Message.qetHeader())

Example 7 on page 35 shows an example of a custom processor that access
the value of a header named authorization (which, for example, might

represent HTTP Basic Authentication credentials). This example uses the
ExchangeHelper.getMandatoryHeader () method, which saves you having

to test for a null header value.

Example 7. Accessing an Authorization Header

// Java
import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
public void process (Exchange exchange) {
String auth = ExchangeHelper.getMandatoryHeader (exchange,
"Authorization", String.class);
// process the authorization string...

//

For full details of the Message interface, see Messages on page 18.

You can also access the message body. For example, to append a string to
the end of the /n message, you could use the processor shown in
Example 8 on page 35.

Example 8. Accessing the Message Body

// Java
import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {

35

Implementing a Processor

public void process (Exchange exchange) {
Message in = exchange.getIn();

in.setBody (in.getBody (String.class) + " World!");

Accessing message attachments . .
g g You can access a message's attachments using either the
Message.getAttachment () method or the Message.getAttachments ()

method. See Example 2 on page 18 for more details.

36

The ExchangeHelper Class

The ExchangeHelper Class

Overview

Resolve an endpoint

Wrapping the exchange accessors

The org.apache.camel.util.ExchangeHelper

htipy/activema.apache orglcamelmaven/tamek core/apidocsiorg/apechercamel Uit ExchangeHelpertml]
class is a Java Router utility class that provides methods that typically come
in useful when implementing a processor.

The static resolveEndpoint () method is one of the most useful methods
in the ExchangeHelper class, because you can use it inside a processor to
create a new Endpoint instance on the fly.

public final class ExchangeHelper {

@SuppressWarnings ({"unchecked" })
public static <E extends Exchange> Endpoint<E> resolveEnd
point (E exchange, Object value)
throws NoSuchEndpointException { ... }

The first argument to resolveEndpoint () is an exchange instance and the

second argument is usually an endpoint URI string. For example, given an
exchange instance, exchange, you could create a new file endpoint as follows:

// Java
Endpoint file endp = ExchangeHelper.resolveEndpoint (exchange,
"file://tmp/messages/in.xml") ;

The ExchangeHelper class provides several static methods of the form
getMandatoryBeanProperty (), Which wrap the corresponding
getBeanProperty () methods on the Exchange class. The essential difference
between them is that the original get BeanpProperty () accessors return null,

if the corresponding property is unavailable, whereas the
getMandatoryBeanProperty () Wrapper methods throw a Java exception.

The following wrapper methods are implemented in ExchangeHelper:
public final class ExchangeHelper {

public static <T> T getMandatoryProperty (Exchange exchange,
String propertyName, Class<T> type)

37

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html

Implementing a Processor

Testing the exchange pattern

Get the In message's MIME
content type

38

throws NoSuchPropertyException { ... }
public static <T> T getMandatoryHeader (Exchange exchange,
String propertyName, Class<T> type)
throws NoSuchHeaderException { ... }
public static Object getMandatoryInBody (Exchange exchange)
throws InvalidPayloadException { ... }
public static <T> T getMandatoryInBody (Exchange exchange,
Class<T> type)
throws InvalidPayloadException { ... }
public static Object getMandatoryOutBody (Exchange exchange)
throws InvalidPayloadException { ... }
public static <T> T getMandatoryOutBody (Exchange exchange,

Class<T> type)
throws InvalidPayloadException { ... }

There are several different exchange patterns for which an exchange object
is capable of holding an /n message. Likewise, several different exchange
patterns are compatible with holding an Out message. To provide a quick
way of checking whether or not an exchange object is capable of holding an
In message or an Out message, the ExchangeHelper class provides the

following methods:

public final class ExchangeHelper {

public static boolean isInCapable (Exchange exchange) {

}

public static boolean isOutCapable (Exchange exchange) {

}

If you want to find out the MIME content type of the exchange's /n message,
you can access it quickly by calling
ExchangeHelper.getContentType (exchange). To implement this, the

The ExchangeHelper Class

ExchangeHelper looks up the value of the In message's Content-Type

header (hence, this method relies on the underlying component to populate
the header value).

39

40

Type Converters

Java Router has a built-in type conversion mechanism, which is mainly used for the purpose of converting message
bodies and message headers to different types. This chapter explains how to extend the type conversion mechanism
by adding your own custom converter methods.

TyPE CoNVEIEr ArChITECIUIE ...ttt e e e e eeneen
Implementing @ Custom TYPE CONVEITET ... uie i e e e aees

41

Type Converters

Type Converter Architecture

Overview

TypeConverter interface

Master type converter

42

This section describes the overall architecture of the type converter
mechanism, which you need to understand, if you are going to write a custom
type converter. If all you want to do is use the build-in type converters, see
Understanding Message Formats on page 15 instead.

Example 9 on page 42 shows the definition of the
org.apache.camel.TypeConverter interface, which all type converter

classes must implement.

Example 9. TypeConverter Interface

// Java
package org.apache.camel;

public interface TypeConverter {
<T> T convertTo(Class<T> type, Object value);
}

The Java Router type converter mechanism follows a master/slave pattern.
There are many slave type converters, which are each capable of performing
a limited number of type conversions, and a single master type converter,
which aggregates the type conversions performed by the slaves. That is, the
master type converter acts as a front-end for the slave type converters: when
you request the master to perform a type conversion, it selects the appropriate
slave and delegates the conversion task to the slave.

For users of the type conversion mechanism, the master type converter is the
most important. It provides the entry point for accessing the conversion
mechanism. While starting up, Java Router automatically associates a master
type converter instance with the camelContext object. Hence, to obtain a

reference to the master type converter, you can call the
CamelContext.getTypeConverter () method. For example, if you have an

exchange object, exchange, you could obtain a reference to the master type
converter as follows:

Type converter loader

Type conversion process

Type Converter Architecture

// Java
org.apache.camel.TypeConverter tc = exchange.getContext () .get
TypeConverter () ;

The master type converter uses a type converter loader to populate the registry
of slave type converters. A type converter loader is any class that implements
the TypeConverterLoader interface. In practice, Java Router currently uses

only one kind of type converter loader, the annotation type converter loader
(OfAnnotationTypeConverterLoadertype)

Figure 4 on page 44 gives an overview of the type conversion process,
showing the steps involved in converting a given data value, value, to a

specified type, toType.

43

Type Converters

Figure 4. Type Conversion Process

@ getTypeConverter () @ convertTo (toType, val)
T :
CamelContext ypeconverter EEE—
(Master)

®
©)

Type Converter Regist
TypeConverterLoader P gistry

Key Converter

(to, from) Convl

@ (to, from) Conv2
-

TypeConverter Register : :
(Slave) /

J

JARs

Type conversion steps . .
P P The type conversion mechanism proceeds as follows:

1. The camelcontext object holds a reference to the master TypeConverter

instance. Normally, the first step in the conversion process is to retrieve
the master type converter by calling CamelContext .getTypeConverter ().

2. Type conversion is initiated by calling convertTo () on the master type

converter. This method requests the type converter to convert the data
object, value, from its original type to the type specified by the toType

argument.

3. Because the master type converter is just a front end for many different
slave type converters, it tries to find the appropriate slave type converter

44

Type Converter Architecture

by checking a registry of type mappings The registry of type converters is
keyed by a type mapping pair (toType, fromType). If a suitable type

converter is found in the registry, the master type converter calls the slave's
convertTo () method and returns the result.

. If a suitable type converter cannot be found in the registry, the master type
converter resorts to loading a new type converter, using the type converter
loader.

. The type converter loader searches the available JAR libraries on the
classpath in order to find a suitable type converter. Currently, the loader
strategy that is used is implemented by the annotation type converter
loader, which attempts to load a class annotated by the
org.apache.camel.Converter annotation (see Create a TypeConverter

file on page 47).

. If the type converter loader is successful, a new slave type converter is
loaded and entered into the type converter registry. This type converter is
then used to convert the value argument to the toType type.

. The converted data value is returned or nu1l1, if the conversion does not
succeed.

45

Type Converters

Implementing a Custom Type Converter

Overview

How to implement a type
converter

Implement an annotated
converter class

46

The type conversion mechanism can easily be customized by adding a new
slave type converter. This section describes how to implement a slave type
converter and how to integrate it with Java Router, so that it is automatically
loaded by the annotation type converter loader.

To implement a custom type converter, perform the following steps:
1. Implement an annotated converter class on page 46.
2. Create a TypeConverter file on page 47.

3. Package the type converter on page 47.

You can implement a custom type converter class using the @converter

annotation. You must annotate the class itself and each of the methods
intended to perform type conversion. Each converter method must take a
single argument, which defines the from type, and a non-void return value,
which defines the to type. The type converter loader uses Java reflection to
find the annotated methods and integrate them into the type converter
mechanism. Example 10 on page 46 shows an example of an annotated
converter class that defines a single converter method for converting from
java.io.File t0 java.io.InputStream.

Example 10. Example of an Annotated Converter Class

// Java
package com.YourDomain.YourPackageName;

import org.apache.camel.Converter;
import java.io.*;

@Converter
public class IOConverter {
private IOConverter () {

}

@Converter
public static InputStream toInputStream(File file) throws
FileNotFoundException {
return new BufferedInputStream(new FileInput

Create a TypeConverter file

Package the type converter

Implementing a Custom Type Converter

Stream(file));
}
}
Where the toInputStream () method is responsible for performing the
conversion from the File type to the Inputstream type.

(@ Note

The method name is unimportant, and can be anything you like.
What matters are the argument type, the return type, and the
presence of the @converter annotation.

To enable the discovery mechanism (which is implemented by the annotation
type converter loader) for your custom converter, create a TypeConverter

file at the following location:

META-INF/services/org/apache/camel/TypeConverter

The TypeConverter file must contain a comma-separated list of package

names identifying the packages that contain type converter classes. For
example, if you want the type converter loader to search the
com. YourDomain. YourPackageName package for annotated converter classes,

the Typeconverter file would have the following contents:

com. YourDomain.YourPackageName

Normally, you package the type converter as a JAR file containing the compiled
classes of your custom type converters and the META-INF directory. Put this

JAR file on your classpath to make it available to your Java Router application.

47

48

Implementing a Component

This chapter provides a general overview of the approaches you can use to implement a Java Router component.

CompPOoNENt ArChITECIUIE ...t e e 50
Factory Patterns for @ COmMPONENTieieii e e e 51
Using @ Component in @ ROULEuieieii e e e e ene e 54
CONSUMET PatlBIMNSii ittt et e et e e e ens 56
ASYNCHIONOUS PrOCESSING ...t ettt e eens 60

How to Implement @ COMPONENTie e et e e e e e e e 63

Auto-Discovery and ConfigUrationc.iiiuiii e e e 66
SEttiNG UP AUL0-DISCOVEIY .. vuinitiit ettt e et e e e et e et e e eees 67
Configuring @ COMPONENTttt et et e e e e e e e e e e eeans 69

49

Implementing a Component

Component Architecture

Factory Patterns for @ CoOmMPONENTuei e 51
Using @ Component iN @ ROULEuuiiiii ettt e e e et aaeans 54
CONSUMET PattBINS ..ttt ettt et et 56
ASYNCNIONOUS PrOCESSING vttt ettt e et e e et et e e et et et et et e e e e e e e e e e e e e e e e e 60

50

Factory Patterns for a Component

Factory Patterns for a Component

Overview

Component

Endpoint

A Java Router component consists of a set of classes that are related to each
other through a factory pattern. The primary entry point to a component is
the component object itself (an instance of org.apache.camel.Component

type). You can use the component object as a factory to create Endpoint
objects, which in turn acts as factories for creating consumer, Producer,
and Exchange objects. These relationships are summarized in

Figure 5 on page 51

Figure 5. Component Factory Patterns

Component<Exchange>

{Cre%

Endpoint<Exchange> Create) Exchange
Q& Q&ate

Consumer<Ex> Producer<Ex>

A component implementation is essentially an endpoint factory. Hence, the
main task of a component implementor is to implement the
Component.createEndpoint () method, which is responsible for creating

new endpoints on demand.

Each kind of component must be associated with a component prefix that
appears in an endpoint URI. For example, the file component is usually
associated with the file prefix, which can be used in an endpoint URI as

follows: file://tmp/messages/input. When you install a new component

in Java Router, you must define the association between a particular
component prefix and the name of the class that implements the component.

Each endpoint instance encapsulates a particular endpoint URI. So, every
time Java Router encounters a new endpoint URI, it creates a new endpoint
instance.

51

Implementing a Component

Consumer

Producer

Exchange

52

The class that implements an endpoint must inherit from the
org.apache.camel.Endpoint interface. The Endpoint interface defines

the following factory methods:

® createConsumer () and createPollingConsumer () —create a consumer
endpoint, which represents the source endpoint at the beginning of a route.

* createProducer ()—cCreate a producer endpoint, which represents the
target endpoint at the end of a route.

* createExchange () —Create an exchange object, which encapsulates the
messages passed up and down the route.

An endpoint object is, therefore, also a factory for creating consumer endpoints
and producer endpoints.

A consumer endpoint always appears at the start of a route and it encapsulates
the code responsible for receiving incoming requests and dispatching outgoing
replies (that is, it consumes requests). Another way of expressing this is to
say that a consumer represents a service.

An implementation of a consumer class must inherit from the
org.apache.camel.Consumer interface. There are, in fact, a number of

different patterns you can follow when implementing a consumer class, as is
described in detail in Consumer Patterns on page 56.

A producer endpoint always appears at the end of a route and it encapsulates
the code responsible for dispatching outgoing requests and receiving incoming
replies (it produces requests). Expressed in the terminology of a Service
Oriented Architecture, the producer could also be identified as a service
consumer (beware of the potential for confusion, however, with the term
consumer as it is used in Java Router).

An implementation of a producer class must inherit from the
org.apache.camel.Producer interface. If you want, you can optionally

implement the producer to support an asynchronous style of processing—see
Asynchronous Processing on page 60 for details.

An exchange object encapsulates a related set of messages. For example, one
kind of message exchange is a synchronous invocation, which consists of a
request message and its related reply.

Message

Factory Patterns for a Component

An implementation of an exchange class must inherit from the
org.apache.camel .Exchange interface. Often a component implementation

can simply use the default implementation, DefaultExchange. Sometimes

it can be useful to customize the exchange implementation—for example, if
you want to associate some extra properties or data with the exchange object.

There are three different kinds of messages, /n messages, Out messages, and
Fault messages, all of which are represented by the same message type,
org.apache.camel.Message. You do not always need to customize the

message implementation—the default implementation, befaultMessage, is
often adequate.

53

Implementing a Component

Using a Component in a Route

Overview

A Java Router route is essentially a chain of processors, of
org.apache.camel.Processor type. Messages are encapsulated in an

exchange object, &, which gets passed from node to node by invoking the
process () method. The architecture of the processor chain is illustrated in
Figure 6 on page 54.

Figure 6. Consumer and Producer Instances in a Route

Source endpoint Target endpoint
In In
Consumer<E> Processor Producer<E>
<— <—
Out Out

Source endpoint

Processors

Target endpoint

54

At the start of the route, you have the source endpoint, which is represented
by an org.apache.camel.Consumer oObject. The source endpoint is

responsible for accepting incoming request messages and dispatching replies.
When constructing the route, Java Router creates the appropriate Consumer

type based on the component prefix from the endpoint URI, as described in
Factory Patterns for a Component on page 51.

Each intermediate node in the chain is represented by a processor object
(implementing the org.apache.camel.Processor interface). You can insert

either standard processors (for example, filter, throttler, delayer, and
so on) or insert your own custom processor implementations.

At the end of the route you have the target endpoint, which is represented by
an org.apache.camel.Producer object. Because it comes at the end of a

processor chain, the producer is also a processor object (implementing the
org.apache.camel.Processor interface). The target endpoint is responsible

for sending outgoing request messages and receiving incoming replies. When

Using a Component in a Route

constructing the route, Java Router creates the appropriate Producer type
based on the component prefix from the endpoint URI.

55

Implementing a Component

Consumer Patterns

Overview

Threading

Alternative consumer patterns

Event-driven pattern

56

As a consequence of its position at the start of a route, the consumer plays
an especially important role. Many important features of the route are
determined by the consumer. For example, the consumer gets to determine
the threading model for processing the exchanges that pass through the route.
The consumer is also responsible for determining the format of incoming
request messages.

In order to accommodate different kinds of threading models for processing
incoming requests, Java Router supports a variety of different consumer
implementation patterns: the event-driven pattern allows the consumer to
be driven by an external thread; the scheduled poll pattern creates a dedicated
thread pool to drive the consumer; and the polling pattern leaves the threading
model undefined.

You can implement a consumer based on one of the following patterns:
* Event-driven pattern on page 56.
* Scheduled poll pattern on page 57.

* Polling pattern on page 58.

In the event-driven pattern, processing of an incoming request is initiated
when another part of the application (typically a third-party library) calls a
method implemented by the consumer. A good example of an event-driven
consumer is the Java Router JMX component, where events are initiated by
the JMX library, which calls the handleNotification () method to initiate

request processing—see Example 22 on page 100 for details.
Figure 7 on page 57 shows an outline of the event-driven consumer pattern.

In this example, it is assumed that processing is triggered by a call to the
notify () method.

Figure 7. Event-Driven Consumer

Scheduled poll pattern

_________ O @

Consumer Patterns

< <

1

1
i notify(Elv) process (El)
Consumer Processor

The event-driven consumer processes incoming requests as follows:

1. The consumer must implement a method to receive the incoming event
(in the figure, this is represented by the notify () method). The thread
that calls notify () is normally a separate part of the application. Hence,
the consumer's threading policy is externally driven.

For example, in the case of the JMX consumer implementation, the

consumer implements the
NotificationListener.handleNotification () method in order to

receive notifications from JMX. The threads that drive the consumer
processing are created within the JMX layer.

2. In the body of the notify () method, the consumer first converts the
incoming event into an exchange object, £, and then calls process () on

the next processor in the route, passing the exchange object as its
argument.

In the scheduled poll pattern, the consumer retrieves incoming requests by
checking at regular time intervals whether or not a request has arrived.
Checking for requests is scheduled automatically by a built-in timer class,
the scheduled executor service, which is a standard pattern provided by the
java.util.concurrent library. The scheduled executor service is capable

of executing a particular task at timed intervals and it also manages a pool
of threads, which it uses to run the task instances.

Figure 8 on page 58 shows an outline of the scheduled poll consumer pattern.

57

Implementing a Component

Figure 8. Scheduled Poll Consumer

Q) @M

Scheduled Executor Service Consumer Processor

1
[l
poll () process (EI)

______________________________ (@ | Retrieve

Thread pool

Polling pattern

58

message

<

The scheduled poll consumer processes incoming requests as follows:

1.

The scheduled executor service has a pool of threads at its disposal, which
it can use to initiate consumer processing. After each scheduled time

interval has elapsed, the scheduled executor service tries to get hold of a
free thread from its pool (there are five threads in the pool by default). If
a free thread is available, it uses the thread to call the po11 () method on

the consumer.

. The consumer's po11 () method is intended to trigger processing of an

incoming request. In the body of the po11 () method, the consumer should

attempt to retrieve an incoming message. If no request is available, the
poll () method should return right away.

. If a request message is available, the consumer inserts it into an exchange

object and then calls process () on the next processor in the route, passing
the exchange object as its argument.

In the polling pattern, processing of an incoming request is initiated when a
third-party calls one of the consumer's polling methods, receive (),

receiveNoWait (), and receive (long timeout). In general, it is up to

the component implementation to define the precise mechanism for initiating

Figure 9. Polling Consumer

0

receive ()

Consumer Patterns

calls on the polling methods. This mechanism is not specified by the polling
pattern.

Figure 9 on page 59 shows an outline of the polling consumer pattern.

e 7

|

|
process (EI)
Consumer Processor

@ Retrieve

message

<

The polling consumer processes incoming requests as follows:

1. Processing of an incoming request is initiated whenever one of the

consumer's polling methods (receive (), receiveNoWait (), Or
receive (long timeout)) are called. The mechanism for calling these
polling methods is implementation defined.

. In the body of the receive () method, the consumer attempts to retrieve

an incoming request message. If no message is currently available, the
behavior depends on which receive method was called: if the method is
receiveNoWait (), return immediately; if the method is receive (1ong

timeout), wait for the specified timeout (usually specified in milliseconds)
before returning; and if the method is receive (), wait until a message is
received (possibly indefinitely).

. If a request message is available, the consumer inserts it into an exchange

object and then calls process () on the next processor in the route, passing
the exchange object as its argument.

59

Implementing a Component

Asynchronous Processing

Overview

Synchronous producer

Figure 10. Synchronous Producer

Producer endpoints normally follow a synchronous pattern when processing
an exchange. That is, when the preceding processor in a chain calls
process () on a producer, the process () method blocks until a reply is

received. In this case, the processor's thread remains blocked until the
producer has completed the cycle of sending the request and receiving the

reply.

Sometimes, however, you might prefer to decouple the preceding processor
from the producer, so that the processor's thread is freed up immediately and
the process () call does not block. In this case, you should implement the

producer using an asynchronous pattern, which gives the preceding processor
the option of invoking a non-blocking version of the process () method.

To give you an overview of the different implementation options, this section
describes both the synchronous and asynchronous patterns for implementing
a producer endpoint.

Figure 10 on page 60 shows an outline of a synchronous producer, where
the preceding processor blocks until the producer has finished processing the
exchange.

©) Producer @

Processor

process(Fl) { send M
@ receive M

60

®

The synchronous producer processes an exchange as follows:

1. The preceding processor in the chain calls the synchronous process ()

method on the producer to initiate synchronous processing. The
synchronous process () method takes a single exchange argument.

2. In the body of the process () method, the producer sends the request (/n
message) to the endpoint.

Asynchronous Processing

3. If required by the exchange pattern, the producer waits for the reply (Out
or Fault message) to arrive from the endpoint. Potentially, this step could
cause the process () method to block indefinitely. If the exchange pattern

does not mandate a reply, however, the process () method could return
immediately after sending the request.

4. When the process () method returns (potentially after having been blocked

for some time), the exchange object contains the reply from the synchronous
call (either an Out message or a Fault message).

Asynchronous producer Figure 11 on page 61 shows an outline of an asynchronous producer, where

the producer processes the exchange in a sub-thread and the preceding
processor is not blocked for any significant length of time.

Figure 11. Asynchronous Producer

1
process(ﬁ, CB)
Processor Producer

®

d 5:2
@ Runnable =<2
done ()

AsyncCallback

The synchronous producer processes an exchange as follows:

1. Before the processor can call the asynchronous process () method, it

must create an asynchronous callback object, which is responsible for
processing the exchange on the return leg of the route. For the asynchronous
callback, the processor must implement a class that inherits from the
AsyncCallback interface.

61

Implementing a Component

62

. The processor calls the asynchronous process () method on the producer

to initiate asynchronous processing. The asynchronous process () method

takes two arguments: an exchange object and a synchronous callback
object.

. In the body of the process () method, the producer creates a Runnable

object that encapsulates the processing code. The producer then delegates
the execution of this Runnable object to a sub-thread.

. The asynchronous process () method returns, thereby freeing up the

processor's thread.

. Processing of the exchange now takes place in the separate sub-thread.

First of all, the Runnable object sends the /n message to the endpoint.

. If required by the exchange pattern, the Runnable object waits for the

reply (Out or Fault message) to arrive from the endpoint. The Runnable
object remains blocked until the reply is received.

. After the reply arrives, the Runnable object inserts the reply (Out or Fault

message) into the exchange object and then calls done () on the

asynchronous callback object. The asynchronous callback is then
responsible for processing the reply message (executed in the sub-thread).

How to Implement a Component

How to Implement a Component

Overview

Which interfaces do you need to
implement?

Implementation steps

This section gives a brief overview of the steps required to implement a Java
Router custom component.

When implementing a component, it is almost always necessary to implement
the following Java interfaces:

org.apache.camel.Component

org.apache.camel.Endpoint

org.apache.camel.Consumer

org.apache.camel.Producer

In addition, it is sometimes also necessary to implement the following Java
interfaces:

® org.apache.camel.Exchange

® org.apache.camel.Message

In outline, you would typically implement a custom component as follows:

1.

Implement the Component interface—a component object acts as an
endpoint factory. Derive from the pefaultComponent class and

implement the createEndpoint () method.

See Component Interface on page 73.

Implement the Endpoint interface—an endpoint represents a resource
identified by a specific URI. The approach you take to implementing an
endpoint depends on whether your consumers follow an event-driven
pattern, a scheduled poll pattern, or a polling pattern.

For an event-driven pattern, implement the endpoint by inheriting from
DefaultEndpoint and implementing the following methods:

® createProducer().

63

Implementing a Component

Installing and configuring the
component

64

® createConsumer ().

For a scheduled poll pattern, implement the endpoint by inheriting from
ScheduledPollEndpoint and implementing the following methods:

® createProducer ().
® createConsumer ().

For a polling pattern, implement the endpoint by inheriting from
DefaultPollingEndpoint and implementing the following methods:

® createProducer ().
® createPollConsumer ().

See Endpoint Interface on page 81.

Implement the Consumer interface—there are several different
approaches you can take to implementing a consumer, depending on
whether you need to implement an event-driven pattern, a scheduled
poll pattern, or a polling pattern. The consumer implementation is also
crucially important for determining the threading model used for
processing a message exchange.

See Implementing the Consumer Interface on page 100.

Implement the Producer interface—to implement a producer, derive
from the DefaultProducer class and implement the process () method.

See Producer Interface on page 107.

(Optionally) Implement Exchange or Message interfaces—frequently,
the default implementations of Exchange and Message can be used

directly. Occasionally, you might find it necessary to customize these

types.

See Exchange Interface on page 115 and Message Interface on page 125.

You can install a custom component in one of the following ways:

How to Implement a Component

* Add the component directly to the CamelContext—use the
CamelContext.addComponent () method to add a component

programatically. For more details, see Adding Components to the Camel
Context in the Deployment Guide.

* Add the component using Spring configuration—use the standard Spring
bean element to create a component instance. The bean's id attribute

implicitly defines the component prefix. For details, see Configuring a
Component on page 69.

» Configure Java Router to auto-discover the component—using
auto-discovery, you can ensure that Java Router automatically loads the
component on demand. For details, see Setting Up
Auto-Discovery on page 67.

65

../deploy_guide/deploy_guide.pdf
../deploy_guide/deploy_guide.pdf

Implementing a Component

Auto-Discovery and Configuration

SEHING UP AULO- DS 0V Y .ttt ettt ettt
[O7oT a7 =(8 T LaT= 4= T ©7o] g g1 0T 10| P

66

Setting Up Auto-Discovery

Setting Up Auto-Discovery

Overview

Availability of component classes

Configuring auto-discovery

Example

Auto-discovery is a mechanism that enables you to add components
dynamically to your Java Router application. The component URI prefix is
used as a key to load components on demand. For example, if Java Router
encountered the endpoint URI, activemg://MyQName, and the ActiveMQ

endpoint was not yet loaded, Java Router would search for the component
identified by the activemq prefix and load the component dynamically.

Before configuring auto-discovery, you must ensure that your custom
component classes are accessible from your current classpath. Typically, you
bundle the custom component classes into a JAR file and add the JAR file to
your classpath.

To enable auto-discovery of your component, create a Java properties file
named after the component prefix, component-prefix, and store it in the

following location:

/META-INF/services/org/apache/camel/component/component-prefix

The component-prefix properties file must contain the following property
setting:

class=component-class—-name

Where component-class-name is the fully-qualified name of your custom

component class. You can also define additional system property settings to
this file.

For example, you could enable auto-discovery for the Java Router FTP
component by creating the following Java properties file:

/META-INF/services/org/apache/camel/component/ftp

Which contains the following Java property setting:

class=org.apache.camel.component.file.remote.RemoteFileCompon
ent

67

Implementing a Component

Note

The Java properties file for the FTP component is already defined in
the JAR file, camel-ftp-Version.jar.

68

Configuring a Component

Configuring a Component

Overview

Define bean properties on your
component class

Configure the component in
Spring

Alternatively, you can add a component by configuring it in the Java Router
Spring configuration file, META-INF/spring/camel-context.xml. To find

the component, the component's URI prefix is matched against the ID attribute
of a bean element in the Spring configuration. If the component prefix matches

a bean element ID, Java Router instantiates the referenced class and injects
the properties specified in the Spring configuration.

(@ Note

This mechanism has priority over auto-discovery. That is, if the
CamelContext can find a Spring bean with the requisite ID, it will
not attempt to find the component using auto-discovery.

If there are any properties that you would like to inject into your component
class, define them as bean properties. For example:

// Java
public class CustomComponent extends DefaultComponent<CustomEx
change> {

PropType getProperty() { ... }

void setProperty(PropType v) { ... }

}

Where get Property () and set Property () access the value of property..

To configure a component in Spring, edit the configuration file,
META-INF/spring/camel-context.xml, as shown in

Example 11 on page 69.

Example 11. Configuring a Component in Spring

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://activemqg.apache.org/camel/schema/spring ht

69

Implementing a Component

Examples

70

tp://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<camelContext id="camel" xmlns="http://act
ivemqg.apache.org/camel/schema/spring">
<package>RouteBuilderPackage</package>
</camelContext>

<bean id="component-prefix" class="component-class—-name">

<property name="property" value="propertyValue"/>
</bean>
</beans>

Where the bean element with ID, component-prefix, configures the
component-class-name component. You can inject properties into the
component instance using property elements. For example, the property
element in the preceding example would inject the value, propertyvalue,
into the property property by calling set Property () on the component.

Example 12 on page 70 shows an example of how to configure the Java
Router JMS component by defining a bean element with ID equal to jms.

These settings are added to the Spring configuration file, camel-context . xml.

Example 12. JMS Component Configuration in camel-context.xm/

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://activemqg.apache.org/camel/schema/spring ht
tp://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<camelContext id="camel" xmlns="http://act
ivemqg.apache.org/camel/schema/spring">
<package>org.apache.camel.example.spring</package> @
</camelContext>

<bean id="jms" class="org.apache.camel.component.jms.JmsCom
ponent"> @
<property name="connectionFactory"> @
<bean class="org.apache.activemg.ActiveMQConnectionFact

Configuring a Component

ory">

<property name="brokerURL"
value="vm://localhost?broker.persist

ent=false&broker.useJmx=false"/> @

</bean>
</property>

</bean>

</beans>

o

The camelcontext will automatically instantiate any RouteBuilder

classes that it finds in the specified Java package,
org.apache.camel.example.spring.

The bean element with ID, jms, configures the JMS component. The

bean ID corresponds to the component's URI prefix. For example, if a
route specifies an endpoint with the URI, jms: //MyoName, Java Router

would automatically load the JMS component using the settings from
the jms bean element.

JMS is just a wrapper for a messaging service. You need to specify the
concrete implementation of the messaging system by setting the
connectionFactory property on the JmsComponent class.

In this example, the concrete implementation of the JMS messaging
service is Apache ActiveMQ. The brokerURL property initializes a

connection to an ActiveMQ broker instance, where the message broker
is embedded in the local Java virtual machine (JVM). If a broker is not
already present in the JVM, ActiveMQ will instantiate it with the options
broker.persistent=false (meaning that messages in the broker are

not stored persistently) and broker.useJmx=false (meaning that the
broker does not open a JMX port).

71

72

Component Interface

This chapter describes in detail how to implement the component interface.

The CompPONeNt INEEITACEv e ettt aes
Implementing the Component INTEITACE e eanas

73

Component Interface

The Component Interface

Overview To implement a Java Router component, you must implement the

org.apache.camel.Component interface. An instance of component type

provides the entry point into a custom component. That is, all of the other
objects in a component are ultimately accessible through the component

instance. Figure 12 on page 74 shows the relevant Java interfaces and
classes that make up the component inheritance hierarchy.

Figure 12. Component Inheritance Hierarchy

Component

AN

DefaultComponent

The Component interface Example 13 on page 74 shows the definition of the

org.apache.camel.Componentinteﬁace

Example 13. Component Interface

// Java
package org.apache.camel;

public interface Component<E extends Exchange> {
CamelContext getCamelContext () ;
void setCamelContext (CamelContext context);

Endpoint<E> createEndpoint (String uri) throws Exception;

Component methods The component interface defines the following methods:

74

The Component Interface

® getCamelContext () and setCamelContext ()—reference the
CamelContext to which this Component belongs. The setCamelContext ()

method is automatically called when you add the component to a
CamelContext.

* createEndpoint ()—a factory method that gets called to create Endpoint
instances for this component. The uri parameter is the endpoint URI,
which contains the details needed to create the endpoint.

75

Component Interface

Implementing the Component Interface

The DefaultComponent class

URI parsing

76

Normally, you implement a new component by extending the
org.apache.camel.impl.DefaultComponent class, which provides some

standard functionality and default implementations for some of the methods.
In particular, the befaultComponent class provides support for URI parsing

and for creating a scheduled executor (which is used for the scheduled poll
pattern)..

The createEndpoint (String uri) method defined in the base Component

interface takes a complete, unparsed endpoint URI as its sole argument. The
DefaultComponent class, on the other hand, defines a three-argument

version of the createEndpoint () method with the following signature:
// Java

protected abstract Endpoint<E> createEndpoint (String uri,
String remaining, Map parameters) throws Exception;

Where uri is the original, unparsed URI; remaining is the part of the URI

that remains after stripping off the component prefix at the start and cutting
off the query options at the end; and parameters contains the parsed query

options. It is this version of the createEndpoint () method that you must
override when inheriting from DefaultComponent. This has the advantage
that the endpoint URI is already parsed for you.

To see how URI parsing works in practice, consider the following sample
endpoint URI for the file component:

file:///tmp/messages/foo?delete=trues&moveNamePostfix=.0ld

For this URI, the following arguments would be passed to the three-argument
version of createEndpoint ():

Header 1 Header 2

uri file:///tmp/messages/foo?delete=truesmoveNamePostfix=.0ld

remaining |/tmp/messages/foo

Parameter injection

Implementing the Component Interface

Header 1 Header 2

parameters | Two entries are set in java.util.Map: parameter delete is
boolean true, and parameter moveNamePostfix has the

string value, .old.

You can use the parameters extracted from the URI query options to perform
parameter injection on the endpoint's bean properties. The DefaultComponent

class provides a helper method, setProperties (), that performs the

parameter injection for you.

For example, imagine that you want to define a custom endpoint that supports
two URI query options: delete and moveNamePostfix. First of all, you need

to define the corresponding bean methods (getters and setters) in the endpoint
class:

// Java

public class FileEndpoint extends ScheduledPollEndpoint<FileEx
change> {

public boolean isDelete() {
return delete;

}
public void setDelete (boolean delete) {

this.delete = delete;
}

public String getMoveNamePostfix () {
return moveNamePostfix;

}

public void setMoveNamePostfix (String moveNamePostfix) {
this.moveNamePostfix = moveNamePostfix;

}

Then, in the implementation of createEndpoint (), call

setProperties (Object bean, Map parameters), passing the endpoint
instance as the bean argument and passing the URI query options as the
parameters argument (see Example 14 on page 78). This is all you need

to do in order to ensure that URI query options get injected into your custom
endpoint instance.

77

Component Interface

Scheduled executor service

Creating an endpoint

78

It is also possible to inject URI query options into consumer parameters. For
details, see Consumer parameter injection on page 95.

The DefaultComponent class is capable of initializing a scheduled executor

service, which schedules commands to execute periodically. In particular,
the scheduled executor is intended to be used in the scheduled poll pattern,
where it is responsible for driving the periodic polling of a consumer endpoint.

To instantiate a scheduled executor service, call the
DefaultComponent.getExecutorService () method, which returns a
java.util.concurrent.ScheduledThreadPoolExecutor instance
(implementing the java.util.concurrent.ScheduledExecutorService
interface). The scheduledThreadPoolExecutor instance is initialized with

a thread pool of fixed size, containing five threads. This implies that a
scheduled poll consumer can process up to five incoming requests in parallel.

@ Note

Instantiation of the thread pool is lazy, such that no executor service
is created until you actually call getExecutorService ().

Example 14 on page 78 outlines how to implement the
DefaultComponent.createEndpoint () method, which is responsible for

creating endpoint instances on demand.

Example 14. Implementation of createEndpoint()

// Java
public class CustomComponent extends DefaultComponent<CustomEx

change> { @

protected Endpoint<CustomExchange> createEndpoint (String
uri, String remaining, Map parameters) throws Exception { @
CustomEndpoint result = new CustomEndpoint(uri, this);
®
setProperties (result, parameters); @
//

return result;

Example

Implementing the Component Interface

©® The customComponent is the name of your custom component class,
which you define in the standard way by extending be faultComponent.
The type argument, customExchange, could be a custom exchange
implementation, but often you can just use Exchange here.

® When inheriting from befaultComponent, you must implement the
createEndpoint () method with three arguments (see URI

parsing on page 76).
® Create an instance of your custom endpoint type, customEndpoint, by

calling its constructor. At a minimum, this constructor should take a
copy of the original URI string, uri, and a reference to this component

instance, this.
® The setProperties () method is defined in DefaultComponent and

is responsible for performing parameter injection on the endpoint
instance. It uses introspection (Java reflection) to identify each
CustomEndpoint bean parameter that matches a corresponding

parameter name and then calls the relevant setter method to inject the
parameter value.

Example 15 on page 79 shows the complete implementation of the
FileComponent class, which is taken from the Java Router file component

implementation.

Example 15. FileComponent Implementation

// Java
package org.apache.camel.component.file;

import org.apache.camel.CamelContext;
import org.apache.camel.Endpoint;
import org.apache.camel.impl.DefaultComponent;

import java.io.File;
import java.util.Map;

public class FileComponent extends DefaultComponent<FileEx
change> {

public static final String HEADER FILE NAME =
"org.apache.camel.file.name";

public FileComponent () { @
}

79

Component Interface

public FileComponent (CamelContext context) { O
super (context) ;

}

protected Endpoint<FileExchange> createEndpoint (String
uri, String remaining, Map parameters) throws Exception { ©
File file = new File(remaining);
FileEndpoint result = new FileEndpoint (file, uri,
this) ;
setProperties (result, parameters);
return result;

® Always define a no-argument constructor for the component class, in
order to facilitate automatic instantiation of the class.
® A constructor that takes the parent camelcontext instance as an

argument is convenient when creating a component instance by
programming.

® The implementation of the FileComponent.createEndpoint () method
follows the pattern described in Example 14 on page 78. The
implementation creates an instance of a file endpoint (of FileEndpoint

type) and then injects the URI query options by calling

setProperties ().

80

Endpoint Interface

This chapter describes in detail how to implement the Endpoint interface, which is an essential step in the
implementation of a Java Router component.

The ENdpPOint INTEIaCe ... v et
Implementing the Endpoint INterfaceouoeieiii i e

81

Endpoint Interface

The Endpoint Interface

Overview

The Endpoint interface

82

An instance of org.apache.camel.Endpoint type encapsulates an endpoint
URI and it also serves as a factory for Consumer, Producer, and Exchange

objects. Three different approaches to implementing an endpoint are described
here: event-driven, scheduled poll, and polling. These endpoint implementation
patterns complement the corresponding patterns for implementing a
consumer—see Implementing the Consumer Interface on page 100.

Figure 13 on page 82 shows the relevant Java interfaces and classes that
make up the Endpoint inheritance hierarchy.

Figure 13. Endpoint Inheritance Hierarchy

Endpoint <

T
A

;

DefaultEndpoint BrowsableEndpoint

T
A

i

ScheduledPollEndpoint

T

i

DefaultPollingEndpoint

T
A

;

ProcessorEndpoint

Example 16 on page 83 shows the definition of the
org.apache.camel.Endpoint interface.

Endpoint methods

The Endpoint Interface

Example 16. Endpoint Interface

// Java
package org.apache.camel;

public interface Endpoint<E extends Exchange> {

boolean isSingleton();

String getEndpointUri();

CamelContext getContext () ;

E createExchange () ;

E createExchange (ExchangePattern pattern) ;
E createExchange (Exchange exchange) ;

Producer<E> createProducer () throws Exception;

Consumer<E> createConsumer (Processor processor) throws

Exception;

PollingConsumer<E> createPollingConsumer () throws Excep

tion;

}

The Endpoint interface defines the following methods:

* isSingleton ()—return true, if you want to ensure that each URI maps

to a single endpoint within a CamelContext. When this property is true,

multiple references to the same (that is, identical) URI within your routes
always refer to a single endpoint instance. When this property is false,

on the other hand, multiple references to the same URI within your routes
refer to distinct endpoint instances. That is, each time you refer to the URI
in a route, a new endpoint instance would be created.

getEndpointUri—rteturn the endpoint URI of this endpoint.

getContext () —return a reference to the camelcontext instance to which
this endpoint belongs.

createExchange () —is an overloaded method with the following variants:

* E createExchange () —Create a new exchange instance with a default
exchange pattern setting.

83

Endpoint Interface

Endpoint singletons

84

* E createExchange (ExchangePattern pattern)—Create a new
exchange instance with the specified exchange pattern.

* E createExchange (Exchange exchange)—convert the given
exchange argument to the type of exchange needed for this endpoint.

If the given exchange is not already of the correct type, this method
should copy it into a new instance of the correct type (a default
implementation of this method is provided in the befaultEndpoint

class).
* createProducer ()—factory method to create a new producer instance.
* createConsumer () —factory method to create a new event-driven

consumer instance. The processor argument is a reference to the first
processor in the route.

* createPollingConsumer () —factory method to create a new polling
consumer instance.

In order to avoid unnecessary overheads, it is a good idea to create just a
single endpoint instance for all endpoints that have the same URI (within a
CamelContext). You can enforce this condition by implementing
isSingleton () to return true.

@ Note

In this context, same UR/ means that two URIs are the same when
compared using string equality. In principle, it is possible to have
two URIs that are equivalent, though represented by different strings.
In that case, the URIs would be treated as not the same.

Implementing the Endpoint Interface

Implementing the Endpoint Interface

Alternative ways of implementing
an endpoint

The following alternative endpoint implementation patterns are supported:
¢ Event-driven endpoint implementation on page 85
* Scheduled poll endpoint implementation on page 87

¢ Polling endpoint implementation on page 89

Event-driven endpoint

implementation If your custom endpoint conforms to the event-driven pattern (see Consumer

Patterns on page 56), implement it by inheriting from the abstract class,
org.apache.camel.impl.DefaultEndpoint, as shown in

Example 17 on page 85.

Example 17. Implementing DefaultEndpoint

// Java
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;

public class CustomEndpoint extends DefaultEndpoint<CustomEx
change> { ©

public CustomEndpoint (String endpointUri, Component compon
ent) { ®
super (endpointUri, component) ;
// Do any other initialization...

public Producer createProducer () throws Exception { ©
return new CustomProducer (this);

}
public Consumer createConsumer (Processor processor) throws

Exception { @
return new CustomConsumer (this, processor);

85

Endpoint Interface

86

}

public boolean isSingleton () {
return true;

}

// Implement the following two methods, only if you need
a custom exchange class.
//
public CustomExchange createExchange() { ©
return new CustomExchange (getContext (), getExchangePat
tern());

}

public CustomExchange createExchange (ExchangePattern pat
tern) {
return new CustomExchange (getContext (), pattern);

©® Implement an event-driven custom endpoint, customEndpoint, by
extending the pefaultEndpoint class.

® You need to have at least one constructor that takes the endpoint URI,
endpointUri, and the parent component reference, component, as

arguments.
® Implement the createProducer () factory method, in order to create

a producer endpoint.
® Implement the createConsumer () factory method, in order to create

an event-driven consumer instance. Do not override the
createPollingConsumer()IﬂethOd.

® |If you intend to customize the exchange implementation, you should
override the createExchange () and

createExchange (ExchangePattern) methods, to ensure that the

correct exchange type is created. If you do not override these methods,
the implementations inherited from pDefaultEndpoint will create a

DefaultExchange instance by default.

The pefaultEndpoint class provides default implementations of the following

methods, which you might find useful when writing your custom endpoint
code:

* getEndpointUri ()—returns the endpoint URI.

Scheduled poll endpoint
implementation

Implementing the Endpoint Interface

getContext () —returns a reference to the camelcontext.
getComponent () —returns a reference to the parent component.

getExecutorService () —return a reference to a scheduled executor

service (of java.util.concurrent.ScheduledExecutorService type).

createPollingConsumer () —Creates a polling consumer, whose

functionality is based on the event-driven consumer. In other words, if you
override the event-driven consumer method, createConsumer (), you get

a polling consumer implementation for free.

createExchange (Exchange e)—converts the given exchange object, e,

to the type required for this endpoint. This method creates a new endpoint
using the overridden createExchange () endpoints, which ensures that

the method also works for custom exchange types.

If your custom endpoint conforms to the scheduled poll pattern (seeConsumer
Patterns on page 56), implement it by inheriting from the abstract class,
org.apache.camel.impl.ScheduledPollEndpoint, as shown in

Example 18 on page 87.

Example 18. ScheduledPollEndpoint Implementation

// Java

import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

apache.
apache.
apache.
apache.
apache.
apache.

camel.
camel.
camel.
camel.
camel.
camel.

Consumer;

Processor;

Producer;

ExchangePattern;

Message;
impl.ScheduledPollEndpoint;

public class CustomEndpoint extends ScheduledPollEndpoint<Cus
tomExchange> { @

protected CustomEndpoint (String endpointUri, CustomComponent

component)

}

{ ®

super (endpointUri, component) ;
// Do any other initialization...

public Producer<CustomExchange> createProducer () throws

87

Endpoint Interface

88

Exception { ®

Producer<CustomExchange> result = new CustomProdu

cer(this);

return result;

public Consumer<CustomExchange> createConsumer (Processor

processor) throws Exception { @

Consumer<CustomExchange> result = new CustomConsumer (this,

processor) ;

configureConsumer (result); @
return result;

public boolean isSingleton() {
return true;

// Implement the following two methods, only if you need

a custom exchange class.

//
public CustomExchange createExchange() { @
return new CustomExchange(...);

public CustomExchange createExchange (ExchangePattern pat

tern) {

return new CustomExchange (getContext (), pattern);

Implement a scheduled poll custom endpoint, customEndpoint, by
extending the scheduledPollEndpoint class.

You need to have at least one constructor that takes the endpoint URI,
endpointUri, and the parent component reference, component, as

arguments.
Implement the createProducer () factory method, in order to create

a producer endpoint.
Implement the createconsumer () factory method, in order to create

a scheduled poll consumer instance. Do not override the
createPollingConsumer () method.

The configureConsumer () method (defined in the
ScheduledPollEndpoint base class) is responsible for injecting

Polling endpoint implementation

Implementing the Endpoint Interface

consumer query options into the consumer. See Consumer parameter
injection on page 95.

® If you intend to customize the exchange implementation, you should
override the createExchange () and
createExchange (ExchangePattern) methods, to ensure that the

correct exchange type is created. If you do not override these methods,
the implementations inherited from DefaultEndpoint will create a

DefaultExchange instance by default.

If your custom endpoint conforms to the polling consumer pattern (see
Consumer Patterns on page 56), implement it by inheriting from the abstract
class, org.apache.camel.impl.DefaultPollingEndpoint, as shown in

Example 19 on page 89.

Example 19. DefaultPollingEndpoint Implementation

// Java

import org.apache.camel.Consumer;

import org.apache.camel.Processor;

import org.apache.camel.Producer;

import org.apache.camel.ExchangePattern;

import org.apache.camel.Message;

import org.apache.camel.impl.DefaultPollingEndpoint;

public class CustomEndpoint extends DefaultPollingEndpoint<cCus
tomExchange> {

public PollingConsumer<CustomExchange> createPollingCon
sumer () throws Exception ({
PollingConsumer<CustomExchange> result = new CustomCon
sumer (this) ;
configureConsumer (result) ;
return result;

// Do NOT implement createConsumer (). It is already imple
mented in DefaultPollingEndpoint.

Because this customEndpoint class is a polling endpoint, you must
implement the createPollingConsumer () method instead of the
createConsumer () method. The consumer instance returned from

89

Endpoint Interface

Implementing the
BrowsableEndpoint interface

Example

90

createPollingConsumer () must inherit from the PollingConsumer
interface—for details of how to implement a polling consumer, see Polling
consumer implementation on page 104.

Apart from the implementation of the createPollingConsumer () method,
the steps for implementing a befaultPollingEndpoint are similar to the
steps for implementing a ScheduledPollEndpoint—See

Example 18 on page 87 for details.

If you want to expose the list of exchange instances that are pending in the
current endpoint, you can optionally implement the
org.apache.camel.spi.BrowsableEndpoint interface, as shown in

Example 20 on page 90. It makes sense to implement this interface, if the
endpoint performs some sort of buffering of incoming events. For example,
the Java Router SEDA endpoint implements the BrowsableEndpoint

interface—see Example 21 on page 91.

Example 20. BrowsableEndpoint Interface
// Java
package org.apache.camel.spi;

import java.util.List;

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;

public interface BrowsableEndpoint<T extends Exchange> extends
Endpoint<T> {
List<Exchange> getExchanges () ;

Example 21 on page 91 shows the implementation of sedaEndpoint, which

is taken from the Java Router SEDA component implementation. The SEDA
endpoint is an example of an event-driven endpoint. Incoming events are
stored in a FIFO queue (an instance of
java.util.concurrent.BlockingQueue)and a SEDA consumer starts up

a thread to read and process the events. The events themselves are
represented by org.apache.camel .Exchange oObjects.

Implementing the Endpoint Interface

Example 21. SedaEndpoint Implementation

// Java
package org.

import
import
import
import

import
import
import
import
import
import
import

java.
java.
java.
java.

org.
org.
org.
org.
org.
org.
org.

apache.
apache.
apache.
apache.
apache.
apache.
apache.

camel.
camel.
camel.
camel.
camel.
camel.
camel.

apache.camel.component.seda;

util.ArrayList;
util.List;
util.Map;

util.concurrent.BlockingQueue;

Component;

Consumer;

Exchange;

Processor;

Producer;
impl.DefaultEndpoint;

spi.BrowsableEndpoint;

public class SedaEndpoint extends DefaultEndpoint<Exchange>
implements BrowsableEndpoint<Exchange> { @
private BlockingQueue<Exchange> queue;

public SedaEndpoint (String endpointUri,

ent, BlockingQueue<Exchange> queue) { ©®
super (endpointUri, component) ;
this.queue = queue;

public SedaEndpoint (String uri,

Map parameters)

thi

meters)) ;

}

public Producer createProducer ()
return new CollectionProducer (this,

s (uri,

{ ®

component,

Component compon

SedaComponent component,

component.createQueue (uri, para

throws Exception { @
getQueue ()) ;

public Consumer createConsumer (Processor processor) throws

Exception { ®

return new SedaConsumer (this,

public BlockingQueue<Exchange> getQueue ()
return queue;

public boolean isSingleton() { @

processor) ;

{ ©

91

Endpoint Interface

92

return true;

}

public List<Exchange> getExchanges () { ©
return new ArrayList<Exchange> (getQueue()) ;

}

The sedaEndpoint class follows the pattern for implementing an
event-driven endpoint, by extending the befaultEndpoint class. The
SedaEndpoint class also implements the BrowsableEndpoint

interface, which provides access to the list of exchange objects in the
queue.
Following the usual pattern for an event-driven consumer, sedaEndpoint

defines a constructor that takes an endpoint argument, endpointuri,
and a component reference argument, component.

Another constructor is provided, which delegates queue creation to the
parent component instance.
The createProducer () factory method creates an instance of

CollectionProducer, Which is a producer implementation that adds

events to the queue.
The createConsumer () factory method creates an instance of

SedaConsumer (), Which is responsible for pulling events off the queue

and processing them.
The getQueue () method returns a reference to the queue.

The issingleton () method returns true, indicating that just a single

endpoint instance should be created for each unique URI string.
The getExchanges () method implements the corresponding abstract

method from BrowsableEndpoint.

Consumer Interface

This chapter describes in detail how to implement the consumer interface, which is an essential step in the
implementation of a Java Router component.

The ConSUMET INTEITACEiuit e ettt
Implementing the ConsSUMEr INTEIMACEiiiii i aas 1

93

Consumer Interface

The Consumer Interface

Overview

94

An instance of org.apache.camel.Consumer type represents a source

endpoint in a route. There are several different ways of implementing a
consumer (see Consumer Patterns on page 56) and this degree of flexibility
is reflected in the inheritance hierarchy (Figure 14 on page 95), which
includes several different base classes for implementing a consumer.

Figure 14. Consumer Inheritance Hierarchy

The Consumer Interface

Service

A\
A\

:

Consumer

ServiceSupport

A

1

PollingConsumer

A
[

:

[PollingConsumerSupport

N 7
AN A\
JARY S

A

T

ProcessorPollingConsumer

EventDrivenPollingConsumer

DefaultConsumer

Consumer parameter injection

java.lang.Runnable

I

T

ScheduledPollConsumer

T
LA

DefaultScheduledPollConsumer

For consumers that follow the scheduled poll pattern (see Scheduled poll
pattern on page 57), Java Router provides support for injecting parameters
into consumer instances. For example, consider the following endpoint URI
for a component identified by the custom prefix:

custom:destination?consumer.myConsumerParam

Java Router provides support for automatically injecting query options of the
form consumer. *. For the consumer .myConsumerParam parameter, you

95

Consumer Interface

96

would need to define corresponding setter and getter methods on the
Consumer implementation class, as follows:

// Java
public class CustomConsumer<E extends Exchange> extends Sched
uledPollConsumer<kE> {

String getMyConsumerParam() { ... }
void setMyConsumerParam(String s) { ... }

Where the getter and setter methods follow the usual Java bean conventions
(including capitalizing the first letter of the property name).

In addition to defining the bean methods in your Consumer implementation,
you must also remember to call the configureConsumer () method in the

implementation of Endpoint.createConsumer () (see Scheduled poll

endpoint implementation on page 87). For example, here is an example of a
createConsumer () method implementation, taken from the FileEndpoint

class in the file component:

// Java

public class FileEndpoint extends ScheduledPollEndpoint<FileEx
change> {

public Consumer<FileExchange> createConsumer (Processor
processor) throws Exception {
Consumer<FileExchange> result = new FileConsumer (this,
processor) ;
configureConsumer (result) ;
return result;

At run time, consumer parameter injection works as follows:

1. When the endpoint is created, the default implementation of
DefaultComponent.createEndpoint (String uri) parses the URI to

extract the consumer parameters and stores them in the endpoint instance
by calling scheduledPollEndpoint.configureProperties ().

The Consumer Interface

2. When createConsumer () is called, the method implementation calls

configureConsumer () in order to inject the consumer parameters (see

preceding Java example).

3. The configureConsumer () method uses Java reflection to call the setter

methods whose names match the relevant options, after the consumer.

prefix has been stripped off.

Scheduled poll parameters

A consumer that follows the scheduled poll pattern automatically supports

the consumer parameters shown in Table 1 on page 97 (which can appear
as query options in the endpoint URI).

Table 1. Scheduled Poll Parameters

Name Default |Description

initialDelay [1000 Delay, in milliseconds, before the first poll.

delay 500 Depends on the value of the useFixedbelay
flag (time unit is milliseconds).

useFixedDelay |false |If false, the delay parameter is interpreted

as the polling periodicity. That is, polls will
occur at initialDelay,

initialDelay+delay,

initialDelay+2*delay, and so on.

If true, the delay parameter is interpreted as

the time elapsed between the previous
execution and the next execution. That is, polls
will occur at initialbDelay,

initialDelay+ [ProcessingTime] +delay, and
so on. Where ProcessingTime is the time

taken to process an exchange object in the
current thread.

Converting between event-driven
and polling consumers

Java Router provides two special consumer implementations, which can be
used to convert back and forth between an event-driven consumer and a

polling consumer. The following conversion classes are provided:

97

Consumer Interface

98

® org.apache.camel.impl.EventDrivenPollingConsumer—Cconverts

an event-driven consumer into a polling consumer instance.

® org.apache.camel.impl.DefaultScheduledPollConsumer—Converts
a polling consumer into an event-driven consumer instance.

In practice, these classes are used to simplify the task of implementing an
Endpoint type. The Endpoint interface defines the following two methods

for creating a consumer instance:

// Java
package org.apache.camel;

public interface Endpoint<E extends Exchange> {

Consumer<E> createConsumer (Processor processor) throws
Exception;

PollingConsumer<E> createPollingConsumer () throws Excep
tion;

}

Where createConsumer () returns an event-driven consumer and
createPollingConsumer () returns a polling consumer. Normally, you would

implement only one or other of these methods. For example, if you are
following the event-driven pattern for your consumer, you would implement
the createconsumer () method. But what about the other consumer creation

method? One possibility would be to provide a method implementation that
simply raises an exception. With the help of the conversion classes, however,
Java Router is able to provide a more useful default implementation.

For example, assume you want to implement your consumer according to the
event-driven pattern. In this case, you would implement the endpoint by
extending pefaultEndpoint and implementing the createConsumer ()

method. The implementation of createPollingConsumer () is inherited
from pefaultEndpoint, where it is defined as follows:

// Java
public PollingConsumer<E> createPollingConsumer () throws Ex
ception {

return new EventDrivenPollingConsumer<E> (this);

}

The Consumer Interface

The EventDrivenPollingConsumer constructor takes a reference to the
event-driven consumer, this, effectively wrapping it and converting it into a

polling consumer. To implement the conversion, the
EventDrivenPollingConsumer instance buffers incoming events and makes

them available on demand through the receive (), receive (long

timeout), and receiveNoWait () methods.

Analogously, if you are implementing your consumer according to the polling
pattern, you would implement the endpoint by extending
DefaultPollingEndpoint and implementing the

createPollingConsumer () method. In this case, the implementation of

the createConsumer () method is inherited from DefaultPollingEndpoint
and the default implementation returns a befaultScheduledPollConsumer
instance (which converts the polling consumer into an event-driven consumer).

99

Consumer Interface

Implementing the Consumer Interface

Alternative ways of implementing
a consumer

Event-driven consumer
implementation

100

You can implement a consumer in one of the following ways:
* Event-driven consumer implementation on page 100
* Scheduled poll consumer implementation on page 102

* Polling consumer implementation on page 104

In an event-driven consumer, processing is driven explicitly by external events.
The events are normally received through an event-listener interface, where
the listener interface is specific to the particular event source.

Example 22 on page 100 shows the implementation of the JMxConsumer

class, which is taken from the Java Router JMX component implementation.
The JMxConsumer class is an example of an event-driven consumer, which

is implemented by inheriting from the
org.apache.camel.impl.DefaultConsumer class. In the case of the

JMxConsumer example, events are represented by calls on the
NotificationListener.handleNotification () method, which is a

standard way of receiving JMX events. In order to receive these JMX events,
it is therefore necessary to implement the NotificationListener interface

and override the handleNotification () method, as shown in
Example 22 on page 100.

Example 22. JMXConsumer Implementation

// Java
package org.apache.camel.component.jmx;

import javax.management.Notification;

import javax.management.NotificationListener;
import org.apache.camel.Processor;

import org.apache.camel.impl.DefaultConsumer;

public class JMXConsumer extends DefaultConsumer implements
NotificationListener { @

JMXEndpoint jmxEndpoint;

Implementing the Consumer Interface

public JMXConsumer (JMXEndpoint endpoint, Processor pro
cessor) { @
super (endpoint, processor);
this.jmxEndpoint = endpoint;

}

public void handleNotification (Notification notification,
Object handback) { ®

try {
getProcessor () .process (jmxEndpoint.createEx
change (notification)); @

} catch (Throwable e) {
handleException(e); ©

©® The Juxconsumer pattern follows the usual pattern for event-driven
consumers by extending the befaultConsumer class. Additionally,

because this consumer is designed to receive events from JMX (which
are represented by JMX notifications), it is necessary to implement the
NotificationListener interface.

® You must implement at least one constructor that takes a reference to
the parent endpoint, endpoint, and a reference to the next processor

in the chain, processor, as arguments.
® The handleNotification () method (which is defined in
NotificationListener) is automatically invoked by JMX whenever

a JMX notification arrives. The body of this method should contain the
code that performs the consumer's event processing. Because the
handleNotification () call originates from the JMX layer, it follows

that the consumer's threading model is implicitly controlled by the JMX
layer, not by the JMxcConsumer class.

@ Note

The handleNotification () method is specific to the JMX

example. When implementing your own event-driven consumer,
you will need to identify an analogous event listener method to
implement in your custom consumer.

® This line of code combines two steps. First of all, the JMX notification
object is converted into an exchange object, which is the generic

101

Consumer Interface

Scheduled poll consumer
implementation

102

representation of an event in Java Router. The newly created exchange
object is then passed to the next processor in the route (invoked
synchronously).

® The handleException () method is implemented by the

DefaultConsumer base class. By default, it handles exceptions using

the org.apache.camel.impl.LoggingExceptionHandler class.

In a scheduled poll consumer, polling events are automatically generated by
a timer class, java.util.concurrent.ScheduledExecutorService. 10

receive the generated polling events, you must implement the
ScheduledPollConsumer.poll () method (see Consumer

Patterns on page 56).

Example 23 on page 102 outlines how to implement a consumer that follows
the scheduled poll pattern, which is implemented by extending the
ScheduledPollConsumer Class.

Example 23. ScheduledPollConsumer Implementation

// Java
import java.util.concurrent.ScheduledExecutorService;

import org.apache.camel.Consumer;

import org.apache.camel.Endpoint;

import org.apache.camel.Exchange;

import org.apache.camel.Message;

import org.apache.camel.PollingConsumer;
import org.apache.camel.Processor;

import org.apache.camel.impl.ScheduledPollConsumer;

public class CustomConsumer<E extends Exchange> extends Sched
uledPollConsumer<E> { @
private final CustomEndpoint endpoint;

public CustomConsumer (CustomEndpoint endpoint, Processor
processor) { @
super (endpoint, processor);
this.endpoint = endpoint;

protected void poll () throws Exception { ©
E exchange = /* Receive exchange object ... */;

Implementing the Consumer Interface

// Example of a synchronous processor.
getProcessor () .process (exchange); @

@Override
protected void doStart () throws Exception { @&
// Pre-Start:
// Place code here to execute just before start of
processing.
super.doStart () ;
// Post-Start:
// Place code here to execute just after start of
processing.

}

@Override
protected void doStop() throws Exception { @®
// Pre-Stop:
// Place code here to execute just before processing

stops.

super.doStop () ;

// Post-Stop:

// Place code here to execute just after processing
stops.

©® Implement a scheduled poll consumer class, customConsumer, by
extending the org.apache.camel.impl.ScheduledPollConsumer

class.
® You must implement at least one constructor that takes a reference to
the parent endpoint, endpoint, and a reference to the next processor

in the chain, processor, as arguments.
® Override the po11 () method in order to receive the scheduled polling

events. This is where you should put the code that retrieves and
processes incoming events (represented by exchange objects).

® In this example, the event is processed synchronously. If you want to
process events asynchronously, you should use a reference to an
asynchronous processor instead, by calling getAsyncProcessor (). For

details of how to process events asynchronously, see Asynchronous
Processing on page 60.

® (Optional) If you want some lines of code to execute as the consumer
is starting up, override the dostart () method as shown.

103

Consumer Interface

® (Optional) If you want some lines of code to execute as the consumer
is stopping, override the dostop () method as shown.

Polling consumer implementation Example 24 on page 104 outlines how to implement a consumer that follows

the polling pattern, which is implemented by extending the
PollingConsumerSupport class

Example 24. PollingConsumerSupport Implementation

// Java

import org.apache.camel.Exchange;

import org.apache.camel.RuntimeCamelException;
import org.apache.camel.impl.PollingConsumerSupport;

public class CustomConsumer extends PollingConsumerSupport {
(L

private final CustomEndpoint endpoint;
public CustomConsumer (CustomEndpoint endpoint) { @

super (endpoint) ;
this.endpoint = endpoint;

public Exchange receiveNoWait () { ®
Exchange exchange = /* Obtain an exchange object. */;
// Further processing

return exchange;

public Exchange receive() { @
// Blocking poll

public Exchange receive (long timeout) { @
// Poll with timeout

protected void doStart() throws Exception { @
// Code to execute whilst starting up.

protected void doStop () throws Exception {
// Code to execute whilst shutting down.

104

Implementing the Consumer Interface

Implement your polling consumer class, customConsumer, by extending
the org.apache.camel.impl.PollingConsumerSupport Class.

You must implement at least one constructor that takes a reference to
the parent endpoint, endpoint, as an argument. A polling consumer

does not need a reference to a processor instance.
The receiveNowait () method should implement a non-blocking

algorithm for retrieving an event (exchange object). If no event is
available, return nul1.

The receive () method should implement a blocking algorithm for

retrieving an event. This method can block indefinitely, if events remain
unavailable.
The receive (long timeout) method implements an algorithm that

can block for as long as the specified timeout (typically specified in units
of milliseconds).

If you want to insert code that executes while a consumer is starting up
or shutting down, implement the dostart () method and the doStop ()

method, respectively.

105

106

Producer Interface

This chapter describes in detail how to implement the producer interface, which is an essential step in the
implementation of a Java Router component.

The ProduCEr INTEITACE ... e ettt enenae 108
Implementing the Producer INTerfaceoo.veiniii e 111

107

Producer Interface

The Producer Interface

Overview

The Producer interface

108

An instance of org.apache.camel.Producer type represents a target

endpoint in a route. The role of the producer is to send requests (/n messages)
to a specific physical endpoint and to receive the corresponding response
(Out or Fault message). A producer object is essentially a special kind of

Processor that appears at the end of a processor chain (equivalent to a
route). Figure 15 on page 108 shows the inheritance hierarchy for producers.

Figure 15. Producer Inheritance Hierarchy

Processor e Service
Producer) ServiceSupport
—
DefaultProducer

Example 25 on page 108 shows the definition of the
org.apache.camel.Producerinteﬁace

Example 25. Producer Interface

// Java
package org.apache.camel;

public interface Producer<E extends Exchange> extends Pro
cessor, Service {

Endpoint<E> getEndpoint () ;
E createExchange () ;

E createExchange (ExchangePattern pattern) ;

Producer methods

Asynchronous processing

The Producer Interface

E createExchange (E exchange) ;

The producer interface defines the following methods:

* process () (inherited from Processor)—is the most important method. A

producer is essentially a special type of processor that happens to send a
request to an endpoint, instead of forwarding the exchange object to another
processor. By overriding the process () method, you define how the

producer sends and receives messages to and from the relevant endpoint.

* getEndpoint ()—return a reference to the parent endpoint instance.

* createExchange () —these overloaded methods are analogous to the
corresponding methods defined in the Endpoint interface. Normally, these

methods just delegate to the corresponding methods defined on the parent
Endpoint instance (this is what the DefaultEndpoint class does by

default). Occasionally, you might need to override these methods.

Processing an exchange object in a producer—which usually involves sending
a message to a remote destination and waiting for a reply—can potentially
block for a significant length of time. If you want to avoid blocking the current
thread, you could opt to implement the producer as an asynchronous
processor. The asynchronous processing pattern decouples the preceding
processor from the producer, so that the process () method returns without

delay—see Asynchronous Processing on page 60.
When implementing a producer, you can support the asynchronous processing
model by implementing the org.apache.camel.AsyncProcessor interface.

On its own, this is not enough to ensure that the asynchronous processing
model will be used: it is also necessary for the preceding processor in the
chain to call the asynchronous version of the process () method. The

definition of the AsyncProcessor interface is shown in
Example 26 on page 109.

Example 26. AsyncProcessor Interface

// Java
package org.apache.camel;

109

Producer Interface

ExchangeHelper class

110

public interface AsyncProcessor extends Processor {
boolean process (Exchange exchange, AsyncCallback callback);

}

Where the asynchronous version of the process () method takes an extra
argument, callback, of org.apache.camel.AsyncCallback type. The
corresponding AsyncCallback interface is defined as shown in

Example 27 on page 110.

Example 27. AsyncCallback Interface
// Java

package org.apache.camel;

public interface AsyncCallback {
void done (boolean doneSynchronously) ;

}

The caller of AsyncProcessor.process () must provide an implementation
of AsyncCallback to receive the notification that processing has finished.
The asyncCallback.done () method takes a boolean argument that indicates

whether the processing was performed synchronously or not. Normally, the
flag would be false, to indicate asynchronous processing. In some cases,

however, it can make sense for the producer not to process asynchronously
(in spite of being asked to do so). For example, if the producer knows that
the processing of the exchange will complete rapidly, it could optimise the
processing by doing it synchronously. In this case, the doneSynchronously

flag should be set to true.

When implementing a producer, you might find it helpful to call some of the
methods in the org.apache.camel.util.ExchangeHelper utility class.

For full details of the ExchangeHelper class, see The ExchangeHelper
Class on page 37.

Implementing the Producer Interface

Implementing the Producer Interface

Alternative ways of implementing
a producer

You can implement a producer in one of the following ways:
* How to implement a synchronous producer on page 111.

* How to implement an asynchronous producer on page 112.

How to implement a synchronous

producer Example 28 on page 111 outlines how to implement a synchronous producer.

In this case, call to Producer.process () blocks until a reply (either an Out
message or a Fault message) has been received.

Example 28. DefaultProducer Implementation

// Java

import org.apache.camel.Endpoint;

import org.apache.camel.Exchange;

import org.apache.camel.Producer;

import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer { ©

public CustomProducer (Endpoint endpoint) { @
super (endpoint) ;
// Perform other initialization tasks...

public void process (Exchange exchange) throws Exception
{ ®
// Process exchange synchronously.

//

® Implement a custom synchronous producer class, customProducer,
by extending the org.apache.camel.impl.DefaultProducer class.

® Implement a constructor that takes a reference to the parent endpoint.

® The process () method implementation represents the core of the
producer code. The implementation of the process () method is entirely

dependent on the type of component that you are implementing. In
outline, the process () method is normally implemented as follows:

111

Producer Interface

* |f the exchange contains an /n message and if this is consistent with
the specified exchange pattern, send the /n message to the designated
endpoint.

If the exchange pattern anticipates the receipt of an Out message or
a Fault message, wait until the Out message or the Fault message
has been received. This typically causes the process () method to

block for a significant length of time.

When a reply is received, call exchange.setOut () or

exchange.setFault () to attach the reply to the exchange object

and then return.

How to implement an
asynchronous producer

Example 29 on page 112 outlines how to implement an asynchronous
producer. In this case, you must implement both a synchronous process ()

method and an asynchronous process () method (which takes an additional

AsyncCallback argument).

Example 29. CollectionProducer Implementation

// Java

import
import
import
import
import
import

org.

org

org.

org

org.
org.

apache.
.apache.
apache.
.apache.
apache.
apache.

camel.
camel.
camel.
camel.
camel.
camel.

AsyncCallback;
AsyncProcessor;
Endpoint;

Exchange;

Producer;
impl.DefaultProducer;

public class CustomProducer extends DefaultProducer implements

AsyncProcessor { @

public CustomProducer (Endpoint endpoint) { @
super (endpoint) ;

}

//

public void process (Exchange exchange) throws Exception

{ ®

// Process exchange synchronously.

//

public boolean process (Exchange exchange, AsyncCallback

112

Implementing the Producer Interface

callback) { @
// Process exchange asynchronously.
CustomProducerTask task = new CustomProducerTask (exchange,
callback);
// Process 'task' in a separate thread...
//

return false; ®

public class CustomProducerTask implements Runnable { O
private Exchange exchange;
private AsyncCallback callback;

public CustomProducerTask (Exchange exchange, AsyncCallback
callback) {
this.exchange = exchange;
this.callback = callback;

public void run() { @
// Process exchange.
//
callback.done (false) ;

©® Implement a custom asynchronous producer class, customProducer,
by extending the org.apache.camel.impl.DefaultProducer class
and implementing the AsyncpProcessor interface.

® Implement a constructor that takes a reference to the parent endpoint.

® Implement the synchronous process () method.

® Implement the asynchronous process () method. You can implement

the asynchronous method in a variety of ways. The approach shown
here is to create a java.lang.Runnable instance, task, that represents

the code that runs in a sub-thread. You then use the Java threading API
to run the task in a sub-thread (for example, by creating a new thread
or by allocating the task to an existing thread pool).

® Normally, you would return false from the asynchronous process ()

method, to indicate that the exchange was processed asynchronously.
® The customProducerTask class encapsulates the processing code that

runs in a sub-thread. This class must store a copy of the Exchange

113

Producer Interface

114

object, exchange, and the AsyncCallback object, callback, as private

member variables.
The run () method contains the code that sends the /n message to the

producer endpoint and waits to receive the reply, if any. After receiving
the reply (Out message or Fault message) and inserting it into the
exchange object, you must then call callback.done () to notify the

caller that processing is complete.

Exchange Interface

This chapter describes in detail how to implement the Exchange interface, which is an optional step in the
implementation of a Java Router component.

The EXChange [N erfate . e ettt
Implementing the EXChange INTEIrfaceo.iuiniii e

115

Exchange Interface

The Exchange Interface

Overview

An instance of org.apache.camel.Exchange type encapsulates all of the

messages belonging to a single message exchange (for example, a typical
synchronous invocation would consist of an /n message and an Out message).
Figure 16 on page 116 shows the inheritance hierarchy for the exchange type.
You do not always need to implement a custom exchange type for a
component. In many cases, the default implementation, befaultExchange,

is adequate.

Figure 16. Exchange Inheritance Hierarchy

Exchange

)
/1

DefaultExchange

The Exchange interface Example 30 on page 116 shows the definition of the

org.apache.camel.Exchange interface

Example 30. Exchange Interface
// Java

package org.apache.camel;
import java.util.Map;

import org.apache.camel.spi.UnitOfWork;

public interface Exchange {
ExchangePattern getPattern();

Object getProperty (String name) ;

<T> T getProperty(String name, Class<T> type);
void setProperty(String name, Object value);
Object removeProperty (String name) ;

Map<String, Object> getProperties();

116

The Exchange Interface

Message getIn();
void setIn(Message 1in);

Message getOut () ;
Message getOut (boolean lazyCreate) ;

void setOut (Message out);

Message getFault();
Message getFault (boolean lazyCreate);

Throwable getException();
void setException (Throwable e);

boolean isFailed();
CamelContext getContext () ;
Exchange newInstance();
Exchange copy () ;

void copyFrom(Exchange source);

UnitOfWork getUnitOfWork () ;
void setUnitOfWork (UnitOfWork unitOfWork) ;

String getExchangeId() ;
void setExchangeId(String id);

Exchange methods The Exchange interface defines the following methods:

* getPattern () —the exchange pattern can be one of the values enumerated
in org.apache.camel .ExchangePattern. The following exchange pattern
values are supported:

InOnly

RobustInOnly

InOut

InOptionalOut

117

Exchange Interface

118

OutOnly

RobustOutOnly

Outln

OutOptionalln

Normally, you specify the exchange pattern value in the constructor of your
custom exchange class.

setProperty (), getProperty (), getProperties|(),
removeProperty () —uUse the property setter and getter methods to
associate named properties with the exchange instance. The properties
consist of miscellaneous metadata that you might need for your custom
exchange implementation.

setIn (), getIn ()—setter and getter methods for the /n message. These
methods are used only for exchange patterns that can have an /n message.

The getIn () implementation provided by the pefaultExchange class
implements lazy creation semantics: if the 7n message is null when
getIn() is called, the DefaultExchange class creates a default /n

message.

setout (), getout () —setter and getter methods for the Out message.
These methods are used only for exchange patterns that can have an Out
message.

There are two varieties of getout () method in the befaultExchange

class:

* getout () with no arguments enables lazy creation of an Out message
(that is, if the current Out message is null, a new message would

automatically be created);

* getoOut (boolean lazyCreate) With a boolean argument triggers lazy
creation, if the argument is true, but otherwise returns the current

(possibly nu11) value.

The Exchange Interface

getFault () —getter message for the fault message. There are two varieties
of getFault () method in the befaultExchange class:

* getFault () with no arguments enables lazy creation of a Fault message;

* getFault (boolean lazyCreate) With a boolean argument triggers
lazy creation, if the argument is true, but otherwise returns the current
(possibly nu11) value.

The DefaultExchange class also defines a setFault () method.

setException (), getException () —getter and setter methods for an
exception object (of Throwable type).

isFailed () —returns true, if the exchange failed either due to an exception
or due to a fault.

getContext () —return a reference to the associated camelcontext
instance.

newInstance ()—create a new exchange instance for the purpose of
copying the current exchange object. For example, in the DefaultExchange
class, the copy () method calls newInstance () to create a new exchange
instance.

copy () —create a new, identical (apart from the exchange ID) copy of the

current custom exchange object. The body and headers of the /In message,
the Out message (if any), and the Fault message (if any) are also copied
by this operation.

copyFrom () —copy the generic contents (apart from the exchange ID) of

the specified generic exchange object, exchange, into the current exchange

instance. Because this method has to be able to copy from any exchange
type, it copies the generic exchange properties, but not the custom
properties. The body and headers of the /n message, the Out message (if
any), and the Fault message (if any) are also copied by this operation.

119

Exchange Interface

* setUnitOfWork (), getUnitOfWork () —getter and setter methods for the
org.apache.camel.spi.UnitOfWork bean property. This property is
needed only for exchanges that can participate in a transaction.

* setExchangeId(), getExchangeId () —getter and setter methods for the

exchange ID. It is an implementation detail, whether or not you need to
use an exchange ID in your custom component.

120

Implementing the Exchange Interface

Implementing the Exchange Interface

How to implement a custom
exchange

Example 31 on page 121 outlines how to implement an exchange by extending
the DefaultExchange class.

Example 31. Custom Exchange Implementation

// Java

import org.apache.camel.CamelContext;

import org.apache.camel.Exchange;

import org.apache.camel.ExchangePattern;
import org.apache.camel.impl.DefaultExchange;

public class CustomExchange extends DefaultExchange { ©

public CustomExchange (CamelContext camelContext, Exchange
Pattern pattern) { ©
super (camelContext, pattern);
// Set other member variables...

public CustomExchange (CamelContext camelContext) { ©
super (camelContext) ;
// Set other member variables...

public CustomExchange (DefaultExchange parent) { @
super (parent) ;
// Set other member variables...

@Override
public Exchange newlInstance() { @
Exchange e = new CustomExchange (this) ;
// Copy custom member variables from current in

stance...

return e;

}

@Override

protected Message createlInMessage() { @
return new CustomMessage() ;

}

@Override

protected Message createOutMessage () {

121

Exchange Interface

122

return new CustomMessage () ;

}

@Override
protected Message createFaultMessage () {
return new CustomMessage () ;

}

@Override

protected void configureMessage (Message message) { @
super.configureMessage (message) ;
// Perform custom message configuration...

Implement a custom exchange class, customExchange, by extending
the org.apache.camel.impl.DefaultExchange class.

You usually need a constructor that lets you specify the exchange pattern
explicitly, as shown here.
This constructor, taking only a came1Context argument, context,

implicitly sets the exchange pattern to Inon1y (defined in the
DefaultExchange constructor).

This constructor copies the exchange pattern and unit of work from the
specified exchange object, parent.

The newInstance () method is called from inside the
DefaultExchange.copy () method. Your customization of the
newInstance () method should focus on copying all of the custom

properties of the current exchange instance into the new exchange
instance. The DefaultExchange.copy () method takes care of copying

the generic exchange properties (by calling copyFrom ()).

(Optional) Needed only if you implement a custom message type. The
createInMessage(),createOutMessage(),and

createFaultMessage () methods are implemented in order to support

lazy message creation when you are using a custom message type,
customMessage. For example, if you want to lazily create an /n message

by calling get1n (), you would implement createInMessage () to
ensure that a message of type, customMessage, is created
(DefaultExchange.getIn () calls createInMessage () to create the
new message).

Example

Implementing the Exchange Interface

@ Inthe body of configureMessage () you can put code to configure all
message types (/n, Out, and Fault). The DefaultExchange class uses
configureMessage () to configure a message whenever you call
setIn(), setOut (), Or setFault () and whenever a message is created
by lazy instantiation.

Example 32 on page 123 shows the implementation of the FileExchange

class, which is taken from the Java Router file component implementation.
The FileExchange implementation is characterised by two things: it has an

additional £i1e property, which references the file containing the /n message,
and the only supported exchange pattern is Tnonly.

Example 32. FileExchange Implementation

// Java
package org.apache.camel.component.file;

import org.apache.camel.CamelContext;

import org.apache.camel.Exchange;

import org.apache.camel.ExchangePattern;
import org.apache.camel.impl.DefaultExchange;

import java.io.File;

public class FileExchange extends DefaultExchange {
private File file;

public FileExchange (CamelContext camelContext, Exchange
Pattern pattern, File file) { @
super (camelContext, pattern);
setIn(new FileMessage (file)) ;
this.file = file;

public FileExchange (DefaultExchange parent, File file) {
(2
super (parent) ;
this.file = file;

public File getFile() { ®
return this.file;

123

Exchange Interface

124

public void setFile(File file) {
this.file = file;
}

public Exchange newlInstance() { @
return new FileExchange (this, getFile());

}

In addition to letting you specify the Camel context, camelContext,
and the exchange pattern, pattern, this constructor also specifies the
custom property, file.

This constructor gets called by the newInstance () method. This

constructor copies the unit of work and the exchange pattern from
parent (implemented by the super-constructor) and initializes the file

property with the specified value.
The getFile () and setFile () methods access the file property,

which represents the file from which the exchange object reads the In
message.
The newInstance () method is overridden, to ensure that the

DefaultExchange.copy () method works properly. In particular, the
form of constructor called here ensures that the fi1e property gets
copied into the new instance.

Message Interface

This chapter describes in detail how to implement the Message interface, which is an optional step in the
implementation of a Java Router component.

The MeSSagE INTEITACEveie i e e aes 126
Implementing the Message INterfaceouiriri i e aanas 129

125

Message Interface

The Message Interface

Overview

The Message interface

126

An instance of org.apache.camel.Message type can represent any kind of

message (/n, Out, or Fault). Figure 17 on page 126 shows the inheritance
hierarchy for the message type. You do not always need to implement a
custom message type for a component. In many cases, the default
implementation, befaultMessage, is adequate.

Figure 17. Message Inheritance Hierarchy

Message

)
/1

DefaultMessage

Example 33 on page 126 shows the definition of the
org.apache.camel.Message interface.

Example 33. Message Interface

// Java
package org.apache.camel;

import java.util.Map;
import java.util.Set;

import javax.activation.DataHandler;
public interface Message {

String getMessageId() ;
void setMessageld(String messageld) ;

Exchange getExchange () ;
Object getHeader (String name) ;

<T> T getHeader (String name, Class<T> type);
void setHeader (String name, Object value);

Message methods

The Message Interface

Object removeHeader (String name) ;
Map<String, Object> getHeaders():;
void setHeaders (Map<String, Object> headers);

Object getBody () ;

<T> T getBody (Class<T> type);

void setBody (Object body) ;

<T> void setBody (Object body, Class<T> type);

DataHandler getAttachment (String id);

Map<String, DataHandler> getAttachments();

Set<String> getAttachmentNames () ;

void removeAttachment (String id);

void addAttachment (String id, DataHandler content);

void setAttachments (Map<String, DataHandler> attachments);

boolean hasAttachments () ;
Message copy();

void copyFrom(Message message) ;

The Message interface defines the following methods:

setMessageId (), getMessageId ()—getter and setter methods for the
message ID. It is an implementation detail, whether or not you need to use
a message ID in your custom component.

getExchange () —treturns a reference to the parent exchange object.

getHeader (), getHeaders (), setHeader (), setHeaders(),
removeHeader () —getter and setter methods for the message headers. In

general, these message headers can be used either to store actual header
data or to store miscellaneous metadata.

getBody (), setBody () —getter and setter methods for the message body.

getAttachment (), getAttachments (), getAttachmentNames (),
removeAttachment (), addAttachment (), setAttachments (),

hasAttachments () —methods to get, set, add, and remove attachments.

127

Message Interface

* copy ()—create a new, identical (including the message ID) copy of the
current custom message object.

* copyFrom ()—copy the complete contents (including the message ID) of
the specified generic message object, message, into the current message

instance. Because this method has to be able to copy from any message
type, it copies the generic message properties, but not the custom
properties.

128

Implementing the Message Interface

Implementing the Message Interface

How to implement a custom
message

Example 34 on page 129 outlines how to implement a message by extending
the DefaultMessage class.

Example 34. Custom Message Implementation

// Java
import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultMessage;

public class CustomMessage extends DefaultMessage { ©

public CustomMessage() { O
// Create message with default properties...

}

@Override
public String toString() { ®
// Return a stringified message...

}

public CustomExchange getExchange() { @
return (CustomExchange)super.getExchange () ;

}

@Override
public CustomMessage newInstance() { ©
return new CustomMessage(...);

}

@Override
protected Object createBody () { @
// Return message body (lazy creation).

}

@Override
protected void populatelInitialHeaders (Map<String, Object>
map) { @
// Initialize headers from underlying message (lazy
creation) .

}

@Override
protected void populateInitialAttachments (Map<String, Da
taHandler> map) { @

129

Message Interface

// Initialize attachments from underlying message
(lazy creation).
}
}

©® Implement a custom message class, customMessage, by extending the
org.apache.camel.impl.DefaultMessage class.

® Typically, you need a default constructor that creates a message with
default properties.
® Override the tostring () method in order to customize message

stringification.

® (Optional) This is a convenient method that returns a reference to the
parent exchange instance, cast to the correct type.

® The newInstance () method is called from inside the

MessageSupport.copy () method. Your customization of the
newInstance () method should focus on copying all of the custom

properties of the current message instance into the new message
instance. The MessageSupport.copy () method takes care of copying

the generic message properties (by calling copyFrom()).

® The createBody () method works in conjunction with the
MessageSupport.getBody () method to implement lazy access to the
message body. By default, the message body is null. It is only when
the application code tries to access the body (by calling getBody ()),
that the body should be created. The MessageSupport.getBody ()
automatically calls createBody (), When the message body is accessed

for the first time.
© ThepopulateInitialHeaders () method works in conjunction with

the header getter and setter methods to implement lazy access to the
message headers. This method should parse the message to extract any
message headers and insert them into the hash map, map. The

populateInitialHeaders () method will automatically be called when

a user attempts to access a header (or headers) for the first time (by
CamnggetHeader(),getHeaders(),setHeader(),Or

setHeaders())
® The populateInitialAttachments () method works in conjunction

with the attachment getter and setter methods to implement lazy access
to the attachments. This method should extract the message attachments

130

Implementing the Message Interface

and insert them into the hash map, map. The
populateInitialAttachments () method will automatically be called

when a user attempts to access an attachment (or attachments) for the
first time (by calling getAttachment (), getAttachments (),

getAttachmentNames(),OraddAttachment())

131

132

	Java Router, Programmer's Guide
	Table of Contents
	Preface
	Open Source Project Resources
	Document Conventions

	Understanding Message Formats
	Exchanges
	Messages
	Built-In Type Converters

	Implementing a Processor
	Processing Models
	Implementing a Simple Processor
	Implementing a Delegate Processor
	Accessing Message Content
	The ExchangeHelper Class

	Type Converters
	Type Converter Architecture
	Implementing a Custom Type Converter

	Implementing a Component
	Component Architecture
	Factory Patterns for a Component
	Using a Component in a Route
	Consumer Patterns
	Asynchronous Processing

	How to Implement a Component
	Auto-Discovery and Configuration
	Setting Up Auto-Discovery
	Configuring a Component

	Component Interface
	The Component Interface
	Implementing the Component Interface

	Endpoint Interface
	The Endpoint Interface
	Implementing the Endpoint Interface

	Consumer Interface
	The Consumer Interface
	Implementing the Consumer Interface

	Producer Interface
	The Producer Interface
	Implementing the Producer Interface

	Exchange Interface
	The Exchange Interface
	Implementing the Exchange Interface

	Message Interface
	The Message Interface
	Implementing the Message Interface

