
Artix ESB Java Runtime
Security Guide

Version 5.5
December 2008

Security Guide
Version 5.5

Publication date 10 Jul 2009
Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
I. Introduction to Security ... 15

Getting Started with Artix Security .. 19
Secure SOAP Demonstration ... 20

Secure Hello World Example ... 21
Client-to-Server Connection .. 24
Server-to-Security Server Connection .. 28
Security Layer ... 33

Debugging with the openssl Utility ... 40
Introduction to the Artix Security Framework ... 47

Artix Security Architecture .. 48
Types of Security Credential .. 49
Protocol Layers ... 51
Security Layer ... 53
Using Multiple Bindings .. 54

Security for HTTP-Compatible Bindings .. 55
Overview of HTTP Security ... 56
Securing HTTP Communications with TLS ... 59
X.509 Certificate-Based Authentication ... 67

Security for CORBA Bindings ... 73
Overview of CORBA Security .. 74
Securing IIOP Communications with SSL/TLS ... 75

II. TLS Security Layer .. 81
Managing Certificates ... 85

What are X.509 Certificates? .. 86
Certification Authorities ... 88

Choice of CAs ... 89
Commercial Certification Authorities ... 90
Private Certification Authorities ... 91

Certificate Chaining .. 92
PKCS#12 Files ... 94
Special Requirements on HTTPS Certificates .. 96
Creating Your Own Certificates .. 99

Prerequisites ... 100
Set Up Your Own CA ... 101
Use the CA to Create Signed Certificates in a Java Keystore 105
Use the CA to Create Signed PKCS#12 Certificates .. 108

Generating a Certificate Revocation List ... 114
Configuring HTTPS and IIOP/TLS .. 117

Authentication Alternatives ... 118
Target-Only Authentication ... 119
Mutual Authentication ... 122

3

Specifying Trusted CA Certificates .. 125
When to Deploy Trusted CA Certificates ... 126
Specifying Trusted CA Certificates for HTTPS .. 127
Specifying Trusted CA Certificates for IIOP/TLS .. 129

Specifying an Application’s Own Certificate ... 131
Deploying Own Certificate for HTTPS .. 132
Deploying Own Certificate for IIOP/TLS .. 134

Specifying a Certificate Revocation List .. 136
Configuring HTTPS Cipher Suites .. 139

Supported Cipher Suites .. 140
Cipher Suite Filters ... 142
SSL/TLS Protocol Version ... 145

III. The Artix Security Service ... 147
Configuring Servers to Support Authentication ... 151

Connecting to the Artix Security Service ... 152
Configuring Authentication Using WS-Policy ... 153

Introduction to WS-Policy ... 154
Policy Expressions .. 157
ISFAuthenticationPolicy Policy ... 162
ACLAuthorizationPolicy Policy ... 165

Configuring Authentication—Old Method ... 167
Managing Users, Roles and Domains ... 175

Introduction to Domains and Realms .. 176
Artix Authentication Domains .. 177
Artix Authorization Realms ... 180

Managing a File Authentication Domain ... 184
Managing an LDAP Authentication Domain .. 189

Managing Access Control Lists .. 191
Overview of Artix ACL Files ... 192
ACL File Format ... 193
Generating ACL Files ... 196
Deploying ACL Files .. 199

Configuring the Artix Security Service .. 201
Configuring the Security Service ... 202
Configuring the File Adapter .. 209
Configuring the LDAP Adapter ... 211
Configuring the Kerberos Adapter ... 215

Overview of Kerberos Configuration .. 216
Configuring the Adapter Properties ... 218
Configuring JAAS Login Properties .. 221

Clustering and Federation ... 225
Federating the Artix Security Service ... 226

IV. Artix Security Features ... 231
Single Sign-On .. 235

4

SSO and the Login Service ... 236
Username/Password-Based SSO for SOAP Bindings .. 238

WS-Trust ... 251
Introduction to WS-Trust .. 252
WS-Trust Single Sign-On Demonstration ... 256

WS-Trust Example with Signed SAML Tokens .. 257
Security Token Service Configuration ... 262
Client Configuration .. 273
Server Configuration ... 278

Java Router Security .. 285
Credentials Propagation Architecture ... 286
The Credentials Propagation Mapper ... 288
Mapping from HTTP/BA to WS-Security Credentials .. 292

HTTP/BA to WS-Security Router Example .. 293
HTTP/BA to WS-Security Router Configuration .. 295

Mapping from HTTP/BA to SSO Token ... 300
HTTP/BA to SSO Token Router Example .. 301
HTTP/BA to SSO Token Router Configuration .. 303

V. Programming Security ... 309
Programming Authentication .. 313

The Security Credentials Model ... 314
Creating and Sending Credentials ... 321
Retrieving Received Credentials ... 327
Password Digests in UsernameToken Credentials ... 334
Endorsements ... 340

Developing an iSF Adapter .. 343
iSF Security Architecture .. 344
iSF Server Module Deployment Options ... 347
iSF Adapter Overview .. 349
Implementing the IS2Adapter Interface .. 350
Deploying the Adapter ... 359

Configuring iSF to Load the Adapter .. 360
Setting the Adapter Properties ... 361
Loading the Adapter Class and Associated Resource Files 362

A. ASN.1 and Distinguished Names ... 365
ASN.1 ... 366
Distinguished Names .. 367

B. iSF Configuration ... 371
Properties File Syntax .. 372
iSF Properties File .. 374
Cluster Properties File ... 398
log4j Properties File .. 401

C. Action-Role Mapping XML Schema .. 405
D. Configuring the Java Runtime CORBA Binding ... 411

5

Java Runtime CORBA Binding Architecture .. 412
Bootstrapping the Configuration ... 414

E. OpenSSL Utilities .. 417
Using OpenSSL Utilities ... 418

Utilities Overview ... 419
The x509 Utility .. 421
The req Utility ... 423
The rsa Utility ... 425
The ca Utility .. 427
The s_client Utility ... 429
The s_server Utility .. 432

The OpenSSL Configuration File ... 435
Configuration Overview .. 436
[req] Variables ... 437
[ca] Variables .. 438
[policy] Variables ... 439
Example openssl.cnf File .. 440

F. Licenses ... 443
OpenSSL License ... 444

Index .. 447

6

List of Figures
1. Overview of the Secure HelloWorld Example 21
2. A HTTPS Connection in the HelloWorld Example 24
3. HTTPS Connection to the Artix Security Service 28
4. The Security Layer in the HelloWorld Example 33
5. Protocol Layers in a HTTP-Compatible Binding 51
6. Protocol Layers in a SOAP Binding ... 52
7. Protocol Layers in a CORBA Binding ... 52
8. Example of an Application with Multiple Bindings 54
9. HTTP-Compatible Binding Security Layers 56
10. Overview of Certificate-Based Authentication with HTTPS—Java
Runtime .. 68
11. A Certificate Chain of Depth 2 ... 92
12. A Certificate Chain of Depth 3 ... 93
13. Elements in a PKCS#12 File .. 94
14. Target Authentication Only .. 119
15. Mutual Authentication ... 122
16. Overview of Connecting to the Security Service 152
17. Configuring Authentication and Authorization in an Artix
Server ... 167
18. Architecture of an Artix authentication domain 177
19. Server View of Artix authorization realms 181
20. Role View of Artix authorization realms 182
21. Assignment of Realms and Roles to Users Janet and John 183
22. Locally Deployed Action-Role Mapping ACL File 192
23. An iSF Federation Scenario ... 227
24. Client Requesting an SSO Token from the Login Service 236
25. Overview of Username/Password Authentication without SSO 238
26. Overview of Username/Password Authentication with SSO 239
27. WS-Trust Architecture .. 253
28. WS-Trust Single Sign-On Scenario .. 257
29. Java Router Credentials Propagation Architecture 286
30. HTTP/BA to WS-Security Router Example 293
31. HTTP/BA to SSO Token Router Example 301
32. Artix Credential API .. 316
33. Multiple Credentials in an OutCredentialsMap 319
34. Multiple Credentials in an InCredentialsMap 320
35. Overview of the Artix Security Service 344
36. iSF Server Module Deployed as a CORBA Service 347
37. iSF Server Module Deployed as a Java Library 348
D.1. Java Runtime CORBA Binding Architecture 412

7

8

List of Tables
1. Namespaces Used for Configuring Cipher Suite Filters 142
2. SSL/TLS Protocols Supported by SUN’s JSSE Provider 145
3. Combinations of Security Protocol and Credential Type 163
4. Combinations of Security Protocol and Credential Type 288
5. Combinations of Security Protocol and Credential Type 315
6. Parameters for createOutCredential() 321
A.1. Commonly Used Attribute Types .. 368

9

10

List of Examples
1. Client HTTPS Configuration .. 25
2. Server HTTPS Configuration ... 26
3. Server’s HTTPS Link to the Security Service 29
4. Artix Security Service HTTPS Configuration 31
5. Security Service Configuration ... 34
6. User Data from the userdb.xml File .. 36
7. Security Layer Settings from the server.xml File 37
8. Action-Role Mapping file for the HelloWorld Demonstration 39
9. Sample HTTPS Client with No Certificate 61
10. Sample HTTPS Client with Certificate 62
11. Sample HTTPS Server Configuration 64
12. Credential Authentication Element in a Server 70
13. Sample SSL/TLS Client Configuration 75
14. Sample SSL/TLS Server Configuration 78
15. Configuration of a CRL ... 136
16. Structure of a sec:cipherSuitesFilter Element 142
17. Sample Policy Expression ... 159
18. The Empty Policy ... 160
19. The Null Policy .. 160
20. Normal Form Syntax ... 161
21. Sample ISFAuthenticationPolicy Policy 162
22. Authentication Policy with Specified Domain 163
23. Sample ACLAuthorizationPolicy Policy 165
24. Sample ACL File .. 167
25. Credential Authentication Element in a Server 168
26. TLSAuthServerConfig Element ... 171
27. HTTPBAServerConfig Element ... 172
28. WSSUsernameTokenAuthServerConfig Element 172
29. WSSBinarySecurityTokenAuthServerConfig Element 173
30. WSSX509CertificateAuthServerConfig Element 173
31. Enabling WSS UsernameToken Authentication 174
32. Sample User Database File for an iSF File Domain 184
33. File Adapter Entry for Certificate-Based Authentication 186
34. Sample WSDL for the ACL Example 193
35. Artix Action-Role Mapping Example 193
36. Wildcard Mechanism in an Access Control List 195
37. ACL File Generated from HelloWorld WSDL Contract 198
38. Sample Security Service Configuration 202
39. Configuring Multiple iSF Adapters in the Security Service 207
40. Sample File Adapter Configuration .. 209
41. A Sample LDAP Adapter Configuration 211

11

42. Sample Kerberos Configuration .. 218
43. Configuration to Enable Connection Validation 219
44. Configuration to Enable Logging Support 220
45. JAAS Login Configuration File Format 221
46. Sample jaas.conf File for the Kerberos Login Module 223
47. Client Configuration for Username/Password-based SSO 239
48. Target Configuration for SSO Authentication 241
49. Artix Login Service Configuration .. 244
50. Issue Binding WSDL Contract .. 264
51. StsServer Element .. 265
52. SAMLTokenCreationParams Element 266
53. IssueBindingParams Element .. 266
54. ValidateBindingParams Element ... 268
55. Issue Binding JAX-WS Endpoint ... 268
56. iSF Adapter Configuration ... 272
57. Enabling STS Login ... 273
58. Connection to STS Issue Binding .. 275
59. Sample SAML Assertion Validation Policy 278
60. Server Configuration for WS-Trust SSO 280
61. Sample CredentialsPropagationMapper Configuration 289
62. HTTP/BA to WS-Security Router Configuration 295
63. HTTP/BA to SSO Token Router Configuration 303
64. Login Service WSDL ... 308
65. Credential Interface ... 316
66. OutCredential Interface .. 316
67. InCredential Interface .. 317
68. CredentialsManager Interface .. 317
69. The createOutCredential() Method .. 321
70. Setting Global Default Credentials .. 322
71. Setting Thread Default Credentials .. 323
72. Setting Credentials on a Proxy Object 324
73. Example of Sending Credentials from a JAX-WS Client 325
74. The CertificateCredential Interface .. 327
75. The TlsPeerCredential Interface .. 328
76. The UsernamePasswordCredential Interface 328
77. The IonaSSOTokenCredential Interface 329
78. The GssKrb5ApReqTokenCredential Interface 329
79. The SAMLAssertionCredential Interface 329
80. The DerivedCredential Interface ... 330
81. Declaring WebServiceContext in a Service Implementation 330
82. Retrieving an InCredentialsMap Instance 331
83. Creating UsernameToken with a Digest Password 336
84. Accessing Digest Password in a UsernameToken 337
85. Determining the Password Type in a UsernameToken 339

12

86. The InCredentialEndorser Interface 341
87. Sample ISF Adapter Implementation 350
C.1. Action-Role Mapping XML Schema 405
D.1. CORBA Binding Configuration Directory Structure 414
D.2. XML Configuration for Custom CORBA Binding 415

13

14

Part I. Introduction to Security
This part provides an overview of the security architecture in Artix and presents some examples that help you to
get started rapidly with Artix security.

Getting Started with Artix Security .. 19
Secure SOAP Demonstration ... 20

Secure Hello World Example ... 21
Client-to-Server Connection .. 24
Server-to-Security Server Connection .. 28
Security Layer ... 33

Debugging with the openssl Utility ... 40
Introduction to the Artix Security Framework ... 47

Artix Security Architecture .. 48
Types of Security Credential .. 49
Protocol Layers ... 51
Security Layer ... 53
Using Multiple Bindings .. 54

Security for HTTP-Compatible Bindings .. 55
Overview of HTTP Security ... 56
Securing HTTP Communications with TLS ... 59
X.509 Certificate-Based Authentication ... 67

Security for CORBA Bindings ... 73
Overview of CORBA Security .. 74
Securing IIOP Communications with SSL/TLS ... 75

17

18

Getting Started with Artix Security
This chapter introduces features of Artix security by explaining the architecture and configuration of the secure
HelloWorld demonstration in some detail.

Secure SOAP Demonstration ... 20
Secure Hello World Example ... 21
Client-to-Server Connection .. 24
Server-to-Security Server Connection .. 28
Security Layer ... 33

Debugging with the openssl Utility ... 40

19

Secure SOAP Demonstration
Secure Hello World Example ... 21
Client-to-Server Connection .. 24
Server-to-Security Server Connection .. 28
Security Layer ... 33

20

Getting Started with Artix Security

Secure Hello World Example
Overview

This section provides an overview of the secure HelloWorld demonstration
for the Java runtime, which introduces several features of the Artix Security
Framework. In particular, this demonstration shows you how to configure a
typical Artix client and server that communicate with each other using a SOAP
binding over a HTTPS transport. Figure 1 on page 21 shows all the parts of
the secure HelloWorld system, including the various configuration files.

Figure 1. Overview of the Secure HelloWorld Example

Location
The secure HelloWorld demonstration for the Java runtime is located in the
following directory:

21

Secure Hello World Example

ArtixInstallDir/java/samples/security/authorization

Main elements of the example
The main elements of the secure HelloWorld example shown in
Figure 1 on page 21 are, as follows:

• HelloWorld client on page 22 .

• HelloWorld server on page 22 .

• Artix security service on page 22 .

• File adapter on page 22 .

HelloWorld client
The HelloWorld client communicates with the HelloWorld server using SOAP
over HTTPS, thus providing confidentiality for transmitted data. In addition,
the HelloWorld client is programmed to use WSS UsernameToken
authentication to transmit a username and a password to the server.

HelloWorld server
The HelloWorld server accepts a SOAP/HTTPS connection from the client
and, in order to perform security checks on the requests received from the
client, the server also opens a secure connection to the Artix security service.
The connection between the server and the Artix security service also employs
the SOAP/HTTPS protocol.

Artix security service
The Artix security service manages a central repository of security-related user
data. The Artix security service can be accessed remotely by Artix servers and
offers the service of authenticating users and retrieving authorization data.

File adapter
The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter is
available). This example uses the iSF file adapter, which is a simple adapter
provided for demonstration purposes.

22

Getting Started with Artix Security

Note
The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Security layers
To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

• HTTPS layer on page 23 .

• Security layer on page 23 .

HTTPS layer
The HTTPS layer provides a secure transport layer for SOAP bindings. In the
Artix Java runtime, the HTTPS transport is configured by editing XML
configuration files (for example, client.xml and server.xml).

For more details, see Client-to-Server Connection on page 24 .

Security layer
The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and support
for authorization. A security administrator can edit an action-role mapping
file to restrict user access to particular WSDL port types and operations.

For more details, see Security Layer on page 33 .

23

Secure Hello World Example

Client-to-Server Connection
Overview

Figure 2 on page 24 shows an overview of the HelloWorld example, focusing
on the elements relevant to the HTTPS connection between the Artix client
and the Artix server.

Figure 2. A HTTPS Connection in the HelloWorld Example

Mutual authentication
The HelloWorld example is configured to use mutual authentication on the
client-to-server HTTPS connection. That is, during the TLS handshake, the
server authenticates itself to the client (using an X.509 certificate) and the
client authenticates itself to the server. Hence, both the client and the server
require their own X.509 certificates.

Note
You can also configure your application to use target-only
authentication, where the client does not require an own X.509
certificate. See “Authentication Alternatives” on page 200 for details.

Enabling HTTPS
To enable HTTPS, you must ensure that the URL identifying the service
endpoint in the WSDL contract has the https: prefix. For example, the
HelloWorld service specifies a SOAP over HTTPS endpoint in the
hello_world.wsdl file as follows:

24

Getting Started with Artix Security

<wsdl:definitions name="HelloWorld"
targetNamespace="http://soa.iona.com/demo/hello_world"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
...
<wsdl:service name="GreeterService">

<wsdl:port binding="tns:Greeter_SOAPBinding"
name="WSSUsernameTokenAuthPort">

<soap:address location="https://local
host:9001/GreeterService/WSSUsernameTokenAuthPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

In addition, you must ensure that the JAX-WS endpoint is configured to publish
the https URL. For example, the server.xml file in the HelloWorld
demonstration configures the following JAX-WS endpoint:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws" ... >
...
<jaxws:endpoint

id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSUsernameTokenAuthPort"

address="https://localhost:9001/GreeterService/WSSUser
nameTokenAuthPort"

depends-on="tls-settings"
>

...
</jaxws:endpoint>
...

</beans>

Alternatively, if the JAX-WS endpoint is activated by programming, you must
ensure that the endpoint is activated using a https URL.

Client HTTPS configuration
Example 1 on page 25 shows how to configure the client side of an HTTPS
connection, in the case of target-only authentication.

Example 1. Client HTTPS Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans

xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

25

Client-to-Server Connection

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

<http:conduit name="{ht
tp://soa.iona.com/demo/hello_world}WSSUsernameTokenAuthPort.ht
tp-conduit"> ❶

<http:tlsClientParameters>
<csec:trustManagers> ❷

<csec:certStore resource="keys/trent-
cert.pem"/> ❸

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>

</beans>

The preceding configuration can be explained as follows:

❶ The following configuration settings are applied to the WSDL port with
the QName,
{http://soa.iona.com/demo/hello_world}WSSUsernameTokenAuthPort.http-conduit.

❷ The csec:trustManagers element is used to specify a list of trusted

CA certificates (the client uses this list to decide whether or not to trust
certificates received from the server side).

❸ The resource attribute of the csec:certStore element specifies file

containing a concatenated sequence of certificates in PEM or DER format.
In this example, the certificate store, keys/trent-cert.pem, is in PEM

format. This file should contain a list of trusted CA certificates.

Server HTTPS configuration
Example 2 on page 26 shows how to configure the server side of an HTTPS
connection, in the case of target-only authentication.

Example 2. Server HTTPS Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

... >

26

Getting Started with Artix Security

...
<httpj:engine-factory id="tls-settings">

<httpj:engine port="9001"> ❶
<httpj:tlsServerParameters>

<csec:keyManagers keyPassword="password"> ❷
<csec:keyStore type="JKS" password="pass

word" file="keys/bob.jks"/> ❸
</csec:keyManagers>
<csec:cipherSuitesFilter> ❹

<csec:include>.*</csec:include>
<csec:exclude>.*_DH_anon_.*</csec:exclude>

</csec:cipherSuitesFilter>
</httpj:tlsServerParameters>

</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding configuration can be explained as follows:

❶ The httpj:engine-factory element configures all of the WSDL ports

that share the IP port, 9001, to have the same TLS security settings (it

is inherently impossible for different WSDL ports to have different TLS
settings, if they share the same IP port).

❷ The sec:keyManagers element is used to attach an X.509 certificate

and private key to the server. The password specified by the keyPasswod

attribute is used to decrypt the certificate’s private key.
❸ The sec:keyStore element is used to specify an X.509 certificate and

private key that are stored in Java keystore format. It is expected that
the keystore file contains just one key entry, so there is no need to specify
a key alias.

❹ The sec:cipherSuitesFilter element can be used to narrow the

choice of cipher suites that the server is willing to use for a TLS
connection. See on page 139 for details.

27

Client-to-Server Connection

Server-to-Security Server Connection
Overview

Figure 3 on page 28 shows an overview of the HelloWorld example, focusing
on the elements relevant to the HTTPS connection between the Artix server
and the Artix security service. In general, the Artix security service is accessible
either through the HTTPS or through the IIOP/TLS transport.

Figure 3. HTTPS Connection to the Artix Security Service

Artix server HTTPS configuration
The Artix server’s HTTPS transport is configured by the settings in the
ArtixInstallDir/java/samples/security/authorization/etc/server.xml

28

Getting Started with Artix Security

file. You need to configure the Artix server so that it acts as a HTTPS client
of the Artix security service. Example 3 on page 29 shows an extract from
the server.xml file, showing the settings required to configure the client
side of the server-to-security service link.

Example 3. Server’s HTTPS Link to the Security Service

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:csec="http://cxf.apache.org/configuration/security"
xmlns:itsec="http://schemas.iona.com/soa/security-config"
... >
❶ <itsec:IsfClientConfig
❷ id="it.soa.security"
❸ IsfServiceWsdlLoc="http://localhost:27222/services/se
curity/ServiceManager?wsdl"

/>
...

❹ <http:conduit name="{http://schemas.iona.com/idl/isf_ser
vice.idl}IT_ISF.ServiceManagerSOAPPort.http-conduit">

<http:tlsClientParameters>
❺ <csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>
❻ <csec:trustManagers>

<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>
❼ <http:conduit name="{http://schemas.iona.com/idl/isfx_au
thn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.http-
conduit">

<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>
<csec:trustManagers>

<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>

29

Server-to-Security Server Connection

...
</beans>

The preceding XML configuration can be explained as follows:

❶ The itsec:IsfClientConfig element is used to configure the handler

that opens a connection to the Artix security service.
❷ This id attribute must be set as shown. This is a technical requirement

in order to identify the element internally.
❸ The IsfServiceWsdlLoc attribute specifies the location of the WSDL

contract for the Artix security service. The WSDL contract provides the
address URL for contacting the Artix security service. The current example
obtains the WSDL contract by downloading it from the security service's
WSDL publishing port. See Artix security service HTTPS
configuration on page 31 for details of how to set the value of the WSDL
publishing port.

Note
Although the security service's WSDL contract is published
through an insecure HTTP port, this does not pose a significant
security risk to an Artix server. While it is possible, in principle,
for a rogue security service to intercept the insecure publishing
port and return a fake WSDL contract, this attack cannot
ultimately succeed. The reason for this is that the Artix server
is configured to perform a TLS handshake when it connects to
the security service proper (for example, when connecting to
the ServiceManager service). The handshake will fail, if the
peer is a rogue security service, because the intruder does not
know the private key of the security service's X.509 certificate.

❹ The following client configuration settings are applied to the service
manager port on the Artix security service, which has the QName,
{http://schemas.iona.com/idl/isf_service.idl}IT_ISF.ServiceManagerSOAPPort.

The service manager service is responsible for bootstrapping connections
to the other WSDL services hosted by the Artix security service. In
particular, the service manager is used here to bootstrap a connection
to the authentication service.

❺ The csec:keyManagers element is used to attach an X.509 certificate

and private key to the service manager conduit.

30

Getting Started with Artix Security

Note
The isf-client.jks keystore contains a single key entry
(accessed by the keyManagers element) and a single truststore
entry (accessed by the trustManagers element).

❻ The csec:trustManagers element is used to specify a list of trusted

CA certificates (the security handler uses this list to decide whether or
not to trust certificates received from the Artix security service during
the SSL/TLS handshake).

❼ The client configuration settings contained in this http:conduit element

are applied to the authentication service port on the Artix security
service, which has the QName,
{http://schemas.iona.com/idl/isfx_authn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.

The authentication service provides the service of authenticating
credentials on behalf of the Artix server.

Artix security service HTTPS
configuration Example 4 on page 31 shows an extract from the security-service.xml

file, highlighting the HTTPS settings that are important for the Artix security
service.

Example 4. Artix Security Service HTTPS Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con
fig"

xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">

...
</secsvr:IsfServer>

<httpj:engine-factory bus="cxf">
❷ <httpj:engine port="59075">

<httpj:tlsServerParameters>
<csec:keyManagers keyPassword="password">

31

Server-to-Security Server Connection

<csec:keyStore type="pkcs12" password="pass
word" resource="keys/isf-server.p12"/>

</csec:keyManagers>
<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-
cert.pem"/>

</csec:trustManagers>
<csec:clientAuthentication want="true" re

quired="true"/>
</httpj:tlsServerParameters>

</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding configuration file can be explained as follows:

❶ The wsdlPublishPort attribute of the secsvr:IsfServer element

sets the IP port of the WSDL publish service, which can be queried to
obtain the security service's WSDL contract. The published WSDL
contract is used to bootstrap connections to the security service. See
Artix server HTTPS configuration on page 28 for details.

❷ The following lines configure the IP port, 59075, to be a secure TLS port.

All of the services in the security service are accessible throuth this port.
See Example 5 on page 34 for details of how to specify the port (or
ports) used by the security service.

32

Getting Started with Artix Security

Security Layer
Overview

Figure 4 on page 33 shows an overview of the HelloWorld example, focusing
on the elements relevant to the security layer. The security layer, in general,
takes care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4. The Security Layer in the HelloWorld Example

The security layer normally uses a simple username/password combination
for authentication. The username and password are sent along with every

33

Security Layer

operation, enabling the Artix server to check every invocation and make
fine-grained access decisions.

WSS UsernameToken
authentication The mechanism that the Artix client uses to transmit a username and password

over a SOAP binding is WSS UsernameToken authentication. This is a
standard SOAP login mechanism that functions by sending a username and
password combination inside a SOAP header. On its own, WSS
UsernameToken login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

You can specify the WSS username and password by programming the client
through the Java runtime credential API. For details of the required coding
steps, see Creating and Sending Credentials on page 321.

Authentication through the iSF
file adapter On the server side, the Artix server delegates authentication to the Artix security

service, which acts as a central repository for user data. The Artix security
service is configured by the security-service.xml file.

Example 5. Security Service Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:httpj="http://cxf.apache.org/transports/http-

jetty/configuration"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">
❷ <secsvr:Adapters>

<secsvr:Adapter>
❸ <secsvr:FileAdapter userDatabase="etc/user
db.xml"/>

</secsvr:Adapter>
</secsvr:Adapters>

❹ <secsvr:Services>
<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>

</secsvr:Services>
❺ <secsvr:SSOConfig

sessionTimeout="600"
idleTimeout="60"

34

Getting Started with Artix Security

cacheSize="200"
/>

</secsvr:IsfServer>

❻ <httpj:engine-factory bus="cxf">
<httpj:engine port="59075">
...
</httpj:engine>

</httpj:engine-factory>

</beans>

❶ The secsvr:IsfServer element configures the Artix security service.

In this example, the following attributes are set:

• id—must be set to the value shown. This is a technical requirement

in order to identify the element internally.

• wsdlPublishPort—sets the IP port of the WSDL publish service,

which enables clients to obtain a copy of the security service's WSDL
contract.

❷ The secsvr:Adapters element specifies the list of iSF adapters that

plug into the security service. An iSF adapter provides a repository of
security data for the security service (for example, LDAP or Kerberos).
In the current example, the simple file adapter is used.

❸ Use the secsvr:FileAdapter element to configure the file adapter.

The file adapter has one required attribute, userDatabase, which

specifies the location of a file containing security data.
❹ The secsvr:Services element configures the individual WSDL services

provided by the security service. You can specify the IP port numbers
of the WSDL services here.

❺ The secsvr:SSOConfig element configures the single sign-on feature

of the Artix security service. This feature is not used in the HelloWorld
demonstration, however.

❻ The httpj:engine-factory settings specify the SSL/TLS configuration

for the WSDL services provided by the security service. See Artix security
service HTTPS configuration on page 31 for a detailed discussion of
these settings.

The secsvr:FileAdapter element is used to specify the location of a file,
userdb.xml, which contains the user data for the iSF file adapter.

35

Security Layer

Example 6 on page 36 shows the contents of the user data file for the secure
HelloWorld demonstration.

Example 6. User Data from the userdb.xml File

<securityInfo
xmlns="http://schemas.iona.com/security/fileadapter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >
<users>

<user name="alice" password="passw0rd">
<realm name="IONAGlobalRealm">

<role name="guest"/>
</realm>
<realm name="corporate">

<role name="president"/>
</realm>

</user>
<user name="bob" password="passw0rd">

<realm name="IONAGlobalRealm">
<role name="guest"/>

</realm>
<realm name="corporate">

<role name="peon"/>
</realm>

</user>
</users>

</securityInfo>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see Configuring the File
Adapter on page 209.

Note
The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Server domain configuration and
access control On the server side, authentication and authorization must be enabled by the

appropriate settings in the server’s configuration file, server.xml.
Example 7 on page 37 explains the security layer settings that appear in the
server.xml file.

36

Getting Started with Artix Security

Example 7. Security Layer Settings from the server.xml File

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:hw="http://soa.iona.com/demo/hello_world"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <jaxws:endpoint
id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSUsernameTokenAuthPort"

address="https://localhost:9001/GreeterService/WSSUser
nameTokenAuthPort"

depends-on="tls-settings"
>

❷ <jaxws:features>
<itsec:WSSUsernameTokenAuthServerConfig

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</jaxws:features>

</jaxws:endpoint>
...

</beans>

The preceding server configuration settings can be explained as follows:

❶ The jaxws:endpoint element in this example demonstrates how to

instantiate and activate a JAX-WS endpoint purely through configuration.
The following attributes are specified:

• id—an arbitrary unique identifier that identifies this instance in the

Spring registry.

• implementor—the name of the Java class that implements the WSDL

interface for this endpoint.

• serviceName—the QName of the WSDL service provided by this

endpoint. You need to define a suitable namespace prefix for the

37

Security Layer

QName. In this example, the namespace prefix is hw, which is defined

inside the bean tag.

• endpointName—the QName of the endpoint (also known as the port

name).

• address—the HTTP address on which this endpoint is activated. In

particular, the address determines the IP port (for example, 9001)

and whether or not the endpoint is secured by TLS (by choosing either
http: or https: as the URL prefix).

• depends-on—this attribute is a generic Spring configuration feature

that enables you to influence the order in which objects are created.
In the case of a JAX-WS endpoint, it is important that a Jetty port is
activated before the corresponding JAX-WS endpoint is activated. For
details of the Jetty port configuration, see Server HTTPS
configuration on page 26.

❷ The itsec:WSSUsernameTokenAuthServerConfig element is used

to enable authentication and authorization on the endpoint. The following
attributes are specified:

• The aclURL attribute specifies the location of an access control list

file, acl.xml. The access control list determines which operations

the incoming request is allowed to invoke (see ????).

• The aclServerName attribute specifies which of the

action-role-mapping elements in the action role mapping file

should apply to the incoming requests. The value of the
aclServerName attribute must match the contents of the

server-name element in one of the action-role-mapping elements

(see ????).

• The Artix authorization realm determines which of the user’s roles will
be considered during an access control decision. Artix authorization

38

Getting Started with Artix Security

realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

Access control list/action-role
mapping file Example 8 on page 39 shows the contents of the action-role mapping file,

acl.xml, for the HelloWorld demonstration.

Example 8. Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="utf-8"?>
<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/acl
acl.xsd" >

<action-role-mapping>
<server-name>demo.hw.server</server-name>
<interface>

<name>{ht
tp://soa.iona.com/demo/hello_world}Greeter</name>

<action-role>
<action-name>sayHi</action-name>
<role-name>guest</role-name>

</action-role>
<action-role>

<action-name>greetMe</action-name>
<role-name>president</role-name>

</action-role>
</interface>

</action-role-mapping>
</secure-system>

For a detailed discussion of how to define access control using action-role
mapping files, see on page 175.

39

Security Layer

Debugging with the openssl Utility
Overview

The OpenSSL toolkit is an open source implementation of SSL and TLS.
OpenSSL provides a utility, openssl, which includes two powerful tools for
debugging SSL/TLS client and server applications, as follows:

• openssl s_client—an SSL/TLS test client, which can be used to test

secure Artix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

• openssl s_server—an SSL/TLS test server, which can be used to test

secure Artix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -WWW switch, the

test server can also simulate a simple secure Web server.

OpenSSL command-line utility
Artix versions 4.1 and later include the openssl command-line utility, which
is a general-purpose SSL/TLS utility. See Appendix E on page 417 for more
details.

References
For complete details of the openssl s_client and the openssl s_server
commands, see the following OpenSSL documentation pages:

• http://www.openssl.org/docs/apps/s_client.html

• http://www.openssl.org/docs/apps/s_server.html

Debugging example
Consider the HelloWorld demonstration discussed in the previous section,
Secure Hello World Example on page 21 . This demonstration consists of a
client and a target server.

To demonstrate SSL debugging, you can use the openssl test client to connect
directly to the target server.

Debugging steps
The following are the steps required to debug a secure server by connecting
to that server using the openssl test client:

1. Convert certificates to PEM format on page 41.

2. Run the target server on page 43.

40

Getting Started with Artix Security

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

3. Obtain the target server’s IP port on page 43.

4. Run the test client on page 44.

Convert certificates to PEM
format Skip this step, if your sample uses target-only authentication.

If you want to test mutual authentication over an SSL connection, you will
need to provide a certificate to the openssl test client. The openssl test
client requires the certificate to be in PEM format (a format that is proprietary
to OpenSSL). It might, therefore, be necessary to convert the client certificate
from an existing format to the PEM format.

For example, given a certificate in PKCS#12 format, testaspen.p12, you
could convert the certificate to PEM format as follows.

1. Run the openssl pkcs12 command, as follows:

openssl pkcs12 -in testaspen.p12 -out testaspen.pem

When you run this command you are prompted to enter, first of all, the
pass phrase for the testaspen.p12 file and then to enter a pass phrase
for the newly created testaspen.pem file.

2. The testaspen.pem file generated in the previous step contains a CA

certificate, an application certificate, and the application certificate’s private
key. Before you can use the testaspen.pem file with the openssl test

client, however, you must remove the CA certificate from the file. That is,
the file should contain only the application certificate and its private key.

For example, after deleting the CA certificate from the testaspen.pem
file, the contents of the file should look something like the following:

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C

91 C1 E1 FF 4A
friendlyName: Administrator

subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty --
demo purposes/OU=Administration/CN=Administrator/emailAd
dress=administrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/O=ABigBank -- no war
ranty -- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate Authority/emailAddress=info@abig
bank.com
-----BEGIN CERTIFICATE-----
MIIEiTCCA/KgAwIBAgIBATANBgkqhkiG9w0BAQQFADCB5jELMAkGA1UEBhM

41

Debugging with the openssl Utility

CVVMx
FjAUBgNVBAgTDU1hc3NhY2h1c2V0dHMxDzANBgNVBAcTBkJvc3Rvb
jExMC8GA1UE
ChMoQUJpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3NlczEw
MC4G
A1UECxMnRGVtb25zdHJhdGlvbiBTZWN0aW9uIC0tIG5vIHdhcnJhbnR5IC0tM
Scw
JQYDVQQDEx5BQmlnQmFuayBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIDAe
BgkqhkiG
9w0BCQEWEWluZm9AYWJpZ2Jhbm
suY29tMB4XDTA0MTExODEwNTE1NVoXDTE0MDgw
NzEwNTE1NVowgbQxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXNzYWNodXN
ldHRz
MTEwLwYDVQQKEyhBQmlnQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHB1cn
Bv
c2VzMRcwFQYDVQQLEw5BZG1pbmlzdHJhdGlvbjEWMBQGA1UEAxM
NQWRtaW5pc3Ry
YXRvcjEpMCcGCSqGSIb3DQEJARYaYWRtaW5pc3RyYXRvckBhYmlnYm
Fuay5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANk75O3YB
kkjCvgy0pOPxAU+M6Rt
0QzaQ8/YlciWlQ/oCT/l7+3P/ZhHAJaT+QxmahQHdY5ePixGyaE7raut2Md
jHOUo
wCKtZql
huNa8juJSvsN5iTUupzp/mRQ/j4rOxr8gWI5dh5d/kF4+H5s8yrxNjrDg
tY7fdxP9Kt0x9sYPAgMBAAGjggF1MIIBcTAJBgNVHRMEAjAAMCwGCWCG
SAGG+EIB
DQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUJB
dK
9LPZPsaE9+a/FWbCz2LQxWkwggEVBgNVHSMEggEMMIIBCI
AUhJz9oNb6Yq8d1nbH
BPjtS7uI0WyhgeykgekwgeYxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXN
zYWNo
dXNldHRzMQ8wDQYDVQQHEwZCb3N0b24xMTAvBgNVBAoTKEFCaWd
CYW5rIC0tIG5v
IHdhcnJhbnR5IC0tIGRlbW8gcHVycG9zZXMxMDAuBgN
VBAsTJ0RlbW9uc3RyYXRp
b24gU2VjdGlvbiAtLSBubyB3YXJyYW50eSAtLTEnM
CUGA1UEAxMeQUJpZ0Jhbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXR5MSAwHgYJKoZIhvcNAQkBFhFpbmZvQGFi
aWdi
YW5rLmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQC7S5RiDsK3ZChIVpH
PQrpQj5BA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2fvQJ8M7t8EMkHK
PqeguArnY+x
3VNGwWvlkr5jQTDeOd7d9Ilo2fknQA14j/wPFED
Uwdz4n9TThjE7lpj6zG27EivF
cm/h2L/DpWgZK0TQ9Q==
-----END CERTIFICATE-----

42

Getting Started with Artix Security

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C

91 C1 E1 FF 4A
friendlyName: Administrator

Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0E97FB4E

e3cexhY+kAujb6cOs9skerP2qZsauc33yyp4cdZiAkAil
cmfA/mLv2pfgao8gfu9
yroNvYyDADEZzagEyzF/4FGU1nScZjAiy9Imi9mA/lSHD5g1HH/wl2bgXcl
BqtC3
GrfiHzGMbWyz
DUj0PHjw/EkbyxQBJsCe4fPuCGVH7frgCPeE1q2EqRKBHCa3vkHr
6hrwuWS18TXn8DtcCFFtugouHXwKeGjJxE5PYfKak18BOwK
giZqtj1DHY6G2oERl
ZgNtAB+XF9vrA5XZHNsU6RBeXMVSrUlOGzdVrCnojd6d8Be7Q7KBSHDV9XzZlP
Kp
7DYVn5DyFSEQ7kYs9dsaZ5Id5iNkMJiscPp7AL2SJAWpYlUfEN5gFnIYi
wXP1ckF
STTiq+BG8UPPm6G3KGgRZMZ0Ih7DySZufbE24NIrN74kXV9Vf/RpxzN
iMz/PbLdG
6wiyp47We/4OqxLv8YIjGGEdYyaB/Y7XEyE9ZL74Dc3CcuS
vtA2fC8hU3cXjKBu7
YsVz/Dq8G0w223owpZ0Qz2KUl9CLq/hmYLOJt1yLVoaGZuJ1CWXdgX0dCom
DOR8K
aIaUagy/Gz2zys20N5WRK+s+HzqoB0vneOy4Z1Ss71HfGAUemiRTAI8DXizgy
HYK
5m6iSSB961xOM7YI58JYOGNLMXzlLmCUAyCQhkl
WGJFEN4cZBrkh5o6r+U4FcwhF
dvDoBu39Xie5gHFrJU86qhzxi202h0sO2vexvujSGyNy009PJGkEAhJG
fOG+a2Qq
VBwuUZqo0zIJ6gUrMV1LOAWwL7zFxyKaF5lijF1C9KxtEKm0393zag==
-----END RSA PRIVATE KEY-----

Run the target server
Run the target server, as described in the README.txt file in the
java/samples/security/authorization directory.

Obtain the target server’s IP port
In this demonstration, the server’s IP port is specified in the jaxws:endpoint
element of the server configuration file, etc/server.xml. For example, the
JAX-WS endpoint is configured as follows:

<jaxws:endpoint
id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"

43

Debugging with the openssl Utility

endpointName="hw:WSSUsernameTokenAuthPort"
address="https://localhost:9001/GreeterService/WSSUser

nameTokenAuthPort"
depends-on="tls-settings"

>

In this example, the target server’s IP port is 9001.

Run the test client
To run the openssl test client in the target-only authentication case, open
a command prompt and enter the following command:

openssl s_client -connect localhost:9001 -ssl3

To run the openssl test client in the mutual authentication case, open a
command prompt, change directory to the directory containing the
testaspen.pem file, and enter the following command:

openssl s_client -connect localhost:9001 -ssl3 -cert test
aspen.pem

When you enter the command, you are prompted to enter the pass phrase
for the testaspen.pem file.

The openssl s_client command switches can be explained as follows:

-connect host:port

Open a secure connection to the specified host and port.

-ssl3
This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the target
server is configured to use, check the value of the
policies:mechanism_policy:protocol_version variable in the

Artix configuration file. Artix servers can also be configured to use TLS
v1, for which the corresponding openssl command switch is -tls1.

-cert testaspen.pem
Specifies testaspen.pem as the test client’s own certificate. The PEM

file should contain only the application certificate and the application
certificate’s private key. The PEM file should not contain a complete
certificate chain.

If your server is not configured to require a client certificate, you can omit
the -cert switch.

44

Getting Started with Artix Security

Other command switches
The openssl s_client command supports numerous other command

switches, details of which can be found on the OpenSSL document pages.
Two of the more interesting switches are -state and -debug, which

log extra details to the command console during the handshake.

45

Debugging with the openssl Utility

46

Introduction to the Artix Security
Framework
This chapter describes the overall architecture of the Artix Security Framework.

Artix Security Architecture .. 48
Types of Security Credential .. 49
Protocol Layers ... 51
Security Layer ... 53
Using Multiple Bindings .. 54

47

Artix Security Architecture
Types of Security Credential .. 49
Protocol Layers ... 51
Security Layer ... 53
Using Multiple Bindings .. 54

48

Introduction to the Artix Security Framework

Types of Security Credential
Overview

The following types of security credentials are supported by the Artix security
framework:

• WSS username token on page 49 .

• WSS Kerberos token on page 49 .

• CORBA Principal on page 49 .

• HTTP Basic Authentication on page 50 .

• X.509 certificate on page 50 .

• CSI authorization over transport on page 50 .

• CSI identity assertion on page 50 .

• SSO token on page 50 .

WSS username token
The Web service security (WSS) UsernameToken is a username/password
combination that can be sent in a SOAP header. The specification of WSS
UsernameToken is contained in the WSS UsernameToken Profile 1.01

document from OASIS2.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

WSS Kerberos token
The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. The implementation is based on the Kerberos Token Profile
v1.0 specification (wss-kerberos-token-profile-1.0). If you use Kerberos, you
must also configure the Artix security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

CORBA Principal
The CORBA Principal is a legacy feature originally defined in the early versions
of the CORBA GIOP specification. The CORBA Principal is effectively just a
username (no password can be propagated).

1 http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
2 www.oasis-open.org

49

Types of Security Credential

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.

HTTP Basic Authentication
HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

X.509 certificate
Two different kinds of X.509 certificate-based authentication are provided,
depending on the type of Artix binding, as follows:

• HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

• CORBA binding—in this case, authentication is based on the entire X.509
certificate, which is sent to the Artix security service to be authenticated.

This type of credential is available to any transport that uses SSL/TLS.

CSI authorization over transport
The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

CSI identity assertion
The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no password)
inside a GIOP service context. The basic idea behind CSI identity assertion
is that the request message comes from a secure peer that can be trusted to
assert the identity of a user. This kind of authentication is available only for
the CORBA binding.

This type of credential is available only for the CORBA binding.

SSO token
An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 401.

50

Introduction to the Artix Security Framework

Protocol Layers
Overview

Within the Artix security architecture, each binding type consists of a stack
of protocol layers, where a protocol layer is typically implemented as a distinct
Artix plug-in. This subsection describes the protocol layers for the following
binding types:

• HTTP-compatible binding on page 51 .

• SOAP binding on page 51 .

• CORBA binding on page 52 .

HTTP-compatible binding
HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 5 on page 51 shows the protocol layers and the kinds
of authentication available to a HTTP-compatible binding.

Figure 5. Protocol Layers in a HTTP-Compatible Binding

SOAP binding
The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials that
can be propagated only in a SOAP header. Figure 6 on page 52 shows the
protocol layers and the kinds of authentication available to the SOAP binding
over HTTP.

51

Protocol Layers

Figure 6. Protocol Layers in a SOAP Binding

CORBA binding
For the CORBA binding, there are only two protocol layers (CORBA binding
and IIOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 7 on page 52 shows the protocol
layers and the kinds of authentication available to the CORBA binding.

Figure 7. Protocol Layers in a CORBA Binding

52

Introduction to the Artix Security Framework

Security Layer
Overview

The security layer is responsible for implementing a variety of different security
features with the exception, however, of propagating security credentials,
which is the responsibility of the protocol layers. The security layer is at least
partially responsible for implementing the following security features:

• Authentication on page 53 .

• Authorization on page 53 .

• Single sign-on on page 53 .

Authentication
On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

Authorization
The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the user
does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on
Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

Artix security plug-in
The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if artix_security is listed
in the orb_plugins list in the Artix domain configuration, artix.cfg.

GSP security plug-in
The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the orb_plugins
list in the Artix domain configuration, artix.cfg.

53

Security Layer

Using Multiple Bindings
Overview

Figure 8 on page 54 shows an example of an advanced application that uses
multiple secure bindings.

Figure 8. Example of an Application with Multiple Bindings

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2++, SOAP, or CORBA.

Example bindings
The following bindings are used in the application shown in
Figure 8 on page 54 :

• G2++—consisting of the following layers: ASP security, G2++ binding,
HTTP, SSL/TLS.

• SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

• CORBA—consisting of the following layers: GSP security, CORBA binding,
GIOP, IIOP/TLS.

54

Introduction to the Artix Security Framework

Security for HTTP-Compatible Bindings
This chapter describes the security features supported by the Artix HTTP transport. These security features are
available to any Artix binding that can be layered on top of the HTTP transport.

Overview of HTTP Security ... 56
Securing HTTP Communications with TLS ... 59
X.509 Certificate-Based Authentication ... 67

55

Overview of HTTP Security
Overview

Figure 9 on page 56 gives an overview of HTTP security within the Artix
security framework, showing the various security layers (security layer, binding
layer, HTTP, and SSL/TLS) and the different authentication types associated
with the security layers. Because many different binding types (for example,
SOAP, tagged or fixed) can be layered on top of HTTP, Figure 9 on page 56
does not specify a particular binding layer. Any HTTP-compatible binding
could be substituted into this architecture.

Figure 9. HTTP-Compatible Binding Security Layers

Security layers
As shown in Figure 9 on page 56 , a HTTP-compatible binding has the
following security layers:

• SSL/TLS layer on page 57 .

• HTTP layer on page 57 .

• HTTP-compatible binding layer on page 57 .

56

Security for HTTP-Compatible Bindings

• Security layer on page 57 .

SSL/TLS layer
The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates).

HTTP layer
The HTTP layer supports the sending of username/password data in the HTTP
message header—that is, HTTP Basic Authentication.

HTTP-compatible binding layer
The HTTP-compatible binding layer could provide additional security features
(for example, propagation of security credentials), depending on the type of
binding. The following binding types are HTTP-compatible:

• SOAP binding.

• XML format binding.

• MIME binding.

Security layer
The Security layer is implemented by the Artix security plug-in, which provides
authentication and authorization checks for all binding types, except the
CORBA binding, as follows:

• Authentication—by selecting one of the available client credentials and
calling out to the Artix security service to check the credentials.

• Authorization—by reading an action-role mapping (ARM) file and checking
whether a user’s roles allow it to perform a particular action.

Authentication options
The following authentication options are common to all HTTP-compatible
bindings:

• HTTP Basic Authentication on page 58 .

57

Overview of HTTP Security

• X.509 certificate-based authentication on page 58 .

HTTP Basic Authentication
HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

X.509 certificate-based
authentication X.509 certificate-based authentication is an authentication step that is

performed in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see X.509
Certificate-Based Authentication on page 67.

58

Security for HTTP-Compatible Bindings

Securing HTTP Communications with TLS
Overview

This subsection describes how to configure the HTTP transport (Java runtime)
to use SSL/TLS security, a combination usually referred to as HTTPS. In the
Artix Java runtime, HTTPS security is configured by specifying settings in XML
configuration files.

The following topics are discussed in this subsection:

• Generating X.509 certificates on page 59 .

• Enabling HTTPS on page 60 .

• HTTPS client with no certificate on page 61 .

• HTTPS client with certificate on page 62 .

• HTTPS server configuration on page 64 .

Generating X.509 certificates
A basic prerequisite for using SSL/TLS security is to have a collection of X.509
certificates available to identify your server applications and, optionally, your
client applications. You can generate X.509 certificates in one of the following
ways:

• Use a commercial third-party to tool to generate and manage your X.509
certificates.

• Use the free openssl utility (which can be downloaded from

http://www.openssl.org) and the Java keystore utility to generate

certificates—see Use the CA to Create Signed Certificates in a Java
Keystore on page 105.

Note
The HTTPS protocol mandates an URL integrity check, which
requires a certificate’s identity to match the hostname on which the

59

Securing HTTP Communications with TLS

http://www.openssl.org

server is deployed. See Special Requirements on HTTPS
Certificates on page 96 for details.

Certificate format
In the Java runtime, you must deploy X.509 certificate chains and trusted
CA certificates in the form of Java keystores. See on page 117.

Enabling HTTPS
A prerequisite for enabling HTTPS on a WSDL endpoint is that the endpoint
address must be specified to be a HTTPS URL. There are a couple of different
locations where the endpoint address is set and these must all be modified
to use a HTTPS URL.

HTTPS specified in the WSDL
contract You must specify the endpoint address in the WSDL contract to be a URL

with the https: prefix, as follows:

<wsdl:definitions name="HelloWorld" targetNamespace="ht
tp://apache.org/hello_world_soap_http"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
...
<wsdl:service name="SOAPService">

<wsdl:port binding="tns:Greeter_SOAPBinding"
name="SoapPort">

<soap:address location="https://localhost:9001/Soap
Context/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Where the location attribute of the soap:address element is configured
to use a HTTPS URL. For bindings other than SOAP, you would edit the URL
appearing in the location attribute of the http:address element.

HTTPS specified in the server
code You must also ensure that the URL published in the server code by calling

Endpoint.publish() is defined with a https: prefix. For example:

// Java
package demo.hw_https.server;
import javax.xml.ws.Endpoint;

public class Server {
protected Server() throws Exception {
Object implementor = new GreeterImpl();
String address =

"https://localhost:9001/SoapContext/SoapPort";
Endpoint.publish(address, implementor);

60

Security for HTTP-Compatible Bindings

}
...

}

HTTPS client with no certificate
For example, consider the configuration for a secure HTTPS client with no
certificate. Example 9 on page 61 shows how to configure such a sample
client.

Example 9. Sample HTTPS Client with No Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

1 on page 61 <http:conduit name="{ht
tp://apache.org/hello_world_soap_http}SoapPort.http-conduit">
2 on page 61 <http:tlsClientParameters>
3 on page 62 <sec:trustManagers>

<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>

</sec:trustManagers>
4 on page 62 <sec:cipherSuitesFilter>

<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding client configuration can be described as follows:

1. The TLS security settings are defined on a specific WSDL port. In this
example, the WSDL port being configured has the QName,
{http://apache.org/hello_world_soap_http}SoapPort.

2. The http:tlsClientParameters element contains all of the client’s TLS

configuration details.

61

Securing HTTP Communications with TLS

3. The sec:trustManagers element is used to specify a list of trusted CA

certificates (the client uses this list to decide whether or not to trust
certificates received from the server side).

The file attribute of the sec:keyStore element specifies a Java keystore
file, truststore.jks, containing one or more trusted CA certificates. The
password attribute specifies the password required to access the keystore,
truststore.jks. See Specifying Trusted CA Certificates for
HTTPS on page 127.

Note
Instead of the file attribute, you could specify the location of
the keystore using either the resource or the url attribute. But
you must be extremely careful not to load the truststore from an
untrustworthy source.

4. The sec:cipherSuitesFilter element can be used to narrow the choice

of cipher suites that the client is willing to use for a TLS connection. See
on page 139 for details.

HTTPS client with certificate
For example, consider a secure HTTPS client that is configured to have its
own certificate. Example 10 on page 62 shows how to configure such a
sample client.

Example 10. Sample HTTPS Client with Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

<http:conduit name="{http://apache.org/hello_world_soap_ht
tp}SoapPort.http-conduit">

<http:tlsClientParameters>
<sec:trustManagers>

<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>

</sec:trustManagers>

62

Security for HTTP-Compatible Bindings

1 on page 63 <sec:keyManagers keyPassword="password">
2 on page 63 <sec:keyStore
type="JKS" password="password"

file="certs/wibble.jks"/>
</sec:keyManagers>
<sec:cipherSuitesFilter>
<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

<bean xml:id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding client configuration can be described as follows:

1. The sec:keyManagers element is used to attach an X.509 certificate and

private key to the client. The password specified by the keyPasswod

attribute is used to decrypt the certificate’s private key.

2. The sec:keyStore element is used to specify an X.509 certificate and

private key that are stored in a Java keystore. This sample declares that
the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, wibble.jks,
that contains the client’s X.509 certificate chain and private key in a key
entry. The password attribute specifies the keystore password, which is
needed to access the contents of the keystore. It is expected that the
keystore file contains just one key entry, so there is no need to specify a
key alias to identify the entry.

For details of how to create such a keystore file, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105.

Note
Instead of the file attribute, you could specify the location of
the keystore using either the resource or the url attribute. But

63

Securing HTTP Communications with TLS

you must be extremely careful not to load the truststore from an
untrustworthy source.

HTTPS server configuration
For example, consider a secure HTTPS server that requires clients to present
an X.509 certificate. Example 11 on page 64 shows how to configure such
a server.

Example 11. Sample HTTPS Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/con
figuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

<httpj:engine-factory bus="cxf">
1 on page 65 <httpj:engine port="9001">
2 on page 65 <httpj:tlsServerParameters>
3 on page 65 <sec:keyManagers keyPassword="password">
4 on page 65 <sec:keyStore type="JKS" password="pass
word"

file="certs/cherry.jks"/>
</sec:keyManagers>

5 on page 65 <sec:trustManagers>
<sec:keyStore type="JKS" password="password"

file="certs/truststore.jks"/>
</sec:trustManagers>

6 on page 66 <sec:cipherSuitesFilter>
<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
7 on page 66 <sec:clientAuthentication want="true" re
quired="true"/>

</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

<!-- We need a bean named "cxf" -->

64

Security for HTTP-Compatible Bindings

<bean xml:id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding server configuration can be described as follows:

1. On the server side, TLS is not configured for each WSDL port. Instead of
configuring each WSDL port, the TLS security settings are applied to a
specific IP port, which is 9001 in this example. All of the WSDL ports that

share this IP port are thus configured with the same TLS security settings.

2. The http:tlsServerParameters element contains all of the server’s TLS

configuration details.

3. The sec:keyManagers element is used to attach an X.509 certificate and

private key to the server. The password specified by the keyPasswod

attribute is used to decrypt the certificate’s private key.

4. The sec:keyStore element is used to specify an X.509 certificate and

private key that are stored in a Java keystore. This sample declares that
the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, cherry.jks,
that contains the client’s X.509 certificate chain and private key in a key
entry. The password attribute specifies the keystore password, which is
needed to access the contents of the keystore. It is expected that the
keystore file contains just one key entry, so there is no need to specify a
key alias.

Note
Instead of the file attribute, you could specify the location of
the keystore using either the resource or the url attribute. But
you must be extremely careful not to load the truststore from an
untrustworthy source.

For details of how to create such a keystore file, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105.

5. The sec:trustManagers element is used to specify a list of trusted CA

certificates (the server uses this list to decide whether or not to trust
certificates presented by clients).

65

Securing HTTP Communications with TLS

The file attribute of the sec:keyStore element specifies a Java keystore
file, truststore.jks, containing one or more trusted CA certificates. The
password attribute specifies the password required to access the keystore,
truststore.jks. See Specifying Trusted CA Certificates for
HTTPS on page 127.

Note
Instead of the file attribute, you could specify the location of
the keystore using either the resource or the url attribute.

6. The sec:cipherSuitesFilter element can be used to narrow the choice

of cipher suites that the server is willing to use for a TLS connection. See
on page 139.

7. The sec:clientAuthentication element determines the server’s

disposition towards the presentation of client certificates. The element has
two attributes, as follows:

• want attribute—if true, (the default) the server requests the client to

present an X.509 certificate during the TLS handshake; if false, the

server does not request the client to present an X.509 certificate.

• required attribute—if true, the server raises an exception, if a client

fails to present an X.509 certificate during the TLS handshake; if false,

(the default) the server does not raise an exception, if the client fails to
present an X.509 certificate.

66

Security for HTTP-Compatible Bindings

X.509 Certificate-Based Authentication
Overview

This section describes how to enable X.509 certificate authentication in a
two-tier client/server scenario for applications based on the Java runtime. In
this scenario, the Artix security service authenticates the client’s X.509
certificate and retrieves roles and realms based on the identity of the certificate
subject. When certificate-based authentication is enabled, the X.509 certificate
is effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during the
SSL/TLS handshake and is governed by the HTTPS configuration settings
in the application’s XML configuration file.

• Artix security-level authentication and authorization—this authentication
step occurs after the SSL/TLS handshake and is performed by the Artix
security service working in tandem with the security layer in the Artix server.

Certificate-based authentication
scenario Figure 10 on page 68 shows an example of a two-tier system, where

authentication of the client’s X.509 certificate is integrated with the Artix
security service.

67

X.509 Certificate-Based Authentication

Figure 10. Overview of Certificate-Based Authentication with HTTPS—Java Runtime

Scenario description
The scenario shown in Figure 10 on page 68 can be described as follows:

1. When the client opens a connection to the server, the client sends its X.509
certificate as part of the SSL/TLS handshake (HTTPS). The server then
performs SSL/TLS-level authentication, checking the certificate as follows:

• The certificate is checked against the server’s trusted CA list to ensure
that it is signed by a trusted certification authority.

• The server sends a challenge to the client, which requires the client to
prove that it possesses the certificate’s private key.

2. The server performs security layer authentication by calling
authenticate() on the Artix security service, passing a copy of the client’s

certificate to the Artix security service.

The details of this authentication step depend on the particular security
adapter that is plugged into the Artix security service. For example, the file
adapter would authenticate the client certificate as follows:

• The user’s identity is extracted from the certificate’s subject DN.

68

Security for HTTP-Compatible Bindings

• To verify the user’s identity, the file adapter compares the client certificate
with a cached copy. The authentication succeeds, only if the certificates
are equal.

3. If authentication is successful, the Artix security service returns the user’s
realms and roles.

4. The ASP security layer controls access to the target’s WSDL operations by
consulting an action-role mapping file to determine what the user is
allowed to do.

HTTPS prerequisites
In general, a basic prerequisite for using X.509 certificate-based authentication
is that both client and server are configured to use HTTPS.

See Securing HTTP Communications with TLS on page 59 .

Certificate-based authentication
security service configuration A basic prerequisite for using certificate-based authentication is to configure

the security adapter that plugs into the Artix security service. The details of
this configuration step are specific to each security adapter. Typically, it
involves caching copies of the X.509 certificates for all users with security
privileges.

Specific details of how to configure each adapter for certificate-based
authentication are available, as follows:

• File adapter—see Certificate-based authentication for the file
adapter on page 185.

• LDAP adapter—see Certificate-based authentication for the LDAP
adapter on page 189.

• Custom adapter—see on page 343.

Certificate-based authentication
client configuration To enable certificate-based authentication on the client side, it is sufficient

for the client to be configured to use HTTPS, with its own certificate. For
example, see HTTPS client with certificate on page 62 .

Certificate-based authentication
server configuration A prerequisite for using certificate-based authentication on the server side is

that the server is configured to use HTTPS. For example, see HTTPS server
configuration on page 64 .

69

X.509 Certificate-Based Authentication

A second prerequisite on the server side is that the server is configured to
connect to the Artix security service. For example, see Connecting to the Artix
Security Service on page 152.

Additionally, on the server side it is necessary to configure the security layer
to authenticate certificates by editing the XML configuration file, as shown in
Example 12 on page 70 .

Example 12. Credential Authentication Element in a Server

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:security="http://schemas.iona.com/soa/security-config"

... >
...

1 on page 70 <jaxws:endpoint name="{Namespace}TargetPort"
createdFromAPI="true" >

<jaxws:features>
2 on page 70 <security:TLSAuthServerConfig
3 on page 71 aclURL="ACLFile"
4 on page 71 aclServerName="ServerName"
5 on page 71 authorizationRealm="RealmName"

/>
</jaxws:features>

</jaxws:endpoint>
...

</beans>

The preceding XML configuration can be explained as follows:

1. The authentication feature is attached to the endpoint (WSDL port) specified
by the name attribute of the jaxws:endpoint element, where the endpoint

name is specified in QName format.

Note
You must specify the authentication feature separately for each
endpoint that you want to protect with authentication and
authorization.

2. The security:TLSAuthServerConfig element enables authentication

and authorization of X.509 certificate credentials received through the TLS
layer.

70

Security for HTTP-Compatible Bindings

3. The aclURL attribute specifies the location of an ACL file—for example,

file:etc/acl.xml. The file determines which actions (that is, WSDL

operations) can be invoked by an authenticated user, on the basis of the
roles assigned to that user. See on page 191.

4. The aclServerName attribute selects a particular rule set from the ACL

file by specifying its server name—see ACL server name on page 168.

5. The authorizationRealm attribute specifies the authorization realm to

which this server belongs—see on page 175.

71

X.509 Certificate-Based Authentication

72

Security for CORBA Bindings
You can make a CORBA binding secure by configuring the underlying Orbix ORB to load the relevant security
plug-ins. This section describes how to load and configure security plug-ins to reach the appropriate level of
security for applications with a CORBA binding.

Overview of CORBA Security .. 74
Securing IIOP Communications with SSL/TLS ... 75

73

Overview of CORBA Security
Overview

The Java runtime CORBA binding features an ORB pluggability layer, which
makes it possible to integrate the CORBA binding with different ORB
implementations. In Artix, the CORBA binding is layered above the Orbix
ORB. To configure CORBA security, therefore, you need to configure security
in the underlying Orbix ORB, taking advantage of the security features that
are built into Orbix.

For details of how to access the underlying Orbix configuration, see
Appendix D on page 411.

74

Security for CORBA Bindings

Securing IIOP Communications with SSL/TLS
Overview

This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain.

Warning
The default certificates used in the CORBA configuration samples
are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

CORBA configuration for the Java
runtime The CORBA binding provided by the Java runtime is not configured by an

XML configuration file. You must configure the CORBA binding using an
old-style Artix configuration file (ending with a .cfg suffix).

Before you can configure a CORBA binding in the Java runtime, you must
associate your program with an Artix configuration file—see
Appendix D on page 411 for details of how to do this.

Sample client configuration
For example, consider the configuration for a secure SSL/TLS client with no
certificate.

Example 13 on page 75 shows how to configure such a sample client.

Example 13. Sample SSL/TLS Client Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

Common SSL/TLS configuration settings.
1 on page 76 orb_plugins = ["local_log_stream", "iiop_pro
file", "giop", "iiop_tls"];

2 on page 77 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

75

Securing IIOP Communications with SSL/TLS

3 on page 77 policies:trusted_ca_list_policy = "ArtixIn
stallDir\cxx_java\samples\certificates\tls\x509\trus
ted_ca_lists\ca_list1.pem";

4 on page 77 policies:mechanism_policy:protocol_version =
"SSL_V3";

policies:mechanism_policy:ciphersuites =
["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

5 on page 77 event_log:filters = ["IT_ATLI_TLS=*",
"IT_IIOP=*", "IT_IIOP_TLS=*", "IT_TLS=*"];

...
my_client {

Specific SSL/TLS client configuration settings
6 on page 77 principal_sponsor:use_principal_sponsor
= "false";

7 on page 77 policies:client_secure_invocation_policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay", "DetectMisor
dering", "EstablishTrustInTarget"];

};
};
...

The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope

includes the iiop_tls plug-in.

Note
For fully secure applications, you should exclude the iiop plug-in
(insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the
iiop plug-in before the iiop_tls plug-in in the ORB plug-ins
list.

76

Security for CORBA Bindings

2. Make sure that the binding:client_binding_list variable includes

bindings with the IIOP_TLS interceptor. You can use the value of the

binding:client_binding_list shown here.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from other
SSL/TLS applications. You must, therefore, edit the
policies:trusted_ca_list_policy variable to point at a list of trusted

certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 214.

Note
If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is
ignored. Within Schannel, the trusted root CA certificates are
obtained from the Windows certificate store.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites” on
page 265.

5. This line enables console logging for security-related events, which is useful
for debugging and testing. Because there is a performance penalty
associated with this option, you might want to comment out or delete this
line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to specify
an application’s own X.509 certificate. Because this client configuration
does not use a certificate, the principal sponsor is disabled by setting
principal_sponsor:use_principal_sponsor to false.

7. The following two lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

• Required options—the options shown here ensure that the client can
open only secure SSL/TLS connections.

• Supported options—the options shown include all of the association
options, except for the EstablishTrustInClient option. The client

77

Securing IIOP Communications with SSL/TLS

cannot support EstablishTrustInClient, because it has no X.509

certificate.

Sample server configuration
Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.

Note
You must first associate the server with a configuration file—see
Appendix D on page 411 for details.

Example 14 on page 78 shows how to configure a sample server that acts
both as a secure server and as a secure client.

Example 14. Sample SSL/TLS Server Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
1 on page 79 # Common SSL/TLS configuration settings.

...
my_server {

Specific SSL/TLS server configuration settings
2 on page 79 policies:target_secure_invocation_policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

3 on page 79 principal_sponsor:use_principal_sponsor
= "true";
4 on page 79 principal_sponsor:auth_method_id =
"pkcs12_file";
5 on page 79 principal_sponsor:auth_method_data =
["filename=CertsDir\server_cert.p12"];

Specific SSL/TLS client configuration settings
6 on page 79 policies:client_secure_invocation_policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay", "DetectMisor

78

Security for CORBA Bindings

dering", "EstablishTrustInClient", "EstablishTrustInTarget"];

};
};
...

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in the
preceding Sample client configuration on page 75

2. The following two lines set the required options and the supported options
for the target secure invocation policy. In this example, the policy is set as
follows:

• Required options—the options shown here ensure that the server accepts
only secure SSL/TLS connection attempts.

• Supported options—all of the target association options are supported.

3. A server must always be associated with an X.509 certificate. Hence, this
line enables the SSL/TLS principal sponsor, which specifies a certificate
for the application.

4. This line specifies that the X.509 certificate is contained in a PKCS#12
file. For alternative methods, see “Specifying an Application’s Own
Certificate” on page 224.

5. Replace the X.509 certificate, by editing the filename option in the

principal_sponsor:auth_method_data configuration variable to point

at a custom X.509 certificate. The filename value should be initialized

with the location of a certificate file in PKCS#12 format—see Specifying
an Application’s Own Certificate on page 131 for more details.

For details of how to specify the certificate’s pass phrase, see “Deploying
Own Certificate for HTTPS—C++ Runtime” on page 227.

6. The following two lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

• Required options—the options shown here ensure that the application
can open only secure SSL/TLS connections to other servers.

79

Securing IIOP Communications with SSL/TLS

• Supported options—all of the client association options are supported.
In particular, the EstablishTrustInClient option is supported when

the application is in a client role, because the application has an X.509
certificate.

Mixed security configurations
Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in Sample server configuration on page 78 . Then configure the
client role by adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];
policies:client_secure_invocation_policy:requires = ["NoPro
tection"];
policies:client_secure_invocation_policy:supports = ["NoPro
tection"];

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure IIOP) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Customizing IIOP/TLS security
policies You can, optionally, customize the IIOP/TLS security policies in various ways.

For details, see the following references:

• Configuring Secure Associations in the Security Guide, C++ Runtime.

• Configuring HTTPS and IIOP/TLS in the Security Guide, C++ Runtime.

80

Security for CORBA Bindings

Part II. TLS Security Layer
This part provides comprehensive details on how to configure the SSL/TLS security layer for both the HTTPS and
IIOP/TLS protocols.

Managing Certificates ... 85
What are X.509 Certificates? .. 86
Certification Authorities ... 88

Choice of CAs ... 89
Commercial Certification Authorities ... 90
Private Certification Authorities ... 91

Certificate Chaining .. 92
PKCS#12 Files ... 94
Special Requirements on HTTPS Certificates .. 96
Creating Your Own Certificates .. 99

Prerequisites ... 100
Set Up Your Own CA ... 101
Use the CA to Create Signed Certificates in a Java Keystore .. 105
Use the CA to Create Signed PKCS#12 Certificates .. 108

Generating a Certificate Revocation List ... 114
Configuring HTTPS and IIOP/TLS .. 117

Authentication Alternatives ... 118
Target-Only Authentication ... 119
Mutual Authentication ... 122

Specifying Trusted CA Certificates .. 125
When to Deploy Trusted CA Certificates ... 126
Specifying Trusted CA Certificates for HTTPS .. 127
Specifying Trusted CA Certificates for IIOP/TLS .. 129

Specifying an Application’s Own Certificate ... 131
Deploying Own Certificate for HTTPS .. 132
Deploying Own Certificate for IIOP/TLS .. 134

Specifying a Certificate Revocation List .. 136
Configuring HTTPS Cipher Suites .. 139

Supported Cipher Suites .. 140
Cipher Suite Filters ... 142
SSL/TLS Protocol Version ... 145

83

84

Managing Certificates
TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating your
application objects. This chapter explains how you can create X.509 certificates that identify your Artix ESB
applications.

What are X.509 Certificates? .. 86
Certification Authorities ... 88

Choice of CAs ... 89
Commercial Certification Authorities ... 90
Private Certification Authorities ... 91

Certificate Chaining .. 92
PKCS#12 Files ... 94
Special Requirements on HTTPS Certificates .. 96
Creating Your Own Certificates .. 99

Prerequisites ... 100
Set Up Your Own CA ... 101
Use the CA to Create Signed Certificates in a Java Keystore .. 105
Use the CA to Create Signed PKCS#12 Certificates .. 108

Generating a Certificate Revocation List ... 114

85

What are X.509 Certificates?
Role of certificates

An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the X.509
certificate.

Integrity of the public key
Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a certification
authority (CA). A CA is a trusted node that confirms the integrity of the public
key value in a certificate.

Digital signatures
A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding the
CA’s digital signature with the CA’s public key.

Warning
The demonstration certificates supplied with Artix ESB are signed
by the demonstration CA. This CA is completely insecure because
anyone can access its private key. To secure your system, you must
create new certificates signed by a trusted CA. This chapter describes
the set of certificates required by a Artix ESB application and shows
you how to replace the default certificates.

The contents of an X.509
certificate An X.509 certificate contains information about the certificate subject and

the certificate issuer (the CA that issued the certificate). A certificate is encoded
in Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

86

Managing Certificates

• A subject DN that identifies the certificate owner.

• The public key associated with the subject.

• An issuer DN that identifies the CA that issued the certificate.

• The digital signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v.3 extensions. For example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

Distinguished names
A distinguished name (DN) is a general purpose X.500 identifier that is often
used in the context of security.

See Appendix A on page 365 for more details about DNs.

87

What are X.509 Certificates?

Certification Authorities
Choice of CAs ... 89
Commercial Certification Authorities ... 90
Private Certification Authorities ... 91

88

Managing Certificates

Choice of CAs
A CA must be trusted to keep its private key secure. When setting up a Artix
ESB system, it is important to choose a suitable CA, make the CA certificate
(not including its private key) available to all applications, and then use the
CA to sign certificates for your applications.

There are two types of CA you can use:

• A commercial CA is a company that signs certificates for many systems.

• A private CA is a trusted node that you set up and use to sign certificates
for your system only.

89

Choice of CAs

Commercial Certification Authorities
Signing certificates

There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs
An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to systems
external to your organization, use a commercial CA to sign your certificates.
If your applications are for use within an internal network, a private CA might
be appropriate.

Criteria for choosing a CA
Before choosing a CA, you should consider the following criteria:

• What are the certificate-signing policies of the commercial CAs?

• Are your applications designed to be available on an internal network only?

• What are the potential costs of setting up a private CA compared with the
costs of subscribing to a commercial CA?

90

Managing Certificates

Private Certification Authorities
Choosing a CA software package

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

OpenSSL software package
One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an implementation
of SSL developed by Eric Young (<eay@cryptsoft.com>). Complete license
information can be found in Appendix F on page 443 . The OpenSSL package
includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available
from http://www.openssl.org/docs.

Setting up a private CA using
OpenSSL For instructions on how to set up a private CA, see Creating Your Own

Certificates on page 99 .

Choosing a host for a private
certification authority Choosing a host is an important step in setting up a private CA. The level of

security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix ESB
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications run.

Security precautions
If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.

91

Private Certification Authorities

http://www.openssl.org
http://www.openssl.org/docs

Certificate Chaining
Certificate chain

A certificate chain is a sequence of certificates, where each certificate in the
chain is signed by the subsequent certificate.

Self-signed certificate
The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example
Figure 11 on page 92 shows an example of a simple certificate chain.

Figure 11. A Certificate Chain of Depth 2

Chain of trust
The purpose of a certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Certificates signed by multiple
CAs A CA certificate can be signed by another CA. For example, an application

certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 12 on page 93 shows what this certificate chain looks like.

92

Managing Certificates

Figure 12. A Certificate Chain of Depth 3

Trusted CAs
An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root certificate
directory.

See Specifying Trusted CA Certificates on page 125.

Maximum chain length policy
C++ runtime only—You can limit the length of certificate chains accepted
by your CORBA applications, with the maximum chain length policy. You can
set a value for the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy configuration variable
for IIOP/TLS and the policies:max_chain_length_policy configuration
variable for HTTPS respectively.

93

Certificate Chaining

PKCS#12 Files
Overview

Figure 13 on page 94 shows the typical elements in a PKCS#12 file.

Figure 13. Elements in a PKCS#12 File

Contents of a PKCS#12 file
A PKCS#12 file contains the following:

• An X.509 peer certificate (first in a chain).

• All the CA certificates in the certificate chain.

• A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

94

Managing Certificates

Note
The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12
file overall. This condition (same pass phrase) is not officially part
of the PKCS#12 standard, but it is enforced by most Web browsers
and by Artix ESB.

Creating a PKCS#12 file
To create a PKCS#12 file, see Use the CA to Create Signed Certificates in a
Java Keystore on page 105 .

Viewing a PKCS#12 file
To view a PKCS#12 file, CertName.p12:

openssl pkcs12 -in CertName.p12

Importing and exporting
PKCS#12 files The generated PKCS#12 files generated by OpenSSL can be imported into

browsers such as IE or Netscape. Exported PKCS#12 files from these browsers
can be used in Artix ESB.

Note
Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later; Netscape
4.7 or later.

95

PKCS#12 Files

Special Requirements on HTTPS Certificates
Overview

The HTTPS specification mandates that HTTPS clients should be capable of
verifying the identity of the server. This can potentially affect how you generate
your X.509 certificates. The mechanism for verifying the server identity
depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA.
In addition, clients cosuld also inspect the contents of a server certificate and
accept only the certificates that satisfy specific constraints (for example, in
Artix you can specify a certificate constraints mechanism).

In the absence of an application-specific mechanism, the HTTPS specification
defines a generic mechanism, known as the HTTPS URL integrity check, for
verifying the server identity. For example, this is the standard mechanism
used by Web browsers.

HTTPS URL integrity check
The basic idea of the URL integrity check is that the server certificate’s identity
must match the server host name. This integrity check has an important
impact on how you generate X.509 certificates for HTTPS: the certificate
identity (usually the certificate subject DN’s common name) must match
the host name on which the HTTPS server is to be deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Note
Artix does not implement the HTTPS URL integrity check. You can
use a mechanism such as certificate constraints instead.

Reference
The HTTPS URL integrity check is specified by RFC 2818, published by the
Internet Engineering Task Force (IETF):

http://www.ietf.org/rfc/rfc2818.txt

How to specify the certificate
identity The certificate identity used in the URL integrity check can be specified in

one of the following ways:

• Using commonName

96

Managing Certificates

http://www.ietf.org/rfc/rfc2818.txt

• Using subectAltName

Using commonName
The usual way to specify the certificate identity (for the purpose of the URL
integrity check) is to set the Common Name (CN) in the subject DN of the
certificate.

For example, if clients are meant to connect to the following secure URL:

https://www.iona.com/secure

The server certificate could have a subject DN like the following:

C=IE,ST=Co. Dublin,L=Dublin,O=IONA Technologies PLC,
OU=System,CN=www.iona.com

Where the CN has been set to the host name, www.iona.com. For details of
how to set the subject DN in a new certificate, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105 and Use the CA to Create
Signed Certificates in a Java Keystore on page 105 .

Using subjectAltName
(multi-homed hosts) Using the subject DN’s Common Name for the certificate identity suffers from

the disadvantage that only one host name can be specified at a time. If you
deploy a certificate on a multi-homed host, however, you might find it is
practical to allow the certificate to be used with any of the multi-homed host
names. In this case, it is necessary to define a certificate with multiple,
alternative identities and this is only possible using the subjectAltName
certificate extension.

For example, if you have a multi-homed host that supports connections to
either of the following host names:

www.iona.com
open.iona.com

You could define a subjectAltName that explicitly lists both of these DNS
host names. If you generate your certificates using the openssl utility, you
would need to edit the relevant line of your openssl.cnf configuration file
to specify the value of the subjectAltName extension, as follows:

subjectAltName=DNS:www.iona.com,DNS:open.iona.com

Where the HTTPS protocol will match either of the DNS host names listed
in the subjectAltName (the subjectAltName takes precedence over the
Common Name).

97

Special Requirements on HTTPS Certificates

The HTTPS protocol also supports the wildcard character, *, in host names.
For example, if you define the subjectAltName as follows:

subjectAltName=DNS:*.iona.com

This certificate identity would match any three-component host name in the
domain iona.com. For example, the wildcarded host name would match
either www.iona.com or open.iona.com, but not www.open.iona.com.

Warning
You must never use the wildcard character in the domain name (and
you must take care never to do this accidentally by forgetting to type
the dot, ., delimiter in front of the domain name). For example, if
you specified *iona.com, your certificate could be used on any
domain that ends in the letters iona.

For details of how to set up the openssl.cnf configuration file to generate
certificates with the subjectAltName certificate extension, see Use the CA
to Create Signed PKCS#12 Certificates on page 108 .

98

Managing Certificates

Creating Your Own Certificates
Prerequisites ... 100
Set Up Your Own CA ... 101
Use the CA to Create Signed Certificates in a Java Keystore .. 105
Use the CA to Create Signed PKCS#12 Certificates .. 108

99

Creating Your Own Certificates

Prerequisites
OpenSSL utilities

The steps described in this section are based on the OpenSSL command-line
utilities from the OpenSSL project, http://www.openssl.org—see
Appendix E on page 417 . Further documentation of the OpenSSL
command-line utilities can be obtained from http://www.openssl.org/docs.

Sample CA directory structure
For the purposes of illustration, the CA database is assumed to have the
following directory structure:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Where X509CA is the parent directory of the CA database.

100

Managing Certificates

http://www.openssl.org
http://www.openssl.org/docs

Set Up Your Own CA
Substeps to perform

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in Choosing a host for
a private certification authority on page 91 .

To set up your own CA, perform the following steps:

1. Add the bin directory to your PATH

2. Create the CA directory hierarchy

3. Copy and edit the openssl.cnf file

4. Initialize the CA database

5. Create a self-signed CA certificate and private key

Add the bin directory to your
PATH On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Create the CA directory hierarchy
Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

X509CA/ca

X509CA/certs

X509CA/newcerts

101

Set Up Your Own CA

X509CA/crl

Copy and edit the openssl.cnf file
Copy the sample openssl.cnf from your OpenSSL installation to the X509CA
directory.

Edit the openssl.cnf to reflect the directory structure of the X509CA directory
and to identify the files used by the new CA.

Edit the [CA_default] section of the openssl.cnf file to make it look like
the following:

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand
Private random number file

x509_extensions = usr_cert # The extensions to add to the
cert
...

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see The OpenSSL Configuration File on page 435 .

Initialize the CA database
In the X509CA directory, initialize two files, serial and index.txt.

Windows

> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad
at the command line in the X509CA directory, as follows:

> notepad index.txt

102

Managing Certificates

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close
Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

Note
The index.txt file must initially be completely empty, not even
containing white space.

Create a self-signed CA certificate
and private key Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config X509CA/openssl.cnf -days 365 -out
X509CA/ca/new_ca.pem -keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

103

Set Up Your Own CA

Note
The security of the CA depends on the security of the private key file
and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

104

Managing Certificates

Use the CA to Create Signed Certificates in a Java Keystore
Substeps to perform

To create and sign a certificate in a Java keystore (JKS), CertName.jks,
perform the following substeps:

1. Add the Java bin directory to your PATH

2. Generate a certificate and private key pair

3. Create a certificate signing request

4. Sign the CSR

5. Convert to PEM format

6. Concatenate the files

7. Update keystore with the full certificate chain

8. Repeat steps as required

Add the Java bin directory to your
PATH If you have not already done so, add the Java bin directory to your path:

Windows

> set PATH=JAVA_HOME\bin;%PATH%

UNIX

% PATH=JAVA_HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Generate a certificate and private
key pair Open a command prompt and change directory to KeystoreDir. Enter the

following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=IONA
Technologies PLC, ST=Co. Dublin, C=IE" -validity 365 -alias
CertAlias -keypass CertPassword -keystore CertName.jks -storepass
CertPassword

This keytool command, invoked with the -genkey option, generates an
X.509 certificate and a matching private key. The certificate and key are both
placed in a key entry in a newly created keystore, CertName.jks. Because

105

Use the CA to Create Signed Certificates in a Java
Keystore

the specified keystore, CertName.jks, did not exist before issuing the
command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created
X.509 certificate, specifying the subject DN and days before expiration
respectively. For more details about DN format, see Appendix A on page 365
.

Some parts of the subject DN must match the values in the CA certificate
(specified in the CA Policy section of the openssl.cnf file). The default
openssl.cnf file requires the following entries to match:

• Country Name (C)

• State or Province Name (ST)

• Organization Name (O)

Note
If you do not observe the constraints, the OpenSSL CA will refuse to
sign the certificate (see Sign the CSR on page 106).

Create a certificate signing
request Create a new certificate signing request (CSR) for the CertName.jks certificate:

keytool -certreq -alias CertAlias -file CertName_csr.pem -key
pass CertPassword -keystore CertName.jks -storepass CertPassword

This command exports a CSR to the file, CertName_csr.pem.

Sign the CSR
Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in Cert
Name_csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass
phrase—see Set Up Your Own CA on page 101 .

106

Managing Certificates

Note
If you want to sign the CSR using a CA certificate other than the
default CA, use the -cert and -keyfile options to specify the CA
certificate and its private key file, respectively.

Convert to PEM format
Convert the signed certificate, CertName.pem, to PEM only format:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Concatenate the files
Concatenate the CA certificate file and CertName.pem certificate file, as follows:

Windows

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

UNIX

cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

Update keystore with the full
certificate chain Update the keystore, CertName.jks, by importing the full certificate chain

for the certificate:

keytool -import -file CertName.chain -keypass CertPassword
-keystore CertName.jks -storepass CertPassword

Repeat steps as required
Repeat steps 2 to 7, creating a complete set of certificates for your system.

107

Use the CA to Create Signed Certificates in a Java
Keystore

Use the CA to Create Signed PKCS#12 Certificates
Substeps to perform

If you have set up a private CA, as described in Set Up Your Own
CA on page 101 , you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12, perform
the following substeps:

1. Add the bin directory to your PATH .

2. (Optional) Configure the subjectAltName extension .

3. Create a certificate signing request .

4. Sign the CSR .

5. Concatenate the files .

6. Create a PKCS#12 file .

7. Repeat steps as required .

8. (Optional) Clear the subjectAltName extension .

Add the bin directory to your
PATH If you have not already done so, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

(Optional) Configure the
subjectAltName extension Perform this step, if the certificate is intended for a HTTPS server whose

clients enforce an URL integrity check and you plan to deploy the server on
a multi-homed host or a host with several DNS name aliases (for example,
if you are deploying the certificate on a multi-homed Web server). In this
case, the certificate identity must match multiple host names and this can
be done only by adding a subjectAltName certificate extension (see Special
Requirements on HTTPS Certificates on page 96).

108

Managing Certificates

To configure the subjectAltName extension, edit your CA’s openssl.cnf
file as follows:

1. If not already present in your openssl.cnf file, add the following

req_extensions setting to the [req] section:

openssl Configuration File
...
[req]
req_extensions=v3_req

2. If not already present, add the [v3_req] section header. Under the

[v3_req] section, add or modify the subjectAltName setting, setting

it to the list of your DNS host names. For example, if the server host
supports the alternative DNS names, www.iona.com and

open.iona.com, you would set the subjectAltName as follows:

openssl Configuration File
...
[v3_req]
subjectAltName=DNS:www.iona.com,DNS:open.iona.com

3. Add a copy_extensions setting to the appropriate CA configuration

section. The CA configuration section used for signing certificates is
either:

• The section specified by the -name option of the openssl ca command,

or

• The section specified by the default_ca setting under the [ca]

section (usually [CA_default]).

For example, if the appropriate CA configuration section is
[CA_default], set the copy_extensions property as follows:

openssl Configuration File
...
[CA_default]
copy_extensions=copy

109

Use the CA to Create Signed PKCS#12 Certificates

This setting ensures that certificate extensions present in the certificate
signing request are copied into the signed certificate.

Create a certificate signing
request Create a new certificate signing request (CSR) for the CertName.p12 certificate:

openssl req -new -config X509CA/openssl.cnf -days 365 -out
X509CA/certs/CertName_csr.pem -keyout X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to match:

• Country Name

• State or Province Name

• Organization Name

The certificate subject DN’s Common Name is the field that is most often
used to represent the certificate owner’s identity. The Common Name must
obey the following conditions:

• The Common Name must be distinct for every certificate generated by the
OpenSSL certificate authority.

• If your HTTPS clients implement the URL integrity check, you must ensure
that the Common Name is identical to the DNS name of the host where
the certificate is to be deployed—see Special Requirements on HTTPS
Certificates on page 96 .

Note
For the purpose of the HTTPS URL integrity check, the
subjectAltName extension takes precedence over the Common
Name.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to

'X509CA/certs/CertName_pk.pem'

110

Managing Certificates

Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA

Sign the CSR
Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'IONA Technologies PLC'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT
(365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y

111

Use the CA to Create Signed PKCS#12 Certificates

Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see Set Up Your Own CA on page 101 .

Note
If you have not set copy_extensions=copy under the
[CA_default] section in the openssl.cnf file, the signed certificate
will not include any of the certificate extensions that were in the
original CSR.

Concatenate the files
Concatenate the CA certificate file, CertName.pem certificate file, and
CertName_pk.pem private key file as follows:

Windows

copy X509CA\ca\new_ca.pem + X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem > X509CA/certs/CertName_list.pem

Create a PKCS#12 file
Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

You will be prompted to enter a password to encrypt the PKCS#12 certificate.
Normally this password should be the same as the CSR password (this is
required by many certificate repositories).

Repeat steps as required
Repeat steps 3 to 6, creating a complete set of certificates for your system.

(Optional) Clear the
subjectAltName extension After you have finished generating certificates for a particular host machine,

you should probably clear the subjectAltName setting in the openssl.cnf
file to avoid accidentally assigning the wrong DNS names to another set of
certificates.

112

Managing Certificates

In the openssl.cnf file, comment out the subjectAltName setting (by
adding a # character at the start of the line) and comment out the
copy_extensions setting.

113

Use the CA to Create Signed PKCS#12 Certificates

Generating a Certificate Revocation List
Overview

This section describes how to use an OpenSSL CA to generate a certificate
revocation list (CRL). A CRL is a list of X.509 certificates that are no longer
considered to be valid. You can deploy a CRL file to a secure application, so
that the application automatically rejects certificates that appear in the list.

For details about how to deploy a CRL file, see Specifying a Certificate
Revocation List on page 136.

Relationship between a CA and a
CRL In order to generate a certificate revocation list, it is not sufficient simply to

assemble a list of certificates that you would like to revoke. The CA, just as
it is responsible for creating and signing certificates, is also responsible for
revoking certificates. When you decide to revoke a certificate, you must inform
the CA, which records this fact in its database.

After revoking certificates, you can ask the CA to generate a signed certificate
revocation list.

Steps to revoke certificates
To generate a certificate revocation list, perform the following steps:

• Step 1—Add the OpenSSL bin directory to your path on page ? .

• Step 2—Revoke certificates on page ? .

• Step 3—Generate the CRL file on page ? .

• Step 4—Check the CRL file on page ? .

Step 1—Add the OpenSSL bin
directory to your path On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Revoke certificates
To add a certificate, CertName.pem, to the revocation list, enter the following
command:

114

Managing Certificates

openssl ca -config X509CA/openssl.cnf -revoke
X509CA/certs/CertName.pem

The command prompts you for the CA pass phrase and then revokes the
certificate:

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:
DEBUG[load_index]: unique_subject = "yes"
Adding Entry with serial number 02 to DB for /C=IE/ST=Dub
lin/O=IONA/CN=bad_guy
Revoking Certificate 02.
Data Base Updated

Repeat this step as many times as necessary to add certificates to the CA’s
revocation list.

Note
If you get the following error while attempting to revoke a certificate:

unable to rename C:/temp/artix_40/X509CA/index.txt to
C:/temp/artix_40/X509CA/index.txt.old

reason: File exists

Simply delete index.txt.old and then try the command again.

Step 3—Generate the CRL file
To generate a PEM file, crl.pem, containing the CA’s complete certificate
revocation list, enter the following command:

openssl ca -config X509CA/openssl.cnf -gencrl -out crl/crl.pem

The command prompts you for the CA pass phrase and then generates the
crl.pem file:

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:
DEBUG[load_index]: unique_subject = "yes"

Step 4—Check the CRL file
Check the contents of the CRL file by converting it to plain text format, using
the following command:

115

Generating a Certificate Revocation List

openssl crl -in crl/crl.pem -text

For a single revoked certificate with serial number 02 (that is, the second
certificate in the OpenSSL CA’s database), the output of this command would
look something like the following:

Certificate Revocation List (CRL):
Version 1 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: /C=IE/ST=Dublin/O=IONA/CN=CA_for_CRL
Last Update: Feb 15 10:47:40 2006 GMT
Next Update: Mar 15 10:47:40 2006 GMT
Revoked Certificates:
Serial Number: 02
Revocation Date: Feb 15 10:45:05 2006 GMT
Signature Algorithm: md5WithRSAEncryption
69:3e:55:8a:20:a0:57:d2:36:79:f0:34:bb:73:65:1e:1c:a9:
40:35:8d:c4:e6:b9:77:fd:2b:1f:a8:26:0c:7a:fb:30:67:7f:
6a:13:74:58:b9:e2:88:e7:ad:c5:d2:62:48:6b:1e:f6:10:0d:
45:cc:11:cb:6b:48:28:e2:78:ad:f0:cf:fd:d6:57:78:f2:aa:
19:8b:bc:62:79:9b:90:f7:18:ba:96:dc:7b:a5:b4:d5:bf:0f:
e8:5e:71:89:4b:38:8c:f8:75:17:dd:ba:74:f1:01:e0:48:d0:
e4:f4:dd:ea:47:32:8b:70:5e:1d:9a:4a:88:41:ba:bf:b2:39:
ce:32
-----BEGIN X509 CRL-----
MIIBHTCBhzANBgkqhkiG9w0BAQQFADBCMQswCQYDVQQGEwJJRTEPMA0GA1UECB
MG
RHVibGluMQ0wCwYDVQQKEwRJT05BMRMwEQYDVQQDFApDQV9mb3JfQ1JMFw0wN
jAy
MTUxMDQ3NDBaFw0wNjAzMTUxMDQ3NDBaMBQwEgIBAhcNMDYw
MjE1MTA0NTA1WjAN
BgkqhkiG9w0BAQQFAAOBgQBpPlWKIKBX0jZ58DS7c2UeHKlANY3E5rl3/Ss
fqCYM
evswZ39qE3RYueKI563F0mJI
ax72EA1FzBHLa0go4nit8M/91ld48qoZi7xieZuQ
9xi6ltx7pbTVvw/oXnGJSziM+HUX3bp08QHg
SNDk9N3qRzKLcF4dmkqIQbq/sjnO
Mg==
-----END X509 CRL-----

116

Managing Certificates

Configuring HTTPS and IIOP/TLS
This chapter describes how to configure HTTPS and IIOP/TLS endpoints.

Authentication Alternatives ... 118
Target-Only Authentication ... 119
Mutual Authentication ... 122

Specifying Trusted CA Certificates .. 125
When to Deploy Trusted CA Certificates ... 126
Specifying Trusted CA Certificates for HTTPS .. 127
Specifying Trusted CA Certificates for IIOP/TLS .. 129

Specifying an Application’s Own Certificate ... 131
Deploying Own Certificate for HTTPS .. 132
Deploying Own Certificate for IIOP/TLS .. 134

Specifying a Certificate Revocation List .. 136

117

Authentication Alternatives
Target-Only Authentication ... 119
Mutual Authentication ... 122

118

Configuring HTTPS and IIOP/TLS

Target-Only Authentication
Overview

When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 14 on page 119 .

Figure 14. Target Authentication Only

Security handshake
Prior to running the application, the client and server should be set up as
follows:

• A certificate chain is associated with the server—the certificate chain is
provided either in the form of a Java keystore. See Specifying an
Application’s Own Certificate on page 131 .

• One or more lists of trusted certification authorities (CA) are made
available to the client—see Specifying Trusted CA Certificates on page 125
.

During the security handshake, the server sends its certificate chain to the
client—see Figure 14 on page 119 . The client then searches its trusted CA

119

Target-Only Authentication

lists to find a CA certificate that matches one of the CA certificates in the
server’s certificate chain.

HTTPS example
On the client side, there are no policy settings required for target-only
authentication. Simply configure your client without associating an X.509
certificate with the HTTPS port. You do need to provide the client with a list
of trusted CA certificates, however—see Specifying Trusted CA
Certificates on page 125 .

On the server side, in the server’s XML configuration file, ensure that the
sec:clientAuthentication element does not require client authentication.
This element can be omitted, in which case the default policy is not to require
client authentication. If the sec:clientAuthentication element is present,
however, it should be configured as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>
...

<sec:clientAuthentication want="false" required="false"/>
</http:tlsServerParameters>

</http:destination>

Where the want attribute is set to false (the default), specifying that the
server does not request an X.509 certificate from the client during a TLS
handshake. The required attribute is also set to false (the default),
specifying that the absence of a client certificate does not trigger an exception
during the TLS handshake.

Note
As a matter of fact, the want attribute could be set either to true
or to false. If true, the want setting causes the server to request
a client certificate during the TLS handshake, but no exception would
be raised for clients lacking a certificate, so long as the required
attribute is false.

It is also necessary to associate an X.509 certificate with the server’s HTTPS
port (see Specifying an Application’s Own Certificate on page 131) and to
provide the server with a list of trusted CA certificates, however (see Specifying
Trusted CA Certificates on page 125).

120

Configuring HTTPS and IIOP/TLS

Note
The choice of cipher suite can potentially affect whether or not
target-only authentication is supported—see on page 139.

IIOP/TLS example
The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =
["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
// Specify server invocation policies
policies:iiop_tls:target_secure_invocation_policy:requires
= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering"];
policies:iiop_tls:target_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInTarget"];
...
// Specify server’s own certificate (not shown)
...

};

bank_client
{
// Specify client invocation policies
policies:iiop_tls:client_secure_invocation_policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInTarget"];
...
// Specify client’s trusted CA certs (not shown)
...

};

Note
If using the Java runtime, you must first associate the client or server
with a configuration file—see Appendix D on page 411 for details.

121

Target-Only Authentication

Mutual Authentication
Overview

When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the target.
This scenario is illustrated in Figure 15 on page 122 . In this case, the server
and the client each require an X.509 certificate for the security handshake.

Figure 15. Mutual Authentication

Security handshake
Prior to running the application, the client and server should be set up as
follows:

• Both client and server have an associated certificate chain—see Specifying
an Application’s Own Certificate on page 131 .

• Both client and server are configured with lists of trusted certification
authorities (CA)—see Specifying Trusted CA Certificates on page 125 .

122

Configuring HTTPS and IIOP/TLS

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see
Figure 14 on page 119 .

HTTPS example
On the client side, there are no policy settings required for mutual
authentication. Simply associate an X.509 certificate with the client’s HTTPS
port—see Specifying an Application’s Own Certificate on page 131 . You also
need to provide the client with a list of trusted CA certificates—see Specifying
Trusted CA Certificates on page 125 .

On the server side, in the server’s XML configuration file, ensure that the
sec:clientAuthentication element is configured to require client
authentication, as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>
...
<sec:clientAuthentication want="true" required="true"/>

</http:tlsServerParameters>
</http:destination>

Where the want attribute is set to true, specifying that the server requests
an X.509 certificate from the client during a TLS handshake. The required
attribute is also set to true, specifying that the absence of a client certificate
would trigger an exception during the TLS handshake.

It is also necessary to associate an X.509 certificate with the server’s HTTPS
port (see Specifying an Application’s Own Certificate on page 131) and to
provide the server with a list of trusted CA certificates, however (see Specifying
Trusted CA Certificates on page 125).

Note
The choice of cipher suite can potentially affect whether or not mutual
authentication is supported—see on page 139.

IIOP/TLS example
The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

123

Mutual Authentication

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =
["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
// Specify server invocation policies
policies:iiop_tls:target_secure_invocation_policy:requires
= ["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];
policies:iiop_tls:target_secure_invocation_policy:supports
= ["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

...
// Specify server’s own certificate (not shown)
...
// Specify server’s trusted CA certs (not shown)
...

};

secure_client_with_cert
{
// Specify client invocation policies
policies:iiop_tls:client_secure_invocation_policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInClient", "EstablishTrustInTarget"];

...
// Specify client’s own certificate (not shown)
...
// Specify client’s trusted CA certs (not shown)
...

};

Note
If using the Java runtime, you must first associate the client or server
with a configuration file—see Appendix D on page 411 for details.

124

Configuring HTTPS and IIOP/TLS

Specifying Trusted CA Certificates
When to Deploy Trusted CA Certificates ... 126
Specifying Trusted CA Certificates for HTTPS .. 127
Specifying Trusted CA Certificates for IIOP/TLS .. 129

125

Specifying Trusted CA Certificates

When to Deploy Trusted CA Certificates
Overview

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to
specify trusted CA certificates? Any application that is likely to receive an X.509 certificate as part of an

HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

• All IIOP/TLS or HTTPS clients.

• Any IIOP/TLS or HTTPS servers that support mutual authentication.

126

Configuring HTTPS and IIOP/TLS

Specifying Trusted CA Certificates for HTTPS
CA certificate format

CA certificates must be provided in Java keystore format.

CA certificate deployment in the
Artix ESB configuration file To deploy one or more trusted root CAs for the HTTPS transport perform the

following steps:

1. Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see Set Up
Your Own CA on page 101). The trusted CA certificates can be in any
format that is compatible with the Java keystore utility—for example,

PEM format. All you need are the certificates themselves—the private
keys and passwords are not required.

2. Given a CA certificate, cacert.pem, in PEM format, you can add the

certificate to a JKS truststore (or create a new truststore) by entering the
following command:

keytool -import -file cacert.pem -alias CAAlias -keystore
truststore.jks -storepass StorePass

Where CAAlias is a convenient tag that enables you to access this
particular CA certificate using the keytool utility. The file,
truststore.jks, is a keystore file containing CA certificates—if this
file does not already exist, the keytool utility will create it. The
StorePass password provides access to the keystore file,
truststore.jks.

3. Repeat step 2 as necessary, to add all of the CA certificates to the
truststore file, truststore.jks.

4. Edit the relevant XML configuration files to specify the location of the
truststore file. You need to include the sec:trustManagers element in

the configuration of the relevant HTTPS ports.

For example, you would configure a client port as follows:

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>
...
<sec:trustManagers>

127

Specifying Trusted CA Certificates for HTTPS

<sec:keyStore type="JKS"
password="StorePass"
file="certs/truststore.jks"/>

</sec:trustManagers>
...

</http:tlsClientParameters>
</http:conduit>

Where the type attribute specifes that the truststore uses the JKS
keystore implementation and StorePass is the password needed to
access the truststore.jks keystore.

Configure a server port as follows:

<!-- Server port configuration -->
<http:destination id="{Namespace}PortName.http-destination">

<http:tlsServerParameters>
...
<sec:trustManagers>
<sec:keyStore type="JKS"

password="StorePass"
file="certs/truststore.jks"/>

</sec:trustManagers>
...

</http:tlsServerParameters>
</http:destination>

Warning
The directory containing the truststores (for example,
X509Deploy/truststores/) should be a secure directory (that
is, writable only by the administrator).

128

Configuring HTTPS and IIOP/TLS

Specifying Trusted CA Certificates for IIOP/TLS
CA certificate format

CA certificates must be provided in Privacy Enhanced Mail (PEM) format.

CA certificate deployment in the
Artix configuration file To deploy one or more trusted root CAs for the IIOP/TLS transport, perform

the following steps (the procedure for client and server applications is the
same):

1. Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see Set Up
Your Own CA on page 101). The trusted CA certificates should be in PEM
format. All you need are the certificates themselves—the private keys and
passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For example,
you might create three CA list files as follows:

trusted_ca_lists/ca_list01.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

Each CA list file consists of a concatenated list of CA certificates in PEM
format. A CA list file can be created using a simple file concatenation
operation. For example, if you have two CA certificate files, ca_cert01.pem
and ca_cert02.pem, you could combine them into a single CA list file,
ca_list01.pem, with the following command:

Windows
copy X509CA\ca\ca_cert01.pem + X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

UNIX
cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>
X509Deploy/trusted_ca_lists/ca_list01.pem

The CA certificates are organized as lists as a convenient way of grouping
related CA certificates together.

3. Edit the Artix configuration file to specify the locations of the CA list files
to be used by your application. For example, the default Artix configuration
file is located in the following directory:

129

Specifying Trusted CA Certificates for IIOP/TLS

ArtixInstallDir/cxx_java/etc/domains

To specify the CA list files, go to your application’s configuration scope in
the Artix configuration file and edit the value of the
policies:iiop_tls:trusted_ca_list_policy configuration variable
for the IIOP/TLS transport.

Note
If using the Java runtime, you must first associate the client or
server with a configuration file—see Appendix D on page 411 for
details.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_list01.pem and ca_list02.pem files, edit the
Artix configuration file as follows:

Artix configuration file.
...
SecureAppScope {

...
policies:iiop_tls:trusted_ca_list_policy = ["X509De

ploy/trusted_ca_lists/ca_list01.pem", "X509Deploy/trus
ted_ca_lists/ca_list02.pem"];

...
};

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Note
If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted
CA certificates must be provided. If not, a NO_RESOURCES exception
is raised.

130

Configuring HTTPS and IIOP/TLS

Specifying an Application’s Own Certificate
Deploying Own Certificate for HTTPS .. 132
Deploying Own Certificate for IIOP/TLS .. 134

131

Specifying an Application’s Own Certificate

Deploying Own Certificate for HTTPS
Overview

When working with the HTTPS transport the application's certificate is
deployed using the XML configuration file.

Procedure
To deploy an application’s own certificate for the HTTPS transport, perform
the following steps:

1. Obtain an application certificate in Java keystore format, CertName.jks.

For instructions on how to create a certificate in Java keystore format,
see Use the CA to Create Signed Certificates in a Java
Keystore on page 105.

Note
Some HTTPS clients (for example, Web browsers) perform an
URL integrity check, which requires a certificate’s identity to
match the hostname on which the server is deployed. See
Appendix D on page 411 for details.

2. Copy the certificate’s keystore, CertName.jks, to the certificates

directory—for example, X509Deploy/certs—on the deployment host.

The certificates directory should be a secure directory that is writable
only by administrators and other privileged users.

3. Edit the relevant XML configuration file to specify the location of the
certificate keystore, CertName.jks. You need to include the

sec:keyManagers element in the configuration of the relevant HTTPS

ports.

For example, you would configure a client port as follows:

<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>
...
<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"

password="KeystorePassword"
file="certs/CertName.jks"/>

</sec:keyManagers>
...

132

Configuring HTTPS and IIOP/TLS

</http:tlsClientParameters>
</http:conduit>

Where the keyPassword attribute specifies the password needed to
decrypt the certificate’s private key (that is, CertPassword), the type
attribute specifes that the truststore uses the JKS keystore
implementation, and the password attribute specifies the password
needed to access the CertName.jks keystore (that is,
KeystorePassword).

Configure a server port as follows:

<http:destination id="{Namespace}PortName.http-destination">

<http:tlsServerParameters>
...
<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"

password="KeystorePassword"
file="certs/CertName.jks"/>

</sec:keyManagers>
...

</http:tlsServerParameters>
</http:destination>

Warning
The directory containing the application certificates (for example,
X509Deploy/certs/) should be a secure directory (that is,
readable and writable only by the administrator).

Warning
The directory containing the XML configuration file should be a
secure directory (that is, readable and writable only by the
administrator), because the configuration file contains passwords
in plain text.

133

Deploying Own Certificate for HTTPS

Deploying Own Certificate for IIOP/TLS
Own certificate deployment in the
Artix configuration file To deploy an Artix application’s own certificate, CertName.p12, for the

IIOP/TLS transport, perform the following steps:

1. Copy the application certificate, CertName.p12, to the certificates

directory—for example, X509Deploy/certs/applications—on the

deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the Artix configuration file.

Note
If using the Java runtime, you must first associate the client or
server with a configuration file—see Appendix D on page 411 for
details.

Given that your application picks up its configuration from the
SecureAppScope scope, change the principal sponsor configuration to
specify the CertName.p12 certificate, as follows:

Artix configuration file
...
SecureAppScope {
...
principal_sponsor:iiop_tls:use_principal_sponsor = "true";

principal_sponsor:iiop_tls:auth_method_id = "pkcs12_file";

principal_sponsor:iiop_tls:auth_method_data = ["file
name=X509Deploy/certs/applications/CertName.p12"];
};

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. Other alternatives for supplying the certificate pass
phrase are, as follows:

• In a password file—you can specify the location of a password file that
contains the certificate pass phrase by setting the password_file option

134

Configuring HTTPS and IIOP/TLS

in the principal_sponsor:auth_method_data configuration setting.

For example:

principal_sponsor:auth_method_data = ["filename=X509De
ploy/certs/applications/CertName.p12", "password_file=X509De
ploy/certs/CertName.pwf"];

Warning
Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator.

• Directly in configuration—you can specify the certificate pass phrase
directly in configuration by setting the password option in the

principal_sponsor:auth_method_data configuration setting. For

example:

principal_sponsor:auth_method_data = ["filename=X509De
ploy/certs/applications/CertName.p12", "password=Cert
NamePass"];

Warning
If the pass phrase is stored directly in configuration, the Artix
configuration file should not be readable by anyone except the
administrator.

135

Deploying Own Certificate for IIOP/TLS

Specifying a Certificate Revocation List
Overview

Occasionally, it can happen that the security of an X.509 certificate is
compromised or you might want to invalidate a certificate, because the owner
of the certificate no longer enjoys the same security privileges as before. In
either of these cases, it is useful to generate and deploy a certificate revocation
list (CRL). A CRL is a list of X.509 certificates that are no longer valid. When
you deploy a CRL file to a secure application, the application automatically
rejects the certificates that appear in the list.

Revoking CA certificates
You can also revoke a CA certificate, in which case all of the certificates signed
by the CA are implicitly revoked as well.

Configuring certificate revocation
Example 15 on page 136 shows how to configure an application to use a CRL
file.

Example 15. Configuration of a CRL

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:asec="http://cxf.iona.com/security/rt/configura

tion"
xmlns:csec="http://cxf.apache.org/configuration/secur

ity"
xmlns:http="http://cxf.apache.org/transports/http/con

figuration"
xmlns:httpj="http://cxf.apache.org/transports/http-

jetty/configuration"
xmlns:jaxws="http://cxf.apache.org/jaxws"
... >

...
1 on page 137 <jaxws:endpoint

name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

2 on page 137 <jaxws:inInterceptors>
<ref bean="MyCRLTrustInterceptor"/>

</jaxws:inInterceptors>
</jaxws:endpoint>
...

3 on page 137 <asec:crlTrustInterceptor name="MyCRLTrustInter
ceptor">
4 on page 137 <asec:crls file="certs/ca.crl"/>
</asec:crlTrustInterceptor>

136

Configuring HTTPS and IIOP/TLS

...
</beans>

The preceding configuration can be explained as follows:

1. The configuration settings in the jaxws:endpoint element are applied to

the endpoint identified by the QName,
{http://apache.org/hello_world_soap_http}SoapPort.

2. The jaxws:inInterceptor element installs an interceptor to the incoming

handler chain. The referenced interceptor, MyCRLTrustInterceptor, will

intercept all incoming request messages directed at the current endpoint.

3. The asec:crlTrustInterceptor element defines the bean that is

referenced from the jaxws:inInterceptors element.

4. The file attribute of the asec:crls element is used to specify the location

of the CRL file.

Format of the CRL file
The CRL file must be in a PEM format.

Sources of CRL files
You can obtain a CRL file from one of the following sources:

• Commercial CAs on page ? .

• OpenSSL CA on page ? .

Commercial CAs
If you use a commercial CA to manage your certificates, simply ask the CA
to generate the CRL file for you.

It is unlikely, however, that the CA will provide the CRL file in the requisite
PEM format (the PEM format is proprietary to the OpenSSL product). To
convert a CRL file, crl.der, from DER format to PEM format, use the
following openssl command:

openssl crl -inform DER -outform PEM -in crl.der -out crl.pem

137

Specifying a Certificate Revocation List

Where crl.pem is the converted PEM format file.

OpenSSL CA
If you use the OpenSSL product to manage a custom CA, you can generate
a CRL file by following the instructions in Generating a Certificate Revocation
List on page 114.

Creating an aggregate CRL file
If you need to revoke certificates from more than one CA, you can create an
aggregate CRL file simply by concatenating the CRL files from each CA.

For example, if you have a CRL file generated by a commercial CA,
commercial_crl.pem, and another CRL file generated by a home-grown
OpenSSL CA, openssl_crl.pem, you can combine these into a single CRL
file as follows:

Windows
copy commercial_crl.pem + openssl_crl.pem crl.pem

UNIX
cat commercial_crl.pem openssl_crl.pem > crl.pem

138

Configuring HTTPS and IIOP/TLS

Configuring HTTPS Cipher Suites
This chapter explains how to specify the list of cipher suites that are made available to client or server program
for the purpose of establishing HTTPS connections. During a security handshake, the client chooses a cipher
suite that matches one of the cipher suites available to the server.

Supported Cipher Suites .. 140
Cipher Suite Filters ... 142
SSL/TLS Protocol Version ... 145

139

Supported Cipher Suites
Overview

A cipher suite is a collection of security algorithms that determine precisely
how an SSL/TLS connection is implemented.

For example, the SSL/TLS protocol mandates that messages be signed using
a message digest algorithm. The choice of digest algorithm, however, is
determined by the particular cipher suite being used for the connection.
Typically, an application can choose either the MD5 or the SHA digest
algorithm.

The cipher suites available for SSL/TLS security in Artix ESB depend on the
particular JSSE provider that is specified on the endpoint.

JCE/JSSE and security providers
The Java Cryptography Extension (JCE) and the Java Secure Socket Extension
(JSSE) constitute a pluggable framework that allows you to replace the Java
security implementation with arbitrary third-party toolkits, known as security
providers.

SunJSSE provider
In practice, the security features of Artix ESB have been tested only with
SUN’s JSSE provider, which is named SunJSSE.

Hence, the SSL/TLS implementation and the list of available cipher suites in
Artix ESB are effectively determined by what is available from SUN’s JSSE
provider.

Cipher suites supported by
SunJSSE The following cipher suites are supported by SUN’s JSSE provider in the J2SE

1.5.0 Java development kit (see also Appendix A1 of SUN’s JSSE Reference
Guide):

• Standard ciphers:

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA

1 http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

140

Configuring HTTPS Cipher Suites

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
TLS_KRB5_EXPORT_WITH_RC4_40_MD5
TLS_KRB5_EXPORT_WITH_RC4_40_SHA
TLS_KRB5_WITH_3DES_EDE_CBC_MD5
TLS_KRB5_WITH_3DES_EDE_CBC_SHA
TLS_KRB5_WITH_DES_CBC_MD5
TLS_KRB5_WITH_DES_CBC_SHA
TLS_KRB5_WITH_RC4_128_MD5
TLS_KRB5_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

• Null encryption, integrity-only ciphers:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA

• Anonymous Diffie-Hellman ciphers (no authentication):

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA

JSSE reference guide
For more information about SUN’s JSSE framework, please consult the JSSE
Reference Guide at the following location:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

141

Supported Cipher Suites

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Cipher Suite Filters
Overview

In a typical application, you would usually want to restrict the list of available
cipher suites to a subset of the ciphers supported by the JSSE provider.

Namespaces
Table 1 on page 142 shows the XML namespaces that are referenced in this
section:

Table 1. Namespaces Used for Configuring Cipher Suite Filters

Namespace URIPrefix

http://cxf.apache.org/transports/http/configurationhttp

http://cxf.apache.org/transports/http-jetty/configurationhttpj

http://cxf.apache.org/configuration/securitysec

sec:cipherSuitesFilter element
You define a cipher suite filter using the sec:cipherSuitesFilter element,
which can be a child of either a http:tlsClientParameters element or a
httpj:tlsServerParameters element. A typical sec:cipherSuitesFilter
element has the outline structure shown in Example 16 on page 142 .

Example 16. Structure of a sec:cipherSuitesFilter Element

<sec:cipherSuitesFilter>
<sec:include>RegularExpression</sec:include>
<sec:include>RegularExpression</sec:include>
...
<sec:exclude>RegularExpression</sec:exclude>
<sec:exclude>RegularExpression</sec:exclude>
...

</sec:cipherSuitesFilter>

Semantics
The following semantic rules apply to the sec:cipherSuitesFilter element:

1. If a sec:cipherSuitesFilter element does not appear in an endpoint’s

configuration (that is, it is absent from the relevant http:conduit or

httpj:engine-factory element), the following default filter is used:

<sec:cipherSuitesFilter>
<sec:include>.*_EXPORT_.*</sec:include>

142

Configuring HTTPS Cipher Suites

<sec:include>.*_EXPORT1024.*</sec:include>
<sec:include>.*_DES_.*</sec:include>
<sec:include>.*_WITH_NULL_.*</sec:include>

</sec:cipherSuitesFilter>

2. If the sec:cipherSuitesFilter element does appear in an endpoint’s

configuration, all cipher suites are excluded by default.

3. To include cipher suites, add a sec:include child element to the

sec:cipherSuitesFilter element. The content of the sec:include

element is a regular expression that matches one or more cipher suite
names (for example, see the cipher suite names in Cipher suites supported
by SunJSSE on page ?).

4. To refine the selected set of cipher suites further, you can add a
sec:exclude element to the sec:cipherSuitesFilter element. The

content of the sec:exclude element is a regular expression that matches

zero or more cipher suite names from the currently included set.

Note
Sometimes it makes sense to explicitly exclude cipher suites that
are currently not included, in order to future-proof against
accidental inclusion of undesired cipher suites.

Regular expression matching
The grammar for the regular expressions that appear in the sec:include
and sec:exclude elements is defined by the Java regular expression utility,
java.util.regex.Pattern. For a detailed description of the grammar,
please consult the Java reference guide, http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html.

Client conduit example
The following XML configuration shows an example of a client that applies a
cipher suite filter to the remote endpoint, {WSDLPortNamespace}PortName.
Whenever the client attempts to open an SSL/TLS connection to this endpoint,
it restricts the available cipher suites to the set selected by the
sec:cipherSuitesFilter element.

<beans ... >
<http:conduit name="{WSDLPortNamespace}PortName.http-conduit">

143

Cipher Suite Filters

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

<http:tlsClientParameters>
...
<sec:cipherSuitesFilter>
<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>

</http:conduit>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

144

Configuring HTTPS Cipher Suites

SSL/TLS Protocol Version
Overview

The versions of the SSL/TLS protocol that are supported by Artix ESB depend
on the particular JSSE provider configured. By default, the JSSE provider is
configured to be SUN’s JSSE provider implementation.

SSL/TLS protocol versions
supported by SunJSSE Table 2 on page 145 shows the SSL/TLS protocol versions supported by SUN’s

JSSE provider.

Table 2. SSL/TLS Protocols Supported by SUN’s JSSE Provider

DescriptionProtocol

Supports some version of SSL; may support other versionsSSL

Supports SSL version 2 or higherSSLv2

Supports SSL version 3; may support other versionsSSLv3

Supports some version of TLS; may support other versionsTLS

Supports TLS version 1; may support other versionsTLSv1

Specifying the SSL/TLS protocol
version You can specify the preferred SSL/TLS protocol version as an attribute on the

http:tlsClientParameters element (client side) or on the
httpj:tlsServerParameters element (server side).

Client side SSL/TLS protocol
version You can specify the protocol to be TLS on the client side by setting the

secureSocketProtocol attribute as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
...
<http:conduit name="{Namespace}PortName.http-conduit">
...
<http:tlsClientParameters secureSocketProtocol="TLS">
...
</http:tlsClientParameters>

</http:conduit>
...

</beans>

Server side SSL/TLS protocol
version You can specify the protocol to be TLS on the server side by setting the

secureSocketProtocol attribute as follows:

145

SSL/TLS Protocol Version

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
...
<httpj:engine-factory bus="cxf">
<httpj:engine port="9001">
...
<httpj:tlsServerParameters secureSocketProtocol="TLS">
...

</httpj:tlsClientParameters>
</httpj:engine>

</httpj:engine-factory>
...

</beans>

146

Configuring HTTPS Cipher Suites

Part III. The Artix Security Service
The Artix security service is the central element of the security infrastructure that provides authentication and
authorization features in Artix security.

Configuring Servers to Support Authentication ... 151
Connecting to the Artix Security Service ... 152
Configuring Authentication Using WS-Policy ... 153

Introduction to WS-Policy ... 154
Policy Expressions .. 157
ISFAuthenticationPolicy Policy ... 162
ACLAuthorizationPolicy Policy ... 165

Configuring Authentication—Old Method ... 167
Managing Users, Roles and Domains ... 175

Introduction to Domains and Realms .. 176
Artix Authentication Domains .. 177
Artix Authorization Realms ... 180

Managing a File Authentication Domain ... 184
Managing an LDAP Authentication Domain .. 189

Managing Access Control Lists .. 191
Overview of Artix ACL Files ... 192
ACL File Format ... 193
Generating ACL Files ... 196
Deploying ACL Files .. 199

Configuring the Artix Security Service .. 201
Configuring the Security Service ... 202
Configuring the File Adapter .. 209
Configuring the LDAP Adapter ... 211
Configuring the Kerberos Adapter ... 215

Overview of Kerberos Configuration .. 216
Configuring the Adapter Properties ... 218
Configuring JAAS Login Properties .. 221

Clustering and Federation ... 225
Federating the Artix Security Service ... 226

149

150

Configuring Servers to Support
Authentication
This chapter describes how to connect an Artix server (Java runtime) to the Artix security service and enable
authentication and authorization on the server’s endpoints.

Connecting to the Artix Security Service ... 152
Configuring Authentication Using WS-Policy ... 153

Introduction to WS-Policy ... 154
Policy Expressions .. 157
ISFAuthenticationPolicy Policy ... 162
ACLAuthorizationPolicy Policy ... 165

Configuring Authentication—Old Method ... 167

151

Connecting to the Artix Security Service
Overview

The first step to securing an Artix server with the security service is to configure
a secure HTTPS connection between the Artix server and the security service.
Figure 16 on page 152 shows an overview of the server’s connection to the
security service.

Figure 16. Overview of Connecting to the Security Service

The server communicates with the security service using the SOAP binding
and the HTTPS protocol. Connections to the security service are automatically
opened by a security handler in the Artix server. First, the handler downloads
the security service WSDL contract by querying the security service's WSDL
publish port. Next, the handler connects to the Web services exposed by the
security service, using the addresses from the downloaded WSDL contract.

Configuring a connection to the
security service A detailed example of how to configure a secure HTTPS connection between

an Artix server and the security service is given in Server-to-Security Server
Connection on page 28. For additional information on how to customize the
SSL/TLS layer, see Part II on page 81.

152

Configuring Servers to Support Authentication

Configuring Authentication Using WS-Policy
Introduction to WS-Policy ... 154
Policy Expressions .. 157
ISFAuthenticationPolicy Policy ... 162
ACLAuthorizationPolicy Policy ... 165

153

Configuring Authentication Using WS-Policy

Introduction to WS-Policy
Overview

The WS-Policy specification1 provides a general framework for applying policies
that modify the semantics of connections and communications at runtime in
a Web services application. Artix security uses the WS-Policy framework to
configure authentication and authorization requirements on the server side
of JAX-WS applications.

Policies and policy references
The simplest way to specify a policy is to embed it directly where you want
to apply it. For example, to associate a policy with a specific JAX-WS endpoint
in Spring configuration, you can specify it as follows:

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.org/ns/ws-policy" ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:Policy>
<!-- Policy expression comes here ... --

>
</wsp:Policy>

</cxfp:policies>
</jaxws:features>

</jaxws:endpoint>
...

</beans>

An alternative way to specify a policy is to insert a policy reference element,
wsp:PolicyReference, at the point where you want to apply the policy and
then insert the policy element, wsp:Policy, at some other point in the XML
file. For example, to associate a policy with a JAX-WS endpoint using a policy
reference, you could use a configuration like the following:

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

1 http://www.w3.org/TR/ws-policy/

154

Configuring Servers to Support Authentication

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

200401-wss-wssecurity-utility-1.0.xsd" ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:PolicyReference URI="#PolicyID"/>
</cxfp:policies>

</jaxws:features>
</jaxws:endpoint>
...
<wsp:Policy wsu:Id="PolicyID">

<!-- Policy expression comes here ... -->
</wsp:Policy>

</beans>

Where the policy reference, wsp:PolicyReference, locates the referenced
policy using the ID, PolicyID (note the addition of the # prefix character in
the URI attribute). The policy itself, wsp:Policy, must be identified by adding
the attribute, wsu:Id="PolicyID".

Policy subjects
The entities with which policies are associated are called policy subjects. For
example, you could associate a policy with a JAX-WS endpoint. In that case,
the JAX-WS endpoint is the policy subject. The WS-Policy framework supports
a variety of different policy subjects in the context of the Artix Java runtime.

Associating a policy with a single
endpoint You can associate a policy with a single JAX-WS endpoint as shown in the

following example. The recommended approach is to use a policy reference.

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd" ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:PolicyReference URI="#PolicyID"/>
</cxfp:policies>

</jaxws:features>
</jaxws:endpoint>
...
<wsp:Policy wsu:Id="PolicyID">

<!-- Policy expression comes here ... -->

155

Introduction to WS-Policy

</wsp:Policy>

</beans>

156

Configuring Servers to Support Authentication

Policy Expressions
Overview

In general, a wsp:Policy element is composed of multiple different policy
settings (where individual policy settings are specified as policy assertions).
Hence, the policy defined by a wsp:Policy element is really a composite
object. The content of the wsp:Policy element is called a policy expression,
where the policy expression consists of various logical combinations of the
basic policy assertions. By tailoring the syntax of the policy expression, you
can determine what combinations of policy assertions must be satisfied at
runtime in order to satisfy the policy overall.

This section describes the syntax and semantics of policy expressions in detail.

Policy assertions
Policy assertions are the basic building blocks that can be combined in various
ways to produce a policy. A policy assertion has two key characteristics: it
adds a basic unit of functionality to the policy subject and it represents a
boolean assertion to be evaluated at runtime. For example, consider the
following policy assertion for performing HTTPS Basic Authentication:

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="HTTP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>

Where the itsec:ISFAuthenticationPolicy element represents the policy
assertion and the attributes of itsec:CredentialSource identify the
authentication type to be HTTP Basic Authentication. When associated with
a JAX-WS endpoint, this policy assertion has the following effects:

• The JAX-WS endpoint unmarshals the HTTP Basic Authentication
credentials and tests their authenticity by calling out to the security service.

• At runtime, the policy assertion returns true, if HTTP Basic Authentication

credentials are present in the incoming request and the credentials are
authentic; otherwise the policy assertion returns false.

Note that if a policy assertion returns false, this does not necessarily result
in an error. The net effect of a particular policy assertion depends on how it
is inserted into a policy and on how it is combined with other policy assertions.

Policy alternatives
A policy is built up using policy assertions, which can additionally be qualified
using the wsp:Optional attribute, and various nested combinations of the

157

Policy Expressions

wsp:All and wsp:ExactlyOne elements. The net effect of composing these
elements is to produce a range of acceptable policy alternatives. As long as
one of these acceptable policy alternatives is satisfied, the overall policy is
also satisified (evaluates to true).

wsp:All element
When a list of policy assertions is wrapped by the wsp:All element, all of
the policy assertions in the list must evaluate to true. For example, consider
the following combination of authentication and authorization policy assertions:

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">

<wsp:All>
<itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:All>

</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if the
following conditions both hold:

• WS-Security username/password credentials must be present and authentic;
and

• The authenticated user must have permission to invoke the requested
operation (where the permission is checked using the specified ACL file).

Note
The wsp:Policy element is semantically equivalent to wsp:All.
Hence, if you removed the wsp:All element from the preceding
example, you would obtain a semantically equivalent example—see
Example 23 on page 165.

wsp:ExactlyOne element
When a list of policy assertions is wrapped by the wsp:ExactlyOne element,
at least one of the policy assertions in the list must evaluate to true. The
runtime goes through the list, evaluating policy assertions until it finds a policy

158

Configuring Servers to Support Authentication

assertion that returns true. At that point, the wsp:ExactlyOne expression
is satisfied (returns true) and any remaining policy assertions from the list
will not be evaluated. For example, consider the following combination of
authentication policy assertions:

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
<wsp:ExactlyOne>

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="HTTP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>

</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if
either of the following conditions hold:

• WS-Security username/password credentials are present and authentic; or

• HTTP Basic Authentication credentials are present and authentic;

Note, in particular, that if both credential types are present, the policy would
be satisfied after evaluating one of the assertions, but no guarantees can be
given as to which of the policy assertions actually gets evaluated.

Sample policy expression
Example 17 on page 159 shows a policy expression that nests a
wsp:ExactlyOne element inside a wsp:All element. The net effect of this
policy is that either HTTP Basic Authentication or (inclusive) WS-Security
username/password credentials must be present and authentic. Additionally,
the authenticated user must be authorized to invoke the requested operation.

Example 17. Sample Policy Expression

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">

<wsp:All>
<wsp:ExactlyOne>

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="HTTP"
credentialType="USERNAME_PASSWORD"/>

159

Policy Expressions

</itsec:ISFAuthenticationPolicy>
<itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:All>

</wsp:Policy>

The empty policy
A special case is the empty policy, an example of which is shown in
Example 18 on page 160.

Example 18. The Empty Policy

<wsp:Policy ... >
<wsp:ExactlyOne>

<wsp:All/>
</wsp:ExactlyOne>

</wsp:Policy>

Where the empty policy alternative, <wsp:All/>, represents an alternative
for which no policy assertions need be satisfied. In other words, it always
returns true. When <wsp:All/> is available as an alternative, the overall
policy can be satisified even when no policy assertions are true.

The null policy
A special case is the null policy, an example of which is shown in
Example 19 on page 160.

Example 19. The Null Policy

<wsp:Policy ... >
<wsp:ExactlyOne/>

</wsp:Policy>

Where the null policy alternative, <wsp:ExactlyOne/>, represents an
alternative that is never satisfied. In other words, it always returns false.

Normal form
In practice, by nesting the <wsp:All> and <wsp:ExactlyOne> elements,
you can produce fairly complex policy expressions, whose policy alternatives
might be difficult to work out. To facilitate the comparison of policy

160

Configuring Servers to Support Authentication

expressions, the WS-Policy specification defines a canonical or normal form
for policy expressions, such that you can read off the list of policy alternatives
unambiguously. Every valid policy expression can be reduced to the normal
form.

In general, a normal form policy expression conforms to the syntax shown in
Example 20 on page 161.

Example 20. Normal Form Syntax

<wsp:Policy ... >
<wsp:ExactlyOne>

<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>

<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>

...
</wsp:ExactlyOne>

</wsp:Policy>

Where each line of the form, <wsp:All>...</wsp:All>, represents a valid
policy alternative. If one of these policy alternatives is satisfied, the policy is
satisfied overall.

161

Policy Expressions

ISFAuthenticationPolicy Policy
Overview

You use the ISFAuthenticationPolicy policy to enable authentication of
a specific type of credentials on the server side of a secure connection. The
itsec:ISFAuthenticationPolicy element is a policy assertion that returns
true, if the specified credential type is present in an incoming request and
is authentic, and returns false, if the specified credential type is not present
in the incoming request or if the credentials fail to authenticate. As a side
effect of processing the policy, the detected credentials are unmarshalled
from the request message and placed into an InCredentialsMap object,
thus making them available to the application code—see on page 313.

Namespaces
The following XML schema namespaces and namespace prefixes are used in
this subsection:

NamespacePrefix

http://schemas.iona.com/soa/security-configitsec

http://www.w3.org/ns/ws-policywsp

Sample authentication policy
Example 21 on page 162 shows an example of an
ISFAuthenticationPolicy policy, as it might appear in either a Spring
configuration file or a WSDL contract.

Example 21. Sample ISFAuthenticationPolicy Policy

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

In the preceding example, the itsec:ISFAuthenticationPolicy element
contains a single sub-element, itsec:CredentialSource, that specifies
the type of credential that this policy expects to find in the incoming requests.
The specified security protocol is SOAP and credential type is

162

Configuring Servers to Support Authentication

USERNAME_PASSWORD, which together effectively specify WS-Security
username/password credentials.

Authentication domain
The itsec:ISFAuthenticationPolicy element also allows you to specify
the name of the authentication domain to which the credentials belong. For
example, Example 22 on page 163 shows how to specify an authentication
policy for an Artix server that belongs to the emea domain.

Example 22. Authentication Policy with Specified Domain

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">

<itsec:ISFAuthenticationPolicy authenticationDomain="emea">

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

Where the authenticationDomain attribute enables you to specify the
policy's domain name explicitly. If your application connects to a security
service that has only one adapter, it is not strictly necessary to specify the
authenticationDomain attribute here (it defaults to an empty string). On
the other hand, if your security service is deployed with multiple adapters, it
is essential to specify the domain name in your configured authentication
policies—see Deploying multiple adapters on page 207.

Supported credential types
The complete list of security protocol/credential type combinations supported
by the ISFAuthenticationPolicy element is shown in Table 3 on page 163.

Table 3. Combinations of Security Protocol and Credential Type

Protocol DescriptionCredential TypeSecurity Protocol Type

SSL/TLS handshake.CERTIFICATETLS

SSL/TLS handshake.TLS_PEER

HTTP Basic Authentication.USERNAME_PASSWORDHTTP

WS-Security username/password
token.

USERNAME_PASSWORDSOAP

WS-Security binary security token.CERTIFICATE

WS-Security binary security token.IONA_SSO_TOKEN

WS-Security binary security token.GSS_KRB_5_AP_REQ_TOKEN

163

ISFAuthenticationPolicy Policy

Protocol DescriptionCredential TypeSecurity Protocol Type

SAML assertion.SAML_ASSERTION

Requiring endorsements
The itsec:ISFAuthenticationPolicy element also supports the optional
sub-element, itsec:RequiredEndorsements, that enables you to require
one or more endorsements of the detected credentials. The purpose of the
required endorsements setting is to check that credentials have been endorsed
(that is, vouched for) by another set of trusted credentials—see
Endorsements on page 340 for a detailed explanation of endorsements.

To use the endorsement feature, simply insert the
itsec:RequiredEndorsements element into the
itsec:ISFAuthenticationPolicy element as shown in the following
example:

<wsp:Policy wsu:Id="AuthenticateAnyCredentialPolicy">
<itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource securityProtocolType="HTTP"
credentialType="USERNAME_PASSWORD"/>

<itsec:RequiredEndorsements>
<itsec:CredentialSource securityProtocolType="TLS"

credentialType="TLS_PEER"/>
</itsec:RequiredEndorsements>

</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

Where the itsec:RequiredEndorsements/itsec:CredentialSource
element selects the endorsing credential by specifying a valid security
protocol/credential type combination (see Table 3 on page 163).

164

Configuring Servers to Support Authentication

ACLAuthorizationPolicy Policy
Overview

You use the ACLAuthorizationPolicy policy to enable authorization of
requested operations, where permission to perform the operation is checked
by looking up an access control list (ACL) file. This policy must always be
used in combination with at least one authentication policy assertion
(itsec:ISFAuthenticationPolicy element). Evidently, it does not make
sense to perform an authorization check if no credentials are available.

The itsec:ACLAuthorizationPolicy element is a policy assertion that
returns true, if the authenticated user has permission to perform the requested
operation, and returns false, if the authenticated user does not have
permission to perform the requested operation. As a side effect of processing
the policy, the user's roles and realm data may be cached in the server (in
order to optimize future operation invocations).

Namespaces
The following XML schema namespaces and namespace prefixes are used in
this subsection:

NamespacePrefix

http://schemas.iona.com/soa/security-configitsec

http://www.w3.org/ns/ws-policywsp

Sample authorization policy
Example 23 on page 165 shows an example of an ACLAuthorizationPolicy
policy, as it might appear in either a Spring configuration file or a WSDL
contract.

Example 23. Sample ACLAuthorizationPolicy Policy

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

165

ACLAuthorizationPolicy Policy

/>
</wsp:Policy>

Authorization policy attributes
The itsec:ACLAuthorizationPolicy element supports the following
attributes:

aclURL
Specifies the location of an ACL file—for example, file:etc/acl.xml.

aclServerName
Selects a particular rule set from the ACL file by specifying its server
name—see ACL server name on page 168 .

authorizationRealm
Specifies the authorization realm to which this server belongs—see
on page 175.

tokenAuthorizationCombinator
If multiple security tokens are available (for example, if you added
multiple itsec:ISFAuthenticationPolicy elements to the policy

shown in Example 23 on page 165), this attribute specifies whether just
one or all of the available tokens must pass the authorization check, as
follows:

• ALL—(default) all of the available security tokens must pass the

authorization check.

• ANY—at least one of the available security tokens must pass the

authorization check.

166

Configuring Servers to Support Authentication

Configuring Authentication—Old Method
Overview

Figure 17 on page 167 shows an overview of the set-up required to configure
authentication and authorization in an Artix server. To enable authentication,
configure the server’s security layer to select a particular credential type. In
addition, if you want the server to perform authorization checks, you should
associate an access control list file, acl.xml, with the security layer, as shown
in Figure 17 on page 167 .

Figure 17. Configuring Authentication and Authorization in an Artix Server

ACL file
Because authentication and authorization usually go hand in hand, you would
normally specify an access control list (ACL) file at the same time that you
configure authentication. Example 24 on page 167 shows an example of a
simple ACL file that is used in the authorization demonstration located in
ArtixInstallDir/java/samples/security/authorization.

Example 24. Sample ACL File

<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="..." >

<action-role-mapping>
<server-name>artix.java.security.sample</server-name>
<interface>

167

Configuring Authentication—Old Method

<name>{http://apache.org/hello_world_soap_http}Greeter</name>

<action-role>
<action-name>sayHi</action-name>
<role-name>guest</role-name>

</action-role>
<action-role>

<action-name>greetMe</action-name>
<role-name>president</role-name>

</action-role>
</interface>

</action-role-mapping>
</secure-system>

The access control rules in Example 24 on page 167 associate WSDL
operations (specified as action-name elements) with specific role names.
Only users that have the specified roles will be allowed to invoke the relevant
operations. For more details about ACL files, see on page 191.

ACL server name
It is important to note here that you can, in principle, define multiple sets of
rules in an ACL file, where each set of rules is enclosed in an
action-role-mapping element. In order to select a specific rule set, use
the identifier that appears in the server-name element.

Enabling authentication and
authorization There are a variety of different elements you can insert into an Artix server’s

XML configuration in order to enable authentication and authorization. In
general, you must use a different element type, depending on what type of
credential you want to authenticate.

Example 25 on page 168 shows the general outline of an authentication
element—represented by the placeholder, CredentialAuthElement—in a
server’s XML configuration file. The attributes shown in
Example 25 on page 168 are defined in the authentication elements’ base
type and are thus common to all authentication elements.

Example 25. Credential Authentication Element in a Server

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:itsec="http://schemas.iona.com/soa/security-config"
... >

...
❶ <jaxws:endpoint name="{Namespace}TargetPort"

createdFromAPI="true" >
<jaxws:features>

❷ <itsec:CredentialAuthElement

168

Configuring Servers to Support Authentication

❸ aclURL="ACLFile"
❹ aclServerName="ServerName"
❺ authorizationRealm="RealmName"
❻ enableAuthorization="Boolean"

/>
</jaxws:features>

</jaxws:endpoint>
...

</beans>

The preceding XML configuration can be described as follows:

❶ The authentication feature is associated with the endpoint (WSDL port)
specified by the jaxws:endpoint element. You must configure

authentication separately for each endpoint that you want to protect.

Note
There are several different ways of referencing or creating a
JAX-WS endpoint using the jaxws:endpoint element. The
preceding example shows a reference to a JAX-WS endpoint
created in the Java application code. It is also possible to
instantiate a JAX-WS endpoint by configuration—for example,
see Example 1.7 on page 37. See also Developing Artix
Applications with JAX-WS for more details.

❷ For the possible credential elements, itsec:CredentialAuthElement,

see the list of available credential types, Credential types available for
authentication on page 171 .

❸ The aclURL attribute specifies the location of an ACL file—for example,

file:etc/acl.xml.

❹ The aclServerName attribute selects a particular rule set from the ACL

file by specifying its server name—see ACL server name on page 168 .
❺ The authorizationRealm attribute specifies the authorization realm

to which this server belongs—see on page 175.
❻ By default, authorization is enabled whenever authentication is. If you

would like to enable authentication without authorization, however, you
can set the enableAuthorization attribute to false. In this case,

169

Configuring Authentication—Old Method

there is no need to set the aclURL, aclServerName, or

authorizationRealm attributes.

credentialEndorser attribute
The authentication elements described here also support the
credentialEndorser attribute (this attribute is not defined in the base type,
however). The purpose of the credential endorser setting is to enable you to
impose extra conditions on the credentials, before accepting them for
authentication. In particular, a credential endorser enables you to check that
credentials have been endorsed (that is, vouched for) by another set of trusted
credentials—see Endorsements on page 340 for more details.

To use the endorsement feature, the credentialEndorser attribute must
be set equal to the name of the Java class that implements a credential
endorser. Normally, it is not necessary to set this attribute, because the
security schema automatically assigns a default credential endorser for each
credential type. If you want to override the default, however, you can select
one of the following standard endorser classes:

com.iona.soa.security.rt.credential.NoOpCredentialEndorser

Establishes no endorsements between previously established credentials
and the credential that is in the process of being created. Use this
endorser if you wish to place no constraints on received credential
information.

com.iona.soa.security.rt.credential.RequireTLSCredentialEndorser

Checks for the availability of TLS credentials (which signifies that the
incoming request has travelled across a secure TLS connection). If such
TLS credentials exist, they are placed on the the list of credential
endorsements for the credential that is in the process of being created.
If there are no such TLS credentials available, the request is rejected
with a Fault exception.

com.iona.soa.security.rt.credential.RequireTLSClientAuthCredentialEndorser

Checks for the availability of TLS credentials containing a client certificate,
indicating that the client application has authenticated itself over TLS to
the server. If such TLS credentials exist, they are placed on the the list
of credential endorsements for the credential in the process of creation.
If there are no such TLS credentials available, the request is rejected
with a Fault exception.

170

Configuring Servers to Support Authentication

com.iona.soa.security.rt.credential.LaxTLSCredentialEndorser

If TLS credentials exist, they are placed on the the list of credential
endorsements for the credential that is in the process of being created.
No exception is thrown, if TLS credentials are unavailable.

Custom endorsers
You can optionally implement your own custom endorsers. For details, see
“Endorsements” on page 587.

Credential types available for
authentication The following credentials types can be presented for authentication:

• TLS X.509 certificate on page 171 .

• HTTP Basic Authentication on page 171 .

• WSS username token on page 172 .

• WSS binary security token on page 172 .

• WSS X.509 certificate on page 173 .

TLS X.509 certificate
To enable authentication of X.509 certificates received through the TLS
protocol, use the itsec:TLSAuthServerConfig element as the
authentication element. A typical example of a TLSAuthServerConfig
element is shown in Example 26 on page 171 .

Example 26. TLSAuthServerConfig Element

<itsec:TLSAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The TLSAuthServerConfig element inherits all of the attributes shown in
Example 25 on page 168 and also supports the credentialEndorser
attribute (default setting is NoOpCredentialEndorser).

HTTP Basic Authentication
To enable authentication of username and password credentials received
through the HTTP Basic Authentication protocol, use the
itsec:HTTPBAServerConfig element as the authentication element. A
typical example of a HTTPBAServerConfig element is shown in
Example 27 on page 172 .

171

Configuring Authentication—Old Method

Example 27. HTTPBAServerConfig Element

<itsec:HTTPBAServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The HTTPBAServerConfig element inherits all of the attributes shown in
Example 25 on page 168 and also supports the credentialEndorser
attribute (default setting is LaxTLSCredentialEndorser). .

WSS username token
To enable authentication of username and password credentials received
through the SOAP protocol (in a WSS UsernameToken header), use the
itsec:WSSUsernameTokenAuthServerConfig element as the authentication
element. A typical example of a WSSUsernameTokenAuthServerConfig
element is shown in Example 28 on page 172 .

Example 28. WSSUsernameTokenAuthServerConfig Element

<itsec:WSSUsernameTokenAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The WSSUsernameTokenAuthServerConfig element inherits all of the
attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

WSS binary security token
To enable authentication of binary token credentials received through the
SOAP protocol (in a WSS BinarySecurityToken header), use the
itsec:WSSBinarySecurityTokenAuthServerConfig element as the
authentication element. The following kinds of credential are transmitted as
binary security tokens in Artix:

• IONA SSO token.

• Kerberos token.

A typical example of a WSSBinarySecurityTokenAuthServerConfig
element is shown in Example 29 on page 173 .

172

Configuring Servers to Support Authentication

Example 29. WSSBinarySecurityTokenAuthServerConfig Element

<itsec:WSSBinarySecurityTokenAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The WSSBinarySecurityTokenAuthServerConfig element inherits all of
the attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

WSS X.509 certificate
To enable authentication of X.509 certificates received through the SOAP
protocol (in a WSS X.509 certificate header), use the
itsec:WSSX509CertificateAuthServerConfig element as the
authentication element. A typical example of a
WSSX509CertificateAuthServerConfig element is shown in
Example 30 on page 173 .

Example 30. WSSX509CertificateAuthServerConfig Element

<itsec:WSSX509CertificateAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The WSSX509CertificateAuthServerConfig element inherits all of the
attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

Note
Currently, it is only possible to send an X.509 certificate in a WSS
SOAP header, if the certificate is used to sign or encrypt portions of
the SOAP message (configurable using the WSS partial message
protection feature).

Example configuration
The sample XML configuration in Example 31 on page 174 shows how to
enable WSS username and password authentication and authorization for the
endpoint with QName,

173

Configuring Authentication—Old Method

{http://apache.org/hello_world_soap_http}SoapPort. The
authentication feature is associated with the ACL file, etc/acl.xml.

Example 31. Enabling WSS UsernameToken Authentication

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:itsec="http://schemas.iona.com/soa/security-config"
... >

...
<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"

createdFromAPI="true">
<jaxws:features>

<itsec:WSSUsernameTokenAuthServerConfig
aclURL="file:etc/acl.xml"
aclServerName="artix.java.security.sample"
authorizationRealm="corporate"

/>
</jaxws:features>

</jaxws:endpoint>
...

</beans>

174

Configuring Servers to Support Authentication

Managing Users, Roles and Domains
The Artix security service provides a variety of adapters that enable you to integrate the Artix Security Framework
with third-party enterprise security products. This allows you to manage users and roles using a third-party
enterprise security product.

Introduction to Domains and Realms .. 176
Artix Authentication Domains .. 177
Artix Authorization Realms ... 180

Managing a File Authentication Domain ... 184
Managing an LDAP Authentication Domain .. 189

175

Introduction to Domains and Realms
Artix Authentication Domains .. 177
Artix Authorization Realms ... 180

176

Managing Users, Roles and Domains

Artix Authentication Domains
Overview

This subsection introduces the concept of an Artix authentication domain.

Domain architecture
Figure 18 on page 177 shows the architecture of an Artix authentication
domain. An Artix authentication domain is identified with an enterprise security
service that plugs into the Artix security service through an iSF adapter. User
data needed for authentication, such as username and password, are stored
within the enterprise security service. The Artix security service provides a
central access point to enable authentication through one or more Artix
authentication domains.

Figure 18. Architecture of an Artix authentication domain

Artix authentication domain
An Artix authentication domain is a particular security system, or namespace
within a security system, designated to authenticate a user.

Here are some specific examples of Artix authentication domains:

177

Artix Authentication Domains

• File authentication domain—authentication provided by looking up user
data stored in a flat file.

• LDAP authentication domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

• Kerberos authentication domain—authentication provided by Kerberos,
where the Artix security service plays the role of a Kerberized server that
authenticates KDC tickets on behalf of Artix servers.

Adding a server to an
authentication domain To add an Artix server to an authentication domain, set the

authenticationDomain attribute in the relevant authentication policy
instance. For example, the following configuration shows how to configure a
JAX-WS endpoint with an authentication policy (defined by the
itsec:ISFAuthenticationPolicy element), where the authentication
policy specifies that the endpoint belongs to the emea authentication domain.

<beans ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>

</cxfp:policies>
</jaxws:features>

</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">

<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:Policy>

178

Managing Users, Roles and Domains

...
</beans>

Creating an Artix authentication
domain Effectively, you create an Artix authentication domain by configuring the Artix

security service to link to an enterprise security service through an iSF adapter
(such as an LDAP adapter). The enterprise security service is the
implementation of the Artix authentication domain.

Creating a user account
User account data is stored in a third-party enterprise security service. Hence,
you should use the standard tools from the third-party enterprise security
product to create a user account.

For a simple example, see Managing a File Authentication Domain on page 184
.

179

Artix Authentication Domains

Artix Authorization Realms
Overview

This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

Artix authorization realm
An Artix authorization realm is a collection of secured resources that share
a common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only the
user's roles in realm R are applied to authorization decisions.

Role-based access control
The Artix Security Framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1. User-to-role mapping—every user is associated with a set of roles in each
realm (for example, guest, administrator, and so on, in a realm,

Engineering). A user can belong to many different realms, having a

different set of roles in each realm.

The user-to-role assignments are managed centrally by the Artix security
service, which returns the set of realms and roles assigned to a user when
required.

2. Role-to-permission mapping (or action-role mapping)—in the RBAC model,
permissions are granted to roles, rather than directly to users. The
role-to-permission mapping is performed locally by a server, using data
stored in local access control list (ACL) files. For example, Artix servers in
the Artix security framework use an XML action-role mapping file to control
access to WSDL port types and operations.

Servers and realms
From a server’s perspective, an Artix authorization realm is a way of grouping
servers with similar authorization requirements. Figure 19 on page 181 shows
two Artix authorization realms, Engineering and Finance, each containing
a collection of server applications.

180

Managing Users, Roles and Domains

Figure 19. Server View of Artix authorization realms

Adding a server to a realm
To add an Artix server to a realm, set the authorizationRealm attribute in
the relevant authorization policy instance. For example, the following
configuration shows how to configure a JAX-WS endpoint with an authorization
policy (defined by the itsec:ACLAuthorizationPolicy element), where
the authorization policy specifies that the endpoint belongs to the
Engineering authorization realm.

<beans ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>

</cxfp:policies>
</jaxws:features>

</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">

<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="Engineering"

/>
</wsp:Policy>

181

Artix Authorization Realms

...
</beans>

Roles and realms
From the perspective of role-based authorization, an Artix authorization realm
acts as a namespace for roles. For example, Figure 20 on page 182 shows
two Artix authorization realms, Engineering and Finance, each associated
with a set of roles.

Figure 20. Role View of Artix authorization realms

Creating realms and roles
Realms and roles are usually administered from within the enterprise security
system that is plugged into the Artix security service through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly created
whenever it is listed amongst a user’s realms or roles.

Assigning realms and roles to
users The assignment of realms and roles to users is administered from within the

enterprise security system that is plugged into the Artix security service. For
example, Figure 21 on page 183 shows how two users, Janet and John, are
assigned roles within the Engineering and Finance realms.

• Janet works in the engineering department as a developer, but occasionally
logs on to the Finance realm with guest permissions.

• John works as an accountant in finance, but also has guest permissions
with the Engineering realm.

182

Managing Users, Roles and Domains

Figure 21. Assignment of Realms and Roles to Users Janet and John

Special realms and roles
The following special realms and roles are supported by the Artix Security
Framework:

• IONAGlobalRealm realm—a special realm that encompasses every Artix

authorization realm. Roles defined within the IONAGlobalRealm are valid

within every Artix authorization realm.

• UnauthenticatedUserRole—a special role that can be used to specify

actions accessible to an unauthenticated user (in an action-role mapping
file). An unauthenticated user is a remote user without credentials (that is,
where the client is not configured to send GSSUP credentials).

Actions mapped to the UnauthenticatedUserRole role are also accessible
to authenticated users.

The UnauthenticatedUserRole can be used only in action-role mapping
files.

183

Artix Authorization Realms

Managing a File Authentication Domain
Overview

The file authentication domain is active if the Artix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 301). The main purpose of the iSF file adapter is to provide a lightweight
authentication domain for demonstration purposes and small deployments.
A large deployed system, however, should use one of the other adapters
(LDAP or custom) instead.

Note
The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Location of file
The location of the user database file is specified by the userDatabase
attribute of the secsvr:FileAdapter element in the Artix security service’s
configuration file, security-service.xml. See Configuring the File
Adapter on page 209 for details.

Example
Example 32 on page 184 is an extract from a sample security information file
that shows you how to define users, realms, and roles in a file authentication
domain.

Example 32. Sample User Database File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" ?>

❶<securityInfo
xmlns="http://schemas.iona.com/security/fileadapter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/filead

apter fileadapter.xsd">
❷ <users>
❸ <user name="IONAAdmin" password="admin"

description="Default IONA admin user">
❹ <realm name="IONA" description="All IONA applica
tions"/>

</user>
<user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as IONAAd
min.">

<realm name="Corporate">

184

Managing Users, Roles and Domains

<role name="Administrator"/>
</realm>

</user>
<user name="alice" password="dost1234">

❺ <realm name="Financials"
description="Financial Department">

<role name="Manager" description="Department Manager"
/>

<role name="Clerk"/>
</realm>

</user>
<user name="bob" password="dost1234">
<realm name="Financials">
<role name="Clerk"/>

</realm>
</user>

</users>
</securityInfo>

The preceding user database file can be explained as follows:

❶ The <securityInfo> tag can contain a nested <users> tag.

❷ The <users> tag contains a sequence of <user> tags.

❸ Each <user> tag defines a single user. The <user> tag’s name and

password attributes specify the user’s username and password. Instead

of specifying the password in plaintext, you also have the option of
specifying a password hash using the password_hash attribute—see

Password hashing on page 187 for details.
❹ When a <realm> tag appears within the scope of a <user> tag, it

implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a

description attribute.

❺ A realm can optionally be associated with one or more roles by including
role elements within the <realm> scope.

Certificate-based authentication
for the file adapter When performing certificate-based authentication for the CORBA binding, the

file adapter compares the certificate to be authenticated with a cached copy
of the user’s certificate.

To configure the file adapter to support X.509 certificate-based authentication
for the CORBA binding, perform the following steps:

185

Managing a File Authentication Domain

1. Cache a copy of each user’s certificate, CertFile.pem, in a location that

is accessible to the file adapter. The certificate must be in PEM format.

2. Specify which one of the fields from the certificate’s subject DN should
contain the user’s name (user ID) by setting the userIDInCert attribute

of the secsvr:FileAdapter element in the security server’s configuration,

security-service.xml—see File adapter attributes on page 209.

For example, to use the Common Name (CN) from the certificate’s subject
DN as the user name, add the following setting to the security-service
file:

<secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">

<secsvr:Adapters>
<secsvr:Adapter>

<secsvr:FileAdapter
userDatabase="etc/userdb.xml"
userIDInCert="CN"/>

</secsvr:Adapter>
</secsvr:Adapters>
...

</secsvr:IsfServer>

3. In the security information file, make the following type of entry for each
user with a certificate:

Example 33. File Adapter Entry for Certificate-Based Authentication

...
<user name="FieldFromSubjectDN" certificate="CertFile.pem"
description="User certificate">
<realm name="RealmName">
...

</realm>
</user>

The user name, FieldFromSubjectDN, is derived from the user’s certificate
by extracting the relevant field from the subject DN of the X.509 certificate
(for DN terminology, see Appendix A on page 365). The field to extract
from the subject DN is specified as described in the preceding step.

186

Managing Users, Roles and Domains

The certificate attribute specifies the location of this user’s X.509
certificate, CertFile.pem.

Password hashing
Storing passwords in plaintext format in the security information file is not
ideal, from a security perspective. In particular, it is likely that several different
users would need to update the security information file. Hence, using
operating system permissions to block read/write access to this file is not a
practical solution.

The problem of plaintext passwords can be solved using password hashing.
Instead of storing passwords in plaintext, you can generate a secure hash key
based on the original password. In the security information file, replace the
password attribute with the password_hash attribute to store the password
hash—for example:

<securityInfo ... >
...
<user name="alice" password_hash="HashKey">

...
</user>
...

</securityInfo>

Where HashKey is generated from the original password using the Artix
it_pw_hash utility.

it_pw_hash utility
The Artix it_pw_hash utility is a command-line utility for converting plaintext
passwords to password hashes. The utility is available only in the C++
runtime and is located in cxx_java/bin.The hashing algorithm used is
SHA-1. There are three different ways of using the utility, as follows:

• Convert all passwords to hashes—to convert all of the passwords in a
security information file to password hashes (replacing every password

attribute by a corresponding password_hash attribute), enter the following

at a command prompt:

it_pw_hash -update_all -password_file SecurityFile
[-out_file NewSecurityFile] [-v]

Where SecurityFile is the path to the security information file containing
password data in plaintext. By default, the original SecurityFile is
overwritten with a version that uses password_hash attributes. However,
you can optionally use the -out_file flag to specify an alternative file for

187

Managing a File Authentication Domain

the output, in which case the original file is left unchanged. The optional
-v flag switches on verbose logging.

• Convert a single password to a hash—to convert a single password in a
security information file to a password hash (replacing the user’s password

attribute by a corresponding password_hash attribute), enter the following

at a command prompt:

it_pw_hash -update_password -user Username -password_file
SecurityFile [-out_file NewSecurityFile] [-v]

Where Username specifies the name of the user (matching the name
attribute in one of the user elements) whose password is to be changed
into hash format.

• Reset a password hash—to reset the password hash value for a single user,
enter the following at a command prompt:

it_pw_hash -set_password -user Username -password_file Secur
ityFile [-out_file NewSecurityFile] [-v]

In this case, the command prompts you to enter a new password for the
user and generates a corresponding password hash, which is then assigned
to the password_hash attribute.

188

Managing Users, Roles and Domains

Managing an LDAP Authentication Domain
Overview

The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and the Artix security service’s LDAP adapter can
integrate with any LDAP v.3 implementation.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter
A prerequisite for using LDAP within the Artix Security Framework is that the
Artix security service be configured to use the LDAP adapter.

See Configuring the LDAP Adapter on page 211.

Certificate-based authentication
for the LDAP adapter When performing certificate-based authentication, the LDAP adapter compares

the certificate to be authenticated with a cached copy of the user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location that

is accessible to the LDAP adapter. The certificate must be in PEM format.

2. The user’s name, CNfromSubjectDN, is derived from the certificate by

taking the Common Name (CN) from the subject DN of the X.509 certificate
(for DN terminology, see Appendix A on page 365).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

189

Managing an LDAP Authentication Domain

190

Managing Access Control Lists
The Artix Security Framework defines access control lists (ACLs) for mapping roles to resources.

Overview of Artix ACL Files ... 192
ACL File Format ... 193
Generating ACL Files ... 196
Deploying ACL Files .. 199

191

Overview of Artix ACL Files
Action-role mapping file

The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

Deployment scenarios
Artix supports the following deployment scenario for ACL files:

• Local ACL file on page 192 .

Local ACL file
In the local ACL file scenario, the action-role mapping file is stored on the
same host as the server application (see Figure 22 on page 192). The
application obtains the action-role mapping data by reading the local ACL
file.

Figure 22. Locally Deployed Action-Role Mapping ACL File

In this case, the location of the ACL file is specified by a setting in the
application’s artix.cfg file.

192

Managing Access Control Lists

ACL File Format
Overview

This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

Example WSDL
For example, consider how to set the operation permissions for the WSDL
port type shown in Example 34 on page 193 .

Example 34. Sample WSDL for the ACL Example

<definitions name="HelloWorldService" targetNamespace="ht
tp://xmlbus.com/HelloWorld" ... >

...
<portType name="HelloWorldPortType">

<operation name="greetMe">
<input message="tns:greetMe" name="greetMe"/>
<output message="tns:greetMeResponse"

name="greetMeResponse"/>
</operation>
<operation name="sayHi">

<input message="tns:sayHi" name="sayHi"/>
<output message="tns:sayHiResponse"

name="sayHiResponse"/>
</operation>

</portType>
...

</definitions>

Example action-role mapping
Example 35 on page 193 shows how you might configure an action-role
mapping file for the HelloWorldPortType port type given in the preceding
Example 34 on page 193.

Example 35. Artix Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
<secure-system

xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/acl

acl.xsd"
> ❶

<action-role-mapping> ❷
<server-name>secure_artix.demos.hello_world</server-name>

193

ACL File Format

❸
<interface> ❹
<name>http://xmlbus.com/HelloWorld:HelloWorldPort

Type</name> ❺
<action-role>
<action-name>sayHi</action-name> ❻
<role-name>IONAUserRole</role-name>

</action-role>
<action-role>
<action-name>greetMe</action-name>
<role-name>IONAUserRole</role-name>

</action-role>
</interface>

</action-role-mapping>
</secure-system>

The preceding action-role mapping example can be explained as follows:

❶ The preamble in this example is suitable for a Java runtime application.
Although the XML format of the Java runtime ACL file is essentially the
same as the format of the C++ runtime ACL file, there is a slight
difference in the preamble. This is because the Java runtime ACL file is
validated against an XML schema, whereas the C++ runtime ACL file
is validated against a Document Type Definition (DTD).

❷ The <action-role-mapping> tag contains all of the permissions that

apply to a particular server application.
❸ The <server-name> tag is used to identify the current

action-role-mapping element (you can have more than one

action-role-mapping element in an ACL file). The value of the server

name is selected to match the value of the aclServerName attribute in

the relevant authorization element in the server’s XML configuration file.
❹ The <interface> tag contains all of the access permissions for one

particular WSDL port type.
❺ The <name> tag identifies a WSDL port type in the format

NamespaceURI:PortTypeName. That is, the PortTypeName comes

from a tag, <portType name="PortTypeName">, defined in the

NamespaceURI namespace.

For example, in Example 34 on page 193 the <definitions> tag
specifies the NamespaceURI as http://xmlbus.com/HelloWorld and
the PortTypeName is HelloWorldPortType. Hence, the port type name
is identified as:

194

Managing Access Control Lists

<name>http://xmlbus.com/HelloWorld:HelloWorldPort
Type</name>

❻ The sayHi action name corresponds to the sayHi WSDL operation name

in the HelloWorldPortType port type (from the <operation

name="sayHi"> tag).

Wildcard character
Artix supports a wildcard mechanism for the server-name, interface name,
and action-name elements in an ACL file. The wildcard character, *, can
be used to match any number of contiguous characters in a server name,
interface name, or action name. For example, the access control list shown
in Example 36 on page 195 assigns the IONAUserRole role to every action
in every interface in every Bus instance.

Example 36. Wildcard Mechanism in an Access Control List

<?xml version="1.0" encoding="UTF-8"?>
<secure-system

xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/acl

acl.xsd"
>

<action-role-mapping>
<server-name>*</server-name>
<interface>
<name>*</name>
<action-role>
<action-name>*</action-name>
<role-name>IONAUserRole</role-name>

</action-role>
</interface>

</action-role-mapping>
</secure-system>

Action-role mapping schema
The syntax of the action-role mapping file is defined by the action-role mapping
XML schema. See Appendix C on page 405 for details.

195

ACL File Format

Generating ACL Files
Overview

Artix provides a command-line tool, artix wsdl2acl, that enables you to
generate the prototype of an ACL file directly from a WSDL contract. You can
use the wsdl2acl subcommand to assign a default role to all of the operations
in WSDL contract. Alternatively, if you require more fine-grained control over
the role assignments, you can define a role-properties file, which assigns
roles to individual operations.

WSDL-to-ACL utility
The artix wsdl2acl command-line utility has the following syntax:

artix wsdl2acl { -s server-name } WSDL-URL
[-i interface-name] [-r default-role-name]
[-d output-directory] [-o output-file]
[-props role-props-file] [-v] [-?]

Required arguments:

The server’s configuration scope from the Artix
domain configuration file (the same value as

-s server-name

specified to the -BUSname argument when the Artix
server is started from the command line).

For example, the basic/hello_world_soap_http
demonstration uses the
demos.hello_world_soap_http server name.

URL location of the WSDL file from which an ACL
is generated.

WSDL-URL

Optional arguments:

Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output

-i interface-name

is generated for all of the port types in the WSDL
file.

Specify the role name that will be assigned to all
operations by default. Default is IONAUserRole.

-r
default-role-name

The default role-name is not used for operations
listed in a role-properties file (see -props).

Specify an output directory for the generated ACL
file.

-d output-directory

196

Managing Access Control Lists

Specify the name of the generated ACL file. Default
is WSDLFileRoot-acl.xml, where WSDLFileRoot
is the root name of the WSDL file.

-o output-file

Specifies a file containing a list of role-properties,
where a role-property associates an operation name

-props
role-props-file

with a list of roles. Each line of the role-properties
file has the following format:

OperationName = Role1, Role2, ...

Display version information for the utility.-v

Display usage summary for the wsdl2acl
subcommand.

-?

Example of generating an ACL file
As example of how to generate an ACL file from WSDL, consider the
hello_world.wsdl WSDL file for the basic/hello_world_soap_http
demonstration, which is located in the following directory:

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc

The HelloWorld WSDL contract defines a single port type, Greeter, and two
operations: greetMe and sayHi. The server name (that is, configuration
scope) used by the HelloWorld server is demos.hello_world_soap_http.

Sample role-properties file
For the HelloWorld WSDL contract, you can define a role-properties file,
role_properties.txt, that assigns the FooUser role to the greetMe
operation and the FooUser and BarUser roles to the sayHi operation, as
follows:

greetMe = FooUser
sayHi = FooUser, BarUser

Sample generation command
To generate an ACL file from the HelloWorld WSDL contract, using the
role_properties.txt role-properties file, enter the following at a
command-line prompt:

197

Generating ACL Files

artix wsdl2acl -s demos.hello_world_soap_http hello_world.wsdl
-props role_properties.txt

Sample ACL output
The preceding artix wsdl2acl command generates an ACL file,
hello_world-acl.xml, whose contents are shown in
Example 37 on page 198 .

Example 37. ACL File Generated from HelloWorld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

<action-role-mapping>
<server-name>demos.hello_world_soap_http</server-name>

<interface>
<name>http://www.iona.com/hello_world_soap_ht

tp:Greeter</name>
<action-role>

<action-name>greetMe</action-name>
<role-name>FooUser</role-name>

</action-role>
<action-role>

<action-name>sayHi</action-name>
<role-name>FooUser</role-name>
<role-name>BarUser</role-name>

</action-role>
</interface>

</action-role-mapping>
</secure-system>

198

Managing Access Control Lists

Deploying ACL Files
Configuring a local ACL file

To configure an application to load action-role mapping data from a local file,
do the following:

1. Save the ACL file in a convenient location.

2. Edit the application’s XML configuration file. In the relevant authorization
element, update the aclURL attribute with the ACL file location and update

the aclServerName attribute with the server name of the

action-role-mapping element you want to apply.

For example, if the authorization element is
security:WSSUsernameTokenAuthServerConfig, you can update the
configuration as follows:

<jaxws:endpoint name="{PortNamespace}PortName"
createdFromAPI="true">

<jaxws:features>
<security:WSSUsernameTokenAuthServerConfig

aclURL="file:ACLFileLocation"
aclServerName="ServerName"
authorizationRealm="SelectedRealm"

/>
</jaxws:features>

</jaxws:endpoint>

199

Deploying ACL Files

200

Configuring the Artix Security Service
This chapter describes how to configure the properties of the Artix security service and, in particular, how to
configure a variety of adapters that can integrate the Artix security service with third-party enterprise security
back-ends (for example, LDAP).

Configuring the Security Service ... 202
Configuring the File Adapter .. 209
Configuring the LDAP Adapter ... 211
Configuring the Kerberos Adapter ... 215

Overview of Kerberos Configuration .. 216
Configuring the Adapter Properties ... 218
Configuring JAAS Login Properties .. 221

Clustering and Federation ... 225
Federating the Artix Security Service ... 226

201

Configuring the Security Service
Overview

This section describes how to configure a security service that is made
accessible through the HTTPS protocol.

Location of the demonstrations
The demonstration code is located in the following directory:

ArtixInstallDir/java/samples/security/authorization

Customising the security service
configuration Example 38 on page 202 shows a sample security service configuration, which

is taken from the authorization/etc/security-service.xml file.

Example 38. Sample Security Service Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con
fig"

xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">
❷ <secsvr:Adapters>

<secsvr:Adapter>
<secsvr:FileAdapter userDatabase="etc/user

db.xml"/>
</secsvr:Adapter>

</secsvr:Adapters>
❸ <secsvr:Services>

<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>

</secsvr:Services>
❹ <secsvr:SSOConfig

sessionTimeout="600"
idleTimeout="60"
cacheSize="200"

202

Configuring the Artix Security Service

/>
</secsvr:IsfServer>

❺ <httpj:engine-factory bus="cxf">
❻ <httpj:engine port="59075">
❼ <httpj:tlsServerParameters>

<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcs12" password="pass

word" resource="keys/isf-server.p12"/>
</csec:keyManagers>
<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-
cert.pem"/>

</csec:trustManagers>
❽ <csec:clientAuthentication want="true" re
quired="true"/>

</httpj:tlsServerParameters>
</httpj:engine>

</httpj:engine-factory>

</beans>

❶ The secsvr:IsfServer element configures the Artix security service.

The following attributes are set:

• id—(required) must be set to the value shown. This is a technical

requirement in order to identify the element internally.

• wsdlPublishPort—sets the IP port of the WSDL publish service,

which enables clients to obtain a copy of the security service's WSDL
contract. Default is 27222.

❷ The secsvr:Adapters element specifies the list of iSF adapters that

plug into the security service. You can specify one of the following
adapters:

• File adapter—specified using the secsvr:FileAdapter element.

See Configuring the File Adapter on page 209 for details.

• LDAP adapter—specified using the secsvr:LDAPAdapter element.

See Configuring the LDAP Adapter on page 211 for details.

• Kerberos adapter—specified using the secsvr:KerberosAdapter

element. See Configuring the Kerberos Adapter on page 215 for details.

203

Configuring the Security Service

For details of how to configure more than one adapter at a time, see
Deploying multiple adapters on page 207.

❸ The secsvr:Services element configures the individual WSDL services

provided by the security service. You can specify the IP port numbers
of the WSDL services here. See Setting the security service’s host and
port on page 205 for details.

❹ The secsvr:SSOConfig element configures the single sign-on (SSO)

feature of the security service. The following attributes are set here:

• sessionTimeout—(in units of seconds) specifies the maximum length

of time for which an SSO token is valid, from the time the token is
issued.

• idleTimeout—(in units of seconds) if an SSO token remains idle

(that is, no security operations performed on this token) for longer
than this period of time, the token becomes invalid.

• cacheSize—specifies the maximum number of user sessions to cache

in the security service.

❺ The httpj:engine-factory initializes and configures a Jetty1 HTTP

Web server. The Jetty Web server provides the HTTP endpoints for the
security service.

❻ The httpj:engine element activates a HTTP endpoint with IP port

59075. This HTTP endpoint provides both the AuthenticationService

service and the ServiceManager service (they share the same port

number in this example).
❼ The httpj:tlsServerParameters element contains the usual settings

for configuring a secure TLS endpoint. See Server HTTPS
configuration on page 26 and Part II on page 81 for more details of
how to configure HTTPS on the server side.

❽ The csec:clientAuthentication element is configured to enable

mutual authentication, making it mandatory for applications that connect
to the security service to present an X.509 certificate.

1 http://jetty.mortbay.org/jetty/

204

Configuring the Artix Security Service

http://jetty.mortbay.org/jetty/
http://jetty.mortbay.org/jetty/

Note
This setting is crucially important for the security service. It is
essential for all connecting applications to be authenticated
properly during the TLS handshake.

Setting the security service’s host
and port The security service exposes three IP ports, which you can customize as

follows:

• WSDL publish port—sets the IP port of the WSDL publish service, which
enables clients to obtain a copy of the security service's WSDL contract.
To modify this port, edit the wsdlPublishPort attribute on the

secsvr:IsfServer element.

• AuthenticationService port—to customize the IP port used by this

Web service, you must change the port setting in two locations, as follows:

1. In the secsvr:AuthenticationService element, set the port

attribute.

2. In the httpj:engine element, set the port attribute to the same value

as in the preceding step.

• ServiceManager port—to customize the IP port used by this Web service,

you must change the port setting in two locations, as follows:

1. In the secsvr:ServiceManager element, set the port attribute.

2. In the httpj:engine element, set the port attribute to the same value

as in the preceding step. If you want the ServiceManager service to

use a different port from the AuthenticationService service, you

must create a new httpj:engine element specifically for this port.

Both the secsvr:AuthenticationService and the
secsvr:ServiceManager elements support two alternative approaches to
customizing port numbers, as follows:

• Customize hostname and port—set the hostname and port attributes on

the element, or

205

Configuring the Security Service

• Customize the Web service address—set the address attribute on the

element, where the address value is a standard Web service address URL.
It is essential to use the https:// prefix in the address, to ensure that the

secure HTTPS protocol is used.

Replacing X.509 certificates
The security service is provided with demonstration X.509 certificates by
default. Whilst this is convenient for running demonstrations and tests, it is
fundamentally insecure, because Artix provides identical demonstration
certificates for every installation.

Before deploying the security service in a live system, therefore, you must
replace the default X.509 certificates with your own custom-generated
certificates. Specifically, for the security service you must replace the following
certificates:

• Trusted CA list—this is a list of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed to
connect to the security service.

To update the trusted CA list, customize the contents of the
csec:trustManagers element for each of the Jetty endpoints exposed by
the security service. For details, see Specifying Trusted CA Certificates for
HTTPS on page 127.

• Security service’s own certificate—the security service uses its own X.509
certificate to identify itself to peers during SSL/TLS handshakes.

To replace the security service’s own certificate, customize the contents of
the csec:keyManagers element for each of the Jetty endpoints exposed
by the security service. For details, see Deploying Own Certificate for
HTTPS on page 132.

Minimum level of security
Because it is an important security requirement for clients of the security
service to present an X.509 certificate, you should take care that all of the
Jetty endpoints (specified by the httpj:engine element) include the following
setting:

<csec:clientAuthentication want="true" required="true"/>

206

Configuring the Artix Security Service

For example, see Example 38 on page 202.

Deploying multiple adapters
The security service supports the deployment of multiple iSF adapters. To
configure multiple adapters, simply add as many adapter elements as required
into the secsvr:Adapters element. For example, Example 39 on page 207
shows how to configure two distinct file adapters: the first file adapter is the
security data repository for the emea authentication domain; and the second
file adapter is the security data repository for the americas authentication
domain.

Example 39. Configuring Multiple iSF Adapters in the Security Service

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con
fig"

xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

<secsvr:IsfServer id="it.soa.security.server" wsdlPublish
Port="27222">

<secsvr:Adapters>
<secsvr:Adapter domain="emea">

<secsvr:FileAdapter userDatabase="etc/emea-
userdb.xml"/>

</secsvr:Adapter>
<secsvr:Adapter domain="americas">
<secsvr:FileAdapter userDatabase="etc/americas-

userdb.xml"/>
</secsvr:Adapter>

</secsvr:Adapters>
...

</secsvr:IsfServer>
...

</beans>

When the security service receives a request to authenticate a credential, it
chooses the appropriate adapter by matching the credential's authentication
domain against the value specified by the secsvr:Adapter element's domain

207

Configuring the Security Service

attribute. For example, if the relying party (Artix server) has configured an
authentication policy as follows:

<beans ... >
...
<jaxws:endpoint ...>

<jaxws:features>
<cxfp:policies>

<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>

</cxfp:policies>
</jaxws:features>

</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">

<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:Policy>
...

</beans>

The credentials specified by the preceding
itsec:ISFAuthenticationPolicy element are augmented by the domain
name, emea (as specified by the authenticationDomain attribute), when
they are transmitted to the security service. The security service will then
authenticate the credentials against the first file adapter from
Example 39 on page 207, because this file adapter is defined with the
matching domain name, emea.

If you do not specify the value of the authenticationDomain attribute in
the ISFAuthenticationPolicy element, it defaults to an empty string,
which matches any domain name in the security service. This default is not
acceptable, however, if the security service has multiple adapters, because
it is then impossible to identify the appropriate adapter.

208

Configuring the Artix Security Service

Configuring the File Adapter
Overview

The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to set
up and configure, but is appropriate mainly for demonstration purposes and
small deployments. This section describes how to set up and configure the
iSF file adapter.

Note
The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Sample configuration
Example 40 on page 209 shows an example of how to configure the security
service to use the file adapter. The secsvr:FileAdapter element activates
the file adapter, whose user data is stored in the etc/userdb.xml file.

Example 40. Sample File Adapter Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

<secsvr:IsfServer id="it.soa.security.server" wsdlPublish
Port="27222">

<secsvr:Adapters>
<secsvr:Adapter>

<secsvr:FileAdapter userDatabase="etc/user
db.xml"/>

</secsvr:Adapter>
</secsvr:Adapters>
...

</secsvr:IsfServer>
...

</beans>

File adapter attributes
The secsvr:FileAdapter element supports the following attributes:

209

Configuring the File Adapter

userDatabase
(Required) Specifies the location of the file adapter's user database. All
of the user security data is stored in a flat XML file. For details of the
user database file format, see Managing a File Authentication
Domain on page 184.

userIDInCert
When using X.509 certificate authentication in conjunction with the file
adapter, this attribute specifies which field from the certificate’s subject
DN is taken to be the user name. The default is CN. For more details,

see Certificate-based authentication for the file adapter on page 185.

validate
A boolean attribute that specifies whether or not the user database XML
file should be validated as it is loaded. Default is true.

checkInterval

210

Configuring the Artix Security Service

Configuring the LDAP Adapter
Overview

The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

• Prerequisites on page ?

• Minimal LDAP configuration on page ? .

• LDAP server replicas on page ? .

Prerequisites
Before configuring the LDAP adapter, you must have an LDAP security system
installed and running on your system. LDAP is not a standard part of Artix,
but you can use the Artix security service’s LDAP adapter with any LDAP v.3
compatible system.

Minimal LDAP configuration
Example 41 on page 211 shows the minimal settings that can be used to
configure an LDAP adapter.

Example 41. A Sample LDAP Adapter Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:secsvr="http://schemas.iona.com/soa/security-

server-config"
... >
<secsvr:IsfServer id="it.soa.security" wsdlPublish

Port="27222">
<secsvr:Adapters>

<secsvr:Adapter>
❶ <secsvr:LDAPAdapter
❷ userNameAttr="CN"

userBaseDN="dc=pdtest,dc=com"
userObjectClass="Person"

❸ retrieveAuthInfo="true"
useGroupAsRole="true"
groupNameAttr="CN"
groupBaseDN="dc=pdtest,dc=com"
groupObjectClass="group"
groupSearchScope="SUB"
memberDNAttr="memberOf"

❹ version="3"

211

Configuring the LDAP Adapter

❺ maxConnectionPoolSize="1">
❻ <secsvr:LDAPServer

host="pdkerbauth.pdtest.com"
port="389"
principalUserDN="cn=administrat

or,cn=users,dc=pdtest,dc=com"
principalUserPassword="k3rb4uth"
connectTimeout="15"

/>
</secsvr:LDAPAdapter>

</secsvr:Adapter>
</secsvr:Adapters>
...

</secsvr:IsfServer>

</beans>

The necessary properties for an LDAP adapter are described as follows:

❶ The secsvr:LDAPAdapter element activates and configures an LDAP

adapter instance in the security service.
❷ These attributes specify how the LDAP adapter finds a user name within

the LDAP directory schema. The attributes are interpreted as follows:

The attribute type of the DN, whose value
uniquely identifies the user. For example, a

userNameAttr

value of CN implies that the Common Name
from the DN gives the user identity..

The base DN of the tree in the LDAP directory
that stores user object class instances.

userBaseDN

The attribute type for the object class that
stores users.

userObjectClass

❸ These attributes specify how the LDAP adapter finds a group name
within the LDAP directory schema. The attributes are interpreted as
follows:

This flag must be set to true in order to

retrieve a user's authorization information from
the LDAP server.

retrieveAuthInfo

When this flag is set to true, each group

name is interpreted as a role name.

useGroupAsRole

212

Configuring the Artix Security Service

The attribute type whose corresponding
attribute value gives the name of the user
group.

groupNameAttr

The base DN of the tree in the LDAP directory
that stores user groups.

groupBaseDN

The object class that applies to user group
entries in the LDAP directory structure.

groupObjectClass

The group search scope specifies the search
depth relative to the group base DN in the

groupSearchScope

LDAP directory tree. Possible values are: BASE,
ONE, or SUB.

The attribute type that is used to retrieve LDAP
group members.

memberDNAttr

❹ The version attribute specifies the LDAP protocol version that the Artix

security service uses to communicate with LDAP servers. The only
supported version is 3.

❺ The maxConnectionPoolSize attribute specifies the maximum number

of LDAP connections that can be open at any time.
❻ The secsvr:LDAPServer element configures a connection to an LDAP

server. The attributes are interpreted as follows:

The host where the LDAP server is running.host

The IP port of the LDAP server.port

The username that is used to log in to the
LDAP server (in distinguished name format).

principalUserDN

The password that is used to log in to the
LDAP server.

principalUserPassword

The time-out interval for the connection to the
Active Directory Server in units of seconds.

connectTimeout

LDAP server replicas
The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. To take advantage of this feature, simply add a

213

Configuring the LDAP Adapter

secsvr:LDAPServer element to the configuration for each of the
corresponding LDAP server replicas.

Secure connection to an LDAP
server The following attributes of the secsvr:LDAPServer element can be used to

configure SSL/TLS security for the connection between the Artix security
service and the LDAP server:

SSLEnabled
SSLCACertDir
SSLClientCertFile
SSLClientCertPassword

Where the SSLCACertDir is a directory contaiing trusted CA certificates in
either DER or PEM format and the certificate specified by
SSLClientCertFile must be in PKCS#12 format.

Security service schema reference
For more details about the configuration settings described here, see the
Security Service Schema Reference.

214

Configuring the Artix Security Service

Configuring the Kerberos Adapter
Overview of Kerberos Configuration .. 216
Configuring the Adapter Properties ... 218
Configuring JAAS Login Properties .. 221

215

Configuring the Kerberos Adapter

Overview of Kerberos Configuration
Kerberos adapter

The Kerberos adapter integrates Kerberos into the Artix security framework
by treating the Artix security service as a Kerberized server. The Artix system
of role-based access control can also optionally be integrated with an LDAP
directory service (for example, Active Directory) that stores the user and role
information.

Kerberos Distribution Center
(KDC) The Kerberos Distribution Centre (KDC) server is responsible for managing

authentication in a Kerberos system. When a client authenticates with the
KDC server, the client receives a ticket that allows it to talk to the Artix security
service. The client then sends the ticket to an Artix server (through a
WS-Security SOAP header) and the server delegates authentication by sending
the ticket to the Artix security service. The Artix security service authenticates
the ticket using the JAAS Kerberos login module.

JAAS login module
To perform the login step, the Kerberos adapter uses the Java Authentication
and Authorization Service (JAAS). The JAAS API is a general purpose wrapper
that enables Java programs to perform authentication and authorization in a
technology-neutral way. Specific security technologies are supported by loading
the relevant plug-in modules—see http://java.sun.com/products/jaas/ for
details.

To perform a Kerberos login, JAAS loads the Kerberos login module and
obtains login credentials by reading the jaas.conf configuration file. See
Configuring JAAS Login Properties on page 221 for more details.

LDAP directory
The LDAP directory stores user and role information. The Kerberos adapter
can optionally access the directory to obtain role information, which can then
be used to perform authorization in the context of the Artix security framework.

LDAP directory is a database whose entries are organized in a hierarchical
scheme based on the X.500 standard. For details of the system for naming
entries in an LDAP directory, see Appendix A on page 365 .

Active Directory service
Active Directory is the Microsoft implementation of Kerberos, which is
integrated into Windows 2000 and other Windows operating systems. Because
Active Directory includes a KDC server and an LDAP directory, you can
integrate the Kerberos adapter with Active Directory.

216

Configuring the Artix Security Service

http://java.sun.com/products/jaas/

For more details about Active Directory, see the Microsoft Active Directory2

Web pages.

Kerberos realm
A Kerberos realm is an administrative domain with its own Kerberos database
that stores data on users and services belonging to that domain.
Conventionally, a Kerberos realm is spelt all uppercase—for example,
IONA.COM.

Kerberos principal
A Kerberos principal identifies a user or service within a particular Kerberos
domain. The following naming conventions are used for Kerberos principals:

• Client principal—follows the convention UserName@KerberosRealm. For

example:

Jonathon.Doe@IONA.COM

• Server principal—follows the convention
ServiceName/HostName@KerberosRealm. For example, the service,

WebServer, running on host, web01.iona.com, in realm, IONA.COM, would

have the following principal:

WebServer/web01.iona.com@IONA.COM

Formally, WebServer is the primary and web01.iona.com is the instance
part of the principal. This two-part name acknowledges the fact that a
single service could be replicated on different hosts. The Kerberos naming
convention enables each replica to have a unique principal.

Kerberos keyTab file
A Kerberos keyTab file (short for key table file) stores the Kerberos
cryptographic key associated with a server. It is important to protect this file
by setting file permissions to restrict ordinary users from reading from or
writing to the file.

2 http://tinyurl.com/i5q4

217

Overview of Kerberos Configuration

http://tinyurl.com/i5q4
http://tinyurl.com/i5q4

Configuring the Adapter Properties
Overview

To enable the Kerberos adapter, you must configure the
security-service.xml file as described in this subsection.

Sample Kerberos configuration
Example 42 on page 218 shows a sample security-service.xml file that
could be used to configure the Kerberos adapter.

Example 42. Sample Kerberos Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:secsvr="http://schemas.iona.com/soa/security-

server-config"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-

beans-2.0.xsd
http://schemas.iona.com/soa/security-server-config

http://schemas.iona.com/soa/security-server-config.xsd"
>

<secsvr:IsfServer id="it.soa.security" wsdlPublish
Port="27222">

<secsvr:Adapters>
<secsvr:Adapter>

❶ <secsvr:KerberosAdapter
kdc="pdkerbauth.pdtest.com"
realm="PDTEST.COM"
authLoginConfig="src/test/re

sources/krb.jaas.conf"
debug="false"

/>
❷ <secsvr:LDAPAdapter ...>

...
</secsvr:LDAPAdapter>

</secsvr:Adapter>
</secsvr:Adapters>
...

</secsvr:IsfServer>
</beans>

The preceding Kerberos configuration can be described as follows:

❶ The secsvr:KeberosAdapter element initializes the Kerberos adapter

and configures a connection to the Kerberos Distribution Center (KDC)
server. The following attributes are set:

218

Configuring the Artix Security Service

The server name or IP address of the KDC
server.

kdc

The Kerberos realm name.realm

(Required) The location of the JAAS login
module configuration file. For details, see
Configuring JAAS Login Properties on page 221.

authLoginConfig

Logging flag. Setting this flag to true

generates extra logging detail.

debug

❷ The Kerberos adapter relies on an LDAP database to store user and role
data. Therefore, you need to configure an LDAP adapter, in addition to
the Kerberos adapter, in order to gain access to user and role data. For
details of how to configure the LDAP adapter, see Configuring the LDAP
Adapter on page 211.

Note
The secsvr:KeberosAdapter element must be configured as
child of the same secsvr:Adapter element as the Kerberos
adapter element, secsvr:KerberosAdapter.

Eager validation of the KDC
connection You can set two additional attributes to check whether a valid KDC server is

running when the Artix security service starts up. Example 43 on page 219
shows how to configure the relevant attributes:

Example 43. Configuration to Enable Connection Validation

<secsvr:KerberosAdapter
kdc="pdkerbauth.pdtest.com"
realm="PDTEST.COM"
authLoginConfig="src/test/resources/krb.jaas.conf"
debug="false"
checkKDCRunning="true"
checkKDCPrincipal="DummyPrincipal"
/>

The DummyPrincipal is a principal that is used for connecting to the KDC
server to check whether it is running. If the KDC server is not running, the
Artix security service writes a warning to its log.

Kerberos logging support
To turn on additional logging in the Kerberos adapter, set the debug attribute
in the security-service.xml file, as shown in Example 44 on page 220 .

219

Configuring the Adapter Properties

Example 44. Configuration to Enable Logging Support

<secsvr:KerberosAdapter
kdc="pdkerbauth.pdtest.com"
realm="PDTEST.COM"
authLoginConfig="src/test/resources/krb.jaas.conf"
debug="true"
/>

Other KDC configuration options
The useSubjectCredsOnly attribute must always be set to false.

Essentially, this is an implementation detail of the Kerberos adapter. If the
attribute is true, it signals to the Java security API that the Kerberos
credentials must be stored in a javax.security.auth.Subject object. If
the attribute is false, it signals that the Kerberos credentials can be stored
in an implementation-dependent manner (required for the Kerberos adapter).

220

Configuring the Artix Security Service

Configuring JAAS Login Properties
JAAS login configuration

The JAAS login configuration file, jaas.conf, has the general format shown
in Example 45 on page 221 .

Example 45. JAAS Login Configuration File Format

/* JAAS Login Configuration */

LoginEntry {
ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;
...

};
LoginEntry {

ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;
...

};
...

Where the preceding file format can be explained as follows:

• LoginEntry labels a single entry in the login configuration. In general, a

LoginEntry label is implicitly defined by writing application code that

searches for its login configuration in a particular LoginEntry entry. Each

login entry contains a list of login modules that are invoked in order.

• ModuleClass is the fully-qualified class name of a JAAS login module. For

example, com.sun.security.auth.module.Krb5LoginModule is the

class name of the Kerberos login module.

• Flag determines how to react when the current login module reports an

authentication failure. The Flag can have one of the following values:

• required—authentication must succeed. Always proceed to the next

login module in this entry, irrespective of success or failure.

• requisite—authentication must succeed. If success, proceed to the

next login module; if failure, return immediately without processing the
remaining login modules.

221

Configuring JAAS Login Properties

• sufficient—authentication is not required to succeed. If success,

return immediately without processing the remaining login modules; if
failure, proceed to the next login module.

• optional—authentication is not required to succeed. Always proceed

to the next login module in this entry, irrespective of success or failure.

• Option="Value"—after the Flag, you can pass zero or more option

settings to the login module. The options are specified in the form of a
space-separated list, where each option has the form Option="Value".

The login module line is terminated by a semicolon, ;.

Kerberos login entries
For Kerberos, the following JAAS login entry names are defined:

• com.sun.security.jgss.initiate—invoke this login entry for a

Kerberos client (initiator of a secure Kerberos connection).

• com.sun.security.jgss.accept—invoke this login entry for a secure

server (acceptor of a Kerberos ticket).

These login entries are defined in Sun’s implementation of the Kerberos
provider for JGSS (Java Generic Security Service).

Note
In Java 6, you can use the alternative login entries:
com.sun.security.jgss.krb5.initiate and
com.sun.security.jgss.krb5.accept. See Java GSS and
Kerberos3 for more details.

Kerberos login module
The Kerberos login module is implemented by the following class:

com.sun.security.auth.module.Krb5LoginModule

The most useful module options in the context of using the Artix security
Kerberos adapter are as follows:

• principal—the Kerberos principal that identifies the program.

3 http://tinyurl.com/6eefxa

222

Configuring the Artix Security Service

http://tinyurl.com/6eefxa
http://tinyurl.com/6eefxa
http://tinyurl.com/6eefxa

• storeKey—if true, store the principal’s key in the Subject’s private

credentials.

• useKeyTab—if true, get the principal’s key from the keytab.

• keyTab—specifies the location of the keytab file.

Kerberos adapter login module
(Deprecated) The Kerberos adapter provides an alternative login module,
which is implemented by the following class:

com.iona.security.is2adapter.krb5.IS2ServerKrb5LoginModule

It supports the same module options as the Kerberos login module.

Note
This proprietary login module is deprecated, because it is not
compatible with the more recent versions of Sun’s Java platform
(J2SE/JDK 1.5 and up). It was originally provided in order to fix a
bug in Sun’s Kerberos login module (the login module makes an
unnecessary call to the KDC when accepting an AP_REQ token).

Sample JAAS configuration file
Example 46 on page 223 shows a sample jaas.conf file that demonstrates
how to configure the JAAS Kerberos login module.

Example 46. Sample jaas.conf File for the Kerberos Login Module

/* JAAS Login Configuration */

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required prin

cipal="gss_server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab" ;

};

com.sun.security.jgss.accept {
com.sun.security.auth.module.Krb5LoginModule required

storeKey="true" principal="gss_server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab" ;

};

The com.sun.security.jgss.accept scope defines the server-side login
behavior. There are two essential properties that you need to specify:

223

Configuring JAAS Login Properties

• principal—Kerberos identity of the Artix security server. See Kerberos

principal on page ? for more details.

• keyTab—the location of a file that contains the password for the principal.

This is the usual method for storing a server-side password in a Kerberos
system. See Kerberos keyTab file on page ? for more details.

Note
On the server side, the com.sun.security.jgss.initiate login
entry would only be needed, if you set the
com.iona.isp.adapter.krb5.param.check.kdc.running
parameter to true.

References
The format of a JAAS login configuration file is specified in detail by the
following page from Sun's Java security reference guide:

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html

The Sun Kerberos login module (Krb5LoginModule) is specified in detail by
the following page from the Java security reference guide:

Krb5LoginModule4

4 http://tinyurl.com/6lhq4h

224

Configuring the Artix Security Service

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://tinyurl.com/6lhq4h
http://tinyurl.com/6lhq4h

Clustering and Federation
Federating the Artix Security Service ... 226

225

Clustering and Federation

Federating the Artix Security Service
Overview

Federation is meant to be used in deployment scenarios where there is more
than one instance of an Artix security service. By configuring the Artix security
service instances as a federation, the security services can talk to each other
and access each other’s session caches. Federation frequently becomes
necessary when single sign-on (SSO) is used, because an SSO token can be
verified only by the security service instance that originally generated it.

Federation is not clustering
Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there are
no fault tolerance features provided.

Example federation scenario
Consider a simple federation scenario consisting of two security domains,
each with their own Artix security service instances, as follows:

• LDAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user

data in an LDAP database. The domain includes any Artix applications that
use this Artix security service (ID=1) to verify credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

• Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user

data in a Kerberos database. The domain includes any Artix applications
that use this Artix security service (ID=2) to verify credentials.

The two Artix security service instances are federated, using the configuration
described later in this section. With federation enabled, it is possible for single
sign-on clients to make invocations that cross security domain boundaries.

Federation scenario
Figure 23 on page 227 shows a typical scenario that illustrates how iSF
federation might be used in the context of an Artix system.

226

Configuring the Artix Security Service

Figure 23. An iSF Federation Scenario

Federation scenario steps
The federation scenario in Figure 23 on page 227 can be described as follows:

With single sign-on (SSO) enabled, the client calls out to the login
service, passing in the client’s GSSUP credentials, u/p/d, in order
to obtain an SSO token, t.

The login service delegates authentication to the Artix security
server (ID=1), which retrieves the user’s account data from the
LDAP backend.

227

Federating the Artix Security Service

The client invokes an operation on the Target A, belonging to the
LDAP security domain. The SSO token, t, is included in the
message.

Target A passes the SSO token to the Artix security server (ID=1)
to be authenticated. If authentication is successful, the operation
is allowed to proceed.

Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 is included in the message.

Target B passes the SSO token to the second Artix security server
(ID=2) to be authenticated.

The second Artix security server examines the SSO token. Because
the SSO token is tagged with the first Artix security server’s ID
(ID=1), verification of the token is delegated to the first Artix
security server. The second Artix security server opens an IIOP/TLS
connection to the first Artix security service to verify the token.

Configuring the is2.properties files
Each instance of the Artix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

• is2.current.server.id—a unique ID for this Artix security service

instance,

• is2.cluster.properties.filename—a shared cluster file.

• is2.sso.remote.token.cached—a boolean property enables caching

of remote token credentials in a federated system.

With caching enabled, the call from one federated security service to another
(step 7 of Figure 23 on page 227) is only necessary to authenticate a token
for the first time. For subsequent authentications, the security service (with
ID=2) can obtain the token’s security data from its own token cache.

For example, the first Artix security server instance from Figure 23 on page 227
could be configured as follows:

iS2 Properties File, for Server ID=1
...
###

228

Configuring the Artix Security Service

iSF federation related properties
###
is2.current.server xml:id=1
is2.cluster.properties.filename=C:/is2_config/cluster.proper
ties
is2.sso.remote.token.cached=true
...

And the second Artix security server instance from Figure 23 on page 227
could be configured as follows:

iS2 Properties File, for Server ID=2
...
###
iSF federation related properties
###
is2.current.server xml:id=2
is2.cluster.properties.filename=C:/is2_config/cluster.proper
ties
is2.sso.remote.token.cached=true
...

Configuring the cluster properties
file All the Artix security server instances within a federation should share a cluster

properties file. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded
Artix security servers shown in Figure 23 on page 227 .

Advertise the locations of the security services in the
cluster.
com.iona.security.common.securityInstanceURL.1=corba
loc:it_iiops:1.2@security_ldap1:5001/IT_SecurityService
com.iona.security.common.securityInstanceURL.2=corba
loc:it_iiops:1.2@security_ldap2:5002/IT_SecurityService

This assumes that the first security service (ID=1) runs on host
security_ldap1 and IP port 5001; the second security service (ID=2) runs
on host security_ldap2 and IP port 5002. To discover the appropriate host
and port settings for the security services, check the
plugins:security:iiop_tls settings in the relevant configuration scope
in the relevant Artix configuration file for each federated security service.

The securityInstanceURL.ServerID variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set these
values is to use the corbaloc URL format.

229

Federating the Artix Security Service

230

Part IV. Artix Security Features
This part presents a miscellaneous collection of additional Artix security features.

Single Sign-On .. 235
SSO and the Login Service ... 236
Username/Password-Based SSO for SOAP Bindings .. 238

WS-Trust ... 251
Introduction to WS-Trust .. 252
WS-Trust Single Sign-On Demonstration ... 256

WS-Trust Example with Signed SAML Tokens .. 257
Security Token Service Configuration ... 262
Client Configuration .. 273
Server Configuration ... 278

Java Router Security .. 285
Credentials Propagation Architecture ... 286
The Credentials Propagation Mapper ... 288
Mapping from HTTP/BA to WS-Security Credentials .. 292

HTTP/BA to WS-Security Router Example .. 293
HTTP/BA to WS-Security Router Configuration .. 295

Mapping from HTTP/BA to SSO Token ... 300
HTTP/BA to SSO Token Router Example .. 301
HTTP/BA to SSO Token Router Configuration .. 303

233

234

Single Sign-On
Single sign-on (SSO) is an Artix security framework feature which is used to minimize the exposure of usernames
and passwords to snooping. After initially signing on, a client communicates with other applications by passing
an SSO token in place of the original username and password.

SSO and the Login Service ... 236
Username/Password-Based SSO for SOAP Bindings .. 238

235

SSO and the Login Service
Advantages of SSO

SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

• Password visibility is restricted to the login service.

• Clients use SSO tokens to communicate with servers.

• Clients can be configured to use SSO with no code changes.

• SSO tokens are configured to expire after a specified length of time.

• When an SSO token expires, the Artix client automatically requests a new
token from the login service. No additional user code is required.

Login service
Figure 24 on page 236 shows an overview of a login service. The client Bus
automatically requests an SSO token by sending a username and a password
to the login service. If the username and password are successfully
authenticated, the login service returns an SSO token.

Figure 24. Client Requesting an SSO Token from the Login Service

SSO token
The SSO token is a compact key that the Artix security service uses to access
a user’s session details, which are stored in a cache.

SSO token expiry
The Artix security service is configured to impose the following kinds of timeout
on an SSO token:

236

Single Sign-On

• SSO session timeout—this timeout places an absolute limit on the lifetime
of an SSO token. When the timeout is exceeded, the token expires.

• SSO session idle timeout—this timeout places a limit on the amount of
time that elapses between authentication requests involving the SSO token.
If the central Artix security service receives no authentication requests in
this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 343.

Automatic token refresh
In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a security exception whenever an SSO
token expires. In practice, however, when SSO is enabled, the relevant plug-in
catches the exception on the client side and contacts the login service again
to refresh the SSO token automatically. The plug-in then automatically retries
the failed operation invocation.

237

SSO and the Login Service

Username/Password-Based SSO for SOAP Bindings
Overview

When using SOAP bindings in the Java runtime, usernames and passwords
can be transmitted using one of the following mechanisms:

• WSS UsernameToken.

• HTTP Basic Authentication.

This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password.

Username/password
authentication without SSO Figure 25 on page 238 gives an overview of ordinary username/password-based

authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

Figure 25. Overview of Username/Password Authentication without SSO

Username/password
authentication with SSO Figure 26 on page 239 gives an overview of username/password-based

authentication when SSO is enabled.

238

Single Sign-On

Figure 26. Overview of Username/Password Authentication with SSO

Prior to contacting the target server for the first time, the client Bus sends
the username, <username>, and password, <password>, to the login server,
getting an SSO token, <token>, in return. The client Bus then includes a
WSS BinarySecurityToken in a SOAP header (with a proprietary valueType,
http://schemas.iona.com/security/IONASSOToken) in the next request
to the target server. The target server’s Bus contacts the Artix security service
to validate the SSO token passed in the WSS Binary SecurityToken.

Client configuration
Example 47 on page 239 shows the XML configuration for an SSO SOAP
client.

Example 47. Client Configuration for Username/Password-based SSO

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <jaxws:client name="{ht
tp://soa.iona.com/demo/hello_world}WSSBinarySecurityTokenAuth
Port" createdFromAPI="true">

239

Username/Password-Based SSO for SOAP Bindings

<jaxws:features>
❷ <itsec:LoginClientConfig

loginServiceWsdlURL="http://localhost:27222/ser
vices/security/LoginService?wsdl"

/>
</jaxws:features>

</jaxws:client>

❸ <http:conduit name="{ht
tp://soa.iona.com/demo/hello_world}WSSBinarySecurityTokenAuth
Port.http-conduit">

<http:tlsClientParameters>
...

</http:tlsClientParameters>
</http:conduit>

❹ <http:conduit name="{http://ws.iona.com/login_service}Lo
ginServicePort.http-conduit">
❺ <http:tlsClientParameters>

<csec:trustManagers>
<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>

</beans>

The preceding Artix configuration can be described as follows:

❶ Enable the single sign-on feature for the endpoint that the client wants
to connect to, WSSBinarySecurityTokenAuthPort. In general, you

need to enable the single sign-on feature for each of the remote endpoints
individually.

❷ Include the itsec:LoginClientConfig element to enable the single

sign-on feature for the current endpoint. The loginServiceWsdlURL

attribute specifies the location of the login service’s WSDL contract,
which provides the address of the login service port. In this example,
the login service WSDL is obtained by querying the security service's
WSDL publish port.

❸ This http:conduit element is used to configure SSL/TLS security on

the connection between the client and the server. This configuration
follows the standard approach for SSL/TLS mutual authentication and
is not shown here.

240

Single Sign-On

❹ It is also necessary to supply TLS settings for the login service port,
{http://ws.iona.com/login_service}LoginServicePort, so that

the client can establish a secure HTTPS connection to the login service.
❺ The http:tlsClientParameters element provides the typical

configuration settings that you need for a HTTPS connection. For more
details about these settings, see on page 117. Though not shown here,
it is also advisable to restrict the available set of cipher suites with a
cipher suite filter—see on page 139.

Warning
It is essential to customize an application’s own X.509
certificates and trusted CA certificates in order to configure a
truly secure TLS system. It is also essential to customize the
set of available cipher suites (some default cipher suites provide
very weak security).

Target configuration
Example 48 on page 241 shows the XML configuration for an SSO SOAP
target server that accepts connections from clients that authenticate
themselves using single sign-on.

Example 48. Target Configuration for SSO Authentication

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:hw="http://soa.iona.com/demo/hello_world"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

<!-- -->
<!-- Require WS-Security UsernameToken with password in

this endpoint -->
<!-- -->

❶ <jaxws:endpoint
id="WSSBinarySecurityTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"

241

Username/Password-Based SSO for SOAP Bindings

serviceName="hw:GreeterService"
endpointName="hw:WSSBinarySecurityTokenAuthPort"
address="https://localhost:9001/GreeterService/WSSBin

arySecurityTokenAuthPort"
depends-on="tls-settings"

>
❷ <jaxws:features>

<cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateAndAu

thorizeWSSIonaSSOTokenPolicy"/>
</cxfp:policies>

</jaxws:features>
</jaxws:endpoint>

❸ <wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSIonaSSO
TokenPolicy">

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="SOAP"
credentialType="IONA_SSO_TOKEN"/>

</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy

aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:Policy>

<!-- -->
<!-- ISF Client config -->
<!-- -->

❹ <itsec:IsfClientConfig
id="it.soa.security"
IsfServiceWsdlLoc="http://localhost:27222/services/se

curity/ServiceManager?wsdl"
/>

<!-- -->
<!-- TLS config needed for secure HTTP/S communications

into ISF Server -->
<!-- -->

❺ <http:conduit name="{http://schemas.iona.com/idl/isf_ser
vice.idl}IT_ISF.ServiceManagerSOAPPort.http-conduit">

<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>
<csec:trustManagers>

242

Single Sign-On

<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>
❻ <http:conduit name="{http://schemas.iona.com/idl/isfx_au
thn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.http-
conduit">

<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>
<csec:trustManagers>

<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>

❼ <httpj:engine-factory id="tls-settings">
<httpj:engine port="9001">

...
</httpj:engine>

</httpj:engine-factory>

</beans>

The preceding Artix configuration can be described as follows:

❶ Enable WSS binary security token authentication for the JAX-WS endpoint
instantiated by this jaxws:endpoint element. In general, you need to

enable authentication for each of the server endpoints individually.
❷ The target server's endpoint is configured using a WS-Policy policy.

Inside the cxfp:policies element is a wsp:PolicyReference

element, which references the wsp:Policy instance with matching

wsu:Id attribute.

❸ The wsp:Policy element specifies two policies, which must be satisified

at the target server's endpoint, as follows:

• itsec:ISFAuthenticationPolicy—specifies that the client must

present a proprietary SSO token , which is sent in a WS-Security
header (WSS binary token).

243

Username/Password-Based SSO for SOAP Bindings

• itsec:ACLAuthorizationPolicy—configures the server to perform

authorization based on the received WSS binary security token. The
following attributes are set:

• aclURL—specifies the location of the access control list (ACL) file.

• aclServerName—specifies which of the action-role-mapping

elements in the action role mapping file should apply to the
incoming requests (must match the server-name element in one

of the action-role-mapping elements).

• authorizationRealm—specifies the name of the authorization

realm for this endpoint. See on page 175.

❹ The itsec:IsfClientConfig element is used to configure the handler

that opens a connection to the Artix security service. The
IsfServiceWsdlLoc attribute specifies the location of the WSDL

contract for the Artix security service. In this example, the WSDL contract
is obtained by querying the security service's WSDL publish port.

❺ The following client settings are applied to the service manager port on
the Artix security service, which has the QName,
{http://schemas.iona.com/idl/isf_service.idl}IT_ISF.ServiceManagerSOAPPort.

The service manager service is responsible for bootstrapping connections
to the other WSDL services hosted by the Artix security service.

❻ You also need to configure a secure HTTPS connection to the
authentication service port on the Artix security service, which has the
QName,
{http://schemas.iona.com/idl/isfx_authn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.

❼ These settings are used to configure SSL/TLS security on the Web service
port exposed by the Artix server. This involves standard SSL/TLS
configuration and the details are not shown here.

Artix login service configuration
Example 49 on page 244 shows the domain configuration for an Artix login
service that is colocated with the Artix security service (that is, both services
run in the same process).

Example 49. Artix Login Service Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

244

Single Sign-On

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... >

❶ <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">

<secsvr:Adapters>
<secsvr:Adapter>

<secsvr:FileAdapter userDatabase="etc/user
db.xml"/>

</secsvr:Adapter>
</secsvr:Adapters>
<secsvr:Services>

<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>

</secsvr:Services>
❷ <secsvr:SSOConfig

sessionTimeout="600"
idleTimeout="60"
cacheSize="200"

/>
</secsvr:IsfServer>

<!-- -->
<!-- Login Service config -->
<!-- Note that this will only work for the U/T case -->
<!-- -->

❸ <jaxws:endpoint
id="it.soa.security.login"
xmlns:ns="http://ws.iona.com/login_service"
implementor="com.iona.soa.security.services.cxf.Login

ServiceImpl"
❹ address="https://localhost:49675/services/security/Lo
ginService"

serviceName="ns:LoginService"
endpointName="ns:LoginServicePort"
depends-on="tls-settings">
<jaxws:features>

❺ <cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateUser

245

Username/Password-Based SSO for SOAP Bindings

namePasswordPolicy"/>
</cxfp:policies>

</jaxws:features>
</jaxws:endpoint>

❻ <wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
❼ <wsp:ExactlyOne>
❽ <itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="HTTP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
❾ <itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME_PASSWORD"/>

</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>

</wsp:Policy>

<!-- -->
<!-- (Server Application) TLS Port configuration parameters

-->
<!-- -->

❿ <httpj:engine-factory id="tls-settings">
<!-- -->
<!-- TLS configuration for the Security Service -->
<!-- -->

11 <httpj:engine port="59075">
<httpj:tlsServerParameters>

<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcs12" password="pass

word" resource="keys/isf-server.p12"/>
</csec:keyManagers>
<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-
cert.pem"/>

</csec:trustManagers>
12 <csec:clientAuthentication want="true" re
quired="true"/>

</httpj:tlsServerParameters>
</httpj:engine>
<!-- -->
<!-- TLS configuration for the Login Service -->
<!-- -->

13 <httpj:engine port="49675">
<httpj:tlsServerParameters>

<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcs12" password="pass

246

Single Sign-On

word" resource="keys/isf-server.p12"/>
</csec:keyManagers>
<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-
cert.pem"/>

</csec:trustManagers>
14 <csec:clientAuthentication want="true" re
quired="false"/>

</httpj:tlsServerParameters>
</httpj:engine>

</httpj:engine-factory>

<!-- -->
<!-- Login Server requires the incoming username and

password to be -->
<!-- authenticated by the ISF Server Config -->
<!-- -->

15 <itsec:IsfClientConfig
id="it.soa.security.client"
IsfServiceWsdlLoc="http://localhost:27222/services/se

curity/ServiceManager?wsdl"
/>

<!-- -->
<!-- TLS config needed for secure HTTP/S communications

from -->
<!-- Login Server into ISF Server -->
<!-- -->

16 <http:conduit name="{http://schemas.iona.com/idl/isf_ser
vice.idl}IT_ISF.ServiceManagerSOAPPort.http-conduit">

<http:tlsClientParameters disableCNCheck="true">
<csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>
<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-
cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>

</http:conduit>
17 <http:conduit name="{http://schemas.iona.com/idl/isfx_au
thn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.http-
conduit">

<http:tlsClientParameters disableCNCheck="true">
<csec:keyManagers keyPassword="password">

<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>

</csec:keyManagers>

247

Username/Password-Based SSO for SOAP Bindings

<csec:trustManagers>
<csec:certStore resource="keys/isf-ca-

cert.pem"/>
</csec:trustManagers>

</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding Artix configuration can be described as follows:

❶ The secsvr:IsfServer element configures the security service in the

usual way. This particular instance is configured with a file adapter and
its Web services are provided through the IP port 59075. For more details

about this configuration, see Example 11.1 on page 202.
❷ The secsvr:SSOConfig element configures the single sign-on (SSO)

feature of the security service. The following attributes are set here:

• sessionTimeout—(in units of seconds) specifies the maximum length

of time for which an SSO token is valid, from the time the token is
issued.

• idleTimeout—(in units of seconds) if an SSO token remains idle

(that is, no security operations performed on this token) for longer
than this period of time, the token becomes invalid.

• cacheSize—specifies the maximum number of user sessions to cache

in the security service.

❸ The following jaxws:endpoint element both instantiates and activates

the security login service.
❹ The login service is made available as a Web service whose address is

specified by the address attribute of the jaxws:endpoint element. In

particular, the address URL specifies a secure HTTPS protocol, through
the https:// prefix, and the IP port is 49675.

If you want to change the login service's IP port, make the following
changes to the configuration:

1. Modify the port number in the address attribute of the login service's

jaxws:endpoint element.

248

Single Sign-On

2. Modify the port number in the corresponding httpj:engine element,

which configures the TLS security layer for the login service (see
further down the current sample configuration).

❺ The login service is configured to authenticate incoming credentials using
an appropriate WS-Policy policy. The cxfp:policies element is the

standard way of inserting a policy as a feature in the Java runtime. Inside
this element, you can either insert a wsp:Policy element directly or

insert a wsp:PolicyReference element. The recommended approach,

as shown here, is to insert a wsp:PolicyReference element.

The URI attribute of wsp:PolicyReference references the wsp:Policy
instance with matching wsu:Id attribute value.

❻ This is the wsp:Policy instance referenced by the login service.

❼ The wsp:ExactlyOne policy operator asserts that exactly one of the

following policies must be satisfied. In other words, either HTTP Basic
Authentication credentials or SOAP username/password credentials are
present in the incoming message, but not both.

❽ This itsec:ISFAuthenticationPolicy checks for the presence of

HTTP Basic Authentication credentials in the incoming request.
❾ This itsec:ISFAuthenticationPolicy checks for the presence of

WS-Security username/password credentials in the incoming request.
❿ The httpj:engine-factory element configures the TLS security layer

for all of the HTTP Web service endpoint defined in the security service
and the login service.

11 This httpj:engine element configures TLS security for the

AuthenticationService and ServiceManager Web services, which

are accessed through the IP port, 59075.

12 Require a client of the security service (actually an Artix server) to present
an X.509 certificate. In other words, the TLS connection is configured
for mutual authentication.

13 This httpj:engine element configures TLS security for the login service,

which is accessed through the IP port, 49675.
14 Require a client of the login service (actually an Artix client) to present

an X.509 certificate.
15 Configure the login service to be a client of the security service. The login

service is separate from the security service (even though it is activated
within the same Spring container), so it needs to establish a connection
to the security service, just like any other Artix server.

249

Username/Password-Based SSO for SOAP Bindings

16 This http:conduit element configures the TLS security layer for the

proxy that connects the login service to the ServiceManager service.

The proxy has its own X.509 certificate, because the security service's
endpoints require mutual authentication.

17 This http:conduit element configures the TLS security layer for the

proxy that connects the login service to the AuthenticationService

service. The proxy has its own X.509 certificate, because the security
service's endpoints require mutual authentication.

250

Single Sign-On

WS-Trust
The Web services trust (WS-Trust) specification defines a standard security infrastructure for Web services
applications. WS-Trust replaces the traditional Artix security service with an equivalent service, the security
token service (STS). This chapter provides a basic introduction to the WS-Trust infrastructure and explains how
to configure and deploy a single sign-on client/server application in the context of WS-Trust.

Introduction to WS-Trust .. 252
WS-Trust Single Sign-On Demonstration ... 256

WS-Trust Example with Signed SAML Tokens .. 257
Security Token Service Configuration ... 262
Client Configuration .. 273
Server Configuration ... 278

251

Introduction to WS-Trust
Overview

The Web services trust model (WS-Trust) is a general framework for
implementing security in a distributed system. The basic terms in this model
(for example, claims, security tokens, policies, and so on), are deliberately
defined in an abstract way so that the framework can be layered on top of a
wide variety of existing security systems. For example, you can define a
WS-Trust framework by layering it over Kerberos, SSL/TLS, or, in particular,
by layering it over the existing Artix security framework.

WS-Trust specification
The WS-Trust features of Artix are based on the WS-Trust standard from
Oasis1:

http://www.oasis-open.org/specs/index.php#wstrustv1.3

WS-Trust architecture
Figure 27 on page 253 shows a general overview of the WS-Trust architecture.

1 http://www.oasis-open.org

252

WS-Trust

http://www.oasis-open.org
http://www.oasis-open.org

Figure 27. WS-Trust Architecture

Requestor
A requestor is an entity that tries to invoke a secure operation over a network
connection. In practice, a requestor is typically a Web service client.

Relying party
A relying party refers to an entity that has some services or resources that
must be secured against unauthorized access. In practice, a relying party is
typically a Web service.

Note
This is a term defined by the SAML specification, not by WS-Trust.
In Artix security, however, the term is applied generally to secure
services, irrespective of whether SAML tokens are used.

Security token
A security token is a collection of security data that a requestor sends inside
a request (typically embedded in the message header) in order to invoke a
secure operation or to gain access to a secure resource. In the WS-Trust
framework, the notion of a security token is quite general and can be used to
describe any block of security data that might accompany a request.

For example, in Artix a WS-Trust security token might be a signed SAML
token or a proprietary Artix SSO token.

Claims
A security token is formally defined to consist of a collection of claims. Each
claim typically contains a particular kind of security data. For example, in

253

Introduction to WS-Trust

Artix, a SAML token contains realm and role data, which is a particular kind
of claim.

Policy
In WS-Trust scenarios, a policy can represent the security configuration of a
participant in a secure application. The requestor, the relying party, and the
security token service are all configured by policies. For example, a policy
can be used to configure what kinds of authentication are supported and
required, and to specify the details of an access control list (ACL).

Security token service
The security token service (STS) lies at the heart of the WS-Trust security
architecture. In the WS-Trust standard, the following bindings are defined
(not all of which are supported by Artix):

• Issue binding—the specification defines this binding as follows: Based on
the credential provided/proven in the request, a new token is issued,
possibly with new proof information.

For example, in Artix, the Issue binding is most commonly used used as a
login service to support single sign-on (SSO). When a requestor needs an
SSO token, it calls out to the Issue binding to request the token.

• Validate binding—the specification defines this binding as follows: The
validity of the specified security token is evaluated and a result is returned.
The result may be a status, a new token, or both.

For example, if an Artix server receives the Artix proprietary SSO token type,
ISF_SSO_TOKEN, from a client, it would need to call out to the Validate
binding in order to retrieve the realms and roles assocated with this token.
Unlike a SAML token, the Artix proprietary SSO token does not embed the
realm and role security data.

• Renew binding (not supported)—the specification defines this binding as
follows: A previously issued token with expiration is presented (and possibly
proven) and the same token is returned with new expiration semantics.

• Cancel binding (not supported)—the specification defines this binding as
follows: When a previously issued token is no longer needed, the Cancel
binding can be used to cancel the token, terminating its use.

The Artix implementation of the STS has a layered architecture, as shown in
Figure 27 on page 253,where the layers can be described as follows:

• JAX-WS layer—is responsible for exposing the STS bindings as Web service
endpoints. This layer exploits standard Artix Java runtime configuration

254

WS-Trust

options to configure the endpoints. The hostname, IP port, and TLS settings
can all be customized in the same way as with any other Artix server.

• STS layer—provides the implementation of the STS bindings. This layer is
responsible for managing the lifecycle of WS-Trust security tokens. For
example, the STS implementation is responsible for creating, cancelling,
renewing, and validating WS-Trust tokens. When creating a token, you can
specify what format the token should have, whether it must be signed, and
so on.

• iSF server layer—represents the implementation of the pre-existing (that
is, non-WS-Trust) Artix security service. When configured as part of the
STS, this layer is primarily responsible for retrieving security data from
third-party adapters and making this security data available to the STS
layer.

• Adapter layer—is responsible for integrating a specific third-party security
database into the security service. Artix currently supports the following
adapters: File, LDAP, and Kerberos. For details, see on page 201.

255

Introduction to WS-Trust

WS-Trust Single Sign-On Demonstration
WS-Trust Example with Signed SAML Tokens .. 257
Security Token Service Configuration ... 262
Client Configuration .. 273
Server Configuration ... 278

256

WS-Trust

WS-Trust Example with Signed SAML Tokens
Overview

Figure 28 on page 257 gives an overview of what happens when a single
sign-on client makes a secure invocation on a remote server.

Figure 28. WS-Trust Single Sign-On Scenario

Steps to invoke the server
securely The WS-Trust single sign-on scenario shown in Figure 28 on page 257 can

be described as follows:

1. Before invoking an operation on the server for the first time, the client
initiates SSO login by contacting the Issue binding on the STS.

2. The client presents its own X.509 certificate, alice.jks, during the TLS

handshake. On the STS side of the connection, the JAX-WS endpoint
verifies the client certificate using the CA certificate, trent-cert.pem,

and on the client side, the client verifies the STS certificate using the CA
certificate, sts-ca-cert.pem.

257

WS-Trust Example with Signed SAML Tokens

3. After the TLS handshake is complete, the JAX-WS endpoint is configured
to authenticate the client certificate. Effectively, this authentication step
consists of comparing the received certificate with a copy of the certificate,
alice-cert.pem, stored in the security adapter. For more details, see

Managing a File Authentication Domain on page 184 and Managing an
LDAP Authentication Domain on page 189.

If the authentication step is successful, the adapter layer returns a collection
of realm and role data associated with the client.

4. The STS layer takes the realm and role data from the previous step and
uses it to create a SAML token, as follows:

a. The client's realm and role data is reformatted as a SAML 1.1 token.

b. The client's identity (extracted from the client certificate's subject) is
encoded as authorization related content of a SAML token. This identity
represents the the holder-of-key (shown as HOK in the figure).

c. The token issuer private key is used to sign the SAML token (where the
signature is shown as # in the figure). This enables relying parties (Artix

servers) to verify the integrity of the SAML token.

5. The STS replies to the client, sending back the signed SAML token.

6. The client initiates a connection to the server, in order to invoke an
operation.

7. During the TLS handshake, the client presents its own X.509 certificate,
alice.jks. On the server side of the connection, the JAX-WS endpoint

verifies the client certificate using the CA certificate, trent-cert.pem,

and on the client side, the client verifies the server certificate also using
the CA certificate, trent-cert.pem.

After the connection is established, the client sends an invocation request
to the server, which includes the SAML token embedded in a SOAP header.

8. The server tests the integrity of the received SAML token using the token
issuer public key (which complements the token issuer private key used
by the STS). If this test is successful, it proves that the SAML token has
not been modified or corrupted since it was issued by the STS.

258

WS-Trust

In addition, the server also checks that the holder-of-key identity embedded
in the SAML token matches the subject from the received client certificate.
If the identities match, this proves that the current client is indeed the
owner of the SAML token and is entitled to present the token to the server.
This is a stong extra level of control, which prevents the use of SAML tokens
in contexts they were not meant for, even if an attacker somehow acquired
one.

9. The server extracts the realm and role data from the SAML token and, in
conjunction with the server's own ACL file, the server figures out whether
the client is authorized to invoke the requested operation. If yes, the
operation is allowed to proceed; otherwise an error would be generated.

Signed SAML token
A signed SAML token consists of the following parts:

• SAML assertion—in Artix, this consists of realm and role data.

• (Optional) Holder-of-key field—the identify of the client that owns the
SAML assertion. Only the client identified by this field is allowed to present
the current SAML token.

• Digital signature—a signature obtained by calculating a digest of the SAML
token and encrypting the digest with a private key (token issuer private
key). The signature can later be verified using the corresponding public key
(token issuer public key). Using a digital signature offers the following
advantages:

• Integrity—the contents of the SAML token cannot be tampered with or
corrupted in any way. Any attempt to modify the token would cause a
mismatch between the digest and the message contents.

• Non-repudiation of origin—only the STS has access to the token issuer
private key. Hence, by verifying the signature, you can prove that the
SAML token originated from the STS that owns that private key.

If you consider the case where the holder-of-key field is not enabled, obtaining
a signed SAML token is analogous to obtaining an electronic card key to gain
access to a building. In order to obtain the key initially, you present some
form of photo ID to a receptionist or security guard. Having verified your ID,
the guard then issues you with an electronic key that gives you access to
certain areas of the building. For example, you might gain access to the
meeting rooms and ordinary offices, but you would probably not be able to
access the systems room, the boiler room or the CEO's office.

259

WS-Trust Example with Signed SAML Tokens

If you were particularly keen to visit the boiler room and you were an inveterate
hacker, you might be tempted to try and re-program the card key using
equipment ordered over the Internet. But if the card key system is properly
designed, this would be impossible, because the card issuer would have a
secret code that is required for re-programming the card. The card key is thus
tamper proof, like a signed SAML token.

Holder of key
The holder of key feature is a mechanism that provides proof of ownership
of a signed SAML token. The key holder is the legitimate owner of the signed
SAML token and only this key holder has the right to present the SAML token
to a relying party. The holder of key mechanism works by embedding the key
holder's identity in the SAML token before the SAML token is signed by the
token issuer. If the key holder now presents its own credentials along with
the SAML token when it contacts a relying party (for example, an Artix server),
the relying party can then check that the key holder's identity matches the
identity embedded in the SAML token.

If you consider the analogy with the card key system, you can see that a
potential weakness in the card key system is that the card key could be used
by anybody. In order to preserve security, therefore, you must take great care
that you do not physically misplace the card key. If you went out to a cafe
for lunch and accidentally left your card key behind, anyone could pick it up
and use it to access the building. This is the kind of hazard that holder of key
security is designed to protect against. One way of adding protection to the
card key system would be to print your name on the card key as it is issued
and to require all key holders to carry a photo ID with them at all times. Under
this system, anyone in the building could challenge you to produce your photo
ID and show that your name matches the name on the card. This enables
you to prove that you are the legitimate owner of the card key.

Overview of the X.509 certificates
and keys In the scenario shown in Figure 28 on page 257, a relatively large number of

certificates and keys are used. These can be summarized as follows:

• trent-cert configuration authority—is responsible for issuing the following

certificates:

• alice.jks—the client's own X.509 certificate and private key.

• bob.jks—the server's own X.509 certificate and private key.

• sts-ca-cert configuration authority—is responsible for issuing the

following certificate:

260

WS-Trust

• sts-server.jks—the STS server's own X.509 certificate and private

key.

• Token issuer keys—to support signed SAML tokens, the following
public/private key pair is defined:

• sts-token-issuer.jks—the token issuer private key (for signing SAML

tokens).

• sts-token-issuer-cert.pem—he token issuer public key (for verifying

SAML tokens).

261

WS-Trust Example with Signed SAML Tokens

Security Token Service Configuration
Overview

This section describes a security token service (STS) configuration suitable
for the WS-Trust single sign-on scenario. In particular, the Issue binding is
enabled to perform single sign-on, while the Validate binding is disabled.
Other configurations of the STS are possible, but they are outside the scope
of this chapter.

The configuration of the STS reflects the layered architecture shown in
Figure 27 on page 253. That is, each layer of the STS architecture is configured
by distinct parts of the configuration file, as follows:

• STS layer—is configured by the sts:StsServer element, which governs

the issuing and validation of security tokens (for example, SAML assertions)
through the Issue or Validate bindings. See StsServer element on page 264
for details.

• JAX-WS layer—is configured by the combination of a jaxws:endpoint

element and a httpj:engine element for each Web service (Issue binding

or Validate binding) exposed by the STS. In the current scenario, only the
Issue binding is exposed as a JAX-WS endpoint. See JAX-WS endpoint for
the Issue binding on page ? for details.

• iSF server/adapter layers—is configured by the itsecsvr:IsfServer

element (and the nested itsecsvr:Adapters element). The adapter layer

is configured in exactly the same way as for a non-STS server. See iSF
adapter configuration on page ? for details.

X.509 certificates and keys
needed by the STS The STS is associated with a variety of X.509 certificate and keys, as follows:

• Securing client connections to JAX-WS endpoints—the JAX-WS endpoints
exposed by the STS are configured with TLS security, where the handshake
must be configured to require mutual authentication. As usual, this requires
each JAX-WS endpoint to be associated with the following certificates:

• STS own certificate—an X.509 certificate and private key,
sts-server.jks, which the STS server uses to identify itself to clients.

• Trusted CA certificate list—the CA certificate that signed the client's
own certificate, trent-cert.pem.

262

WS-Trust

• Signing SAML assertions—to support signed SAML assertions, the STS
must be supplied with a signing key, which is a private key reserved
specially for this purpose.

• Authenticating received TLS credentials—to authenticate the TLS
credentials received from a client, the client's own certificate must be cached
in the user database associated with the security adapter. The details of
how to do this depend on the type of adapter you are deploying (see
Managing a File Authentication Domain on page 184 and Managing an LDAP
Authentication Domain on page 189 for details). For example, in the case
of the file adapter, you would cache the certificate for alice,
keys/alice-cert.pem, as follows:

<securityInfo xmlns="http://schemas.iona.com/security/filead
apter" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/filead
apter fileadapter.xsd">
<users>

<user name="alice" certificate="keys/alice-cert.pem">

<realm name="IONAGlobalRealm">
<role name="guest"/>

</realm>
<realm name="corporate">

<role name="president"/>
</realm>

</user>
</users>

</securityInfo>

Issue binding address
In the current example, only the Issue binding is configured with a JAX-WS
endpoint. Before deploying the STS for this scenario, you will usually need
to customize both the hostname and IP port assocated with this endpoint,
which you can do as follows:

1. Edit the address defined in the WSDL port element in the Issue binding's
WSDL contract. See WSDL contract for the Issue binding on page 264 for
details.

2. If the Issue binding's jaxws:endpoint element in Spring configuration

includes an address attribute, you will need to edit the value of this

address (which overrides the value in the WSDL contract). See JAX-WS
endpoint for the Issue binding on page 268 for details.

263

Security Token Service Configuration

3. You must also customize the value of the port attribute in the relevant

httpj:engine element. See Example 55 on page 268 for details.

WSDL contract for the Issue
binding The default details for opening a connection to the STS Issue binding are

specified in the Issue binding WSDL contract, which can be found in the
samples/security/wst_saml/wsdl directory. Example 50 on page 264
shows a fragment from the Issue binding contract, highlighting the HTTP
address of the Issue port. By editing the location attribute of the
http:address element, you can customize the default hostname and IP
port, https://HostName:IPPort, of the Issue binding.

Example 50. Issue Binding WSDL Contract

<wsdl:definitions
targetNamespace="http://docs.oasis-open.org/ws-sx/ws-

trust/200512/"
xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
...
<wsdl:service name="SecurityTokenServiceSOAPService">
<wsdl:port name="TLSClientAuthIssueSignedSAMLTLSHOK"
binding="tns:SecurityTokenService_Binding">
<http:address
location="https://localhost:57076/services/security/Se

curityTokenServiceSOAPService/TLSClientAuthIssueSignedSAM
LTLSHOK"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

STS configuration file
The STS configuration file for this demonstration can be found at the following
location:

ArtixInstallDir/java/samples/security/wst_saml/etc/security-
service.xml

StsServer element
The sts:StsServer element is responsible for configuring the core STS
implementation only. Other aspects, such as the detailed configuration of the
Issue and Validate JAX-WS endpoints, are configured separately.
Example 51 on page 265 shows the StsServer element without any content.
In particular, this configuration fragment also shows all of the namespaces

264

WS-Trust

and namespace prefixes that are used in the STS configuration file,
security-service.xml.

Example 51. StsServer Element

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:cxfsec="http://cxf.apache.org/configuration/security"

xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:http="http://cxf.apache.org/transports/http/config

uration"
xmlns:httpj="http://cxf.apache.org/transports/http-

jetty/configuration"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:itsecsvr="http://schemas.iona.com/soa/security-
server-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:sts="http://schemas.iona.com/soa/sts-config"
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

... >

<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
...

</sts:StsServer>
...

</beans>

Where the StsServer element requires you to set just one attribute, id. As
usual, the id value is used to register the StsServer bean instance in the
Spring bean registry. This id is important, because it is needed in order to
associate the JAX-WS endpoints, such as Issue and Validate, with the
StsServer implementation (the StsServer bean provides the implementation
of these Web services). See Example 55 on page 268.

The contents of the sts:StsServer element consist of the following
sub-elements:

• SAMLTokenCreationParams element on page 266.

• IssueBindingParams element on page 266.

265

Security Token Service Configuration

• ValidateBindingParams element on page 268.

SAMLTokenCreationParams
element Example 52 on page 266 shows the sts:SAMLTokenCreationParams

element, which is responsible for configuring SAML token creation.

Example 52. SAMLTokenCreationParams Element

<beans ... >

<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
<sts:SAMLTokenCreationParams issuer="Security Token

Service"/>
...

</sts:StsServer>
...

</beans>

Where the SAMLTokenCreationParams element defines the required attribute,
issuer. The issuer attribute uniquely identifies the SAML authority to the
relying party (Artix server).

IssueBindingParams element
Example 53 on page 266 shows the sts:IssueBindingParams element,
which is responsible for configuring the Issue binding implementation.

Example 53. IssueBindingParams Element

<beans ... >

<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
...
<sts:IssueBindingParams>

❶ <sts:SignatureKeySpecification>
❷ <itsec:KeyStore xmlns:itsec="http://schem
as.iona.com/soa/security-config"

storeType="jks">
<itsec:Resource>

<itsec:ClasspathResourceResolver
path="keys/sts-token-issuer.jks"/>

</itsec:Resource>
<itsec:StorePass>

<itsec:PlaintextPasswordResolver
password="password"/>

</itsec:StorePass>
</itsec:KeyStore>

❸ <itsec:KeyEntry alias="sts-token-issuer">

266

WS-Trust

<itsec:Password>
<itsec:PlaintextPasswordResolver

password="password"/>
</itsec:Password>

</itsec:KeyEntry>
</sts:SignatureKeySpecification>

❹ <sts:SupportedTokenTypes>
❺ <sts:TokenInfo

tokenTypeURI="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">

<sts:TokenMode>
❻ <sts:SAMLTokenMode

holderOfKeyMode="TLS-HOK"
signingMode="SIGNED"/>

</sts:TokenMode>
</sts:TokenInfo>

</sts:SupportedTokenTypes>
</sts:IssueBindingParams>
...

</sts:StsServer>
...

</beans>

The preceding configuration can be described as follows:

❶ The sts:SignatureKeySpecification element specifies the private

key that is used to sign SAML tokens issued by the STS server.
❷ The itsec:KeyStore element is used to specify the key store that

contains the signing key. The storeType attribute specifies that the key

store is a Java Key Store (JKS). The itsec:Resource sub-element

specifies the location of the keystore and the itsec:StorePass

sub-element specifies the keystore password.
❸ The itsec:KeyEntry element is used to specify the signing key's key

entry in the JKS keystore. The alias attribute specifies the signing key's

key alias, which is the standard way of identifying a private key in a
Java key store. The password that decrypts the signing key is specified
by the itsec:Password sub-element.

❹ The sts:SupportedTokenTypes element specifies the token types that

can potentially be returned from the Issue binding of the STS. If this
element is omitted from configuration, the supported token type defaults
to ISF_SSO_TOKEN, which is an Artix proprietary SSO token type.

267

Security Token Service Configuration

❺ The sts:TokenInfo element specifies the supported token type, where

in this example, the tokenTypeURI attribute selects SAML 1.1 as the

supported token type.
❻ The sts:SAMLTokenMode element specifies some options for SAML

token generation. In particular, the holderOfKeyMode attribute specifies

that the holder of key identity is taken from the received TLS credentials
and the signingMode attribute specifies that the returned SAML token

must be signed. See Signed SAML token on page 259 and Holder of
key on page 260 for more details.

ValidateBindingParams element
Example 54 on page 268 shows the sts:ValidateBindingParams element,
which is responsible for configuring the Validate binding implementation. In
this example, the Validate binding is disabled, by setting
disableBinding="true". The Validate binding is not needed for the SAML
single sign-on scenario.

Example 54. ValidateBindingParams Element

<beans ... >

<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
...
<sts:ValidateBindingParams disableBinding="true"/>

</sts:StsServer>
...

</beans>

JAX-WS endpoint for the Issue
binding Example 55 on page 268 shows how to configure the JAX-WS endpoint for

the Issue binding.

Example 55. Issue Binding JAX-WS Endpoint

<beans ... >
...

❶ <jaxws:endpoint
id="TLSClientAuthIssueSignedSAMLTLSHOKEndpoint"
implementor="#TLSClientAuthIssueSignedSAMLTLSHOK"
wsdlLocation="wsdl/ws-trust-1.3-soap.wsdl"
serviceName="wst:SecurityTokenServiceSOAPService"
endpointName="wst:TLSClientAuthIssueSignedSAMLTLSHOK"

depends-on="tls-settings"
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-

trust/200512/"

268

WS-Trust

>
<jaxws:features>

<cxfp:policies>
❷ <wsp:PolicyReference URI="#AuthenticateTLSCli
entCertificatePolicy"/>

</cxfp:policies>
</jaxws:features>
<jaxws:properties>

❸ <entry key="jaxb.additionalContextClasses">
<ref bean="STSAdditionalContextClasses"/>

</entry>
</jaxws:properties>

</jaxws:endpoint>

❹ <wsp:Policy wsu:Id="AuthenticateTLSClientCertificatePol
icy">
❺ <itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="TLS"
credentialType="TLS_PEER"/>

</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

❻ <bean id="STSAdditionalContextClasses"
class="com.iona.soa.security.rt.util.ClassArray

FactoryBean">
<property name="classNames">

<list>
<value>com.iona.soa.security.types.ObjectFact

ory</value>
<value>oasis.names.tc.saml._1_0.assertion.Ob

jectFactory</value>
<value>oasis.names.tc.saml._2_0.assertion.Ob

jectFactory</value>
<value>com.iona.schemas.saml.ObjectFact

ory</value>
<value>com.iona.schemas.saml2.ObjectFact

ory</value>
</list>

</property>
</bean>

❼ <httpj:engine-factory id="tls-settings">
<!-- -->
<!-- TLS configuration for the Security Token Service

-->
<!-- -->

❽ <httpj:engine port="57076">

269

Security Token Service Configuration

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">

<cxfsec:keyStore type="jks" re
source="keys/sts-server.jks" password="password"/>

</cxfsec:keyManagers>
<cxfsec:trustManagers>

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>
❾ <cxfsec:clientAuthentication want="true"
required="true"/>

</httpj:tlsServerParameters>
</httpj:engine>

</httpj:engine-factory>
...

</beans>

The preceding configuration can be described as follows:

❶ This jaxws:endpoint element provides the basic configuration of the

Issue binding's JAX-WS endpoint. The following attributes are specified
here:

• id—an unique identifier that identifies this endpoint instance in the

Spring registry.

• implementor—references the Java bean that implements the SAML

Issue binding. The implementor of the Issue binding is the bean
defined by the sts:StsServer element. Hence, the implementor

attribute uses a bean ID reference, of the form #BeanID, to reference

the StsServer bean instance—see Example 51 on page 265.

• wsdlLocation—location of the WSDL contract for the SAML Issue

binding. The default address of the Issue binding is specified in this
contract—see Example 50 on page 264.

• serviceName—the QName of the Issue binding's WSDL service.

• endpointName—the QName of the Issue binding's WSDL port

(endpoint) name

• depends-on—ensures that the associated Jetty port is created before

this bean is instantiated.

270

WS-Trust

• xmlns:wst—defines the prefix needed for defining the service name

QName and the endpoint name QName.

❷ The wsp:PolicyReference element associates the policy having the

bean ID, AuthenticateTLSClientCertificatePolicy, with the

current endpoint. For more details about policy references, see Policies
and policy references on page 154.

❸ The jaxb.additionalContextClasses property specifies additional

JAX-B classes that enable the endpoint to parse some standard SAML
data types.

❹ This wsp:Policy element specifies the policy referenced previously

from within the jaxws:endpoint element. In particular, the wsu:Id

attribute specifies the ID value that is referenced from
wsp:PolicyReference.

❺ The itsec:ISFAuthenticationPolicy policy assertion requires that

peer TLS credentials (received from the client, Alice) are present and
can be successfully authenticated against the iSF server. See Policy
Expressions on page 157 for more details about policy assertions.

Note
The authentication policy assertion automatically makes a
colocated call to the iSF server layer here. Contrast this with
the way itsec:ISFAuthenticationPolicy is used in an Artix
server, where the itsec:IsfClientConfig element is required
in order to specify the location of the iSF server.

❻ This bean element contains an instance of type,

com.iona.soa.security.rt.util.ClassArrayFactoryBean, which

contains the extra JAX-B classes for SAML. This is essentially boiler-plate
configuration that should not be modified in any way.

❼ The httpj:engine-factory element contains all of the instances of

Jetty ports. This Jetty engine factory has the bean ID, tls-settings,

which is defined to be a prerequisite for the Issue binding's
jaxws:endpoint bean (through the jaxws:endpoint element's

depend-on attribute).

❽ The httpj:engine element configures the TLS settings for the IP port,

57076, in the usual way (see on page 117).

271

Security Token Service Configuration

Note
If you want to customize the Issue binding's IP port, you must
remember to modify this port attribute as well.

❾ The cxfsec:clientAuthentication element is configured to require

mutual authentication.

iSF adapter configuration
Example 56 on page 272 shows the configuration of the itsecsvr:IsfServer
element, which provides the basic authentication capability for the STS server.
The iSF server does not expose any endpoints of its own, but it is used
internally by the STS implementation to authenticate credentials. In particular,
various third-party enterprise security adapters can be provided through the
iSF server. The current example configures a file adapter in order to store the
users' security data in a flat file, etc/userdb.xml.

Example 56. iSF Adapter Configuration

<beans ... >
...
<itsecsvr:IsfServer id="it.soa.security.server">

<itsecsvr:Adapters>
<itsecsvr:Adapter>

<itsecsvr:FileAdapter userDatabase="etc/user
db.xml"/>

</itsecsvr:Adapter>
</itsecsvr:Adapters>

</itsecsvr:IsfServer>
...

</beans>

Logging configuration
The following lines at the end of the STS configuration enable logging in the
Java runtime.

<beans ... >
...
<cxf:bus>

<cxf:features>
<bean class="org.apache.cxf.feature.LoggingFea

ture"/>
</cxf:features>

</cxf:bus>
</beans>

272

WS-Trust

Client Configuration
Overview

The client configuration can be divided up conceptually into two main parts:
the first part configures the connection between the client and the remote
Artix server; the second part configures the connection between the client
and the STS.

X.509 certificates and keys
needed by the client The client is associated with a variety of X.509 certificate and keys, as follows:

• Client's own certificate—an X.509 certificate and private key, alice.jks,

which the client uses to identify itself to servers.

• Trusted CA certificates—the following trusted CA certificates are needed
by the client:

• trent-cert.pem—the CA certificate that issued the client certificates,

alice.jks and bob.jks. This is used to check the signature on the

certificate recieved from the Artix server, bob.jks.

• sts-ca-cert.pem—the CA certificate that issued the STS certificate,

sts-server.jks. This is used to check the signature on the certificate

received from the STS.

Enabling STS login for specific
proxy types On the client side, single sign-on must be explicitly enabled for each proxy

type that requires it. This means that a client can connect to some Web
services with single sign-on (STS login) enabled and can connect to other
Web services with single sign-on (STS login) disabled. Example 57 on page 273
shows an example of how to enable STS login specifically for proxies that
connect to the port, WSSValidateSAMLAssertionHoKPort, which is a
HelloWorld service provided by the demonstration Artix server.

Example 57. Enabling STS Login

<beans ...>

❶ <jaxws:client
name="{http://soa.iona.com/demo/hello_world}WSSValid

ateSAMLAssertionHoKPort"
createdFromAPI="true">
<jaxws:features>

❷ <sts:STSLoginClientConfig

273

Client Configuration

SecurityTokenServiceWsdlURL="file:wsdl/ws-
trust-1.3-soap.wsdl"

serviceName="SecurityTokenServiceSOAPService"

port="TLSClientAuthIssueSignedSAMLTLSHOK"
address="https://localhost:57076/services/se

curity/SecurityTokenServiceSOAPService/TLSClientAuthIssueSigned
SAMLTLSHOK"

/>
</jaxws:features>

</jaxws:client>

❸ <http:conduit name="{ht
tp://soa.iona.com/demo/hello_world}WSSValidateSAMLAssertion
HoKPort.http-conduit">

<http:tlsClientParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" password="password"

file="keys/alice.jks"/>
</cxfsec:keyManagers>
<cxfsec:trustManagers>

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>
</http:tlsClientParameters>

</http:conduit>
...

</beans>

The preceding configuration can be described as follows:

❶ The jaxws:client element enables features that apply to all proxies

connecting to the WSDL port (endpoint) identified by the name attribute.

In particular, the purpose of this jaxws:client element is to enable

the SAML single sign-on feature.
❷ The sts:STSLoginClientConfig element defines a feature to enable

SAML single sign-on. The attributes of this element essentially provide
the information needed to connect to the STS login service. The following
attributes are defined:

• SecurityTokenServiceWsdlURL—the location of the Issue binding's

WSDL contract.

• serviceName—the unqualified name of the Issue binding's WSDL

service.

274

WS-Trust

• port—the unqualified name of the Issue binding's WSDL port

(endpoint).

• address—the address of the Issue binding's WSDL port, overriding

the default value in the WSDL contract.

❸ The http:conduit specifies the client-side TLS settings for the

WSSValidateSAMLAssertionHoKPort endpoint on the HelloWorld

Artix server (see on page 117). The client's own certificate is the Alice
certificate, stored in the keys/alice.jks keystore. The trusted CA

certificate that is used to check the signature on the server certificate,
is trent-cert.pem.

Configuring the connection to the
STS Issue binding The connection to the STS login service (that is, to the Issue binding port)

must now be configured in detail. These configuration details are essentially
boilerplate settings that need to be specified only once for each client (in
contrast to the per-proxy settings that were described in Enabling STS login
for specific proxy types on page 273).

Example 58. Connection to STS Issue Binding

<beans ...>
...

❶ <jaxws:client
name="{http://docs.oasis-open.org/ws-sx/ws-

trust/200512/}TLSClientAuthIssueSignedSAMLTLSHOK"
createdFromAPI="true">
<jaxws:properties>

❷ <entry key="jaxb.additionalContextClasses">
<ref bean="STSAdditionalContextClasses"/>

</entry>
</jaxws:properties>

</jaxws:client>

❸ <bean id="STSAdditionalContextClasses"
class="com.iona.soa.security.rt.util.ClassArray

FactoryBean">
<property name="classNames">

<list>
<value>com.iona.soa.security.types.ObjectFact

ory</value>
<value>oasis.names.tc.saml._1_0.assertion.Ob

jectFactory</value>
<value>oasis.names.tc.saml._2_0.assertion.Ob

275

Client Configuration

jectFactory</value>
<value>com.iona.schemas.saml.ObjectFact

ory</value>
<value>com.iona.schemas.saml2.ObjectFact

ory</value>
</list>

</property>
</bean>

❹ <http:conduit name="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}TLSClientAuthIssueSignedSAMLTLSHOK.http-conduit">

<http:tlsClientParameters>
<cxfsec:keyManagers keyPassword="password">

<cxfsec:keyStore type="jks" re
source="keys/alice.jks" password="password"/>

</cxfsec:keyManagers>
<cxfsec:trustManagers>
<cxfsec:certStore file="keys/sts-ca-cert.pem"/>

</cxfsec:trustManagers>
</http:tlsClientParameters>

</http:conduit>
...

</beans>

The preceding configuration can be described as follows:

❶ The jaxws:client element defines features and properties that apply

to proxies of the STS login service (that is, Issue binding). The name

attribute specifies the QName of the Issue binding's WSDL port,
{http://docs.oasis-open.org/ws-sx/ws-trust/200512/}TLSClientAuthIssueSignedSAMLTLSHOK,

as defined in the WSDL contract specified by the
sts:STSLoginClientConfig element.

❷ The jaxb.additionalContextClasses property specifies additional

JAX-B classes that enable the login proxy to parse some standard SAML
data types.

❸ This bean element contains an instance of type,

com.iona.soa.security.rt.util.ClassArrayFactoryBean, which

contains the extra JAX-B classes for SAML. This is essentially boiler-plate
configuration that should not be modified in any way.

❹ The http:conduit element configures the TLS settings for the

connection to the STS login (Issue binding) port, where these TLS settings
are specified in the usual way. The client identifies itself to the STS login

276

WS-Trust

service as Alice, using the X.509 certificate from the keys/alice.jks

key store, and sthe client checks the signature on the STS certificate,
using the sts-ca-cert.pem trusted CA certificate.

Logging configuration
The following lines at the end of the client configuration enable logging in the
Java runtime.

<beans ...>
...
<cxf:bus>

<cxf:features>
<bean class="org.apache.cxf.feature.LoggingFea

ture"/>
</cxf:features>

</cxf:bus>
</beans>

277

Client Configuration

Server Configuration
Overview

The server is configured to validate SAML tokens received from a client using
a SAML assertion validation policy. This policy has the advantage that the
server can validate received SAML tokens without calling out to the STS: by
verifying the SAML signature and checking the holder-of-key identity, the
server can independently verify the received SAML assertion.

X.509 certificates and keys
needed by the server The server is associated with a variety of X.509 certificate and keys, which

are used as follows:

• Securing incoming client connections—the server's JAX-WS endpoint is
configured with TLS security, where the handshake is configured to require
mutual authentication. The JAX-WS endpoint is associated with the
following certificates:

• Server's own certificate—an X.509 certificate and private key, bob.jks,

which the server uses to identify itself to clients.

• Trusted CA certificate list—the CA certificate that signed the client's
own certificate, trent-cert.pem.

• Verifying signed SAML assertions—to verify signed SAML assertions, the
server needs a copy of the public key, sts-token-issure-cert.pem,

that complements the STS signing key.

SAML assertion validation policy
To validate SAML assertions presented by clients, the server defines a SAML
assertion validation policy assertion using the element,
itsec:SAMLAssertionValidationPolicy. This policy assertion is used
instead of an authentication policy assertion. Example 59 on page 278 shows
an example of a SAML assertion validation policy assertion.

Example 59. Sample SAML Assertion Validation Policy

<itsec:SAMLAssertionValidationPolicy subjectConfirmation="HOLD
ER_OF_KEY">

<itsec:IssuerPEMStore>
<itsec:Resource>

<itsec:ClasspathResourceResolver path="keys/sts-
token-issuer-cert.pem"/>

</itsec:Resource>

278

WS-Trust

</itsec:IssuerPEMStore>
</itsec:SAMLAssertionValidationPolicy>

Where the subjectConfirmation attribute can take either of the following
values:

• HOLDER_OF_KEY—the policy checks that the client is the true owner of the

SAML assertion by comparing the holder-of-key identity embedded in the
SAML token with the identity of the subject in the client's X.509 certificate.

Note
Currently, holder-of-key mode is available only to clients that
present certificates during the TLS handshake. Hence,
username/password-based clients are not able to avail of
holder-of-key mode.

• SENDER_VOUCHES—no holder-of-key check is performed. Implicitly, the

server assumes that it can trust the client sufficiently to skip the
holder-of-key check. You should assess carefully whether or not this option
makes sense for your security set-up. You should bear in mind that this
option is potentially less secure than holder-of-key.

The contents of itsec:SAMLAssertionValidationPolicy enable you to
specify one or more token issuer public keys (which are used to verify the
signatures on SAML assertions). You can use either of the following
sub-elements to specify a token issuer public key:

• itsec:IssuerPEMStore—specify the token issuer public key in PEM

format (see Example 59 on page 278).

• itsec:IssuerKeyStore—specify the token issuer public key in Java

Keystore (JKS) format.

Server configuration
Server configuration on page 279 shows the configuration of the Artix server
in the WS-Trust single sign-on scenario. The server configuration is quite
similar to configuration in the non-WS-Trust case: the key difference being
that this server specifies a SAML assertion validation policy in place of an iSF
authentication policy on the JAX-WS endpoint.

279

Server Configuration

Example 60. Server Configuration for WS-Trust SSO

<beans
xmlns:hw="http://soa.iona.com/demo/hello_world" ...>

❶ <jaxws:endpoint
id="WSSValidateSAMLAssertionHoKEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSValidateSAMLAssertionHoKPort"
address="https://localhost:9001/GreeterService/WSSVal

idateSAMLAssertionHoKPort"
depends-on="tls-settings"

>
<jaxws:features>

<cxfp:policies>
❷ <wsp:PolicyReference URI="#ValidateSAMLAsser
tionHoKAndAuothorizePolicy"/>

</cxfp:policies>
</jaxws:features>

</jaxws:endpoint>

❸ <wsp:Policy wsu:Id="ValidateSAMLAssertionHoKAndAuothor
izePolicy">
❹ <itsec:SAMLAssertionValidationPolicy subjectConfirm
ation="HOLDER_OF_KEY">
❺ <itsec:IssuerPEMStore>

<itsec:Resource>
<itsec:ClasspathResourceResolver

path="keys/sts-token-issuer-cert.pem"/>
</itsec:Resource>

</itsec:IssuerPEMStore>
</itsec:SAMLAssertionValidationPolicy>

❻ <itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:Policy>

❼ <httpj:engine-factory id="tls-settings">
❽ <httpj:engine port="9001">

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">

<cxfsec:keyStore type="JKS" password="pass
word" file="keys/bob.jks"/>

</cxfsec:keyManagers>
<cxfsec:trustManagers>

280

WS-Trust

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>
<cxfsec:cipherSuitesFilter>

<cxfsec:include>.*</cxfsec:include>
<cxfsec:exclude>.*_DH_anon_.*</cxfsec:ex

clude>
</cxfsec:cipherSuitesFilter>

❾ <cxfsec:clientAuthentication want="true"
required="true"/>

</httpj:tlsServerParameters>
</httpj:engine>

</httpj:engine-factory>

<cxf:bus>
<cxf:features>

❿ <bean class="org.apache.cxf.feature.LoggingFea
ture"/>

</cxf:features>
</cxf:bus>

</beans>

The preceding configuration can be explained as follows:

❶ The jaxws:endpoint element instantiates a JAX-WS endpoint for the

Greeter interface, listening on IP port 9001. The following attributes

are defined:

• id—an unique identifier that identifies this endpoint instance in the

Spring registry.

• implementor—specifies the name of the Java class that implements

the Greeter interface, demo.hw.server.GreeterImpl.

• serviceName—the QName of the Greeter service (the hw namespace

prefix is defined in the beans element).

• endpointName—the QName of the Greeter endpoint.

• depends-on—ensures that the associated Jetty port is created before

this bean is instantiated.

281

Server Configuration

❷ The target server's endpoint is configured using a WS-Policy policy.
Inside the cxfp:policies element is a wsp:PolicyReference

element, which references the wsp:Policy instance with matching

wsu:Id attribute.

❸ The wsp:Policy element specifies two policy assertions: a SAML

assertion validation policy and an ACL authorization policy. Both of these
policy assertions must be satisfied in order for an operation invocation
to succeed.

❹ The subjectConfirmation attribute of the

itsec:SAMLAssertionValidationPolicy element specifies that the

HOLDER_OF_KEY check is used to verify that the sending client is the

true owner of the SAML assertion. This policy will look for a holder-of-key
field in the incoming SAML assertion, which is then verified by comparing
it to the subject identity from the X.509 certificate received during the
TLS handshake.

❺ The itsec:IssuerPEMStore sub-element specifies the public key (in

the form of an X.509 certificate in PEM format) that can verify the
signature on the SAML assertion. This public key complements the
signing key discussed in IssueBindingParams element on page 266.

❻ The itsec:ACLAuthorizationPolicy configures the server to perform

authorization based on the realm and role data embedded in the SAML
assertion. The following attributes are set:

• aclURL—specifies the location of the access control list (ACL) file.

• aclServerName—specifies which of the action-role-mapping

elements in the action role mapping file should apply to the incoming
requests (must match the server-name element in one of the

action-role-mapping elements).

• authorizationRealm—specifies the name of the authorization realm

for this endpoint. See on page 175.

❼ The httpj:engine-factory element configures the Jetty ports that

underly the JAX-WS endpoints. This element's bean ID value,
tls-settings, is referenced from the jaxws:endpoint element using

the depends-on attribute in order to ensure that the Jetty ports are

initialized before the JAX-WS endpoints.

282

WS-Trust

❽ The httpj:engine element with IP port, 9001, configures secure TLS

for the Jetty port that underlies the Greeter service endpoint.

❾ The cxfsec:clientAuthentication element is configured to require

mutual authentication.
❿ The specified bean instance enables logging in the Java runtime.

283

Server Configuration

284

Java Router Security
This chapter describes the credentials propagation mapper, which is an Artix-specific component of the Java
router that enables you to transform credentials from one type to another in the middle of a route. Currently,
credential mapping feature is supported only for JAX-WS endpoints (that is, endpoints generated by the router's
CXF component).

Credentials Propagation Architecture ... 286
The Credentials Propagation Mapper ... 288
Mapping from HTTP/BA to WS-Security Credentials .. 292

HTTP/BA to WS-Security Router Example .. 293
HTTP/BA to WS-Security Router Configuration .. 295

Mapping from HTTP/BA to SSO Token ... 300
HTTP/BA to SSO Token Router Example .. 301
HTTP/BA to SSO Token Router Configuration .. 303

285

Credentials Propagation Architecture
Overview

Figure 29 on page 286 shows an outline of the architecture for propagating
security credentials through the Artix Java router, where the route is restricted
to use JAX-WS endpoints only.

Figure 29. Java Router Credentials Propagation Architecture

Java router
The Artix Java router is a flexible multi-protocol router based on the
open-source Apache Camel1 project. A router application consists essentially
of two different entities: routes and endpoints. A route starts with a consumer
endpoint, which can receive requests from remote clients, and ends with a
producer endpoint, which can forward requests on to a remote server. In the
context of the Java router, the aim of credentials propagation is to extract
credentials from a message received on the consumer endpoint and transform
them into another form of credential that is then marshalled into the outgoing
message.

Security credentials API
The security credentials API provides the underlying credentials model used
for propagating credentials in the Java router. For example, incoming
credentials are encapsulated in an InCredentialsMap object and outgoing
credentials are encapsulated in an OutCredentialsMap object. This API is
implicitly used both by the CXF component and the credentials propagation
mapper, but you do not have to access this API directly within your Java
router applications.

1 http://activemq.apache.org/camel/

286

Java Router Security

http://activemq.apache.org/camel/
http://activemq.apache.org/camel/

For full details of the security credentials API, see on page 313.

CXF/JAX-WS component
The CXF component is used to model JAX-WS endpoints in the context of the
Java router (it is effectively a JAX-WS endpoint factory). In effect, the CXF
component is an embedding of the Artix Java runtime into the Java router.
The syntax for instantiating and configuring a JAX-WS endpoint using the CXF
component is somewhat different from the using plain Java runtime, but the
implementation is essentially the same.

The Artix deployment of the CXF component automatically loads the Artix
credentials manager (from the security credentials API), which gives the CXF
component the capability to unmarshal credentials from incoming requests.

Credentials propagation mapper
The credentials propagation mapper is the key component of the credentials
propagation architecture, because it is responsible for performing the mapping
from one credentials type to another. In some scenarios, it is also capable of
contacting the security service directly to perform single sign-on.

Spring container
In the scenario described here, all of the architectural components—Java
router, CXF component, credentials propagation mapper, and security
credentials API—are deployed into a Spring container. It follows that all of
the components can be configured from within a single Spring XML
configuration file.

287

Credentials Propagation Architecture

The Credentials Propagation Mapper
Overview

The credentials propagation mapper is the component of the Java router that
is responsible for mapping credentials from one form to another in the middle
of a route. This section describes the syntax of the Spring XML element that
you use to configure the credentials propagation mapper. The mapper itself
is implemented as a Java bean, which can be integrated into a route using
the <to uri="bean:MapperID"/> syntax.

Supported credential types
The credentials propagation mapper supports the credential types shown in
Table 4 on page 288.

Table 4. Combinations of Security Protocol and Credential Type

Protocol DescriptionCredential TypeSecurity Protocol Type

HTTP Basic Authentication.USERNAME_PASSWORDHTTP

WS-Security username/password
token.

USERNAME_PASSWORDSOAP

WS-Security binary security token.IONA_SSO_TOKEN

CORBA CSIv2 username/passwordUSERNAME_PASSWORDCSIV2

Supported router component
types Currently, the credentials propagation mapper supports only the CXF router

component type. Hence, credentials mapping is only supported for routes
that start and end with a CXF/JAX-WS endpoint. Nevertheless, this gives you
a certain amount of flexibility, because the CXF component supports multiple
transports, including SOAP/HTTPS and CORBA/IIOP.

Conversion matrix
The following conversions are supported by the credentials propagation
mapper:

• The following protocol type/credential type combinations are completely
inter-convertible:

• HTTP/USERNAME_PASSWORD

• SOAP/USERNAME_PASSWORD

• CSIV2/USERNAME_PASSWORD

288

Java Router Security

• In addition, the following single sign-on conversions are supported:

• HTTP/USERNAME_PASSWORD to SOAP/IONA_SSO_TOKEN.

• SOAP/USERNAME_PASSWORD to SOAP/IONA_SSO_TOKEN.

• CSIV2/USERNAME_PASSWORD to SOAP/IONA_SSO_TOKEN.

Sample configuration
The credentials propagation mapper is configured using the
camel-security:CredentialsPropagationMapper element in a Spring
configuration file. Example 61 on page 289 shows an example of how to
configure a credentials propagation mapper to convert HTTP Basic
Authentication credentials to WS-Security username/password credentials in
a Java router.

Example 61. Sample CredentialsPropagationMapper Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:camelspring="http://act

ivemq.apache.org/camel/schema/spring"
xmlns:camel-security="http://schemas.iona.com/soa/camel-

security-config"
... >

...
<camel-security:CredentialsPropagationMapper id="myHTTP

BAToWSSUserNamePasswordMapper"
InProtocolType="HTTP"
InCredentialType="USERNAME_PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="USERNAME_PASSWORD"
OutComponentType="CXF">

</camel-security:CredentialsPropagationMapper>

<camelspring:camelContext id="sample" >
<camelspring:route>

<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myHTTPBAToWSSUserNamePass
wordMapper"/>

<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>

</camelspring:route>
</camelspring:camelContext>

289

The Credentials Propagation Mapper

...
</beans>

CredentialsPropagationMapper
attributes The camel-security:CredentialsPropagationMapper element supports

the following attributes:

id
Identifies the credentials propagation mapper instance in the Spring bean
registry. You can use this ID to reference the credentials propagation
mapper within the Spring configuration file. For example, a route can
access the credentials propagation mapper using an endpoint URI of the
form bean:BeadID.

InProtocolType
Specifies the protocol type of the incoming credentials. Can take any of
the values appearing in the Security Protocol Type column of
Table 4 on page 288.

InCredentialType
Specifies the credential type of the incoming credentials. Can take any
of the values appearing in the Credential Type column of
Table 4 on page 288.

InComponentType
Specifies the component type that unmarshalled the incoming credentials.
Must take the value, CXF.

OutProtocolType
Specifies the protocol type of the outgoing credentials. Can take any of
the values appearing in the Security Protocol Type column of
Table 4 on page 288 (as long as the resulting conversion is compatible
with the conversion matrix).

OutCredentialType
Specifies the credential type of the outgoing credentials. Can take any
of the values appearing in the Credential Type column of
Table 4 on page 288 (as long as the resulting conversion is compatible
with the conversion matrix).

OutComponentType
Specifies the component type that will marshal the outgoing credentials.
Must take the value, CXF.

290

Java Router Security

stsWsdlLoc
(Optional) Specifies the login service WSDL contract, which contains the
address of the login service.

Integration into a route
A credentials propagation mapper instance can be inserted into a route using
the Java router's bean integration features. For example, to insert a mapper
instance with the ID, myHTTPBAToWSSUserNamePasswordMapper, into a
route, you could use the following syntax in a Spring configuration file:

<camelspring:route>
<camelspring:from uri="cxf:bean:routerEndpoint"/>
<camelspring:to uri="bean:myHTTPBAToWSSUserNamePasswordMap

per"/>
<camelspring:to uri="cxf:bean:targetServiceEndpoint"/>

</camelspring:route>

Alternatively, if you prefer to define your route in Java DSL (instead of Spring
XML), you can reference the mapper in Java DSL as follows:

from("cxf:bean:routerEndpoint")
.beanRef("myHTTPBAToWSSUserNamePasswordMapper")
.to("cxf:bean:targetServiceEndpoint");

Mapping to an SSO token
The conversions that involve mapping an incoming credential to an SSO token
are a special case, because it is then necessary for the credentials propagation
mapper to contact the login service to obtain the SSO token. In this special
case, you need to set the stsWsdlLoc attribute on the
CredentialsPropagationMapper element in order to specify the location
of the login service's WSDL contract. For example:

<camel-security:CredentialsPropagationMapper id="myWSSUser
namePasswordToSTSMapper"

InProtocolType="HTTP"
InCredentialType="USERNAME_PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="IONA_SSO_TOKEN"
OutComponentType="CXF"
stsWsdlLoc="resource:wsdl/login_ser

vice_creds_prop.wsdl">
</camel-security:CredentialsPropagationMapper>

For a detailed description of this scenario, see Mapping from HTTP/BA to
SSO Token on page 300.

291

The Credentials Propagation Mapper

Mapping from HTTP/BA to WS-Security Credentials
HTTP/BA to WS-Security Router Example .. 293
HTTP/BA to WS-Security Router Configuration .. 295

292

Java Router Security

HTTP/BA to WS-Security Router Example
Overview

Figure 30 on page 293 shows an example of a Java router that processes
Web services requests, converting HTTP Basic Authentication
(username/password) credentials in incoming messages into WS-Security
username/password credentials in outgoing messages. Hence, if this router
is interposed between a Web services client and a Web services target server,
the client can send HTTP Basic Authentication credentials to a server that
expects to receive WS-Security username/password credentials.

Figure 30. HTTP/BA to WS-Security Router Example

Location of demonstration
Demonstration code for the current example can be found in the following
location:

ArtixInstallDir/java/samples/security/credentials_propagation

JAX-WS client
The JAX-WS client is a standard Java runtime client that creates a proxy to
invoke on the Greeter interface, which is defined in the
wsdl/hello_world.wsdl file. In addition, the JAX-WS client in the
demonstration employs the security credentials API to insert HTTP Basic
Authentication username/password credentials into HTTP headers on outgoing
requests (see on page 313 for details). The client is also configured to use
TLS security (target-only authentication).

Note
In fact, the demonstration client is capable of sending either HTTP
Basic Authentication credentials, WS-Security credentials, or CSIv2

293

HTTP/BA to WS-Security Router Example

credentials, depending on the parameters that are passed on the
command line.

JAX-WS consumer endpoint
The JAX-WS consumer endpoint receives incoming requests from the JAX-WS
client and is capable of parsing and extracting credentials into an
InCredentialsMap object (see on page 313). The ability to parse credentials
is provided by the Artix credentials manager object, which is automatically
integrated into JAX-WS in Artix.

Credentials propagation mapper
The credentials propagation mapper is the key component of the Java router
and is responsible for converting the incoming HTTP Basic Authentication
credentials into WS-Security username/password credentials.

The credentials propagation mapper is implemented as a Spring bean that
processes any In messages that pass through it.

JAX-WS producer endpoint
The JAX-WS producer endpoint sends the mapped messages to the specified
remote JAX-WS server. The JAX-WS producer endpoint has the capability to
marshal security credentials and insert them into the relevant headers in the
outgoing message.

JAX-WS server
The JAX-WS server is a standard Java runtime server that receives incoming
requests from the output of the Java router. In addition, the JAX-WS server
in the demonstration employs the security credentials API to print out the
value of the received credentials to the console window. The server is also
configured to use TLS security (target-only authentication).

294

Java Router Security

HTTP/BA to WS-Security Router Configuration
Overview

For the credentials propagation scenario shown in Figure 30 on page 293,
you can configure a suitable Java router using a single Spring configuration
file, etc/router_basic_auth_to_wss_username_password.xml. In order
to start up the Java router, you need an instance of a Spring container whose
CLASSPATH contains all of the JAR libraries required for this example. See
the demonstration code for details of how to start up the router in its own
Spring container.

This subsection provides a detailed description of the router configuration file
for a route that converts HTTP Basic Authentication credentials to WS-Security
username/password credentials, as they are propagated through the router.

Java router configuration
Example 62 on page 295 shows the Spring configuration of the Java router
for the HTTP Basic Authentication to WS-Security username/password
credentials propagation scenario. This configuration example is taken from
the etc/router_basic_auth_to_wss_username_password.xml file in
the demonstration.

Example 62. HTTP/BA to WS-Security Router Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://act

ivemq.apache.org/camel/schema/cxfEndpoint"
xmlns:cxfsec="http://cxf.apache.org/configuration/se

curity"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:httpj="http://cxf.apache.org/transports/http-

jetty/configuration"
xmlns:http="http://cxf.apache.org/transports/http/con

figuration"
xmlns:itsec="http://schemas.iona.com/soa/security-con

fig"
xmlns:http-conf="http://cxf.apache.org/transports/ht

tp/configuration"
xmlns:jms="http://cxf.apache.org/transports/jms"
xmlns:camelspring="http://act

ivemq.apache.org/camel/schema/spring"
xmlns:camel-security="http://schemas.iona.com/soa/camel-

security-config"
... >

❶ <cxf:cxfEndpoint id="targetServiceEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"

295

HTTP/BA to WS-Security Router Configuration

wsdlURL="wsdl/hello_world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello_world"
serviceName="s:GreeterService"
endpointName="s:TargetPort"
address="https://localhost:58003/GreeterService/Tar

getPort">
</cxf:cxfEndpoint>

❷ <cxf:cxfEndpoint id="routerEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"
wsdlURL="wsdl/hello_world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello_world"
serviceName="s:GreeterService"
endpointName="s:BasicAuthPort"
address="https://localhost:58001/GreeterService/Basi

cAuthPort">
</cxf:cxfEndpoint>

❸ <camelspring:camelContext id="sample" >
<camelspring:route>

<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myHTTPBAToWSSUserNamePass
wordMapper"/>

<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>

</camelspring:route>
</camelspring:camelContext>

❹ <camel-security:CredentialsPropagationMapper id="myHTTP
BAToWSSUserNamePasswordMapper"

InProtocolType="HTTP"
InCredentialType="USERNAME_PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="USERNAME_PASSWORD"
OutComponentType="CXF">

</camel-security:CredentialsPropagationMapper>

❺ <http:destination name="*.http-destination">
<http:contextMatchStrategy>stem</http:contextMatch

Strategy>
<http:fixedParameterOrder>false</http:fixedParameterOr

der>
<http:server ReceiveTimeout="30000"

SuppressClientSendErrors="false"
SuppressClientReceiveErrors="false"
HonorKeepAlive="false"

296

Java Router Security

ContentType="text/xml" />
</http:destination>

<!-- -->
<!-- TLS Port configuration parameters -->
<!-- -->

❻ <httpj:engine-factory bus="cxf" id="tls-settings">
<httpj:engine port="58001">

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">

<cxfsec:keyStore type="jks" re
source="keys/bob.jks" password="password"/>

</cxfsec:keyManagers>
</httpj:tlsServerParameters>

</httpj:engine>

</httpj:engine-factory>

❼ <http-conf:conduit name="{ht
tp://soa.iona.com/demo/hello_world}TargetPort.http-conduit"
>

<http-conf:client
ConnectionTimeout="0"
ReceiveTimeout="0" />

<http:tlsClientParameters disableCNCheck="true">
<cxfsec:trustManagers>

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>
</http:tlsClientParameters>

</http-conf:conduit>

</beans>

The preceding router configuration can be explained as follows:

❶ The cxf:cxfEndpoint element provides a convenient way of

instantiating a JAX-WS endpoint in the Java router. This particular
element is used to define the producer endpoint that appears at the end
of the route. It can be referenced from within a route, using the endpoint
URI, cxf:bean:targetServiceEndpoint. The cxf:cxfEndpoint

element defines the following attributes:

• id—registers the endpoint in the Spring bean registry with the

specified ID value. This makes it possible to reference this endpoint

297

HTTP/BA to WS-Security Router Configuration

instance using an endpoint URI of the form cxf:bean:IDValue (see

the description of the camelspring:camelContext element).

• serviceClass—specifies the name of the proxy class that represents

the Greeter interface (WSDL port type). This class is generated from

WSDL by the JAX-WS compiler.

• wsdlURL—specifies the location of the HelloWorld WSDL contract.

• xmlns:s—defines a prefix for the

http://soa.iona.com/demo/hello_world namespace. This

namespace is used in the HelloWorld WSDL contract to define the
service name and endpoint name of the WSDL port.

• serviceName—specifies the service QName, s:GreeterService,

as it is defined in the HelloWorld WSDL contract.

• endpointName—specifies the endpoint (port) QName, s:TargetPort,

as it is defined in the HelloWorld WSDL contract.

• address—specifies the SOAP address of the endpoint, overriding the

value specified in the HelloWorld WSDL contract. This address should
match the address specified for the JAX-WS endpoint in the target
server.

❷ This particular cxf:cxfEndpoint element is used to define the

consumer endpoint that appears at the start of the route. It can be
referenced from within a route, using the endpoint URI,
cxf:bean:routerEndpoint.

❸ The camelspring:camelContext creates an instance of a Java router.

It defines a single route, which consists of the following sections:

1. Consumer endpoint—the route starts with a JAX-WS endpoint that
receives requests from a remote JAX-WS client (see
Figure 30 on page 293). The endpoint URI consists of a cxf: prefix,

which references the Java router's CXF component, concatenated
with bean:routerEndpoint, which references the JAX-WS endpoint

defined in the preceding cxf:cxfEndpoint element with matching

ID.

298

Java Router Security

2. Credentials propagation mapper bean—the incoming request (that
is, the In message from the current CamelExchange instance) passes

through the credentials propagation mapper bean, in order to convert
the HTTP Basic Authentication credentials into WS-Security
username/password credentials. This step exploits the router's bean
integration feature to invoke the credentials propagation mapper bean.
The URI syntax is bean:BeanID, where BeanID refers to the bean

ID from the Spring bean registry.

3. Producer endpoint—the route ends with a JAX-WS endpoint that
sends requests to a remote JAX-WS target server. The endpoint URI,
cxf:bean:targetServiceEndpoint, references the JAX-WS

endpoint defined in the preceding cxf:cxfEndpoint element with

matching ID.

❹ The camel-security:CredentialsPropagationMapper element

defines a processor bean that converts incoming HTTP Basic
Authentication credentials into WS-Security username/password
credentials. For details of this element's syntax, see The Credentials
Propagation Mapper on page 288.

❺ The http:destination element customizes the value of the connection

timeout that is applied to the route's producer endpoint (Web service
proxy). This can prevent an error from occurring, if the server happens
to be particularly slow to respond. It is not necessary to include this
element in your router configuration.

❻ The httpj:engine-factory element contains a single httpj:engine

element, which configures the TLS security layer for the IP port, 58001
(used by the route's consumer endpoint, cxf:bean:routerEndpoint).

❼ The http-conf:conduit element configures the TLS security layer for

the WSDL proxy with port name, TargetPort (used by the route's

producer endpoint, cxf:bean:targetServiceEndpoint).

299

HTTP/BA to WS-Security Router Configuration

Mapping from HTTP/BA to SSO Token
HTTP/BA to SSO Token Router Example .. 301
HTTP/BA to SSO Token Router Configuration .. 303

300

Java Router Security

HTTP/BA to SSO Token Router Example
Overview

Figure 31 on page 301 shows an example of a Java router that processes
Web services requests, converting HTTP Basic Authentication credentials in
incoming messages into single sign-on (SSO) tokens in outgoing messages.
In order to perform this conversion, the router must contact the login service
to authenticate the incoming credentials and obtain an SSO token. In this
special case, therefore, the credentials propagation mapper must be configured
to connect to the login service.

Figure 31. HTTP/BA to SSO Token Router Example

Location of demonstration
Demonstration code for the current example can be found in the following
location:

ArtixInstallDir/java/samples/security/credentials_propagation

JAX-WS client
The JAX-WS client is a standard Java runtime client that creates a proxy to
invoke on the Greeter interface, which is defined in the
wsdl/hello_world.wsdl file. In addition, the JAX-WS client in the
demonstration employs the security credentials API to insert HTTP Basic
Authentication username/password credentials into HTTP headers on outgoing
requests (see on page 313 for details). The client is also configured to use
TLS security (target-only authentication).

301

HTTP/BA to SSO Token Router Example

Note
In fact, the demonstration client is capable of sending either HTTP
Basic Authentication credentials, WS-Security credentials, or CSIv2
credentials, depending on the parameters that are passed on the
command line.

JAX-WS consumer endpoint
The JAX-WS consumer endpoint receives incoming requests from the JAX-WS
client and is capable of parsing and extracting credentials into an
InCredentialsMap object (see on page 313). The ability to parse credentials
is provided by the Artix credentials manager object, which is automatically
integrated into JAX-WS in Artix.

Credentials propagation mapper
The credentials propagation mapper is the key component of the Java router
and is responsible for converting the incoming HTTP Basic Authentication
credentials into SSO tokens (proprietary format).

In order to perform the conversion to an SSO token, the credentials propagation
mapper must call out to the login server to authenticate the given HTTP Basic
Authentication credentials. Some extra configuration must be provided to
specify the location of the login service and to configure the connection to the
login service.

Login service
The login service is responsible for authenticating the HTTP Basic
Authentication credentials and returning an SSO token.

In the current demonstration, the configuration of the login service is more
or less the same as the configuration described in Example 12.3 on page 244.

JAX-WS producer endpoint
The JAX-WS producer endpoint sends the mapped messages to the specified
remote JAX-WS server. The JAX-WS producer endpoint has the capability to
marshal security credentials and insert them into the relevant headers in the
outgoing message.

JAX-WS server
The JAX-WS server is a standard Java runtime server that receives incoming
requests from the output of the Java router. In addition, the JAX-WS server
in the demonstration employs the security credentials API to print out the
value of the received credentials to the console window. The server is also
configured to use TLS security (target-only authentication).

302

Java Router Security

HTTP/BA to SSO Token Router Configuration
Overview

For the credentials propagation scenario shown in Figure 31 on page 301,
you can configure a suitable Java router using a single Spring configuration
file, etc/router_basic_auth_to_sts_token.xml. In order to start up the
Java router, you need an instance of a Spring container whose CLASSPATH
contains all of the JAR libraries required for this example. See the
demonstration code for details of how to start up the router in its own Spring
container.

This subsection provides a detailed description of the router configuration file
for a route that converts HTTP Basic Authentication credentials to SSO tokens,
as they are propagated through the router.

Java router configuration
Example 63 on page 303 shows the Spring configuration of the Java router
for the HTTP Basic Authentication to SSO token propagation scenario. This
configuration example is taken from the
etc/router_basic_auth_to_sts_token.xml file in the demonstration.

Example 63. HTTP/BA to SSO Token Router Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://act

ivemq.apache.org/camel/schema/cxfEndpoint"
xmlns:cxfsec="http://cxf.apache.org/configuration/se

curity"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:httpj="http://cxf.apache.org/transports/http-

jetty/configuration"
xmlns:http="http://cxf.apache.org/transports/http/con

figuration"
xmlns:itsec="http://schemas.iona.com/soa/security-con

fig"
xmlns:http-conf="http://cxf.apache.org/transports/ht

tp/configuration"
xmlns:jms="http://cxf.apache.org/transports/jms"
xmlns:camelspring="http://act

ivemq.apache.org/camel/schema/spring"
xmlns:camel-security="http://schemas.iona.com/soa/camel-

security-config"
... >

❶ <cxf:cxfEndpoint id="targetServiceEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"
wsdlURL="wsdl/hello_world.wsdl"

303

HTTP/BA to SSO Token Router Configuration

xmlns:s="http://soa.iona.com/demo/hello_world"
serviceName="s:GreeterService"
endpointName="s:TargetPort"
address="https://localhost:58003/GreeterService/Tar

getPort">
</cxf:cxfEndpoint>

❷ <cxf:cxfEndpoint id="routerEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"
wsdlURL="wsdl/hello_world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello_world"
serviceName="s:GreeterService"
endpointName="s:BasicAuthPort"
address="https://localhost:58001/GreeterService/Basi

cAuthPort">
</cxf:cxfEndpoint>

❸ <camelspring:camelContext id="sample" >
<camelspring:route>

<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myWSSUsernamePasswordToST
SMapper"/>

<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>

</camelspring:route>
</camelspring:camelContext>

❹ <camel-security:CredentialsPropagationMapper id="myWS
SUsernamePasswordToSTSMapper"

InProtocolType="HTTP"
InCredentialType="USERNAME_PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="IONA_SSO_TOKEN"
OutComponentType="CXF"
stsWsdlLoc="resource:wsdl/login_ser

vice_creds_prop.wsdl">
</camel-security:CredentialsPropagationMapper>

❺ <http:destination name="*.http-destination">
<http:contextMatchStrategy>stem</http:contextMatch

Strategy>
<http:fixedParameterOrder>false</http:fixedParameterOr

der>
<http:server ReceiveTimeout="30000"

SuppressClientSendErrors="false"
SuppressClientReceiveErrors="false"

304

Java Router Security

HonorKeepAlive="false"
ContentType="text/xml" />

</http:destination>

<!-- -->
<!-- TLS Port configuration parameters -->
<!-- -->

❻ <httpj:engine-factory bus="cxf" id="tls-settings">
<httpj:engine port="58001">

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">

<cxfsec:keyStore type="jks" re
source="keys/bob.jks" password="password"/>

</cxfsec:keyManagers>
</httpj:tlsServerParameters>

</httpj:engine>
</httpj:engine-factory>

❼ <http:conduit
name="{http://ws.iona.com/login_service}LoginService

Port.http-conduit">
<http:tlsClientParameters>

<cxfsec:trustManagers>
<cxfsec:certStore resource="keys/isf-ca-

cert.pem"/>
</cxfsec:trustManagers>

</http:tlsClientParameters>
<http:client

ConnectionTimeout="0"
ReceiveTimeout="0"

/>
</http:conduit>

❽ <http-conf:conduit
name="{http://soa.iona.com/demo/hello_world}Target

Port.http-conduit" >
<http-conf:client

ConnectionTimeout="0"
ReceiveTimeout="0" />

<http:tlsClientParameters disableCNCheck="true">
<cxfsec:trustManagers>

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>
</http:tlsClientParameters>

</http-conf:conduit>

</beans>

305

HTTP/BA to SSO Token Router Configuration

The preceding router configuration can be explained as follows:

❶ The cxf:cxfEndpoint element provides a convenient way of

instantiating a JAX-WS endpoint in the Java router. This particular
element is used to define the producer endpoint that appears at the end
of the route. It can be referenced from within a route, using the endpoint
URI, cxf:bean:targetServiceEndpoint. The cxf:cxfEndpoint

element defines the following attributes:

• id—registers the endpoint in the Spring bean registry with the

specified ID value. This makes it possible to reference this endpoint
instance using an endpoint URI of the form cxf:bean:IDValue (see

the description of the camelspring:camelContext element).

• serviceClass—specifies the name of the proxy class that represents

the Greeter interface (WSDL port type). This class is generated from

WSDL by the JAX-WS compiler.

• wsdlURL—specifies the location of the HelloWorld WSDL contract.

• xmlns:s—defines a prefix for the

http://soa.iona.com/demo/hello_world namespace. This

namespace is used in the HelloWorld WSDL contract to define the
service name and endpoint name of the WSDL port.

• serviceName—specifies the service QName, s:GreeterService,

as it is defined in the HelloWorld WSDL contract.

• endpointName—specifies the endpoint (port) QName, s:TargetPort,

as it is defined in the HelloWorld WSDL contract.

• address—specifies the SOAP address of the endpoint, overriding the

value specified in the HelloWorld WSDL contract. This address should
match the address specified for the JAX-WS endpoint in the target
server.

❷ This particular cxf:cxfEndpoint element is used to define the

consumer endpoint that appears at the start of the route. It can be
referenced from within a route, using the endpoint URI,
cxf:bean:routerEndpoint.

306

Java Router Security

❸ The camelspring:camelContext creates an instance of a Java router.

It defines a single route, which consists of the following sections:

1. Consumer endpoint—the route starts with a JAX-WS endpoint that
receives requests from a remote JAX-WS client (see
Figure 30 on page 293). The endpoint URI consists of a cxf: prefix,

which references the Java router's CXF component, concatenated
with bean:routerEndpoint, which references the JAX-WS endpoint

defined in the preceding cxf:cxfEndpoint element with matching

ID.

2. Credentials propagation mapper bean—the incoming request (that
is, the In message from the current CamelExchange instance) passes

through the credentials propagation mapper bean, in order to convert
the HTTP Basic Authentication credentials into an SSO token (with
a proprietary format). This step exploits the router's bean integration
feature to invoke the credentials propagation mapper bean. The URI
syntax is bean:BeanID, where BeanID refers to the bean ID from

the Spring bean registry.

3. Producer endpoint—the route ends with a JAX-WS endpoint that
sends requests to a remote JAX-WS target server. The endpoint URI,
cxf:bean:targetServiceEndpoint, references the JAX-WS

endpoint defined in the preceding cxf:cxfEndpoint element with

matching ID.

❹ The camel-security:CredentialsPropagationMapper element

defines a processor bean that converts incoming HTTP Basic
Authentication credentials into SSO tokens.

In order for the mapper to convert incoming credentials into an SSO
token, the mapper must call out to a login service (see
Figure 31 on page 301). To enable the mapper to find the login service,
the stsWsdlLoc attribute specifies the location of the login service's
WSDL contract. The address details from this WSDL contract are then
used to establish a connection to the login service.

For full details of the
camel-security:CredentialsPropagationMapper element's syntax,
see The Credentials Propagation Mapper on page 288.

307

HTTP/BA to SSO Token Router Configuration

❺ The http:destination element customizes the value of the connection

timeout that is applied to the route's producer endpoint (Web service
proxy). This can prevent an error from occurring, if the server happens
to be particularly slow to respond. It is not necessary to include this
element in your router configuration.

❻ The httpj:engine-factory element contains a single httpj:engine

element, which configures the TLS security layer for the IP port, 58001
(used by the route's consumer endpoint, cxf:bean:routerEndpoint).

❼ This http-conf:conduit element configures the TLS security layer for

the WSDL proxy that connects to the login service (used implicitly by
the credentials propagation mapper).

❽ This http-conf:conduit element configures the TLS security layer for

the WSDL proxy with port name, TargetPort (used by the route's

producer endpoint, cxf:bean:targetServiceEndpoint).

Login service WSDL
Example 64 on page 308 shows the port settings from the login service WSDL
that is referenced from the etc/router_basic_auth_to_sts_token.xml
configuration file. The location attribute from the soap:address element
specifies the address of the login service. At deployment time, you would
need to modify the hostname and port in this address to match the location
where the login service is actually deployed.

Example 64. Login Service WSDL

<definitions name="LoginService" ... >
...
<service name="LoginService">

<port binding="tns:LoginServiceBinding" name="Login
ServicePort">

<soap:address
location="https://localhost:49675/services/se

curity/LoginService"/>
</port>

</service>
</definitions>

308

Java Router Security

Part V. Programming Security
This part describes how to probram security aware applications and how to write custom adapters for the Artix
security service.

Programming Authentication .. 313
The Security Credentials Model ... 314
Creating and Sending Credentials ... 321
Retrieving Received Credentials ... 327
Password Digests in UsernameToken Credentials ... 334
Endorsements ... 340

Developing an iSF Adapter .. 343
iSF Security Architecture .. 344
iSF Server Module Deployment Options ... 347
iSF Adapter Overview .. 349
Implementing the IS2Adapter Interface .. 350
Deploying the Adapter ... 359

Configuring iSF to Load the Adapter .. 360
Setting the Adapter Properties ... 361
Loading the Adapter Class and Associated Resource Files .. 362

311

312

Programming Authentication
The Artix Java runtime provides a credentials API that enables you to create and set credentials on the consumer
side and to retrieve and inspect received credentials on the service side.

The Security Credentials Model ... 314
Creating and Sending Credentials ... 321
Retrieving Received Credentials ... 327
Password Digests in UsernameToken Credentials ... 334
Endorsements ... 340

313

The Security Credentials Model
Overview

This section provides an overview of the main data types used to model
credentials in the Artix Java runtime.

Security protocol types
Credentials can be transmitted through different layers of the transport protocol
stack (in fact, multiple layers can be used at the same time). In order to
identify which layer a credential is transmitted through, the credential API
defines the following enumerated constants in the
com.iona.soa.security.types.SecurityProtocolType enumeration:

• SecurityProtocolType.TLS

• SecurityProtocolType.HTTP

• SecurityProtocolType.SOAP

• SecurityProtocolType.DERIVED

Credential types
The credential API defines the following credential types as enumerated
constants in the com.iona.soa.security.types.CredentialType
enumeration:

• CredentialType.CERTIFICATE—an X.509 certificate chain, consisting

of an X.509 certifiate and (optionally) its associated CA certificates. See
“Certificate Chaining” on page 177 for more details.

• CredentialType.TLS_PEER—same as CERTIFICATE, augmented by the

name of the cipher suite employed by the SSL/TLS connection.

• CredentialType.USERNAME_PASSWORD—a username and a password (or

a password digest). This credential type can be used with different protocol
types.

• CredentialType.IONA_SSO_TOKEN—an opaque string token used by the

Artix security service to identify a principal. See “Single Sign-On” on
page 401 for more details.

314

Programming Authentication

• CredentialType.GSS_KRB_5_AP_REQ_TOKEN—an opaque binary token

acquired as a result of initializing a Kerberos security context, using a target
Kerberos service name.

• CredentialType.SAML_ASSERTION—authentication data and/or

authorization data, which is encoded using the Security Assertion Markup
Language (SAML).

Security protocol/credential type
combinations Because of the multi-layered structure of the transport protocol stack, it is

possible to combine credential types with more than one security protocol
type. Table 5 on page 315 shows a summary of the allowable security
protocol/credential type combinations.

Table 5. Combinations of Security Protocol and Credential Type

Protocol DescriptionCredential TypeSecurity Protocol Type

SSL/TLS handshake.CERTIFICATETLS

SSL/TLS handshake.TLS_PEER

HTTP Basic Authentication.USERNAME_PASSWORDHTTP

WS-Security UsernameToken token.USERNAME_PASSWORDSOAP

WS-Security binary security token.CERTIFICATE

WS-Security binary security token.IONA_SSO_TOKEN

WS-Security binary security token.GSS_KRB_5_AP_REQ_TOKEN

SAML assertion.SAML_ASSERTION

The credential API
Figure 32 on page 316 provides an overview of the Java interface hierarchy
for the most important credential interface types.

315

The Security Credentials Model

Figure 32. Artix Credential API

Credential interface
Example 65 on page 316 shows the
com.iona.soa.security.credential.Credential interface, which is
the base type for all credential types in the Artix credential API.

Example 65. Credential Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

public interface Credential {
CredentialType getSOACredentialType();

}

The getSOACredentialType() method returns a CredentialType
enumeration constant (see Credential types on page ?).

OutCredential interface
Example 66 on page 316 shows the
com.iona.soa.security.credential.OutCredential interface, which
represents a credential that is to be sent in an outgoing operation request.

Example 66. OutCredential Interface

// Java
package com.iona.soa.security.credential;

public interface OutCredential extends Credential {

316

Programming Authentication

// complete
}

It is possible to create OutCredential instances at the application
programming level—see CredentialsManager bus extension on page ? .

InCredential interface
Example 67 on page 317 shows the
com.iona.soa.security.credential.InCredential interface, which
represents a credential that has been received from an incoming operation
request.

Example 67. InCredential Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.SecurityProtocolType;

public interface InCredential extends Credential {
SecurityProtocolType getInboundSecurityProtocolType();

CredentialEndorsements<InCredential> getInCredentialEndorse
ments();
}

The getInboundSecurityProtocolType() method returns the enumerated
constant that identifies the security protocol used to transmit the
credential—see Security protocol types on page ? . The
getInCredentialEndorsements() method returns a list of credentials that
endorse the current InCredential object—see Endorsements on page 340.

It is not possible to create InCredential instances at the application
programming level.

CredentialsManager bus extension
The bus extension mechanism is a feature of the Artix Java runtime that
enables you to extend the core functionality of the runtime. In particular, the
com.iona.soa.security.credential.CredentialsManager bus extension
encapsulates the security credentials functionality of the Artix Java runtime.
As well as installing the security features, the CredentialsManager instance
also exposes a public method to the application-level programmer, as shown
in Example 68 on page 317 .

Example 68. CredentialsManager Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

317

The Security Credentials Model

public interface CredentialsManager {
OutCredential
createOutCredential(

CredentialType type,
Object... args

) throws CredentialCreationException;

OutCredentialsMap
createOutCredentialsMap();

OutCredentialsMap
getThreadDefaultInvocationOutCredentials();

OutCredentialsMap
setThreadDefaultInvocationOutCredentials(

OutCredentialsMap outCreds
);

OutCredentialsMap
getDefaultInvocationOutCredentials();

OutCredentialsMap
setDefaultInvocationOutCredentials(

OutCredentialsMap outCreds
);

}

Where the CredentialsManager interface declares the following methods:

createOutCredential()
Create an OutCredential object of arbitrary credential type.

createOutCredentialsMap()
Create an instance of an empty OutCredentialsMap object. After

populating an OutCredentialsMap with OutCredential objects, you

can propagate it along with an operation invocation using one of the
approaches described in Creating and Sending Credentials on page 321.

getThreadDefaultInvocationOutCredentials()
Return a reference to the current thread's OutCredentialsMap object

(can be null).

318

Programming Authentication

setThreadDefaultInvocationOutCredentials()
Associate an OutCredentialsMap object with the current thread (can

be null). Returns a reference to the previous thread default.

getDefaultInvocationOutCredentials()
Return a reference to the global default OutCredentialsMap object (can

be null).

setDefaultInvocationOutCredentials()
Set the global default OutCredentialsMap object (can be null). Returns

a reference to the previous global default.

Multiple credentials for sending
Instead of setting credentials one-by-one, the Artix credential API takes the
approach of assembling all of the credentials into a collection, represented
by an com.iona.soa.security.credential.OutCredentialsMap object.
The OutCredentialsMap object can then be set in the global context, set in
a thread context, or inserted into the JAX-WS request context.
Figure 33 on page 319 shows the structure of an OutCredentialsMap object.

Figure 33. Multiple Credentials in an OutCredentialsMap

The OutCredentialsMap type is a map (of java.util.Map type) that
associates each protocol key (for example, TLS, HTTP, or SOAP) with a
collection of credentials. In this way, it is possible to associate one or more
credential types with each layer of the transport protocol stack.

Multiple received credentials
On the service end, the received credentials are also encapsulated in a single
collection, which is of

319

The Security Credentials Model

com.iona.soa.security.credential.InCredentialsMap type.
Figure 34 on page 320 shows the structure of an InCredentialsMap object.

Figure 34. Multiple Credentials in an InCredentialsMap

The structure of InCredentialsMap is similar to the structure of
OutCredentialsMap, except that the contained credentials are derived from
the InCredential type.

320

Programming Authentication

Creating and Sending Credentials
Overview

Using the credentials API, you can set outgoing credentials at three different
levels: global, thread, and proxy. The credentials from the lowest applicable
level will then be transmitted whenever you invoke an operation on a proxy
object (assuming the credentials match the transport protocol used by the
proxy).

Creating credentials
To create a credential, you need first of all to obtain a CredentialsManager
instance (see Sending credentials on page ?). You can then create an
OutCredential object for any credential type, by calling the
CredentialsManager.createOutCredential() method, which is defined
in Example 69 on page 321 .

Example 69. The createOutCredential() Method

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

public interface CredentialsManager {

OutCredential
createOutCredential(

CredentialType type,
Object... args

) throws CredentialCreationException;
}

createOutCredential() parameters
The createOutCredential() method is a generic credential factory method,
which can create any of the credential types shown in Table 6 on page 321
.

Table 6. Parameters for createOutCredential()

Parameters for createOutCredential()Credential Type

arg0 (required): String username,CredentialType.USERNAME_PASSWORD

arg1 (required): String password.

arg2 (optional): boolean usePasswordDigest.

arg0 (required): String IONA_SSO_Token.CredentialType.IONA_SSO_TOKEN

321

Creating and Sending Credentials

Parameters for createOutCredential()Credential Type

arg0 (required): byte[] GSS_Krb_V5_AP_REQ_Token.CredentialType.GSS_KRB_5_AP_REQ_TOKEN

arg0 (required): One of the following types:CredentialType.SAML_ASSERTION

• oasis.names.tc.saml._1_0.assertion.AssertionType

• oasis.names.tc.saml._2_0.assertion.AssertionType

• org.w3c.dom.Element

The first parameter of createOutCredential() is always of
CredentialType type. The subsequent parameters are declared as
Object..., which means that the number and type of those parameters
depends on the particular credential type you are creating, as shown in
Table 6 on page 321 . For example, if you create an OutCredential of type
CredentialType.USERNAME_PASSWORD, the second argument would be the
username and the third argument would be the password.

Sending credentials
On the client side, you can specify the credentials to send with an operation
invocation at three different levels of granularity, as follows:

• Global default credentials on page 322.

• Thread default credentials on page 323.

• Proxy credentials on page 324.

Global default credentials
You can set global default credentials by calling the
CredentialsManager.setDefaultInvocationOutCredentials()method.
In the absence of any credentials set at a finer level of granularity (thread
level or proxy level), the global default credentials will be included in outgoing
operation invocations. Example 70 on page 322 shows an example of how to
insert the OutCredentialsMap object into the global context.

Example 70. Setting Global Default Credentials

// Java
import java.util.Map;
import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;

322

Programming Authentication

import org.apache.hello_world_soap_http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map into the global context
CredentialsManager mgr =
BusFactory.getDefaultBus().getExtension(

CredentialsManager.class
);

mgr.setDefaultInvocationOutCredentials(map);

Greeter greeter = // get a reference to a client proxy

// Invoke the sayHi operation with the above credentials
greeter.sayHi();

Thread default credentials
You can associate security credentials with the current thread by calling the
CredentialsManager.setThreadDefaultInvocationOutCredentials()
method. In the absence of any credentials set at a finer level of granularity
(for example, proxy level), the thread-level default credentials will be included
in outgoing operation invocations. Example 70 on page 322 shows an example
of how to insert the OutCredentialsMap object into the current thread
context.

Example 71. Setting Thread Default Credentials

// Java
import java.util.Map;
import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;
import org.apache.hello_world_soap_http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map into the thread context
CredentialsManager mgr =
BusFactory.getDefaultBus().getExtension(

CredentialsManager.class
);

mgr.setThreadDefaultInvocationOutCredentials(map);

Greeter greeter = // get a reference to a client proxy

323

Creating and Sending Credentials

// Invoke the sayHi operation with the above credentials
greeter.sayHi();

Proxy credentials
You can associate security credentials with a proxy object by inserting an
OutCredentialsMap object into the proxy’s request context. The proxy
credentials take precedence over both the global default credentials and the
thread default credentials. The JAX-WS request context is a mechanism that
enables you to pass data to handlers in a handler chain. The security handlers
installed by Artix will then read the OutCredentialsMap object and insert
credentials into the appropriate transport headers in the outgoing request
message. Example 72 on page 324 shows an example of how to insert the
OutCredentialsMap object into the Greeter proxy’s request context.

Example 72. Setting Credentials on a Proxy Object

// Java
import javax.xml.ws.BindingProvider;
import java.util.Map;
import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;
import org.apache.hello_world_soap_http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map on the request context
Greeter greeter = // get a reference to a client proxy
Map<String, Object> requestContext =

((BindingProvider)greeter).getRequestContext();
requestContext.put(

OutCredentialsMap.class.getName(),
map

);

// Invoke the sayHi operation with the above credentials
greeter.sayHi();

The request context is defined to be a map that associates string keys with
objects of arbitrary type. For the out credentials map, use the fully qualified
class name of OutCredentialsMap as the key.

Note
Once an OutCredentialsMap object is associated with a proxy
instance, all subsequent (and possibly concurrent) operations invoked

324

Programming Authentication

on the proxy use the same OutCredentialsMap instance.
Applications must therefore exercise caution when associating
OutCredentialsMap instances with proxies in multi-threaded
applications; in particular, the assignment of an entry on the request
context associated with a proxy instance is not a thread-safe
operation.

JAX-WS example
Example 73 on page 325 shows a complete example of how to send out
credentials with an operation invocation in a JAX-WS client program. This
example shows how to initialize the username and password credential for
the HTTP Basic Authentication protocol.

Example 73. Example of Sending Credentials from a JAX-WS Client

// Java
import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.ProtocolException;

import com.iona.soa.security.credential.CredentialCreationEx
ception;
import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredential;
import com.iona.soa.security.credential.OutCredentialsMap;
import com.iona.soa.security.types.CredentialType;
import com.iona.soa.security.types.SecurityProtocolType;

import org.apache.cxf.BusFactory;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;
import org.apache.hello_world_soap_http.types.FaultDetail;

CredentialsManager mgr = ❶
BusFactory.getDefaultBus().getExtension(

CredentialsManager.class
);

OutCredential cred = mgr.createOutCredential(❷
CredentialType.USERNAME_PASSWORD,
"tony", // arg0 - Username
"tonypass" // arg1 - Password

);

325

Creating and Sending Credentials

// Associate the credential with the HTTP protocol
OutCredentialsMap map = mgr.createOutCredentialsMap();
map.get(SecurityProtocolType.HTTP).add(cred); ❸

// Insert the credentials map on the request context
Greeter greeter = // get a reference to a client proxy
Map<String, Object> requestContext = ❹

((BindingProvider)greeter).getRequestContext();
requestContext.put(❺

OutCredentialsMap.class.getName(),
map

);

// Invoke the sayHi operation with the above credentials
greeter.sayHi(); ❻

The preceding example can be explained as follows:

❶ The CredentialsManager is a CXF bus extension that encapsulates

the Artix credential features. In particular, it provides the method,
createOutCredential(), that lets you create out credentials.

❷ Create a username and password out credential by calling the
CredentialsManager.createOutCredential() method. For more

details about the parameters to createOutCredential(), see

createOutCredential() parameters on page ? .
❸ Add the username and password credential to the out credentials map,

associating it with the HTTP transport layer (implicitly making a HTTP
Basic Authentication credential).

❹ Obtain a reference to the JAX-WS request context object for the Greeter

proxy. The request context is a map that associates string keys with
arbitrary Java objects.

❺ Insert the out credentials map into the request context, using the
fully-qualified class name of OutCredentialsMap as the key.

❻ When you next invoke an operation on the Greeter proxy object, the

username and password credential is transmitted in the HTTP header
of the request message. The out credentials remain effective for all
subsequent operations invoked on the greeter proxy instance.

326

Programming Authentication

Retrieving Received Credentials
Overview

This section explains how to access the credentials received from a consumer
that has just invoked an operation on a secure service.

Retrieving credentials
You can gain access to received credentials on the service side of an
application by retrieving an InCredentialsMap object from the current
message context (on the service side of the application). The
InCredentialsMap instance encapsulates the received credentials for all
applicable transport layers in the stack (see Multiple received
credentials on page ?).

Once you have obtained the InCredentialsMap instance, you can extract
credentials for particular transport layers and cast them to the appropriate
leaf credential type. You can then use the applicable credential interface to
extract the details of each credential.

Retrievable credential types
The following credential types can potentially be retrieved from an
InCredentialsMap instance:

CertificateCredential
Example 74 on page 327 shows the definition of the
com.iona.soa.security.credential.CertificateCredential interface.
A certificate credential object contains an X.509 certificate chain—see
“Certificate Chaining” on page 177 for more details about certificate chains.

Example 74. The CertificateCredential Interface

// Java
package com.iona.soa.security.credential;
import java.util.List;

public interface CertificateCredential extends Credential {
List<java.security.cert.Certificate> getCertificateChain();

}

TlsPeerCredential
Example 75 on page 328 shows the definition of the
com.iona.soa.security.credential.TlsPeerCredential interface. In
addition to the data available from a CertificateCredential object, this
credential type also provides the name of the cipher suite that is currently
being used on the TLS peer connection.

327

Retrieving Received Credentials

Example 75. The TlsPeerCredential Interface

// Java
package com.iona.soa.security.credential;

public interface TlsPeerCredential extends CertificateCreden
tial
{

String getCipherSuite();
}

UsernamePasswordCredential
Example 76 on page 328 shows the definition of the
com.iona.soa.security.credential.UsernamePasswordCredential
interface. This credential type encapsulates a username and a password. It
is not tied to any particular protocol type. You can use the
UsernamePasswordCredential credential for any authentication method
that demands a username and a password.

Example 76. The UsernamePasswordCredential Interface

// Java
package com.iona.soa.security.credential;

public interface UsernamePasswordCredential extends Credential
{

String getUsername();
String getPassword();

// Do NOT use on received credentials
boolean usePasswordDigest();

}

Note
The method, usePasswordDigest(), is not intended for use on a
received credential. If you want to determine whether a received
UsernamePasswordCredential contains a digest password or a
plaintext password, use the code shown in Example 84 on page 337.

IonaSSOTokenCredential
Example 77 on page 329 shows the definition of the
com.iona.soa.security.credential.IonaSSOTokenCredential
interface. The IONA SSO token is an opaque string that constitutes a reference
to a user identity in the Artix security service. It provides a compact form of

328

Programming Authentication

credential that can be used within a system that is secured by the Artix security
service—see “Single Sign-On” on page 401.

Example 77. The IonaSSOTokenCredential Interface

// Java
package com.iona.soa.security.credential;

public interface IonaSSOTokenCredential extends Credential {
String getIonaSSOToken();

}

GssKrb5ReqTokenCredential
Example 78 on page 329 shows the definition of the
com.iona.soa.security.credential.GssKrb5ReqTokenCredential
interface. The Kerberos token is a binary token that provides the authorization
to use a particular service. The Artix security service can be configured to
accept Kerberos tokens—see “Configuring the Kerberos Adapter” on page 309
for details.

Example 78. The GssKrb5ApReqTokenCredential Interface

// Java
package com.iona.soa.security.credential;

public interface GssKrb5ApReqTokenCredential extends Credential
{

byte[] getGssKrb5ApReqToken();
}

SAMLAssertionCredential
Example 79 on page 329 shows the definition of the
com.iona.soa.security.credential.SAMLAssertionCredential
interface. The SAML assertion is a standard for encapsulating authentication
and authorization data in an XML format. The SAML assertion can be provided
either as a SAML 1.0 assertion type, a SAML 2.0 assertion type, or as a DOM
element instance.

Example 79. The SAMLAssertionCredential Interface

package com.iona.soa.security.credential;

public interface SAMLAssertionCredential<T extends Object>
extends Credential {

T getSAMLAssertion();

329

Retrieving Received Credentials

org.w3c.dom.Element getDOMSAMLAssertion();
}

DerivedCredential
Example 80 on page 330 shows the definition of the
com.iona.soa.security.credential.DerivedCredential interface.

Example 80. The DerivedCredential Interface

package com.iona.soa.security.credential;

public interface DerivedCredential<T extends Credential> ex
tends Credential {

CredentialCollection<T> getSourceCredentials();
}

Declaring WebServiceContext
In order to inspect the credentials from an incoming request, you need to
obtain a WebSerivceContext instance for the service.
Example 81 on page 330 shows how to declare a WebServiceContext
instance, ws_context, in the implementation of the Greeter service.

Example 81. Declaring WebServiceContext in a Service Implementation

// Java
...
@javax.jws.WebService(name = "Greeter" ...)
public class GreeterImpl implements Greeter {

@javax.annotation.Resource
private javax.xml.ws.WebServiceContext

ws_context;

// Definitions of Greeter Methods
... // Not shown.

}

The @Resource annotation that precedes the declaration instructs the Artix
runtime to populate the ws_context object by injection. In the context of a
Greeter operation invocation, it then becomes possible to access a
MessageContext instance through the ws_context object, as shown in
Example 82 on page 331 .

JAX-WS example
Example 82 on page 331 shows an example of how to extract a
UsernamePasswordCredential instance from the current message context.
You could use this code to access a client’s username on the service side of
an application that uses HTTP Basic Authentication.

330

Programming Authentication

Example 82. Retrieving an InCredentialsMap Instance

// Java
...
import java.util.Collection;
import java.util.logging.Logger;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;

import com.iona.soa.security.credential.InCredential;
import com.iona.soa.security.credential.InCredentialsMap;
import com.iona.soa.security.credential.UsernamePasswordCre
dential;
import com.iona.soa.security.types.CredentialType;
import com.iona.soa.security.types.SecurityProtocolType;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.types.FaultDetail;

@javax.jws.WebService(
targetNamespace = "http://apache.org/hello_world_soap_ht

tp",
serviceName = "SOAPService",
portName = "SoapPort",
endpointInterface = "org.apache.hello_world_soap_ht

tp.Greeter"
)
public class GreeterImpl implements Greeter {

@Resource ❶
protected WebServiceContext ctx;
...
private static String
getHTTPUsername(WebServiceContext ctx) { ❷

final InCredentialsMap inCreds = ❸
(InCredentialsMap) ctx.getMessageContext().get(

InCredentialsMap.class.getName()
);

String username = null;
if (inCreds != null) {

final Collection<InCredential> creds = ❹
inCreds.get(SecurityProtocolType.HTTP);

UsernamePasswordCredential cred = null;
for (InCredential c : creds) { ❺

if (c.getCredentialType() ==
CredentialType.USERNAME_PASSWORD) {

cred = (UsernamePasswordCredential) c; ❻

331

Retrieving Received Credentials

break;
}

}
if (cred != null) {

username = cred.getUsername(); ❼
}

}
return username;

}
}

The preceding code example can be described as follows:

❶ The javax.xml.ws.WebServiceContext instance is declared to be a

@javax.annotation.Resource, which causes the Artix Java runtime

to populate it by injection.
❷ The getHTTPUsername() method is a private method that is declared

here as a convenience. It lets you put all of the code required to extract
the username from an incoming HTTP header in a single place. You can
then call this function whenever the current thread is in an invocation
context (that is, when the thread is processing an operation invocation).

❸ This line of code obtains the InCredentialsMap instance from the

current message context. First of all, the message context is extracted
from the WebServiceContext instance by calling

getMessageContext(). The message context consists of a map that

maps string keys to objects of arbitrary type. To access the
InCredentialsMap instance, pass in the fully-qualified class name of

InCredentialsMap as the key. You can then cast the return value to

the type, InCredentialsMap.

Note
This code fragment only works, if it executes in an operation
invocation context. If the current thread is not processing an
operation invocation, there is no InCredentialsMap available.

❹ Obtain the collection of incoming credentials associated with the HTTP
transport layer (for an overview of the in credentials data model, see
Figure 34 on page 320).

❺ You can use this special for loop syntax to iterate over all of the

members of a java.util.Collection.

332

Programming Authentication

❻ If you find a credential of the type you need, simply cast it to the correct
type. For a list of available credential types, see Table 5 on page 315 .

❼ You can now call any of the UsernamePasswordCredential methods

to access the contents of the credential (see Example 76 on page 328
).

333

Retrieving Received Credentials

Password Digests in UsernameToken Credentials
Overview

Normally a WS-Security UsernameToken credential consists of a username
and password, where the password is transmitted in plain text. Artix can also
be configured to transmit the password in digest format, instead of in plain
text. The advantage of this is that the password value is obscured and is thus
less vulnerable to snooping on the wire.

An additional benefit of the digest format is that the WS-Security
UsernameToken specification also defines an optional replay detection feature
that can protect against replay attacks. The replay detection feature has been
implemented in Artix and it is automatically enabled whenever you use the
digest password format.

Note
The password digest feature of UsernameToken is not related to the
password hashing feature of the file adapter. The purpose of the
UsernameToken password digest feature is to send password digests
on-the-wire, whereas the password hashing in the file adapter is a
private method of storage that is not related in any way to the
on-the-wire format.

Warning
Although password digests can obscure password values, effectively
preventing inspection by a casual user, they provide essentially no
protection against a determined attacker. To provide effective
protection against password discovery, you must apply full-strength
encryption (for example, sending the message over an SSL-protected
connection).

UsernameToken with a password
digest The UsernameToken format is defined by the Web Services Security

UsernameToken Profile 1.11 specification. When transmitting a digest
password, the UsernameToken normally contains a username, a digest
password, and (optionally) a nonce value, and a creation time.

The complete syntax for the on-the-wire format of a UsernameToken is as
follows:

1 http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf

334

Programming Authentication

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username> ... </wsse:Username>
<wsse:Password Type="..."> ... </wsse:Password>
<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>
<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>

Only the wsse:Username element is required; all of the other elements are
optional. In the case of a plaintext password, the wsse:UsernameToken
contains the following sub-elements:

• wsse:Username

• wsse:Password—where the Type attribute has a value equal to the value

of the string constant, WSS10Constants.PASSWORD_TYPE_PASSWORD_TEXT

(which is defined in the com.iona.soa.security.rt.constant Java

package).

In the case of a digest password, the wsse:UsernameToken contains the
following sub-elements:

• wsse:Username

• wsse:Password—where the Type attribute has a value equal to the value

of the string constant, WSS10Constants.PASSWORD_TYPE_PASSWORD_TEXT

(which is defined in the com.iona.soa.security.rt.constant Java

package).

• wsse:Nonce—a cryptographically random number that is designed to be

unique for each message.

• wsu:Created—a timestamp that gives the date and time of creation of

the credentials.

When the wsse:Nonce and wsu:Created elements are present, they are
also included in the password digest. That is, the security runtime
concatenates nonce + created + password and generates a digest of the
resulting string. Someone who does not know the value of the original plaintext
password will not be able to generate a valid digest with different values of
wsse:Nonce and wsu:Created. The digest value thus effectively works like

335

Password Digests in UsernameToken Credentials

a cryptographic signature, where the password is pressed into service as a
signing key.

Protection provided by digest and
nonce It is important to realize that, although use of a password digest obscures the

password value, it does not provide the same degree of protection as the
standard encryption algorithms and it can typically be cracked by an attacker
equipped with the appropriate tools.

The point of including the wsse:Nonce value and the wsse:Created value
in the digest is to make dictionary attacks harder. With a normal password
digest (that is, not including the nonce and created timestamp) the attacker
can look up the password using a precomputed table of Password to
SHA-1(Password) values. Including a nonce value and a created timestamp
value in the digest makes precomputed values like this pointless, so an
attacker would have to regenerate his table on the fly, using the nonce and
created values along with his list of commonly used passwords. It only makes
it slightly harder, though. The majority of passwords can probably still be
cracked even with this extra degree of protection.

Replay detection
When password digests are enabled, the security runtime implements replay
detection on the receiver side. The receiver holds a cache of nonces and
creation times and uses this cache to detect whether an attempt is made to
replay messages.

Creating credentials with a
password digest Example 83 on page 336 shows how to create a UsernameToken credential

with a password digest. In the createOutCredential() method arguments,
pass the username and plaintext password as normal and, additionally, pass
the value, true, for usePasswordDigest (final argument). The password
will be converted to digest form by the security runtime.

For details of how to insert the credentials map at global, thread, or proxy
level, see the examples in Creating and Sending Credentials on page 321.

Example 83. Creating UsernameToken with a Digest Password

// Java
import com.iona.soa.security.credential.CredentialCreationEx
ception;
import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredential;
import com.iona.soa.security.credential.OutCredentialsMap;
import com.iona.soa.security.types.CredentialType;
import com.iona.soa.security.types.SecurityProtocolType;

import org.apache.cxf.BusFactory;

336

Programming Authentication

CredentialsManager mgr =
BusFactory.getDefaultBus().getExtension(

CredentialsManager.class
);

OutCredential cred = mgr.createOutCredential(
CredentialType.USERNAME_PASSWORD,
"tony", // arg0 - Username
"tonypass", // arg1 - Password
true // arg2 - UsePasswordDigest

);

// Associate the credential with the SOAP protocol
OutCredentialsMap map = mgr.createOutCredentialsMap();
map.get(SecurityProtocolType.SOAP).add(cred);

// Insert credentials map at global, thread or proxy level
...

Retrieving credentials with a
password digest Example 84 on page 337 shows how to determine the password type and

how to retrieve the username and password (plain or digest) from a received
UsernameToken credential.

Example 84. Accessing Digest Password in a UsernameToken

// Java
import java.util.Map;
import javax.annotation.Resource;
import javax.xml.bind.JAXBElement;
import javax.xml.ws.WebServiceContext;

import com.iona.soa.security.credential.CredentialCollection;
import com.iona.soa.security.credential.InCredential;
import com.iona.soa.security.credential.InCredentialsMap;
import com.iona.soa.security.credential.UsernamePasswordCre
dential;
import com.iona.soa.security.credential.WSSUsernameTokenCre
dential;
import com.iona.soa.security.rt.constant.WSS10Constants;
import com.iona.soa.security.types.CredentialType;
import com.iona.soa.security.types.SecurityProtocolType;

import org.oasis_open.docs.wss._2004._01.oasis_200401_wss_wsse
curity_secext_1_0.PasswordString;
import org.oasis_open.docs.wss._2004._01.oasis_200401_wss_wsse
curity_secext_1_0.UsernameTokenType;
...

337

Password Digests in UsernameToken Credentials

InCredential inCred = // Get received credential ❶

if (inCred.getSOACredentialType() == CredentialType.USER
NAME_PASSWORD) {

UsernameTokenType usernameToken =
((WSSUsernameTokenCredential)inCred).getUsernameToken();

❷
String passwordType = getPasswordType(usernameToken); ❸
if (passwordType.equals(WSS10Constants.PASSWORD_TYPE_PASS

WORD_TEXT)) {
String password_text = ((UsernamePasswordCredential)in

Cred).getPassword() ❹
// Process credentials with plain password
...

}
else if (passwordType.equals(WSS10Constants.PASS

WORD_TYPE_PASSWORD_DIGEST)) {
String password_digest = ((UsernamePasswordCreden

tial)inCred).getPassword() ❺
// Process credentials with digest password
...

}
}

❶ This code fragment is meant to be used inside a service implementation,
where the received credentials, inCreds, can be retrieved from the

current Web service context. For details of how to retrieve the
InCredential object, see Example 82 on page 331.

❷ By casting the InCredential object to WSSUsernameTokenCredential

type, you can obtain a reference to the underlying UsernameTokenType,

which is the JAXB object that represents a UsernameToken in the

standard WS-Security UsernameToken schema.

❸ The getPasswordType() is a helper method, the code for which is

shown in Example 85 on page 339. This helper method returns the value
of the Type attribute from the wsse:Password element of the underlying

UsernameToken.

❹ If the password type is plain, the value returned by
UsernamePasswordCredential.getPassword() is just a plaintext

password.
❺ If the password type is digest, the value returned by

UsernamePasswordCredential.getPassword() is a digest password.

338

Programming Authentication

The code for determining the password type in a UsernameToken is shown
in Example 85 on page 339. Note that the XML schema for UsernameToken
defines only the wsse:Username element explicitly. The rest of the
sub-elements are declared as a list of XML Anys (that is, an unbounded list
of xsd:any type). This is why the code needs to iterate through the list of
Anys until it finds the JAXB representation of a wsse:Password element (of
PasswordString type).

Example 85. Determining the Password Type in a UsernameToken

// Java
import javax.xml.bind.JAXBElement;

import org.oasis_open.docs.wss._2004._01.oasis_200401_wss_wsse
curity_secext_1_0.PasswordString;
import org.oasis_open.docs.wss._2004._01.oasis_200401_wss_wsse
curity_secext_1_0.UsernameTokenType;
...
static String
getPasswordType(

final UsernameTokenType usernameToken
) {

java.util.List<java.lang.Object> elements = usernameT
oken.getAny();

if (elements == null) {
return null;

}
//
// Go through each JAXBElement, and look for a Password

String type
//
for (Object obj : elements) {

if (obj instanceof JAXBElement) {
final Object o = ((JAXBElement<?>)obj).getValue();

if (o instanceof PasswordString) {
return ((PasswordString) o).getType();

}
}

}
return null;

}

339

Password Digests in UsernameToken Credentials

Endorsements
Overview

A credential endorsement is a relationship between credential instances,
such that the endorser of the credential vouches for, or endorses, the data in
an endorsed credential instance. For example, a credential representing a
signature on a document can be an endorsement of the data in the document.
Alternatively, credentials representing an identity authenticated over a securely
negotiated security context, such as an SSL session, can endorse, or vouch
for credentials that are delivered over that security context (for example, a
username or a password).

Using endorsements, credential receivers can have greater confidence in the
reliability of credential instances they receive and process. For example, if a
received credential is not endorsed by an entity the credential receiver trusts,
the request could be rejected.

Note
The implementation of such endorsement checking logic is
application-specific and is therefore outside of the scope of the Artix
Java security runtime.

Accessing credential
endorsements While populating the InCredentialsMap instance from a received request

message, the Artix security runtime attempts to build a list of endorsements
for each InCredential object. The list of endorsements is based on
information about the underlying properties of the request, such as whether
the request is protected by a negotiated security context—for example, a TLS
handshake.

To access the list of endorsements for a particular InCredential object,
simply call the InCredential.getInCredentialEndorsements() method
on the object. The getInCredentialEndorsements() method has the
following signature:

// Java
CredentialEndorsements<InCredential> getInCredentialEndorse
ments();

340

Programming Authentication

Where the return value is a list (derived from the java.util.Collection
type) of all the credentials that endorse the current credential.

Default endorsers
By default, the Artix security runtime automatically endorses received
credentials as follows:

• HTTP Basic Authentication received credentials—requires that the
underlying connection is secured by SSL/TLS encryption. A client certificate
is not required.

• WSS UsernameToken received credentials—requires that the underlying
connection is secured by SSL/TLS encryption. A client certificate is not
required.

• WSS BinarySecurityToken received credentials—endorsed by the client’s
X.509 certificate, provided the underlying connection is secured by SSL/TLS
encryption.

Custom endorsers
While the Artix security runtime can make some judgements about which
credentials are suitable as endorsements, applications may have specific
criteria for building up endorsement lists. Consequently, the Artix security
runtime provides applications with an opportunity to perform
application-specific credential endorsements.

The mechanism for performing application-specific credential endorsement
is through the InCredentialEndorser interface. This interface provides a
hook into the credential endorsement process, allowing applications to provide
their own endorsements, if required.

The InCredentialEndorser
interface Example 86 on page 341 shows the definition of the InCredentialEndorser

interface.

Example 86. The InCredentialEndorser Interface

// Java
package com.iona.soa.security.credential;

public interface InCredentialEndorser {
void
endorseCredential(

InCredential endorsee,
InCredentialsMap in

) throws CredentialEndorsementException;
}

341

Endorsements

Where the interface consists of one method, endorseCredential(), which
takes an InCredential argument, the credential under consideration for
endorsement, along with the current InCredentialsMap, representing the
set of credentials currently available in the execution context.

To implement the endorseCredential() method, write code as appropriate
to inspect the InCredentialsMap argument for candidate endorsers and
then call endorsee.getInCredentialEndorsements().add(Endorser)
to add any endorsers to the endorsee.

You can throw a CredentialEndorsementException, if the construction
of the endorsement collection fails for any reason.

Configuring the custom endorser
After you have written the custom endorser class and placed it on your
application’s CLASSPATH, you can configure an authentication element to
use the endorser by setting the credentialEndorser attribute equal to the
name of your endorser class.

For example, say you have just implemented an endorser class,
org.acme.CustomCredentialEndorser. You can configure a server to
apply this endorser to incoming HTTP Basic Authentication credentials by
configuring the relevant security:HTTPBAServerConfig element as follows:

<security:HTTPBAServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"
credentialEndorser="org.acme.CustomCredentialEndorser"

/>

See “Selecting Credentials to Authenticate” on page 381 for more details
about configuring authentication elements.

342

Programming Authentication

Developing an iSF Adapter
An iSF adapter is a replaceable component of the iSF server module that enables you to integrate iSF with any
third-party enterprise security service. This chapter explains how to develop and configure a custom iSF adapter
implementation.

iSF Security Architecture .. 344
iSF Server Module Deployment Options ... 347
iSF Adapter Overview .. 349
Implementing the IS2Adapter Interface .. 350
Deploying the Adapter ... 359

Configuring iSF to Load the Adapter .. 360
Setting the Adapter Properties ... 361
Loading the Adapter Class and Associated Resource Files .. 362

343

iSF Security Architecture
Overview

This section introduces the basic components and concepts of the iSF security
architecture, as follows:

• Architecture on page ? .

• iSF client on page ? .

• iSF client SDK on page ? .

• Artix Security Service on page ? .

• iSF adapter SDK on page ? .

• iSF adapter on page ? .

• Example adapters on page ? .

Architecture
Figure 35 on page 344 gives an overview of the Artix Security Service, showing
how it fits into the overall context of a secure system.

Figure 35. Overview of the Artix Security Service

iSF client
An iSF client is an application that communicates with the Artix Security
Service to perform authentication and authorization operations. The following
are possible examples of iSF client applications:

344

Developing an iSF Adapter

• CORBA servers.

• Artix servers.

• Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Artix Security Service.

iSF client SDK
The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Artix Security Service.

Note
The iSF client SDK is only used internally. It is currently not available
as a public programming interface.

Artix Security Service
The Artix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Artix Security Service, however, it becomes
possible to access the security service remotely.

iSF server module
The iSF server module is a broker that mediates between iSF clients, which
request the security service to perform security operations, and a third-party
security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

• A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.

• A single sign-on feature with user session caching.

iSF adapter SDK
The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

iSF adapter
An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An

345

iSF Security Architecture

iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Example adapters
The following standard adapters are provided with Artix:

• Lightweight Directory Access Protocol (LDAP).

• File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

Warning
The file adapter is intended for demonstration purposes only. It is
not industrial strength and is not meant to be used in a production
environment.

346

Developing an iSF Adapter

iSF Server Module Deployment Options
Overview

The iSF server module, which is fundamentally implemented as a Java library,
can be deployed in one of the following ways:

• CORBA service on page ? .

• Java library on page ? .

CORBA service
The iSF server module can be deployed as a CORBA service (Artix Security
Service), as shown in Figure 36 on page 347 . This is the default deployment
model for the iSF server module in Artix. This deployment option has the
advantage that any number of distributed iSF clients can communicate with
the iSF server module over IIOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server. The Artix Security Service can
be launched by the itsecurity executable and basic configuration is set in
the iona_services.security scope of the Artix configuration file.

Figure 36. iSF Server Module Deployed as a CORBA Service

Java library
The iSF server module can be deployed as a Java library, as shown in
Figure 37 on page 348 , which permits access to the iSF server module from
a single iSF client only.

With this type of deployment, the iSF security JAR file is loaded directly into
a Java application. The security service is then instantiated as a local object
and all calls made through the iSF client SDK are local calls.

347

iSF Server Module Deployment Options

Figure 37. iSF Server Module Deployed as a Java Library

348

Developing an iSF Adapter

iSF Adapter Overview
Overview

This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively straightforward
to implement a custom iSF adapter written in Java.

Standard iSF adapters
IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

• File adapter.

• LDAP adapter.

Custom iSF adapters
The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

Main elements of a custom iSF
adapter The main elements of a custom iSF adapter are, as follows:

• Implementation of the ISF Adapter Java interface on page ? .

• Configuration of the ISF adapter using the iSF properties file on page ? .

Implementation of the ISF
Adapter Java interface The only code that needs to be written to implement an iSF adapter is a class

to implement the IS2Adapter Java interface. The adapter implementation
class should respond to authentication requests either by checking a repository
of user data or by forwarding the requests to a third-party enterprise security
service.

Configuration of the ISF adapter
using the iSF properties file The iSF adapter is configured by setting Java properties in the

is2.properties file. The is2.properties file stores two kinds of
configuration data for the iSF adapter:

• Configuration of the iSF server module to load the adapter—see Configuring
iSF to Load the Adapter on page 360 .

• Configuration of the adapter itself—see Setting the Adapter
Properties on page 361.

349

iSF Adapter Overview

Implementing the IS2Adapter Interface
Overview

The com.iona.security.is2adapter package defines an IS2Adapter
Java interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the ISFAdapter class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the IS2Adapter
interface, which is capable of authenticating a single test user with hard-coded
authorization properties.

Test user
The example adapter implementation described here permits authentication
of just a single user, test_user. The test user has the following authentication
data:

Username: test_user

Password: test_password

and the following authorization data:

• The user’s global realm contains the GuestRole role.

• The user’s EngRealm realm contains the EngineerRole role.

• The user’s FinanceRealm realm contains the AccountantRole role.

iSF adapter example
Example 87 on page 350 shows a sample implementation of an iSF adapter
class, ExampleAdapter, that permits authentication of a single user. The
user’s username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 87. Sample ISF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;
import com.iona.security.common.Role;
import com.iona.security.is2adapter.IS2Adapter;
import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;

350

Developing an iSF Adapter

import java.util.ArrayList;
import java.security.cert.X509Certificate;
import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;

public class ExampleAdapter implements IS2Adapter {

public final static String EXAMPLE_PROPERTY = "example_prop
erty";

public final static String ADAPTER_NAME = "ExampleAdapter";

1 on page 356 private final static String MSG_EXAMPLE_AD
APTER_INITIALIZED = "initialized";

private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

private final static String MSG_EXAMPLE_ADAPTER_AUTHENTIC
ATE = "authenticate";

private final static String MSG_EXAMPLE_ADAPTER_AUTHENTIC
ATE_REALM = "authenticate_realm";

private final static String MSG_EXAMPLE_ADAPTER_AUTHENTIC
ATE_OK = "authenticateok";

private final static String MSG_EXAMPLE_ADAPTER_GETAUTHINFO
= "getauthinfo";

private final static String MSG_EXAMPLE_ADAPTER_GETAUTH
INFO_OK = "getauthinfook";

private ResourceBundle _res_bundle = null;

2 on page 356 private static Logger LOG = Logger.getLogger(Ex
ampleAdapter.class.getName());

public ExampleAdapter() {
3 on page 356 _res_bundle = ResourceBundle.getBundle("Ex
ampleAdapter");

LOG.setResourceBundle(_res_bundle);
}

4 on page 356 public void initialize(Properties props)
throws IS2AdapterException {

LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_INITIALIZED,null);

// example property

351

Implementing the IS2Adapter Interface

String propVal = props.getProperty(EXAMPLE_PROPERTY);

LOG.info(propVal);

}

5 on page 356 public void close() throws IS2AdapterException
{

LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." + MSG_EX
AMPLE_ADAPTER_CLOSED, null);

}

6 on page 356 public AuthenticatedPrincipal authentic
ate(String username, String password)

throws IS2AdapterException {

7 on page 356 LOG.l7dlog(Priority.INFO, ADAPTER_NAME +
"." + MSG_EXAMPLE_ADAPTER_AUTHENTICATE,new Object[]{user
name,password},null);

AuthenticatedPrincipal ap = null;
try{

if (username.equals("test_user")
&& password.equals("test_password")){

8 on page 356 ap = getAuthorizationInfo(new Au
thenticatedPrincipal(username));

}
else {

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "."
+ IS2AdapterException.WRONG_NAME_PASSWORD,null);
9 on page 357 throw new IS2AdapterExcep
tion(_res_bundle,this, IS2AdapterException.WRONG_NAME_PASSWORD,
new Object[]{username});

}

} catch (Exception e) {
LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
}

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

return ap;
}

10 on page 357 public AuthenticatedPrincipal authentic

352

Developing an iSF Adapter

ate(String realmname, String username, String password)
throws IS2AdapterException {

LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM,new Object[]{realm
name,username,password},null);

AuthenticatedPrincipal ap = null;
try{

if (username.equals("test_user")
&& password.equals("test_password")){

11 on page 357 AuthenticatedPrincipal principal
= new AuthenticatedPrincipal(username);

principal.setCurrentRealm(realmname);
ap = getAuthorizationInfo(principal);

}
else {

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "."
+ IS2AdapterException.WRONG_NAME_PASSWORD,null);

throw new IS2AdapterException(_res_bundle,
this, IS2AdapterException.WRONG_NAME_PASSWORD, new Ob
ject[]{username});

}

} catch (Exception e) {
LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);

}

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

return ap;
}

12 on page 357 public AuthenticatedPrincipal authentic
ate(X509Certificate certificate)

throws IS2AdapterException {
throw new IS2AdapterException(

_res_bundle, this, IS2AdapterException.NOT_IM
PLEMENTED

);
}

13 on page 357 public AuthenticatedPrincipal authentic
ate(String realm, X509Certificate certificate)

throws IS2AdapterException {

353

Implementing the IS2Adapter Interface

throw new IS2AdapterException(
_res_bundle, this, IS2AdapterException.NOT_IM

PLEMENTED
);

}

14 on page 357 public AuthenticatedPrincipal getAuthoriza
tionInfo(AuthenticatedPrincipal principal) throws IS2Adapter
Exception{

LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO,new Object[]{princip
al.getUserID()},null);

AuthenticatedPrincipal ap = null;
String username = principal.getUserID();
String realmname = principal.getCurrentRealm();

try{
if (username.equals("test_user")) {

15 on page 358 ap = new AuthenticatedPrincip
al(username);
16 on page 358 ap.addRole(new Role("GuestRole",
""));

17 on page 358 if (realmname == null || (realm
name != null && realmname.equals("EngRealm")))

{
ap.addRealm(new Realm("EngRealm", ""));
ap.addRole("EngRealm", new Role("Engineer

Role", ""));
}

18 on page 358 if (realmname == null || (realm
name != null && realmname.equals("FinanceRealm")))

{
ap.addRealm(new Realm("FinanceRealm",""));

ap.addRole("FinanceRealm", new Role("Ac
countantRole", ""));

}
}
else {

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "."
+ IS2AdapterException.USER_NOT_EXIST, new Object[]{username},
null);

throw new IS2AdapterException(_res_bundle,
this, IS2AdapterException.USER_NOT_EXIST, new Object[]{user
name});

354

Developing an iSF Adapter

}

} catch (Exception e) {
LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);

}

LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK,null);

return ap;
}

19 on page 358 public AuthenticatedPrincipal getAuthoriza
tionInfo(String username) throws IS2AdapterException{

// this method has been deprecated
throw new IS2AdapterException(

_res_bundle, this, IS2AdapterException.NOT_IM
PLEMENTED

);
}

20 on page 358 public AuthenticatedPrincipal getAuthoriza
tionInfo(String realmname, String username) throws IS2Adapter
Exception{

// this method has been deprecated
throw new IS2AdapterException(

_res_bundle, this, IS2AdapterException.NOT_IM
PLEMENTED

);
}

21 on page 358 public ArrayList getAllUsers()
throws IS2AdapterException {

throw new IS2AdapterException(
_res_bundle, this, IS2AdapterException.NOT_IM

PLEMENTED
);

}

355

Implementing the IS2Adapter Interface

22 on page 358 public void logout(AuthenticatedPrincipal
ap) throws IS2AdapterException {

}
}

The preceding iSF adapter code can be explained as follows:

1. These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

2. This line creates a Log4J logger.

3. This line loads the resource bundle for the adapter.

4. The initialize() method is called just after the adapter is loaded. The

properties passed to the initialize() method, props, are the adapter

properties that the iSF server module has read from the is2.properties

file.

See Setting the Adapter Properties on page 361 for more details.

5. The close() method is called to shut down the adapter. This gives you

an opportunity to clean up and free resources used by the adapter.

6. This variant of the IS2Adapter.authenticate() method is called

whenever an iSF client calls AuthManager.authenticate() with

username and password parameters.

In this simple demonstration implementation, the authenticate() method
recognizes only one user, test_user, with password, test_password.

7. This line calls a Log4J method in order to log a localized and parametrized
message to indicate that the authenticate method has been called with
the specified username and password values. Since all the keys in the
resource bundle begin with the adapter name, the adapter name is
prepended to the key. The l7dlog() method is used because it automatically
searches the resource beundle which was set previously by the loggers
setResourceBundle() method.

8. If authentication is successful; that is, if the name and password passed
in match test_user and test_password, the getAuthorizationInfo()

356

Developing an iSF Adapter

method is called to obtain an AuthenticatedPrincipal object populated

with all of the user’s realms and role

9. If authentication fails, an IS2AdapterException is raised with minor

code IS2AdapterException.WRONG_NAME_PASSWORD. The resource

bundle is passed to the exception as it accesses the exception message
from the bundle using the key,
ExampleAdapter.wrongUsernamePassword.

10. This variant of the IS2Adapter.authenticate() method is called

whenever an iSF client calls AuthManager.authenticate() with realm

name, username and password parameters.

This method differs from the preceding username/password
authenticate() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

11. If authentication is successful, the getAuthorizationInfo() method is

called to obtain an AuthenticatedPrincipal object populated with the

authorization data from the specified realm and the global realm.

12. This variant of the IS2Adapter.authenticate() method is called

whenever an iSF client calls AuthManager.authenticate() with an

X.509 certificate parameter.

13. This variant of the IS2Adapter.authenticate() method is called

whenever an iSF client calls AuthManager.authenticate() with a realm

name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate() method
in that only the authorization data for the specified realm and the global
realm are included in the return value.

14. This method should create an AuthenticatedPrincipal object for the

username user. If a realm is not specified in the principal, the

AuthenticatedPrincipal is populated with all realms and roles for this

user. If a realm is specified in the principal, the AuthenticatedPrincipal

is populated with authorization data from the specified realm and the global
realm only.

357

Implementing the IS2Adapter Interface

15. This line creates a new AuthenticatedPrincipal object for the username

user to hold the user’s authorization data.

16. This line adds a GuestRole role to the global realm, IONAGlobalRealm,

using the single-argument form of addRole(). Roles added to the global

realm implicitly belong to every named realm as well.

17. This line checks if no realm is specified in the principal or if the realm,
EngRealm, is specified. If either of these is true, the following lines add

the authorization realm, EngRealm, to the AuthenticatedPrincipal

object and add the EngineerRole role to the EngRealm authorization

realm.

18. This line checks if no realm is specified in the principal or if the realm,
FinanceRealm, is specified. If either of these is true, the following lines

add the authorization realm, FinanceRealm, to the

AuthenticatedPrincipal object and add the AccountantRole role to

the FinanceRealm authorization realm.

19. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has been deprecated.

The method IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

20. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has also been

deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal principal)

should be used instead

21. The getAllUsers() method is currently not used by the iSF server module

during runtime. Hence, there is no need to implement this method currently.

22. When the logout() method is called, you can perform cleanup and release

any resources associated with the specified user principal. The iSF server
module calls back on IS2Adapter.logout() either in response to a user

calling AuthManager.logout() explicitly or after an SSO session has

timed out.

358

Developing an iSF Adapter

Deploying the Adapter
Configuring iSF to Load the Adapter .. 360
Setting the Adapter Properties ... 361
Loading the Adapter Class and Associated Resource Files .. 362

359

Deploying the Adapter

Configuring iSF to Load the Adapter
Overview

You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s is2.properties file:

• Adapter name on page ? .

• Adapter class on page ? .

Adapter name
The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, set the property as follows:

com.iona.isp.adapters=AdapterName

Note
In the current implementation, the iSF server module can load only
a single adapter at a time.

Adapter class
The name of the adapter class to be loaded is specified by the following
property setting:

com.iona.isp.adapter.AdapterName.class=AdapterClass

Example adapter
For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com.iona.isp.adapters=example

com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

360

Developing an iSF Adapter

Setting the Adapter Properties
Overview

This subsection explains how you can set properties for a specific custom
adapter in the is2.properties file.

Adapter property name format
All configurable properties for a custom file adapter, AdapterName, should
have the following format:

com.iona.isp.adapter.AdapterName.param.PropertyName

Truncation of property names
Adapter property names are truncated before being passed to the iSF adapter.
That is, the com.iona.ispadapter.AdapterName.param prefix is stripped
from each property name.

Example
For example, given an adapter named ExampleAdapter which has two
properties, host and port, these properties would be set as follows in the
is2.properties file:

com.iona.isp.adapter.example.param.example_property="This is an example
property"

Before these properties are passed to the iSF adapter, the property names
are truncated as if they had been set as follows:

example_property="This is an example property"

Accessing properties from within
an iSF adapter The adapter properties are passed to the iSF adapter through the

com.iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

...
public void initialize(java.util.Properties props)
throws IS2AdapterException {

// Access a property through its truncated name.
String propVal = props.getProperty("PropertyName")
...

}

361

Setting the Adapter Properties

Loading the Adapter Class and Associated Resource Files
Overview

You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class. You need to
distinguish between the following usages of the iSF server module:

• CORBA service on page ? .

• Java library on page ?

In all cases, the location of the file used to configure Log4j logging can be set
using the log4j.configuration property in the is2.properties file.

CORBA service
By default, the Artix Security Service uses the
secure_artix.full_security.security_service scope in your Orbix
configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory
containing the compiled adapter class and the adapter’s resource bundle.
The plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the ArtixInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable as follows:

Artix configuration file
SECURITY_CLASSPATH = "ArtixInstallDir\ExampleAdapter;ArtixIn
stallDir\lib\corba\security_service\5.1\security_service-
rt.jar";

Java library
In this case, to make the custom iSF adapter class available to an iSF client,
add the directory containing the compiled adapter class and adapter resource
bundle to your CLASSPATH.

You must also specify the location of the license file, which can be set in one
of the following ways:

• Uncomment and set the value of the is2.license.filename property in

your domain’s is2.properties file to point to license file for product. For

example:

iSF properties file
is2.license.filename=ArtixInstallDir/licenses.txt

362

Developing an iSF Adapter

• Add the license file to the CLASSPATH used for the iSF client.

• Pass the license file location to the iSF client using a Java system property:

java -DIT_LICENSE_FILE=LocationOfLicenseFile iSFClientClass

• Set the license in the code for the iSF client. For example:

// Java
...
SecurityService service = SecurityService.instance();
Properties props = new Properties();
props.load(new FileInputStream(propsFileName));
props.setProperty(

SecurityService.IS2_LICENSE_FILE_NAME,
LocationOfLicenseFile

);
service.initializeSecurity(props);

363

Loading the Adapter Class and Associated Resource
Files

364

Appendix A. ASN.1 and Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role in the
security standards that define X.509 certificates and LDAP directories.

ASN.1 ... 366
Distinguished Names .. 367

365

ASN.1
Overview

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards
body in the early 1980s to provide a way of defining data types and structures
that is independent of any particular machine hardware or programming
language. In many ways, ASN.1 can be considered a forerunner of the OMG’s
IDL, because both languages are concerned with defining platform-independent
data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you
need to be aware that ASN.1 is used for the basic definitions of most
security-related data types.

BER
The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1 data
type into a sequence of octets (binary representation). The role played by BER
with respect to ASN.1 is, therefore, similar to the role played by GIOP with
respect to the OMG IDL.

DER
The OSI’s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References
You can read more about ASN.1 in the following standards documents:

• ASN.1 is defined in X.208.

• BER is defined in X.209.

366

Distinguished Names
Overview

Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In Artix ESB,
DNs occur in the following contexts:

• X.509 certificates—for example, one of the DNs in a certificate identifies
the owner of the certificate (the security principal).

• LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN
Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The string
representation provides a convenient basis for describing the structure of a
DN.

Note
The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted
from string format back to DER format does not always recover the
original DER encoding.

DN string example
The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string
A DN string is built up from the following basic elements:

• OID .

• Attribute Types .

• AVA .

367

• RDN .

OID
An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies
a grammatical construct in ASN.1.

Attribute types
The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table A.1 on page 368 shows a selection of the attribute types that you are
most likely to encounter:

Table A.1. Commonly Used Attribute Types

Equivalent OIDSize of DataX.500 Attribute TypeString Representation

2.5.4.62countryNameC

2.5.4.101...64organizationNameO

2.5.4.111...64organizationalUnitNameOU

2.5.4.31...64commonNameCN

2.5.4.81...64stateOrProvinceNameST

2.5.4.71...64localityNameL

streetAddressSTREET

domainComponentDC

useridUID

AVA
An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table A.1 on page 368). For example:

368

2.5.4.3=A. N. Other

RDN
A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation). Technically,
an RDN might contain more than one AVA (it is formally defined as a set of
AVAs); in practice, however, this almost never occurs. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering

369

370

Appendix B. iSF Configuration
This appendix provides details of how to configure the Artix security server.

Properties File Syntax .. 372
iSF Properties File .. 374
Cluster Properties File ... 398
log4j Properties File .. 401

371

Properties File Syntax

Overview
The Artix security service uses standard Java property files for its configuration.
Some aspects of the Java properties file syntax are summarized here for your
convenience.

Property definitions
A property is defined with the following syntax:

<PropertyName>=<PropertyValue>

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example, is2.current.server.id.
The <PropertyValue> is an arbitrary string, including all of the characters
up to the end of the line (embedded spaces are allowed).

Specifying full pathnames
When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

D:\\iona\\securityInfo.xml

Specifying relative pathnames
If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Artix security service’s classpath. For
example, if you specify a relative pathname as follows:

372

UNIX
securityInfo.xml

The security service’s classpath must include the file’s parent directory:

CLASSPATH = /home/data/:<rest_of_classpath>

373

iSF Properties File

Overview
An iSF properties file is used to store the properties that configure a specific
Artix security service instance. Generally, every Artix security service instance
should have its own iSF properties file. This section provides descriptions of
all the properties that can be specified in an iSF properties file.

File location
The default locations of the iSF property files are as follows:

ArtixInstallDir/cxx_java/samples/security/full_secur
ity/etc/is2.properties.FILE
ArtixInstallDir/cxx_java/etc/is2.properties.LDAP
ArtixInstallDir/cxx_java/etc/is2.properties.KERBEROS

In general, the iSF properties file location is specified in the Artix configuration
by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally initialized
in the iona_services.security configuration scope as follows:

Artix configuration file
...
iona_services {

...
security {

...
plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artim
pl.ORBSingleton", "is2.properties=ArtixIn
stallDir/cxx_java/samples/security/full_security/etc/is2.prop
erties.FILE"];

...
};

};

List of properties
The following properties can be specified in the iSF properties file:

374

com.iona.isp.adapters
Specifies the iSF adapter type to be loaded by the Artix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an Artix
security domain. Currently, you can specify one of the following adapter types:

• file

• LDAP

• krb5

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapters=LDAP

com.iona.isp.adapter.file.class
Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.file.class=com.iona.security.is2ad
apter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename
Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C:/is2_config/security_info.xml,
as follows:

com.iona.isp.adapter.file.param.filename=C:/is2_config/secur
ity_info.xml

com.iona.isp.adapter.file.param.userIDInCert
If an X.509 certificate is presented to the Artix security service for
authentication, this property specifies which field from the certificate’s subject
DN is taken to be the user name.

375

The userIDInCert property can be set to any valid attribute type, where
the attribute type identifes a field in a Distinguished Name (DN). See “Attribute
types” on page 744 for a partial list.

For example, to specify that the user name is taken from the Common Name
(CN) from the certificate’s subject DN, set the property as follows:

com.iona.isp.adapter.file.param.userIDInCert=CN

com.iona.isp.adapter.file.params
Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.krb5.class
Specifies the Java class that implements the Kerberos adapter.

For example, the default implementation of the Kerberos adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.kbr5.class=com.iona.security.is2ad
apter.kbr5.IS2KerberosAdapter

com.iona.isp.adapter.krb5.param.check.kdc.principal
(Used in combination with the
com.iona.isp.adapter.krb5.param.check.kdc.running property.)
Specifies the dummy KDC principal that is used for connecting to the KDC
server, in order to check whether it is running or not.

com.iona.isp.adapter.krb5.param.check.kdc.running
A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server is running. Default is false.

com.iona.isp.adapter.krb5.param.ConnectTimeout.1
Specifies the time-out interval for the connection to the Active Directory Server
in units of seconds. Default is 10.

376

com.iona.isp.adapter.krb5.param.GroupBaseDN
Specifies the base DN of the tree in the LDAP directory that stores user groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=iona,dc=com

Note
The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.krb5.param.GroupNameAttr
Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupNameAttr=cn

com.iona.isp.adapter.krb5.param.GroupObjectClass
Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed attributes
of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfWriters object class:

com.iona.isp.adapter.krb5.param.GroupObjectClass=groupOfWriters

com.iona.isp.adapter.krb5.param.GroupSearchScope
Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

377

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example, to search just the entries immediately bellow the base DN you
would use the following:

com.iona.isp.adapter.krb5.param.GroupSearchScope=ONE

com.iona.isp.adapter.krb5.param.host.1
Specifies the server name or IP address of the Active Directory Server used
to retrieve a user’s group information.

com.iona.isp.adapter.krb5.param.java.security.auth.login.config
Specifies the JAAS login module configuration file. For example, if your JAAS
login module configuration file is jaas.config, your Artix security service
configuration would contain the following:

com.iona.isp.adapter.krb5.param.java.security.auth.login.con
fig=jaas.conf

com.iona.isp.adapter.krb5.param.java.security.krb5.conf
Specifies the location (path and file name) of the Kerberos configuration file,
krb5.conf. In most cases, this configuration is not needed. For more
information, see the Java documentation1 for Kerberos.

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc
Specifies the server name or IP address of the Kerberos KDC server.

com.iona.isp.adapter.krb5.param.java.security.krb5.realm
Specifies the Kerberos Realm name.

1 http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/KerberosReq.html

378

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/KerberosReq.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/KerberosReq.html

For example, to specify that the Kerberos Realm is is2.iona.com would
require an entry similar to:

com.iona.isp.adapter.krb5.param.java.secur
ity.krb5.realm=is2.iona.com

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly
This is a JAAS login module property that must be set to false when using
Artix.

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize
Specifies the maximum LDAP connection pool size for the Kerberos adapter
(a strictly positive integer). The maximum connection pool size is the maximum
number of LDAP connections that would be opened and cached by the
Kerberos adapter. The default is 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at a time:

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.krb5.param.MemberDNAttr
Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the MemberDNAttr property to construct a query to
find out which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves all
the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

379

com.iona.isp.adapter.krb5.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize
Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP connections
that are opened during initialization of the Kerberos adapter. The default is
1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=10

com.iona.isp.adapter.krb5.param.port.1
Specifies the port on which the Active Directory Server can be contacted.

com.iona.isp.adapter.krb5.param.PrincipalUserDN.1
Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1
Specifies the password that is used to login to the Active Directory Server.
This property need only be set if the Active Directory Server is configured to
require username/password authentication.

Warning
Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.kbr5.param.RetrieveAuthInfo
Specifies if the user’s group information needs to be retrieved from the Active
Directory Server. Default is false.

To instruct the Kerberos adapter to retrieve the user’s group information, use
the following:

380

com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true

com.iona.isp.adapter.krb5.param.RoleNameAttr
Specifies the attribute type that the Kerberos server uses to store the role
name. The default is CN.

For example, you can specify the common name, CN, attribute type as follows:

com.iona.isp.adapter.krb5.param.RoleNameAttr=cn

com.iona.isp.adapter.krb5.param.SSLCACertDir.1
Specifies the directory name for trusted CA certificates. All certificate files in
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA certificates
can either be in DER-encoded X.509 format or in PEM-encoded X.509 format.

For example, to specify that the Kerberos adapter uses the d:/certs/test
directory to store CA certificates:

com.iona.isp.adapter.kbr5.param.SSLCACertDir.1=d:/certs/test

com.iona.isp.adapter.krb5.param.SSLClientCertFile.1
Specifies the client certificate file that is used to identify the Artix security
service to the Active Directory Server. This property is needed only if the Active
Directory Server requires SSL/TLS mutual authentication. The certificate must
be in PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1
Specifies the password for the client certificate that identifies the Artix security
service to the Active Directory Server. This property is needed only if the Active
Directory Server requires SSL/TLS mutual authentication.

Warning
Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

381

com.iona.isp.adapter.krb5.param.SSLEnabled.1
Specifies if SSL is needed to connect with the Active Directory Server. The
default is no.

To use SSL when contacting the Active Directory Server use the following:

com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes

com.iona.isp.adapter.krb5.param.sun.security.krb5.debug
Specifies a boolean value for the sun.security.krb5.debug debugging
property. If true, Kerberos debugging output is generated. Default is false.

com.iona.isp.adapter.krb5.param.UseGroupAsRole
Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the group.

This option is useful for some older directory structures, that do not have the
role concept.

Default is no.

For example:

com.iona.isp.adapter.krb5.param.UseGroupAsRole=no

com.iona.isp.adapter.krb5.param.UserBaseDN
Specifies the base DN (an ordered sequence of RDNs) of the tree in the active
directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

382

com.iona.isp.adapter.krb5.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.krb5.param.UserCertAttrName
Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.krb5.param.UserCertAttrName=userCertific
ate

com.iona.isp.adapter.krb5.param.UserNameAttr
Specifies the attribute type whose corresponding value uniquely identifies the
user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.krb5.param.UserNameAttr=uid

com.iona.isp.adapter.krb5.param.UserObjectClass
Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example to set the class to Person you would use the following:

com.iona.isp.adapter.krb5.param.UserObjectClass=Person

com.iona.isp.adapter.krb5.param.UserRoleDNAttr
Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.krb5.param.UserRoleDNAttr=nsroledn

com.iona.isp.adapter.krb5.param.UserSearchFilter
Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced

383

during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

&(xml:id=$USER_NAME$)(objectclass=organizationalPerson)

com.iona.isp.adapter.krb5.param.version
Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The only supported version is
3 (for LDAP v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.krb5.param.version=3

com.iona.isp.adapter.LDAP.class
Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.LDAP.class=com.iona.security.is2ad
apter.ldap.LdapAdapter

com.iona.isp.adapter.LDAP.param.CacheSize
Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections opened
by this Artix security service instance.

Internally, the Artix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

384

http://www.ietf.org/rfc/rfc2251.txt

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive
Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60

com.iona.isp.adapter.LDAP.param.ConnectTimeout.1
Specifies the time-out interval for the connection to the Active Directory Server
in units of seconds. Default is 10.

com.iona.isp.adapter.LDAP.param.GroupBaseDN
Specifies the base DN of the tree in the LDAP directory that stores user groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note
The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr
Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass
Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed attributes
of an entry. The default is groupOfUniqueNames.

385

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofunique
names

com.iona.isp.adapter.LDAP.param.GroupSearchScope
Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
Specifies the maximum LDAP connection pool size for the Artix security service
(a strictly positive integer). The maximum connection pool size is the maximum
number of LDAP connections that would be opened and cached by the Artix
security service. The default is 1.

386

For example, to limit the Artix security service to open a maximum of 50
LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr
Specifies which LDAP attribute is used to retrieve group members. The LDAP
adapter uses the MemberDNAttr property to construct a query to find out
which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves all
the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.LDAP.param.MemberFilter
Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
Specifies the minimum LDAP connection pool size for the Artix security service.
The minimum connection pool size specifies the number of LDAP connections
that are opened during initialization of the Artix security service. The default
is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

387

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com.iona.isp.adapter.LDAP.param.port.1=636

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the password that
is used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

No default.

Warning
Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
Specifies whether or not the Artix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

388

• yes—the Artix security service retrieves authorization information from the

LDAP server.

• no—the Artix security service retrieves authorization information from the

iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter.LDAP.param.RoleNameAttr
Specifies the attribute type that the LDAP server uses to store the role name.
The default is CN.

For example, you can specify the common name, CN, attribute type as follows:

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server uses the d:/certs/test
directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>

Specifies the client certificate file that is used to identify the Artix security
service to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The certificate
must be in PKCS#12 format.

389

No default.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>

Specifies the password for the client certificate that identifies the Artix security
service to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication.

Warning
Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>

Enables SSL/TLS security for the connection between the Artix security service
and the <cluster_index> LDAP server replica. The possible values are yes
or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.SSLEnabled.1=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole
Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

390

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.LDAP.param.UserBaseDN
Specifies the base DN (an ordered sequence of RDNs) of the tree in the LDAP
directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName
Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertific
ate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
Specifies the attribute type whose corresponding value uniquely identifies the
user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass
Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example:

391

com.iona.isp.adapter.LDAP.param.UserObjectClass=organization
alPerson

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

com.iona.isp.adapter.LDAP.param.UserSearchFilter
Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

&(xml:id=$USER_NAME$)(objectclass=organizationalPerson)

com.iona.isp.adapter.LDAP.param.UserSearchScope
Specifies the user search scope. This property can be set to one of the
following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

392

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter.LDAP.param.version
Specifies the LDAP protocol version that the Artix security service uses to
communicate with LDAP servers. The only supported version is 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.param.version=3

com.iona.isp.adapter.LDAP.params
Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.authz.adapters
Specifies the name of the adapter that is loaded to perform authorization.
The adapter name is an arbitrary identifier, AdapterName, which is used to
construct the names of the properties that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and
com.iona.isp.authz.adapter.AdapterName.param.filelist. For
example:

com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzA
dapter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

com.iona.isp.authz.adapter.AdapterName.class

Selects the authorization adapter class for the AdapterName adapter. The
following adapter implementations are provided by Orbix:

• com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—an
authorization adapter that enables you to specify multiple ACL files. It is
used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

For example:

393

http://www.ietf.org/rfc/rfc2251.txt

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzA
dapter.multifile.MultiFileAzAdapter

com.iona.isp.authz.adapter.AdapterName.param.filelist

Specifies the absolute pathname of a file containing a list of ACL files for the
AdapterName adapter. Each line of the specified file has the following format:

[ACLKey=]ACLFileName

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key. The ACL file,
ACLFileName, is specified using an absolute pathname in the local file format.

For example, on Windows you could specify a list of ACL files as follows:

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

is2.current.server.id
The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service’s ID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this
Orbix security service, the server ID is embedded into the SSO token.
Subsequently, if the SSO token is passed to a second Orbix security service
instance, the second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates security operations
to the first Orbix security service.

The server ID is also used to identify replicas in the cluster.properties
file.

For example, to assign a server ID of 1 to the current Orbix security service:

is2.current.server xml:id=1

is2.cluster.properties.filename
Specifies the file that stores the configuration properties for clustering. For
example:

394

is2.cluster.properties.filename=C:/is2_config/cluster.proper
ties

is2.replication.required
Enables the replication feature of the Artix security service, which can be used
in the context of security service clustering. The possible values are true
(enabled) and false (disabled). When replication is enabled, the security
service pushes its cache of SSO data to other servers in the cluster at regular
intervals.

Default is false.

For example:

is2.replication.required=true

is2.replication.interval
Specifies the time interval between replication updates to other servers in the
security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replication.interval=10

is2.replica.selector.classname
If replication is enabled (see is2.replication.required), you must set
this variable equal to
com.iona.security.replicate.StaticReplicaSelector.

For example:

is2.replica.selector.classname=com.iona.security.replic
ate.StaticReplicaSelector

is2.sso.cache.size
Specifies the maximum cache size (number of user sessions) associated with
single sign-on (SSO) feature. The SSO caches user information, including the

395

user’s group and role information. If the maximum cache size is reached, the
oldest sessions are deleted from the session cache.

Default is 10000.

For example:

is2.sso.cache.size=1000

is2.sso.enabled
Enables the single sign-on (SSO) feature of the Artix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.

For example:

is2.sso.enabled=yes

is2.sso.remote.token.cached
In a federated scenario, this variable enables caching of token data for tokens
that originate from another security service in the federated cluster. When
this variable is set to true, a security service need contact another security
service in the cluster, only when the remote token is authenticated for the
first time. For subsequent token authentications, the token data for the remote
token can be retrieved from the local cache.

Default is false.

is2.sso.session.idle.timeout
Sets the session idle time-out in units of seconds for the single sign-on (SSO)
feature of the Artix security service. A zero value implies no time-out.

If a user logs on to the Artix Security Framework (supplying username and
password) with SSO enabled, the Artix security service returns an SSO token
for the user. The next time the user needs to access a resource, there is no
need to log on again because the SSO token can be used instead. However,
if no secure operations are performed using the SSO token for the length of
time specified in the idle time-out, the SSO token expires and the user must
log on again.

396

Default is 0 (no time-out).

For example:

is2.sso.session.idle.timeout=0

is2.sso.session.timeout
Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

is2.sso.session.timeout=0

log4j.configuration
Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Artix security service.
See also log4j Properties File on page 401 .

For example:

log4j.configuration=d:/temp/myconfig.txt

397

Cluster Properties File

Overview
The cluster properties file is used to store properties common to a group of
Artix security service instances that operate as a cluster or federation. This
section provides descriptions of all the properties that can be specified in a
cluster file.

File location
The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iSF properties file. All
of the Artix security service instances in a cluster or federation must share
the same cluster properties file.

List of properties
The following properties can be specified in the cluster properties file:

com.iona.security.common.securityInstanceURL.<server_ID>

Specifies the server URL for the <server_ID> Artix security service instance.

When single sign-on (SSO) is enabled together with clustering or federation,
the Artix security service instances use the specified instance URLs to
communicate with each other. By specifying the URL for a particular Artix
security service instance, you are instructing the instance to listen for messages
at that URL. Because the Artix security service instances share the same
cluster file, they can read each other’s URLs and open connections to each
other.

The connections between Artix security service instances can either be insecure
(HTTP) or secure (HTTPS). To enable SSL/TLS security, use the https: prefix
in each of the instance URLs.

For example, to configure two Artix security service instances to operate in a
cluster or federation using insecure communications (HTTP):

com.iona.security.common.securityInstanceURL.1=http://local
host:8080/isp/AuthService

398

com.iona.security.common.securityInstanceURL.2=http://local
host:8081/isp/AuthService

Alternatively, to configure two Artix security service instances to operate in a
cluster or federation using secure communications (HTTPS):

com.iona.security.common.securityInstanceURL.1=https://local
host:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=https://local
host:8081/isp/AuthService

In the secure case, you must also configure the certificate-related cluster
properties (described in this section) for each Artix security service instance.

com.iona.security.common.replicaURL.<server_ID>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data.

com.iona.security.common.cACertDir.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the directory containing trusted CA certificates. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify d:/temp/cert as the CA certificate directory for the
primary Artix security service instance:

com.iona.security.common.cACertDir.1=d:/temp/cert

com.iona.security.common.clientCertFileName.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the client certificate file that identifies the Artix security
service to its peers within a cluster or federation. The certificate must be in
PKCS#12 format.

399

com.iona.security.common.clientCertPassword.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the password for the client certificate that identifies the
Artix security service to its peers within a cluster or federation.

Warning
Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

400

log4j Properties File

Overview
The log4j properties file configures log4j logging for your Artix security service.
This section describes a minimal set of log4j properties that can be used to
configure basic logging.

log4j documentation
For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

File location
The location of the log4j properties file is specified by the
log4j.configuration property in the iSF properties file. For ease of
administration, different Artix security service instances can optionally share
a common log4j properties file.

List of properties
To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs <AppenderHandle>
logging messages to a particular destination. For example, one of the following
standard log4j appender classes could be specified:

• org.apache.log4j.ConsoleAppender

• org.apache.log4j.FileAppender

• org.apache.log4j.RollingFileAppender

• org.apache.log4j.DailyRollingFileAppender

401

http://jakarta.apache.org/log4j/docs/documentation.html

• org.apache.log4j.AsynchAppender

• org.apache.log4j.WriterAppender

For example, to log messages to the console screen for the A1 appender
handle:

log4j.appender.A1=org.apache.log4j.ConsoleAppender

log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

• org.apache.log4j.PatternLayout

• org.apache.log4j.HTMLLayout

• org.apache.log4j.SimpleLayout

• org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the format
of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

402

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c
%x - %m%n

log4j.rootCategory
This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...

The logging level, <LogLevel>, can have one of the following values:

• DEBUG

• INFO

• WARN

• ERORR

• FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1

403

404

Appendix C. Action-Role Mapping XML
Schema
This appendix presents the XML schema for the action-role mapping file.

Schema file
The action-role mapping schema is shown in Example C.1 on page 405 .

Example C.1. Action-Role Mapping XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://schemas.iona.com/security/acl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://schemas.iona.com/security/acl"

elementFormDefault="qualified" >
<!-- -->
<!-- A Role consists of a name -->
<!-- -->
<simpleType name="role">

<restriction base="string"/>
</simpleType>
<!-- -->
<!-- An Action-Role consists of an action name, and a

number of roles -->
<!-- -->
<complexType name="action-role">

<sequence>
<element name="action-name" type="string"/>
<element name="role-name" type="tns:role" maxOc

curs="unbounded"/>
</sequence>

</complexType>
<!-- -->
<!-- An Interface consists of an interface name, and a

number of action-roles -->
<!-- -->
<complexType name="interface">

<sequence>
<element name="name" type="string"/>

<element name="action-role" type="tns:action-role"
maxOccurs="unbounded"/>

405

</sequence>
</complexType>
<!-- -->
<!-- An Action-Role-Mapping consists of a server name,

and a number of interfaces -->
<!-- -->
<complexType name="action-role-mapping">

<sequence>
<element name="server-name" type="string"/>
<element name="interface" type="tns:interface"

maxOccurs="unbounded"/>
</sequence>

</complexType>
<!-- -->
<!-- A Secure-System consists of an allow-unlisted-inter

faces attribute, and a -->
<!-- number of action-role-mappings -->
<!-- -->
<element name="secure-system">

<complexType>
<sequence>

<element name="allow-unlisted-interfaces"
type="boolean" default="false" minOccurs="0"/>

<element name="action-role-mapping"
type="tns:action-role-mapping" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
</schema>

Action-role mapping elements
The elements of the action-role mapping schema can be described as follows:

action-name
Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

• Web service—for WSDL operations, the action name is equivalent to a
WSDL operation name; that is, the OperationName from a tag,

<operation name="OperationName">.

• CORBA server—for IDL operations, the action name corresponds to the
GIOP on-the-wire format of the operation name (usually the same as it
appears in IDL).

406

For IDL attributes, the accessor or modifier action name corresponds to
the GIOP on-the-wire format of the attribute accessor or modifier. For
example, an IDL attribute, foo, would have an accessor, _get_foo, and
a modifier, _set_foo.

The action-name element supports a wildcard mechanism, where the special
character, *, can be used to match any number of contiguous characters in
an action name. For example, the following action-name element matches
any action:

<action-name>*</action-name>

action-role
Groups together a particular action and all of the roles permitted to perform
that action.

action-role-mapping
Contains all of the permissions that apply to a particular server application.

allow-unlisted-interfaces
Specifies the default access permissions that apply to interfaces not explicitly
listed in the action-role mapping file. The element contents can have the
following values:

• true—for any interfaces not listed, access to all of the interfaces’ actions

is allowed for all roles. If the remote user is unauthenticated (in the sense
that no credentials are sent by the client), access is also allowed.

Note
However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s interface element are accessible. Unlisted
actions from the listed interface are not accessible.

• false—for any interfaces not listed, access to all of the interfaces’ actions

is denied for all roles. Unauthenticated users are also denied access.

Default is false.

interface
In the case of a Web service, the interface element contains all of the
access permissions for one particular WSDL port type.

407

In the case of a CORBA server, the interface element contains all of the
access permissions for one particular IDL interface.

name
Within the scope of an interface element, identifies the interface (WSDL
port type or IDL interface) with which permissions are being associated. The
format of the interface name depends on the type of application, as follows:

• Web service—the name element contains a WSDL port type name, specified

in the following format:

NamespaceURI:PortTypeName

The PortTypeName comes from a tag, <portType
name="PortTypeName">, defined in the NamespaceURI namespace. The
NamespaceURI is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL contract.

• CORBA server—the name element identifies the IDL interface using the

interface’s OMG repository ID. The repository ID normally consists of the
characters IDL: followed by the fully scoped name of the interface (using

/ instead of :: as the scoping character), followed by the characters :1.0.

Hence, the Simple::SimpleObject IDL interface is identified by the

IDL:Simple/SimpleObject:1.0 repository ID.

Note
The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.

For example, the CosNaming::NamingContext interface in the
naming service module, which uses the omg.org prefix, has the
following repository ID:
IDL:omg.org/CosNaming/NamingContext:1.0

The name element supports a wildcard mechanism, where the special
character, *, can be used to match any number of contiguous characters in
an interface name. For example, the following name element matches any
interface:

<interface>
<name>*</name>

408

...
</interface>

role-name
Specifies a role to which permission is granted. The role name can be any
role that belongs to the server’s Artix authorization realm (for CORBA bindings,
the realm name is specified by the plugins:gsp:authorization_realm
configuration variable; for SOAP bindings, the realm name is specified by the
authorizationRealm attribute in the authorization policy) or to the
IONAGlobalRealm realm. The roles themselves are defined in the security
server backend; for example, in a file adapter file or in an LDAP backend.

secure-system
The outermost scope of an action-role mapping file groups together a collection
of action-role-mapping elements.

server-name
The server-name element provides a way of matching specific action-role
mappings with a particular server. How you associate a server name with a
server depends on the type of binding, as follows:

• Web service binding—the server name is specified by the aclServerName

attribute in the server's authorization policy.

• CORBA binding—the server name is equal to the server's ORB name (which
is equivalent to the fully-qualified name of the configuration scope used by
the server).

The server-name element supports a wildcard mechanism, where the special
character, *, can be used to match any number of contiguous characters in
an aclServerName attribute or ORB name. For example, the following
server-name element matches any aclServerName setting or ORB name:

<server-name>*</server-name>

409

410

Appendix D. Configuring the Java
Runtime CORBA Binding
The Java runtime version of the CORBA binding can be configured to load an Orbix configuration file, enabling
you to set advanced configuration options. This appendix describes how to bootstrap the configuration mechanism,
in order to associate an Orbix configuration file with the CORBA binding.

Java Runtime CORBA Binding Architecture .. 412
Bootstrapping the Configuration ... 414

411

Java Runtime CORBA Binding Architecture
Overview

Figure D.1 on page 412 gives an overview of the Java runtime CORBA binding
architecture, showing the XML configuration file, cxf.xml and the Orbix
configuration file. This section describes how those configuration files fit into
the architecture of the CORBA binding.

Figure D.1. Java Runtime CORBA Binding Architecture

CORBA binding
The CORBA binding is responsible for converting Artix operation invocations
into the GIOP message format, enabling you to integrate your program with
CORBA applications. The Java runtime version of the CORBA binding is
designed with a pluggable ORB componenent.

ORB pluggability layer
In order to load an ORB implementation, the CORBA binding is equipped
with an ORB pluggability layer. Artix configures this layer to load the Orbix
ORB, which is the only option that is currently supported.

412

Note
In principle, the ORB pluggability layer could allow a different ORB
implementation to be integrated with the CORBA binding. In practice,
however, the ORB pluggability layer is intended for internal Artix use
only. Attempting to integrate another ORB with the CORBA binding
is not supported by Artix.

cxf.xml file
If you need to customize the ORB pluggability layer, you can add the
appropriate configurations settings to the XML configuration file, cxf.xml.
In some cases, it makes sense to customize the ORB pluggability layer,
because it allows you to pass initial arguments to the ORB instance that is
instantiated inside the CORBA binding.

For example, the most common reason for customizing the ORB pluggability
layer is to specify the location of a custom Orbix configuration file.

Orbix configuration file
You can optionally associate an Orbix configuration file with the CORBA
binding. This provides you with access to the full power of Orbix configuration,
which you can use to customize the Orbix runtime.

Default configuration of the
CORBA binding The CORBA binding is packaged with a default XML configuration file, which

loads the Orbix ORB, and a default Orbix configuration file, which loads a
minimal set of plug-ins. For simple applications, this is often sufficient.

For more advanced applications, however, you can customize the CORBA
binding configuration as described in Bootstrapping the
Configuration on page 414 .

413

Bootstrapping the Configuration
Overview

This section describes how to configure the ORB pluggability layer in the Java
runtime CORBA binding, in order to read an Orbix style configuration file.

Configuring the classpath
The configuration files for the Java runtime CORBA binding must be placed
in a directory that is on the Java CLASSPATH. For example, if the CORBA
binding’s configuration files are placed in the directory, ConfigDirectory,
you would need to configure the CLASSPATH as follows:

Windows set CLASSPATH=ConfigDirectory;%CLASSPATH%

UNIX export CLASSPATH=ConfigDirectory:$CLASSPATH

Contents of the configuration
directory The CORBA binding’s configuration directory typically contains the files shown

in Example D.1 on page 414 .

Example D.1. CORBA Binding Configuration Directory Structure

ConfigDirectory/
|
|----cxf.xml
|
‘----DomainName.cfg

By default, the Artix Java runtime searches for an XML configuration file
named cxf.xml on the current CLASSPATH. If you want to give the XML
configuration file a different name or if you want to locate it in a different
directory with respect to the CLASSPATH, specify the file location using the
cxf.config.file Java system property.

For example, you could specify the location of the XML configuration file as
a command-line option to the Java interpreter, as follows:
-Dcxf.config.file=XMLConfigFile.xml.

cxf.xml file
You can customize the ORB pluggability layer by adding appropriate bean
settings to the XML configuration file, cxf.xml. Example D.2 on page 415
shows you how to configure the ORB pluggability by adding beans with ID
equal to artixORBProperties, which references the
artixCorbaBindingFactory bean (a default instance of the
artixCorbaBindingFactory bean is provided by the Yoko Jar files).

414

Example D.2. XML Configuration for Custom CORBA Binding

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="..." >

...
<bean id="artixORBProperties"

class="com.iona.soa.bindings.corba.rt.ORBProperties">
<property name="orbArgs">

<list>
<value>-ORBdomain_name</value>
<value>hello_world</value>
<value>-ORBname</value>
<value>samples.HelloWorld</value>

</list>
</property>
<property name="factory" ref="artixCorbaBindingFactory"/>

</bean>
</beans>

Specifying ORB arguments
Normally, the only part of the XML configuration you need to edit is the
orbArgs property, which enables you to pass command-line arguments to
the underlying ORB runtime.

The following ORB arguments can be used to bootstrap the Orbix configuration
file:

• -ORBdomain_name DomainName—specifes the name of the Orbix

configuration file, without the .cfg suffix.

For example, the ORB domain name setting in Example D.2 on page 415
would direct the CORBA binding to search for the configuration file,
hello_world.cfg, in the configuration directory (where the configuration
directory is listed in the CLASSPATH). If necessary, Artix will search for
the configuration file by looking in each of the directories in the CLASSPATH.

• -ORBname ConfigScopeName—specifies the name of the ORB instance.

This name is also used to identify the configuration scope in the Orbix
configuration file, from which the ORB takes its configuration data. The
period character, ., is used as a separator to specify a nested configuration
scope name. See Example D.2 on page 415 .

415

• -ORBconfig_domains_dir ConfigFileDir—specifies the directory

containing the Orbix configuration file, relative to the configuration directory.

DomainName.cfg file
The Orbix configuration file, DomainName.cfg, has the same syntax as a
regular Orbix configuration file or Artix C++ runtime configuration file. In this
file, you can set any CORBA-related configuration variables—see the CORBA
chapter in the Artix Configuration Reference.

For example, given the bootstrap settings shown in Example D.2 on page 415
, you would store the CORBA configuration settings in a file called
hello_world.cfg. The settings relevant to your program would then be
taken from the samples.HelloWorld configuration scope, as follows:

Orbix Configuration File
...
samples {

HelloWorld {
... # Settings for ’samples.HelloWorld’ ORB name

};
};

416

Appendix E. OpenSSL Utilities
The openssl program consists of a large number of utilities that have been combined into one program. This
appendix describes how you use the openssl program with Artix ESB when managing X.509 certificates and
private keys.

Using OpenSSL Utilities ... 418
Utilities Overview ... 419
The x509 Utility .. 421
The req Utility ... 423
The rsa Utility ... 425
The ca Utility .. 427
The s_client Utility ... 429
The s_server Utility .. 432

The OpenSSL Configuration File ... 435
Configuration Overview .. 436
[req] Variables ... 437
[ca] Variables .. 438
[policy] Variables ... 439
Example openssl.cnf File .. 440

417

Using OpenSSL Utilities
Utilities Overview ... 419
The x509 Utility .. 421
The req Utility ... 423
The rsa Utility ... 425
The ca Utility .. 427
The s_client Utility ... 429
The s_server Utility .. 432

418

Utilities Overview
The OpenSSL package

This section describes a version of the openssl program that is available with
Eric Young’s OpenSSL package, which you can download from the OpenSSL
Web site, http://www.openssl.org. OpenSSL is a publicly available
implementation of the SSL protocol. Consult “License Issues” on page 783
for information about the copyright terms of OpenSSL.

Note
For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http://www.openssl.org/
docs.

Command syntax
An openssl command line takes the following form:

openssl utility arguments

For example:

openssl x509 -in OrbixCA -text

The openssl utilities
This appendix describes the following openssl utilities:

Manipulates X.509 certificates.x509

Creates and manipulates certificate signing requests, and self-signed
certificates.

req

Manipulates RSA private keys.rsa

Implements a Certification Authority (CA).ca

Implements a generic SSL/TLS client.s_client

Implements a generic SSL/TLS server.s_server

The -help option
To get a list of the arguments associated with a particular command, use the
-help option as follows:

openssl utility -help

For example:

419

http://www.openssl.org
http://www.openssl.org/docs
http://www.openssl.org/docs

openssl x509 -help

420

The x509 Utility
Purpose of the x509 utility

In Artix ESB the x509 utility is mainly used for:

• Printing text details of certificates you wish to examine.

• Converting certificates to different formats.

Options
The options supported by the openssl x509 utility are as follows:

- input format - default PEM (one of
DER, NET or PEM)

-inform arg

- output format - default PEM (one of
DER, NET or PEM

-outform arg

- private key format - default PEM-keyform arg

- CA format - default PEM-CAform arg

- CA key format - default PEM-CAkeyform arg

- input file - default stdin-in arg

- output file - default stdout-out arg

- print serial number value-serial

- print serial number value-hash

- print subject DN-subject

- print issuer DN-issuer

- notBefore field-startdate

- notAfter field-enddate

- both Before and After dates-dates

- print the RSA key modulus-modulus

- print the certificate fingerprint-fingerprint

- no certificate output-noout

- How long till expiry of a signed
certificate - def 30 days

-days arg

- self sign cert with arg-signkey arg

- output a certification request object-x509toreq

421

- input is a certificate request, sign
and output

-req

- set the CA certificate, must be PEM
format

-CA arg

- set the CA key, must be PEM format.
If missing it is assumed to be in the
CA file

-CAkey arg

- create serial number file if it does
not exist

-CAcreateserial

- serial file-CAserial

- print the certificate in text form-text

- print out C code forms-C

- digest to do an RSA sign with-md2/-md5/-sha1/

-mdc2

Using the x509 utility
To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out MyCert.der

422

The req Utility
Purpose of the req utility

The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the necessary
information from which a certificate request file and an encrypted private key
file are produced. The certificate request is then submitted to a CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted
for a pass phrase which will be used to protect the private key.

Note
It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

Options
The options supported by the openssl req utility are as follows:

input format - one of DER TXT PEM-inform arg

arg output format - one of DER TXT PEM-outform

inout file-in arg

output file-out arg

text form of request-text

do not output REQ-noout

verify signature on REQ-verify

RSA modulus-modulus

do not encrypt the output key-nodes

use the private key contained in file-key file

key file format-keyform arg

file to send the key to-keyout arg

generate a new RSA key of ‘bits’ in size-newkey rsa:bits

generate a new DSA key, parameters taken
from CA in ‘file’

-newkey dsa:file

Digest to sign with (md5, sha1, md2, mdc2)-[digest]

request template file-config file

423

new request-new

output an x509 structure instead of a
certificate req. (Used for creating self
signed certificates)

-x509

number of days an x509 generated by -x509
is valid for

-days

Output the ‘request’ in a format that is
wrong but some CA’s have been reported as

-asn1-kludge

requiring [It is now always turned on but
can be turned off with -no-asn1-kludge]

Using the req Utility
To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA_cert.pem and
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

424

The rsa Utility
Purpose of the rsa utility

The rsa command is a useful utility for examining and modifying RSA private
key files. Generally RSA keys are stored encrypted with a symmetric algorithm
using a user-supplied pass phrase. The OpenSSL req command prompts the
user for a pass phrase in order to encrypt the private key. By default, req uses
the triple DES algorithm. The rsa command can be used to change the
password that protects the private key and to convert the format of the private
key. Any rsa command that involves reading an encrypted rsa private key will
prompt for the PEM pass phrase used to encrypt it.

Options
The options supported by the openssl rsa utility are as follows:

input format - one of DER NET PEM-inform arg

output format - one of DER NET PEM-outform arg

inout file-in arg

output file-out arg

encrypt PEM output with cbc des-des

encrypt PEM output with ede cbc des using 168
bit key

-des3

print the key in text-text

do not print key out-noout

print the RSA key modulus-modulus

Using the rsa Utility
Converting a private key to PEM format from DER format involves using the
rsa utility as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out
MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey.pem -des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

425

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey2.pem

Note
Do not specify the same file for the -in and -out parameters,
because this can corrupt the file.

426

The ca Utility
Purpose of the ca utility

You can use the ca utility create X.509 certificates by signing existing signing
requests. It is imperative that you check the details of a certificate request
before signing. Your organization should have a policy with respect to the
issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid X.509
certificate which can be returned to the request submitter. It can also be used
to generate Certificate Revocation Lists (CRLS). For information on the ca
-policy and -name options, refer to The OpenSSL Configuration
File on page 435 .

Creating a new CA
To create a new CA using the openssl ca utility, two files (serial and
index.txt) need to be created in the location specified by the openssl
configuration file that you are using.

Options
The options supported by the openssl ca utility are as follows:

- Talk alot while doing things-verbose

- A config file-config file

- The particular CA definition to use-name arg

- Generate a new CRL-gencrl

- Days is when the next CRL is due-crldays days

- Hours is when the next CRL is due-crlhours hours

- number of days to certify the certificate
for

-days arg

- md to use, one of md2, md5, sha or sha1-md arg

- The CA ‘policy’ to support-policy arg

- PEM private key file-keyfile arg

- key to decode the private key if it is
encrypted

-key arg

- The CA certificate-cert

- The input PEM encoded certificate
request(s)

-in file

- Where to put the output file(s)-out file

- Where to put output certificates-outdir dir

427

- The last argument, requests to process-infiles....

- File contains DN and signed public key and
challenge

-spkac file

- Do not re-order the DN-preserveDN

- Do not ask questions-batch

- msie modifications to handle all thos
universal strings

-msie_hack

Most of the above parameters have default values as defined in openssl.cnf.

Using the ca Utility
Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
MyReq.pem to be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

428

The s_client Utility
Purpose of the s_client utility

You can use the s_client utility to debug an SSL/TLS server. Using the s_client
utility, you can negotiate an SSL/TLS handshake under controlled conditions,
accompanied by extensive logging and error reporting.

Options
The options supported by the openssl s_client utility are as follows:

- Specify the host and (optionally) port
to connect to. Default is local host and
port 4433.

-connect
host[:port]

- Specifies the certificate to use, if one
is requested by the server.

-cert certname

- The certificate format, which can be
either PEM or DER. Default is PEM.

-certform format

- File containing the client’s private
key. Default is to extract the key from
the client certificate.

-key keyfile

- The private key format, which can be
either PEM or DER. Default is PEM.

-keyform format

- The private key password.-pass arg

- Maximum server certificate chain length.-verify depth

- Directory to use for server certificate
verification.

-CApath directory

- File containing trusted CA certificates.-CAfile file

- Reconnects to the same server five times
using the same session ID.

-reconnect

- Pauses for one second between each read
and write call.

-pause

- Display the whole server certificate
chain.

-showcerts

- Print session information when the
program exits.

-prexit

- Prints out the SSL session states.-state

- Log debug data, including hex dump of
messages.

-debug

429

- Show all protocol messages with hex
dump.

-msg

- Tests non-blocking I/O.-nbio_test

- Turns on non-blocking I/O.-nbio

- Translates a line feed (LF) from the
terminal into CR+LF, as required by some
servers.

-crlf

- Inhibits shutting down the connection
when end of file is reached in the input.

-ign_eof

- Inhibits printing of session and
certificate information; implicitly turns
on -ign_eof as well.

-quiet

- These options enable/disable the use of
certain SSL or TLS protocols.

-ssl2, -ssl3, -tls1,
-no_ssl2, -no_ssl3,
-no_tls1

- Enables workarounds to several known
bugs in SSL and TLS implementations.

-bugs

- Specifies the cipher list sent by the
client. The server should use the first

-cipher
cipherlist

supported cipher from the list sent by the
client.

- Send the protocol-specific message(s)
to switch to TLS for communication, where
the protocol can be either smtp or pop3.

-starttls
protocol

- Specifies an engine, by it's unique id
string.

-engine id

- A file or files containing random data
used to seed the random number generator,

-rand file(s)

or an EGD socket. The file separator is ;
for MS-Windows, , for OpenVMS, and : for
all other platforms.

Using the s_client utility
Before running the s_client utility, there must be an active SSL/TLS server
for you to connect to. For example, you could have an s_server test server
running on the local host, listening on port 9000. To run the s_client test
client, open a command prompt and enter the following command:

openssl s_client -connect localhost:9000 -ssl3 -cert clientcert.pem

430

Where clientcert.pem is a file containing the client’s X.509 certificate in
PEM format. When you enter the command, you are prompted to enter the
pass phrase for the clientcert.pem file.

431

The s_server Utility
Purpose of the s_server utility

You can use the s_server utility to debug an SSL/TLS client. By entering
openssl s_server at the command line, you can run a simple SSL/TLS
server that listens for incoming SSL/TLS connections on a specified port. The
server can be configured to provide extensive logging and error reporting.

Options
The options supported by the openssl s_server utility are as follows:

- Specifies the IP port to listen for
incoming connections. Default is port
4433.

-accept port

- Sets the SSL context id (any string value).-context id

- Specifies the certificate to use for the
server.

-cert certname

- The certificate format, which can be
either PEM or DER. Default is PEM.

-certform format

- File containing the server’s private
key. Default is to extract the key from
the server certificate.

-key keyfile

- The private key format, which can be
either PEM or DER. Default is PEM.

-keyform format

- The private key password.-pass arg

- Specifies an additional certificate and
private key, enabling the server to have
multiple credentials.

-dcert filename,
-dkey keyname

- Specifies additional certificate format,
private key format, and passphrase
respectively.

-dcertform format,
-dkeyform format,
-dpass arg

- If this option is set, no certificate
is used.

-nocert

- The DH parameter file to use.-dhparam filename

- If this option is set, no DH parameters
will be loaded, effectively disabling the
ephemeral DH cipher suites.

-no_dhe

- Certain export cipher suites sometimes
use a temporary RSA key. This option
disables temporary RSA key generation.

-no_tmp_rsa

432

- Maximum client certificate chain length.
With the -Verify option, the client must
supply a certificate or an error occurs.

-verify depth,
-Verify depth

- Directory to use for client certificate
verification.

-CApath directory

- File containing trusted CA certificates.-CAfile file

- Prints out the SSL session states.-state

- Log debug data, including hex dump of
messages.

-debug

- Show all protocol messages with hex
dump.

-msg

- Tests non-blocking I/O.-nbio_test

- Turns on non-blocking I/O.-nbio

- Translates a line feed (LF) from the
terminal into CR+LF, as required by some
servers.

-crlf

- Inhibits printing of session and
certificate information; implicitly turns
on -ign_eof as well.

-quiet

- These options enable/disable the use of
certain SSL or TLS protocols.

-ssl2, -ssl3, -tls1,
-no_ssl2, -no_ssl3,
-no_tls1

- Enables workarounds to several known
bugs in SSL and TLS implementations.

-bugs

- Enables a further workaround for some
some early Netscape SSL code.

-hack

- Specifies the cipher list sent by the
client. The server should use the first

-cipher cipherlist

supported cipher from the list sent by the
client.

- Sends a status message back to the
client when it connects. The status
message is in HTML format.

-www

- Emulates a simple web server, where
pages are resolved relative to the current
directory.

-WWW

433

- Emulates a simple web server, where
pages are resolved relative to the current
directory.

-HTTP

- Specifies an engine, by it's unique id
string.

-engine id

- Generate SSL/TLS session IDs prefixed
by arg.

-id_prefix_arg

- A file or files containing random data
used to seed the random number generator,

-rand file(s)

or an EGD socket. The file separator is ;
for MS-Windows, , for OpenVMS, and : for
all other platforms.

Connected commands
When an SSL client is connected to the test server, you can enter any of the
following single letter commands at the server side:

End the current SSL connection but still accept new connections.q

End the current SSL connection and exit.Q

Renegotiate the SSL session.r

Renegotiate the SSL session and request a client certificate.R

Send some plain text down the underlying TCP connection. This should
cause the client to disconnect due to a protocol violation.

P

Print out some session cache status information.S

Using the s_server utility
To use the s_server utility to debug SSL clients, start the test server with
the following command:

openssl s_server -accept 9000 -cert servercert.pem

Where the test server listens on the IP port 9000 and servercert.pem is a
file containing the server’s X.509 certificate in PEM format.

The s_server utility also provides a convenient way to test a secure Web
browser. If you start the s_server utility with the -WWW switch, the test server
functions as a simple Web server, serving up pages from the current directory.
For example:

openssl s_server -accept 9000 -cert servercert.pem -WWW

434

The OpenSSL Configuration File
Configuration Overview .. 436
[req] Variables ... 437
[ca] Variables .. 438
[policy] Variables ... 439
Example openssl.cnf File .. 440

435

Configuration Overview
Overview

A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the openssl configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of the OpenSSL
configuration file The openssl.cnf configuration file consists of a number of sections that

specify a series of default values that are used by the openssl commands.

436

[req] Variables
Overview of the variables

The req section contains the following variables:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration variable
The default_bits variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

default_keyfile configuration
variable The default_keyfile variable is the default name for the private key file

created by req.

distinguished_name configuration
variable The distinguished_name variable specifies the section in the configuration

file that defines the default values for components of the distinguished name
field. The req_attributes variable specifies the section in the configuration
file that defines defaults for certificate request attributes.

437

[ca] Variables
Choosing the CA section

You can configure the file openssl.cnf to support a number of CAs that
have different policies for signing CSRs. The -name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to
the ca command, the CA section used is the one indicated by the default_ca
variable. In the Example openssl.cnf File on page 440 , this is set to
CA_default (which is the name of another section listing the defaults for a
number of settings associated with the ca command). Multiple different CAs
can be supported in the configuration file, but there can be only one default
CA.

Overview of the variables
Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the
following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates
are kept

438

[policy] Variables
Choosing the policy section

The policy variable specifies the default policy section to be used if the
-policy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a certificate
request which must be met before it is signed by the CA.

There are two policy sections defined in the Example openssl.cnf
File on page 440 : policy_match and policy_anything.

Example policy section
The policy_match section of the example openssl.cnf file specifies the
order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value
Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

The optional policy value
Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be present.

The supplied policy value
Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.

439

Example openssl.cnf File
Listing

The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]
dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should
conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’

440

types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name

441

442

Appendix F. Licenses
This appendix contains the text of licenses relevant to Artix ESB.

OpenSSL License ... 444

443

OpenSSL License
The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix ESB SSL/TLS is as follows:

LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

444

* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ===
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*

445

* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

446

Index
Symbols
[ca] Variables, 438
[policy] Variables, 439
[req] Variables, 437

A
Abstract Syntax Notation One (see ASN.1)
administration

OpenSSL command-line utilities, 100
ASN.1, 86, 365

attribute types, 368
AVA, 368
OID, 368

ASN.1:
RDN, 369

attribute value assertion, 368
authentication

own certificate, specifying, 131
SSL/TLS, 119

mutual, 122
trusted CA list, 126

AVA, 368

B
Basic Encoding Rules (see BER)
BER, 366

C
CA, 86

choosing a host, 91
commercial CAs, 90
index file, 102
list of trusted, 93
multiple CAs, 92
private CAs, 91
private key, creating, 103
security precautions, 91
self-signed, 103

serial file, 102
trusted list, 126

ca utility, 427
CA, setting up, 101
CAs, 101
certificate signing request, 106, 110

signing, 106, 111
certificates

chaining, 92
creating and signing, 108
importing and exporting, 95
length limit, 93
own, specifying, 131
peer, 92
PKCS#12 file, 94
public key, 86
security handshake, 119, 122
self-signed, 92, 103
signing, 86, 106, 111
signing request, 106, 110
trusted CA list, 126
X.509, 86

chaining of certificates, 92
configuration file, 435
CSR, 106, 110

D
DER, 366
Distinguished Encoding Rules (see DER)
distinguished names

definition, 367
DN

definition, 367
string representation, 367

I
index file, 102

M
multiple CAs, 92
mutual authentication, 122

447

O
OpenSSL, 91
openSSL

configuration file, 435
utilities, 418

OpenSSL command-line utilities, 100
openSSL.cnf example file, 440

P
peer certificate, 92
PKCS#12 files

creating, 95, 108
definition, 94
importing and exporting, 95
viewing, 95

private key, 103
public keys;, 86

R
RDN, 369
relative distinguished name, 369
req utility, 423
req Utility command, 423
root certificate directory, 93
rsa utility, 425
rsa Utility command, 425

S
security handshake

SSL/TLS, 119, 122
self-signed CA, 103
self-signed certificate, 92
serial file, 102
signing certificates, 86
SSL/TLS

security handshake, 119, 122
SSLeay, 91

T
target authentication, 119
target only, 119

trusted CA list policy, 126
trusted CAs, 93

X
X.500, 365
X.509 certificate

definition, 86
x509 utility, 421

448

	Security Guide
	Table of Contents
	Part I. Introduction to Security
	Getting Started with Artix Security
	Secure SOAP Demonstration
	Secure Hello World Example
	Client-to-Server Connection
	Server-to-Security Server Connection
	Security Layer

	Debugging with the openssl Utility

	Introduction to the Artix Security Framework
	Artix Security Architecture
	Types of Security Credential
	Protocol Layers
	Security Layer
	Using Multiple Bindings

	Security for HTTP-Compatible Bindings
	Overview of HTTP Security
	Securing HTTP Communications with TLS
	X.509 Certificate-Based Authentication

	Security for CORBA Bindings
	Overview of CORBA Security
	Securing IIOP Communications with SSL/TLS

	Part II. TLS Security Layer
	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Choice of CAs
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Special Requirements on HTTPS Certificates
	Creating Your Own Certificates
	Prerequisites
	Set Up Your Own CA
	Use the CA to Create Signed Certificates in a Java Keystore
	Use the CA to Create Signed PKCS#12 Certificates

	Generating a Certificate Revocation List

	Configuring HTTPS and IIOP/TLS
	Authentication Alternatives
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	When to Deploy Trusted CA Certificates
	Specifying Trusted CA Certificates for HTTPS
	Specifying Trusted CA Certificates for IIOP/TLS

	Specifying an Application’s Own Certificate
	Deploying Own Certificate for HTTPS
	Deploying Own Certificate for IIOP/TLS

	Specifying a Certificate Revocation List

	Configuring HTTPS Cipher Suites
	Supported Cipher Suites
	Cipher Suite Filters
	SSL/TLS Protocol Version

	Part III. The Artix Security Service
	Configuring Servers to Support Authentication
	Connecting to the Artix Security Service
	Configuring Authentication Using WS-Policy
	Introduction to WS-Policy
	Policy Expressions
	ISFAuthenticationPolicy Policy
	ACLAuthorizationPolicy Policy

	Configuring Authentication—Old Method

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	Artix Authentication Domains
	Artix Authorization Realms

	Managing a File Authentication Domain
	Managing an LDAP Authentication Domain

	Managing Access Control Lists
	Overview of Artix ACL Files
	ACL File Format
	Generating ACL Files
	Deploying ACL Files

	Configuring the Artix Security Service
	Configuring the Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the Kerberos Adapter
	Overview of Kerberos Configuration
	Configuring the Adapter Properties
	Configuring JAAS Login Properties

	Clustering and Federation
	Federating the Artix Security Service

	Part IV. Artix Security Features
	Single Sign-On
	SSO and the Login Service
	Username/Password-Based SSO for SOAP Bindings

	WS-Trust
	Introduction to WS-Trust
	WS-Trust Single Sign-On Demonstration
	WS-Trust Example with Signed SAML Tokens
	Security Token Service Configuration
	Client Configuration
	Server Configuration

	Java Router Security
	Credentials Propagation Architecture
	The Credentials Propagation Mapper
	Mapping from HTTP/BA to WS-Security Credentials
	HTTP/BA to WS-Security Router Example
	HTTP/BA to WS-Security Router Configuration

	Mapping from HTTP/BA to SSO Token
	HTTP/BA to SSO Token Router Example
	HTTP/BA to SSO Token Router Configuration

	Part V. Programming Security
	Programming Authentication
	The Security Credentials Model
	Creating and Sending Credentials
	Retrieving Received Credentials
	Password Digests in UsernameToken Credentials
	Endorsements

	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Appendix A. ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix B. iSF Configuration
	Properties File Syntax
	iSF Properties File
	Cluster Properties File
	log4j Properties File

	Appendix C. Action-Role Mapping XML Schema
	Appendix D. Configuring the Java Runtime CORBA Binding
	Java Runtime CORBA Binding Architecture
	Bootstrapping the Configuration

	Appendix E. OpenSSL Utilities
	Using OpenSSL Utilities
	Utilities Overview
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility
	The s_client Utility
	The s_server Utility

	The OpenSSL Configuration File
	Configuration Overview
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Appendix F. Licenses
	OpenSSL License

	Index

