PROGRESS

SOFTWARE

Artix ESB Java Runtime
Security Guide

Version 5.5
December 2008



Security Guide
Version 5.5

Publication date 10 Jul 2009
Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.



Table of Contents

L. Introduction t0 SECUNTY ...cconieieie e aas 15
Getting Started with Artix SECUNtY ....cceeiiii e 19
Secure SOAP DemonStration ..........i.eeieiii e 20
Secure Hello World EXampPle ... 21
Client-to-Server CONNECTION ... .t enas 24
Server-to-Security Server Connection ... 28

S CUITY LAY Y e e 33

Debugging with the openssl ULty ... 40
Introduction to the Artix Security Framework ..........ccooiiiiiiiccccrcrcre e ea e 47
Artix Security ArChiteCIUIE ..o 48
Types of Security Credential ...... ..o 49

PrOtOCOI LAYEIS ..ottt ey 51

S CUIEY LAY Y e e 53

Using Multiple Bindings .. ... 54

Security for HTTP-Compatible Bindings .........coieieieieiiiiii s e e 55
OVervieW Of HTTP SECUIMTY «.uinieii i e e e e e e 56
Securing HTTP Communications with TLS ... 59
X.509 Certificate-Based Authentication ............cooviiiiiiiii e 67
Security for CORBA BiNdiNgs .......ccieieiiiiiiiiiiiiiiiiiiiiere s s s s s s sasasasanassassnsssnsnssnsnsnrnss 73
Overview Of CORBA SBCUITY . vuiuitiitet it e e e e e e e e eneaes 74
Securing 11IOP Communications with SSL/TLS ... e 75

1. TLS SCUIIEY Layer ...ninieieiiiciiiiiiiiii it r s s s s s e e e s s s s s s s sasasasasasnsnsnsnsnnnnnnnnnns 81
Managing Certificates ........cociiiiiiiiiii i aaas 85
What are X.509 CertifiCates? .....vuieiiiiii e 86
Certification AULNOIITIES ... ..ceie e 88

0] T oI 07 89

Commercial Certification AUhOIITIES ... ..oeiieie e 90

Private Certification AUthOIItIES .......oeieii e 91

Certificate Chaining ..o.cvii i e 92

e O F I 94
Special Requirements on HTTPS Certificates ..o 96
Creating Your Own CertifiCates ........oviiiii e 99

PRI QUISIEES .. nieieiii e e 100

Set UpP YOUr OWN CA o e 101

Use the CA to Create Signed Certificates in a Java Keystore .............cooooiiiiini. 105

Use the CA to Create Signed PKCS#12 Certificates .........cooeieiiiiiiiiin, 108

Generating a Certificate Revocation List ..........ouviieiiiiii e 114
Configuring HTTPS and HOP/TLS ... s s s s s s s s s n s nrnrnannnnnns 117
Authentication AEINALIVES .......eie e 118
Target-Only Authentication ..o, 119

Mutual Authentication ...........oooiiii 122



Specifying Trusted CA CertifiCates .......iviriiii e 125

When to Deploy Trusted CA Certificates ......covviiiiiiiiiiiiii e 126

Specifying Trusted CA Certificates for HTTPS ... 127

Specifying Trusted CA Certificates for HOP/TLS .......oiiiiiiii e 129

Specifying an Application’s Own Certificate .........ccooviiiii 131
Deploying Own Certificate for HTTPS ... 132

Deploying Own Certificate for [IOP/TLS .......omieiii e 134

Specifying a Certificate Revocation List ..........oooiiiii e 136
Configuring HTTPS Cipher SUItes ......ccviiriiiii v r s s e s s s s s s s rararanans 139
SUPPOITEd CIPNEr SUITES «.uininitii i e e 140
CiPhEr SUITE FIlEerS oo e e 142
SSL/TLS ProtOCO! VBISION vttt e e e e et e e e e ane e 145

1. The ArtiX SECUNtY SEIVICE .....ciiiiiiiiiiiiieie et e s s s s s s s s s rasasnsns e nnnnnnrnnnenn 147
Configuring Servers to Support Authentication ..........ccceiiiiiiii i 151
Connecting to the Artix SECUNTY SErVICE ....iviri i 152
Configuring Authentication Using WS-POIICY .....oviviiiiii e 153
INtroduction t0 WS-POLICY ....ueeiii 154

POLICY EXPIESSIONS . .euenitititititet et et et e e ettt aaaaes 157
ISFAuthenticationPolicy POLICY .....cuivieii i 162
ACLAuthorizationPolicy POLICY ......viiiiii e 165

Configuring Authentication—OId Method .........coiiiiiiiii 167
Managing Users, Roles and DOMAINS ........cociiiiiiiiiiiiiiiierir v s s resnnes e s s s s s ssnsasasarass 175
Introduction to Domains and RealIMS ........c.iuiiiiii e 176

Artix Authentication DOMaINS ......o.ieiiinii 177

Artix Authorization RealMS .....uieii 180

Managing a File Authentication DoOmain .........cooiiii i 184
Managing an LDAP Authentication Domain .........ccoooiiiiii s 189
Managing Access Control LiStS .......cccoviririiiiiiirrrrrisrre s s s s s s s s s sarasarnsnrnrnnnnnnnns 191
OVerview Of ArtiX ACL FIlES .. .uieiit e 192

ACL File FOMMAT ..o 193
GENEIAtiNg ACL FIleS ..ur it 196
DEPIOYING ACL FilBS .ttt e e 199
Configuring the Artix Security SErviCe ......c.coiiiiiiiiiiii v eaeas 201
Configuring the SECUNITY SEIVICE . ..viii i e 202
Configuring the File Adapter .. ..vi e 209
Configuring the LDAP AdaPIer ..o.onieiii s 211
Configuring the Kerberos Adapler ........ouiuiiiiii e 215
Overview of Kerberos Configuration ..........coooiiiiiiiiiiiii e, 216

Configuring the Adapter Properties .......coovviiiiiiiiii e 218

Configuring JAAS LOZIiN Properties .........cuiririuiiii i 221

Clustering and FEAeration .......c.ouiiiiii i e 225
Federating the Artix Security Service ......ooviiiii 226

IV. Artix Security FEAtUres .......ccoeieie i ra 231
8] 0= L= = T S 235



SSO and the LOZIN SEIVICE ...viritititi i e e e 236

Username/Password-Based SSO for SOAP BinNdiNgS ......cuvvuieiiiiiiiiiiie e 238

WS -THUSE nieiiie i e st a s 251
INtrodUCtion 10 WS-TUST . oeeie i e 252

WS-Trust Single Sign-0On Demonstration ..o 256

WS-Trust Example with Signed SAML TOKENS ...c.vvininiiiiiiii e 257

Security Token Service Configuration ...........ccooiiiiiii s 262

Client ConfigUration ... ...ciuiei i e 273

Server Configuration ..o 278

Java RoUter SECUNILY ....ocieieiiiiiiiiiiii e v n s e e e e e e s r e rararararann 285
Credentials Propagation Architecture ........c.ooiii e 286

The Credentials Propagation Mapper . ...ceouiriei i 288

Mapping from HTTP/BA to WS-Security CredentialS ...........coouiiiiiiiiiiiiicee e 292

HTTP/BA to WS-Security Router EXample .......coouviiiiiiii e 293

HTTP/BA to WS-Security Router Configuration ...........coooviiiiiiiiiiieea 295

Mapping from HTTP/BA 10 SSO TOKEN ....vuiitiie e 300

HTTP/BA to SSO Token Router EXample .........ovuiiiiniiiiiiiee e 301

HTTP/BA to SSO Token Router Configuration ...........ccovviiiiiiiiiniiiiinc e 303

V. Programming SECUNTY ......ciiiiiiiiiii i r v s s e e e s s s s s s s s s s sasasasnsnsnannnnrnrnrnnnnnnns 309
Programming Authentication ............ccoinii i 313

The Security Credentials Model ........ouiuiiiiiii e 314

Creating and Sending Credentials ..........ouiuiiiii s 321

Retrieving Received Credentials ......cooveiiiii s 327

Password Digests in UsernameToken Credentials ...........coviiiiiiiiiiiiccce e 334
ENAOrSEMENTS ..ttt 340

Developing an iSF Adapter .......cocieiiiiiiiiiiiiiririri s s s s s s s s e s s e s s s s s s rararararnns 343

ISF SeCUNity ArChiTECIUIE .. o e 344

iSF Server Module Deployment Options .........cuiuiiiiii e 347

LIS e =T 0 (=T G 01V V1= 349
Implementing the IS2Adapter Interface .........coooiiiiii i 350

Deploying the Adapler ... 359

Configuring iSF to Load the Adapter ......coviiiii e 360

Setting the Adapter Properties ........oviririii s 361

Loading the Adapter Class and Associated Resource Files ..........cccocoiviiiiiiiiiinnnnn.. 362

A. ASN.1 and Distinguished Names ..........cccviiiiiiiiiiiiirre e r s s s s s s s e s s s s s s snrnsnss 365
AN . L et e 366
DiStiNGUISNEA NAMIES .. et e e e 367

B. iSF Configuration .........cccieiiiiiiiiii s nan 371
PrOPErtiES File Sy NtaX L vt e 372

ISF PrOPErtiES File o.vtse e e 374
ClUSTEr Properties File o.vrr i e 398

[084] Properties File ...ouiriei i e e 401

C. Action-Role Mapping XIML SChema .......cccuieiiiiiiiiiiiiiiiii s s s s s s s s s s s s es s s s s s s e e s s nnnanas 405
D. Configuring the Java Runtime CORBA Binding .........cccoeiiiiiiiiiiiiiiiii s rre s s rer e e e e e e 411



Java Runtime CORBA Binding ArchiteCtUre .......ccouininiiii e 412

Bootstrapping the Configuration .........c.oiiiiii 414

E. OPenSSL UHIlIIES ..ovuieuieiiiiiiiieeiiie i r st s s s s e s s e s e s e s sasasnsansnsansnnsansnnsnns 417
USING OPENSSL UTIIIES 1uvitinitit it e e e e e a s 418
UTITEIES OVEIVIEW ..eeei ettt ettt ettt e et ee e 419

The XBO UBITIEY +vvneene ittt e e e ene 421

ThE 18 Uiy e e e 423

The 1S Uiy v s 425

The Ca ULty ceorini i e e e 427

The S CHENt UTIITY «.oveniei e 429

The S SErVer UTIITY ..oueeiie e 432

The OpenSSL Configuration File ... e 435
CoNfIGUIAtiON OVEIVIEBW ...viei e e et e e e aaaas 436

[rQ] Vari@bles .o 437

022 ) T o =T 438

[PONCYT Vari@bles .. vuieiiitie it 439

Example 0penssl.Cnf File ..o 440

R 1o LT 443
OPENSSL LICBNSE . vtitititit ettt ettt e e e e e e e e e e 444
T = G PP 447



List of Figures

1. Overview of the Secure HelloWorld Example ..............coveviininnn.n. 21
2. A HTTPS Connection in the HelloWorld Example .................cceneee. 24
3. HTTPS Connection to the Artix Security Service ............cccovvinnnnen. 28
4. The Security Layer in the HelloWorld Example ...........ccoooviiieninnen. 33
5. Protocol Layers in a HTTP-Compatible Binding .............ccooeeinenii. 51
6. Protocol Layers in @ SOAP Binding .........cccooiiiiiiiiiiiiiiiiiiiiieeene 52
7. Protocol Layers in @ CORBA Binding .........ccoovviiiiiiiiiiiiiiiieenns 52
8. Example of an Application with Multiple Bindings ........................ 54
9. HTTP-Compatible Binding Security Layers .........cccocveviiiiiiiiininnnnn. 56
10. Overview of Certificate-Based Authentication with HTTPS—Java
RUNEIME e 68
11. A Certificate Chain of Depth 2 ... 92
12. A Certificate Chain of Depth 3 ... 93
13. Elements in @ PKCS#12 File ....oovieieiiiii e 94
14. Target Authentication Only .........coooiiiiiiii e 119
15. Mutual Authentication ..........coooiiiiiiii s 122
16. Overview of Connecting to the Security Service ...............ooenini. 152
17. Configuring Authentication and Authorization in an Artix

BT Y 167
18. Architecture of an Artix authentication domain ......................... 177
19. Server View of Artix authorization realms ............ccoceviiiiininee. 181
20. Role View of Artix authorization realms .............cooviiiiiiinnnns 182
21. Assignment of Realms and Roles to Users Janet and John .......... 183
22. Locally Deployed Action-Role Mapping ACL File ....................... 192
23. An iSF Federation SCeNario .........cooeuviiiiiiiiiii e 227
24. Client Requesting an SSO Token from the Login Service ............. 236
25. Overview of Username/Password Authentication without SSO ...... 238
26. Overview of Username/Password Authentication with SSO .......... 239
27. WS-Trust Architecture .........ooviiiii e 253
28. WS-Trust Single Sign-On Scenario ........cccoeveiviiiiiiiinineanes. 257
29. Java Router Credentials Propagation Architecture ..................... 286
30. HTTP/BA to WS-Security Router Example ..........cccovvviiiininn... 293
31. HTTP/BA to SSO Token Router Example ..........ccceviiiiiiiininnn... 301
32. Artix Credential APl ... 316
33. Multiple Credentials in an OutCredentialsMap .............cccceuenene. 319
34. Multiple Credentials in an InCredentialsMap ...........cc.ccevenennanne. 320
35. Overview of the Artix Security Service .........ccooveiiiiiiiiiniiinnnnn. 344
36. iSF Server Module Deployed as a CORBA Service ..................... 347
37. iSF Server Module Deployed as a Java Library .............c..ceeneeee. 348
D.1. Java Runtime CORBA Binding Architecture .............c.coooeennnn. 412






List of Tables

. Namespaces Used for Configuring Cipher Suite Filters ................. 142
. SSL/TLS Protocols Supported by SUN'’s JSSE Provider ................. 145
. Combinations of Security Protocol and Credential Type ................ 163
. Combinations of Security Protocol and Credential Type ................ 288
. Combinations of Security Protocol and Credential Type ................ 315
. Parameters for createOutCredential() ..........ccoceveiiiiiiiiniinininnes 321
.1. Commonly Used Attribute TYPeS ....cveviririiiiiiiieeeeeeeee, 368



10



List of Examples

1. Client HTTPS Configuration ..........ccoiiiiiiiee 25
2. Server HTTPS Configuration .........ccooiiiiiiiieeas 26
3. Server’s HTTPS Link to the Security Service ..........coooiiiiinin. 29
4. Artix Security Service HTTPS Configuration .............coooviiiininnne. 31
5. Security Service Configuration ..........ccooiiiiiiiiiiii 34
6. User Data from the userdb.xml File .........cooiiiiiiiiiiiins 36
7. Security Layer Settings from the server.xml File ..................oeeee. 37
8. Action-Role Mapping file for the HelloWorld Demonstration ............ 39
9. Sample HTTPS Client with No Certificate ..........c.cocoiiiiiin. 61
10. Sample HTTPS Client with Certificate ..............cooviiiiiiinnnne. 62
11. Sample HTTPS Server Configuration ..........cccooveiiiiiiininennnne. 64
12. Credential Authentication Element in a Server ...............cc.oeeneee. 70
13. Sample SSL/TLS Client Configuration .........ccccocvviiiiiiiininennnne. 75
14. Sample SSL/TLS Server Configuration ...........coooviiiiiiiiiinnnnnns 78
15. Configuration of @ CRL .....c.oviviiiiiiieee e 136
16. Structure of a sec:cipherSuitesFilter Element ........................o. 142
17. Sample Policy EXPression ..........cceviiuiiiiiiiiiiiiieniieeeeaenes 159
18. The Empty PoliCy ..o 160
19. The NUIL POLCY .ovveiii e 160
20. Normal Form Syntax ......cccoveiiiiiiiiiiiiee e 161
21. Sample ISFAuthenticationPolicy Policy ..........cccocviiiiiiinnnnnn.. 162
22. Authentication Policy with Specified Domain ...............ccceeeneee. 163
23. Sample ACLAuthorizationPolicy Policy .......cccocviiiiiiiiiiiiiiinn, 165
24. Sample ACL File .o 167
25. Credential Authentication Element in a Server ...............ccoeen.n. 168
26. TLSAuthServerConfig Element ........cocoiiiiiiiiiiiiiee, 171
27. HTTPBAServerConfig Element ........coovviiiiiiiiiiiieee 172
28. WSSUsernameTokenAuthServerConfig Element ......................t. 172
29. WSSBinarySecurityTokenAuthServerConfig Element .................. 173
30. WSSX509CertificateAuthServerConfig Element ........................ 173
31. Enabling WSS UsernameToken Authentication ......................... 174
32. Sample User Database File for an iSF File Domain .................... 184
33. File Adapter Entry for Certificate-Based Authentication .............. 186
34. Sample WSDL for the ACL Example ....ccovveiiviiiiiiiieiiieeeeen 193
35. Artix Action-Role Mapping Example ..........cccooviiiiiiiiiinenennn.. 193
36. Wildcard Mechanism in an Access Control List ........................ 195
37. ACL File Generated from HelloWorld WSDL Contract ................. 198
38. Sample Security Service Configuration ............c.cocoiiiiiiiiin.n. 202
39. Configuring Multiple iSF Adapters in the Security Service ........... 207
40. Sample File Adapter Configuration ...........cocoviiiiiiiiiniiinennnne. 209
41. A Sample LDAP Adapter Configuration ...........cocoeviiiiniiinnnss 211

11



12

. Sample Kerberos Configuration ............cccoiiiiiiiiiiiiiiin, 218
. Configuration to Enable Connection Validation ......................... 219
. Configuration to Enable Logging Support ........cccooviiiiiiiiiiniins 220
. JAAS Login Configuration File Format .............ccocoiiiiiiiiins 221
. Sample jaas.conf File for the Kerberos Login Module ................. 223
. Client Configuration for Username/Password-based SSO ............. 239
. Target Configuration for SSO Authentication ............................ 241
. Artix Login Service Configuration ...........cccoeiiiiiiiiiiiiiiians 244
. Issue Binding WSDL Contract ..........cocvviiiiiiiiiiiiiiieeeaeas 264
. StsServer Element .o 265
. SAMLTokenCreationParams Element ............ccooviiiiiiinninnanen. 266
. IssueBindingParams Element .............cocoiiiiiiii 266
. ValidateBindingParams Element .............cccooiiiiiiiiiiiiins 268
. Issue Binding JAX-WS Endpoint ........ccoviiiiiiiiiiiiieens 268
. iISF Adapter Configuration ............ocoiiiiiii 272
. Enabling STS LOZIN ..ouiniii e 273
. Connection to STS Issue Binding .........ccoevviiiiiiiiiiiiiiiieeans 275
. Sample SAML Assertion Validation Policy .............cccooviiiininn, 278
. Server Configuration for WS-Trust SSO ........ccooviiiiiiiiiiiiiiinn, 280
. Sample CredentialsPropagationMapper Configuration ................ 289
. HTTP/BA to WS-Security Router Configuration ....................c... 295
. HTTP/BA to SSO Token Router Configuration ...............cccovennnn. 303
. Login Service WSDL ..o, 308
. Credential Interface ........ooooiviiiiii 316
. OutCredential Interface .........ooeovuviiiiniii e 316
. InCredential Interface ...........coooiiiiiiiii e 317
. CredentialsManager Interface .........cccoooeiiiiiiiiiiiiiee, 317
. The createOutCredential() Method ..........coooviiiiiiiiiiin, 321
. Setting Global Default Credentials .............cooooviiiiiiinniene, 322
. Setting Thread Default Credentials ..........cccoevvviiiiiiiiiiiiiiinn, 323
. Setting Credentials on a Proxy Object ........cccoooviiiiiiiiiiiiiinini, 324
. Example of Sending Credentials from a JAX-WS Client ............... 325
. The CertificateCredential Interface .........ccooveviviiiiiiiiiiniinenns 327
. The TIsPeerCredential Interface ..........coovviiiiiiiiiiiiiinn, 328
. The UsernamePasswordCredential Interface ............cocoeveiinenns 328
. The lonaSSOTokenCredential Interface ...........cccoveviiiiiinennne. 329
. The GssKrb5ApReqTokenCredential Interface .............coveuenenen. 329
. The SAMLAssertionCredential Interface ..........cocoeoviiiiniinninnn, 329
. The DerivedCredential Interface ............ccocoiiiiiiiiiiiiiiiinnns 330
. Declaring WebServiceContext in a Service Implementation .......... 330
. Retrieving an InCredentialsMap Instance ................coooeiiiinns 331
. Creating UsernameToken with a Digest Password ..................... 336
. Accessing Digest Password in a UsernameToken ...................... 337
. Determining the Password Type in a UsernameToken ................ 339



86. The InCredentialEndorser Interface ........ccocvvviiiiiiiiiiiiiiiennns 341

87. Sample ISF Adapter Implementation ...........cocooviiiiiiiiiiiiiinnn, 350
C.1. Action-Role Mapping XML Schema ...........cccooeiiiiiiiiiniinnnnne. 405
D.1. CORBA Binding Configuration Directory Structure .................... 414
D.2. XML Configuration for Custom CORBA Binding .................cc..... 415

13



14



Part |. Introduction to Security

This part provides an overview of the security architecture in Artix and presents some examples that help you to
get started rapidly with Artix security.






Getting Started with Artix SECUNtY ....oeeeieiei e 19

Secure SOAP DeMONSIIALION ....uuiteiit ettt e 20
Secure Hello World EXamPle ... e e e 21
Client-t0-Server CONNECTION ........ie e e 24
Server-to-Security Server CONNECHION ... ..o 28
S U LY B .ttt ittt e e e e e 33

Debugging with the openssl ULty .....o.eeiniii e 40

Introduction to the Artix Security Framework ..........cccooiiiiiiiii s s s s s s s v s e e e 47

Artix SecUrity ArChITECIUIE ..o e 48
Types of Security Credential .......ouiiiiiii i 49
(0 (oo oI I Y b1
LT oT g VA I =Y PP b3
UsIing MUIEIPIE Bindings ...voviriiii e e e b4

Security for HTTP-Compatible Bindings .........ccveiieiiii s s s r s s s s e e e e e e e 55

OVEIVIEW OF HT TP SOCUITY ittt e e e e et anaaanas 56

Securing HTTP Communications With TLS ... e b9

X.509 Certificate-Based AUThentication ............coiuiiiiiii e 67

Security for CORBA BindiNgs .......ccvuveieieiiiiiiiiiiiiirisasasasasara s sararasasasasasasasasnsnsnssssssnssssrssssnsarssnrnss 73

Overview of CORBA SECUNTY ..viviii i e 74

Securing 1IOP Communications with SSL/TLS ... 75

17



18



Getting Started with Artix Security

This chapter introduces features of Artix security by explaining the architecture and configuration of the secure
HelloWorld demonstration in some detail.

Secure SOAP DemONSTIatioN ... ...t e et 20
Secure Hello World EXaMPIE ... ..o ettt e e e e 21
Client-t0-Server CONNECTION ... e aene e 24
Server-to-Security Server CONNECTION ... e 28
LT ot 3 Y =T Pt 33

Debugging with the openssl ULt ... e 40

19



20

Getting Started with Artix Security

Secure SOAP Demonstration

Secure Hello World Example

..................................................................................................... 21
Client-t0-Server COMNECTION .. ...ttt et ettt e et e e eenes 24
Server-10-Security Server COMNECTION ...ttt ettt eaeens 28
T o014 - T N 33



Secure Hello World Example

Secure Hello World Example

Overview

This section provides an overview of the secure HelloWorld demonstration
for the Java runtime, which introduces several features of the Artix Security
Framework. In particular, this demonstration shows you how to configure a
typical Artix client and server that communicate with each other using a SOAP
binding over a HTTPS transport. Figure 1 on page 21 shows all the parts of
the secure HelloWorld system, including the various configuration files.

Figure 1. Overview of the Secure HelloWorld Example

Artix Client Artix Server
. WSS UsernameToken Authentication .
Security layer » Security layer [Eommmmmmm
'
HTTPS i
HTTPS » HTTPS HTTPS !
AN T ™ i
1 R P S~o M 1
| Tl 7T S~ !
xml X.509 xml X.509 ACL

client.xml Client cert. WSDL Contract server.xml Server cert. acl.xml

N Artix Security

File Service

User Data Adapter
HTTPS
userdb.xml A
:
.cfg X.509
security service.cfg Security service cert. is2.properties

Location The secure HelloWorld demonstration for the Java runtime is located in the

following directory:

21



Getting Started with Artix Security

Main elements of the example

HelloWorld client

HelloWorld server

Artix security service

File adapter

22

ArtixInstallDir/java/samples/security/authorization

The main elements of the secure HelloWorld example shown in
Figure 1 on page 21 are, as follows:

HelloWorld client on page 22 .
* HelloWorld server on page 22 .
* Artix security service on page 22 .

* File adapter on page 22 .

The HelloWorld client communicates with the HelloWorld server using SOAP
over HTTPS, thus providing confidentiality for transmitted data. In addition,
the HelloWorld client is programmed to use WSS UsernameToken
authentication to transmit a username and a password to the server.

The HelloWorld server accepts a SOAP/HTTPS connection from the client
and, in order to perform security checks on the requests received from the
client, the server also opens a secure connection to the Artix security service.
The connection between the server and the Artix security service also employs
the SOAP/HTTPS protocol.

The Artix security service manages a central repository of security-related user
data. The Artix security service can be accessed remotely by Artix servers and
offers the service of authenticating users and retrieving authorization data.

The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter is
available). This example uses the iSF file adapter, which is a simple adapter
provided for demonstration purposes.



Security layers

HTTPS layer

Security layer

Secure Hello World Example

() Note

The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

e HTTPS layer on page 23 .

* Security layer on page 23 .

The HTTPS layer provides a secure transport layer for SOAP bindings. In the
Artix Java runtime, the HTTPS transport is configured by editing XML
configuration files (for example, client.xml and server.xml).

For more details, see Client-to-Server Connection on page 24 .

The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and support
for authorization. A security administrator can edit an action-role mapping
file to restrict user access to particular WSDL port types and operations.

For more details, see Security Layer on page 33 .

23



Getting Started with Artix Security

Client-to-Server Connection

Overview

Figure 2 on page 24 shows an overview of the HelloWorld example, focusing
on the elements relevant to the HTTPS connection between the Artix client
and the Artix server.

Figure 2. A HTTPS Connection in the HelloWorld Example

Artix Client Artix Server
Security layer f Security layer
HTTPS [
HTTPS » HTTPS HTTPS
) '{'\\ ’_-—7 A T
I T - 1
xml X.509 WSDL X.509 xml
client .xml Client cert. WSDL Contract Server cert. server.xml

Mutual authentication The HelloWorld example is configured to use mutual authentication on the

client-to-server HTTPS connection. That is, during the TLS handshake, the
server authenticates itself to the client (using an X.509 certificate) and the
client authenticates itself to the server. Hence, both the client and the server
require their own X.509 certificates.

(@ Note

You can also configure your application to use target-only
authentication, where the client does not require an own X.509
certificate. See “Authentication Alternatives” on page 200 for details.

Enabling HTTPS To enable HTTPS, you must ensure that the URL identifying the service

endpoint in the WSDL contract has the https: prefix. For example, the
HelloWorld service specifies a SOAP over HTTPS endpoint in the
hello world.wsdl file as follows:

24



Client HTTPS configuration

Client-to-Server Connection

<wsdl:definitions name="HelloWorld"
targetNamespace="http://soa.iona.com/demo/hello world"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl:service name="GreeterService">
<wsdl:port binding="tns:Greeter SOAPBinding"
name="WSSUsernameTokenAuthPort">
<soap:address location="https://local
host:9001/GreeterService/WSSUsernameTokenAuthPort" />
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

In addition, you must ensure that the JAX-WS endpoint is configured to publish
the nttps URL. For example, the server.xml file in the HelloWorld
demonstration configures the following JAX-WS endpoint:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws" ... >

<jaxws:endpoint
id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSUsernameTokenAuthPort"

address="https://localhost:9001/GreeterService/WSSUser
nameTokenAuthPort"

depends-on="tls-settings"

>

</jaé&é:endpoint>
</beé$é>
Alternatively, if the JAX-WS endpoint is activated by programming, you must
ensure that the endpoint is activated using a https URL.

Example 1 on page 25 shows how to configure the client side of an HTTPS
connection, in the case of target-only authentication.

Example 1. Client HTTPS Configuration

<?xml version="1.0" encoding="UTF-8"?>

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

25



Getting Started with Artix Security

Server HTTPS configuration

26

xmlns:http="http://cxf.apache.org/transports/http/config
uration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<http:conduit name="{ht
tp://soa.iona.com/demo/hello world}WSSUsernameTokenAuthPort.ht
tp-conduit"> @
<http:tlsClientParameters>
<csec:trustManagers> @
<csec:certStore resource="keys/trent-
cert.pem"/> ©
</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding configuration can be explained as follows:

@ The following configuration settings are applied to the WSDL port with
the QName,
{http://sca.iona.can/demo/hello world}WSSUsernameTokenAuthPort . http-conduit.
® The csec:trustManagers element is used to specify a list of trusted
CA certificates (the client uses this list to decide whether or not to trust

certificates received from the server side).
® The resource attribute of the csec:certstore element specifies file

containing a concatenated sequence of certificates in PEM or DER format.
In this example, the certificate store, keys/trent-cert.pen, isin PEM

format. This file should contain a list of trusted CA certificates.

Example 2 on page 26 shows how to configure the server side of an HTTPS
connection, in the case of target-only authentication.

Example 2. Server HTTPS Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
>



Client-to-Server Connection

<httpj:engine-factory id="tls-settings">
<httpj:engine port="9001"> @
<httpj:tlsServerParameters>
<csec:keyManagers keyPassword="password"> @
<csec:keyStore type="JKS" password="pass

word" file="keys/bob.jks"/> ©

</csec:keyManagers>
<csec:cipherSuitesFilter> @
<csec:include>.*</csec:include>
<csec:exclude>.* DH anon_.*</csec:exclude>

</csec:cipherSuitesFilter>
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding configuration can be explained as follows:

o

The httpj:engine-factory element configures all of the WSDL ports
that share the IP port, 9001, to have the same TLS security settings (it

is inherently impossible for different WSDL ports to have different TLS
settings, if they share the same IP port).
The sec:keyManagers element is used to attach an X.509 certificate

and private key to the server. The password specified by the keyPasswod

attribute is used to decrypt the certificate’s private key.
The sec:keystore element is used to specify an X.509 certificate and

private key that are stored in Java keystore format. It is expected that
the keystore file contains just one key entry, so there is no need to specify
a key alias.

The sec:ciphersuitesFilter element can be used to narrow the

choice of cipher suites that the server is willing to use for a TLS
connection. See on page 139 for details.

27



Getting Started with Artix Security

Server-to-Security Server Connection

Overview

Figure 3 on page 28 shows an overview of the HelloWorld example, focusing
on the elements relevant to the HTTPS connection between the Artix server
and the Artix security service. In general, the Artix security service is accessible
either through the HTTPS or through the 1IOP/TLS transport.

Figure 3. HTTPS Connection to the Artix Security Service

Artix server HTTPS configuration

28

HTTPS HTTPS

-

x
o |- --
o
©

w
o]
@
<
5 ‘H
)
<
@
@
fad

Artix Security
Service

REEEEREEE E HTTPS <

c
@
@
]
Q.
o
>
3
>

=
Ol ===
[+
©

.cfg

security service.cfg  Security service cert.

The Artix server’s HTTPS transport is configured by the settings in the

ArtixInstallDir/java/samples/security/authorization/etc/server.xml



Server-to-Security Server Connection

file. You need to configure the Artix server so that it acts as a HTTPS client
of the Artix security service. Example 3 on page 29 shows an extract from
the server.xml file, showing the settings required to configure the client
side of the server-to-security service link.

Example 3. Server’s HTTPS Link to the Security Service

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:csec="http://cxf.apache.org/configuration/security"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

>
(1) <itsec:IsfClientConfig
(2 id="it.soa.security"
(3] IsfServiceWsdlLoc="http://localhost:27222/services/se
curity/ServiceManager?wsdl"
/>

(4] <http:conduit name="{http://schemas.iona.com/idl/isf ser
vice.idl}IT ISF.ServiceManagerSOAPPort.http-conduit">
<http:tlsClientParameters>
(5} <csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>
(6} <csec:trustManagers>
<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>
o <http:conduit name="{http://schemas.iona.com/idl/isfx au
thn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.http-
conduit">
<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>
<csec:trustManagers>
<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>

</http:tlsClientParameters>
</http:conduit>

29



Getting Started with Artix Security

30

</beans>

The preceding XML configuration can be explained as follows:

o

2]

The itsec:IsfClientConfig elementis used to configure the handler

that opens a connection to the Artix security service.
This id attribute must be set as shown. This is a technical requirement

in order to identify the element internally.
The IsfserviceWsdlLoc attribute specifies the location of the WSDL

contract for the Artix security service. The WSDL contract provides the
address URL for contacting the Artix security service. The current example
obtains the WSDL contract by downloading it from the security service's
WSDL publishing port. See Artix security service HTTPS

configuration on page 31 for details of how to set the value of the WSDL
publishing port.

@ Note

Although the security service's WSDL contract is published
through an insecure HTTP port, this does not pose a significant
security risk to an Artix server. While it is possible, in principle,
for a rogue security service to intercept the insecure publishing
port and return a fake WSDL contract, this attack cannot
ultimately succeed. The reason for this is that the Artix server
is configured to perform a TLS handshake when it connects to
the security service proper (for example, when connecting to
the serviceManager service). The handshake will fail, if the
peer is a rogue security service, because the intruder does not
know the private key of the security service's X.509 certificate.

The following client configuration settings are applied to the service
manager port on the Artix security service, which has the QName,
{http://schemas.iona.can/idl/isf service.idl}IT ISF.ServiceManagerSOAPPOrt.

The service manager service is responsible for bootstrapping connections
to the other WSDL services hosted by the Artix security service. In
particular, the service manager is used here to bootstrap a connection
to the authentication service.

The csec:keyManagers element is used to attach an X.509 certificate

and private key to the service manager conduit.



Artix security service HTTPS
configuration

Server-to-Security Server Connection

() Note

The isf-client.jks keystore contains a single key entry
(accessed by the keyManagers element) and a single truststore
entry (accessed by the trustManagers element).

® The csec:trustManagers element is used to specify a list of trusted

CA certificates (the security handler uses this list to decide whether or
not to trust certificates received from the Artix security service during
the SSL/TLS handshake).

© The client configuration settings contained in this http: conduit element

are applied to the authentication service port on the Artix security
service, which has the QName,

{http: //schenes. iaa.caw/idl/isfx atin service. id1}IT ISEX.AuthenticationServiceSORPROrt.
The authentication service provides the service of authenticating
credentials on behalf of the Artix server.

Example 4 on page 31 shows an extract from the security-service.xml
file, highlighting the HTTPS settings that are important for the Artix security
service.

Example 4. Artix Security Service HTTPS Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con
fig"

xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>

(1) <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">

</secsvr:IsfServer>
<httpj:engine-factory bus="cxf">
(2} <httpj:engine port="59075">

<httpj:tlsServerParameters>
<csec:keyManagers keyPassword="password">

31



Getting Started with Artix Security

32

<csec:keyStore type="pkcsl2" password="pass

word" resource="keys/isf-server.pl2"/>

</csec:keyManagers>

<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-

cert.pem"/>

</csec:trustManagers>

<csec:clientAuthentication want="true" re
quired="true" />

</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding configuration file can be explained as follows:

©® The wsdlPublishPort attribute of the secsvr:Isfserver element

sets the IP port of the WSDL publish service, which can be queried to
obtain the security service's WSDL contract. The published WSDL
contract is used to bootstrap connections to the security service. See
Artix server HTTPS configuration on page 28 for details.

® The following lines configure the IP port, 59075, to be a secure TLS port.

All of the services in the security service are accessible throuth this port.
See Example 5 on page 34 for details of how to specify the port (or
ports) used by the security service.



Security Layer

Overview

Security Layer

Figure 4 on page 33 shows an overview of the HelloWorld example, focusing
on the elements relevant to the security layer. The security layer, in general,
takes care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4. The Security Layer in the HelloWorld Example

Artix Client

Artix Server

Security layer

Client copy

Security layer

Server copy

N Artix Security |
File Service
User Data Adapter

userdb.xml

T
5
=
T
&
by

Props

is2.properties

The security layer normally uses a simple username/password combination
for authentication. The username and password are sent along with every

33



Getting Started with Artix Security

WSS UsernameToken
authentication

Authentication through the iSF
file adapter

34

operation, enabling the Artix server to check every invocation and make
fine-grained access decisions.

The mechanism that the Artix client uses to transmit a username and password
over a SOAP binding is WSS UsernameToken authentication. This is a
standard SOAP login mechanism that functions by sending a username and
password combination inside a SOAP header. On its own, WSS
UsernameToken login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

You can specify the WSS username and password by programming the client
through the Java runtime credential API. For details of the required coding
steps, see Creating and Sending Credentials on page 321.

On the server side, the Artix server delegates authentication to the Artix security
service, which acts as a central repository for user data. The Artix security
service is configured by the security-service.xml file.

Example 5. Security Service Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration”
xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>
(1) <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">
(2} <secsvr:Adapters>
<secsvr:Adapter>
(3} <secsvr:FileAdapter userDatabase="etc/user
db.xml"/>

</secsvr:Adapter>
</secsvr:Adapters>
(4] <secsvr:Services>
<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>
</secsvr:Services>
(5} <secsvr:SSOConfig
sessionTimeout="600"
idleTimeout="60"



(6]

Security Layer

cacheSize="200"
/>

</secsvr:IsfServer>

<httpj:engine-factory bus="cxf">
<httpj:engine port="59075">

</httpj:engine>
</httpj:engine-factory>

</beans>

o

The secsvr:IsfServer element configures the Artix security service.
In this example, the following attributes are set:

* id—must be set to the value shown. This is a technical requirement
in order to identify the element internally.

* wsdlPublishPort—sets the IP port of the WSDL publish service,

which enables clients to obtain a copy of the security service's WSDL
contract.

The secsvr:Adapters element specifies the list of iSF adapters that

plug into the security service. An iSF adapter provides a repository of
security data for the security service (for example, LDAP or Kerberos).
In the current example, the simple file adapter is used.

Use the secsvr:FileAdapter element to configure the file adapter.

The file adapter has one required attribute, userbatabase, which

specifies the location of a file containing security data.
The secsvr:services element configures the individual WSDL services

provided by the security service. You can specify the IP port numbers
of the WSDL services here.
The secsvr:Ssoconfig element configures the single sign-on feature

of the Artix security service. This feature is not used in the HelloWorld
demonstration, however.
The httpj:engine-factory settings specify the SSL/TLS configuration

for the WSDL services provided by the security service. See Artix security
service HTTPS configuration on page 31 for a detailed discussion of
these settings.

The secsvr:FileAdapter element is used to specify the location of a file,
userdb.xml, which contains the user data for the iSF file adapter.

35



Getting Started with Artix Security

Example 6 on page 36 shows the contents of the user data file for the secure
HelloWorld demonstration.

Example 6. User Data from the userdb.xml File

<securityInfo
xmlns="http://schemas.iona.com/security/fileadapter"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>
<users>
<user name="alice" password="passwOrd">
<realm name="IONAGlobalRealm">
<role name="guest"/>
</realm>
<realm name="corporate">
<role name="president"/>
</realm>
</user>
<user name="bob" password="passwOrd">
<realm name="IONAGlobalRealm">
<role name="guest"/>
</realm>
<realm name="corporate">
<role name="peon"/>
</realm>
</user>
</users>
</securityInfo>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see Configuring the File
Adapter on page 209.

@ Note

The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Server domain configuration and

access control On the server side, authentication and authorization must be enabled by the

appropriate settings in the server’s configuration file, server.xml.
Example 7 on page 37 explains the security layer settings that appear in the
server.xml file.

36



Security Layer

Example 7. Security Layer Settings from the server.xml File

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:hw="http://soa.iona.com/demo/hello world"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

(1) <jaxws:endpoint
id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSUsernameTokenAuthPort"

address="https://localhost:9001/GreeterService/WSSUser
nameTokenAuthPort"
depends-on="tls-settings"
>
(2} <jaxws:features>
<itsec:WSSUsernameTokenAuthServerConfig
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</jaxws:features>
</jaxws:endpoint>

</beans>
The preceding server configuration settings can be explained as follows:

® The jaxws:endpoint element in this example demonstrates how to

instantiate and activate a JAX-WS endpoint purely through configuration.
The following attributes are specified:

* id—an arbitrary unique identifier that identifies this instance in the
Spring registry.

* implementor—the name of the Java class that implements the WSDL
interface for this endpoint.

* serviceName—the QName of the WSDL service provided by this
endpoint. You need to define a suitable namespace prefix for the

37



Getting Started with Artix Security

38

QName. In this example, the namespace prefix is hw, which is defined
inside the bean tag.

* endpointName—the QName of the endpoint (also known as the port
name).

* address—the HTTP address on which this endpoint is activated. In
particular, the address determines the IP port (for example, 9001)

and whether or not the endpoint is secured by TLS (by choosing either
http: Or https: as the URL prefix).

* depends-on—this attribute is a generic Spring configuration feature

that enables you to influence the order in which objects are created.
In the case of a JAX-WS endpoint, it is important that a Jetty port is
activated before the corresponding JAX-WS endpoint is activated. For
details of the Jetty port configuration, see Server HTTPS
configuration on page 26.

The itsec:WSSUsernameTokenAuthServerConfig element is used

to enable authentication and authorization on the endpoint. The following

attributes are specified:

* The ac1URL attribute specifies the location of an access control list
file, ac1.xml. The access control list determines which operations
the incoming request is allowed to invoke (see ?777).

* The aclserverName attribute specifies which of the
action-role-mapping elements in the action role mapping file

should apply to the incoming requests. The value of the
aclServerName attribute must match the contents of the

server-name element in one of the action-role-mapping elements
(see 7777).

* The Artix authorization realm determines which of the user’s roles will
be considered during an access control decision. Artix authorization



Security Layer

realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

Access control list/action-role

mapping file Example 8 on page 39 shows the contents of the action-role mapping file,

acl.xml, for the HelloWorld demonstration.

Example 8. Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="utf-8"?>
<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.iona.com/security/acl
acl.xsd" >
<action-role-mapping>
<server-name>demo.hw.server</server-name>
<interface>
<name>{ht
tp://soa.iona.com/demo/hello world}Greeter</name>
<action-role>
<action-name>sayHi</action-name>
<role-name>guest</role-name>
</action-role>
<action-role>
<action-name>greetMe</action-name>
<role-name>president</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

For a detailed discussion of how to define access control using action-role
mapping files, see on page 175.

39



Getting Started with Artix Security

Debugging with the openssl Utility

Overview

OpenSSL command-line utility

References

Debugging example

Debugging steps

40

The OpenSSL toolkit is an open source implementation of SSL and TLS.
OpenSSL provides a utility, openss1, which includes two powerful tools for
debugging SSL/TLS client and server applications, as follows:

* openssl s_client—an SSL/TLS test client, which can be used to test

secure Artix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

* openssl s_server—an SSL/TLS test server, which can be used to test

secure Artix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -www switch, the

test server can also simulate a simple secure Web server.

Artix versions 4.1 and later include the openss1 command-line utility, which
is a general-purpose SSL/TLS utility. See Appendix E on page 417 for more
details.

For complete details of the openssl s client andthe openssl s server
commands, see the following OpenSSL documentation pages:

* http://www.openssl.org/docs/apps/s_client.html

* http://www.openssl.org/docs/apps/s_server.html

Consider the HelloWorld demonstration discussed in the previous section,
Secure Hello World Example on page 21 . This demonstration consists of a
client and a target server.

To demonstrate SSL debugging, you can use the openss1 test client to connect
directly to the target server.

The following are the steps required to debug a secure server by connecting
to that server using the openss1 test client:

1. Convert certificates to PEM format on page 41.

2. Run the target server on page 43.


http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

Convert certificates to PEM
format

Debugging with the openssl Utility

3. Obtain the target server’s IP port on page 43.

4. Run the test client on page 44.

Skip this step, if your sample uses target-only authentication.

If you want to test mutual authentication over an SSL connection, you will
need to provide a certificate to the openss1 test client. The openss1 test
client requires the certificate to be in PEM format (a format that is proprietary
to OpenSSL). It might, therefore, be necessary to convert the client certificate
from an existing format to the PEM format.

For example, given a certificate in PKCS#12 format, testaspen.pl2, you
could convert the certificate to PEM format as follows.

1. Run the openssl pkcs12 command, as follows:

openssl pkcsl2 -in testaspen.pl2 -out testaspen.pem

When you run this command you are prompted to enter, first of all, the
pass phrase for the testaspen.p12 file and then to enter a pass phrase
for the newly created testaspen. pem file.

2. The testaspen.pen file generated in the previous step contains a CA

certificate, an application certificate, and the application certificate’s private
key. Before you can use the testaspen.pem file with the openss1 test

client, however, you must remove the CA certificate from the file. That is,
the file should contain only the application certificate and its private key.

For example, after deleting the CA certificate from the testaspen.pem
file, the contents of the file should look something like the following:

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C
91 Cl1 E1 FF 4A
friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty --
demo purposes/OU=Administration/CN=Administrator/emailAd
dress=administrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/0O=ABigBank -- no war
ranty —-- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate Authority/emailAddress=infolabig
bank.com

MIIEiTCCA/KgAwIBAgIBATANBgkghkiGI9wOBAQQFADCBS5jELMAKGALIUEBhM

41



Getting Started with Artix Security

42

CVVMx

FJAUBgNVBAGTDUlhc3NhY2h1lc2VOdHMxDzANBgNVBACTBkJvc3Rvb
JExMC8GAL1UE
ChMoQUJIpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3N1lczEw
MC4G
A1lUECxXMnRGVtb25zdHIhdG1lvbiBTZWNOaW9uICOtIG5vIHdhecnIhbnR5ICOtM
Scw

JQYDVQOQODEx5BOmM1InQmFuayBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIDAe
BgkghkiG

9wOBCQEWEW1uZm9AYWJIpZ2JThbm

suY29tMB4XDTAOMTExXODEWNTE 1INVOoXDTEOMDgw
NzEwWNTE1NVowgbQxCzAJBgNVBAYTALVTMRYWFAYDVQQIEWINYXNzZYWNodXN
1dHRz
MTEwLwYDVQQKEyhBOmlnQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHBlcn
Bv

c2VzMRcwFQYDVQQLEWS5BZGlpbmlzdHJhdGlvbjEWMBQGALIUEAXM
NQWRtaW5pc3Ry
YXRvcjEpMCcGCSgGSIb3DQEJARYaYWRtaWSpc3RyYXRvckBhYmlnYm
Fuay5jb20w

gZ8wDQYJKoZIhvcNAQEBBQADgYOAMIGJIAOGBANK7503YB
kkjCvgyOpOPxAU+M6Rt
00zaQ8/Y1ciWlQ/oCT/17+3P/ZhHAJaT+QxmahQHdY5ePixGyaE7raut2Md
jHOUO

wCKtZgl
huNa8judSvsN5iTUupzp/mRQ/j4rOxr8gWIS5dh5d/kF4+H5s8yrxNjrDg
tY7fdxP9Kt0x9sYPAGMBAAG) ggF1MI IBcTAJBgNVHRMEA § AAMCWGCWCG
SAGG+EIB
DOQfFh1PcGVUUINMIEdlbmVyYXR1ZCBDZXJ0aWZpY2F0ZTAdABgNVHQ4EFgQUJIB
dK

9LPZPsaE9+a/FWbCz2LOxWkwggEVBgNVHSMEggEMMIIBCI
AUhJz90Nb6Yg8dlnbH
BPjtS7ulOWyhgeykgekwgeYxCzAJBgNVBAYTALIVIMRYWFAYDVQQIEWINYXN
zYWNo

dXN1dHRzMQ8wDQYDVQQHEWZCb3N0b24xMTAVBgNVBAOTKEFCaWd
CYW5rICOtIGS5v

IHdhcnJIhbnR5ICOtIGR1bW8gcHVyYycG9zZXMxMDAUBGN
VBASTJOR1bWOuUC3RyYXRp
b24gU2V3idGlvbiAtLSBubyB3YXJyYW50eSAtLTENM
CUGA1UEAxMeQUJpZ0Jhbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXR5MSAWHgYJK0Z IhveNAQKkBFhFpbmZvQGFE 1
awdi

YW5rLmNvbYIBADANBgkghkiGOwOBAQQFAAOBGQC7S5RiDsK3ZChIVpH
PQrpQj5BA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2 £vQJI8M7t 8EMkHK
PgeguArnY+x

3VNGwWv1kr5jQTDeOd7d9I102fknQA1475 /wPFED
Uwdz4n9TThjE71pj62zG27EivFE

cm/h2L/DpWgZK0TQ9Q==



Run the target server

Obtain the target server’s IP port

Debugging with the openssl| Utility

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C
91 C1 E1 FF 4A
friendlyName: Administrator
Key Attributes: <No Attributes>

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0E97FB4E

e3cexhY+kAujb6cOs9skerbP2gZsauc33yyp4cdZiAkAil
cmfA/mLv2pfgao8gfu9d
yroNvYyDADEZzagEyzF/4FGUlnScZjAiy9Imi9mA/1SHD5glHH/wl2bgXcl
BqtC3

GrfiHzGMbWyz

DUJj0PHjw/EkbyxQBJsCe4 fPuCGVH7frgCPeE1q2EQRKBHCa3vkHr
6hrwuWS18TXn8DtcCFFtugouHXwKeGjIxES5PYfKakl8BOWK
giZgtj1DHY6G20ER]
ZgNtAB+XFOvrASXZHNSU6RBeXMVSrUl0GzdVrCnojded8Be7Q7KBSHDVIXzZ1P
Kp
7DYVn5DYyFSEQ7kYs9dsaz5Id5iNkMJIiscPp7AL2SJAWPY1ULENSGFnIYi
wXP1lckF
STTig+BG8UPPmM6G3KGgRZMZOIh7DySZufbE24NIrN74kXVOVE/RpxzN
iMz/PbLdG

6wiyp47We/40gxLv8YIjGGEdAYyaB/Y7XEyE9ZL74Dc3Ccus
vtA2£C8hU3cXjKBu7
YsVz/Dg8G0w2230owpZ0Q0z2KU19CLg/hmYLOJt1lyLVoaGZuJ1lCWXdgX0dCom
DOR8K
alalUagy/Gz2zys20NS5WRK+s+HzqoBO0vneOy4Z1Ss71HfGAUemiRTAI8DX1zgy
HYK

5m61SSB961x0OM7YI58JYOGNLMXz1LmCUAYyCQhkl
WGJFEN4cZBrkh506r+U4FcwhF
dvDoBu39Xie5gHFrJu86ghzxi202h0s02vexvujSGyNy009PJIGKEAhIG
fO0G+a2Qqgq
VBwuUZqo0zIJ6gUrMVILOAWWL7zFxyKaF51ijF1C9KxtEKm0393zag==

Run the target server, as described in the README. txt file in the
java/samples/security/authorization directory.

In this demonstration, the server’s IP port is specified in the jaxws:endpoint
element of the server configuration file, etc/server.xml. For example, the
JAX-WS endpoint is configured as follows:

<jaxws:endpoint
id="WSSUsernameTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"

43



Getting Started with Artix Security

Run the test client

44

endpointName="hw:WSSUsernameTokenAuthPort"
address="https://localhost:9001/GreeterService/WSSUser
nameTokenAuthPort"
depends-on="tls-settings"
>

In this example, the target server’s IP port is 9001.

To run the openss1 test client in the target-only authentication case, open
a command prompt and enter the following command:

openssl s client -connect localhost:9001 -ssl13

To run the openss1 test client in the mutual authentication case, open a
command prompt, change directory to the directory containing the
testaspen.pen file, and enter the following command:

openssl s client -connect localhost:9001 -ssl3 -cert test
aspen.pem

When you enter the command, you are prompted to enter the pass phrase
for the testaspen.pen file.

The openssl s_client command switches can be explained as follows:

-connect host:port
Open a secure connection to the specified host and port.

-ssl3
This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the target
server is configured to use, check the value of the
policies:mechanism_policy:protocol_versionVaﬂameinthe

Artix configuration file. Artix servers can also be configured to use TLS
v1, for which the corresponding openss1 command switch is -t1s1.

-cert testaspen.pem
Specifies testaspen.pem as the test client's own certificate. The PEM

file should contain only the application certificate and the application
certificate’s private key. The PEM file should not contain a complete
certificate chain.

If your server is not configured to require a client certificate, you can omit
the -cert switch.



Debugging with the openssl Utility

Other command switches
The openssl s_client command supports numerous other command

switches, details of which can be found on the OpenSSL document pages.
Two of the more interesting switches are -state and -debug, which

log extra details to the command console during the handshake.

45



46



Introduction to the Artix Security
Framework

This chapter describes the overall architecture of the Artix Security Framework.

ArtiX SECUNTY ArCNITECIUIE L. vt et aes 48
Types of Security Credential .......ouieiei e 49
Protocol Layers .................. ... bl
Security Layer .........cooeenine. ... 53
USING MUIPIE BINAINGS .onininiiii e e e e e e e e e anaaas b4

47



Introduction to the Artix Security Framework

Artix Security Architecture

Types Of SECUTitY Credential . ... .e e e 49
0] (01T I Y=Y PPt 51
T o0 - T N 53

Using Multiple Bindings

48



Types of Security Credential

Types of Security Credential

Overview

WSS username token

WSS Kerberos token

CORBA Principal

The following types of security credentials are supported by the Artix security
framework:

* WSS username token on page 49 .

* WSS Kerberos token on page 49 .

* CORBA Principal on page 49 .

e HTTP Basic Authentication on page 50 .

* X.509 certificate on page 50 .

* CSl authorization over transport on page 50 .

* CSl identity assertion on page 50 .

SSO token on page 50 .

The Web service security (WSS) UsernameToken is a username/password
combination that can be sent in a SOAP header. The specification of WSS
UsernameToken is contained in the WSS UsernameToken Profile 1.0°
document from OASIS?.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. The implementation is based on the Kerberos Token Profile
v1.0 specification (wss-kerberos-token-profile-1.0). If you use Kerberos, you
must also configure the Artix security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The CORBA Principal is a legacy feature originally defined in the early versions
of the CORBA GIOP specification. The CORBA Principal is effectively just a
username (no password can be propagated).

! http://www.oasis-open.org/committees/download.php/5074/0asis-200401-wss-username-token-profile-1.0.pdf

WWW.0asis-0pen.org

49


http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

Introduction to the Artix Security Framework

HTTP Basic Authentication

X.509 certificate

CSI authorization over transport

CSI identity assertion

SSO token

50

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.

HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

Two different kinds of X.509 certificate-based authentication are provided,
depending on the type of Artix binding, as follows:

e HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

* CORBA binding—in this case, authentication is based on the entire X.509
certificate, which is sent to the Artix security service to be authenticated.

This type of credential is available to any transport that uses SSL/TLS.

The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no password)
inside a GIOP service context. The basic idea behind CSI identity assertion
is that the request message comes from a secure peer that can be trusted to
assert the identity of a user. This kind of authentication is available only for
the CORBA binding.

This type of credential is available only for the CORBA binding.

An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 401.



Protocol Layers

Overview

HTTP-compatible binding

SOAP binding

Protocol Layers

Within the Artix security architecture, each binding type consists of a stack

of protocol layers, where a protocol layer is typically implemented as a distinct
Artix plug-in. This subsection describes the protocol layers for the following

binding types:

* HTTP-compatible binding on page 51 .
* SOAP binding on page 51 .

* CORBA binding on page 52 .

HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 5 on page 51 shows the protocol layers and the kinds
of authentication available to a HTTP-compatible binding.

Figure 5. Protocol Layers in a HTTP-Compatible Binding

HTTP-compatible
binding
HTTP -«—— HTTP Basic Authentication
X.509
SSL/TLS < =

The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials that
can be propagated only in a SOAP header. Figure 6 on page 52 shows the

protocol layers and the kinds of authentication available to the SOAP binding
over HTTP.

51



Introduction to the Artix Security Framework

CORBA binding

52

Figure 6. Protocol Layers in a SOAP Binding

SOAP

[—— WSS UsernameToken
+—— WSS Kerberos
-¢—— CORBA Principal

HTTP

l«—— HTTP Basic Authentication

SSL/TLS

x
o
(=]
@

h

For the CORBA binding, there are only two protocol layers (CORBA binding
and [IOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 7 on page 52 shows the protocol
layers and the kinds of authentication available to the CORBA binding.

Figure 7. Protocol Layers in a CORBA Binding

CORBA
binding

GIOP

IOP/TLS

««—— CSI authentication over transport
l«—— CSlI identity assertion
-«—— CORBA Principal

x
o
(=]
©

h




Security Layer

Overview

Authentication

Authorization

Single sign-on

Artix security plug-in

GSP security plug-in

Security Layer

The security layer is responsible for implementing a variety of different security
features with the exception, however, of propagating security credentials,
which is the responsibility of the protocol layers. The security layer is at least
partially responsible for implementing the following security features:

* Authentication on page 53 .
* Authorization on page 53 .

* Single sign-on on page 53 .

On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the user
does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if artix_security is listed
in the orb_plugins list in the Artix domain configuration, artix.cfg.

The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the orb_plugins
list in the Artix domain configuration, artix.cfg.

53



Introduction to the Artix Security Framework

Using Multiple Bindings

Overview

Figure 8 on page 54 shows an example of an advanced application that uses
multiple secure bindings.

Figure 8. Example of an Application with Multiple Bindings

Application

GSP

ASP security security

G2++ SOAP | CORBA

HTTP GIOP
[ICP/
SSL/TLS TLS

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2+ +, SOAP, or CORBA.

Example bindings The following bindings are used in the application shown in

Figure 8 on page 54 :

* G2+ +—-consisting of the following layers: ASP security, G2+ + binding,
HTTP, SSL/TLS.

* SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

* CORBA—consisting of the following layers: GSP security, CORBA binding,
GIOP, [IOP/TLS.

54



Security for HTTP-Compatible Bindings

This chapter describes the security features supported by the Artix HTTP transport. These security features are
available to any Artix binding that can be layered on top of the HTTP transport.

Overview of HTTP Security

....................................................................................................... 56
Securing HTTP Communications With TLS ... .. e e eenas 59
X.509 Certificate-Based Authentication ....... ... 67

55



Security for HTTP-Compatible Bindings

Overview of HTTP Security

Overview

Figure 9 on page 56 gives an overview of HTTP security within the Artix
security framework, showing the various security layers (security layer, binding
layer, HTTP, and SSL/TLS) and the different authentication types associated
with the security layers. Because many different binding types (for example,
SOAP, tagged or fixed) can be layered on top of HTTP, Figure 9 on page 56
does not specify a particular binding layer. Any HTTP-compatible binding
could be substituted into this architecture.

Figure 9. HTTP-Compatible Binding Security Layers

ARM .

L Action-role
authorization = . )
=—=| mapping file
Secu”ty Iayer authentication
HTTP-compatible J’
binding Artix Security Service
HTTP Basic Authentication ——| HTTP
X.509

—> SSL/TLS

User Data

Security layers As shown in Figure 9 on page 56 , a HTTP-compatible binding has the

following security layers:
e SSL/TLS layer on page 57 .
e HTTP layer on page 57 .

e HTTP-compatible binding layer on page 57 .

56



SSL/TLS layer

HTTP layer

HTTP-compatible binding layer

Security layer

Authentication options

Overview of HTTP Security

* Security layer on page 57 .

The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates).

The HTTP layer supports the sending of username/password data in the HTTP
message header—that is, HTTP Basic Authentication.

The HTTP-compatible binding layer could provide additional security features
(for example, propagation of security credentials), depending on the type of
binding. The following binding types are HTTP-compatible:

* SOAP binding.
* XML format binding.

* MIME binding.

The Security layer is implemented by the Artix security plug-in, which provides
authentication and authorization checks for all binding types, except the
CORBA binding, as follows:

* Authentication—Dby selecting one of the available client credentials and
calling out to the Artix security service to check the credentials.

» Authorization—by reading an action-role mapping (ARM) file and checking
whether a user’s roles allow it to perform a particular action.

The following authentication options are common to all HTTP-compatible
bindings:

e HTTP Basic Authentication on page 58 .

57



Security for HTTP-Compatible Bindings

HTTP Basic Authentication

X.509 certificate-based
authentication

58

* X.509 certificate-based authentication on page 58 .

HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

X.509 certificate-based authentication is an authentication step that is
performed /in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see X.509
Certificate-Based Authentication on page 67.



Securing HTTP Communications with TLS

Securing HTTP Communications with TLS

Overview

Generating X.509 certificates

This subsection describes how to configure the HTTP transport (Java runtime)
to use SSL/TLS security, a combination usually referred to as HTTPS. In the
Artix Java runtime, HTTPS security is configured by specifying settings in XML
configuration files.

The following topics are discussed in this subsection:
* Generating X.509 certificates on page 59 .
¢ Enabling HTTPS on page 60 .

HTTPS client with no certificate on page 61 .

e HTTPS client with certificate on page 62 .

HTTPS server configuration on page 64 .

A basic prerequisite for using SSL/TLS security is to have a collection of X.509
certificates available to identify your server applications and, optionally, your
client applications. You can generate X.509 certificates in one of the following
ways:

* Use a commercial third-party to tool to generate and manage your X.509
certificates.

* Use the free openss1 utility (which can be downloaded from
http://www.openssl.org) and the Java keystore utility to generate

certificates—see Use the CA to Create Signed Certificates in a Java
Keystore on page 105.

Note

The HTTPS protocol mandates an URL integrity check, which
requires a certificate’s identity to match the hostname on which the

59


http://www.openssl.org

Security for HTTP-Compatible Bindings

server is deployed. See Special Requirements on HTTPS
Certificates on page 96 for details.

ifi f . . .
Certificate format In the Java runtime, you must deploy X.509 certificate chains and trusted

CA certificates in the form of Java keystores. See on page 117.

Enabling HTTPS A prerequisite for enabling HTTPS on a WSDL endpoint is that the endpoint

address must be specified to be a HTTPS URL. There are a couple of different
locations where the endpoint address is set and these must a// be modified
to use a HTTPS URL.

HTTPS specified in the WSDL

contract You must specify the endpoint address in the WSDL contract to be a URL

with the nttps: prefix, as follows:

<wsdl:definitions name="HelloWorld" targetNamespace="ht

tp://apache.org/hello world soap http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9001/Soap
Context/SoapPort"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Where the 1ocation attribute of the soap:address element is configured
to use a HTTPS URL. For bindings other than SOAP, you would edit the URL
appearing in the location attribute of the http:address element.

HTTPS specified in the server

code You must also ensure that the URL published in the server code by calling

Endpoint.publish () is defined with a https: prefix. For example:

// Java
package demo.hw https.server;
import javax.xml.ws.Endpoint;

public class Server {
protected Server () throws Exception {
Object implementor = new GreeterImpl () ;
String address =
"https://localhost:9001/SoapContext/SoapPort";
Endpoint.publish (address, implementor);

60



HTTPS client with no certificate

Securing HTTP Communications with TLS

For example, consider the configuration for a secure HTTPS client with no
certificate. Example 9 on page 61 shows how to configure such a sample
client.

Example 9. Sample HTTPS Client with No Certificate

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"

xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalocation="...">

1 on page 61 <http:conduit name="{ht
tp://apache.org/hello world soap http}SoapPort.http-conduit">
2 on page 61 <http:tlsClientParameters>
3 on page 62 <sec:trustManagers>
<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>
</sec:trustManagers>
4 on page 62 <sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES .*</sec:include>
<sec:include>.* WITH DES .*</sec:include>
<sec:exclude>.* WITH NULL_.*</sec:exclude>
<sec:exclude>.* DH_anon_.*</sec:exclude>
</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

</beans>
The preceding client configuration can be described as follows:

1. The TLS security settings are defined on a specific WSDL port. In this
example, the WSDL port being configured has the QName,
{http://apache.org/hello world soap http}SoapPort.

2. The http:tlsClientParameters element contains all of the client’'s TLS
configuration details.

61



Security for HTTP-Compatible Bindings

HTTPS client with certificate

62

3. The sec:trustManagers element is used to specify a list of trusted CA

certificates (the client uses this list to decide whether or not to trust
certificates received from the server side).

The file attribute of the sec: keystore element specifies a Java keystore
file, truststore.jks, containing one or more trusted CA certificates. The
password attribute specifies the password required to access the keystore,
truststore.jks. See Specifying Trusted CA Certificates for

HTTPS on page 127.

@ Note

Instead of the file attribute, you could specify the location of
the keystore using either the resource or the ur1 attribute. But
you must be extremely careful not to load the truststore from an
untrustworthy source.

4, The sec:cipherSuitesFilter element can be used to narrow the choice

of cipher suites that the client is willing to use for a TLS connection. See
on page 139 for details.

For example, consider a secure HTTPS client that is configured to have its
own certificate. Example 10 on page 62 shows how to configure such a
sample client.

Example 10. Sample HTTPS Client with Certificate

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"

xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalLocation="...">

<http:conduit name="{http://apache.org/hello world soap ht
tp}SoapPort.http-conduit">
<http:tlsClientParameters>
<sec:trustManagers>
<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>
</sec:trustManagers>



Securing HTTP Communications with TLS

1 on page 63 <sec:keyManagers keyPassword="password">
2 on page 63 <sec:keyStore
type="JKS" password="password"
file="certs/wibble.jks"/>
</sec:keyManagers>
<sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_.*</sec:include>
<sec:include>.* WITH DES_.*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon .*</sec:exclude>
</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

<bean xml:id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding client configuration can be described as follows:

1. The sec:keyManagers element is used to attach an X.509 certificate and
private key to the client. The password specified by the keyPasswod
attribute is used to decrypt the certificate’s private key.

2. The sec:keyStore element is used to specify an X.509 certificate and

private key that are stored in a Java keystore. This sample declares that
the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, wibble.jks,
that contains the client’s X.509 certificate chain and private key in a key
entry. The password attribute specifies the keystore password, which is
needed to access the contents of the keystore. It is expected that the
keystore file contains just one key entry, so there is no need to specify a
key alias to identify the entry.

For details of how to create such a keystore file, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105.

Note

Instead of the f£ile attribute, you could specify the location of
the keystore using either the resource or the ur1 attribute. But

63



Security for HTTP-Compatible Bindings

HTTPS server configuration

64

you must be extremely careful not to load the truststore from an
untrustworthy source.

For example, consider a secure HTTPS server that requires clients to present
an X.509 certificate. Example 11 on page 64 shows how to configure such
a server.

Example 11. Sample HTTPS Server Configuration

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configura
tion"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/con
figuration"

xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalLocation="...">

<httpj:engine-factory bus="cxf">

1 on page 65 <httpj:engine port="9001">

2 on page 65 <httpj:tlsServerParameters>

3 on page 65 <sec:keyManagers keyPassword="password">

4 on page 65 <sec:keyStore type="JKS" password="pass
word"

file="certs/cherry.jks"/>
</sec:keyManagers>
5 on page 65 <sec:trustManagers>
<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>
</sec:trustManagers>
6 on page 66 <sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_.*</sec:include>
<sec:include>.* WITH DES .*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon .*</sec:exclude>
</sec:cipherSuitesFilter>
7 on page 66 <sec:clientAuthentication want="true" re
quired="true" />
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

<!-- We need a bean named "cxf" -->



Securing HTTP Communications with TLS

<bean xml:id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding server configuration can be described as follows:

1. On the server side, TLS is not configured for each WSDL port. Instead of
configuring each WSDL port, the TLS security settings are applied to a
specific IP port, which is 9001 in this example. All of the WSDL ports that

share this IP port are thus configured with the same TLS security settings.

2. The http:tlsServerParameters element contains all of the server’s TLS
configuration details.

3. The sec:keyManagers element is used to attach an X.509 certificate and
private key to the server. The password specified by the keypPasswod
attribute is used to decrypt the certificate’s private key.

4. The sec:keystore element is used to specify an X.509 certificate and

private key that are stored in a Java keystore. This sample declares that
the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, cherry.jks,
that contains the client's X.509 certificate chain and private key in a key
entry. The password attribute specifies the keystore password, which is
needed to access the contents of the keystore. It is expected that the
keystore file contains just one key entry, so there is no need to specify a
key alias.

@ Note

Instead of the file attribute, you could specify the location of
the keystore using either the resource or the ur1 attribute. But
you must be extremely careful not to load the truststore from an
untrustworthy source.

For details of how to create such a keystore file, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105.

5. The sec:trustManagers element is used to specify a list of trusted CA

certificates (the server uses this list to decide whether or not to trust
certificates presented by clients).

65



Security for HTTP-Compatible Bindings

66

The file attribute of the sec: keystore element specifies a Java keystore
file, truststore.jks, containing one or more trusted CA certificates. The
password attribute specifies the password required to access the keystore,
truststore.jks. See Specifying Trusted CA Certificates for

HTTPS on page 127.

(@ Note

Instead of the file attribute, you could specify the location of
the keystore using either the resource or the ur1 attribute.

. The sec:ciphersSuitesFilter element can be used to narrow the choice

of cipher suites that the server is willing to use for a TLS connection. See
on page 139.

. The sec:clientAuthentication element determines the server's

disposition towards the presentation of client certificates. The element has

two attributes, as follows:

* want attribute—if true, (the default) the server requests the client to
present an X.509 certificate during the TLS handshake; if false, the
server does not request the client to present an X.509 certificate.

* required attribute—if true, the server raises an exception, if a client
fails to present an X.509 certificate during the TLS handshake; if false,

(the default) the server does not raise an exception, if the client fails to
present an X.509 certificate.



X.509 Certificate-Based Authentication

X.509 Certificate-Based Authentication

Overview

Certificate-based authentication
scenario

This section describes how to enable X.509 certificate authentication in a
two-tier client/server scenario for applications based on the Java runtime. In
this scenario, the Artix security service authenticates the client’'s X.509
certificate and retrieves roles and realms based on the identity of the certificate
subject. When certificate-based authentication is enabled, the X.509 certificate
is effectively authenticated twice, as follows:

» SSL/TLS-level authentication—this authentication step occurs during the
SSU/TLS handshake and is governed by the HTTPS configuration settings
in the application’s XML configuration file.

» Artix security-level authentication and authorization—this authentication
step occurs after the SSL/TLS handshake and is performed by the Artix
security service working in tandem with the security layer in the Artix server.

Figure 10 on page 68 shows an example of a two-tier system, where
authentication of the client’s X.509 certificate is integrated with the Artix
security service.

67



Security for HTTP-Compatible Bindings

Figure 10. Overview of Certificate-Based Authentication with HTTPS—Java Runtime

Scenario description

68

User login @ SSL/TLS-level @ Apply access
authentication control
Target

Client

v

@ Retrieve user's

@ authenticate () realms and roles

X
[S ] (S
o
©

A

Artix Security Service |

h 4

The scenario shown in Figure 10 on page 68 can be described as follows:

1. When the client opens a connection to the server, the client sends its X.509
certificate as part of the SSL/TLS handshake (HTTPS). The server then
performs SSL/TLS-level authentication, checking the certificate as follows:

* The certificate is checked against the server's trusted CA list to ensure
that it is signed by a trusted certification authority.

* The server sends a challenge to the client, which requires the client to
prove that it possesses the certificate’s private key.

2. The server performs security layer authentication by calling
authenticate () on the Artix security service, passing a copy of the client's

certificate to the Artix security service.

The details of this authentication step depend on the particular security
adapter that is plugged into the Artix security service. For example, the file
adapter would authenticate the client certificate as follows:

* The user’s identity is extracted from the certificate’s subject DN.



HTTPS prerequisites

Certificate-based authentication
security service configuration

Certificate-based authentication
client configuration

Certificate-based authentication
server configuration

X.509 Certificate-Based Authentication

» To verify the user’s identity, the file adapter compares the client certificate
with a cached copy. The authentication succeeds, only if the certificates
are equal.

3. If authentication is successful, the Artix security service returns the user’s
realms and roles.

4. The ASP security layer controls access to the target’'s WSDL operations by
consulting an action-role mapping file to determine what the user is
allowed to do.

In general, a basic prerequisite for using X.509 certificate-based authentication
is that both client and server are configured to use HTTPS.

See Securing HTTP Communications with TLS on page 59 .

A basic prerequisite for using certificate-based authentication is to configure
the security adapter that plugs into the Artix security service. The details of
this configuration step are specific to each security adapter. Typically, it
involves caching copies of the X.509 certificates for all users with security
privileges.

Specific details of how to configure each adapter for certificate-based
authentication are available, as follows:

 File adapter—see Certificate-based authentication for the file
adapter on page 185.

* [ DAP adapter—see Certificate-based authentication for the LDAP
adapter on page 189.

* Custom adapter—see on page 343.

To enable certificate-based authentication on the client side, it is sufficient
for the client to be configured to use HTTPS, with its own certificate. For
example, see HTTPS client with certificate on page 62 .

A prerequisite for using certificate-based authentication on the server side is
that the server is configured to use HTTPS. For example, see HTTPS server
configuration on page 64 .

69



Security for HTTP-Compatible Bindings

70

A second prerequisite on the server side is that the server is configured to
connect to the Artix security service. For example, see Connecting to the Artix
Security Service on page 152.

Additionally, on the server side it is necessary to configure the security layer
to authenticate certificates by editing the XML configuration file, as shown in
Example 12 on page 70 .

Example 12. Credential Authentication Element in a Server

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:security="http://schemas.iona.com/soa/security-config"

>
1 on page 70 <jaxws:endpoint name="{Namespace} TargetPort"
createdFromAPI="true" >
<jaxws:features>
2 on page 70 <security:TLSAuthServerConfig
3 on page 71 aclURL="ACLFile"
4 on page 71 aclServerName="ServerName"
5 on page 71 authorizationRealm="RealmName"
/>
</jaxws: features>
</jaxws:endpoint>
</beans>

The preceding XML configuration can be explained as follows:

1. The authentication feature is attached to the endpoint (WSDL port) specified
by the name attribute of the jaxws:endpoint element, where the endpoint
name is specified in QName format.

@ Note

You must specify the authentication feature separately for each
endpoint that you want to protect with authentication and
authorization.

2.The security:TLSAuthServerConfig element enables authentication

and authorization of X.509 certificate credentials received through the TLS
layer.



X.509 Certificate-Based Authentication

3. The ac1URL attribute specifies the location of an ACL file—for example,
file:etc/acl.xml. The file determines which actions (that is, WSDL

operations) can be invoked by an authenticated user, on the basis of the
roles assigned to that user. See on page 191.

4. The aclserverName attribute selects a particular rule set from the ACL
file by specifying its server name—see ACL server name on page 168.

5. The authorizationRealm attribute specifies the authorization realm to
which this server belongs—see on page 175.

71



72



Security for CORBA Bindings

You can make a CORBA binding secure by configuring the underlying Orbix ORB to load the relevant security
plug-ins. This section describes how to load and configure security plug-ins to reach the appropriate level of

security for applications with a CORBA binding.

OVErvIEW Of CORBA SBCUITY . .uuiutiiittiiet ettt et et et e e e e e et e e e e aees
Securing HOP Communications With SSL/TLS ... e e e e

73



Security for CORBA Bindings

Overview of CORBA Security

Overview

74

The Java runtime CORBA binding features an ORB pluggability layer, which
makes it possible to integrate the CORBA binding with different ORB
implementations. In Artix, the CORBA binding is layered above the Orbix
ORB. To configure CORBA security, therefore, you need to configure security
in the underlying Orbix ORB, taking advantage of the security features that
are built into Orbix.

For details of how to access the underlying Orbix configuration, see
Appendix D on page 411.



Securing [IOP Communications with SSL/TLS

Securing IIOP Communications with SSL/TLS

Overview

CORBA configuration for the Java
runtime

Sample client configuration

This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain.

€3 Warning

The default certificates used in the CORBA configuration samples
are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

The CORBA binding provided by the Java runtime is not configured by an
XML configuration file. You must configure the CORBA binding using an
old-style Artix configuration file (ending with a . cfg suffix).

Before you can configure a CORBA binding in the Java runtime, you must
associate your program with an Artix configuration file—see
Appendix D on page 411 for details of how to do this.

For example, consider the configuration for a secure SSL/TLS client with no
certificate.

Example 13 on page 75 shows how to configure such a sample client.

Example 13. Sample SSL/TLS Client Configuration

# Artix Configuration File
# General configuration at root scope.

my secure apps {
# Common SSL/TLS configuration settings.

1 on page 76 orb plugins = ["local log stream", "iiop pro

file", "giop", "iiop tls"];

2 on page 77 binding:client binding list = ["GIOP+EGMIOP",
"OTS+TLS Coloc+POA Coloc", "TLS Coloc+POA Coloc",

"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS"™, "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS"™, "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

75



Security for CORBA Bindings

76

3 on page 77 policies:trusted ca list policy = "ArtixIn
stallDir\cxx_java\samples\certificates\tls\x509\trus
ted ca lists\ca_listl.pem";

4 on page 77 policies:mechanism policy:protocol version =
"SSL_V3";
policies:mechanism policy:ciphersuites =
["RSA_WITH RC4 128 SHA", "RSA WITH RC4 128 MD5"];

5 on page 77 event log:filters = ["IT_ ATLI TLS=*",
"IT_IIOP=*", "IT IIOP_TLS=*", "IT TLS=*"];

my client {
# Specific SSL/TLS client configuration settings
6 on page 77 principal sponsor:use principal sponsor
= "false";

7 on page 77 policies:client secure invocation policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:client secure invocation policy:supports =

["Confidentiality", "Integrity", "DetectReplay", "DetectMisor
dering"”, "EstablishTrustInTarget"];

}i
}i

The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the iiop tls plug-in.

2 Note

For fully secure applications, you should exc/ude the iiop plug-in
(insecure [IOP) from the ORB plug-ins list. This renders the
application incapable of making insecure [IOP connections.

For semi-secure applications, however, you should include the
iiop plug-in before the iiop t1s plug-in in the ORB plug-ins
list.



Securing IIOP Communications with SSL/TLS

. Make sure that the binding:client binding list variable includes
bindings with the 110P_TLS interceptor. You can use the value of the
binding:client binding list shown here.

. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from other
SSL/TLS applications. You must, therefore, edit the
policies:trusted ca list policy variable to point at a list of trusted

certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 214.

@ Note

If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted ca list policy variableis

ignored. Within Schannel, the trusted root CA certificates are
obtained from the Windows certificate store.

. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites” on
page 265.

. This line enables console logging for security-related events, which is useful
for debugging and testing. Because there is a performance penalty
associated with this option, you might want to comment out or delete this
line in a production system.

. The SSL/TLS principal sponsor is a mechanism that can be used to specify
an application’s own X.509 certificate. Because this client configuration
does not use a certificate, the principal sponsor is disabled by setting
principal sponsor:use principal sponsor 10 false.

. The following two lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

* Required options—the options shown here ensure that the client can
open only secure SSL/TLS connections.

* Supported options—the options shown include all of the association
options, except for the EstablishTrustInClient option. The client

77



Security for CORBA Bindings

Sample server configuration

78

cannot support EstablishTrustInClient, because it has no X.509
certificate.

Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.

(@ Note

You must first associate the server with a configuration file—see
Appendix D on page 411 for details.

Example 14 on page 78 shows how to configure a sample server that acts
both as a secure server and as a secure client.

Example 14. Sample SSL/TLS Server Configuration

# Artix Configuration File
# General configuration at root scope.

my secure apps {
1 on page 79 # Common SSL/TLS configuration settings.

my_server {
# Specific SSL/TLS server configuration settings
2 on page 79 policies:target secure invocation policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering”];
policies:target secure invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

3 on page 79 principal sponsor:use principal sponsor
= "true";

4 on page 79 principal sponsor:auth method id =
"pkcsl2 file";

5 on page 79 principal sponsor:auth method data =

["filename=CertsDir\server cert.pl2"];

# Specific SSL/TLS client configuration settings
6 on page 79 policies:client secure invocation policy:re
quires = ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"”, "EstablishTrustInTarget"];
policies:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay", "DetectMisor



Securing IIOP Communications with SSL/TLS

dering", "EstablishTrustInClient", "EstablishTrustInTarget"];

}i

}i

The preceding server configuration can be described as follows:

1.

You can use the same common SSL/TLS settings here as described in the
preceding Sample client configuration on page 75

. The following two lines set the required options and the supported options

for the target secure invocation policy. In this example, the policy is set as
follows:

* Required options—the options shown here ensure that the server accepts
only secure SSL/TLS connection attempts.

» Supported options—all of the target association options are supported.

. A server must always be associated with an X.509 certificate. Hence, this

line enables the SSL/TLS principal sponsor, which specifies a certificate
for the application.

. This line specifies that the X.509 certificate is contained in a PKCS#12

file. For alternative methods, see “Specifying an Application’s Own
Certificate” on page 224.

. Replace the X.509 certificate, by editing the filename option in the

principal sponsor:auth method data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized

with the location of a certificate file in PKCS#12 format—see Specifying
an Application’s Own Certificate on page 131 for more details.

For details of how to specify the certificate’s pass phrase, see “Deploying
Own Certificate for HTTPS—C++ Runtime” on page 227.

. The following two lines set the required options and the supported options

for the client secure invocation policy. In this example, the policy is set as
follows:

* Required options—the options shown here ensure that the application
can open only secure SSL/TLS connections to other servers.

79



Security for CORBA Bindings

Mixed security configurations

Customizing IIOP/TLS security
policies

80

» Supported options—all of the client association options are supported.
In particular, the EstablishTrustInClient option is supported when

the application is in a client role, because the application has an X.509
certificate.

Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in Sample server configuration on page 78 . Then configure the
client role by adding (or modifying) the following lines to the

my secure apps.my_ server configuration scope:

orb plugins = ["local log stream", "iiop profile", "giop",
"iiop", "iiop tls"];
policies:client secure invocation policy:requires = ["NoPro
tection"];
policies:client secure invocation policy:supports = ["NoPro
tection"];

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure 110P) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

You can, optionally, customize the IIOP/TLS security policies in various ways.
For details, see the following references:

* Configuring Secure Associations in the Security Guide, C++ Runtime.

* Configuring HTTPS and IIOP/TLS in the Security Guide, C++ Runtime.



Part Il. TLS Security Layer

This part provides comprehensive details on how to configure the SSL/TLS security layer for both the HTTPS and
IIOP/TLS protocols.






Managing Certificates .........uciiiiiiiiiiiii i r s s s s s s nnns 85

What are X.509 CertifiCates? .. ..iuieiiiiii e 86
Certification AUNOIITIES ... ..ot et 88
(6] o] (oI 0 PP 89
Commercial Certification AULNOITIES ......vuieii e 90
Private Certification AUthOIITIES .....o.iieii e 91
Certificate Chaining ...v e e 92
e (O 1Y PP 94
Special Requirements on HTTPS CertifiCates .......o.ovieiiiiiiiii e 96
Creating Your OWn CertifiCates ....uiniiiii e 99
T =T o LU (=Y PPt 100

S U YOUr OWN CA Lo e e e e e aas 101

Use the CA to Create Signed Certificates in a Java Keystore ...........ccoiviiiiiiiiiiiiinen, 105

Use the CA to Create Signed PKCS#12 Certificates .......cccoeviiiiiiiiiiiiiiieeen 108
Generating a Certificate Revocation List ........c.oiiiii 114
Configuring HTTPS and HOP/TLS ......ivuiiiiiiiiiiiiiiiierie s s s rsesesesesesesesesnsnsnsnsnnsnnsnnsnnsnnse 117
Authentication AIEINALIVES .......inie e 118
Target-Only Authentication ... 119
Mutual AUThentiCation .........o.iiii e 122
Specifying Trusted CA Certificates .....ocoviiii e 125
When to Deploy Trusted CA CertifiCates .......ovveiiiiiiiii e 126
Specifying Trusted CA Certificates for HTTPS ..., 127
Specifying Trusted CA Certificates for HOP/TLS ... 129
Specifying an Application’s Own Certificate ........coviiiiiiiii 131
Deploying Own Certificate for HTTPS ... 132
Deploying Own Certificate for IIOP/TLS .....o.iuiiiii e 134
Specifying a Certificate Revocation List .........coiiiiii e 136
Configuring HTTPS Cipher SUIteS ......cciiiii s s s s s s s s s e e e e s e e e ens 139
SUPPOIEd CIPNEr SUITES vt e aes 140
CIPNEr SUITE FIlES et e e aaas 142
SSL/TLS ProtOCOI VBISION .vuitisiiiie ettt e e e e e e e e ae e 145

83



84



Managing Certificates

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating your
application objects. This chapter explains how you can create X.509 certificates that identify your Artix ESB
applications.

What are X.509 CartifiCales? ..uuinieiii ettt e 86
Certification AUTNOIITIES ... .. e et e 88
0] T o) 0 89
Commercial Certification AUhOITIES ... .eie e 90
Private Certification AULNOIITIES ... .c.iei e 91
Certificate ChaiNiNg .. e e e e 92
e O T I T 94
Special Requirements on HTTPS CertifiCates .........ovuieiiieiii e eenas 96
Creating Your OWN CertifiCates ... ..o.ieuiei i e e 99
T o U (= PPN 100
SEE UD YOUI OWN A oottt et ettt et e e e e et e e aaenas 101
Use the CA to Create Signed Certificates in a Java Keystore ...........cocoeiiiiiiiiiiiniiiiiieee 105
Use the CA to Create Signed PKCS#12 Certificates ........ovveieiiiiiiiiie e 108
Generating a Certificate RevOCation LiSt ........c.iuiiieii e 114

85



Managing Certificates

What are X.509 Certificates?

Role of certificates

Integrity of the public key

Digital signatures

The contents of an X.509
certificate

86

An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the X.509
certificate.

Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a certification
authority (CA). A CA is a trusted node that confirms the integrity of the public
key value in a certificate.

A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA's private key. The CA's
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding the
CA's digital signature with the CA's public key.

€9 Warning

The demonstration certificates supplied with Artix ESB are signed
by the demonstration CA. This CA is completely insecure because
anyone can access its private key. To secure your system, you must
create new certificates signed by a trusted CA. This chapter describes
the set of certificates required by a Artix ESB application and shows
you how to replace the default certificates.

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is encoded
in Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

¢ X.509 version information.

* A serial number that uniquely identifies the certificate.



Distinguished names

What are X.509 Certificates?

A subject DN that identifies the certificate owner.

The public key associated with the subject.

¢ An jssuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.
* Information about the algorithm used to sign the certificate.

* Some optional X.509 v.3 extensions. For example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) is a general purpose X.500 identifier that is often
used in the context of security.

See Appendix A on page 365 for more details about DNs.

87



Managing Certificates

Certification Authorities

{0 3T 10T PPN
Commercial Certification AUTNOMTIES ... e e e e aaaes
Private Certification AUTNOrtiES ... e e et

88



Choice of CAs

Choice of CAs

A CA must be trusted to keep its private key secure. When setting up a Artix
ESB system, it is important to choose a suitable CA, make the CA certificate
(not including its private key) available to all applications, and then use the
CA to sign certificates for your applications.

There are two types of CA you can use:
* A commercial CA is a company that signs certificates for many systems.

* A private CA is a trusted node that you set up and use to sign certificates
for your system only.

89



Managing Certificates

Commercial Certification Authorities

Signing certificates

Advantages of commercial CAs

Criteria for choosing a CA

90

There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to systems
external to your organization, use a commercial CA to sign your certificates.
If your applications are for use within an internal network, a private CA might
be appropriate.

Before choosing a CA, you should consider the following criteria:
* What are the certificate-signing policies of the commercial CAs?
» Are your applications designed to be available on an internal network only?

* What are the potential costs of setting up a private CA compared with the
costs of subscribing to a commercial CA?



Private Certification Authorities

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an implementation
of SSL developed by Eric Young (<eay@cryptsoft.com>). Complete license
information can be found in Appendix F on page 443 . The OpenSSL package
includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available
from http://www.openssl.org/docs.

For instructions on how to set up a private CA, see Creating Your Own
Certificates on page 99 .

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix ESB
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

¢ Do not connect the CA to a network.
¢ Restrict all access to the CA to a limited set of trusted users.

* Protect the CA from radio-frequency surveillance using an RF-shield.

91


http://www.openssl.org
http://www.openssl.org/docs

Managing Certificates

Certificate Chaining

Certificate chain

Self-signed certificate

Example

Chain of trust

Certificates signed by multiple
CAs

92

A certificate chain is a sequence of certificates, where each certificate in the
chain is signed by the subsequent certificate.

The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Figure 11 on page 92 shows an example of a simple certificate chain.

Figure 11. A Certificate Chain of Depth 2

Peer | signs CA _ signs
Certificate Certificate

I

The purpose of a certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 12 on page 93 shows what this certificate chain looks like.



Figure 12. A Certificate Chain of Depth 3

Peer |  signs

Finance
CA

Certificate |

Trusted CAs

Maximum chain length policy

Certificate

signs

Commercial

CA
Certificate

Certificate Chaining

signs

An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root certificate

directory.

See Specifying Trusted CA Certificates on page 125.

C++ runtime only—You can limit the length of certificate chains accepted
by your CORBA applications, with the maximum chain length policy. You can
set a value for the maximum length of a certificate chain with the
policies:iiop tls:max chain length policy configuration variable
for IOP/TLS and the policies:max_chain length policy configuration

variable for HTTPS respectively.

93



Managing Certificates

PKCS#12 Files

Overview Figure 13 on page 94 shows the typical elements in a PKCS#12 file.

Figure 13. Elements in a PKCS#12 File
PKCS#12 File

X.509

— Certificate Chain

X.509
CA

O—m < Private Key

Contents of a PKCS#12 file A PKCS#12 file contains the following:

e An X.509 peer certificate (first in a chain).

* All the CA certificates in the certificate chain.
* A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

94



Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

PKCS#12 Files

,'] Note

The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12
file overall. This condition (same pass phrase) is not officially part
of the PKCS#12 standard, but it is enforced by most Web browsers
and by Artix ESB.

To create a PKCS#12 file, see Use the CA to Create Signed Certificates in a
Java Keystore on page 105 .

To view a PKCS#12 file, certname.pl2:

openssl pkcsl2 -in CertName.pl2

The generated PKCS#12 files generated by OpenSSL can be imported into
browsers such as IE or Netscape. Exported PKCS#12 files from these browsers
can be used in Artix ESB.

(@ Note
Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later; Netscape
4.7 or later.

95



Managing Certificates

Special Requirements on HTTPS Certificates

Overview

HTTPS URL integrity check

Reference

How to specify the certificate
identity

96

The HTTPS specification mandates that HTTPS clients should be capable of
verifying the identity of the server. This can potentially affect how you generate
your X.509 certificates. The mechanism for verifying the server identity
depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA.
In addition, clients cosuld also inspect the contents of a server certificate and
accept only the certificates that satisfy specific constraints (for example, in
Artix you can specify a certificate constraints mechanism).

In the absence of an application-specific mechanism, the HTTPS specification
defines a generic mechanism, known as the HTTPS URL integrity check, for
verifying the server identity. For example, this is the standard mechanism
used by Web browsers.

The basic idea of the URL integrity check is that the server certificate’s identity
must match the server host name. This integrity check has an important
impact on how you generate X.509 certificates for HTTPS: the certificate
identity (usually the certificate subject DN’s common name) must match
the host name on which the HTTPS server is to be deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Note

Artix does not implement the HTTPS URL integrity check. You can
use a mechanism such as certificate constraints instead.

The HTTPS URL integrity check is specified by RFC 2818, published by the
Internet Engineering Task Force (IETF):

http://www.ietf.org/rfc/rfc2818.txt

The certificate identity used in the URL integrity check can be specified in
one of the following ways:

¢ Using commonName


http://www.ietf.org/rfc/rfc2818.txt

Using commonName

Using subjectAltName
(multi-homed hosts)

Special Requirements on HTTPS Certificates

¢ Using subectAltName

The usual way to specify the certificate identity (for the purpose of the URL
integrity check) is to set the Common Name (CN) in the subject DN of the
certificate.

For example, if clients are meant to connect to the following secure URL:

https://www.iona.com/secure

The server certificate could have a subject DN like the following:

C=IE, ST=Co. Dublin,L=Dublin, O=IONA Technologies PLC,
OU=System, CN=www.iona.com

Where the CN has been set to the host name, www. iona.com. For details of
how to set the subject DN in a new certificate, see Use the CA to Create
Signed Certificates in a Java Keystore on page 105 and Use the CA to Create
Signed Certificates in a Java Keystore on page 105 .

Using the subject DN’s Common Name for the certificate identity suffers from
the disadvantage that only one host name can be specified at a time. If you
deploy a certificate on a multi-homed host, however, you might find it is
practical to allow the certificate to be used with any of the multi-homed host
names. In this case, it is necessary to define a certificate with multiple,
alternative identities and this is only possible using the subjectAltName
certificate extension.

For example, if you have a multi-homed host that supports connections to
either of the following host names:

www.lona.com
open.iona.com

You could define a subjectaltName that explicitly lists both of these DNS
host names. If you generate your certificates using the openssl utility, you
would need to edit the relevant line of your openss1.cnf configuration file
to specify the value of the subjectaltName extension, as follows:

subjectAltName=DNS:www.iona.com, DNS:open.iona.com
Where the HTTPS protocol will match either of the DNS host names listed

in the subjectAltName (the subjectaltName takes precedence over the
Common Name).

97



Managing Certificates

98

The HTTPS protocol also supports the wildcard character, *, in host names.
For example, if you define the subjectAltName as follows:

subjectAltName=DNS:*.iona.com

This certificate identity would match any three-component host name in the
domain iona.com. For example, the wildcarded host name would match
either www.iona.com Or open.iona.com, but not www.open.iona.com.

€3 Warning

You must never use the wildcard character in the domain name (and
you must take care never to do this accidentally by forgetting to type
the dot, ., delimiter in front of the domain name). For example, if
you specified *iona.com, your certificate could be used on any
domain that ends in the letters iona.

For details of how to set up the openss1.cnf configuration file to generate
certificates with the subjectaltName certificate extension, see Use the CA
to Create Signed PKCS#12 Certificates on page 108 .



Creating Your Own Certificates

Creating Your Own Certificates

Y=Y 0 LU (=Pt 100
BT o T (o T8 T T 0 101
Use the CA to Create Signed Certificates in @ Java Keystore .........coviiiiiiiiiii e 105
Use the CA to Create Signed PKCS#12 CertifiCates .....ovvniiiiii e 108

99



Managing Certificates

Prerequisites
OpenSSL utilities

The steps described in this section are based on the OpenSSL command-line
utilities from the OpenSSL project, http://www.openss|.org—see

Appendix E on page 417 . Further documentation of the OpenSSL
command-line utilities can be obtained from http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:

X509CA/ca
X509CA/certs
X509CA/newcerts

X509cA/crl

Where x509ca is the parent directory of the CA database.

100


http://www.openssl.org
http://www.openssl.org/docs

Set Up Your Own CA

Substeps to perform

Add the bin directory to your
PATH

Create the CA directory hierarchy

Set Up Your Own CA

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in Choosing a host for
a private certification authority on page 91 .

To set up your own CA, perform the following steps:
1. Add the bin directory to your PATH

2. Create the CA directory hierarchy

Copy and edit the openssl.cnf file

Initialize the CA database

o > W

Create a self-signed CA certificate and private key

On the secure CA host, add the OpenSSL bin directory to your path:
Windows

> set PATH=0OpenSSLDir\bin;$PATHS

UNIX

)

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Create a new directory, x509ca, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the x509ca
directory, create the following hierarchy of directories:

X509CA/ca
X509CA/certs

X509CA/newcerts

101



Managing Certificates

Copy and edit the openssl.cnf file

Initialize the CA database

102

X509cA/crl

Copy the sample openss1.cnf from your OpenSSL installation to the x509ca
directory.

Edit the openssl.cnf to reflect the directory structure of the x509ca directory
and to identify the files used by the new CA.

Edit the [cA default] section of the openssl.cnf file to make it look like
the following:

E R i i i i
[ CA default ]

dir = X509CA # Where CA files are kept
certs = S$dir/certs # Where issued certs are kept

crl dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new certs dir = $dir/newcerts # Default place for new certs
certificate = S$dir/ca/new ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL

private key = $dir/ca/new_ca pk.pem # The private key
RANDFILE = $dir/ca/.rand

# Private random number file

x509_extensions = usr_cert # The extensions to add to the
cert

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see The OpenSSL Configuration File on page 435 .

In the x509ca directory, initialize two files, serial and index.txt.
Windows
> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad
at the command line in the x509ca directory, as follows:

> notepad index.txt



Create a self-signed CA certificate
and private key

Set Up Your Own CA

In response to the dialog box with the text, cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close
Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

2) Note

The index.txt file must initially be completely empty, not even
containing white space.

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config X509cA/openssl.cnf -days 365 -out
X509CA/ca/new_ca.pem -keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

R s

At

writing new private key to 'new ca pk.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance

Common Name (eg, YOUR name) []:Gordon Brown

Email Address []:gbrown@iona.com

103



Managing Certificates

Note

The security of the CA depends on the security of the private key file
and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

104



Use the CA to Create Signed Certificates in a Java
Keystore

Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform

Add the Java bin directory to your
PATH

Generate a certificate and private
key pair

To create and sign a certificate in a Java keystore (JKS), certname.jks,
perform the following substeps:

1. Add the Java bin directory to your PATH

2. Generate a certificate and private key pair

3. Create a certificate signing request

4. Sign the CSR

5.  Convert to PEM format

6. Concatenate the files

7. Update keystore with the full certificate chain

8. Repeat steps as required

If you have not already done so, add the Java bin directory to your path:

Windows

> set PATH=JAVA HOME\bin;$PATH%

UNIX

% PATH=JAVA HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Open a command prompt and change directory to KeystoreDir. Enter the
following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=IONA

Technologies PLC, ST=Co. Dublin, C=IE" -validity 365 -alias
CertAlias —-keypass CertPassword —keystore CertName.jks -storepass
CertPassword

This keytool command, invoked with the -genkey option, generates an

X.509 certificate and a matching private key. The certificate and key are both
placed in a key entry in a newly created keystore, certname.jks. Because

105



Managing Certificates

Create a certificate signing
request

Sign the CSR

106

the specified keystore, certname. ks, did not exist before issuing the
command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created
X.509 certificate, specifying the subject DN and days before expiration
respectively. For more details about DN format, see Appendix A on page 365

Some parts of the subject DN must match the values in the CA certificate
(specified in the CA Policy section of the openss1.cnf file). The default
openssl.cnf file requires the following entries to match:

 Country Name (C)
* State or Province Name (ST)

* Organization Name (0)

@ Note

If you do not observe the constraints, the OpenSSL CA will refuse to
sign the certificate (see Sign the CSR on page 106 ).

Create a new certificate signing request (CSR) for the certname. ks certificate:

keytool -certreq -alias CertAlias -file CertName csr.pem -key
pass CertPassword —-keystore CertName.jks —-storepass CertPassword

This command exports a CSR to the file, certname csr.pem.

Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in Cert
Name csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass
phrase—see Set Up Your Own CA on page 101 .



Convert to PEM format

Concatenate the files

Update keystore with the full
certificate chain

Repeat steps as required

Use the CA to Create Signed Certificates in a Java
Keystore

() Note

If you want to sign the CSR using a CA certificate other than the
default CA, use the -cert and -keyfile options to specify the CA
certificate and its private key file, respectively.

Convert the signed certificate, certname.pem, to PEM only format:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Concatenate the CA certificate file and certname.pem certificate file, as follows:
Windows

copy CertName.pem + X509CA\ca\new ca.pem CertName.chain

UNIX

cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

Update the keystore, certname.jks, by importing the full certificate chain
for the certificate:

keytool -import -file CertName.chain -keypass CertPassword
-keystore CertName.jks -storepass CertPassword

Repeat steps 2 to 7, creating a complete set of certificates for your system.

107



Managing Certificates

Use the CA to Create Signed PKCS#12 Certificates

Substeps to perform

Add the bin directory to your
PATH

(Optional) Configure the
subjectAltName extension

108

If you have set up a private CA, as described in Set Up Your Own
CA on page 101 , you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, certname.p12, perform
the following substeps:

1. Add the bhin directory to your PATH .
2. (Optional) Configure the subjectAltName extension .
3. Create a certificate signing request .

4. Sign the CSR .
5

Concatenate the files .

6. Create a PKCS#12 file .
7. Repeat steps as required .
8. (Optional) Clear the subjectAltName extension .

If you have not already done so, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Perform this step, if the certificate is intended for a HTTPS server whose
clients enforce an URL integrity check and you plan to deploy the server on
a multi-homed host or a host with several DNS name aliases (for example,
if you are deploying the certificate on a multi-homed Web server). In this
case, the certificate identity must match multiple host names and this can
be done only by adding a subjectAltName certificate extension (see Special
Requirements on HTTPS Certificates on page 96 ).



Use the CA to Create Signed PKCS#12 Certificates

To configure the subjectAltName extension, edit your CA's openssl.cnf
file as follows:

1.

If not already present in your openss1.cnf file, add the following
req_extensions setting to the [req] section:

# openssl Configuration File

[req]

req_extensions=v3_req

If not already present, add the [v3_ req)] section header. Under the

[v3_req] section, add or modify the subjectaltName setting, setting

it to the list of your DNS host names. For example, if the server host
supports the alternative DNS names, www.iona.com and

open.iona.com, you would set the subjectAltName as follows:
# openssl Configuration File
[v3_req]

subjectAltName=DNS:www.iona.com,DNS:open.iona.com

Add a copy_extensions setting to the appropriate CA configuration

section. The CA configuration section used for signing certificates is
either:

* The section specified by the -name option of the openssl ca command,
or

* The section specified by the default ca setting under the [ca]

section (usually [CA default]).

For example, if the appropriate CA configuration section is
[CA_default], setthe copy extensions property as follows:

# openssl Configuration File

[CA default]
copy_ extensions=copy

109



Managing Certificates

Create a certificate signing
request

110

This setting ensures that certificate extensions present in the certificate
signing request are copied into the signed certificate.

Create a new certificate signing request (CSR) for the certname.p12 certificate:

openssl req -new -config X509CA/openssl.cnf -days 365 -out
X509CA/certs/CertName csr.pem -keyout X509CA/certs/CertName pk.pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openss1.cnf
file). The default openss1.cnf file requires the following entries to match:

* Country Name
 State or Province Name
* Organization Name

The certificate subject DN’s Common Name is the field that is most often
used to represent the certificate owner’s identity. The Common Name must
obey the following conditions:

* The Common Name must be distinct for every certificate generated by the
OpenSSL certificate authority.

e |f your HTTPS clients implement the URL integrity check, you must ensure
that the Common Name is identical to the DNS name of the host where
the certificate is to be deployed—see Special Requirements on HTTPS
Certificates on page 96 .

(@ Note

For the purpose of the HTTPS URL integrity check, the
subjectAltName extension takes precedence over the Common
Name.

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

o AR

o AR

writing new private key to
'X509CA/certs/CertName pk.pem'



Sign the CSR

Use the CA to Create Signed PKCS#12 Certificates

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems

Common Name (eg, YOUR name) []:Artix

Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:password

An optional company name []:IONA

Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf

Enter PEM pass phrase:

Check that the request matches the signature

Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE:'IE'

stateOrProvinceName :PRINTABLE:'Co. Dublin'

localityName :PRINTABLE:'Dublin'

organizationName :PRINTABLE:'IONA Technologies PLC'

organizationalUnitName:PRINTABLE: 'Systems'

commonName :PRINTABLE:'Bank Server Certificate’

emailAddress :IAS5STRING: 'info@iona.com'

Certificate is to be certified until May 24 13:06:57 2000 GMT
(365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

111



Managing Certificates

Concatenate the files

Create a PKCS#12 file

Repeat steps as required

(Optional) Clear the
subjectAltName extension

112

Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see Set Up Your Own CA on page 101 .

@ Note

If you have not set copy extensions=copy under the

[CA default] section inthe openssl.cnf file, the signed certificate
will not include any of the certificate extensions that were in the
original CSR.

Concatenate the CA certificate file, certname.pen certificate file, and
certName pk.pem private key file as follows:
Windows

copy X509CA\ca\new ca.pem + X509CA\certs\CertName.pem +
X509CA\certs\CertName pk.pem X509CA\certs\CertName list.pem

UNIX

cat X509CA/ca/new ca.pem X509CA/certs/CertName.pem
X509CA/certs/CertName pk.pem > X509CA/certs/CertName list.pem

Create a PKCS#12 file from the certname list.penm file as follows:

openssl pkcsl2 -export -in X509CA/certs/CertName list.pem -out
X509CA/certs/CertName.pl2 -name "New cert"

You will be prompted to enter a password to encrypt the PKCS#12 certificate.
Normally this password should be the same as the CSR password (this is
required by many certificate repositories).

Repeat steps 3 to 6, creating a complete set of certificates for your system.

After you have finished generating certificates for a particular host machine,
you should probably clear the subjectaltName setting in the openssl.cnf
file to avoid accidentally assigning the wrong DNS names to another set of
certificates.



Use the CA to Create Signed PKCS#12 Certificates

In the openss1.cnf file, comment out the subjectaltName setting (by
adding a # character at the start of the line) and comment out the
copy_extensions setting.

113



Managing Certificates

Generating a Certificate Revocation List

Overview

Relationship between a CA and a
CRL

Steps to revoke certificates

Step 1—Add the OpenSSL bin
directory to your path

Step 2—Revoke certificates

114

This section describes how to use an OpenSSL CA to generate a certificate
revocation list (CRL). A CRL is a list of X.509 certificates that are no longer
considered to be valid. You can deploy a CRL file to a secure application, so
that the application automatically rejects certificates that appear in the list.

For details about how to deploy a CRL file, see Specifying a Certificate
Revocation List on page 136.

In order to generate a certificate revocation list, it is not sufficient simply to
assemble a list of certificates that you would like to revoke. The CA, just as
it is responsible for creating and signing certificates, is also responsible for
revoking certificates. When you decide to revoke a certificate, you must inform
the CA, which records this fact in its database.

After revoking certificates, you can ask the CA to generate a signed certificate
revocation list.

To generate a certificate revocation list, perform the following steps:
* Step 1—Add the OpenSSL bin directory to your path on page ? .
» Step 2—Revoke certificates on page ? .

* Step 3—Generate the CRL file on page ? .

* Step 4—Check the CRL file on page ? .

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=0OpenSSLDir\bin; $PATHS

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openss1 utility available from the command line.

To add a certificate, certName.pem, to the revocation list, enter the following
command:



Step 3—Generate the CRL file

Step 4—Check the CRL file

Generating a Certificate Revocation List

openssl ca -config X509CA/openssl.cnf -revoke
X509CA/certs/CertName.pem

The command prompts you for the CA pass phrase and then revokes the
certificate:

Using configuration from openssl.cnf

Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix 40/X509CA/ca/new_ca pk.pem:
DEBUG[load index]: unique_ subject = "yes"

Adding Entry with serial number 02 to DB for /C=IE/ST=Dub
1lin/0O=IONA/CN=bad guy

Revoking Certificate 02.

Data Base Updated

Repeat this step as many times as necessary to add certificates to the CA's
revocation list.

(@ Note

If you get the following error while attempting to revoke a certificate:

unable to rename C:/temp/artix_40/X509CA/index.txt to
C:/temp/artix_40/X509CA/index.txt.old

reason: File exists

Simply delete index.txt.old and then try the command again.

To generate a PEM file, crl.pem, containing the CA's complete certificate
revocation list, enter the following command:

openssl ca -config X509CA/openssl.cnf -gencrl -out crl/crl.pem

The command prompts you for the CA pass phrase and then generates the
crl.pen file:

Using configuration from openssl.cnf

Loading 'screen' into random state - done

Enter pass phrase for C:/temp/artix 40/X509CA/ca/new_ca pk.pem:
DEBUG[load index]: unique subject = "yes"

Check the contents of the CRL file by converting it to plain text format, using
the following command:

115



Managing Certificates

116

openssl crl -in crl/crl.pem -text

For a single revoked certificate with serial number 02 (that is, the second
certificate in the OpenSSL CA's database), the output of this command would
look something like the following:

Certificate Revocation List (CRL):
Version 1 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: /C=IE/ST=Dublin/O=IONA/CN=CA_for_CRL
Last Update: Feb 15 10:47:40 2006 GMT
Next Update: Mar 15 10:47:40 2006 GMT
Revoked Certificates:
Serial Number: 02
Revocation Date: Feb 15 10:45:05 2006 GMT
Signature Algorithm: md5WithRSAEncryption
69:3e:55:8a:20:a0:57:d2:36:79:£f0:34:bb:73:65:1e:1c:a9:
40:35:8d:c4:e6:09:77:fd:2b:1f:a8:26:0c:7a:fb:30:67:7f:
6a:13:74:58:09:e2:88:e7:ad:c5:d2:62:48:6b:1e:£6:10:0d:
45:cc:1l:cb:6b:48:28:e2:78:ad:f0:cf:£fd:d6:57:78:f2:aa:
19:8b:bc:62:79:90:90:£7:18:ba:96:dc:7b:a5:b4:d5:bf:0f:
e8:5e:71:89:4b:38:8c:£8:75:17:dd:ba:74:£1:01:e0:48:d0:
ed:f4:dd:ea:47:32:8b:70:5e:1d:9%9a:4a:88:41:ba:bf:b2:39:
ce:32
————— BEGIN X509 CRL-----
MIIBHTCBhzANBgkghkiG9wOBAQQFADBCMQOswCQYDVOQGEwWJJRTEPMAOGAIUECB
MG
RHVibGluMQOwCwYDVQOKEWRJITO5BMRMWEQYDVQQODFAPDQVIMb3J£Q1 IMFwOwWN
jAy
MTUxMDQ3NDBaFwOwNjAzMTUxMDQ3NDBaMBOwEgIBAhcNMDYw
MjEIMTAONTA1W]AN
BgkghkiG9w0BAQQFAAOBgOBpP1WKIKBX03Z58DS7c2UeHK1ANY3ES5r13/Ss
fqCYM
evswZ39gE3RYueKI563F0mJI
ax72EA1FzBHLa0go4nit8M/911d48qozi7xieZuQ
9x161tx7pbTVvw/0XnGJSziM+HUX3bp08QHg
SNDk9ON3gRzKLcF4dmkgIQbg/sjn0O
Mg==



Configuring HTTPS and IIOP/TLS

This chapter describes how to configure HTTPS and IIOP/TLS endpoints.

Authentication AREINATIVES . ... e 118
Target-Only AUthentiCation ... e 119
Mutual AUTNENtICAtION ... ... e 122

Specifying Trusted CA CertifiCates .......oenieiii i e 125
When to Deploy Trusted CA Certificates ... .vuiuiieieiii i e 126
Specifying Trusted CA Certificates for HTTPS ... e 127
Specifying Trusted CA Certificates for HOP/TLS ... e 129

Specifying an Application’s OWn CertifiCate ..........coouviiiiii e 131
Deploying Own Certificate for HTTPS ...t e e 132
Deploying Own Certificate for IHOP/TLS ... onie e ee e 134

Specifying a Certificate Revocation LiSt ........oieieiie i 136

117



Configuring HTTPS and IIOP/TLS

Authentication Alternatives

Target-Only AUThentiCation ... e
Mutual AUthentiCatioN ... .o e

118



Target-Only Authentication

Target-Only Authentication

Overview

Security handshake

When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 14 on page 119.

Figure 14. Target Authentication Only

Secure Association A

Client

I [
‘ |
Trusted CA Lists } }
e Authenticate
CA Cort List 1 Certificate Cert file

|
‘ |
‘ |
|
| |
} CA Cert List 2 I
|
| |
| |
| |
‘ |
‘ |
|

r
w
[¢]
2
o)

[1]

L] [ O e

co

Prior to running the application, the client and server should be set up as
follows:

» A certificate chain is associated with the server—the certificate chain is
provided either in the form of a Java keystore. See Specifying an
Application’s Own Certificate on page 131 .

e One or more lists of trusted certification authorities (CA) are made
available to the client—see Specifying Trusted CA Certificates on page 125

During the security handshake, the server sends its certificate chain to the
client—see Figure 14 on page 119 . The client then searches its trusted CA

119



Configuring HTTPS and [IOP/TLS

HTTPS example

120

lists to find a CA certificate that matches one of the CA certificates in the
server’s certificate chain.

On the client side, there are no policy settings required for target-only
authentication. Simply configure your client without associating an X.509
certificate with the HTTPS port. You do need to provide the client with a list
of trusted CA certificates, however—see Specifying Trusted CA

Certificates on page 125 .

On the server side, in the server’s XML configuration file, ensure that the
sec:clientAuthentication element does not require client authentication.
This element can be omitted, in which case the default policy is not to require
client authentication. If the sec:clientauthentication elementis present,
however, it should be configured as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:clientAuthentication want="false" required="false"/>
</http:tlsServerParameters>
</http:destination>

Where the want attribute is set to false (the default), specifying that the
server does not request an X.509 certificate from the client during a TLS
handshake. The required attribute is also set to false (the default),
specifying that the absence of a client certificate does not trigger an exception
during the TLS handshake.

@ Note

As a matter of fact, the want attribute could be set either to true
or to false. If true, the want setting causes the server to request
a client certificate during the TLS handshake, but no exception would
be raised for clients lacking a certificate, so long as the required
attribute is false.

It is also necessary to associate an X.509 certificate with the server’'s HTTPS
port (see Specifying an Application’s Own Certificate on page 131 ) and to
provide the server with a list of trusted CA certificates, however (see Specifying
Trusted CA Certificates on page 125 ).



IIOP/TLS example

Target-Only Authentication

@ Note

The choice of cipher suite can potentially affect whether or not
target-only authentication is supported—see on page 139.

The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is IIOP/TLS.

# Artix Configuration File

policies:iiop tls:mechanism policy:protocol version = "SSL V3";
policies:iiop tls:mechanism policy:ciphersuites =
["RSA WITH RC4 128 SHA", "RSA WITH RC4 128 MD5"];

bank server ({

// Specify server invocation policies

policies:iiop tls:target secure invocation policy:requires

= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering"];

policies:iiop tls:target secure invocation policy:supports

= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInTarget"];

// Specify server’s own certificate (not shown)
}i
bank client
{

// Specify client invocation policies
policies:iiop tls:client secure invocation policy:requires

= ["Confidentiality", "EstablishTrustInTarget"];

policies:iiop tls:client secure invocation policy:supports

= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInTarget"];

// Specify client’s trusted CA certs (not shown)

}i

@ Note

If using the Java runtime, you must first associate the client or server
with a configuration file—see Appendix D on page 411 for details.

121



Configuring HTTPS and [IOP/TLS

Mutual Authentication

Overview

Security handshake

122

When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the target.
This scenario is illustrated in Figure 15 on page 122 . In this case, the server
and the client each require an X.509 certificate for the security handshake.

Figure 15. Mutual Authentication

Trusted CA Lists

|
CA Cert List 1
I
Authenticate }
Client I
| CACertList2
1
Cert file }
| 1
} L e
| |
I 1
Secure Association
Client @ — Server @
T T
| |
} |
Trusted CA Lists | }
e ——————— L Authenticate
CA Cert List 1 Target Cert file

Prior to running the application, the client and server should be set up as
follows:

* Both client and server have an associated certificate chain—see Specifying
an Application’s Own Certificate on page 131 .

* Both client and server are configured with lists of trusted certification
authorities (CA)—see Specifying Trusted CA Certificates on page 125 .



HTTPS example

IIOP/TLS example

Mutual Authentication

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see
Figure 14 on page 119.

On the client side, there are no policy settings required for mutual
authentication. Simply associate an X.509 certificate with the client’'s HTTPS
port—see Specifying an Application’s Own Certificate on page 131 . You also
need to provide the client with a list of trusted CA certificates—see Specifying
Trusted CA Certificates on page 125 .

On the server side, in the server’s XML configuration file, ensure that the
sec:clientAuthentication element is configured to require client
authentication, as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:clientAuthentication want="true" required="true"/>
</http:tlsServerParameters>
</http:destination>

Where the want attribute is set to true, specifying that the server requests
an X.509 certificate from the client during a TLS handshake. The required
attribute is also set to true, specifying that the absence of a client certificate
would trigger an exception during the TLS handshake.

It is also necessary to associate an X.509 certificate with the server's HTTPS
port (see Specifying an Application’s Own Certificate on page 131 ) and to
provide the server with a list of trusted CA certificates, however (see Specifying
Trusted CA Certificates on page 125 ).

(@ Note

The choice of cipher suite can potentially affect whether or not mutual
authentication is supported—see on page 139.

The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,

secure client with cert, and a server application,

secure_server enforce client auth, where the transport type is
[IOP/TLS.

123



Configuring HTTPS and IIOP/TLS

124

# Artix Configuration File

policies:iiop tls:mechanism policy:protocol version = "SSL V3";
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA_WITH RC4 128 SHA", "RSA WITH RC4 128 MD5"];

secure_server enforce client auth
{

// Specify server invocation policies

policies:iiop tls:target secure invocation policy:requires
= ["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

policies:iiop tls:target secure invocation policy:supports
= ["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

// Specify server’s own certificate (not shown)
// Specify server’s trusted CA certs (not shown)
}i

secure client with cert
{
// Specify client invocation policies
policies:iiop tls:client secure invocation policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];
policies:iiop tls:client secure invocation policy:supports
= ["Confidentiality", "Integrity", "DetectReplay", "Detect
Misordering", "EstablishTrustInClient", "EstablishTrustInTarget"];

// Specify client’s own certificate (not shown)

// Specify client’s trusted CA certs (not shown)

}i

Note

If using the Java runtime, you must first associate the client or server
with a configuration file—see Appendix D on page 411 for details.



Specifying Trusted CA Certificates

Specifying Trusted CA Certificates

When to Deploy Trusted CA CertifiCates ....uviiiiiii s 126
Specifying Trusted CA Certificates for HTTPS ... 127
Specifying Trusted CA Certificates for HHOP/TLS ... e 129

125



Configuring HTTPS and IIOP/TLS

When to Deploy Trusted CA Certificates

Overview

Which applications need to
specify trusted CA certificates?

126

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

* All IOP/TLS or HTTPS clients.

* Any IIOP/TLS or HTTPS servers that support mutual authentication.



Specifying Trusted CA Certificates for HTTPS

Specifying Trusted CA Certificates for HTTPS

CA certificate format

CA certificate deployment in the
Artix ESB configuration file

CA certificates must be provided in Java keystore format.

To deploy one or more trusted root CAs for the HTTPS transport perform the
following steps:

1.

Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see Set Up
Your Own CA on page 101). The trusted CA certificates can be in any

format that is compatible with the Java keystore utility—for example,

PEM format. All you need are the certificates themselves—the private
keys and passwords are not required.

Given a CA certificate, cacert.pem, in PEM format, you can add the
certificate to a JKS truststore (or create a new truststore) by entering the
following command:

keytool -import -file cacert.pem -alias CAAlias —-keystore
truststore.jks -storepass StorePass

Where caaiias is a convenient tag that enables you to access this
particular CA certificate using the keytoo1 utility. The file,
truststore.jks, is a keystore file containing CA certificates—if this
file does not already exist, the kxeytool utility will create it. The
StorePass password provides access to the keystore file,
truststore.jks.

Repeat step 2 as necessary, to add all of the CA certificates to the
truststore file, truststore.jks.

Edit the relevant XML configuration files to specify the location of the
truststore file. You need to include the sec:trustManagers element in

the configuration of the relevant HTTPS ports.

For example, you would configure a client port as follows:

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>

<sec:trustManagers>

127



Configuring HTTPS and [IOP/TLS

128

<sec:keyStore type="JKS"
password="StorePass"
file="certs/truststore.jks"/>
</sec:trustManagers>

</http:tlsClientParameters>
</http:conduit>

Where the type attribute specifes that the truststore uses the JKS
keystore implementation and storePass is the password needed to
access the truststore.jks keystore.

Configure a server port as follows:

<!-- Server port configuration -->
<http:destination i1d="{Namespace}PortName.http-destination">

<http:tlsServerParameters>

<sec:trustManagers>
<sec:keyStore type="JKS"
password="StorePass"
file="certs/truststore.jks"/>
</sec:trustManagers>

</http:tlsServerParameters>
</http:destination>

€39 Warning

The directory containing the truststores (for example,
X509Deploy/truststores/) should be a secure directory (that
is, writable only by the administrator).



Specifying Trusted CA Certificates for [IOP/TLS

Specifying Trusted CA Certificates for IOP/TLS

CA certificate format

CA certificate deployment in the
Artix configuration file

Windows

UNIX

CA certificates must be provided in Privacy Enhanced Mail (PEM) format.

To deploy one or more trusted root CAs for the IIOP/TLS transport, perform
the following steps (the procedure for client and server applications is the
same):

1. Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see Set Up
Your Own CA on page 101). The trusted CA certificates should be in PEM
format. All you need are the certificates themselves—the private keys and
passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For example,
you might create three CA list files as follows:

trusted ca lists/ca listOl.pem
X509Deploy/trusted ca_lists/ca list02.pem
X509Deploy/trusted ca_lists/ca list03.pem

Each CA list file consists of a concatenated list of CA certificates in PEM
format. A CA list file can be created using a simple file concatenation
operation. For example, if you have two CA certificate files, ca_cert01.pem
and ca_cert02.pem, you could combine them into a single CA list file,
ca_1list01.pem, with the following command:

copy X509CA\ca\ca cert0l.pem + x509CA\ca\ca cert02.pem
X509Deploy\trusted ca lists\ca 1list0l.pem

cat X509CA/ca/ca_certOl.pem X509CA/ca/ca cert02.pem >>
X509Deploy/trusted ca lists/ca_list0l.pem

The CA certificates are organized as lists as a convenient way of grouping
related CA certificates together.

3. Edit the Artix configuration file to specify the locations of the CA list files
to be used by your application. For example, the default Artix configuration
file is located in the following directory:

129



Configuring HTTPS and [IOP/TLS

130

ArtixInstallDir/cxx_java/etc/domains

To specify the CA list files, go to your application’s configuration scope in
the Artix configuration file and edit the value of the

policies:iiop tls:trusted ca list policy configuration variable
for the IIOP/TLS transport.

Note

If using the Java runtime, you must first associate the client or
server with a configuration file—see Appendix D on page 411 for
details.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_1ist0l.pem and ca_list02.pen files, edit the
Artix configuration file as follows:

# Artix configuration file.
SecureAppScope {

policies:iiop tls:trusted ca list policy = ["X509De
ploy/trusted ca lists/ca_listOl.pem", "Xx509Deploy/trus

ted ca lists/ca list02.pem"];

}i

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted ca lists/) should be a secure directory.

Note

If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted
CA certificates must be provided. If not, a NO_RESOURCES exception
is raised.



Specifying an Application’s Own Certificate

Specifying an Application’s Own Certificate

Deploying Own Certificate for HT T PS ... e e e 132
Deploying Own Certificate for IIOP/TLS .....ouiie e 134

131



Configuring HTTPS and IIOP/TLS

Deploying Own Certificate for HTTPS

Overview

Procedure

132

When working with the HTTPS transport the application's certificate is
deployed using the XML configuration file.

To deploy an application’s own certificate for the HTTPS transport, perform
the following steps:

1.

Obtain an application certificate in Java keystore format, certname. jks.

For instructions on how to create a certificate in Java keystore format,
see Use the CA to Create Signed Certificates in a Java
Keystore on page 105.

(@ Note

Some HTTPS clients (for example, Web browsers) perform an
URL integrity check, which requires a certificate’s identity to
match the hostname on which the server is deployed. See
Appendix D on page 411 for details.

Copy the certificate’s keystore, certname. ks, to the certificates
directory—for example, x509Deploy/certs—on the deployment host.

The certificates directory should be a secure directory that is writable
only by administrators and other privileged users.

Edit the relevant XML configuration file to specify the location of the
certificate keystore, certName.jks. You need to include the

sec:keyManagers element in the configuration of the relevant HTTPS
ports.

For example, you would configure a client port as follows:

<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>

<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"
password="KeystorePassword"
file="certs/CertName.jks"/>
</sec:keyManagers>



Deploying Own Certificate for HTTPS

</http:tlsClientParameters>
</http:conduit>

Where the kxeyPassword attribute specifies the password needed to
decrypt the certificate’s private key (that is, certPassword), the type
attribute specifes that the truststore uses the JKS keystore
implementation, and the password attribute specifies the password
needed to access the certname. ks keystore (that is,
KeystorePassword).

Configure a server port as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"
password="KeystorePassword"
file="certs/CertName.jks"/>
</sec:keyManagers>

</http:tlsServerParameters>
</http:destination>

€3 Warning

The directory containing the application certificates (for example,
X509peploy/certs/) should be a secure directory (that is,
readable and writable only by the administrator).

€3 Warning

The directory containing the XML configuration file should be a
secure directory (that is, readable and writable only by the
administrator), because the configuration file contains passwords
in plain text.

133



Configuring HTTPS and IIOP/TLS

Deploying Own Certificate for IIOP/TLS

Own certificate deployment in the
Artix configuration file

To deploy an Artix application’s own certificate, certName.p12, for the
IIOP/TLS transport, perform the following steps:

1. Copy the application certificate, certname.p12, to the certificates
directory—for example, x509Deploy/certs/applications—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the Artix configuration file.

() Note

If using the Java runtime, you must first associate the client or
server with a configuration file—see Appendix D on page 411 for
details.

Given that your application picks up its configuration from the
SecureAppScope Scope, change the principal sponsor configuration to
specify the certname.p12 certificate, as follows:

# Artix configuration file

éééureAppScope {
ﬁgincipal_sponsor:iiop_tls:use_principal_sponsor = "true";
principal sponsor:iiop tls:auth method id = "pkcsl2 file";
principal sponsor:iiop tls:auth method data = ["file

name=X509Deploy/certs/applications/CertName.pl2"];
}i

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. Other alternatives for supplying the certificate pass
phrase are, as follows:

* In a password file—you can specify the location of a password file that
contains the certificate pass phrase by setting the password file option

134



Deploying Own Certificate for IIOP/TLS

inthe principal sponsor:auth method data configuration setting.
For example:

principal sponsor:auth method data = ["filename=X509De
ploy/certs/applications/CertName.pl2", "password file=x509De
ploy/certs/CertName.pwf"];

€ Warning

Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator.

Directly in configuration—you can specify the certificate pass phrase
directly in configuration by setting the password option in the

principal sponsor:auth method data configuration setting. For
example:

principal sponsor:auth method data = ["filename=X509De
ploy/certs/applications/CertName.pl2", "password=Cert
NamePass"] ;

€9 Warning

If the pass phrase is stored directly in configuration, the Artix
configuration file should not be readable by anyone except the
administrator.

135



Configuring HTTPS and IIOP/TLS

Specifying a Certificate Revocation List

Overview

Revoking CA certificates

Configuring certificate revocation

136

Occasionally, it can happen that the security of an X.509 certificate is
compromised or you might want to invalidate a certificate, because the owner
of the certificate no longer enjoys the same security privileges as before. In
either of these cases, it is useful to generate and deploy a certificate revocation
list (CRL). A CRL is a list of X.509 certificates that are no longer valid. When
you deploy a CRL file to a secure application, the application automatically
rejects the certificates that appear in the list.

You can also revoke a CA certificate, in which case all of the certificates signed
by the CA are implicitly revoked as well.

Example 15 on page 136 shows how to configure an application to use a CRL
file.

Example 15. Configuration of a CRL

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:asec="http://cxf.iona.com/security/rt/configura
tion"
xmlns:csec="http://cxf.apache.org/configuration/secur
ity"
xmlns:http="http://cxf.apache.org/transports/http/con
figuration"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
xmlns:jaxws="http://cxf.apache.org/jaxws"
>

1 on page 137 <jaxws:endpoint
name="{http://apache.org/hello world soap_ http}SoapPort"
createdFromAPI="true">

2 on page 137 <jaxws:inInterceptors>

<ref bean="MyCRLTrustInterceptor"/>
</jaxws:inInterceptors>
</jaxws:endpoint>

3 on page 137 <asec:crlTrustInterceptor name="MyCRLTrustInter

ceptor">

4 on page 137 <asec:crls file="certs/ca.crl"/>
</asec:crlTrustInterceptor>



Format of the CRL file

Sources of CRL files

Commercial CAs

Specifying a Certificate Revocation List

</beans>
The preceding configuration can be explained as follows:

1. The configuration settings in the jaxws:endpoint element are applied to

the endpoint identified by the QName,
{http://apache.org/hello world soap http}SoapPort.

2. The jaxws:inInterceptor element installs an interceptor to the incoming
handler chain. The referenced interceptor, MyCRLTrustInterceptor, Will
intercept all incoming request messages directed at the current endpoint.

3. The asec:criTrustInterceptor element defines the bean that is
referenced from the jaxws:inInterceptors element.

4. The file attribute of the asec:cri1s element is used to specify the location
of the CRL file.

The CRL file must be in a PEM format.

You can obtain a CRL file from one of the following sources:
e Commercial CAs on page ? .

* OpenSSL CA on page ? .

If you use a commercial CA to manage your certificates, simply ask the CA
to generate the CRL file for you.

It is unlikely, however, that the CA will provide the CRL file in the requisite
PEM format (the PEM format is proprietary to the OpenSSL product). To
convert a CRL file, crl.der, from DER format to PEM format, use the
following openss1 command:

openssl crl -inform DER -outform PEM -in crl.der -out crl.pem

137



Configuring HTTPS and [IOP/TLS

OpenSSL CA

Creating an aggregate CRL file

Windows

UNIX

138

Where crl.pem is the converted PEM format file.

If you use the OpenSSL product to manage a custom CA, you can generate
a CRL file by following the instructions in Generating a Certificate Revocation
List on page 114.

If you need to revoke certificates from more than one CA, you can create an
aggregate CRL file simply by concatenating the CRL files from each CA.

For example, if you have a CRL file generated by a commercial CA,
commercial crl.pem, and another CRL file generated by a home-grown
OpenSSL CA, openssl _crl.pem, you can combine these into a single CRL
file as follows:

copy commercial crl.pem + openssl crl.pem crl.pem

cat commercial crl.pem openssl crl.pem > crl.pem



Configuring HTTPS Cipher Suites

This chapter explains how to specify the list of cipher suites that are made available to client or server program
for the purpose of establishing HTTPS connections. During a security handshake, the client chooses a cipher
suite that matches one of the cipher suites available to the server.

IS0 o]0 £=Te IO T o a =T G U 1 140
L]0 T T W 1 (= r 1 =T 3 142
ST I I SR ] (oo o BT o o 145

139



Configuring HTTPS Cipher Suites

Supported Cipher Suites

Overview

JCE/JSSE and security providers

SunJSSE provider

Cipher suites supported by
SunJSSE

A cipher suite is a collection of security algorithms that determine precisely
how an SSL/TLS connection is implemented.

For example, the SSL/TLS protocol mandates that messages be signed using
a message digest algorithm. The choice of digest algorithm, however, is
determined by the particular cipher suite being used for the connection.
Typically, an application can choose either the MD5 or the SHA digest
algorithm.

The cipher suites available for SSL/TLS security in Artix ESB depend on the
particular JSSE provider that is specified on the endpoint.

The Java Cryptography Extension (JCE) and the Java Secure Socket Extension
(JSSE) constitute a pluggable framework that allows you to replace the Java
security implementation with arbitrary third-party toolkits, known as security
providers.

In practice, the security features of Artix ESB have been tested only with
SUN'’s JSSE provider, which is named sunJsse.

Hence, the SSL/TLS implementation and the list of available cipher suites in
Artix ESB are effectively determined by what is available from SUN’s JSSE
provider.

The following cipher suites are supported by SUN’s JSSE provider in the J2SE
1.5.0 Java development kit (see also Appendix Al of SUN’s JSSE Reference
Guide):

» Standard ciphers:

SSL_DHE DSS EXPORT WITH DES40 CBC SHA
SSL _DHE DSS WITH 3DES EDE CBC SHA
SSL_DHE DSS WITH DES CBC SHA

SSL_DHE RSA EXPORT WITH DES40 CBC SHA
SSL _DHE RSA WITH 3DES EDE CBC SHA
SSL_DHE RSA WITH DES CBC SHA

SSL_RSA EXPORT WITH DES40 CBC SHA
SSL_RSA EXPORT WITH RC4 40 MD5
SSL_RSA WITH 3DES EDE CBC_ SHA
SSL_RSA WITH DES CBC_ SHA

! http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.htmI#AppA

140


http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

Supported Cipher Suites

SSL RSA WITH RC4 128 MD5

SSL RSA WITH RC4 128 SHA

TLS DHE DSS WITH AES 128 CBC SHA
TLS DHE DSS WITH AES 256 CBC SHA
TLS DHE RSA WITH AES 128 CBC SHA
TLS DHE RSA WITH AES 256 CBC SHA
TLS KRB5 EXPORT WITH DES CBC 40 MD5
TLS KRB5 EXPORT WITH DES CBC 40 SHA
TLS KRB5 EXPORT WITH RC4 40 MD5

TLS KRB5 EXPORT WITH RC4 40 SHA

TLS KRB5 WITH 3DES EDE CBC MD5

TLS KRB5 WITH 3DES EDE CBC SHA

TLS KRB5 WITH DES CBC MD5

TLS KRB5 WITH DES CBC SHA

TLS KRB5 WITH RC4 128 MD5

TLS KRB5 WITH RC4 128 SHA

TLS RSA WITH AES 128 CBC SHA

TLS RSA WITH AES 256 CBC SHA

* Null encryption, integrity-only ciphers:

SSL_RSA WITH NULL MD5
SSL RSA WITH NULL SHA

* Anonymous Diffie-Hellman ciphers (no authentication):

SSL_DH anon EXPORT WITH DES40 CBC_SHA
SSL_DH anon EXPORT WITH RC4 40 MD5
SSL_DH anon WITH 3DES EDE CBC_SHA
SSL_DH anon WITH DES CBC_SHA

SSL DH anon WITH RC4 128 MD5

TLS DH anon WITH AES 128 CBC_SHA

TLS DH anon WITH AES 256 CBC_SHA

JSSE reference guide For more information about SUN’s JSSE framework, please consult the JSSE

Reference Guide at the following location:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

141


http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Configuring HTTPS Cipher Suites

Cipher Suite Filters

Overview

Namespaces

In a typical application, you would usually want to restrict the list of available
cipher suites to a subset of the ciphers supported by the JSSE provider.

Table 1 on page 142 shows the XML namespaces that are referenced in this
section:

Table 1. Namespaces Used for Configuring Cipher Suite Filters

Prefix|Namespace URI

http |http://cxf.apache.org/transports/http/configuration

httpj |http://cxf.apache.org/transports/http-jetty/configuration

sec http://cxf.apache.org/configuration/security

sec:cipherSuitesFilter element

Semantics

142

You define a cipher suite filter using the sec:cipherSuitesFilter element,
which can be a child of either a http:tlsClientParameters element or a
httpj:tlsServerParameters element. Atypical sec:cipherSuitesFilter
element has the outline structure shown in Example 16 on page 142 .

Example 16. Structure of a sec:cipherSuitesFilter Element

<sec:cipherSuitesFilter>
<sec:include>RegularExpression</sec:include>
<sec:include>RegularExpression</sec:include>

<sec:exclude>RegularExpression</sec:exclude>
<sec:exclude>RegularExpression</sec:exclude>

</sec:cipherSuitesFilter>

The following semantic rules apply to the sec:cipherSuitesFilter element:

1. Ifa sec:cipherSuitesFilter element does not appear in an endpoint’s
configuration (that is, it is absent from the relevant http:conduit or
httpij:engine-factory element), the following default filter is used:

<sec:cipherSuitesFilter>
<sec:include>.* EXPORT_.*</sec:include>



Regular expression matching

Client conduit example

Cipher Suite Filters

<sec:include>.* EXPORT1024.*</sec:include>

<sec:include>.* DES_ .*</sec:include>

<sec:include>.* WITH NULL .*</sec:include>
</sec:cipherSuitesFilter>

2. If the sec:ciphersuitesFilter element does appear in an endpoint’s
configuration, all cipher suites are excluded by default.

3. To include cipher suites, add a sec:include child element to the
sec:cipherSuitesFilter element. The content of the sec:include

element is a regular expression that matches one or more cipher suite
names (for example, see the cipher suite names in Cipher suites supported
by SunJSSE on page 7).

4. To refine the selected set of cipher suites further, you can add a
sec:exclude element to the sec:cipherSuitesFilter element. The
content of the sec:exclude element is a regular expression that matches
zero or more cipher suite names from the currently included set.

(@ Note

Sometimes it makes sense to explicitly exclude cipher suites that
are currently not included, in order to future-proof against
accidental inclusion of undesired cipher suites.

The grammar for the regular expressions that appear in the sec:include
and sec:exclude elements is defined by the Java regular expression utility,
java.util.regex.Pattern. For a detailed description of the grammar,
please consult the Java reference guide, http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html.

The following XML configuration shows an example of a client that applies a
cipher suite filter to the remote endpoint, { wSDLPortNamespace} PortName.
Whenever the client attempts to open an SSL/TLS connection to this endpoint,
it restricts the available cipher suites to the set selected by the
sec:cipherSuitesFilter element.

<beans ... >
<http:conduit name="{WSDLPortNamespace} PortName.http-conduit">

143


http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Configuring HTTPS Cipher Suites

<http:tlsClientParameters>

<sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_.*</sec:include>
<sec:include>.* WITH DES_.*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon .*</sec:exclude>
</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

144



SSL/TLS Protocol Version

SSL/TLS Protocol Version

Overview

SSL/TLS protocol versions
supported by SunJSSE

Specifying the SSL/TLS protocol
version

Client side SSL/TLS protocol
version

Server side SSL/TLS protocol
version

The versions of the SSL/TLS protocol that are supported by Artix ESB depend
on the particular JSSE provider configured. By default, the JSSE provider is
configured to be SUN’s JSSE provider implementation.

Table 2 on page 145 shows the SSL/TLS protocol versions supported by SUN’s
JSSE provider.

Table 2. SSL/TLS Protocols Supported by SUN’s JSSE Provider

Protocol | Description

SSL Supports some version of SSL; may support other versions

ssLv2 |Supports SSL version 2 or higher

ssLv3 |Supports SSL version 3; may support other versions

TLS Supports some version of TLS; may support other versions

TLSv1l |[Supports TLS version 1; may support other versions

You can specify the preferred SSL/TLS protocol version as an attribute on the
http:tlsClientParameters element (client side) or on the
httpj:tlsServerParameters element (server side).

You can specify the protocol to be TLS on the client side by setting the
secureSocketProtocol attribute as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

<http:conduit name="{Namespace} PortName.http-conduit">
<http:tlsClientParameters secureSocketProtocol="TLS">

</http:tlsClientParameters>
</http:conduit>

</beans>

You can specify the protocol to be TLS on the server side by setting the
secureSocketProtocol attribute as follows:

145



Configuring HTTPS Cipher Suites

146



Part Ill. The Artix Security Service

The Artix security service is the central element of the security infrastructure that provides authentication and
authorization features in Artix security.






Configuring Servers to Support Authentication ...........ccoiiii i 151

Connecting to the Artix SECUNTY SEIVICE ... e 152
Configuring Authentication Using WS-POIICY .....oviriiiii e 153
INtroduction 10 WS-POLICY ...eueeiiii 154

o] 110y VA (o (=11 (o] PP 157
ISFAUthenticationPoliCy POLICY .....cviririi i e 162
ACLAULhorizationPoliCy POLICY .....veiii i e 165

Configuring Authentication—O0Id Method ..o 167
Managing Users, Roles and DOMaINS ........cccveiiiiiiiiiiiiiiiiiii e s s v s s s sns s s s e s s s s s s snnnnnsnss 175
Introduction to Domains and REAIMS .......iuiuiii e 176

Artix Authentication DOMaINS ........ieiiiiii e 177

Artix Authorization REaIMS ... 180

Managing a File Authentication DOmain ...........coiiiii 184
Managing an LDAP Authentication DOmain .........cciiiiiii s 189
Managing Access Control Lists .......cccoeiriiiriiiiiriiiriri s s s s s s s s s s s rasarararnsnsnnnnnns 191
OVErvIEW OF ArTiX ACL FIlBS .. uuiniiie e e 192

ACL File FOIMAt oot et et 193
GENEIALING ACL FIlBS vttt e e e e e e e 196
DEPIOYING ACL FilES vttt e e e 199
Configuring the Artix Security ServiCe .......ccieiiiiiiiiiii i r e s s s s s s s s arn e en 201
Configuring the SECUITY SEIVICE ..vuviviii i e e 202
Configuring the File AQapIer .....v e e 209
Configuring the LDAP AQapIer ... e 211
Configuring the Kerberos Adapler ........ouiuiririi e 215
Overview of Kerberos Configuration ...........ooiiiiiii e 216

Configuring the Adapter Properties ......ccoviiiiii e 218

Configuring JAAS LOZIN Properties .......ouiuiiiiiii et aas 221

Clustering and FEAIation .......cuiiiii i e 225
Federating the Artix SECUNty SErVICE ...oviviii i 226

149



150



Configuring Servers to Support
Authentication

This chapter describes how to connect an Artix server (Java runtime) to the Artix security service and enable
authentication and authorization on the server’s endpoints.

Connecting to the ArtiX SECUNTY SEIVICE ....uiei e 152
Configuring Authentication UsSiNg WS-POIICY ...iuiuiiiiiii e 153
INtrodUCHiON 10 WS-POLICY ... e 154
o] 110y VA 0T (=71 o] N 157
ISFAUthenticationPOlICy POLICY ....uieie i e eaanas 162
ACLAUhOriZationPOlICY POLICY ...vieeieit e e a e 165
Configuring Authentication—O0Id Method .........ouiiiii e 167

151



Configuring Servers to Support Authentication

Connecting to the Artix Security Service

Overview

The first step to securing an Artix server with the security service is to configure
a secure HTTPS connection between the Artix server and the security service.
Figure 16 on page 152 shows an overview of the server’s connection to the
security service.

Figure 16. Overview of Connecting to the Security Service

Artix Security

Security layer Service
HTTPS >0 HTTPS
O—
A 7
X.509 CA

Server Keystore

Configuring a connection to the
security service

152

WSDL

isf service.wsdl

The server communicates with the security service using the SOAP binding
and the HTTPS protocol. Connections to the security service are automatically
opened by a security handler in the Artix server. First, the handler downloads
the security service WSDL contract by querying the security service's WSDL
publish port. Next, the handler connects to the Web services exposed by the
security service, using the addresses from the downloaded WSDL contract.

A detailed example of how to configure a secure HTTPS connection between
an Artix server and the security service is given in Server-to-Security Server
Connection on page 28. For additional information on how to customize the
SSL/TLS layer, see Part 1l on page 81.



Configuring Authentication Using WS-Policy

Configuring Authentication Using WS-Policy

INErOdUCTION 10 W S-POIICY .o.vee et eaeen 154
a0 110y VA 0T (=7 o] < 157
ISFAULheNticatioNPOlICY POLICY ...iueie i e e et e aanas 162
ACLAUhOFIZAtioNPOIICY POLICY ...veiiii et et e e e e aaes 165

153



Configuring Servers to Support Authentication

Introduction to WS-Policy

Overview

Policies and policy references

! http://www.w3.org/TR/ws-policy/

154

The WS-Policy specification1 provides a general framework for applying policies
that modify the semantics of connections and communications at runtime in
a Web services application. Artix security uses the WS-Policy framework to
configure authentication and authorization requirements on the server side
of JAX-WS applications.

The simplest way to specify a policy is to embed it directly where you want
to apply it. For example, to associate a policy with a specific JAX-WS endpoint
in Spring configuration, you can specify it as follows:

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy" ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:Policy>

<!-- Policy expression comes here ... --
>
</wsp:Policy>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>
</beans>

An alternative way to specify a policy is to insert a policy reference element,
wsp:PolicyReference, at the point where you want to apply the policy and
then insert the policy element, wsp:Policy, at some other point in the XML
file. For example, to associate a policy with a JAX-WS endpoint using a policy
reference, you could use a configuration like the following:

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-


http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

Introduction to WS-Policy

200401-wss-wssecurity-utility-1.0.xsd" ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#PolicyID"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="PolicyID">
<!-- Policy expression comes here ... -->
</wsp:Policy>

</beans>

Where the policy reference, wsp:PolicyReference, locates the referenced
policy using the ID, policy1D (note the addition of the # prefix character in
the ur1 attribute). The policy itself, wsp: Policy, must be identified by adding
the attribute, wsu:Id="rPolicyID".

Policy subjects The entities with which policies are associated are called policy subjects. For

example, you could associate a policy with a JAX-WS endpoint. In that case,
the JAX-WS endpoint is the policy subject. The WS-Policy framework supports
a variety of different policy subjects in the context of the Artix Java runtime.

Associating a policy with a single

endpoint You can associate a policy with a single JAX-WS endpoint as shown in the

following example. The recommended approach is to use a policy reference.

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis—
200401-wss-wssecurity-utility-1.0.xsd" ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#PolicyID"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="PolicyID">
<!-- Policy expression comes here ... -->

155



Configuring Servers to Support Authentication

156



Policy Expressions

Overview

Policy assertions

Policy alternatives

Policy Expressions

In general, a wsp:Policy element is composed of multiple different policy
settings (where individual policy settings are specified as policy assertions).
Hence, the policy defined by a wsp:Policy element is really a composite
object. The content of the wsp: Policy element is called a policy expression,
where the policy expression consists of various logical combinations of the
basic policy assertions. By tailoring the syntax of the policy expression, you
can determine what combinations of policy assertions must be satisfied at
runtime in order to satisfy the policy overall.

This section describes the syntax and semantics of policy expressions in detail.

Policy assertions are the basic building blocks that can be combined in various
ways to produce a policy. A policy assertion has two key characteristics: it
adds a basic unit of functionality to the policy subject and it represents a
boolean assertion to be evaluated at runtime. For example, consider the
following policy assertion for performing HTTPS Basic Authentication:

<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="HTTP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>

Where the itsec:ISFAuthenticationPolicy element represents the policy
assertion and the attributes of itsec:CredentialSource identify the
authentication type to be HTTP Basic Authentication. When associated with
a JAX-WS endpoint, this policy assertion has the following effects:

¢ The JAX-WS endpoint unmarshals the HTTP Basic Authentication
credentials and tests their authenticity by calling out to the security service.

* At runtime, the policy assertion returns true, if HTTP Basic Authentication

credentials are present in the incoming request and the credentials are
authentic; otherwise the policy assertion returns false.

Note that if a policy assertion returns false, this does not necessarily result
in an error. The net effect of a particular policy assertion depends on how it
is inserted into a policy and on how it is combined with other policy assertions.

A policy is built up using policy assertions, which can additionally be qualified
using the wsp:0ptional attribute, and various nested combinations of the

157



Configuring Servers to Support Authentication

wsp:All element

wsp:ExactlyOne element

158

wsp:All and wsp:ExactlyoOne elements. The net effect of composing these
elements is to produce a range of acceptable policy alternatives. As long as
one of these acceptable policy alternatives is satisfied, the overall policy is
also satisified (evaluates to true).

When a list of policy assertions is wrapped by the wsp:211 element, all of
the policy assertions in the list must evaluate to true. For example, consider
the following combination of authentication and authorization policy assertions:

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<wsp:All>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</wsp:All>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if the
following conditions both hold:

* WS-Security username/password credentials must be present and authentic;
and

* The authenticated user must have permission to invoke the requested
operation (where the permission is checked using the specified ACL file).

(® Note

The wsp:Policy element is semantically equivalent to wsp:a11.
Hence, if you removed the wsp:a11 element from the preceding
example, you would obtain a semantically equivalent example—see
Example 23 on page 165.

When a list of policy assertions is wrapped by the wsp: Exact1yone element,
at least one of the policy assertions in the list must evaluate to true. The
runtime goes through the list, evaluating policy assertions until it finds a policy



Sample policy expression

Policy Expressions

assertion that returns true. At that point, the wsp:Exact1yone expression
is satisfied (returns true) and any remaining policy assertions from the list
will not be evaluated. For example, consider the following combination of
authentication policy assertions:

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
<wsp:ExactlyOne>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="HTTP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if
either of the following conditions hold:

* WS-Security username/password credentials are present and authentic; or
* HTTP Basic Authentication credentials are present and authentic;

Note, in particular, that if both credential types are present, the policy would
be satisfied after evaluating one of the assertions, but no guarantees can be
given as to which of the policy assertions actually gets evaluated.

Example 17 on page 159 shows a policy expression that nests a
wsp:ExactlyOne element inside a wsp:a11 element. The net effect of this
policy is that either HTTP Basic Authentication or (inclusive) WS-Security
username/password credentials must be present and authentic. Additionally,
the authenticated user must be authorized to invoke the requested operation.

Example 17. Sample Policy Expression

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<wsp:All>
<wsp:ExactlyOne>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource

securityProtocolType="HTTP"
credentialType="USERNAME PASSWORD"/>

159



Configuring Servers to Support Authentication

The empty policy

The null policy

Normal form

160

</itsec:ISFAuthenticationPolicy>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</wsp:All>
</wsp:Policy>

A special case is the empty policy, an example of which is shown in
Example 18 on page 160.

Example 18. The Empty Policy

<wsp:Policy ... >
<wsp:ExactlyOne>
<wsp:All/>
</wsp:ExactlyOne>
</wsp:Policy>

Where the empty policy alternative, <wsp:a11/>, represents an alternative
for which no policy assertions need be satisfied. In other words, it always
returns true. When <wsp:211/> is available as an alternative, the overall
policy can be satisified even when no policy assertions are true.

A special case is the null policy, an example of which is shown in
Example 19 on page 160.

Example 19. The Null Policy

<wsp:Policy ... >
<wsp:ExactlyOne/>
</wsp:Policy>

Where the null policy alternative, <wsp:ExactlyOne/>, represents an
alternative that is never satisfied. In other words, it always returns false.

In practice, by nesting the <wsp:211> and <wsp:Exact1yOne> elements,
you can produce fairly complex policy expressions, whose policy alternatives
might be difficult to work out. To facilitate the comparison of policy



Policy Expressions

expressions, the WS-Policy specification defines a canonical or normal form
for policy expressions, such that you can read off the list of policy alternatives
unambiguously. Every valid policy expression can be reduced to the normal

form.

In general, a normal form policy expression conforms to the syntax shown in
Example 20 on page 161.

Example 20. Normal Form Syntax

<wsp:Policy ... >
<wsp:ExactlyOne>
<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>
<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

Where each line of the form, <wsp:211>...</wsp:A11>, represents a valid

policy alternative. If one of these policy alternatives is satisfied, the policy is
satisfied overall.

lel



Configuring Servers to Support Authentication

ISFAuthenticationPolicy Policy

Overview

Namespaces

Sample authentication policy

162

You use the IsFAuthenticationPolicy policy to enable authentication of
a specific type of credentials on the server side of a secure connection. The
itsec:ISFAuthenticationPolicy elementis a policy assertion that returns
true, if the specified credential type is present in an incoming request and
is authentic, and returns false, if the specified credential type is not present
in the incoming request or if the credentials fail to authenticate. As a side
effect of processing the policy, the detected credentials are unmarshalled
from the request message and placed into an InCredentialsMap object,
thus making them available to the application code—see on page 313.

The following XML schema namespaces and namespace prefixes are used in
this subsection:

Prefix [Namespace

itsec|http://schemas.iona.com/soa/security-config

wsp http://www.w3.0rg/ns/ws-policy

Example 21 on page 162 shows an example of an
ISFAuthenticationPolicy policy, as it might appear in either a Spring
configuration file or a WSDL contract.

Example 21. Sample ISFAuthenticationPolicy Policy

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

In the preceding example, the itsec:ISFAuthenticationPolicy element
contains a single sub-element, itsec:CredentialSource, that specifies
the type of credential that this policy expects to find in the incoming requests.
The specified security protocol is soap and credential type is



Authentication domain

Supported credential types

ISFAuthenticationPolicy Policy

USERNAME_PASSWORD, Which together effectively specify WS-Security
username/password credentials.

The itsec:ISFAuthenticationPolicy element also allows you to specify
the name of the authentication domain to which the credentials belong. For
example, Example 22 on page 163 shows how to specify an authentication
policy for an Artix server that belongs to the emea domain.

Example 22. Authentication Policy with Specified Domain

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<itsec:ISFAuthenticationPolicy authenticationDomain="emea">

<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

Where the authenticationDomain attribute enables you to specify the
policy's domain name explicitly. If your application connects to a security
service that has only one adapter, it is not strictly necessary to specify the
authenticationDomain attribute here (it defaults to an empty string). On
the other hand, if your security service is deployed with multiple adapters, it
is essential to specify the domain name in your configured authentication
policies—see Deploying multiple adapters on page 207.

The complete list of security protocol/credential type combinations supported
by the IsFAuthenticationPolicy elementis shown in Table 3 on page 163.

Table 3. Combinations of Security Protocol and Credential Type

Security Protocol Type Credential Type Protocol Description

TLS CERTIFICATE SSL/TLS handshake.
TLS_PEER SSL/TLS handshake.

HTTP USERNAME PASSWORD HTTP Basic Authentication.

SOAP USERNAME PASSWORD WS-Security username/password

token.

CERTIFICATE WS-Security binary security token.
IONA SSO TOKEN WS-Security binary security token.
GSS KRB 5 AP REQ TOKEN WS-Security binary security token.

163



Configuring Servers to Support Authentication

Security Protocol Type

Credential Type Protocol Description

SAML_ASSERTION SAML assertion.

Requiring endorsements

164

The itsec:ISFAuthenticationPolicy element also supports the optional
sub-element, itsec:RequiredEndorsements, that enables you to require
one or more endorsements of the detected credentials. The purpose of the
required endorsements setting is to check that credentials have been endorsed
(that is, vouched for) by another set of trusted credentials—see
Endorsements on page 340 for a detailed explanation of endorsements.

To use the endorsement feature, simply insert the
itsec:RequiredEndorsements element into the
itsec:ISFAuthenticationPolicy element as shown in the following
example:

<wsp:Policy wsu:Id="AuthenticateAnyCredentialPolicy">
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource securityProtocolType="HTTP"
credentialType="USERNAME PASSWORD"/>
<itsec:RequiredEndorsements>
<itsec:CredentialSource securityProtocolType="TLS"
credentialType="TLS PEER"/>
</itsec:RequiredEndorsements>
</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

Where the itsec:RequiredEndorsements/itsec:CredentialSource
element selects the endorsing credential by specifying a valid security
protocol/credential type combination (see Table 3 on page 163).




ACLAuthorizationPolicy Policy

ACLAuthorizationPolicy Policy

Overview

Namespaces

Sample authorization policy

You use the ACLAuthorizationPolicy policy to enable authorization of
requested operations, where permission to perform the operation is checked
by looking up an access control list (ACL) file. This policy must always be
used in combination with at least one authentication policy assertion
(itsec:ISFAuthenticationPolicy element). Evidently, it does not make
sense to perform an authorization check if no credentials are available.

The itsec:ACLAuthorizationPolicy element is a policy assertion that
returns true, if the authenticated user has permission to perform the requested
operation, and returns false, if the authenticated user does not have
permission to perform the requested operation. As a side effect of processing
the policy, the user's roles and realm data may be cached in the server (in
order to optimize future operation invocations).

The following XML schema namespaces and namespace prefixes are used in
this subsection:

Prefix |Namespace

itsec|http://schemas.iona.com/soa/security-config

wsp http://www.w3.0rg/ns/ws-policy

Example 23 on page 165 shows an example of an ACLAuthorizationPolicy
policy, as it might appear in either a Spring configuration file or a WSDL
contract.

Example 23. Sample ACLAuthorizationPolicy Policy

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD" />
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

165



Configuring Servers to Support Authentication

Authorization policy attributes

166

/>
</wsp:Policy>

The itsec:ACLAuthorizationPolicy element supports the following
attributes:

aclURL
Specifies the location of an ACL file—for example, file:etc/acl.xml.

aclServerName
Selects a particular rule set from the ACL file by specifying its server
name—see ACL server name on page 168 .

authorizationRealm
Specifies the authorization realm to which this server belongs—see

on page 175.

tokenAuthorizationCombinator
If multiple security tokens are available (for example, if you added
multiple itsec:ISFAuthenticationPolicy elements to the policy

shown in Example 23 on page 165), this attribute specifies whether just
one or all of the available tokens must pass the authorization check, as
follows:

* arnL—(default) all of the available security tokens must pass the

authorization check.

* aNy—at least one of the available security tokens must pass the

authorization check.



Configuring Authentication—OId Method

Configuring Authentication—OIld Method

Overview

Figure 17 on page 167 shows an overview of the set-up required to configure
authentication and authorization in an Artix server. To enable authentication,
configure the server’s security layer to select a particular credential type. In
addition, if you want the server to perform authorization checks, you should
associate an access control list file, ac1.xm1, with the security layer, as shown
in Figure 17 on page 167 .

Figure 17. Configuring Authentication and Authorization in an Artix Server

Artix Server

Security layer

acl.xml

ACL file

Artix Security
Service
authenticate . O
HTTPS " 5 HTTPS
O—

Because authentication and authorization usually go hand in hand, you would
normally specify an access control list (ACL) file at the same time that you
configure authentication. Example 24 on page 167 shows an example of a
simple ACL file that is used in the authorization demonstration located in
ArtixInstallDir/java/samples/security/authorization.

Example 24. Sample ACL File

<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="..." >
<action-role-mapping>
<server-name>artix.java.security.sample</server-name>
<interface>

167



Configuring Servers to Support Authentication

ACL server name

Enabling authentication and
authorization

168

<name>{http://apache.org/hello world soap http}Greeter</name>

<action-role>
<action-name>sayHi</action-name>
<role-name>guest</role-name>

</action-role>

<action-role>
<action-name>greetMe</action-name>
<role-name>president</role-name>

</action-role>

</interface>
</action-role-mapping>
</secure-system>

The access control rules in Example 24 on page 167 associate WSDL
operations (specified as action-name elements) with specific role names.
Only users that have the specified roles will be allowed to invoke the relevant
operations. For more details about ACL files, see on page 191.

It is important to note here that you can, in principle, define multiple sets of
rules in an ACL file, where each set of rules is enclosed in an
action-role-mapping element. In order to select a specific rule set, use
the identifier that appears in the server-name element.

There are a variety of different elements you can insert into an Artix server’s
XML configuration in order to enable authentication and authorization. In
general, you must use a different element type, depending on what type of
credential you want to authenticate.

Example 25 on page 168 shows the general outline of an authentication
element—represented by the placeholder, credentialauthElement—in a
server's XML configuration file. The attributes shown in

Example 25 on page 168 are defined in the authentication elements’ base
type and are thus common to all authentication elements.

Example 25. Credential Authentication Element in a Server

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

>
(1] <jaxws:endpoint name="{Namespace} TargetPort"
createdFromAPI="true" >
<jaxws:features>
(2} <itsec:CredentialAuthElement



Configuring Authentication—OId Method

(3] aclURL="ACLFile"
(4] aclServerName="ServerName"
(5] authorizationRealm="RealmName"
(6} enableAuthorization="Boolean"
/>
</jaxws:features>
</jaxws:endpoint>
</beans>

The preceding XML configuration can be described as follows:

©® The authentication feature is associated with the endpoint (WSDL port)

specified by the jaxws:endpoint element. You must configure
authentication separately for each endpoint that you want to protect.

(® Note

There are several different ways of referencing or creating a
JAX-WS endpoint using the jaxws:endpoint element. The
preceding example shows a reference to a JAX-WS endpoint
created in the Java application code. It is also possible to
instantiate a JAX-WS endpoint by configuration—for example,
see Example 1.7 on page 37. See also Developing Artix
Applications with JAX-WS for more details.

For the possible credential elements, itsec:CredentialAuthElement,

see the list of available credential types, Credential types available for
authentication on page 171 .
The ac1URL attribute specifies the location of an ACL file—for example,

file:etc/acl.xml.
The aclserverName attribute selects a particular rule set from the ACL

file by specifying its server name—see ACL server name on page 168 .
The authorizationRealm attribute specifies the authorization realm

to which this server belongs—see on page 175.

By default, authorization is enabled whenever authentication is. If you
would like to enable authentication without authorization, however, you
can set the enableAuthorization attribute to false. In this case,

169



Configuring Servers to Support Authentication

credentialEndorser attribute

170

there is no need to set the ac1URL, aclServerName, Of

authorizationRealm attributes.

The authentication elements described here also support the
credentialEndorser attribute (this attribute is not defined in the base type,
however). The purpose of the credential endorser setting is to enable you to
impose extra conditions on the credentials, before accepting them for
authentication. In particular, a credential endorser enables you to check that
credentials have been endorsed (that is, vouched for) by another set of trusted
credentials—see Endorsements on page 340 for more details.

To use the endorsement feature, the credentialEndorser attribute must
be set equal to the name of the Java class that implements a credential
endorser. Normally, it is not necessary to set this attribute, because the
security schema automatically assigns a default credential endorser for each
credential type. If you want to override the default, however, you can select
one of the following standard endorser classes:

com.iona.soa.security.rt.credential.NoOpCredentialEndorser

Establishes no endorsements between previously established credentials
and the credential that is in the process of being created. Use this
endorser if you wish to place no constraints on received credential
information.

com.iona.soa.security.rt.credential.RequireTLSCredentialEndorser

Checks for the availability of TLS credentials (which signifies that the
incoming request has travelled across a secure TLS connection). If such
TLS credentials exist, they are placed on the the list of credential
endorsements for the credential that is in the process of being created.
If there are no such TLS credentials available, the request is rejected
with a Fault exception.

com. iona.soa.security.rt.credential .RequireTLSClientAuthCredentialEndorser

Checks for the availability of TLS credentials containing a client certificate,
indicating that the client application has authenticated itself over TLS to
the server. If such TLS credentials exist, they are placed on the the list
of credential endorsements for the credential in the process of creation.
If there are no such TLS credentials available, the request is rejected
with a Fault exception.



Configuring Authentication—OId Method

com.iona.soa.security.rt.credential.LaxTLSCredentialEndorser
If TLS credentials exist, they are placed on the the list of credential

endorsements for the credential that is in the process of being created.
No exception is thrown, if TLS credentials are unavailable.

Custom endorsers . . .
You can optionally implement your own custom endorsers. For details, see

“Endorsements” on page 587.

Credential types available for

authentication The following credentials types can be presented for authentication:

e TLS X.509 certificate on page 171 .
e HTTP Basic Authentication on page 171 .
* WSS username token on page 172 .

* WSS binary security token on page 172 .

WSS X.509 certificate on page 173 .

TLS X.509 certificate To enable authentication of X.509 certificates received through the TLS

protocol, use the itsec:TLSAuthServerConfig element as the
authentication element. A typical example of a TLSAuthServerConfig
element is shown in Example 26 on page 171 .

Example 26. TLSAuthServerConfig Element

<itsec:TLSAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The TLsAuthServerconfig element inherits all of the attributes shown in
Example 25 on page 168 and also supports the credentialEndorser
attribute (default setting is NoopCredentialEndorser).

HTTP Basic Authentication To enable authentication of username and password credentials received

through the HTTP Basic Authentication protocol, use the
itsec:HTTPBAServerConfig element as the authentication element. A
typical example of a HTTPBAServerConfig element is shown in
Example 27 on page 172 .

171



Configuring Servers to Support Authentication

WSS username token

WSS binary security token

172

Example 27. HTTPBAServerConfig Element

<itsec:HTTPBAServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The HTTPBAServerConfig element inherits all of the attributes shown in
Example 25 on page 168 and also supports the credentialEndorser
attribute (default setting is LaxTLSCredentialEndorser). .

To enable authentication of username and password credentials received
through the SOAP protocol (in @ WSS UsernameToken header), use the
itsec:WSSUsernameTokenAuthServerConfig element as the authentication
element. A typical example of @a WSSUsernameTokenAuthServerConfig
element is shown in Example 28 on page 172 .

Example 28. WSSUsernameTokenAuthServerConfig Element

<itsec:WSSUsernameTokenAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The WSSUsernameTokenAuthServerConfig element inherits all of the
attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

To enable authentication of binary token credentials received through the
SOAP protocol (in a WSS BinarySecurityToken header), use the
itsec:WSSBinarySecurityTokenAuthServerConfig element as the
authentication element. The following kinds of credential are transmitted as
binary security tokens in Artix:

¢ |ONA SSO token.
* Kerberos token.

A typical example of a WSSBinarySecurityTokenAuthServerConfig
element is shown in Example 29 on page 173 .



WSS X.509 certificate

Example configuration

Configuring Authentication—OId Method

Example 29. WSSBinarySecurityTokenAuthServerConfig Element

<itsec:WSSBinarySecurityTokenAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The wssBinarySecurityTokenAuthServerConfig element inherits all of
the attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

To enable authentication of X.509 certificates received through the SOAP
protocol (in a WSS X.509 certificate header), use the
itsec:WSSX509CertificateAuthServerConfig element as the
authentication element. A typical example of a
WSSX509CertificateAuthServerConfig element is shown in
Example 30 on page 173 .

Example 30. WSSX509CertificateAuthServerConfig Element

<itsec:WSSX509CertificateAuthServerConfig
aclURL="ACLFile"
aclServerName="ServerName"
authorizationRealm="RealmName"

/>

The wssx509CertificateAuthServerConfig element inherits all of the
attributes shown in Example 25 on page 168 and also supports the
credentialEndorser attribute (default setting is
LaxTLSCredentialEndorser).

@ Note

Currently, it is only possible to send an X.509 certificate in a WSS
SOAP header, if the certificate is used to sign or encrypt portions of
the SOAP message (configurable using the WSS partial message
protection feature).

The sample XML configuration in Example 31 on page 174 shows how to
enable WSS username and password authentication and authorization for the
endpoint with QName,

173



Configuring Servers to Support Authentication

{http://apache.org/hello world soap http}SoapPort. The

authentication feature is associated with the ACL file, etc/acl.

Example 31. Enabling WSS UsernameToken Authentication

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xmlns:itsec="http://schemas.iona.com/soa/security-config"
>

<jaxws:endpoint name="{http://apache.org/hello world soap http}SoapPort"
createdFromAPI="true">
<jaxws:features>
<itsec:WSSUsernameTokenAuthServerConfig
aclURL="file:etc/acl.xml"
aclServerName="artix.java.security.sample"
authorizationRealm="corporate"
/>
</jaxws:features>
</jaxws:endpoint>

</beans>

174

xml.



Managing Users, Roles and Domains

The Artix security service provides a variety of adapters that enable you to integrate the Artix Security Framework
with third-party enterprise security products. This allows you to manage users and roles using a third-party
enterprise security product.

Introduction to DomMains @nd REAIMS ......iuiiiii e et eeas 176
Artix AUThentication DOMAINS .. ..iuiii it e e e e e et aneas 177
Artix AUthorization REAIMS . .oui i e e 180
Managing a File Authentication DOMain ... ..o e 184
Managing an LDAP Authentication DOMaiN .......c.ouieininii e 189

175



Managing Users, Roles and Domains

Introduction to Domains and Realms

Artix AUThENTICation DOMaAiNS ...viieii e e e e ettt e e e
Artix AUthOriZation REaIMS ....uiii i e e e aas

176



Artix Authentication Domains

Artix Authentication Domains

Overview

This subsection introduces the concept of an Artix authentication domain.

Domain architecture Figure 18 on page 177 shows the architecture of an Artix authentication

domain. An Artix authentication domain is identified with an enterprise security
service that plugs into the Artix security service through an iSF adapter. User
data needed for authentication, such as username and password, are stored
within the enterprise security service. The Artix security service provides a
central access point to enable authentication through one or more Artix
authentication domains.

Figure 18. Architecture of an Artix authentication domain

Authentication Domain (emea) Authentication Domain (americas)
Artix Artix Artix Artix
Server Server Server Server

[ |
authenticate authe/?ticate

[ |
authenticate autheilvticate

v v v Vi

Artix Se(lturity Service

A4

]
]
1
i
'
' y
( i
Enterprise Security Service !
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

N
Enterprise Security Service
domain =americas
.

domain =emea
[

—

UseFE)%/S/to re Use; Data Store

Artix authentication domain . . L . .
An Artix authentication domain is a particular security system, or namespace

within a security system, designated to authenticate a user.

Here are some specific examples of Artix authentication domains:

177



Managing Users, Roles and Domains

Adding a server to an
authentication domain

178

* File authentication domain—authentication provided by looking up user
data stored in a flat file.

* [DAP authentication domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

* Kerberos authentication domain—authentication provided by Kerberos,
where the Artix security service plays the role of a Kerberized server that
authenticates KDC tickets on behalf of Artix servers.

To add an Artix server to an authentication domain, set the
authenticationDomain attribute in the relevant authentication policy
instance. For example, the following configuration shows how to configure a
JAX-WS endpoint with an authentication policy (defined by the
itsec:ISFAuthenticationPolicy element), where the authentication
policy specifies that the endpoint belongs to the emea authentication domain.

<beans ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">
<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</wsp:Policy>



Creating an Artix authentication
domain

Creating a user account

Artix Authentication Domains

</beans>

Effectively, you create an Artix authentication domain by configuring the Artix
security service to link to an enterprise security service through an iSF adapter
(such as an LDAP adapter). The enterprise security service is the
implementation of the Artix authentication domain.

User account data is stored in a third-party enterprise security service. Hence,
you should use the standard tools from the third-party enterprise security
product to create a user account.

For a simple example, see Managing a File Authentication Domain on page 184

179



Managing Users, Roles and Domains

Artix Authorization Realms

Overview

Artix authorization realm

Role-based access control

Servers and realms

180

This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

An Artix authorization realm is a collection of secured resources that share
a common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm r, only the
user's roles in realm r are applied to authorization decisions.

The Artix Security Framework supports a role-based access contro/ (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1.

User-to-role mapping—every user is associated with a set of roles in each
realm (for example, guest, administrator, and so on, in a realm,

Engineering). A user can belong to many different realms, having a
different set of roles in each realm.
The user-to-role assignments are managed centrally by the Artix security

service, which returns the set of realms and roles assigned to a user when
required.

. Role-to-permission mapping (or action-role mapping)—in the RBAC model,

permissions are granted to roles, rather than directly to users. The
role-to-permission mapping is performed locally by a server, using data
stored in local access control list (ACL) files. For example, Artix servers in
the Artix security framework use an XML action-role mapping file to control
access to WSDL port types and operations.

From a server’s perspective, an Artix authorization realm is a way of grouping
servers with similar authorization requirements. Figure 19 on page 181 shows
two Artix authorization realms, Engineering and Finance, each containing
a collection of server applications.



Adding a server to a realm

Artix Authorization Realms

Figure 19. Server View of Artix authorization realms

IONAGIobalRealm

: Engineering Finance 3
P | st sv2 } b [ens | [ Sn6 1 |
P LSNSJ | srv4 b {Sw7] {SNBW

To add an Artix server to a realm, set the authorizationRealm attribute in
the relevant authorization policy instance. For example, the following
configuration shows how to configure a JAX-WS endpoint with an authorization
policy (defined by the itsec:ACLAuthorizationPolicy element), where
the authorization policy specifies that the endpoint belongs to the
Engineering authorization realm.

<beans ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">
<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="Engineering"
/>
</wsp:Policy>

181



Managing Users, Roles and Domains

Roles and realms

Creating realms and roles

Assigning realms and roles to
users

182

</beans>

From the perspective of role-based authorization, an Artix authorization realm
acts as a namespace for roles. For example, Figure 20 on page 182 shows
two Artix authorization realms, Engineering and Finance, each associated
with a set of roles.

Figure 20. Role View of Artix authorization realms
IONAGIlobalRealm

Realms and roles are usually administered from within the enterprise security
system that is plugged into the Artix security service through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly created
whenever it is listed amongst a user’s realms or roles.

The assignment of realms and roles to users is administered from within the
enterprise security system that is plugged into the Artix security service. For
example, Figure 21 on page 183 shows how two users, Janet and John, are
assigned roles within the Engineering and Finance realms.

* Janet works in the engineering department as a developer, but occasionally
logs on to the Finance realm with guest permissions.

* John works as an accountant in finance, but also has guest permissions
with the Engineering realm.



Artix Authorization Realms

Figure 21. Assignment of Realms and Roles to Users Janet and John

iSF Security Domain (users)

IONAGIobalRealm

Engineering

Special realms and roles The following special realms and roles are supported by the Artix Security

Framework:

* TONAGlobalRealm realm—a special realm that encompasses every Artix
authorization realm. Roles defined within the ToNAG1obalRealm are valid
within every Artix authorization realm.

* UnauthenticatedUserRole—a special role that can be used to specify

actions accessible to an unauthenticated user (in an action-role mapping
file). An unauthenticated user is a remote user without credentials (that is,
where the client is not configured to send GSSUP credentials).

Actions mapped to the UnauthenticatedUserRole role are also accessible
to authenticated users.

The UnauthenticatedUserRole can be used only in action-role mapping
files.

183



Managing Users, Roles and Domains

Managing a File Authentication Domain

Overview

The file authentication domain is active if the Artix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 301). The main purpose of the iSF file adapter is to provide a lightweight
authentication domain for demonstration purposes and small deployments.
A large deployed system, however, should use one of the other adapters
(LDAP or custom) instead.

2) Note

The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Location of file The location of the user database file is specified by the userbDatabase

attribute of the secsvr:FileAdapter element in the Artix security service's
configuration file, security-service.xml. See Configuring the File
Adapter on page 209 for details.

Example Example 32 on page 184 is an extract from a sample security information file

that shows you how to define users, realms, and roles in a file authentication
domain.

Example 32. Sample User Database File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" 2>

O<securityInfo
xmlns="http://schemas.iona.com/security/fileadapter"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.iona.com/security/filead

apter fileadapter.xsd">

® <users>

(3) <user name="IONAAdmin" password="admin"
description="Default IONA admin user">
(4] <realm name="IONA" description="All IONA applica
tions"/>
</user>

<user name="admin" password="admin" description="01ld admin
user; will not have the same default privileges as IONAAd
min.">
<realm name="Corporate">

184



Certificate-based authentication
for the file adapter

Managing a File Authentication Domain

<role name="Administrator"/>
</realm>
</user>
<user name="alice" password="dost1234">

0 <realm name="Financials"
description="Financial Department">
<role name="Manager" description="Department Manager"
/>
<role name="Clerk"/>
</realm>
</user>
<user name="bob" password="dostl1l234">
<realm name="Financials">
<role name="Clerk"/>
</realm>
</user>
</users>
</securityInfo>

The preceding user database file can be explained as follows:

(1]
(2]
®

The <securityInfo> tag can contain a nested <users> tag.

The <users> tag contains a sequence of <user> tags.

Each <user> tag defines a single user. The <user> tag's name and
password attributes specify the user’s username and password. Instead

of specifying the password in plaintext, you also have the option of
specifying a password hash using the password_hash attribute—see

Password hashing on page 187 for details.
When a <realm> tag appears within the scope of a <user> tag, it

implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a

description attribute.

A realm can optionally be associated with one or more roles by including
role elements within the <rea1m> scope.

When performing certificate-based authentication for the CORBA binding, the
file adapter compares the certificate to be authenticated with a cached copy
of the user’s certificate.

To configure the file adapter to support X.509 certificate-based authentication
for the CORBA binding, perform the following steps:

185



Managing Users, Roles and Domains

186

1. Cache a copy of each user’s certificate, certFile.pemn, in a location that

is accessible to the file adapter. The certificate must be in PEM format.

. Specify which one of the fields from the certificate’s subject DN should

contain the user’'s name (user ID) by setting the userIDIncert attribute
of the secsvr:FileAdapter element in the security server’s configuration,
security-service.xml—see File adapter attributes on page 209.

For example, to use the Common Name (CN) from the certificate’s subject
DN as the user name, add the following setting to the security-service
file:

<secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">
<secsvr:Adapters>
<secsvr:Adapter>
<secsvr:FileAdapter
userDatabase="etc/userdb.xml"
userIDInCert="CN"/>
</secsvr:Adapter>
</secsvr:Adapters>

</secsvr:IsfServer>

. In the security information file, make the following type of entry for each

user with a certificate:

Example 33. File Adapter Entry for Certificate-Based Authentication

<user name="FieldFromSubjectDN" certificate="CertFile.pem"
description="User certificate">

<realm name="RealmName">

</realm>
</user>
The user name, FieldFromSubjectDN, is derived from the user’s certificate
by extracting the relevant field from the subject DN of the X.509 certificate

(for DN terminology, see Appendix A on page 365). The field to extract
from the subject DN is specified as described in the preceding step.



Password hashing

it_pw_hash utility

Managing a File Authentication Domain

The certificate attribute specifies the location of this user’s X.509
certificate, certFile.pem.

Storing passwords in plaintext format in the security information file is not
ideal, from a security perspective. In particular, it is likely that several different
users would need to update the security information file. Hence, using
operating system permissions to block read/write access to this file is not a
practical solution.

The problem of plaintext passwords can be solved using password hashing.

Instead of storing passwords in plaintext, you can generate a secure hash key
based on the original password. In the security information file, replace the

password attribute with the password_hash attribute to store the password
hash—for example:

<securityInfo ... >
;;éer name="alice" password hash="HashKey">
</usé£;

</seéﬁ£ity1nfo>

Where Hashkey is generated from the original password using the Artix
it _pw_hash utility.

The Artix it _pw_hash utility is a command-line utility for converting plaintext
passwords to password hashes. The utility is available only in the C++
runtime and is located in cxx_java/bin.The hashing algorithm used is
SHA-1. There are three different ways of using the utility, as follows:

» Convert all passwords to hashes—to convert all of the passwords in a
security information file to password hashes (replacing every password

attribute by a corresponding password_hash attribute), enter the following
at a command prompt:

it pw _hash -update all -password file SecurityFile
[-out file NewSecurityFile] [-V]

Where securityrileis the path to the security information file containing
password data in plaintext. By default, the original securityFile is

overwritten with a version that uses password hash attributes. However,
you can optionally use the -out_file flag to specify an alternative file for

187



Managing Users, Roles and Domains

188

the output, in which case the original file is left unchanged. The optional
-v flag switches on verbose logging.

Convert a single password to a hash—to convert a single password in a
security information file to a password hash (replacing the user’s password

attribute by a corresponding password_hash attribute), enter the following
at a command prompt:

it pw hash -update password -user Username -password file
SecurityFile [-out file NewSecurityFile] [-V]

Where Username specifies the name of the user (matching the name
attribute in one of the user elements) whose password is to be changed
into hash format.

Reset a password hash—to reset the password hash value for a single user,
enter the following at a command prompt:

it pw_hash -set password -user Username -password file Secur
ityFile [-out file NewSecurityFile] [-V]

In this case, the command prompts you to enter a new password for the
user and generates a corresponding password hash, which is then assigned
to the password hash attribute.



Managing an LDAP Authentication Domain

Managing an LDAP Authentication Domain

Overview

Configuring the LDAP adapter

Certificate-based authentication
for the LDAP adapter

The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and the Artix security service’s LDAP adapter can
integrate with any LDAP v.3 implementation.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

A prerequisite for using LDAP within the Artix Security Framework is that the
Artix security service be configured to use the LDAP adapter.

See Configuring the LDAP Adapter on page 211.

When performing certificate-based authentication, the LDAP adapter compares
the certificate to be authenticated with a cached copy of the user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, certFile.pemn, in a location that
is accessible to the LDAP adapter. The certificate must be in PEM format.

2. The user’s name, cNfromSubjectDN, is derived from the certificate by

taking the Common Name (CN) from the subject DN of the X.509 certificate
(for DN terminology, see Appendix A on page 365).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

189



190



Managing Access Control Lists

The Artix Security Framework defines access control lists (ACLs) for mapping roles to resources.

Overview of Artix ACL Files

..................................................................................................... 192
O I 1T o T 2T 193
GENEIATING ACL FilBS ettt et ettt 196
DEPIOYING ACL FIlS .ttt ettt ettt et e 199

191



Managing Access Control Lists

Overview of Artix ACL Files

Action-role mapping file

Deployment scenarios

Local ACL file

The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

Artix supports the following deployment scenario for ACL files:

* Local ACL file on page 192 .

In the local ACL file scenario, the action-role mapping file is stored on the
same host as the server application (see Figure 22 on page 192 ). The
application obtains the action-role mapping data by reading the local ACL
file.

Figure 22. Locally Deployed Action-Role Mapping ACL File

Application i i i

Security Layer

i
authorization |
i

ARM

Action-role
mapping file

192

In this case, the location of the ACL file is specified by a setting in the
application’s artix.cfgq file.



ACL File Format

Overview

Example WSDL

Example action-role mapping

ACL File Format

This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

For example, consider how to set the operation permissions for the WSDL
port type shown in Example 34 on page 193 .

Example 34. Sample WSDL for the ACL Example

<definitions name="HelloWorldService" targetNamespace="ht
tp://xmlbus.com/HelloWorld" ... >

<portType name="HelloWorldPortType">
<operation name="greetMe">
<input message="tns:greetMe" name="greetMe"/>
<output message="tns:greetMeResponse"
name="greetMeResponse" />
</operation>
<operation name="sayHi">
<input message="tns:sayHi" name="sayHi"/>
<output message="tns:sayHiResponse"
name="sayHiResponse" />
</operation>
</portType>

</definitions>

Example 35 on page 193 shows how you might configure an action-role
mapping file for the Hellowor1dpPortType port type given in the preceding
Example 34 on page 193.

Example 35. Artix Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>

<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://schemas.iona.com/security/acl

acl.xsd"
> 0

<action-role-mapping> @

<server-name>secure artix.demos.hello world</server-name>

193



Managing Access Control Lists

®
<interface> @
<name>http://xmlbus.com/HelloWorld:HelloWorldPort
Type</name> &
<action-role>
<action-name>sayHi</action-name> @
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>greetMe</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

The preceding action-role mapping example can be explained as follows:

©® The preamble in this example is suitable for a Java runtime application.
Although the XML format of the Java runtime ACL file is essentially the
same as the format of the C+ + runtime ACL file, there is a slight
difference in the preamble. This is because the Java runtime ACL file is
validated against an XML schema, whereas the C++ runtime ACL file
is validated against a Document Type Definition (DTD).

® The <action-role-mapping> tag contains all of the permissions that

apply to a particular server application.
® The <server-name> tag is used to identify the current

action-role-mapping element (you can have more than one
action-role-mapping elementin an ACL file). The value of the server
name is selected to match the value of the ac1serverName attribute in

the relevant authorization element in the server's XML configuration file.
® The <interface> tag contains all of the access permissions for one

particular WSDL port type.
® The <name> tag identifies a WSDL port type in the format

NamespaceURI: PortTypeName. That is, the PortTypeName comes
from a tag, <portType name="PortTypeName">, defined in the

NamespaceURI Namespace.

For example, in Example 34 on page 193 the <definitions> tag
specifies the NamespaceURT as http://xmlbus.com/HelloWorld and
the PortTypeName is HelloWorldPortType. Hence, the port type name
is identified as:

194



Wildcard character

Action-role mapping schema

ACL File Format

<name>http://xmlbus.com/HelloWorld:HelloWorldPort
Type</name>

® The sayHi action name corresponds to the sayni WSDL operation name
in the HelloWorldPortType port type (from the <operation

name="sayHi"> tag).

Artix supports a wildcard mechanism for the server-name, interface name,
and action-name elements in an ACL file. The wildcard character, *, can
be used to match any number of contiguous characters in a server name,
interface name, or action name. For example, the access control list shown
in Example 36 on page 195 assigns the ToNAUserRole role to every action
in every interface in every Bus instance.

Example 36. Wildcard Mechanism in an Access Control List

<?xml version="1.0" encoding="UTF-8"?>
<secure-system
xmlns="http://schemas.iona.com/security/acl"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.iona.com/security/acl
acl.xsd"
>
<action-role-mapping>
<server-name>*</server-name>
<interface>
<name>*</name>
<action-role>
<action-name>*</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

The syntax of the action-role mapping file is defined by the action-role mapping
XML schema. See Appendix C on page 405 for details.

195



Managing Access Control Lists

Generating ACL Files

Overview

WSDL-to-ACL utility

196

Artix provides a command-line tool, artix wsdl2acl, that enables you to
generate the prototype of an ACL file directly from a WSDL contract. You can
use the wsd12ac1 subcommand to assign a default role to all of the operations
in WSDL contract. Alternatively, if you require more fine-grained control over
the role assignments, you can define a role-properties file, which assigns
roles to individual operations.

The artix wsdl2acl command-line utility has the following syntax:

artix wsdl2acl { -s server-name } WSDL-URL

[-1 interface-name] [-r default-role-name]
[-d output-directory] [-0O output-file]
[-props role-props-file]l [-v] [-7]

Required arguments:

-s server-name The server’s configuration scope from the Artix
domain configuration file (the same value as
specified to the -Busname argument when the Artix
server is started from the command line).

For example, the basic/hello world soap http
demonstration uses the
demos.hello world soap_http Server name.

WSDL-URL URL location of the WSDL file from which an ACL
is generated.

Optional arguments:

-i interface-name Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output
is generated for all of the port types in the WSDL
file.

-r Specify the role name that will be assigned to all

default-role-name operations by default. Default is ToNAUserRole.
The default role-name is not used for operations
listed in a role-properties file (see -props).

-d output-directory Specify an output directory for the generated ACL
file.



Example of generating an ACL file

Sample role-properties file

Sample generation command

Generating ACL Files

-0 output-file Specify the name of the generated ACL file. Default
iS WSDLFileRoot-acl.xml, Where wSDLFileRoot
is the root name of the WSDL file.

-props Specifies a file containing a list of role-properties,

role-props-file where a role-property associates an operation name
with a list of roles. Each line of the role-properties
file has the following format:

OperationName = Rolel, Role2, ...

-v Display version information for the utility.
-2 Display usage summary for the wsd12acl
subcommand.

As example of how to generate an ACL file from WSDL, consider the
hello world.wsdl WSDL file for the basic/hello world soap http
demonstration, which is located in the following directory:

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc

The HelloWorld WSDL contract defines a single port type, Greeter, and two
operations: greetMe and sayHi. The server name (that is, configuration
scope) used by the HelloWorld server is demos.hello world soap http.

For the HelloWorld WSDL contract, you can define a role-properties file,
role properties.txt, that assigns the FooUser role to the greetMe
operation and the FooUser and BarUser roles to the sayHi operation, as
follows:

greetMe = FooUser
sayHi = FooUser, BarUser

To generate an ACL file from the HelloWorld WSDL contract, using the
role properties.txt role-properties file, enter the following at a
command-line prompt:

197



Managing Access Control Lists

artix wsdl2acl -s demos.hello world soap http hello world.wsdl
-props role properties.txt

le ACL . )
Sample ACL output The preceding artix wsdl2acl command generates an ACL file,

hello world-acl.xml, Whose contents are shown in
Example 37 on page 198 .

Example 37. ACL File Generated from HelloWorld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
<action-role-mapping>
<server-name>demos.hello world soap http</server-name>

<interface>
<name>http://www.iona.com/hello world soap ht
tp:Greeter</name>
<action-role>
<action-name>greetMe</action-name>
<role-name>FooUser</role-name>
</action-role>
<action-role>
<action-name>sayHi</action-name>
<role-name>FooUser</role-name>
<role-name>BarUser</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

198



Deploying ACL Files

Deploying ACL Files

Configuring a local ACL file

To configure an application to load action-role mapping data from a local file,
do the following:

1. Save the ACL file in a convenient location.

2. Edit the application’s XML configuration file. In the relevant authorization
element, update the ac1URL attribute with the ACL file location and update

the ac1serverName attribute with the server name of the
action-role-mapping element you want to apply.

For example, if the authorization element is
security:WSSUsernameTokenAuthServerConfig, you can update the
configuration as follows:

<jaxws:endpoint name="{PortNamespace} PortName"
createdFromAPI="true">
<jaxws:features>
<security:WSSUsernameTokenAuthServerConfig
aclURL="file:ACLFileLocation"
aclServerName="ServerName"
authorizationRealm="SelectedRealm"
/>
</jaxws:features>
</jaxws:endpoint>

199



200



Configuring the Artix Security Service

This chapter describes how to configure the properties of the Artix security service and, in particular, how to
configure a variety of adapters that can integrate the Artix security service with third-party enterprise security
back-ends (for example, LDAP).

Configuring the SECUITY SEIVICE ...eueniie i e e et e e e ee e enas 202
Configuring the File Adapler ... oeei e e et 209
Configuring the LDAP AdapIer ... ..iueiee et e e et e e aaaas 211
Configuring the Kerberos AQaPIer ... ... e e e e aeenaans 215
Overview of Kerberos Configuration ...........c.oeiieiiiiii e 216
Configuring the Adapter Properties .......o.eeieiii e e e e 218
Configuring JAAS LOZIN ProPEITIES .. ..iue it et e e e 221
Clustering and FEAIAtION ... . ..iuii i e et 225
Federating the Artix SECUItY SEIVICE ......inieiii e 226

201



Configuring the Artix Security Service

Configuring the Security Service

Overview

Location of the demonstrations

Customising the security service
configuration

202

This section describes how to configure a security service that is made
accessible through the HTTPS protocol.

The demonstration code is located in the following directory:

ArtixInstallDir/java/samples/security/authorization

Example 38 on page 202 shows a sample security service configuration, which
is taken from the authorization/etc/security-service.xml file.

Example 38. Sample Security Service Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con
fig"

xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"”

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>

(1} <secsvr:IsfServer id="it.soa.security.server" wsdlPub
lishPort="27222">
(2} <secsvr:Adapters>
<secsvr:Adapter>
<secsvr:FileAdapter userDatabase="etc/user
db.xml"/>
</secsvr:Adapter>
</secsvr:Adapters>
® <secsvr:Services>
<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>
</secsvr:Services>
(4] <secsvr:SSOConfig
sessionTimeout="600"
idleTimeout="60"
cacheSize="200"



Configuring the Security Service

/>
</secsvr:IsfServer>
(5} <httpj:engine-factory bus="cxf">
(6} <httpj:engine port="59075">
o <httpj:tlsServerParameters>

<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcsl2" password="pass

word" resource="keys/isf-server.pl2"/>

</csec:keyManagers>

<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-

cert.pem"/>

</csec:trustManagers>
(8) <csec:clientAuthentication want="true" re
quired="true" />

</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

</beans>
©® The secsvr:Isfserver element configures the Artix security service.

The following attributes are set:

* id—(required) must be set to the value shown. This is a technical
requirement in order to identify the element internally.

* wsdlPublishPort—sets the IP port of the WSDL publish service,
which enables clients to obtain a copy of the security service's WSDL
contract. Default is 27222.

® The secsvr:Adapters element specifies the list of iSF adapters that
plug into the security service. You can specify one of the following
adapters:

* File adapter—specified using the secsvr:FileAdapter element.
See Configuring the File Adapter on page 209 for details.

* | DAP adapter—specified using the secsvr:LDAPAdapter element.
See Configuring the LDAP Adapter on page 211 for details.

* Kerberos adapter—specified using the secsvr:KerberosAdapter
element. See Configuring the Kerberos Adapter on page 215 for details.

203



Configuring the Artix Security Service

! http://jetty.mortbay.org/jetty/

204

For details of how to configure more than one adapter at a time, see
Deploying multiple adapters on page 207.
The secsvr:services element configures the individual WSDL services

provided by the security service. You can specify the IP port numbers
of the WSDL services here. See Setting the security service’s host and
port on page 205 for details.

The secsvr:ssoconfig element configures the single sign-on (SSO)

feature of the security service. The following attributes are set here:

* sessionTimeout—(in units of seconds) specifies the maximum length

of time for which an SSO token is valid, from the time the token is
issued.

* idleTimeout—{(in units of seconds) if an SSO token remains idle

(that is, no security operations performed on this token) for longer
than this period of time, the token becomes invalid.

* cachesize—specifies the maximum number of user sessions to cache
in the security service.

The httpj:engine-factory initializes and configures a Jetty1 HTTP

Web server. The Jetty Web server provides the HTTP endpoints for the
security service.
The httpj:engine element activates a HTTP endpoint with IP port

59075. This HTTP endpoint provides both the AuthenticationService
service and the serviceManager service (they share the same port

number in this example).
The httpj:tlsServerParameters element contains the usual settings

for configuring a secure TLS endpoint. See Server HTTPS
configuration on page 26 and Part |l on page 81 for more details of
how to configure HTTPS on the server side.

The csec:clientAuthentication element is configured to enable

mutual authentication, making it mandatory for applications that connect
to the security service to present an X.509 certificate.


http://jetty.mortbay.org/jetty/
http://jetty.mortbay.org/jetty/

Setting the security service’s host
and port

Configuring the Security Service

() Note

This setting is crucially important for the security service. It is
essential for all connecting applications to be authenticated
properly during the TLS handshake.

The security service exposes three IP ports, which you can customize as
follows:

* WSDL publish port—sets the IP port of the WSDL publish service, which
enables clients to obtain a copy of the security service's WSDL contract.
To modify this port, edit the wsd1PublishpPort attribute on the

secsvr:IsfServer element.

* AuthenticationService port—to customize the IP port used by this
Web service, you must change the port setting in two locations, as follows:

1. In the secsvr:AuthenticationService element, set the port
attribute.

2. Inthe httpj:engine element, set the port attribute to the same value

as in the preceding step.

* ServiceManager port—to customize the IP port used by this Web service,
you must change the port setting in two locations, as follows:

1. In the secsvr:serviceManager element, set the port attribute.

2. Inthe httpj:engine element, set the port attribute to the same value
as in the preceding step. If you want the serviceManager service to
use a different port from the AuthenticationService service, you
must create a new httpj:engine element specifically for this port.

Both the secsvr:AuthenticationService and the
secsvr:ServiceManager elements support two alternative approaches to
customizing port numbers, as follows:

* Customize hostname and port—set the hostname and port attributes on

the element, or

205



Configuring the Artix Security Service

Replacing X.509 certificates

Minimum level of security

206

e Customize the Web service address—set the address attribute on the

element, where the address value is a standard Web service address URL.
It is essential to use the https:// prefix in the address, to ensure that the

secure HTTPS protocol is used.

The security service is provided with demonstration X.509 certificates by
default. Whilst this is convenient for running demonstrations and tests, it is
fundamentally insecure, because Artix provides identical demonstration
certificates for every installation.

Before deploying the security service in a live system, therefore, you must
replace the default X.509 certificates with your own custom-generated
certificates. Specifically, for the security service you must replace the following
certificates:

* Trusted CA list—this is a list of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed to
connect to the security service.

To update the trusted CA list, customize the contents of the
csec:trustManagers element for each of the Jetty endpoints exposed by
the security service. For details, see Specifying Trusted CA Certificates for
HTTPS on page 127.

» Security service’s own certificate—the security service uses its own X.509
certificate to identify itself to peers during SSL/TLS handshakes.

To replace the security service’s own certificate, customize the contents of
the csec:keyManagers element for each of the Jetty endpoints exposed
by the security service. For details, see Deploying Own Certificate for
HTTPS on page 132.

Because it is an important security requirement for clients of the security
service to present an X.509 certificate, you should take care that all of the
Jetty endpoints (specified by the httpj : engine element) include the following
setting:

<csec:clientAuthentication want="true" required="true"/>



Deploying multiple adapters

Configuring the Security Service

For example, see Example 38 on page 202.

The security service supports the deployment of multiple iSF adapters. To
configure multiple adapters, simply add as many adapter elements as required
into the secsvr:Adapters element. For example, Example 39 on page 207
shows how to configure two distinct file adapters: the first file adapter is the
security data repository for the emea authentication domain; and the second
file adapter is the security data repository for the americas authentication
domain.

Example 39. Configuring Multiple iSF Adapters in the Security Service

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:security="http://schemas.iona.com/soa/security-con

fig"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>

<secsvr:IsfServer id="it.soa.security.server" wsdlPublish
Port="27222">
<secsvr:Adapters>
<secsvr:Adapter domain="emea">
<secsvr:FileAdapter userDatabase="etc/emea-
userdb.xml"/>
</secsvr:Adapter>
<secsvr:Adapter domain="americas">
<secsvr:FileAdapter userDatabase="etc/americas-
userdb.xml"/>
</secsvr:Adapter>
</secsvr:Adapters>

</secsvr:IsfServer>
</beans>
When the security service receives a request to authenticate a credential, it

chooses the appropriate adapter by matching the credential's authentication
domain against the value specified by the secsvr:Adapter element's domain

207



Configuring the Artix Security Service

208

attribute. For example, if the relying party (Artix server) has configured an
authentication policy as follows:

<beans ... >

<jaxws:endpoint ...>
<jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSUsernameTokenPolicy"/>
</cxfp:policies>
</jaxws: features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameT
okenPolicy">
<itsec:ISFAuthenticationPolicy
authenticationDomain="emea">
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD" />
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</wsp:Policy>

</beans>

The credentials specified by the preceding
itsec:ISFAuthenticationPolicy element are augmented by the domain
name, emea (as specified by the authenticationDomain attribute), when
they are transmitted to the security service. The security service will then
authenticate the credentials against the first file adapter from

Example 39 on page 207, because this file adapter is defined with the
matching domain name, emea.

If you do not specify the value of the authenticationbDomain attribute in
the 1sFauthenticationPolicy element, it defaults to an empty string,
which matches any domain name in the security service. This default is not
acceptable, however, if the security service has multiple adapters, because
it is then impossible to identify the appropriate adapter.



Configuring the File Adapter

Configuring the File Adapter

Overview

Sample configuration

File adapter attributes

The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to set
up and configure, but is appropriate mainly for demonstration purposes and
small deployments. This section describes how to set up and configure the
iSF file adapter.

2) Note

The file adapter is a simple adapter that does not scale well for large
enterprise applications. IONA supports the use of the file adapter in
a production environment, but the number of users is limited to 200.

Example 40 on page 209 shows an example of how to configure the security
service to use the file adapter. The secsvr:FileAdapter element activates
the file adapter, whose user data is stored in the etc/userdb.xml file.

Example 40. Sample File Adapter Configuration

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-
config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
.>

<secsvr:IsfServer id="it.soa.security.server" wsdlPublish
Port="27222">
<secsvr:Adapters>
<secsvr:Adapter>
<secsvr:FileAdapter userDatabase="etc/user
db.xml"/>
</secsvr:Adapter>
</secsvr:Adapters>

</secsvr:IsfServer>

</beans>

The secsvr:FileAdapter element supports the following attributes:

209



Configuring the Artix Security Service

210

userDatabase
(Required) Specifies the location of the file adapter's user database. All
of the user security data is stored in a flat XML file. For details of the
user database file format, see Managing a File Authentication
Domain on page 184.

userlDInCert
When using X.509 certificate authentication in conjunction with the file
adapter, this attribute specifies which field from the certificate’s subject
DN is taken to be the user name. The default is cN. For more details,

see Certificate-based authentication for the file adapter on page 185.

validate
A boolean attribute that specifies whether or not the user database XML
file should be validated as it is loaded. Default is true.

checklnterval



Configuring the LDAP Adapter

Configuring the LDAP Adapter

Overview

Prerequisites

Minimal LDAP configuration

The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

* Prerequisites on page ?
* Minimal LDAP configuration on page ? .

¢ LDAP server replicas on page ? .

Before configuring the LDAP adapter, you must have an LDAP security system
installed and running on your system. LDAP is not a standard part of Artix,
but you can use the Artix security service’s LDAP adapter with any LDAP v.3
compatible system.

Example 41 on page 211 shows the minimal settings that can be used to
configure an LDAP adapter.

Example 41. A Sample LDAP Adapter Configuration

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:secsvr="http://schemas.iona.com/soa/security-
server-config”

.>

<secsvr:IsfServer id="it.soa.security" wsdlPublish
Port="27222">
<secsvr:Adapters>
<secsvr:Adapter>

(1) <secsvr:LDAPAdapter

(2} userNameAttr="CN"
userBaseDN="dc=pdtest, dc=com"
userObjectClass="Person"

(3} retrieveAuthInfo="true"
useGroupAsRole="true"
groupNameAttr="CN"
groupBaseDN="dc=pdtest, dc=com"
groupObjectClass="group"
groupSearchScope="SUB"
memberDNAttr="memberOf"

(4] version="3"

211



Configuring the Artix Security Service

® maxConnectionPoolSize="1">

(6} <secsvr:LDAPServer
host="pdkerbauth.pdtest.com"
port="389"

principalUserDN="cn=administrat
or,cn=users, dc=pdtest, dc=com"
principalUserPassword="k3rb4uth"
connectTimeout="15"
/>
</secsvr:LDAPAdapter>
</secsvr:Adapter>
</secsvr:Adapters>

</secsvr:IsfServer>

</beans>

The necessary properties for an LDAP adapter are described as follows:

©® The secsvr:LDAPAdapter element activates and configures an LDAP

adapter instance in the security service.
®  These attributes specify how the LDAP adapter finds a user name within
the LDAP directory schema. The attributes are interpreted as follows:

userNameAttr The attribute type of the DN, whose value
uniquely identifies the user. For example, a
value of cN implies that the Common Name
from the DN gives the user identity..

userBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

userObjectClass The attribute type for the object class that
stores users.

® These attributes specify how the LDAP adapter finds a group name
within the LDAP directory schema. The attributes are interpreted as
follows:

retrieveAuthInfo This flag must be set to true in order to

retrieve a user's authorization information from
the LDAP server.

useGroupAsRole When this flag is set to true, each group
name is interpreted as a role name.

212



Configuring the LDAP Adapter

groupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

groupBaseDN The base DN of the tree in the LDAP directory

that stores user groups.

groupObjectClass The object class that applies to user group
entries in the LDAP directory structure.

groupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are: BASE,
ONE, Of SUB.

memberDNAttr The attribute type that is used to retrieve LDAP
group members.

® The version attribute specifies the LDAP protocol version that the Artix

security service uses to communicate with LDAP servers. The only
supported version is 3.

® ThemaxConnectionPoolSize attribute specifies the maximum number

of LDAP connections that can be open at any time.
® The secsvr:LDAPServer element configures a connection to an LDAP

server. The attributes are interpreted as follows:

host The host where the LDAP server is running.
port The IP port of the LDAP server.
principalUserDN The username that is used to log in to the

LDAP server (in distinguished name format).

principalUserPassword The password that is used to log in to the
LDAP server.

connectTimeout The time-out interval for the connection to the
Active Directory Server in units of seconds.

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas

of the LDAP server. To take advantage of this feature, simply add a

213



Configuring the Artix Security Service

Secure connection to an LDAP
server

Security service schema reference

214

secsvr:LDAPServer element to the configuration for each of the
corresponding LDAP server replicas.

The following attributes of the secsvr:LDAPServer element can be used to
configure SSL/TLS security for the connection between the Artix security
service and the LDAP server:

SSLEnabled
SSLCACertDir
SSLClientCertFile
SSLClientCertPassword

Where the ssrn.cacertDir is a directory contaiing trusted CA certificates in
either DER or PEM format and the certificate specified by
SSLClientCertFile must be in PKCS#12 format.

For more details about the configuration settings described here, see the
Security Service Schema Reference.



Configuring the Kerberos Adapter

Configuring the Kerberos Adapter

Overview of Kerberos ConfigUuration .......co.iiiiiii e aaaes 216
Configuring the Adapter PropEITIES .......viiiii e 218
Configuring JAAS LOZIN PrOPEITIES .. ..uiuieiitit et e e et e e aaaes 221

215



Configuring the Artix Security Service

Overview of Kerberos Configuration

Kerberos adapter

Kerberos Distribution Center
(KDC)

JAAS login module

LDAP directory

Active Directory service

216

The Kerberos adapter integrates Kerberos into the Artix security framework
by treating the Artix security service as a Kerberized server. The Artix system
of role-based access control can also optionally be integrated with an LDAP
directory service (for example, Active Directory) that stores the user and role
information.

The Kerberos Distribution Centre (KDC) server is responsible for managing
authentication in a Kerberos system. When a client authenticates with the
KDC server, the client receives a ticket that allows it to talk to the Artix security
service. The client then sends the ticket to an Artix server (through a
WS-Security SOAP header) and the server delegates authentication by sending
the ticket to the Artix security service. The Artix security service authenticates
the ticket using the JAAS Kerberos login module.

To perform the login step, the Kerberos adapter uses the Java Authentication
and Authorization Service (JAAS). The JAAS API is a general purpose wrapper
that enables Java programs to perform authentication and authorization in a
technology-neutral way. Specific security technologies are supported by loading
the relevant plug-in modules—see http://java.sun.com/products/jaas/ for
details.

To perform a Kerberos login, JAAS loads the Kerberos login module and
obtains login credentials by reading the jaas.conf configuration file. See
Configuring JAAS Login Properties on page 221 for more details.

The LDAP directory stores user and role information. The Kerberos adapter
can optionally access the directory to obtain role information, which can then
be used to perform authorization in the context of the Artix security framework.

LDAP directory is a database whose entries are organized in a hierarchical
scheme based on the X.500 standard. For details of the system for naming
entries in an LDAP directory, see Appendix A on page 365 .

Active Directory is the Microsoft implementation of Kerberos, which is
integrated into Windows 2000 and other Windows operating systems. Because
Active Directory includes a KDC server and an LDAP directory, you can
integrate the Kerberos adapter with Active Directory.


http://java.sun.com/products/jaas/

Overview of Kerberos Configuration

For more details about Active Directory, see the Microsoft Active Directory2
Web pages.

Kerberos realm A Kerberos realm is an administrative domain with its own Kerberos database

that stores data on users and services belonging to that domain.
Conventionally, a Kerberos realm is spelt all uppercase—for example,
TONA . COM.

Kerb incipal L o . - .
erberos principa A Kerberos principal identifies a user or service within a particular Kerberos

domain. The following naming conventions are used for Kerberos principals:

* Client principal—follows the convention UserName@ KerberosRealm. For
example:

Jonathon.Doe@IONA.COM

» Server principal—follows the convention
ServiceName/HostName@KerberosRealm. For example, the service,

WebServer, running on host, web01.1iona.com, in realm, ToNA.coM, would
have the following principal:

WebServer/web01l.iona.com@IONA.COM

Formally, webserver is the primary and web01.iona.com is the instance
part of the principal. This two-part name acknowledges the fact that a
single service could be replicated on different hosts. The Kerberos naming
convention enables each replica to have a unique principal.

Kerberos keyTab file A Kerberos keyTab file (short for key table file) stores the Kerberos

cryptographic key associated with a server. It is important to protect this file
by setting file permissions to restrict ordinary users from reading from or
writing to the file.

2 http://tinyurl.com/i5q4

217


http://tinyurl.com/i5q4
http://tinyurl.com/i5q4

Configuring the Artix Security Service

Configuring the Adapter Properties

Overview

Sample Kerberos configuration

218

To enable the Kerberos adapter, you must configure the
security-service.xml file as described in this subsection.

Example 42 on page 218 shows a sample security-service.xmnl file that
could be used to configure the Kerberos adapter.

Example 42. Sample Kerberos Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:secsvr="http://schemas.iona.com/soa/security-
server-config"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans-2.0.xsd
http://schemas.iona.com/soa/security-server-config
http://schemas.iona.com/soa/security-server-config.xsd"
>
<secsvr:IsfServer id="it.soa.security" wsdlPublish
Port="27222">
<secsvr:Adapters>
<secsvr:Adapter>
(1) <secsvr:KerberosAdapter
kdc="pdkerbauth.pdtest.com"
realm="PDTEST.COM"
authLoginConfig="src/test/re
sources/krb.jaas.conf"
debug="false"
/>
(2} <secsvr:LDAPAdapter ...>

</secsvr:LDAPAdapter>
</secsvr:Adapter>
</secsvr:Adapters>

</secsvr:IsfServer>
</beans>

The preceding Kerberos configuration can be described as follows:

©® The secsvr:KeberosAdapter element initializes the Kerberos adapter

and configures a connection to the Kerberos Distribution Center (KDC)
server. The following attributes are set:



Eager validation of the KDC
connection

Kerberos logging support

Configuring the Adapter Properties

kdc The server name or IP address of the KDC
server.

realm The Kerberos realm name.

authLoginConfig (Required) The location of the JAAS login

module configuration file. For details, see
Configuring JAAS Login Properties on page 221.

debug Logging flag. Setting this flag to true
generates extra logging detail.

®  The Kerberos adapter relies on an LDAP database to store user and role

data. Therefore, you need to configure an LDAP adapter, in addition to
the Kerberos adapter, in order to gain access to user and role data. For
details of how to configure the LDAP adapter, see Configuring the LDAP
Adapter on page 211.

(® Note

The secsvr:Keberosadapter element must be configured as
child of the same secsvr:Adapter element as the Kerberos
adapter element, secsvr:KerberosAdapter.

You can set two additional attributes to check whether a valid KDC server is
running when the Artix security service starts up. Example 43 on page 219
shows how to configure the relevant attributes:

Example 43. Configuration to Enable Connection Validation

<secsvr:KerberosAdapter

kdc="pdkerbauth.pdtest.com"

realm="PDTEST.COM"
authLoginConfig="src/test/resources/krb.jaas.conf"
debug="false"

checkKDCRunning="true"
checkKDCPrincipal="DummyPrincipal"

/>

The pummyPrincipal is a principal that is used for connecting to the KDC
server to check whether it is running. If the KDC server is not running, the
Artix security service writes a warning to its log.

To turn on additional logging in the Kerberos adapter, set the debug attribute
inthe security-service.xml file, as shown in Example 44 on page 220 .

219



Configuring the Artix Security Service

Other KDC configuration options

220

Example 44. Configuration to Enable Logging Support

<secsvr:KerberosAdapter
kdc="pdkerbauth.pdtest.com"
realm="PDTEST.COM"
authLoginConfig="src/test/resources/krb.jaas.conf"
debug="true"
/>

The useSubjectCredsOnly attribute must always be set to false.

Essentially, this is an implementation detail of the Kerberos adapter. If the
attribute is true, it signals to the Java security API that the Kerberos
credentials must be stored in @ javax.security.auth.Subject object. If
the attribute is false, it signals that the Kerberos credentials can be stored
in an implementation-dependent manner (required for the Kerberos adapter).



Configuring JAAS Login Properties

Configuring JAAS Login Properties

JAAS login configuration

The JAAS login configuration file, jaas.conf, has the general format shown
in Example 45 on page 221 .

Example 45. JAAS Login Configuration File Format

/* JAAS Login Configuration */

LoginEntry {

ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

}i

LoginEntry {
ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

}i

Where the preceding file format can be explained as follows:

* LoginEntry labels a single entry in the login configuration. In general, a
LoginEntry label is implicitly defined by writing application code that
searches for its login configuration in a particular LoginEntry entry. Each
login entry contains a list of login modules that are invoked in order.

* ModuleClass is the fully-qualified class name of a JAAS login module. For
example, com.sun.security.auth.module.Krb5LoginModule is the
class name of the Kerberos login module.

* rlag determines how to react when the current login module reports an

authentication failure. The F1ag can have one of the following values:

* required—authentication must succeed. Always proceed to the next
login module in this entry, irrespective of success or failure.

* requisite—authentication must succeed. If success, proceed to the

next login module; if failure, return immediately without processing the
remaining login modules.

221



Configuring the Artix Security Service

Kerberos login entries

Kerberos login module

3 http://tinyurl.com/6eefxa

222

* sufficient—authentication is not required to succeed. If success,
return immediately without processing the remaining login modules; if
failure, proceed to the next login module.

* optional—authentication is not required to succeed. Always proceed
to the next login module in this entry, irrespective of success or failure.

* Option="value"—after the Fiag, you can pass zero or more option

settings to the login module. The options are specified in the form of a
space-separated list, where each option has the form option="value".

The login module line is terminated by a semicolon, ;.

For Kerberos, the following JAAS login entry names are defined:

* com.sun.security.jgss.initiate—invoke this login entry for a
Kerberos client (initiator of a secure Kerberos connection).

* com.sun.security.jgss.accept—invoke this login entry for a secure
server (acceptor of a Kerberos ticket).

These login entries are defined in Sun’s implementation of the Kerberos
provider for JGSS (Java Generic Security Service).

@ Note

In Java 6, you can use the alternative login entries:
com.sun.security.jgss.krb5.initiate and
com.sun.security.jgss.krb5.accept. See Java GSS and
Kerberos® for more details.

The Kerberos login module is implemented by the following class:

com.sun.security.auth.module.Krb5LoginModule

The most useful module options in the context of using the Artix security
Kerberos adapter are as follows:

* principal—the Kerberos principal that identifies the program.


http://tinyurl.com/6eefxa
http://tinyurl.com/6eefxa
http://tinyurl.com/6eefxa

Kerberos adapter login module

Sample JAAS configuration file

Configuring JAAS Login Properties

* storeKey—if true, store the principal’s key in the Subject’s private
credentials.

* useKeyTab—if true, get the principal’s key from the keytab.

* keyTab—specifies the location of the keytab file.

(Deprecated) The Kerberos adapter provides an alternative login module,
which is implemented by the following class:

com.iona.security.is2adapter.krb5.IS2ServerKrb5LoginModule

It supports the same module options as the Kerberos login module.

(@ Note

This proprietary login module is deprecated, because it is not
compatible with the more recent versions of Sun’s Java platform
(J2SE/JDK 1.5 and up). It was originally provided in order to fix a
bug in Sun’s Kerberos login module (the login module makes an
unnecessary call to the KDC when accepting an ap_RrReQ token).

Example 46 on page 223 shows a sample jaas. conf file that demonstrates
how to configure the JAAS Kerberos login module.

Example 46. Sample jaas.conf File for the Kerberos Login Module

/* JAAS Login Configuration */

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required prin
cipal="gss server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab"
bi

com.sun.security.jgss.accept {
com.sun.security.auth.module.Krb5LoginModule required

storeKey="true" principal="gss_ server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab"

bi

The com.sun.security.jgss.accept scope defines the server-side login
behavior. There are two essential properties that you need to specify:

223



Configuring the Artix Security Service

References

* http:/tinyurl.com/6lhq4h

224

* principal—~Kerberos identity of the Artix security server. See Kerberos
principal on page ? for more details.

* keyTab—the location of a file that contains the password for the principal.

This is the usual method for storing a server-side password in a Kerberos
system. See Kerberos keyTab file on page ? for more details.

2) Note

On the server side, the com.sun.security.jgss.initiate login
entry would only be needed, if you set the
com.iona.isp.adapter.krb5.param.check.kdc.running
parameter to true.

The format of a JAAS login configuration file is specified in detail by the
following page from Sun's Java security reference guide:

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html

The Sun Kerberos login module (Krb5LoginModule) is specified in detail by
the following page from the Java security reference guide:

Krb5LoginModule®


http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://tinyurl.com/6lhq4h
http://tinyurl.com/6lhq4h

Clustering and Federation

Clustering and Federation

Federating the ArtiX SECUITY SEIVICE ..uuuiii i e ees 226

225



Configuring the Artix Security Service

Federating the Artix Security Service

Overview

Federation is not clustering

Example federation scenario

Federation scenario

226

Federation is meant to be used in deployment scenarios where there is more
than one instance of an Artix security service. By configuring the Artix security
service instances as a federation, the security services can talk to each other
and access each other’s session caches. Federation frequently becomes
necessary when single sign-on (SSO) is used, because an SSO token can be
verified only by the security service instance that originally generated it.

Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there are
no fault tolerance features provided.

Consider a simple federation scenario consisting of two security domains,
each with their own Artix security service instances, as follows:

* [DAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user

data in an LDAP database. The domain includes any Artix applications that
use this Artix security service (ID=1) to verify credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

* Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user

data in a Kerberos database. The domain includes any Artix applications
that use this Artix security service (ID=2) to verify credentials.

The two Artix security service instances are federated, using the configuration
described later in this section. With federation enabled, it is possible for single
sign-on clients to make invocations that cross security domain boundaries.

Figure 23 on page 227 shows a typical scenario that illustrates how iSF
federation might be used in the context of an Artix system.



Federating the Artix Security Service

Figure 23. An iSF Federation Scenario

LDAP Security Domain ®) Kerberos Security Domain

Target A Target B

[t]

@

Authenticate
SSO token

®

Authenticate
SSO token

A

Log!n ( Security Service
Service

Security Service

ID=1 D=2
| | |
LDAP Kerberos
User data store User data store

Federation scenario steps The federation scenario in Figure 23 on page 227 can be described as follows:

With single sign-on (SSO) enabled, the client calls out to the login
service, passing in the client’'s GSSUP credentials, u/p/d, in order
to obtain an SSO token, t.

The login service delegates authentication to the Artix security
server (ID=1), which retrieves the user’s account data from the
LDAP backend.

227



Configuring the Artix Security Service

Configuring the is2.properties files

228

The client invokes an operation on the Target A, belonging to the
LDAP security domain. The SSO token, t, is included in the
message.

Target A passes the SSO token to the Artix security server (ID=1)
to be authenticated. If authentication is successful, the operation
is allowed to proceed.

Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 is included in the message.

Target B passes the SSO token to the second Artix security server
(ID=2) to be authenticated.

The second Artix security server examines the SSO token. Because
the SSO token is tagged with the first Artix security server's ID
(ID=1), verification of the token is delegated to the first Artix
security server. The second Artix security server opens an [IOP/TLS

connection to the first Artix security service to verify the token.

Each instance of the Artix security service should have its own

is2.properties file. Within each is2.properties file, you should set the

following:

* is2.current.server.id—a unique ID for this Artix security service
instance,

® is2.cluster.properties.filename—a shared cluster file.

* is2.sso.remote.token.cached—a boolean property enables caching
of remote token credentials in a federated system.
With caching enabled, the call from one federated security service to another
(step 7 of Figure 23 on page 227 ) is only necessary to authenticate a token

for the first time. For subsequent authentications, the security service (with
ID=2) can obtain the token’s security data from its own token cache.

For example, the first Artix security server instance from Figure 23 on page 227
could be configured as follows:

# 1S2 Properties File, for Server ID=1

A A A A A A A A A A A A A A A



Configuring the cluster properties
file

Federating the Artix Security Service

## iSF federation related properties
0
is2.current.server xml:id=1
is2.cluster.properties.filename=C:/is2 config/cluster.proper
ties

is2.sso.remote.token.cached=true

And the second Artix security server instance from Figure 23 on page 227
could be configured as follows:

# 1iS2 Properties File, for Server ID=2

B

## 1SF federation related properties
B
is2.current.server xml:id=2
is2.cluster.properties.filename=C:/is2 config/cluster.proper
ties

is2.sso.remote.token.cached=true

All the Artix security server instances within a federation should share a cluster
properties file. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded
Artix security servers shown in Figure 23 on page 227 .

# Advertise the locations of the security services in the
cluster.
com.iona.security.common.securityInstanceURL.1l=corba
loc:it iiops:1.2@security 1ldapl:5001/IT SecurityService
com.iona.security.common.securityInstanceURL.2=corba
loc:it iiops:1.2@security 1ldap2:5002/IT SecurityService

This assumes that the first security service (ID=1) runs on host

security ldapl and IP port 5001; the second security service (ID=2) runs
on host security ldap2 and IP port 5002. To discover the appropriate host
and port settings for the security services, check the
plugins:security:iiop_tls settings in the relevant configuration scope
in the relevant Artix configuration file for each federated security service.

The securityInstanceURL. ServerID variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set these
values is to use the corbaloc URL format.

229



230



Part IV. Artix Security Features

This part presents a miscellaneous collection of additional Artix security features.






B0 1= L= = T PP 235

SSO aNd the LOZIN SEIVICE ...uititit ittt e e e e e et e s 236
Username/Password-Based SSO for SOAP BinNdiNGS .....uveuiiiiiiiiieie e 238
LTS R 101 N 251
INTrodUCTION 10 WS-TUST . ee et eeaas 252
WS-Trust Single Sign-0On Demonstration .........c.ouiiiiii e 256
WS-Trust Example with Signed SAML TOKENS .....ouiniiiniii e 257

Security Token Service Configuration ..........ccooiiiiii s 262

Client CoNfigUIAtION L...ut e e 273

Server ConfigUIatioN .. ... i e 278

Java ROULET SECUNITY ...cueneiiiiiiiiii i re s s e e s s s s s s s s s s asns s s nnnn s s s snnnnnnns 285
Credentials Propagation ArchiteCture ........cooiii e 286

The Credentials Propagation Mapper . ... eea 288
Mapping from HTTP/BA to WS-Security CredentialS ..........ooiuiiiiiiiiiii e 292
HTTP/BA to WS-Security Router EXample .......ciuviiniii e 293

HTTP/BA to WS-Security Router Configuration ...........cooiiiiiiiiii e 295

Mapping from HTTP/BA 10 SSO TOKEN ....vuiiitiite e 300
HTTP/BA to SSO Token Router EXample ......c.ooieiiiiniiii e 301

HTTP/BA to SSO Token Router Configuration ...........ccoveiuiiiiiiiiine e 303

233



234



Single Sign-On

Single sign-on (SSO) is an Artix security framework feature which is used to minimize the exposure of usernames
and passwords to snooping. After initially signing on, a client communicates with other applications by passing
an SSO token in place of the original username and password.

SSO aNd Tthe LOZIN SEIVICE .. .uiuiine ittt ettt e et e et e e e et e e e et e e e aenns 236
Username/Password-Based SSO for SOAP BindiNgs ......c.ovuieiiiniiiiiii e ee e 238

235



Single Sign-On

SSO and the Login Service

Advantages of SSO

SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

* Password visibility is restricted to the login service.
* Clients use SSO tokens to communicate with servers.

* Clients can be configured to use SSO with no code changes.

SSO tokens are configured to expire after a specified length of time.

* When an SSO token expires, the Artix client automatically requests a new
token from the login service. No additional user code is required.

Login service Figure 24 on page 236 shows an overview of a login service. The client Bus

automatically requests an SSO token by sending a username and a password
to the login service. If the username and password are successfully
authenticated, the login service returns an SSO token.

Figure 24. Client Requesting an SSO Token from the Login Service

—
®g L7 . <token>
User login )
i

i < [V - - Artix
Client SLoglm < Security
> ervice > .
Al Service

login (<username>, <password>)

k . ) . .
SSO token The SSO token is a compact key that the Artix security service uses to access

a user’s session details, which are stored in a cache.

SS0 token expiry The Artix security service is configured to impose the following kinds of timeout

on an SSO token:

236



Automatic token refresh

SSO and the Login Service

* SSO session timeout—this timeout places an absolute limit on the lifetime
of an SSO token. When the timeout is exceeded, the token expires.

» SSO session idle timeout—this timeout places a limit on the amount of
time that elapses between authentication requests involving the SSO token.
If the central Artix security service receives no authentication requests in
this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 343.

In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a security exception whenever an SSO
token expires. In practice, however, when SSO is enabled, the relevant plug-in
catches the exception on the client side and contacts the login service again
to refresh the SSO token automatically. The plug-in then automatically retries
the failed operation invocation.

237



Single Sign-On

Username/Password-Based SSO for SOAP Bindings

Overview

When using SOAP bindings in the Java runtime, usernames and passwords
can be transmitted using one of the following mechanisms:

¢ WSS UsernameToken.
e HTTP Basic Authentication.

This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password.

Username/password

authentication without SSO Figure 25 on page 238 gives an overview of ordinary username/password-based

authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

Figure 25. Overview of Username/Password Authentication without SSO

i//zz;,» ” username = <username>
&= '~ User login password = <password>

Client N Target

A

Authenticate username Retrieve user's
and password realms and roles

h

Artix Security
Service

Username/password

authentication with SSO Figure 26 on page 239 gives an overview of username/password-based

authentication when SSO is enabled.

238



Username/Password-Based SSO for SOAP Bindings

Figure 26. Overview of Username/Password Authentication with SSO

@g

login (<username>, <password>) Artix

Client configuration

WSSE BinarySecurityToken

A

Retrieve user's
realms and roles

h 4

A

Login .
\ Service .| Security

Service

Y

Prior to contacting the target server for the first time, the client Bus sends
the username, <username>, and password, <password>, to the login server,
getting an SSO token, <token>, in return. The client Bus then includes a
WSS BinarySecurityToken in a SOAP header (with a proprietary valueType,
http://schemas.iona.com/security/IONASSOToken) in the next request
to the target server. The target server’'s Bus contacts the Artix security service
to validate the SSO token passed in the WSS Binary SecurityToken.

Example 47 on page 239 shows the XML configuration for an SSO SOAP
client.

Example 47. Client Configuration for Username/Password-based SSO

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/Jjaxws"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

(1} <jaxws:client name="{ht
tp://soa.iona.com/demo/hello world}WSSBinarySecurityTokenAuth
Port" createdFromAPI="true">

239



Single Sign-On

240

<jaxws:features>
(2] <itsec:LoginClientConfig
loginServiceWsdlURL="http://localhost:27222/ser
vices/security/LoginService?wsdl"
/>
</jaxws:features>
</jaxws:client>

(3] <http:conduit name="{ht
tp://soa.iona.com/demo/hello world}WSSBinarySecurityTokenAuth
Port.http-conduit">

<http:tlsClientParameters>

</http:tlsClientParameters>
</http:conduit>

(4] <http:conduit name="{http://ws.iona.com/login service}Lo
ginServicePort.http-conduit">
(5} <http:tlsClientParameters>

<csec:trustManagers>
<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding Artix configuration can be described as follows:

©® Enable the single sign-on feature for the endpoint that the client wants
to connect to, WwssBinarySecurityTokenAuthPort. In general, you

need to enable the single sign-on feature for each of the remote endpoints
individually.

® Include the itsec:LoginClientConfig element to enable the single
sign-on feature for the current endpoint. The loginServiceWsdlURL

attribute specifies the location of the login service’s WSDL contract,
which provides the address of the login service port. In this example,
the login service WSDL is obtained by querying the security service's
WSDL publish port.

® This http:conduit element is used to configure SSL/TLS security on

the connection between the client and the server. This configuration
follows the standard approach for SSL/TLS mutual authentication and
is not shown here.



Username/Password-Based SSO for SOAP Bindings

® |tis also necessary to supply TLS settings for the login service port,
{http://ws.iona.com/login service}LoginServicePort, SO that

the client can establish a secure HTTPS connection to the login service.
® Thenhttp:tlsClientParameters element provides the typical

configuration settings that you need for a HTTPS connection. For more
details about these settings, see on page 117. Though not shown here,
it is also advisable to restrict the available set of cipher suites with a
cipher suite filter—see on page 139.

€9 Warning

It is essential to customize an application’s own X.509
certificates and trusted CA certificates in order to configure a
truly secure TLS system. It is also essential to customize the
set of available cipher suites (some default cipher suites provide
very weak security).

Target configuration Example 48 on page 241 shows the XML configuration for an SSO SOAP

target server that accepts connections from clients that authenticate
themselves using single sign-on.

Example 48. Target Configuration for SSO Authentication

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"

xmlns:http="http://cxf.apache.org/transports/http/config
uration"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:hw="http://soa.iona.com/demo/hello world"

xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>
<l—= ——>
<!-- Require WS-Security UsernameToken with password in
this endpoint -->
<l—= ——>
(1) <jaxws:endpoint

id="WSSBinarySecurityTokenAuthEndpoint"
implementor="demo.hw.server.GreeterImpl"

241



Single Sign-On

242

serviceName="hw:GreeterService"
endpointName="hw:WSSBinarySecurityTokenAuthPort"
address="https://localhost:9001/GreeterService/WSSBin
arySecurityTokenAuthPort"
depends-on="tls-settings"
>
(2} <jaxws:features>
<cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateAndAu
thorizeWSSIonaSSOTokenPolicy" />
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

(3) <wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSIonaSSO
TokenPolicy">
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="IONA SSO TOKEN"/>
</itsec:ISFAuthenticationPolicy>
<itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"
/>
</wsp:Policy>

Ll== ==
<!-- ISF Client config -->
Ll== ==
(4] <itsec:IsfClientConfig
id="it.soa.security"
IsfServiceWsdlLoc="http://localhost:27222/services/se
curity/ServiceManager?wsdl"

/>

<l—= ==

<!-- TLS config needed for secure HTTP/S communications
into ISF Server -->

<l—= ==

(5} <http:conduit name="{http://schemas.iona.com/idl/isf ser
vice.idl}IT ISF.ServiceManagerSOAPPort.http-conduit">
<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>
<csec:trustManagers>



Username/Password-Based SSO for SOAP Bindings

<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>
(6] <http:conduit name="{http://schemas.iona.com/idl/isfx au
thn_service.idl}IT_ISFX.AuthenticationServiceSOAPPort.http-
conduit">
<http:tlsClientParameters>
<csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>
<csec:trustManagers>
<csec:certStore file="keys/isf-ca-cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

o <httpj:engine-factory id="tls-settings">
<httpj:engine port="9001">

</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding Artix configuration can be described as follows:

©® Enable WSS binary security token authentication for the JAX-WS endpoint
instantiated by this jaxws:endpoint element. In general, you need to

enable authentication for each of the server endpoints individually.
® The target server's endpoint is configured using a WS-Policy policy.
Inside the cxfp:policies element is @ wsp:PolicyReference

element, which references the wsp:Policy instance with matching
wsu:Id attribute.

® Thewsp:Policy element specifies two policies, which must be satisified
at the target server's endpoint, as follows:

* itsec:ISFAuthenticationPolicy—specifies that the client must

present a proprietary SSO token , which is sent in a WS-Security
header (WSS binary token).

243



Single Sign-On

Artix login service configuration

244

* itsec:ACLAuthorizationPolicy—configures the server to perform

authorization based on the received WSS binary security token. The
following attributes are set:

* aclUrRL—specifies the location of the access control list (ACL) file.

* aclServerName—specifies which of the action-role-mapping

elements in the action role mapping file should apply to the
incoming requests (must match the server-name element in one

of the action-role-mapping elements).

* authorizationRealm—specifies the name of the authorization
realm for this endpoint. See on page 175.

The itsec:IsfClientConfigelementis used to configure the handler

that opens a connection to the Artix security service. The
IsfServiceWsdlLoc attribute specifies the location of the WSDL

contract for the Artix security service. In this example, the WSDL contract
is obtained by querying the security service's WSDL publish port.

The following client settings are applied to the service manager port on
the Artix security service, which has the QName,
{http://schemas.iona.can/idl/isf service.idl}IT ISF.ServiceManagerSOAPPort.

The service manager service is responsible for bootstrapping connections
to the other WSDL services hosted by the Artix security service.

You also need to configure a secure HTTPS connection to the
authentication service port on the Artix security service, which has the
QName,

{http: //schares. iara.can/idl/isfx atn service.id1)TT ISEX AuthenticationServiceSRFRrt.
These settings are used to configure SSL/TLS security on the Web service
port exposed by the Artix server. This involves standard SSL/TLS
configuration and the details are not shown here.

Example 49 on page 244 shows the domain configuration for an Artix login
service that is colocated with the Artix security service (that is, both services
run in the same process).

Example 49. Artix Login Service Configuration

<beans

xmlns="http://www.springframework.org/schema/beans"
xmlns:csec="http://cxf.apache.org/configuration/security"



Username/Password-Based SSO for SOAP Bindings

xmlns:http="http://cxf.apache.org/transports/http/config
uration"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:secsvr="http://schemas.iona.com/soa/security-server-

config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>
(1) <secsvr:IsfServer id="it.soa.security.server" wsdlPub

lishPort="27222">
<secsvr:Adapters>
<secsvr:Adapter>
<secsvr:FileAdapter userDatabase="etc/user
db.xml"/>
</secsvr:Adapter>
</secsvr:Adapters>
<secsvr:Services>
<secsvr:AuthenticationService port="59075"/>
<secsvr:ServiceManager port="59075"/>
</secsvr:Services>
(2} <secsvr:SSOConfig
sessionTimeout="600"
idleTimeout="60"
cacheSize="200"

/>
</secsvr:IsfServer>
<l—= —=—>
<!-- Login Service config -->
<!-- Note that this will only work for the U/T case -->
<l—= ——>
(3] <jaxws:endpoint

id="it.soa.security.login"
xmlns:ns="http://ws.iona.com/login_ service"
implementor="com.iona.soa.security.services.cxf.Login
ServiceImpl"”
(4] address="https://localhost:49675/services/security/Lo
ginService"
serviceName="ns:LoginService"
endpointName="ns:LoginServicePort"
depends-on="tls-settings">
<jaxws:features>
(5} <cxfp:policies>
<wsp:PolicyReference URI="#AuthenticateUser

245



Single Sign-On

246

namePasswordPolicy"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
<wsp:ExactlyOne>
<itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="HTTP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
o <itsec:ISFAuthenticationPolicy>
<itsec:CredentialSource
securityProtocolType="SOAP"
credentialType="USERNAME PASSWORD"/>
</itsec:ISFAuthenticationPolicy>
</wsp:ExactlyOne>
</wsp:Policy>

®@90 0

<= ——>
<!-- (Server Application) TLS Port configuration parameters
-—>
<= ——>
(10} <httpj:engine-factory id="tls-settings">
<l== ==>
<!-- TLS configuration for the Security Service -->
<l== ==>
L1 <httpj:engine port="59075">

<httpj:tlsServerParameters>
<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcsl2" password="pass
word" resource="keys/isf-server.pl2"/>
</csec:keyManagers>
<csec:trustManagers>
<csec:certStore resource="keys/isf-ca-
cert.pem"/>
</csec:trustManagers>
L12) <csec:clientAuthentication want="true" re
quired="true"/>
</httpj:tlsServerParameters>
</httpj:engine>

<l== ==>
<!-- TLS configuration for the Login Service -->
<l== ==>

(13 <httpj:engine port="49675">

<httpj:tlsServerParameters>
<csec:keyManagers keyPassword="password">
<csec:keyStore type="pkcsl2" password="pass



Username/Password-Based SSO for SOAP Bindings

word" resource="keys/isf-server.pl2"/>

</csec:keyManagers>

<csec:trustManagers>

<csec:certStore resource="keys/isf-ca-

cert.pem"/>

</csec:trustManagers>
L1 <csec:clientAuthentication want="true" re
quired="false"/>

</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

<M== ==>

<!-- Login Server requires the incoming username and
password to be -->

<!-- authenticated by the ISF Server Config -->

<l== ==>
m <itsec:IsfClientConfig

id="it.soa.security.client"
IsfServiceWsdlLoc="http://localhost:27222/services/se
curity/ServiceManager?wsdl"

/>

== ==>

<!-- TLS config needed for secure HTTP/S communications
from -->

<!-- Login Server into ISF Server -->

== ==>

L16] <http:conduit name="{http://schemas.iona.com/idl/isf ser
vice.idl}IT ISF.ServiceManagerSOAPPort.http-conduit">
<http:tlsClientParameters disableCNCheck="true">
<csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>
<csec:trustManagers>
<csec:certStore resource="keys/isf-ca-
cert.pem"/>
</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>
L1z <http:conduit name="{http://schemas.iona.com/idl/isfx au
thn_service.idl}IT ISFX.AuthenticationServiceSOAPPort.http-
conduit">
<http:tlsClientParameters disableCNCheck="true">
<csec:keyManagers keyPassword="password">
<csec:keyStore type="jks" password="password"
resource="keys/isf-client.jks"/>
</csec:keyManagers>

247



Single Sign-On

248

<csec:trustManagers>
<csec:certStore resource="keys/isf-ca-

cert.pem"/>

</csec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding Artix configuration can be described as follows:

o

The secsvr:IsfServer element configures the security service in the

usual way. This particular instance is configured with a file adapter and
its Web services are provided through the IP port 59075. For more details

about this configuration, see Example 11.1 on page 202.
The secsvr:ssoconfig element configures the single sign-on (SSO)

feature of the security service. The following attributes are set here:

* sessionTimeout—(in units of seconds) specifies the maximum length

of time for which an SSO token is valid, from the time the token is
issued.

* idleTimeout—(in units of seconds) if an SSO token remains idle
(that is, no security operations performed on this token) for longer
than this period of time, the token becomes invalid.

* cachesize—specifies the maximum number of user sessions to cache
in the security service.

The following jaxws : endpoint element both instantiates and activates

the security login service.
The login service is made available as a Web service whose address is
specified by the address attribute of the jaxws:endpoint element. In

particular, the address URL specifies a secure HTTPS protocol, through
the https:// prefix, and the IP port is 49675.

If you want to change the login service's IP port, make the following
changes to the configuration:

1. Modify the port number in the address attribute of the login service's
jaxws:endpoint element.



Username/Password-Based SSO for SOAP Bindings

2. Modify the port number in the corresponding httpj :engine element,

which configures the TLS security layer for the login service (see
further down the current sample configuration).

The login service is configured to authenticate incoming credentials using
an appropriate WS-Policy policy. The cxfp:policies element is the

standard way of inserting a policy as a feature in the Java runtime. Inside
this element, you can either insert a wsp:Policy element directly or

insert a wsp:PolicyReference element. The recommended approach,
as shown here, is to insert a wsp:PolicyReference element.

The URI attribute of wsp: PolicyReference references the wsp:Policy
instance with matching wsu: 1d attribute value.
This is the wsp: Policy instance referenced by the login service.

The wsp:Exactlyone policy operator asserts that exactly one of the

following policies must be satisfied. In other words, either HTTP Basic
Authentication credentials or SOAP username/password credentials are
present in the incoming message, but not both.

This itsec:ISFAuthenticationPolicy checks for the presence of

HTTP Basic Authentication credentials in the incoming request.
This itsec:ISFAuthenticationPolicy checks for the presence of

WS-Security username/password credentials in the incoming request.
The httpj:engine-factory element configures the TLS security layer

for all of the HTTP Web service endpoint defined in the security service
and the login service.
This httpj:engine element configures TLS security for the

AuthenticationService and serviceManager Web services, which
are accessed through the IP port, 59075.

Require a client of the security service (actually an Artix server) to present
an X.5009 certificate. In other words, the TLS connection is configured
for mutual authentication.

This nttp7 :engine element configures TLS security for the login service,

which is accessed through the IP port, 49675.

Require a client of the login service (actually an Artix client) to present
an X.5009 certificate.

Configure the login service to be a client of the security service. The login
service is separate from the security service (even though it is activated
within the same Spring container), so it needs to establish a connection
to the security service, just like any other Artix server.

249



Single Sign-On

EA  This http:conduit element configures the TLS security layer for the
proxy that connects the login service to the serviceManager service.

The proxy has its own X.509 certificate, because the security service's
endpoints require mutual authentication.
E¥1  This http:conduit element configures the TLS security layer for the

proxy that connects the login service to the AuthenticationService

service. The proxy has its own X.509 certificate, because the security
service's endpoints require mutual authentication.

250



WS-Trust

The Web services trust (WS-Trust) specification defines a standard security infrastructure for Web services
applications. WS-Trust replaces the traditional Artix security service with an equivalent service, the security
token service (STS). This chapter provides a basic introduction to the WS-Trust infrastructure and explains how
to configure and deploy a single sign-on client/server application in the context of WS-Trust.

Ty goTa [0 Tox T a T (o T ATt (U 252
WS-Trust Single Sign-0n DemMONSIIation ........oi.iuii e 256
WS-Trust Example with Signed SAML TOKENS .. ..iueieiieie e eeans 257
Security Token Service Configuration ...........c.oiiieiiiii e 262
Client ConfIGUIATION ....ei e et a 273
Server CONfIGUIATION ... .. e e et 278

251



WS-Trust

Introduction to WS-Trust

Overview

WS-Trust specification

WS-Trust architecture

! http://www.oasis-open.org

252

The Web services trust model (WS-Trust) is a general framework for
implementing security in a distributed system. The basic terms in this model
(for example, claims, security tokens, policies, and so on), are deliberately
defined in an abstract way so that the framework can be layered on top of a
wide variety of existing security systems. For example, you can define a
WS-Trust framework by layering it over Kerberos, SSL/TLS, or, in particular,
by layering it over the existing Artix security framework.

The V\1/S-Trust features of Artix are based on the WS-Trust standard from
Qasis™:

http://www.oasis-open.org/specs/index.php#wstrustvl.3

Figure 27 on page 253 shows a general overview of the WS-Trust architecture.


http://www.oasis-open.org
http://www.oasis-open.org

Figure 27. WS-Trust Architecture

Requestor

Relying party

Security token

Claims

Client

Introduction to WS-Trust

iSF Server

Adapter

A requestor is an entity that tries to invoke a secure operation over a network
connection. In practice, a requestor is typically a Web service client.

A relying party refers to an entity that has some services or resources that
must be secured against unauthorized access. In practice, a relying party is
typically a Web service.

(@ Note

This is a term defined by the SAML specification, not by WS-Trust.
In Artix security, however, the term is applied generally to secure
services, irrespective of whether SAML tokens are used.

A security token is a collection of security data that a requestor sends inside
a request (typically embedded in the message header) in order to invoke a
secure operation or to gain access to a secure resource. In the WS-Trust
framework, the notion of a security token is quite general and can be used to
describe any block of security data that might accompany a request.

For example, in Artix a WS-Trust security token might be a signed SAML
token or a proprietary Artix SSO token.

A security token is formally defined to consist of a collection of c/laims. Each
claim typically contains a particular kind of security data. For example, in

253



WS-Trust

Policy

Security token service

254

Artix, a SAML token contains realm and role data, which is a particular kind
of claim.

In WS-Trust scenarios, a policy can represent the security configuration of a
participant in a secure application. The requestor, the relying party, and the
security token service are all configured by policies. For example, a policy
can be used to configure what kinds of authentication are supported and
required, and to specify the details of an access control list (ACL).

The security token service (STS) lies at the heart of the WS-Trust security
architecture. In the WS-Trust standard, the following bindings are defined
(not all of which are supported by Artix):

* [ssue binding—the specification defines this binding as follows: Based on
the credential provided/proven in the request, a new token is issued,
possibly with new proof information.

For example, in Artix, the Issue binding is most commonly used used as a
login service to support single sign-on (SSO). When a requestor needs an
SSO token, it calls out to the Issue binding to request the token.

* Validate binding—the specification defines this binding as follows: The
validity of the specified security token is evaluated and a result is returned.
The result may be a status, a new token, or both.

For example, if an Artix server receives the Artix proprietary SSO token type,
ISF_SSO_TOKEN, from a client, it would need to call out to the Validate
binding in order to retrieve the realms and roles assocated with this token.
Unlike a SAML token, the Artix proprietary SSO token does not embed the
realm and role security data.

* Renew binding (not supported)—the specification defines this binding as
follows: A previously issued token with expiration is presented (and possibly
proven) and the same token is returned with new expiration semantics.

* Cancel binding (not supported)—the specification defines this binding as
follows: When a previously issued token is no longer needed, the Cancel
binding can be used to cancel the token, terminating its use.

The Artix implementation of the STS has a layered architecture, as shown in
Figure 27 on page 253,where the layers can be described as follows:

* JAX-WS layer—is responsible for exposing the STS bindings as Web service
endpoints. This layer exploits standard Artix Java runtime configuration



Introduction to WS-Trust

options to configure the endpoints. The hostname, IP port, and TLS settings
can all be customized in the same way as with any other Artix server.

STS layer—provides the implementation of the STS bindings. This layer is
responsible for managing the lifecycle of WS-Trust security tokens. For
example, the STS implementation is responsible for creating, cancelling,
renewing, and validating WS-Trust tokens. When creating a token, you can
specify what format the token should have, whether it must be signed, and
SO on.

iSF server layer—represents the implementation of the pre-existing (that
is, non-WS-Trust) Artix security service. When configured as part of the
STS, this layer is primarily responsible for retrieving security data from
third-party adapters and making this security data available to the STS
layer.

Adapter layer—is responsible for integrating a specific third-party security
database into the security service. Artix currently supports the following
adapters: File, LDAP, and Kerberos. For details, see on page 201.

255



WS-Trust

WS-Trust Single Sign-On Demonstration

WS-Trust Example with Signed SAML TOKENS .. ..uiuinieiiie e e raaeens 257
Security Token Service ConfigUration .......cicieiiii e 262
[0 T a1 A 00T g7 ={U =1 o o P 273
ST A T 070 a1 7= o) o P 278

256



WS-Trust Example with Signed SAML Tokens

WS-Trust Example with Signed SAML Tokens

Overview

Figure 28 on page 257 gives an overview of what happens when a single
sign-on client makes a secure invocation on a remote server.

Figure 28. WS-Trust Single Sign-On Scenario

(s [ [ ] e
Client > o— Server - foken issuer,
1 _publickey 1
____________
A A
R U N - O e ~.®
1 X.509 CA 1 @ X.509 CA ACL
) | |
' -_— — ' 1 —— -— -—
I i 1 =
| : :
| alicejks trentcertpem H bobjks trent-certpem ! aclxml
e N N AU A bt Sl
1 CA
|
I
1 .
! sts-ca-cert.pem Issue Validate
e [ |
@ X509 cA |
[sAmC 1.1 T Hok T #] JAX-WS L !
— —
1 | ’
'
sts-server jks  trent-cert.pem |
@\ | STS «— (3 L Sterserveris_Tentcertd pem s
__________
|
i
: iSF Server
____________
i ! |
1 Token issuer
i_ private key i Adapter
X.509
userdb.xml alice-cert.pem

Steps to invoke the server

securely The WS-Trust single sign-on scenario shown in Figure 28 on page 257 can

be described as follows:

1. Before invoking an operation on the server for the first time, the client
initiates SSO login by contacting the Issue binding on the STS.

2. The client presents its own X.509 certificate, alice.jks, during the TLS

handshake. On the STS side of the connection, the JAX-WS endpoint
verifies the client certificate using the CA certificate, trent-cert.pem,

and on the client side, the client verifies the STS certificate using the CA
certificate, sts-ca-cert.pem.

257



WS-Trust

258

3. After the TLS handshake is complete, the JAX-WS endpoint is configured

to authenticate the client certificate. Effectively, this authentication step
consists of comparing the received certificate with a copy of the certificate,
alice-cert.pem, stored in the security adapter. For more details, see

Managing a File Authentication Domain on page 184 and Managing an
LDAP Authentication Domain on page 189.

If the authentication step is successful, the adapter layer returns a collection
of realm and role data associated with the client.

. The STS layer takes the realm and role data from the previous step and

uses it to create a SAML token, as follows:
a. The client's realm and role data is reformatted as a SAML 1.1 token.

b. The client's identity (extracted from the client certificate's subject) is
encoded as authorization related content of a SAML token. This identity
represents the the holder-of-key (shown as Hox in the figure).

c. The token issuer private key is used to sign the SAML token (where the
signature is shown as # in the figure). This enables relying parties (Artix

servers) to verify the integrity of the SAML token.

. The STS replies to the client, sending back the signed SAML token.

. The client initiates a connection to the server, in order to invoke an

operation.

. During the TLS handshake, the client presents its own X.509 certificate,

alice.jks. On the server side of the connection, the JAX-WS endpoint
verifies the client certificate using the CA certificate, trent-cert.pem,

and on the client side, the client verifies the server certificate also using
the CA certificate, trent-cert.pem.

After the connection is established, the client sends an invocation request
to the server, which includes the SAML token embedded in a SOAP header.

. The server tests the integrity of the received SAML token using the token

issuer public key (which complements the token issuer private key used
by the STS). If this test is successful, it proves that the SAML token has
not been modified or corrupted since it was issued by the STS.



Signed SAML token

WS-Trust Example with Signed SAML Tokens

In addition, the server also checks that the holder-of-key identity embedded
in the SAML token matches the subject from the received client certificate.
If the identities match, this proves that the current client is indeed the
owner of the SAML token and is entitled to present the token to the server.
This is a stong extra level of control, which prevents the use of SAML tokens
in contexts they were not meant for, even if an attacker somehow acquired
one.

9. The server extracts the realm and role data from the SAML token and, in
conjunction with the server's own ACL file, the server figures out whether
the client is authorized to invoke the requested operation. If yes, the
operation is allowed to proceed; otherwise an error would be generated.

A signed SAML token consists of the following parts:
* SAML assertion—in Artix, this consists of realm and role data.

 (Optional) Holder-of-key field—the identify of the client that owns the
SAML assertion. Only the client identified by this field is allowed to present
the current SAML token.

* Digital signature—a signature obtained by calculating a digest of the SAML
token and encrypting the digest with a private key (token issuer private
key). The signature can later be verified using the corresponding public key
(token issuer public key). Using a digital signature offers the following
advantages:

* Integrity—the contents of the SAML token cannot be tampered with or
corrupted in any way. Any attempt to modify the token would cause a
mismatch between the digest and the message contents.

* Non-repudiation of origin—only the STS has access to the token issuer
private key. Hence, by verifying the signature, you can prove that the
SAML token originated from the STS that owns that private key.

If you consider the case where the holder-of-key field is not enabled, obtaining
a signed SAML token is analogous to obtaining an electronic card key to gain
access to a building. In order to obtain the key initially, you present some
form of photo ID to a receptionist or security guard. Having verified your ID,
the guard then issues you with an electronic key that gives you access to
certain areas of the building. For example, you might gain access to the
meeting rooms and ordinary offices, but you would probably not be able to
access the systems room, the boiler room or the CEQ's office.

259



WS-Trust

Holder of key

Overview of the X.509 certificates
and keys

260

If you were particularly keen to visit the boiler room and you were an inveterate
hacker, you might be tempted to try and re-program the card key using
equipment ordered over the Internet. But if the card key system is properly
designed, this would be impossible, because the card issuer would have a
secret code that is required for re-programming the card. The card key is thus
tamper proof, like a signed SAML token.

The holder of key feature is a mechanism that provides proof of ownership
of a signed SAML token. The key holder is the legitimate owner of the signed
SAML token and only this key holder has the right to present the SAML token
to a relying party. The holder of key mechanism works by embedding the key
holder's identity in the SAML token before the SAML token is signed by the
token issuer. If the key holder now presents its own credentials along with
the SAML token when it contacts a relying party (for example, an Artix server),
the relying party can then check that the key holder's identity matches the
identity embedded in the SAML token.

If you consider the analogy with the card key system, you can see that a
potential weakness in the card key system is that the card key could be used
by anybody. In order to preserve security, therefore, you must take great care
that you do not physically misplace the card key. If you went out to a cafe
for lunch and accidentally left your card key behind, anyone could pick it up
and use it to access the building. This is the kind of hazard that holder of key
security is designed to protect against. One way of adding protection to the
card key system would be to print your name on the card key as it is issued
and to require all key holders to carry a photo ID with them at all times. Under
this system, anyone in the building could challenge you to produce your photo
ID and show that your name matches the name on the card. This enables
you to prove that you are the legitimate owner of the card key.

In the scenario shown in Figure 28 on page 257, a relatively large number of
certificates and keys are used. These can be summarized as follows:

* trent-cert configuration authority—is responsible for issuing the following
certificates:

* alice.jks—the client's own X.509 certificate and private key.
* bob.jks—the server's own X.509 certificate and private key.

* sts-ca-cert configuration authority—is responsible for issuing the
following certificate:



WS-Trust Example with Signed SAML Tokens

* sts-server.jks—the STS server's own X.509 certificate and private
key.

* Token issuer keys—to support signed SAML tokens, the following
public/private key pair is defined:

* sts-token-issuer.jks—the token issuer private key (for signing SAML
tokens).

* sts-token-issuer-cert.pem—he token issuer public key (for verifying
SAML tokens).

261



WS-Trust

Security Token Service Configuration

Overview

X.509 certificates and keys
needed by the STS

262

This section describes a security token service (STS) configuration suitable
for the WS-Trust single sign-on scenario. In particular, the /ssue binding is
enabled to perform single sign-on, while the Validate binding is disabled.
Other configurations of the STS are possible, but they are outside the scope
of this chapter.

The configuration of the STS reflects the layered architecture shown in
Figure 27 on page 253. That is, each layer of the STS architecture is configured
by distinct parts of the configuration file, as follows:

* STS layer—is configured by the sts:stsserver element, which governs

the issuing and validation of security tokens (for example, SAML assertions)
through the Issue or Validate bindings. See StsServer element on page 264
for details.

* JAX-WS layer—is configured by the combination of a jaxws:endpoint
element and a httpj :engine element for each Web service (Issue binding

or Validate binding) exposed by the STS. In the current scenario, only the
Issue binding is exposed as a JAX-WS endpoint. See JAX-WS endpoint for
the Issue binding on page ? for details.

* [SF server/adapter layers—is configured by the itsecsvr:IsfServer

element (and the nested itsecsvr:Adapters element). The adapter layer

is configured in exactly the same way as for a non-STS server. See iSF
adapter configuration on page ? for details.

The STS is associated with a variety of X.509 certificate and keys, as follows:

» Securing client connections to JAX-WS endpoints—the JAX-WS endpoints
exposed by the STS are configured with TLS security, where the handshake
must be configured to require mutual authentication. As usual, this requires
each JAX-WS endpoint to be associated with the following certificates:

e STS own certificate—an X.509 certificate and private key,
sts-server.jks, Which the STS server uses to identify itself to clients.

* Trusted CA certificate list—the CA certificate that signed the client's
own certificate, trent-cert.pem.



Issue binding address

Security Token Service Configuration

Signing SAML assertions—to support signed SAML assertions, the STS
must be supplied with a signing key, which is a private key reserved
specially for this purpose.

Authenticating received TLS credentials—to authenticate the TLS
credentials received from a client, the client's own certificate must be cached
in the user database associated with the security adapter. The details of
how to do this depend on the type of adapter you are deploying (see
Managing a File Authentication Domain on page 184 and Managing an LDAP
Authentication Domain on page 189 for details). For example, in the case
of the file adapter, you would cache the certificate for alice,
keys/alice-cert.pem, as follows:

<securityInfo xmlns="http://schemas.iona.com/security/filead
apter" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://schemas.iona.com/security/filead
apter fileadapter.xsd">
<users>
<user name="alice" certificate="keys/alice-cert.pem">

<realm name="IONAGlobalRealm">
<role name="guest"/>
</realm>
<realm name="corporate">
<role name="president"/>
</realm>
</user>
</users>
</securityInfo>

In the current example, only the Issue binding is configured with a JAX-WS
endpoint. Before deploying the STS for this scenario, you will usually need
to customize both the hostname and IP port assocated with this endpoint,
which you can do as follows:

1.

Edit the address defined in the WSDL port element in the Issue binding's
WSDL contract. See WSDL contract for the Issue binding on page 264 for
details.

. If the Issue binding's jaxws:endpoint element in Spring configuration

includes an address attribute, you will need to edit the value of this

address (which overrides the value in the WSDL contract). See JAX-WS
endpoint for the Issue binding on page 268 for details.

263



WS-Trust

WSDL contract for the Issue
binding

STS configuration file

StsServer element

264

3. You must also customize the value of the port attribute in the relevant
httpj:engine element. See Example 55 on page 268 for details.

The default details for opening a connection to the STS Issue binding are
specified in the Issue binding WSDL contract, which can be found in the
samples/security/wst_saml/wsdl directory. Example 50 on page 264
shows a fragment from the Issue binding contract, highlighting the HTTP
address of the Issue port. By editing the 1ocation attribute of the
http:address element, you can customize the default hosthame and IP
port, https://HostName: IPPort, Of the Issue binding.

Example 50. Issue Binding WSDL Contract

<wsdl:definitions
targetNamespace="http://docs.oasis-open.org/ws-sx/ws-

trust/200512/"
xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:service name="SecurityTokenServiceSOAPService">
<wsdl:port name="TLSClientAuthIssueSignedSAMLTLSHOK"
binding="tns:SecurityTokenService Binding">
<http:address
location="https://localhost:57076/services/security/Se
curityTokenServiceSOAPService/TLSClientAuthIssueSignedSAM
LTLSHOK" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

The STS configuration file for this demonstration can be found at the following
location:

ArtixInstallDir/java/samples/security/wst saml/etc/security-
service.xml

The sts:StsServer element is responsible for configuring the core STS
implementation only. Other aspects, such as the detailed configuration of the
Issue and Validate JAX-WS endpoints, are configured separately.

Example 51 on page 265 shows the stsserver element without any content.
In particular, this configuration fragment also shows all of the namespaces



Security Token Service Configuration

and namespace prefixes that are used in the STS configuration file,
security-service.xml.

Example 51. StsServer Element

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:cxfsec="http://cxf.apache.org/configuration/security"

xmlns:cxfp="http://cxf.apache.org/policy"
xmlns:http="http://cxf.apache.org/transports/http/config
uration"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
xmlns:itsec="http://schemas.iona.com/soa/security-config"

xmlns:itsecsvr="http://schemas.iona.com/soa/security-
server-config”

xmlns:jaxws="http://cxf.apache.org/jaxws"

xmlns:sts="http://schemas.iona.com/soa/sts-config"

xmlns:wsp="http://www.w3.0rg/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/ocasis-
200401-wss-wssecurity-utility-1.0.xsd"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

>

<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
</sts:StsServer>
</beans>
Where the stsserver element requires you to set just one attribute, id. As
usual, the id value is used to register the stsserver bean instance in the
Spring bean registry. This id is important, because it is needed in order to
associate the JAX-WS endpoints, such as Issue and Validate, with the

StsServer implementation (the stsserver bean provides the implementation
of these Web services). See Example 55 on page 268.

The contents of the sts:stsserver element consist of the following
sub-elements:

¢ SAMLTokenCreationParams element on page 266.

* |ssueBindingParams element on page 266.

265



WS-Trust

* ValidateBindingParams element on page 268.

SAMLTokenCreationParams

element Example 52 on page 266 shows the sts:SAMLTokenCreationParams

element, which is responsible for configuring SAML token creation.

Example 52. SAMLTokenCreationParams Element
<beans ... >
<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">
<sts:SAMLTokenCreationParams issuer="Security Token
Service"/>
</sts:StsServer>
</beans>
Where the saMLTokenCreationParams element defines the required attribute,

issuer. The issuer attribute uniquely identifies the SAML authority to the
relying party (Artix server).

IssueBindingParams element
& Example 53 on page 266 shows the sts:IssueBindingParams element,

which is responsible for configuring the Issue binding implementation.

Example 53. IssueBindingParams Element

<beans ... >
<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">

<sts:IssueBindingParams>
(1) <sts:SignatureKeySpecification>
(2} <itsec:KeyStore xmlns:itsec="http://schem
as.iona.com/soa/security-config"
storeType="jks">
<itsec:Resource>
<itsec:ClasspathResourceResolver
path="keys/sts-token-issuer.jks"/>
</itsec:Resource>
<itsec:StorePass>
<itsec:PlaintextPasswordResolver
password="password"/>
</itsec:StorePass>
</itsec:KeyStore>
(3] <itsec:KeyEntry alias="sts-token-issuer">

266



Security Token Service Configuration

<itsec:Password>
<itsec:PlaintextPasswordResolver
password="password"/>
</itsec:Password>
</itsec:KeyEntry>
</sts:SignatureKeySpecification>

(4] <sts:SupportedTokenTypes>
(5} <sts:TokenInfo
tokenTypeURI="http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1">
<sts:TokenMode>
(6} <sts:SAMLTokenMode
holderOfKeyMode="TLS-HOK"
signingMode="SIGNED" />
</sts:TokenMode>
</sts:TokenInfo>
</sts:SupportedTokenTypes>
</sts:IssueBindingParams>

</sts:StsServer>
</beans>
The preceding configuration can be described as follows:

® The sts:SignatureKeySpecification element specifies the private

key that is used to sign SAML tokens issued by the STS server.
® The itsec:KeyStore element is used to specify the key store that

contains the signing key. The storeType attribute specifies that the key
store is a Java Key Store (JKS). The itsec:Resource sub-element
specifies the location of the keystore and the itsec:StorePass

sub-element specifies the keystore password.
® The itsec:KeyEntry element is used to specify the signing key's key

entry in the JKS keystore. The alias attribute specifies the signing key's

key alias, which is the standard way of identifying a private key in a
Java key store. The password that decrypts the signing key is specified
by the itsec:Password sub-element.

® The sts:SupportedTokenTypes element specifies the token types that

can potentially be returned from the Issue binding of the STS. If this
element is omitted from configuration, the supported token type defaults
to 1sF_sso_TOKEN, which is an Artix proprietary SSO token type.

267



WS-Trust

ValidateBindingParams element

JAX-WS endpoint for the Issue
binding

268

® The sts:TokenInfo element specifies the supported token type, where
in this example, the tokenTypeURT attribute selects SAML 1.1 as the

supported token type.
® The sts:saMLTokenMode element specifies some options for SAML

token generation. In particular, the holderofkeyMode attribute specifies

that the holder of key identity is taken from the received TLS credentials
and the signingMode attribute specifies that the returned SAML token

must be signed. See Signed SAML token on page 259 and Holder of
key on page 260 for more details.

Example 54 on page 268 shows the sts:validateBindingParams element,
which is responsible for configuring the Validate binding implementation. In
this example, the Validate binding is disabled, by setting
disableBinding="true". The Validate binding is not needed for the SAML
single sign-on scenario.

Example 54. ValidateBindingParams Element

<beans ... >
<sts:StsServer id="TLSClientAuthIssueSignedSAMLTLSHOK">

<sts:ValidateBindingParams disableBinding="true"/>
</sts:StsServer>

</beans>

Example 55 on page 268 shows how to configure the JAX-WS endpoint for
the Issue binding.

Example 55. Issue Binding JAX-WS Endpoint

<beans ... >

(1) <jaxws:endpoint
id="TLSClientAuthIssueSignedSAMLTLSHOKEndpoint"
implementor="#TLSClientAuthIssueSignedSAMLTLSHOK"
wsdlLocation="wsdl/ws-trust-1.3-soap.wsdl"
serviceName="wst:SecurityTokenServiceSOAPService"
endpointName="wst:TLSClientAuthIssueSignedSAMLTLSHOK"

depends-on="tls-settings"
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws—
trust/200512/"



Security Token Service Configuration

>
<jaxws:features>
<cxfp:policies>
(2} <wsp:PolicyReference URI="#AuthenticateTLSCli
entCertificatePolicy"/>
</cxfp:policies>
</jaxws:features>
<jaxws:properties>

(3] <entry key="jaxb.additionalContextClasses">
<ref bean="STSAdditionalContextClasses"/>
</entry>

</jaxws:properties>
</jaxws:endpoint>

(4] <wsp:Policy wsu:Id="AuthenticateTLSClientCertificatePol
icy">
(5} <itsec:ISFAuthenticationPolicy>

<itsec:CredentialSource
securityProtocolType="TLS"
credentialType="TLS PEER"/>
</itsec:ISFAuthenticationPolicy>
</wsp:Policy>

(6} <bean id="STSAdditionalContextClasses"
class="com.iona.soa.security.rt.util.ClassArray
FactoryBean">
<property name="classNames">
<list>
<value>com.iona.soa.security.types.ObjectFact
ory</value>
<value>oasis.names.tc.saml. 1 0O.assertion.Ob
jectFactory</value>
<value>oasis.names.tc.saml. 2 0O.assertion.Ob
jectFactory</value>
<value>com.iona.schemas.saml.ObjectFact

ory</value>
<value>com.iona.schemas.saml2.0bjectFact
ory</value>
</list>
</property>
</bean>
o <httpj:engine-factory id="tls-settings">
<l-- ——>
<!-- TLS configuration for the Security Token Service
-—>
<l—= ——>
(8 <httpj:engine port="57076">

269



WS-Trust

270

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" re

source="keys/sts-server.jks" password="password"/>

</cxfsec:keyManagers>
<cxfsec:trustManagers>
<cxfsec:certStore resource="keys/trent-

cert.pem"/>

(9

</cxfsec:trustManagers>
<cxfsec:clientAuthentication want="true"

required="true"/>

</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

</beans>

The preceding configuration can be described as follows:

o

This jaxws :endpoint element provides the basic configuration of the

Issue binding's JAX-WS endpoint. The following attributes are specified

here:

* id—an unique identifier that identifies this endpoint instance in the
Spring registry.

* implementor—references the Java bean that implements the SAML

Issue binding. The implementor of the Issue binding is the bean
defined by the sts:stsserver element. Hence, the implementor

attribute uses a bean ID reference, of the form #BeanIb, to reference
the stsserver bean instance—see Example 51 on page 265.

¢ wsdlLocation—Iocation of the WSDL contract for the SAML Issue

binding. The default address of the Issue binding is specified in this
contract—see Example 50 on page 264.

* serviceName—the QName of the Issue binding's WSDL service.

* endpointName—the QName of the Issue binding's WSDL port
(endpoint) name

* depends-on—ensures that the associated Jetty port is created before
this bean is instantiated.



Security Token Service Configuration

* xmlns:wst—defines the prefix needed for defining the service name
QName and the endpoint name QName.

The wsp:PolicyReference element associates the policy having the
bean ID, AuthenticateTLSClientCertificatePolicy, with the

current endpoint. For more details about policy references, see Policies
and policy references on page 154.
The jaxb.additionalContextClasses property specifies additional

JAX-B classes that enable the endpoint to parse some standard SAML
data types.
This wsp:Policy element specifies the policy referenced previously

from within the jaxws:endpoint element. In particular, the wsu:1d

attribute specifies the ID value that is referenced from
wsp:PolicyReference.

The itsec:ISFAuthenticationPolicy policy assertion requires that

peer TLS credentials (received from the client, Alice) are present and
can be successfully authenticated against the iSF server. See Policy
Expressions on page 157 for more details about policy assertions.

(@ Note

The authentication policy assertion automatically makes a
colocated call to the iSF server layer here. Contrast this with
the way itsec:ISFAuthenticationPolicy is used in an Artix
server, where the itsec:IsfClientConfig element is required
in order to specify the location of the iSF server.

This bean element contains an instance of type,
com.iona.soa.security.rt.util.ClassArrayFactoryBean, Which

contains the extra JAX-B classes for SAML. This is essentially boiler-plate
configuration that should not be modified in any way.
The httpj:engine-factory element contains all of the instances of

Jetty ports. This Jetty engine factory has the bean ID, t1s-settings,

which is defined to be a prerequisite for the Issue binding's
jaxws:endpoint bean (through the jaxws:endpoint element's

depend-on attribute).
The nttp3j:engine element configures the TLS settings for the IP port,
57076, in the usual way (see on page 117).

271



WS-Trust

iSF adapter configuration

Logging configuration

272

j Note

If you want to customize the Issue binding's IP port, you must
remember to modify this port attribute as well.

© Thecxfsec:clientAuthentication elementis configured to require
mutual authentication.

Example 56 on page 272 shows the configuration of the i tsecsvr:IsfServer
element, which provides the basic authentication capability for the STS server.
The iSF server does not expose any endpoints of its own, but it is used
internally by the STS implementation to authenticate credentials. In particular,
various third-party enterprise security adapters can be provided through the
iSF server. The current example configures a file adapter in order to store the
users' security data in a flat file, etc/userdb.xml.

Example 56. iSF Adapter Configuration

<beans ... >

<itsecsvr:IsfServer id="it.soa.security.server">
<itsecsvr:Adapters>
<itsecsvr:Adapter>
<itsecsvr:FileAdapter userDatabase="etc/user
db.xml"/>
</itsecsvr:Adapter>
</itsecsvr:Adapters>
</itsecsvr:IsfServer>

</beans>

The following lines at the end of the STS configuration enable logging in the
Java runtime.

<beans ... >

<cxf:bus>
<cxf:features>
<bean class="org.apache.cxf.feature.LoggingFea
ture"/>
</cxf:features>
</cxf:bus>
</beans>



Client Configuration

Overview

X.509 certificates and keys
needed by the client

Enabling STS login for specific
proxy types

Client Configuration

The client configuration can be divided up conceptually into two main parts:
the first part configures the connection between the client and the remote
Artix server; the second part configures the connection between the client
and the STS.

The client is associated with a variety of X.509 certificate and keys, as follows:

* Client's own certificate—an X.509 certificate and private key, alice. ks,
which the client uses to identify itself to servers.
* Trusted CA certificates—the following trusted CA certificates are needed
by the client:
e trent-cert.pem—the CA certificate that issued the client certificates,
alice.jks and bob.jks. This is used to check the signature on the
certificate recieved from the Artix server, bob. jks.

* sts-ca-cert.pem—the CA certificate that issued the STS certificate,
sts-server.jks. This is used to check the signature on the certificate
received from the STS.

On the client side, single sign-on must be explicitly enabled for each proxy
type that requires it. This means that a client can connect to some Web
services with single sign-on (STS login) enabled and can connect to other
Web services with single sign-on (STS login) disabled. Example 57 on page 273
shows an example of how to enable STS login specifically for proxies that
connect to the port, wssvalidateSAMLAssertionHoKPort, Which is a
HelloWorld service provided by the demonstration Artix server.

Example 57. Enabling STS Login

<beans ...>

(1) <jaxws:client

name="{http://soa.iona.com/demo/hello world}WSSvalid
ateSAMLAssertionHoKPort"

createdFromAPI="true">

<jaxws:features>
(2} <sts:STSLoginClientConfig

273



WS-Trust

274

SecurityTokenServiceWsdlURL="file:wsdl/ws—
trust-1.3-soap.wsdl"
serviceName="SecurityTokenServiceSOAPService"

port="TLSClientAuthIssueSignedSAMLTLSHOK"
address="https://localhost:57076/services/se
curity/SecurityTokenServiceSOAPService/TLSClientAuthIssueSigned
SAMLTLSHOK"
/>
</jaxws:features>
</jaxws:client>

(3] <http:conduit name="{ht
tp://soa.iona.com/demo/hello world}WSSValidateSAMLAssertion
HoKPort.http-conduit">
<http:tlsClientParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" password="password"
file="keys/alice.jks"/>
</cxfsec:keyManagers>
<cxfsec:trustManagers>
<cxfsec:certStore resource="keys/trent-
cert.pem" />
</cxfsec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

</beéﬁé>
The preceding configuration can be described as follows:

©® The jaxws:client element enables features that apply to all proxies
connecting to the WSDL port (endpoint) identified by the name attribute.
In particular, the purpose of this jaxws:client element is to enable

the SAML single sign-on feature.
® The sts:STSLoginClientConfig element defines a feature to enable

SAML single sign-on. The attributes of this element essentially provide
the information needed to connect to the STS login service. The following
attributes are defined:

* SecurityTokenServiceWsd1URL—the location of the Issue binding's
WSDL contract.

* serviceName—the unqualified name of the Issue binding's WSDL
service.



Configuring the connection to the
STS Issue binding

Client Configuration

* port—the unqualified name of the Issue binding's WSDL port
(endpoint).

* address—the address of the Issue binding's WSDL port, overriding
the default value in the WSDL contract.

® The nttp:conduit specifies the client-side TLS settings for the
WSSValidateSAMLAssertionHoKPort endpoint on the HelloWorld

Artix server (see on page 117). The client's own certificate is the Alice
certificate, stored in the keys/alice.jks keystore. The trusted CA

certificate that is used to check the signature on the server certificate,
is trent-cert.pem.

The connection to the STS login service (that is, to the Issue binding port)
must now be configured in detail. These configuration details are essentially
boilerplate settings that need to be specified only once for each client (in
contrast to the per-proxy settings that were described in Enabling STS login
for specific proxy types on page 273).

Example 58. Connection to STS Issue Binding

<beans ...>
(1) <jaxws:client
name="{http://docs.oasis-open.org/ws-sx/ws—

trust/200512/}TLSClientAuthIssueSignedSAMLTLSHOK"
createdFromAPI="true">
<jaxws:properties>

(2} <entry key="jaxb.additionalContextClasses">
<ref bean="STSAdditionalContextClasses"/>
</entry>

</jaxws:properties>
</jaxws:client>

(3] <bean id="STSAdditionalContextClasses"
class="com.iona.soa.security.rt.util.ClassArray
FactoryBean">
<property name="classNames">
<list>

<value>com.iona.soa.security.types.ObjectFact
ory</value>

<value>oasis.names.tc.saml. 1 0O.assertion.Ob
jectFactory</value>

<value>oasis.names.tc.saml. 2 0O.assertion.Ob

275



WS-Trust

276

jectFactory</value>
<value>com.iona.schemas.saml.ObjectFact
ory</value>
<value>com.iona.schemas.saml2.0bjectFact
ory</value>
</list>
</property>
</bean>

(4] <http:conduit name="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}TLSClientAuthIssueSignedSAMLTLSHOK. http-conduit">

<http:tlsClientParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" re
source="keys/alice.jks" password="password"/>
</cxfsec:keyManagers>
<cxfsec:trustManagers>
<cxfsec:certStore file="keys/sts-ca-cert.pem"/>

</cxfsec:trustManagers>
</http:tlsClientParameters>
</http:conduit>
</beans>
The preceding configuration can be described as follows:

©® The jaxws:client element defines features and properties that apply
to proxies of the STS login service (that is, Issue binding). The name
attribute specifies the QName of the Issue binding's WSDL port,
{hittp: //docs . casis—gpen. org/ws-sk/ws—trust/200512/ }TLSCl ientAuthIssueSigned M TT SHK,
as defined in the WSDL contract specified by the
sts:STSLoginClientConfig element.

® The jaxb.additionalContextClasses property specifies additional

JAX-B classes that enable the login proxy to parse some standard SAML
data types.
® This bean element contains an instance of type,

com.iona.soa.security.rt.util.ClassArrayFactoryBean, which

contains the extra JAX-B classes for SAML. This is essentially boiler-plate
configuration that should not be modified in any way.
® The http:conduit element configures the TLS settings for the

connection to the STS login (Issue binding) port, where these TLS settings
are specified in the usual way. The client identifies itself to the STS login



Client Configuration

service as Alice, using the X.509 certificate from the keys/alice.jks

key store, and sthe client checks the signature on the STS certificate,
using the sts-ca-cert.pem trusted CA certificate.

Logging configuration The following lines at the end of the client configuration enable logging in the

Java runtime.

<beans ...>

<cxf:bus>
<cxf:features>
<bean class="org.apache.cxf.feature.LoggingFea
ture" />
</cxf:features>
</cxf:bus>
</beans>

277



WS-Trust

Server Configuration

Overview

X.509 certificates and keys
needed by the server

SAML assertion validation policy

278

The server is configured to validate SAML tokens received from a client using
a SAML assertion validation policy. This policy has the advantage that the
server can validate received SAML tokens without calling out to the STS: by
verifying the SAML signature and checking the holder-of-key identity, the
server can independently verify the received SAML assertion.

The server is associated with a variety of X.509 certificate and keys, which
are used as follows:

* Securing incoming client connections—the server's JAX-WS endpoint is
configured with TLS security, where the handshake is configured to require
mutual authentication. The JAX-WS endpoint is associated with the
following certificates:

» Server's own certificate—an X.509 certificate and private key, bob . jks,
which the server uses to identify itself to clients.

 Trusted CA certificate list—the CA certificate that signed the client's
own certificate, trent-cert.pem.

* Verifying signed SAML assertions—to verify signed SAML assertions, the
server needs a copy of the public key, sts-token-issure-cert.pem,

that complements the STS signing key.

To validate SAML assertions presented by clients, the server defines a SAML
assertion validation policy assertion using the element,
itsec:SAMLAssertionValidationPolicy. This policy assertion is used
instead of an authentication policy assertion. Example 59 on page 278 shows
an example of a SAML assertion validation policy assertion.

Example 59. Sample SAML Assertion Validation Policy

<itsec:SAMLAssertionValidationPolicy subjectConfirmation="HOLD
ER OF KEY">
<itsec:IssuerPEMStore>
<itsec:Resource>
<itsec:ClasspathResourceResolver path="keys/sts-
token-issuer-cert.pem"/>
</itsec:Resource>



Server configuration

Server Configuration

</itsec:IssuerPEMStore>
</itsec:SAMLAssertionValidationPolicy>

Where the subjectConfirmation attribute can take either of the following
values:

* HOLDER_ OF KEY—the policy checks that the client is the true owner of the

SAML assertion by comparing the holder-of-key identity embedded in the
SAML token with the identity of the subject in the client's X.509 certificate.

(® Note

Currently, holder-of-key mode is available only to clients that
present certificates during the TLS handshake. Hence,
username/password-based clients are not able to avail of
holder-of-key mode.

* SENDER_VOUCHES—NO holder-of-key check is performed. Implicitly, the

server assumes that it can trust the client sufficiently to skip the
holder-of-key check. You should assess carefully whether or not this option
makes sense for your security set-up. You should bear in mind that this
option is potentially less secure than holder-of-key.

The contents of itsec:SAMLAssertionvalidationPolicy enable you to
specify one or more token issuer public keys (which are used to verify the
signatures on SAML assertions). You can use either of the following
sub-elements to specify a token issuer public key:

* itsec:IssuerPEMStore—specify the token issuer public key in PEM

format (see Example 59 on page 278).

* itsec:IssuerKeyStore—specify the token issuer public key in Java
Keystore (JKS) format.

Server configuration on page 279 shows the configuration of the Artix server
in the WS-Trust single sign-on scenario. The server configuration is quite
similar to configuration in the non-WS-Trust case: the key difference being
that this server specifies a SAML assertion validation policy in place of an iSF
authentication policy on the JAX-WS endpoint.

279



WS-Trust

280

Example 60. Server Configuration for WS-Trust SSO

<beans
xmlns:hw="http://soa.iona.com/demo/hello world" ...>
(1) <jaxws:endpoint

id="WSSvValidateSAMLAssertionHoKEndpoint"
implementor="demo.hw.server.GreeterImpl"
serviceName="hw:GreeterService"
endpointName="hw:WSSValidateSAMLAssertionHoKPort"
address="https://localhost:9001/GreeterService/WSSVal
idateSAMLAssertionHoKPort"
depends-on="tls-settings"
>
<jaxws:features>
<cxfp:policies>
(2} <wsp:PolicyReference URI="#ValidateSAMLAsser
tionHoKAndAuothorizePolicy"/>
</cxfp:policies>
</jaxws:features>
</jaxws:endpoint>

(3) <wsp:Policy wsu:Id="ValidateSAMLAssertionHoKAndAuothor
izePolicy">
(4] <itsec:SAMLAssertionValidationPolicy subjectConfirm
ation="HOLDER OF KEY">
(5} <itsec:IssuerPEMStore>
<itsec:Resource>
<itsec:ClasspathResourceResolver
path="keys/sts-token-issuer-cert.pem"/>
</itsec:Resource>
</itsec:IssuerPEMStore>
</itsec:SAMLAssertionValidationPolicy>
(6} <itsec:ACLAuthorizationPolicy
aclURL="file:etc/acl.xml"
aclServerName="demo.hw.server"
authorizationRealm="corporate"

/>
</wsp:Policy>
(7} <httpj:engine-factory id="tls-settings">
(8 <httpj:engine port="9001">

<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="JKS" password="pass
word" file="keys/bob.jks"/>
</cxfsec:keyManagers>
<cxfsec:trustManagers>



Server Configuration

<cxfsec:certStore resource="keys/trent-
cert.pem"/>
</cxfsec:trustManagers>
<cxfsec:cipherSuitesFilter>
<cxfsec:include>.*</cxfsec:include>
<cxfsec:exclude>.* DH anon .*</cxfsec:ex
clude>
</cxfsec:cipherSuitesFilter>
(9] <cxfsec:clientAuthentication want="true"
required="true"/>
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

<cxf:bus>
<cxf:features>

(10} <bean class="org.apache.cxf.feature.LoggingFea
ture"/>
</cxf:features>
</cxf:bus>

</beans>

The preceding configuration can be explained as follows:

©® The jaxws:endpoint element instantiates a JAX-WS endpoint for the
Greeter interface, listening on IP port 9001. The following attributes
are defined:

* id—an unique identifier that identifies this endpoint instance in the
Spring registry.

* implementor—specifies the name of the Java class that implements
the Greeter interface, demo.hw.server.GreeterImpl.

* serviceName—the QName of the Greeter service (the hw namespace
prefix is defined in the beans element).

* endpointName—the QName of the Greeter endpoint.

* depends-on—ensures that the associated Jetty port is created before
this bean is instantiated.

281



WS-Trust

282

The target server's endpoint is configured using a WS-Policy policy.
Inside the cxfp:policies element is @ wsp:PolicyReference

element, which references the wsp:Policy instance with matching
wsu: Id attribute.
The wsp:Policy element specifies two policy assertions: a SAML

assertion validation policy and an ACL authorization policy. Both of these
policy assertions must be satisfied in order for an operation invocation
to succeed.

The subjectConfirmation attribute of the

itsec:SAMLAssertionValidationPolicy element specifies that the
HOLDER_OF KEY check is used to verify that the sending client is the

true owner of the SAML assertion. This policy will look for a holder-of-key
field in the incoming SAML assertion, which is then verified by comparing
it to the subject identity from the X.509 certificate received during the
TLS handshake.

The itsec:IssuerPEMStore sub-element specifies the public key (in

the form of an X.509 certificate in PEM format) that can verify the
signature on the SAML assertion. This public key complements the
signing key discussed in IssueBindingParams element on page 266.
The itsec:ACLAuthorizationPolicy configures the server to perform

authorization based on the realm and role data embedded in the SAML
assertion. The following attributes are set:

* aclUrRL—specifies the location of the access control list (ACL) file.

* aclServerName—specifies which of the action-role-mapping

elements in the action role mapping file should apply to the incoming
requests (must match the server-name element in one of the

action-role-mapping elements).

* authorizationRealm—specifies the name of the authorization realm
for this endpoint. See on page 175.

The nttpj:engine-factory element configures the Jetty ports that

underly the JAX-WS endpoints. This element's bean ID value,
tls-settings, is referenced from the jaxws:endpoint element using

the depends-on attribute in order to ensure that the Jetty ports are
initialized before the JAX-WS endpoints.



Server Configuration

The httpj:engine element with IP port, 9001, configures secure TLS
for the Jetty port that underlies the Greeter service endpoint.
The cxfsec:clientAuthentication element is configured to require

mutual authentication.
The specified bean instance enables logging in the Java runtime.

283



284



Java Router Security

This chapter describes the credentials propagation mapper, which is an Artix-specific component of the Java
router that enables you to transform credentials from one type to another in the middle of a route. Currently,
credential mapping feature is supported only for JAX-WS endpoints (that is, endpoints generated by the router's
CXF component).

Credentials Propagation ArChiteCUIE .........iuiei e aeaes 286
The Credentials Propagation MaPPEI ... ....cueuieii et e et neneen 288
Mapping from HTTP/BA to WS-Security CredentialS ..........oouieiiniiiiii e e 292
HTTP/BA to WS-Security Router EXampPIe .......ouieieie e eeaes 293
HTTP/BA to WS-Security Router Configuration ...........cooiuiiiiiiiii e 295
Mapping from HTTP/BA 10 SSO TOKEN ... euieiiieie et e e e e e e 300
HTTP/BA to SSO Token Router EXample ......c.eieieiiii e eeaes 301
HTTP/BA to SSO Token Router Configuration ...........cc.ooiiiiiiiiiie e 303

285



Java Router Security

Credentials Propagation Architecture

Overview

Figure 29 on page 286 shows an outline of the architecture for propagating
security credentials through the Artix Java router, where the route is restricted
to use JAX-WS endpoints only.

Figure 29. Java Router Credentials Propagation Architecture

~

4 Spring Container

Credentials

Propagation
Mappe

Security Credentials API

- /

Java router The Artix Java router is a flexible multi-protocol router based on the

open-source Apache Camel! project. A router application consists essentially
of two different entities: routes and endpoints. A route starts with a consumer
endpoint, which can receive requests from remote clients, and ends with a
producer endpoint, which can forward requests on to a remote server. In the
context of the Java router, the aim of credentials propagation is to extract
credentials from a message received on the consumer endpoint and transform
them into another form of credential that is then marshalled into the outgoing
message.

i ials API . . ) . .
Security credentials The security credentials APl provides the underlying credentials model used

for propagating credentials in the Java router. For example, incoming
credentials are encapsulated in an InCredentialsMap object and outgoing
credentials are encapsulated in an outCredentialsMap object. This APl is
implicitly used both by the CXF component and the credentials propagation
mapper, but you do not have to access this API directly within your Java
router applications.

! http://activemq.apache.org/camel/

286


http://activemq.apache.org/camel/
http://activemq.apache.org/camel/

CXF/JAX-WS component

Credentials propagation mapper

Spring container

Credentials Propagation Architecture

For full details of the security credentials API, see on page 313.

The CXF component is used to model JAX-WS endpoints in the context of the
Java router (it is effectively a JAX-WS endpoint factory). In effect, the CXF
component is an embedding of the Artix Java runtime into the Java router.
The syntax for instantiating and configuring a JAX-WS endpoint using the CXF
component is somewhat different from the using plain Java runtime, but the
implementation is essentially the same.

The Artix deployment of the CXF component automatically loads the Artix
credentials manager (from the security credentials API), which gives the CXF
component the capability to unmarshal credentials from incoming requests.

The credentials propagation mapper is the key component of the credentials
propagation architecture, because it is responsible for performing the mapping
from one credentials type to another. In some scenarios, it is also capable of
contacting the security service directly to perform single sign-on.

In the scenario described here, all of the architectural components—Java
router, CXF component, credentials propagation mapper, and security
credentials APl—are deployed into a Spring container. It follows that all of
the components can be configured from within a single Spring XML
configuration file.

287



Java Router Security

The Credentials Propagation Mapper

Overview

The credentials propagation mapper is the component of the Java router that
is responsible for mapping credentials from one form to another in the middle
of a route. This section describes the syntax of the Spring XML element that
you use to configure the credentials propagation mapper. The mapper itself
is implemented as a Java bean, which can be integrated into a route using
the <to uri="bean:Mapperip"/> syntax.

Supported credential types The credentials propagation mapper supports the credential types shown in

Table 4 on page 288.

Table 4. Combinations of Security Protocol and Credential Type

Security Protocol Type Credential Type Protocol Description
HTTP USERNAME_PASSWORD HTTP Basic Authentication.
SOAP USERNAME PASSWORD WS-Security username/password
token.
IONA SSO_TOKEN WS-Security binary security token.
CSIV2 USERNAME _PASSWORD CORBA CSlIv2 username/password

Supported router component

types Currently, the credentials propagation mapper supports only the cxr router

component type. Hence, credentials mapping is only supported for routes
that start and end with a CXF/JAX-WS endpoint. Nevertheless, this gives you
a certain amount of flexibility, because the CXF component supports multiple
transports, including SOAP/HTTPS and CORBA/IIOP.

Conversion matrix The following conversions are supported by the credentials propagation

mapper:

* The following protocol type/credential type combinations are completely
inter-convertible:

* HTTP/USERNAME_PASSWORD
® SOAP/USERNAME_PASSWORD

® CSIV2/USERNAME PASSWORD

288



Sample configuration

The Credentials Propagation Mapper

* |n addition, the following single sign-on conversions are supported:

* HTTP/USERNAME PASSWORD t0 SOAP/IONA SSO TOKEN.
* SOAP/USERNAME PASSWORD t0 SOAP/IONA SSO TOKEN.

o CSIVZ/USERNAMEiPASSWORDtO SOAP/IONA_ SSO TOKEN.

The credentials propagation mapper is configured using the
camel-security:CredentialsPropagationMapper element in a Spring
configuration file. Example 61 on page 289 shows an example of how to
configure a credentials propagation mapper to convert HTTP Basic
Authentication credentials to WS-Security username/password credentials in
a Java router.

Example 61. Sample CredentialsPropagationMapper Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:camelspring="http://act
ivemqg.apache.org/camel/schema/spring"”
xmlns:camel-security="http://schemas.iona.com/soa/camel-
security-config"
>

<camel-security:CredentialsPropagationMapper id="myHTTP
BAToWSSUserNamePasswordMapper"

InProtocolType="HTTP"
InCredentialType="USERNAME PASSWORD"
InComponentType="CXEF"
OutProtocolType="SOAP"
OutCredentialType="USERNAME PASSWORD"
OutComponentType="CXF">

</camel-security:CredentialsPropagationMapper>

<camelspring:camelContext id="sample" >
<camelspring:route>
<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myHTTPBATOWSSUserNamePass
wordMapper"/>
<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>
</camelspring:route>
</camelspring:camelContext>

289



Java Router Security

CredentialsPropagationMapper
attributes

290

</beans>

The camel-security:CredentialsPropagationMapper element supports
the following attributes:

id
Identifies the credentials propagation mapper instance in the Spring bean
registry. You can use this ID to reference the credentials propagation
mapper within the Spring configuration file. For example, a route can
access the credentials propagation mapper using an endpoint URI of the
form bean:BeadID

InProtocolType
Specifies the protocol type of the incoming credentials. Can take any of
the values appearing in the Security Protocol Type column of
Table 4 on page 288.

InCredentialType
Specifies the credential type of the incoming credentials. Can take any
of the values appearing in the Credential Type column of
Table 4 on page 288.

InComponentType
Specifies the component type that unmarshalled the incoming credentials.
Must take the value, cxF.

OutProtocolType
Specifies the protocol type of the outgoing credentials. Can take any of
the values appearing in the Security Protocol Type column of
Table 4 on page 288 (as long as the resulting conversion is compatible
with the conversion matrix).

OutCredential Type
Specifies the credential type of the outgoing credentials. Can take any
of the values appearing in the Credential Type column of
Table 4 on page 288 (as long as the resulting conversion is compatible
with the conversion matrix).

OutComponentType
Specifies the component type that will marshal the outgoing credentials.
Must take the value, cxr.



Integration into a route

Mapping to an SSO token

The Credentials Propagation Mapper

stsWsdlLoc
(Optional) Specifies the login service WSDL contract, which contains the
address of the login service.

A credentials propagation mapper instance can be inserted into a route using
the Java router's bean integration features. For example, to insert a mapper
instance with the ID, myHTTPBAToWSSUserNamePasswordMapper, into a
route, you could use the following syntax in a Spring configuration file:

<camelspring:route>

<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myHTTPBAToWSSUserNamePasswordMap
per"/>

<camelspring:to uri="cxf:bean:targetServiceEndpoint"/>
</camelspring:route>

Alternatively, if you prefer to define your route in Java DSL (instead of Spring
XML), you can reference the mapper in Java DSL as follows:

from("cxf:bean:routerEndpoint™)
.beanRef ("myHTTPBAToWSSUserNamePasswordMapper")
.to("cxf:bean:targetServiceEndpoint") ;

The conversions that involve mapping an incoming credential to an SSO token
are a special case, because it is then necessary for the credentials propagation
mapper to contact the login service to obtain the SSO token. In this special
case, you need to set the stswsdlLoc attribute on the
CredentialsPropagationMapper element in order to specify the location
of the login service's WSDL contract. For example:

<camel-security:CredentialsPropagationMapper id="myWSSUser
namePasswordToSTSMapper"
InProtocolType="HTTP"
InCredentialType="USERNAME PASSWORD"
InComponentType="CXFEF"
OutProtocolType="SOAP"
OutCredentialType="IONA_ SSO_TOKEN"
OutComponentType="CXF"
stsWsdlLoc="resource:wsdl/login ser
vice creds prop.wsdl">
</camel-security:CredentialsPropagationMapper>

For a detailed description of this scenario, see Mapping from HTTP/BA to
SSO Token on page 300.

291



292

Java Router Security

Mapping from HTTP/BA to WS-Security Credentials

HTTP/BA to WS-Security ROUtEr EXAMPIE . ..oeeiieiiii e 293
HTTP/BA to WS-Security Router Configuration



HTTP/BA to WS-Security Router Example

HTTP/BA to WS-Security Router Example

Overview

Figure 30 on page 293 shows an example of a Java router that processes
Web services requests, converting HTTP Basic Authentication
(username/password) credentials in incoming messages into WS-Security
username/password credentials in outgoing messages. Hence, if this router
is interposed between a Web services client and a Web services target server,
the client can send HTTP Basic Authentication credentials to a server that
expects to receive WS-Security username/password credentials.

Figure 30. HTTP/BA to WS-Security Router Example

Java Router

) 1

) ]

i BAUP F----mmmmm-D X |Jmmmmmmmmon3 WSS up :

) T ]

| unm%rshal map marshal i

i . JAXIWS Credentiall JAX\:,WS : WSS:
. - redentials - !
Client \ Endpoint Propagation Mapper Endpoint ! Server

i

I

Location of demonstration Demonstration code for the current example can be found in the following

location:

ArtixInstallDir/java/samples/security/credentials propagation

AX-WS cli __ . .
J S client The JAX-WS client is a standard Java runtime client that creates a proxy to

invoke on the Greeter interface, which is defined in the

wsdl/hello world.wsdl file. In addition, the JAX-WS client in the
demonstration employs the security credentials API to insert HTTP Basic
Authentication username/password credentials into HTTP headers on outgoing
requests (see on page 313 for details). The client is also configured to use
TLS security (target-only authentication).

,'] Note

In fact, the demonstration client is capable of sending either HTTP
Basic Authentication credentials, WS-Security credentials, or CSlv2

293



Java Router Security

JAX-WS consumer endpoint

Credentials propagation mapper

JAX-WS producer endpoint

JAX-WS server

294

credentials, depending on the parameters that are passed on the
command line.

The JAX-WS consumer endpoint receives incoming requests from the JAX-WS
client and is capable of parsing and extracting credentials into an
InCredentialsMap object (see on page 313). The ability to parse credentials
is provided by the Artix credentials manager object, which is automatically
integrated into JAX-WS in Artix.

The credentials propagation mapper is the key component of the Java router
and is responsible for converting the incoming HTTP Basic Authentication
credentials into WS-Security username/password credentials.

The credentials propagation mapper is implemented as a Spring bean that
processes any In messages that pass through it.

The JAX-WS producer endpoint sends the mapped messages to the specified
remote JAX-WS server. The JAX-WS producer endpoint has the capability to
marshal security credentials and insert them into the relevant headers in the
outgoing message.

The JAX-WS server is a standard Java runtime server that receives incoming
requests from the output of the Java router. In addition, the JAX-WS server
in the demonstration employs the security credentials API to print out the
value of the received credentials to the console window. The server is also
configured to use TLS security (target-only authentication).



HTTP/BA to WS-Security Router Configuration

HTTP/BA to WS-Security Router Configuration

Overview

Java router configuration

For the credentials propagation scenario shown in Figure 30 on page 293,
you can configure a suitable Java router using a single Spring configuration
file, etc/router basic auth to wss username password.xml. |norder
to start up the Java router, you need an instance of a Spring container whose
CLASSPATH contains all of the JAR libraries required for this example. See
the demonstration code for details of how to start up the router in its own
Spring container.

This subsection provides a detailed description of the router configuration file
for a route that converts HTTP Basic Authentication credentials to WS-Security
username/password credentials, as they are propagated through the router.

Example 62 on page 295 shows the Spring configuration of the Java router
for the HTTP Basic Authentication to WS-Security username/password
credentials propagation scenario. This configuration example is taken from
the etc/router basic auth to wss_username password.xml file in
the demonstration.

Example 62. HTTP/BA to WS-Security Router Configuration

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:cxf="http://act
ivemq.apache.org/camel/schema/cxfEndpoint"

xmlns:cxfsec="http://cxf.apache.org/configuration/se
curity"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"

xmlns:http="http://cxf.apache.org/transports/http/con
figuration"

xmlns:itsec="http://schemas.iona.com/soa/security-con
fig"

xmlns:http-conf="http://cxf.apache.org/transports/ht
tp/configuration”

xmlns:jms="http://cxf.apache.org/transports/jms"

xmlns:camelspring="http://act
ivemq.apache.org/camel/schema/spring"

xmlns:camel-security="http://schemas.iona.com/soa/camel-
security-config"
>

(1} <cxf:cxfEndpoint id="targetServiceEndpoint"
serviceClass="com.iona.soa.demo.hello world.Greeter"

295



Java Router Security

296

wsdlURL="wsdl/hello_world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello world"
serviceName="s:GreeterService"
endpointName="s:TargetPort"
address="https://localhost:58003/GreeterService/Tar
getPort">
</cxf:cxfEndpoint>

(2] <cxf:cxfEndpoint id="routerEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"
wsdlURL="wsdl/hello world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello world"
serviceName="s:GreeterService"
endpointName="s:BasicAuthPort"
address="https://localhost:58001/GreeterService/Basi

cAuthPort">

</cxf:cxfEndpoint>

(3} <camelspring:camelContext id="sample" >
<camelspring:route>
<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myHTTPBAToWSSUserNamePass
wordMapper"/>
<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>
</camelspring:route>
</camelspring:camelContext>

(4] <camel-security:CredentialsPropagationMapper id="myHTTP
BAToWSSUserNamePasswordMapper"
InProtocolType="HTTP"
InCredentialType="USERNAME PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="USERNAME PASSWORD"
OutComponentType="CXF">
</camel-security:CredentialsPropagationMapper>

(5} <http:destination name="*.http-destination">
<http:contextMatchStrategy>stem</http:contextMatch
Strategy>

<http:fixedParameterOrder>false</http:fixedParameterOr
der>
<http:server ReceiveTimeout="30000"
SuppressClientSendErrors="false"
SuppressClientReceiveErrors="false"
HonorKeepAlive="false"



HTTP/BA to WS-Security Router Configuration

ContentType="text/xml" />
</http:destination>

<= ==>
<!-- TLS Port configuration parameters -->
<= ==>
(6} <httpj:engine-factory bus="cxf" id="tls-settings">

<httpj:engine port="58001">
<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" re
source="keys/bob.jks" password="password"/>
</cxfsec:keyManagers>
</httpj:tlsServerParameters>
</httpj:engine>

</httpj:engine-factory>

(7] <http-conf:conduit name="{ht

tp://soa.iona.com/demo/hello world}TargetPort.http-conduit”
>

<http-conf:client

ConnectionTimeout="0"

ReceiveTimeout="0" />
<http:tlsClientParameters disableCNCheck="true">

<cxfsec:trustManagers>

<cxfsec:certStore resource="keys/trent-
cert.pem"/>

</cxfsec:trustManagers>

</http:tlsClientParameters>
</http-conf:conduit>

</beans>

The preceding router configuration can be explained as follows:

©® The cxf:cxfEndpoint element provides a convenient way of

instantiating a JAX-WS endpoint in the Java router. This particular
element is used to define the producer endpoint that appears at the end
of the route. It can be referenced from within a route, using the endpoint
URI, cxf:bean:targetServiceEndpoint. The cxf:cxfEndpoint

element defines the following attributes:

» id—registers the endpoint in the Spring bean registry with the
specified ID value. This makes it possible to reference this endpoint

297



Java Router Security

298

instance using an endpoint URI of the form cxf:bean: IDvalue (see
the description of the camelspring:camelcontext element).

* serviceClass—specifies the name of the proxy class that represents
the Greeter interface (WSDL port type). This class is generated from
WSDL by the JAX-WS compiler.

* wsd1URL—specifies the location of the HelloWorld WSDL contract.

* xmlns:s—defines a prefix for the
http://soa.iona.com/demo/hello world namespace. This

namespace is used in the HelloWorld WSDL contract to define the
service name and endpoint name of the WSDL port.

* serviceName—specifies the service QName, s:GreeterService,
as it is defined in the HelloWorld WSDL contract.

* endpointName—specifies the endpoint (port) QName, s: TargetPort,
as it is defined in the HelloWorld WSDL contract.

* address—specifies the SOAP address of the endpoint, overriding the

value specified in the HelloWorld WSDL contract. This address should
match the address specified for the JAX-WS endpoint in the target
server.

This particular cxf:cxfEndpoint element is used to define the

consumer endpoint that appears at the start of the route. It can be
referenced from within a route, using the endpoint URI,
cxf:bean:routerEndpoint.

The camelspring:camelContext creates an instance of a Java router.
It defines a single route, which consists of the following sections:

1. Consumer endpoint—the route starts with a JAX-WS endpoint that
receives requests from a remote JAX-WS client (see
Figure 30 on page 293). The endpoint URI consists of a cxf: prefix,

which references the Java router's CXF component, concatenated
with bean: routerEndpoint, which references the JAX-WS endpoint

defined in the preceding cxf:cxfEndpoint element with matching
ID.



HTTP/BA to WS-Security Router Configuration

2. Credentials propagation mapper bean—the incoming request (that
is, the In message from the current came1Exchange instance) passes

through the credentials propagation mapper bean, in order to convert
the HTTP Basic Authentication credentials into WS-Security
username/password credentials. This step exploits the router's bean
integration feature to invoke the credentials propagation mapper bean.
The URI syntax is bean: BeanID, where BeanID refers to the bean

ID from the Spring bean registry.
3. Producer endpoint—the route ends with a JAX-WS endpoint that

sends requests to a remote JAX-WS target server. The endpoint URI,
cxf:bean:targetServiceEndpoint, references the JAX-WS

endpoint defined in the preceding cxf:cxfEndpoint element with
matching ID.

The camel-security:CredentialsPropagationMapper element

defines a processor bean that converts incoming HTTP Basic
Authentication credentials into WS-Security username/password
credentials. For details of this element's syntax, see The Credentials
Propagation Mapper on page 288.

The http:destination element customizes the value of the connection

timeout that is applied to the route's producer endpoint (Web service
proxy). This can prevent an error from occurring, if the server happens
to be particularly slow to respond. It is not necessary to include this
element in your router configuration.

The httpj:engine-factory element contains a single httpj:engine

element, which configures the TLS security layer for the IP port, 58001
(used by the route's consumer endpoint, cxf :bean: routerEndpoint).

The http-conf:conduit element configures the TLS security layer for
the WSDL proxy with port name, TargetPort (used by the route's
producer endpoint, cxf:bean:targetServiceEndpoint).

299



300

Java Router Security

Mapping from HTTP/BA to SSO Token

HTTP/BA to SSO Token RoUter EXamPIE ....uuveie e e
HTTP/BA to SSO Token Router Configuration



HTTP/BA to SSO Token Router Example

HTTP/BA to SSO Token Router Example

Overview

Figure 31 on page 301 shows an example of a Java router that processes
Web services requests, converting HTTP Basic Authentication credentials in
incoming messages into single sign-on (SSO) tokens in outgoing messages.
In order to perform this conversion, the router must contact the login service
to authenticate the incoming credentials and obtain an SSO token. In this
special case, therefore, the credentials propagation mapper must be configured
to connect to the login service.

Figure 31. HTTP/BA to SSO Token Router Example

Java Router

____________________________________________________________

1 1

1 1

i BAUWP f---mmmmmmm=D X frmommmmmaoos SSO tok !

1 T 1

H unm{lirshal map mafshal i

i . JAXIWS Credentiall JAX\I/WS : SSO:
. - redentials - !
Client [ Endpoint Propagation Mapper Endpoint ! Server

I

I

P = 1

authenticate

i
i

I

! Login <t Security
1 Service —> Service
i

I

\

Location of demonstration Demonstration code for the current example can be found in the following

location:

ArtixInstallDir/java/samples/security/credentials propagation

AX-WS cli __ . .
J S client The JAX-WS client is a standard Java runtime client that creates a proxy to

invoke on the Greeter interface, which is defined in the

wsdl/hello world.wsdl file. In addition, the JAX-WS client in the
demonstration employs the security credentials API to insert HTTP Basic
Authentication username/password credentials into HTTP headers on outgoing
requests (see on page 313 for details). The client is also configured to use
TLS security (target-only authentication).

301



Java Router Security

JAX-WS consumer endpoint

Credentials propagation mapper

Login service

JAX-WS producer endpoint

JAX-WS server

302

jl Note

In fact, the demonstration client is capable of sending either HTTP
Basic Authentication credentials, WS-Security credentials, or CSIv2
credentials, depending on the parameters that are passed on the
command line.

The JAX-WS consumer endpoint receives incoming requests from the JAX-WS
client and is capable of parsing and extracting credentials into an
InCredentialsMap object (see on page 313). The ability to parse credentials
is provided by the Artix credentials manager object, which is automatically
integrated into JAX-WS in Artix.

The credentials propagation mapper is the key component of the Java router
and is responsible for converting the incoming HTTP Basic Authentication
credentials into SSO tokens (proprietary format).

In order to perform the conversion to an SSO token, the credentials propagation
mapper must call out to the login server to authenticate the given HTTP Basic
Authentication credentials. Some extra configuration must be provided to
specify the location of the login service and to configure the connection to the
login service.

The login service is responsible for authenticating the HTTP Basic
Authentication credentials and returning an SSO token.

In the current demonstration, the configuration of the login service is more
or less the same as the configuration described in Example 12.3 on page 244.

The JAX-WS producer endpoint sends the mapped messages to the specified
remote JAX-WS server. The JAX-WS producer endpoint has the capability to
marshal security credentials and insert them into the relevant headers in the
outgoing message.

The JAX-WS server is a standard Java runtime server that receives incoming
requests from the output of the Java router. In addition, the JAX-WS server
in the demonstration employs the security credentials API to print out the
value of the received credentials to the console window. The server is also
configured to use TLS security (target-only authentication).



HTTP/BA to SSO Token Router Configuration

HTTP/BA to SSO Token Router Configuration

Overview

Java router configuration

For the credentials propagation scenario shown in Figure 31 on page 301,
you can configure a suitable Java router using a single Spring configuration
file, etc/router basic auth to sts token.xml.In order to start up the
Java router, you need an instance of a Spring container whose CLASSPATH
contains all of the JAR libraries required for this example. See the
demonstration code for details of how to start up the router in its own Spring
container.

This subsection provides a detailed description of the router configuration file
for a route that converts HTTP Basic Authentication credentials to SSO tokens,
as they are propagated through the router.

Example 63 on page 303 shows the Spring configuration of the Java router
for the HTTP Basic Authentication to SSO token propagation scenario. This
configuration example is taken from the

etc/router basic_auth to_sts_token.xml file in the demonstration.

Example 63. HTTP/BA to SSO Token Router Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://act
ivemq.apache.org/camel/schema/cxfEndpoint"
xmlns:cxfsec="http://cxf.apache.org/configuration/se
curity"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
xmlns:http="http://cxf.apache.org/transports/http/con
figuration"
xmlns:itsec="http://schemas.iona.com/soa/security-con
fig"
xmlns:http-conf="http://cxf.apache.org/transports/ht
tp/configuration”
xmlns:jms="http://cxf.apache.org/transports/jms"
xmlns:camelspring="http://act
ivemq.apache.org/camel/schema/spring"
xmlns:camel-security="http://schemas.iona.com/soa/camel-
security-config"
>

(1} <cxf:cxfEndpoint id="targetServiceEndpoint"

serviceClass="com.iona.soa.demo.hello world.Greeter"
wsdlURL="wsdl/hello_world.wsdl"

303



Java Router Security

304

xmlns:s="http://soa.iona.com/demo/hello world"
serviceName="s:GreeterService"
endpointName="s:TargetPort"
address="https://localhost:58003/GreeterService/Tar
getPort">
</cxf:cxfEndpoint>

(2] <cxf:cxfEndpoint id="routerEndpoint"
serviceClass="com.iona.soa.demo.hello_world.Greeter"
wsdlURL="wsdl/hello world.wsdl"
xmlns:s="http://soa.iona.com/demo/hello world"
serviceName="s:GreeterService"
endpointName="s:BasicAuthPort"
address="https://localhost:58001/GreeterService/Basi

cAuthPort">

</cxf:cxfEndpoint>

(3} <camelspring:camelContext id="sample" >
<camelspring:route>
<camelspring:from uri="cxf:bean:routerEndpoint"/>

<camelspring:to uri="bean:myWSSUsernamePasswordToST
SMapper"/>
<camelspring:to uri="cxf:bean:targetServiceEnd
point"/>
</camelspring:route>
</camelspring:camelContext>

(4] <camel-security:CredentialsPropagationMapper id="myWS

SUsernamePasswordToSTSMapper"
InProtocolType="HTTP"
InCredentialType="USERNAME PASSWORD"
InComponentType="CXF"
OutProtocolType="SOAP"
OutCredentialType="IONA SSO_TOKEN"
OutComponentType="CXEF"
stsWsdlLoc="resource:wsdl/login ser

vice creds prop.wsdl">

</camel-security:CredentialsPropagationMapper>

(5} <http:destination name="*.http-destination">
<http:contextMatchStrategy>stem</http:contextMatch
Strategy>

<http:fixedParameterOrder>false</http:fixedParameterOr
der>
<http:server ReceiveTimeout="30000"
SuppressClientSendErrors="false"
SuppressClientReceiveErrors="false"



HTTP/BA to SSO Token Router Configuration

HonorKeepAlive="false"
ContentType="text/xml" />
</http:destination>

<= ==>
<!-- TLS Port configuration parameters -->
<= ==>
(6} <httpj:engine-factory bus="cxf" id="tls-settings">

<httpj:engine port="58001">
<httpj:tlsServerParameters>
<cxfsec:keyManagers keyPassword="password">
<cxfsec:keyStore type="jks" re
source="keys/bob.jks" password="password"/>
</cxfsec:keyManagers>
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

o <http:conduit
name="{http://ws.iona.com/login service}LoginService
Port.http-conduit">
<http:tlsClientParameters>
<cxfsec:trustManagers>
<cxfsec:certStore resource="keys/isf-ca-
cert.pem"/>
</cxfsec:trustManagers>
</http:tlsClientParameters>
<http:client
ConnectionTimeout="0"
ReceiveTimeout="0"
/>
</http:conduit>

(8] <http-conf:conduit
name="{http://soa.iona.com/demo/hello world}Target
Port.http-conduit™ >
<http-conf:client
ConnectionTimeout="0"
ReceiveTimeout="0" />
<http:tlsClientParameters disableCNCheck="true">
<cxfsec:trustManagers>
<cxfsec:certStore resource="keys/trent-
cert.pem"/>
</cxfsec:trustManagers>
</http:tlsClientParameters>
</http-conf:conduit>

</beans>

305



Java Router Security

The preceding router configuration can be explained as follows:

©® The cxf:cxfEndpoint element provides a convenient way of

instantiating a JAX-WS endpoint in the Java router. This particular
element is used to define the producer endpoint that appears at the end
of the route. It can be referenced from within a route, using the endpoint
URI, cxf:bean:targetServiceEndpoint. The cxf:cxfEndpoint

element defines the following attributes:

* id—registers the endpoint in the Spring bean registry with the

specified ID value. This makes it possible to reference this endpoint
instance using an endpoint URI of the form cxf:bean: IDvalue (see

the description of the camelspring:camelcontext element).

* serviceClass—specifies the name of the proxy class that represents
the Greeter interface (WSDL port type). This class is generated from
WSDL by the JAX-WS compiler.

* wsd1URL—specifies the location of the HelloWorld WSDL contract.

* xmlns:s—defines a prefix for the
http://soa.iona.com/demo/hello world namespace. This

namespace is used in the HelloWorld WSDL contract to define the
service name and endpoint name of the WSDL port.

* serviceName—specifies the service QName, s:GreeterService,
as it is defined in the HelloWorld WSDL contract.

* endpointName—specifies the endpoint (port) QName, s: TargetPort,
as it is defined in the HelloWorld WSDL contract.

* address—specifies the SOAP address of the endpoint, overriding the

value specified in the HelloWorld WSDL contract. This address should
match the address specified for the JAX-WS endpoint in the target
server.

® This particular cxf:cxfEndpoint element is used to define the

consumer endpoint that appears at the start of the route. It can be
referenced from within a route, using the endpoint URI,
cxf:bean:routerEndpoint.

306



HTTP/BA to SSO Token Router Configuration

® The camelspring:camelContext creates an instance of a Java router.
It defines a single route, which consists of the following sections:

1. Consumer endpoint—the route starts with a JAX-WS endpoint that
receives requests from a remote JAX-WS client (see
Figure 30 on page 293). The endpoint URI consists of a cxf: prefix,

which references the Java router's CXF component, concatenated
with bean: routerEndpoint, which references the JAX-WS endpoint

defined in the preceding cxf:cxfEndpoint element with matching
ID.

2. Credentials propagation mapper bean—the incoming request (that
is, the In message from the current came1Exchange instance) passes

through the credentials propagation mapper bean, in order to convert
the HTTP Basic Authentication credentials into an SSO token (with
a proprietary format). This step exploits the router's bean integration
feature to invoke the credentials propagation mapper bean. The URI
syntax is bean: BeanID, Where BeanID refers to the bean ID from

the Spring bean registry.

3. Producer endpoint—the route ends with a JAX-WS endpoint that
sends requests to a remote JAX-WS target server. The endpoint URI,
cxf:bean:targetServiceEndpoint, references the JAX-WS

endpoint defined in the preceding cxf:cxfEndpoint element with
matching ID.

® The camel-security:CredentialsPropagationMapper element

defines a processor bean that converts incoming HTTP Basic
Authentication credentials into SSO tokens.

In order for the mapper to convert incoming credentials into an SSO
token, the mapper must call out to a login service (see

Figure 31 on page 301). To enable the mapper to find the login service,
the stsWsdlLoc attribute specifies the location of the login service's
WSDL contract. The address details from this WSDL contract are then
used to establish a connection to the login service.

For full details of the
camel-security:CredentialsPropagationMapper element's syntax,
see The Credentials Propagation Mapper on page 288.

307



Java Router Security

Login service WSDL

308

® Thenttp:destination element customizes the value of the connection

timeout that is applied to the route's producer endpoint (Web service
proxy). This can prevent an error from occurring, if the server happens
to be particularly slow to respond. It is not necessary to include this
element in your router configuration.

® Thehttpj:engine-factory elementcontains asingle httpj:engine

element, which configures the TLS security layer for the IP port, 58001
(used by the route's consumer endpoint, cxf :bean: routerEndpoint).

© Thishttp-conf:conduit element configures the TLS security layer for

the WSDL proxy that connects to the login service (used implicitly by
the credentials propagation mapper).
® This http-conf:conduit element configures the TLS security layer for

the WSDL proxy with port name, TargetPort (used by the route's

producer endpoint, cxf:bean:targetServiceEndpoint).

Example 64 on page 308 shows the port settings from the login service WSDL
that is referenced from the etc/router basic auth to sts token.xml
configuration file. The 1ocation attribute from the soap:address element
specifies the address of the login service. At deployment time, you would
need to modify the hostname and port in this address to match the location
where the login service is actually deployed.

Example 64. Login Service WSDL

<definitions name="LoginService" ... >

<service name="LoginService">
<port binding="tns:LoginServiceBinding" name="Login
ServicePort">
<soap:address
location="https://localhost:49675/services/se
curity/LoginService"/>
</port>
</service>
</definitions>



Part V. Programming Security

This part describes how to probram security aware applications and how to write custom adapters for the Artix
security service.






Programming Authentication ..o e 313

The Security Credentials Model ........ouiririiii i 314
Creating and Sending Credentials ..........vuiiiiiri s 321
Retrieving Received Credentials .......ceiiiii e 327
Password Digests in UsernameToken Credentials ..........ccouveiiiiiiiiiii s 334
ENAOrSEIMENTS ..ttt 340
Developing an iSF Adapler .......cccieieiiiiiiiiiiii i s s s s s s e e e e e r i ra i ra i rarnns 343
ISF SECUNTY ArChITECIUIE L. et e 344
iSF Server Module Deployment Options .........iuiiiii e 347
TS e =T (=T G 01V =Y V1= 349
Implementing the IS2Adapter INterface .........coiiii e 350
DEplOYiNg the AdaPEr ... e 359
Configuring iSF to Load the Adapter ......ocviiiii e 360
Setting the Adapter Properties ... 361
Loading the Adapter Class and Associated Resource Files .........cooviiiiiiiiiiiiiiiiiiiienns 362

311



312



Programming Authentication

The Artix Java runtime provides a credentials API that enables you to create and set credentials on the consumer
side and to retrieve and inspect received credentials on the service side.

The Security Credentials MOEI ........ouiniiii e et ens 314
Creating and Sending Credentials ........c.iiieiei e e et aeans 321
Retrieving Received Credentials .........oc.ieiiieii e e e 327
Password Digests in UsernameToken CredentialS ..........c.ouviieiiieoeiieie e 334
BN S BMIENES . aaes 340

313



Programming Authentication

The Security Credentials Model

Overview

This section provides an overview of the main data types used to model
credentials in the Artix Java runtime.

Security protocol types

Credentials can be transmitted through different layers of the transport protocol

stack (in fact, multiple layers can be used at the same time). In order to
identify which layer a credential is transmitted through, the credential API
defines the following enumerated constants in the
com.iona.soa.security.types.SecurityProtocolType enumeration

SecurityProtocolType.TLS

SecurityProtocolType.HTTP

SecurityProtocolType.SOAP

SecurityProtocolType.DERIVED

Credential types

The credential API defines the following credential types as enumerated
constants in the com.iona.soa.security.types.CredentialType
enumeration:

314

CredentialType.CERTIFICATE—an X.b09 certificate chain, consisting

of an X.509 certifiate and (optionally) its associated CA certificates. See
“Certificate Chaining” on page 177 for more details.

CredentialType.TLS PEER—Same as CERTIFICATE, augmented by the
name of the cipher suite employed by the SSL/TLS connection.

CredentialType.USERNAME PASSWORD—a Username and a password (or

a password digest). This credential type can be used with different protocol
types.

CredentialType.IONA SSO_ TOKEN—an opaque string token used by the

Artix security service to identify a principal. See “Single Sign-On” on
page 401 for more details.



Security protocol/credential type
combinations

The Security Credentials Model

* CredentialType.GSS_KRB 5 AP REQ TOKEN—an opaque binary token

acquired as a result of initializing a Kerberos security context, using a target
Kerberos service name.

* CredentialType.SAML ASSERTION—authentication data and/or

authorization data, which is encoded using the Security Assertion Markup
Language (SAML).

Because of the multi-layered structure of the transport protocol stack, it is
possible to combine credential types with more than one security protocol
type. Table 5 on page 315 shows a summary of the allowable security
protocol/credential type combinations.

Table 5. Combinations of Security Protocol and Credential Type

Security Protocol Type Credential Type Protocol Description

TLS CERTIFICATE SSL/TLS handshake.
TLS_PEER SSL/TLS handshake.

HTTP USERNAME PASSWORD HTTP Basic Authentication.

SOAP USERNAME PASSWORD WS-Security UsernameToken token.
CERTIFICATE WS-Security binary security token.
IONA SSO TOKEN WS-Security binary security token.
GSS KRB 5 AP REQ TOKEN WS-Security binary security token.
SAML_ASSERTION SAML assertion.

The credential API

Figure 32 on page 316 provides an overview of the Java interface hierarchy
for the most important credential interface types.

315



Programming Authentication

Figure 32. Artix Credential API

CredentialsManager

Credential

OutCredential InCredential

createOutCredential ()

Credential interface

OutCredential interface

316

Example 65 on page 316 shows the
com.iona.soa.security.credential.Credential interface, which is
the base type for all credential types in the Artix credential API.

Example 65. Credential Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

public interface Credential {
CredentialType getSOACredentialType () ;
}

The getsoACredentialType () method returns a CredentialType
enumeration constant (see Credential types on page ? ).

Example 66 on page 316 shows the
com.iona.soa.security.credential.OutCredential interface, which
represents a credential that is to be sent in an outgoing operation request.

Example 66. OutCredential Interface

// Java
package com.iona.soa.security.credential;

public interface OutCredential extends Credential {



InCredential interface

CredentialsManager bus extension

The Security Credentials Model

// complete

It is possible to create outcredential instances at the application
programming level—see CredentialsManager bus extension on page ? .

Example 67 on page 317 shows the
com.iona.soa.security.credential.InCredential interface, which
represents a credential that has been received from an incoming operation
request.

Example 67. InCredential Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.SecurityProtocolType;

public interface InCredential extends Credential {
SecurityProtocolType getInboundSecurityProtocolType () ;

CredentialEndorsements<InCredential> getInCredentialEndorse
ments () ;

}

The getInboundSecurityProtocolType () method returns the enumerated
constant that identifies the security protocol used to transmit the
credential—see Security protocol types on page ? . The
getInCredentialEndorsements () method returns a list of credentials that
endorse the current 1nCcredential object—see Endorsements on page 340.

It is not possible to create TnCcredential instances at the application
programming level.

The bus extension mechanism is a feature of the Artix Java runtime that
enables you to extend the core functionality of the runtime. In particular, the
com.iona.soa.security.credential.CredentialsManager bus extension
encapsulates the security credentials functionality of the Artix Java runtime.
As well as installing the security features, the credentialsManager instance
also exposes a public method to the application-level programmer, as shown
in Example 68 on page 317 .

Example 68. CredentialsManager Interface

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

317



Programming Authentication

public interface CredentialsManager {
OutCredential
createOutCredential (
CredentialType type,
Object... args
) throws CredentialCreationException;

OutCredentialsMap
createOutCredentialsMap () ;

OutCredentialsMap
getThreadDefaultInvocationOutCredentials () ;

OutCredentialsMap

setThreadDefaultInvocationOutCredentials (
OutCredentialsMap outCreds

) i

OutCredentialsMap
getDefaultInvocationOutCredentials () ;

OutCredentialsMap
setDefaultInvocationOutCredentials (
OutCredentialsMap outCreds

) i

Where the credentialsManager interface declares the following methods:

createOutCredential()
Create an outCredential object of arbitrary credential type.

createOutCredentialsMap()
Create an instance of an empty outCredentialsMap object. After

populating an outCredentialsMap With outCredential objects, you
can propagate it along with an operation invocation using one of the
approaches described in Creating and Sending Credentials on page 321.

getThreadDefaultInvocationOutCredentials()
Return a reference to the current thread's outcredentialsMap object

(can be null).

318



Multiple credentials for sending

The Security Credentials Model

setThreadDefaultinvocationOutCredentials()
Associate an outCredentialsMap object with the current thread (can

be nu11). Returns a reference to the previous thread default.

getDefaultInvocationOutCredentials()
Return a reference to the global default outcredentialsMap object (can

be null).

setDefaultinvocationOutCredentials()
Set the global default outCredentialsMap object (can be nul1). Returns

a reference to the previous global default.

Instead of setting credentials one-by-one, the Artix credential API takes the
approach of assembling all of the credentials into a collection, represented
by an com.iona.soa.security.credential.OutCredentialsMap Object.
The outCredentialsMap object can then be set in the global context, set in
a thread context, or inserted into the JAX-WS request context.

Figure 33 on page 319 shows the structure of an cutCredentialsMap object.

Figure 33. Multiple Credentials in an OutCredentialsMap

Multiple received credentials

OutCredentialsMap

SecurityProtocol Type Collection<Credential>

@ OutCredential
.
.
.

OutCredential

[ sone | OuCradentl
B
.
.

OutCredential

The outCredentialsMap type is @ map (of java.util.Map type) that
associates each protocol key (for example, TLs, HTTP, or SOAP) with a
collection of credentials. In this way, it is possible to associate one or more
credential types with each layer of the transport protocol stack.

On the service end, the received credentials are also encapsulated in a single
collection, which is of

319



Programming Authentication

com.iona.soa.security.credential.InCredentialsMap type.
Figure 34 on page 320 shows the structure of an InCredentialsMap object.

Figure 34. Multiple Credentials in an InCredentialsMap

InCredentialsMap
SecurityProtocol Type Collection<Credential>

IE InCredential

.

.

.
InCredential
@ InCredential

.

.

.
InCredential

The structure of InCredentialsMap is similar to the structure of
OutCredentialsMap, except that the contained credentials are derived from
the InCredential type.

320



Creating and Sending Credentials

Creating and Sending Credentials

Overview

Creating credentials

createOutCredential() parameters

Using the credentials API, you can set outgoing credentials at three different
levels: global, thread, and proxy. The credentials from the lowest applicable
level will then be transmitted whenever you invoke an operation on a proxy
object (assuming the credentials match the transport protocol used by the
proxy).

To create a credential, you need first of all to obtain a credentialsManager
instance (see Sending credentials on page ? ). You can then create an
outCredential object for any credential type, by calling the
CredentialsManager.createOutCredential()Iﬂethod,mﬁﬂchisdeﬁned
in Example 69 on page 321 .

Example 69. The createOutCredential() Method

// Java
package com.iona.soa.security.credential;
import com.iona.soa.security.types.CredentialType;

public interface CredentialsManager {

OutCredential
createOutCredential (
CredentialType type,
Object... args
) throws CredentialCreationException;

The createoutCredential () method is a generic credential factory method,
which can create any of the credential types shown in Table 6 on page 321

Table 6. Parameters for createOutCredential()

Credential Type

Parameters for createOutCredential()

CredentialType.USERNAME PASSWORD arg0 (required): string username,

argl Uequ”ed):string password.

arg2 (optional): boolean usePasswordDigest.

CredentialType.IONA SSO TOKEN arg0 (required): String IONA SSO Token.

321



Programming Authentication

Credential Type

Parameters for createOutCredential()

CredentialType.GSS KRB 5 AP REQ TOKEN arg0 (required): byte[] GSS Krb V5 AP REQ Token.

CredentialType.SAML ASSERTION arg0 (required): One of the following types:

® oasis.names.tc.saml. 1 0O.assertion.AssertionType

® oasis.names.tc.saml. 2 0O.assertion.AssertionType

® org.w3c.dom.Element

Sending credentials

Global default credentials

322

The first parameter of createoutCredential () is always of
CredentialType type. The subsequent parameters are declared as
Object. .., which means that the number and type of those parameters
depends on the particular credential type you are creating, as shown in
Table 6 on page 321 . For example, if you create an outCredential of type
CredentialType.USERNAME PASSWORD, the second argument would be the
username and the third argument would be the password.

On the client side, you can specify the credentials to send with an operation
invocation at three different levels of granularity, as follows:

* Global default credentials on page 322.
* Thread default credentials on page 323.

* Proxy credentials on page 324.

You can set global default credentials by calling the
CredentialsManager.setDefaultInvocationOutCredentials()Iﬂethod.
In the absence of any credentials set at a finer level of granularity (thread
level or proxy level), the global default credentials will be included in outgoing
operation invocations. Example 70 on page 322 shows an example of how to
insert the outCredentialsMap object into the global context.

Example 70. Setting Global Default Credentials

// Java

import java.util.Map;

import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;



Thread default credentials

Creating and Sending Credentials

import org.apache.hello world soap http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map into the global context
CredentialsManager mgr =
BusFactory.getDefaultBus () .getExtension (
CredentialsManager.class
) i

mgr.setDefaultInvocationOutCredentials (map) ;
Greeter greeter = // get a reference to a client proxy

// Invoke the sayHi operation with the above credentials
greeter.sayHi () ;

You can associate security credentials with the current thread by calling the
CredentialsManager.setThreadDefaultInvocationOutCredentials ()
method. In the absence of any credentials set at a finer level of granularity
(for example, proxy level), the thread-level default credentials will be included
in outgoing operation invocations. Example 70 on page 322 shows an example
of how to insert the outcredentialsMap object into the current thread
context.

Example 71. Setting Thread Default Credentials

// Java

import java.util.Map;

import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;

import org.apache.hello world soap http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map into the thread context
CredentialsManager mgr =
BusFactory.getDefaultBus () .getExtension (
CredentialsManager.class
) i
mgr.setThreadDefaultInvocationOutCredentials (map) ;

Greeter greeter = // get a reference to a client proxy

323



Programming Authentication

Proxy credentials

324

// Invoke the sayHi operation with the above credentials
greeter.sayHi () ;

You can associate security credentials with a proxy object by inserting an
OutCredentialsMap Object into the proxy’s request context. The proxy
credentials take precedence over both the global default credentials and the
thread default credentials. The JAX-WS request context is a mechanism that
enables you to pass data to handlers in a handler chain. The security handlers
installed by Artix will then read the outcredentialsMap object and insert
credentials into the appropriate transport headers in the outgoing request
message. Example 72 on page 324 shows an example of how to insert the
OutCredentialsMap Object into the Greeter proxy’s request context.

Example 72. Setting Credentials on a Proxy Object

// Java

import javax.xml.ws.BindingProvider;

import java.util.Map;

import com.iona.soa.security.credential.OutCredentialsMap;
import org.apache.cxf.BusFactory;

import org.apache.hello world soap http.Greeter;

OutCredentialsMap map = // create and populate an OutCreden
tialsMap (see example)

// Insert the credentials map on the request context
Greeter greeter = // get a reference to a client proxy
Map<String, Object> requestContext =
((BindingProvider) greeter) .getRequestContext () ;
requestContext.put (
OutCredentialsMap.class.getName (),
map
) i

// Invoke the sayHi operation with the above credentials
greeter.sayHi () ;

The request context is defined to be a map that associates string keys with
objects of arbitrary type. For the out credentials map, use the fully qualified
class name of outCredentialsMap as the key.

@ Note

Once an outCredentialsMap object is associated with a proxy
instance, all subsequent (and possibly concurrent) operations invoked



JAX-WS example

Creating and Sending Credentials

on the proxy use the same outCredentialsMap instance.
Applications must therefore exercise caution when associating
OutCredentialsMap instances with proxies in multi-threaded
applications; in particular, the assignment of an entry on the request
context associated with a proxy instance is not a thread-safe
operation.

Example 73 on page 325 shows a complete example of how to send out

credentials with an operation invocation in a JAX-WS client program. This

example shows how to initialize the username and password credential for
the HTTP Basic Authentication protocol.

Example 73. Example of Sending Credentials from a JAX-WS Client

// Java

import java.io.File;

import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.ProtocolException;

import com.iona.soa.security.credential.CredentialCreationEx
ception;

import com.iona.soa.security.credential.CredentialsManager;
import com.iona.soa.security.credential.OutCredential;
import com.iona.soa.security.credential.OutCredentialsMap;
import com.iona.soa.security.types.CredentialType;

import com.iona.soa.security.types.SecurityProtocolType;

import org.apache.cxf.BusFactory;

import org.apache.hello world soap http.Greeter;

import org.apache.hello world soap http.PingMeFault;
import org.apache.hello world soap http.SOAPService;
import org.apache.hello world soap http.types.FaultDetail;

CredentialsManager mgr = @
BusFactory.getDefaultBus () .getExtension (
CredentialsManager.class
) i
OutCredential cred = mgr.createOutCredential ( ©
CredentialType.USERNAME PASSWORD,
"tony", // arg0 - Username
"tonypass" // argl - Password
) i

325



Programming Authentication

326

// Associate the credential with the HTTP protocol
OutCredentialsMap map = mgr.createOutCredentialsMap () ;
map.get (SecurityProtocolType.HTTP) .add (cred); ®

// Insert the credentials map on the request context
Greeter greeter = // get a reference to a client proxy
Map<String, Object> requestContext = @
((BindingProvider)greeter) .getRequestContext () ;
requestContext.put ( ®
OutCredentialsMap.class.getName (),
map
) i

// Invoke the sayHi operation with the above credentials
greeter.sayHi(); O

The preceding example can be explained as follows:

©® The CredentialsManager is a CXF bus extension that encapsulates

the Artix credential features. In particular, it provides the method,
createOutCredential (), that lets you create out credentials.

® Create a username and password out credential by calling the
CredentialsManager.createOutCredential()lﬂethod.FOFrnore

details about the parameters to createoOutCredential (), See

createOutCredential() parameters on page ? .

® Add the username and password credential to the out credentials map,
associating it with the HTTP transport layer (implicitly making a HTTP
Basic Authentication credential).

® Obtain a reference to the JAX-WS request context object for the Greeter

proxy. The request context is a map that associates string keys with
arbitrary Java objects.

® Insert the out credentials map into the request context, using the
fully-qualified class name of outCredentialsMap as the key.

® When you next invoke an operation on the Greeter proxy object, the

username and password credential is transmitted in the HTTP header
of the request message. The out credentials remain effective for all
subsequent operations invoked on the greeter proxy instance.



Retrieving Received Credentials

Retrieving Received Credentials

Overview

Retrieving credentials

Retrievable credential types

CertificateCredential

TIsPeerCredential

This section explains how to access the credentials received from a consumer
that has just invoked an operation on a secure service.

You can gain access to received credentials on the service side of an
application by retrieving an IncredentialsMap object from the current
message context (on the service side of the application). The
InCredentialsMap instance encapsulates the received credentials for all
applicable transport layers in the stack (see Multiple received

credentials on page ? ).

Once you have obtained the IncredentialsMap instance, you can extract
credentials for particular transport layers and cast them to the appropriate
leaf credential type. You can then use the applicable credential interface to
extract the details of each credential.

The following credential types can potentially be retrieved from an
InCredentialsMap instance:

Example 74 on page 327 shows the definition of the
com.iona.soa.security.credential.CertificateCredential interface.
A certificate credential object contains an X.509 certificate chain—see
“Certificate Chaining” on page 177 for more details about certificate chains.

Example 74. The CertificateCredential Interface

// Java
package com.iona.soa.security.credential;
import java.util.List;

public interface CertificateCredential extends Credential ({
List<java.security.cert.Certificate> getCertificateChain();

}

Example 75 on page 328 shows the definition of the
com.iona.soa.security.credential.TlsPeerCredential interface. In
addition to the data available from a certificateCredential object, this
credential type also provides the name of the cipher suite that is currently
being used on the TLS peer connection.

327



Programming Authentication

UsernamePasswordCredential

lonaSSOTokenCredential

328

Example 75. The TIsPeerCredential Interface

// Java
package com.iona.soa.security.credential;

public interface TlsPeerCredential extends CertificateCreden
tial
{

String getCipherSuite();

Example 76 on page 328 shows the definition of the
com.iona.soa.security.credential.UsernamePasswordCredential
interface. This credential type encapsulates a username and a password. It
is not tied to any particular protocol type. You can use the
UsernamePasswordCredential credential for any authentication method
that demands a username and a password.

Example 76. The UsernamePasswordCredential Interface

// Java
package com.iona.soa.security.credential;

public interface UsernamePasswordCredential extends Credential

{
String getUsername () ;
String getPassword();

// Do NOT use on received credentials
boolean usePasswordDigest () ;

( Note

The method, usePasswordbDigest (), is not intended for use on a
received credential. If you want to determine whether a received
UsernamePasswordCredential contains a digest password or a
plaintext password, use the code shown in Example 84 on page 337.

Example 77 on page 329 shows the definition of the
com.lona.soa.security.credential.IonaSSOTokenCredential
interface. The IONA SSO token is an opaque string that constitutes a reference
to a user identity in the Artix security service. It provides a compact form of



GssKrb5ReqTokenCredential

SAMLAssertionCredential

Retrieving Received Credentials

credential that can be used within a system that is secured by the Artix security
service—see “Single Sign-On” on page 401.

Example 77. The lonaSSOTokenCredential Interface

// Java
package com.iona.soa.security.credential;

public interface IonaSSOTokenCredential extends Credential {
String getIonaSSOToken () ;
}

Example 78 on page 329 shows the definition of the
com.iona.soa.security.credential.GssKrb5ReqTokenCredential
interface. The Kerberos token is a binary token that provides the authorization
to use a particular service. The Artix security service can be configured to
accept Kerberos tokens—see “Configuring the Kerberos Adapter” on page 309
for details.

Example 78. The GssKrb5ApReqTokenCredential Interface

// Java
package com.iona.soa.security.credential;

public interface GssKrbSApRegTokenCredential extends Credential

{
byte[] getGssKrb5ApReqToken () ;

}

Example 79 on page 329 shows the definition of the
com.lona.soa.security.credential.SAMLAssertionCredential
interface. The SAML assertion is a standard for encapsulating authentication
and authorization data in an XML format. The SAML assertion can be provided
either as a SAML 1.0 assertion type, a SAML 2.0 assertion type, or as a DOM
element instance.

Example 79. The SAMLAssertionCredential Interface

package com.iona.soa.security.credential;
public interface SAMLAssertionCredential<T extends Object>

extends Credential {
T getSAMLAssertion();

329



Programming Authentication

DerivedCredential

Declaring WebServiceContext

JAX-WS example

330

org.w3c.dom.Element getDOMSAMLAssertion();

Example 80 on page 330 shows the definition of the

com.iona.soa.security.credential.DerivedCredential interface
Example 80. The DerivedCredential Interface
package com.iona.soa.security.credential;

public interface DerivedCredential<T extends Credential> ex
tends Credential {
CredentialCollection<T> getSourceCredentials() ;

In order to inspect the credentials from an incoming request, you need to
obtain a webserivceContext instance for the service.

Example 81 on page 330 shows how to declare a webServiceContext
instance, ws_context, in the implementation of the Greeter service.

Example 81. Declaring WebServiceContext in a Service Implementation

// Java

@javax.jws.WebService (name = "Greeter" ... )
public class GreeterImpl implements Greeter {
@javax.annotation.Resource
private javax.xml.ws.WebServiceContext
ws_context;

// Definitions of Greeter Methods
// Not shown.

The @rResource annotation that precedes the declaration instructs the Artix
runtime to populate the ws_context object by injection. In the context of a
Greeter operation invocation, it then becomes possible to access a
MessageContext instance through the ws_context object, as shown in
Example 82 on page 331 .

Example 82 on page 331 shows an example of how to extract a
UsernamePasswordCredential instance from the current message context.
You could use this code to access a client’s username on the service side of
an application that uses HTTP Basic Authentication.



Retrieving Received Credentials

Example 82. Retrieving an InCredentialsMap Instance

// Java

import java.util.Collection;

import java.util.logging.Logger;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;

import com.iona.soa.security.credential.InCredential;
import com.iona.soa.security.credential.InCredentialsMap;
import com.iona.soa.security.credential.UsernamePasswordCre
dential;

import com.iona.soa.security.types.CredentialType;

import com.iona.soa.security.types.SecurityProtocolType;

import org.apache.hello world soap http.Greeter;
import org.apache.hello world soap http.PingMeFault;
import org.apache.hello world soap http.types.FaultDetail;

@javax.jws.WebService (

targetNamespace = "http://apache.org/hello world soap ht
tp" ,

serviceName = "SOAPService",

portName = "SoapPort",

endpointInterface = "org.apache.hello world soap ht

tp.Greeter"
)

public class GreeterImpl implements Greeter {
@Resource @
protected WebServiceContext ctx;

private static String
getHTTPUsername (WebServiceContext ctx) { @
final InCredentialsMap inCreds = ®
(InCredentialsMap) ctx.getMessageContext () .get(
InCredentialsMap.class.getName ()
) i
String username = null;
if (inCreds != null) {
final Collection<InCredential> creds = @
inCreds.get (SecurityProtocolType.HTTP) ;
UsernamePasswordCredential cred = null;
for (InCredential c : creds) { ©
if (c.getCredentialType() ==
CredentialType.USERNAME PASSWORD) {
cred = (UsernamePasswordCredential) c; @

331



Programming Authentication

332

break;
}
}
if (cred != null) {
username = cred.getUsername(); @
}
}

return username;

}

The preceding code example can be described as follows:

® The javax.xml.ws.WebServiceContext instance is declared to be a
@javax.annotation.Resource, Which causes the Artix Java runtime

to populate it by injection.
® The getHTTPUsername () method is a private method that is declared
here as a convenience. It lets you put all of the code required to extract
the username from an incoming HTTP header in a single place. You can
then call this function whenever the current thread is in an invocation
context (that is, when the thread is processing an operation invocation).
® This line of code obtains the InCredentialsMap instance from the

current message context. First of all, the message context is extracted
from the webserviceContext instance by calling

getMessageContext (). The message context consists of a map that

maps string keys to objects of arbitrary type. To access the
InCredentialsMap instance, pass in the fully-qualified class name of

InCredentialsMap as the key. You can then cast the return value to
the type, InCredentialsMap.

(@ Note

This code fragment only works, if it executes in an operation
invocation context. If the current thread is not processing an
operation invocation, there is no InCredentialsMap available.

® Obtain the collection of incoming credentials associated with the HTTP
transport layer (for an overview of the in credentials data model, see
Figure 34 on page 320 ).

® You can use this special for loop syntax to iterate over all of the

members of @ java.util.Collection.



Retrieving Received Credentials

If you find a credential of the type you need, simply cast it to the correct
type. For a list of available credential types, see Table 5 on page 315 .
You can now call any of the UsernamePasswordCredential methods

to access the contents of the credential (see Example 76 on page 328

).

333



Programming Authentication

Password Digests in UsernameToken Credentials

Overview

UsernameToken with a password
digest

Normally a WS-Security UsernameToken credential consists of a username
and password, where the password is transmitted in plain text. Artix can also
be configured to transmit the password in digest format, instead of in plain

text. The advantage of this is that the password value is obscured and is thus
less vulnerable to snooping on the wire.

An additional benefit of the digest format is that the WS-Security
UsernameToken Specification also defines an optional replay detection feature
that can protect against replay attacks. The replay detection feature has been
implemented in Artix and it is automatically enabled whenever you use the
digest password format.

g)

Note

The password digest feature of UsernameToken is not related to the
password hashing feature of the file adapter. The purpose of the
UsernameToken password digest feature is to send password digests
on-the-wire, whereas the password hashing in the file adapter is a
private method of storage that is not related in any way to the
on-the-wire format.

Warning

Although password digests can obscure password values, effectively
preventing inspection by a casual user, they provide essentially no
protection against a determined attacker. To provide effective
protection against password discovery, you must apply full-strength
encryption (for example, sending the message over an SSL-protected
connection).

The UsernameToken format is defined by the Web Services Security
UsernameToken Profile 1.1° specification. When transmitting a digest
password, the UsernameToken normally contains a username, a digest
password, and (optionally) a nonce value, and a creation time.

The complete syntax for the on-the-wire format of a UsernameToken is as

follows:

! http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile. pdf

334


http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf

Password Digests in UsernameToken Credentials

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username> ... </wsse:Username>
<wsse:Password Type="..."> ... </wsse:Password>
<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>
<wsu:Created> ... </wsu:Created>
</wsse:UsernameToken>

Only the wsse:Username element is required; all of the other elements are
optional. In the case of a plaintext password, the wsse :UsernameToken
contains the following sub-elements:

® wsse:Username

* wsse:Password—Wwhere the Type attribute has a value equal to the value
of the string constant, wss10Constants.PASSWORD TYPE PASSWORD TEXT