

Progress Software

Publication date 11 Aug 2011

Legal Notices

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements -- See Third Party Acknowledgements on page 14.

Table of Contents
Preface ... 11

Book Details ... 12
The Artix Documentation Library ... 13
Third Party Acknowledgements ... 14

Introduction ... 17
J2EE Connector Architecture Overview .. 18
Artix JCA Connector Overview ... 19

Exposing a J2EE application as a Web Service ... 21
Introduction .. 22
Service Implemented as a Message Driven Bean .. 24
Service Implemented as a Stateless Session Bean .. 30
WSDL First—Service Implemented as a SLSB ... 36

Exposing a Web Service to a J2EE Application ... 47
Introduction .. 48
Implementation Steps ... 49
Writing Your Application .. 51
Packaging Your Application .. 55

Deploying Artix JCA Connector ... 57
Introduction .. 58
Setting your Environment ... 59
Deploying to WebSphere 7.0 .. 60

Configuring Artix JCA Connector ... 63
Inbound Activation Configuration ... 64

Index .. 69

3

4

List of Figures
1. Connecting J2EE Applications to Web services 19

5

6

List of Tables
1. RAR File Structure & Contents: Service Implemented as MDB 28
2. wsdl2java Parameters ... 38
3. Outbound Connections: RAR File Structure & Contents 49
4. Message Listeners and Activation Specifications 64
5. Service Implemented as MDB: Supported Activation Configuration
Properties .. 65
6. Service Implemented as a SLSB: Supported Activation Configuration
Properties .. 65

7

8

List of Examples
1. Message Driven Bean—GreeterBean.java 25
2. Message Driven Bean Deployment Descriptor—ejb-jar.xml 25
3. EJB 3.0 Deployment Descriptor ... 27
4. generate.rar Target ... 28
5. Stateless Session Bean—GreeterBean.java 31
6. GreeterLocalHome.java ... 32
7. Stateless Session Bean Deployment Descriptor—ejb-jar.xml 32
8. WSDL First SLSB—GreeterBean.java .. 38
9. WSDL First—GreeterLocalHome.java .. 40
10. cxf.xml—Configuring Logging .. 41
11. WSDL First SLSB Deployment Descriptor—ejb-jar.xml 41
12. HelloWorldServlet—Outbound Connections 53
13. Declaring the resource reference .. 55
14. Activation Specification in ra.xml ... 66
15. Activation Specification in ejb-jar.xml 66

9

10

Preface
Book Details ... 12
The Artix Documentation Library ... 13
Third Party Acknowledgements ... 14

11

Book Details

What is Covered in This Book This book describes how to use Artix in a J2EE application server environment.
It applies to applications developed using the Artix JAX-WS API.

Who Should Read This Book This book is aimed at J2EE application programmers who want to use the
Artix JAX-WS API to develop and deploy distributed J2EE applications that
are Web service enabled.

To use this guide, although you do not need an in depth knowledge of Artix
concepts, WSDL and Web services, you do need to be familiar with these
topics. Take a look at Using the Artix Library1 for pointers to books that might
be of interest to you.

How to Use This Book This book is organized into the following chapters:

• Introduction on page 17 gives a brief overview of the J2EE Connector
Architecture and the Artix JCA Connector.

• Exposing a J2EE application as a Web Service on page 21 describes how
to use the Artix JCA Connector to expose your J2EE application as a Web
service; that is, for inbound connections.

• Exposing a Web Service to a J2EE Application on page 47 describes how
to use the Artix JCA Connector to connect your J2EE application to a Web
service; that is, for outbound connections.

• Deploying Artix JCA Connector on page 57 describes how to deploy Artix
JCA Connector and your application to your application server.

• Configuring Artix JCA Connector on page 63 provides details of the
activation specification properties supported by the Artix JCA Connector.

1 http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

12

http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

The Artix Documentation Library
For information on the organization of the Artix library, documentation
conventions, and where to find additional resources, see Using the Artix
Library2.

2 http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

13

http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright
(c) 2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgement may appear in
the software itself, if and wherever such third-party acknowledgements
normally appear. 4. The names "Apache", "The Jakarta Project", "Commons",
and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", "Apache" nor may "Apache"
appear in their name without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

==

This software consists of voluntary contributions made by many individuals
on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see http://www.apache.org/.

14

http://www.apache.org/

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3.
The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

15

16

Introduction
Using the Artix JCA Connector, developers can easily connect their J2EE applications to Artix Web services and
expose their J2EE applications as Artix Web services from within their chosen J2EE application server.

J2EE Connector Architecture Overview .. 18
Artix JCA Connector Overview ... 19

17

J2EE Connector Architecture Overview

Overview The J2EE Connector Architecture (JCA) outlines a standard architecture for
enabling J2EE applications to access resources in diverse Enterprise
Information Systems (EISs). The goal is to standardize access to non-relational
resources in the same way the JDBC API standardizes access to relational
data.

The J2EE Connector Architecture is implemented in a J2EE application server
and an EIS-specific resource adapter. The resource adapter plugs into the
J2EE application server and provides a system library specific to, and
connectivity to, that EIS.

The Artix JCA Connector is a JCA 1.5 resource adapter.

More information For more information on the J2EE Connector Architecture, see the JCA 1.5
Specification1.

1 http://java.sun.com/j2ee/connector/download.html

18

Introduction

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

Artix JCA Connector Overview

Overview The Artix JCA Connector is a J2EE Connector Architecture 1.5 resource
adapter. It enables you to expose Artix Web services to your J2EE applications
and allows you to expose your J2EE applications as Artix Web services.

The term Web services is used here to include SOAP over HTTP based services
and any service that has been exposed as a Web service by Artix. The Artix
JCA Connector transparently connects your J2EE applications over multiple
transports to any Artix-enabled back-end service. This includes HTTP, CORBA,
IIOP, IBM WebSphere MQ, and Java Messaging Service (JMS).

Note
To use the Artix JCA Connector your application server must support
JCA 1.5 and EJB 2.1 or higher.

Graphical representation Figure 1 on page 19 illustrates, at a high-level, how the Artix JCA Connector
exposes a Web service to a J2EE application. It acts as a bridge between
J2EE and SOAP over HTTP Web services. This is the simplest example. It
also illustrates that the Artix JCA Connector can be used as a bridge between
J2EE and a CORBA server that has been exposed as a Web service by Artix.

Figure 1. Connecting J2EE Applications to Web services

19

Artix JCA Connector Overview

The Artix JCA Connector also enables inbound connections, allowing you to
expose your J2EE application as a Web service.

Artix JCA Connector RAR file The Artix JCA Connector resource adapter is packaged as a standard J2EE
Connector Architecture resource adapter archive (RAR) file and is called
cxf.rar. The cxf.rar file contains all of the classes that the Artix JCA
Connector needs to manage both inbound and outbound connections.

Artix JCA Connector deployment
descriptor

The Artix JCA Connector deployment descriptor file, ra.xml, contains
information about Artix JCA Connector's resource implementation, configuration
properties, transaction and security support. It describes the capabilities of
the resource adapter and provides a deployer with enough information to
properly configure the resource adapter in an application server environment.

An application server relies on the information in the deployment descriptor
to know how to interact properly with the resource adapter. The deployment
descriptor is packaged in the Artix JCA Connector RAR file.

Connection management For information on how to use the Artix JCA Connector to manage inbound
connections, see Exposing a J2EE application as a Web Service on page 21.

For information on how to use the Artix JCA Connector to manage outbound
connections, see Exposing a Web Service to a J2EE Application on page 47.

20

Introduction

Exposing a J2EE application as a Web
Service
This chapter describes how to use the Artix JCA Connector for inbound connections.

Introduction .. 22
Service Implemented as a Message Driven Bean .. 24
Service Implemented as a Stateless Session Bean .. 30
WSDL First—Service Implemented as a SLSB ... 36

21

Introduction

Overview The Artix JCA Connector's inbound support makes use of the JCA 1.5
specification's message inflow contract and EJB 2.1 or higher message-driven
beans (MDBs). The JCA 1.5 specification defines a framework that allows
the Artix JCA Connector to be notified when a MDB starts. The Artix JCA
Connector then activates the CXF service endpoint facade, which receives
client requests and invokes on the MDB's listener interface.

The instructions in this chapter assume that you are familiar with writing
EJBs, including Message Driven Beans and Stateless Session Beans.

Note
To use the Artix JCA Connector your application server must support
JCA 1.5 and EJB 2.1 or higher; for example, WebSphere 7.0.

More information For more information about the JCA 1.5 message inflow contract, see Chapter
12, Message Inflow of the JCA 1.5 Specification1.

In addition, if you are interested in knowing more about what goes on behind
the scenes when a resource adapter, such as the Artix JCA Connector, invokes
an application asynchronously through a MDB, see JCA 1.5, Part 3: Message
Inflow2.

Usage scenarios You can use the Artix JCA Connector to expose your J2EE application as a
Web service using any of the following scenarios:

• Java first, where you implement your service as one of the following:

a. Message Driven Bean (MDB). In this case, incoming requests do not
need to be dispatched to another EJB; the MDB includes the service
implementation.

See Service Implemented as a Message Driven Bean on page 24 for
more details.

1 http://java.sun.com/j2ee/connector/download.html
2 http://www.ibm.com/developerworks/java/library/j-jca3/

22

Exposing a J2EE application as a Web Service

http://java.sun.com/j2ee/connector/download.html
http://www.ibm.com/developerworks/java/library/j-jca3/
http://www.ibm.com/developerworks/java/library/j-jca3/
http://java.sun.com/j2ee/connector/download.html
http://www.ibm.com/developerworks/java/library/j-jca3/

b. Stateless Session Bean (SLSB). In this case, you use an Artix-provided
generic MDB to dispatch incoming requests to your SLSB.

See Service Implemented as a Stateless Session Bean on page 30 for
more details.

• WSDL first, where your starting point is the service WSDL file. You use
Artix to generate JAX-WS compliant Java from the WSDL file and implement
your service as a SLSB. Here, again, you use the Artix-provided generic
MDB to dispatch incoming requests to your SLSB.

See WSDL First—Service Implemented as a SLSB on page 36 for more
details.

The rest of this chapter describes these scenarios in more detail.

23

Introduction

Service Implemented as a Message Driven Bean

Overview In this scenario you implement your service as a MDB. When it starts, the
MDB notifies the Artix JCA Connector. The Artix JCA Connector activates the
CXF service endpoint facade, which receives client requests and invokes
directly on the MDB. Incoming invocations do not have to be dispatched to
another EJB.

In addition, there is no need for a service WSDL file. Artix uses the service
endpoint interface to build a service model as it is defined in the activation
specification serviceInterfaceClass property in your application's
deployment descriptor file, ejb-jar.xml.

Advantages The advantages of using this approach is that it preforms faster than either
of the SLSB scenarios because the MDB does not need to dispatch incoming
requests to another EJB.

In addition, you do not need to implement EJB Home, Local or Remote
interfaces.

Disadvantages The disadvantage of this approach is that the service endpoint interface has
to be exposed as the messagelistener-type element in the Artix JCA
Connector's deployment descriptor. This means that you have to edit the Artix
JCA Connector's deployment descriptor file.

Sample application Artix includes a working example of this scenario. You can find it in the
following directory of your Artix installation:

InstallDir/samples/cxf/integration/jca/inbound-mdb

If you want to build and run this sample, please follow the instructions outlined
in the README.txt file located in this directory. The example code shown in
this section is taken from this sample application.

High-level Implementation Steps Complete the following steps if you want to use the Artix JCA Connector to
expose your J2EE application, implemented as a MDB, as a Web service:

1. Write a MDB that implements the service that you want to expose. See,
for instance, GreeterBean.java located in

24

Exposing a J2EE application as a Web Service

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb/src/demo/ejb

and shown in Example 1 on page 25.

Example 1. Message Driven Bean—GreeterBean.java

package demo.ejb;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;

import org.apache.hello_world_soap_http.Greeter;

public class GreeterBean implements MessageDrivenBean, Greeter {

public String sayHi() {
System.out.println("sayHi called ");
return "Hi there!";

}

public String greetMe(String user) {
System.out.println("greetMe called user = " + user);
return "Hello " + user;

}

//---------------- EJB Methods
public void ejbCreate() {
}

public void ejbRemove() {
}

public void setMessageDrivenContext(MessageDrivenContext mdc) {
}

}

2. Write a deployment descriptor for your MDB. See, for instance, the
ejb-jar.xml file located in

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb/etc

and shown in Example 2 on page 25.

Example 2. Message Driven Bean Deployment Descriptor—ejb-jar.xml

<?xml version="1.0"?>
...

25

Service Implemented as a Message Driven Bean

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0" metadata-complete="true">

<enterprise-beans>
<message-driven>

<ejb-name>Greeter MDB</ejb-name>
<ejb-class>demo.ejb.GreeterBean</ejb-class>
<messaging-type>

org.apache.hello_world_soap_http.Greeter
</messaging-type>
<transaction-type>Bean</transaction-type>

<activation-config>
<!-- displayName -->
<activation-config-property>

<activation-config-property-name>
displayName

</activation-config-property-name>
<activation-config-property-value>

MyCxfEndpoint
</activation-config-property-value>

</activation-config-property>

<!-- service endpoint interface -->
<activation-config-property>

<activation-config-property-name>
serviceInterfaceClass

</activation-config-property-name>
<activation-config-property-value>

org.apache.hello_world_soap_http.Greeter
</activation-config-property-value>

</activation-config-property>

<!-- address -->
<activation-config-property>

<activation-config-property-name>
address

</activation-config-property-name>
<activation-config-property-value>

http://localhost:9999/GreeterBean
</activation-config-property-value>

</activation-config-property>

</activation-config>
</message-driven>

</enterprise-beans>

26

Exposing a J2EE application as a Web Service

<assembly-descriptor>
<method-permission>

<unchecked/>
<method>

<ejb-name>GreeterBean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<container-transaction>
<description/>
<method>

<description/>
<ejb-name>GreeterBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

For more information about the supported activation configuration
properties, see Inbound Activation Configuration on page 64.

If you are using EJB 3.0, the only change you need to make to the
deployment descriptor is in the opening <ejb-jar> element. For EJB 3.0
it should read as shown in Example 3 on page 27.

Example 3. EJB 3.0 Deployment Descriptor

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">

3. Package you application in an EJB JAR file.

4. Make a copy of the Artix JCA Connector's deployment descriptor file,
ra.xml, which is located in the following directory of your Artix installation:

InstallDir/samples/cxf/integration/jca/inbound-mdb/etc

27

Service Implemented as a Message Driven Bean

5. Edit the ra.xml file so that the messagelistener-type element defines

the same interface as the messaging-type element defined in your MDB

deployment descriptor. This ensures that the Artix JCA Connector is notified
when the MDB starts.

6. Build the Artix JCA Connector RAR file. It must have the following structure
and contents:

Table 1. RAR File Structure & Contents: Service Implemented as MDB

ContentsDirectory

The ra.xml file that you modified.META-INF

The cxf-integration-jca-*.jars from the ArtixInstallDir/lib/cxf/integration
directory and all of the JARs in the ArtixInstallDir/lib/cxf directory, except the:

Root

• cxf-manifest.jar

The sample application build.xml file includes a generate.rar target
that you can use to build the RAR file (see Example 4 on page 28).

Example 4. generate.rar Target

<target name="generate.rar" depends="init">
<copy file="${basedir}/etc/ra.xml" todir="${build.classes.dir}/cxf-rar/META-INF"/>

<copy todir="${build.classes.dir}/cxf-rar">
<fileset dir="${cxf.home}/lib/cxf">

<include name="*.jar"/>
<exclude name="*manifest*.jar"/>

</fileset>
<fileset dir="${cxf.home}/lib/cxf/integration">

<include name="*.jar"/>
</fileset>

</copy>
<jar destfile="${build.classes.dir}/lib/cxf.rar"
basedir="${build.classes.dir}/cxf-rar"/>

</target>

The cxf.home variable must be set to the ArtixInstallDir directory.
This is done for you when you set your Artix environment (see the Getting

28

Exposing a J2EE application as a Web Service

Started chapter in the Configuring and Deploying Artix Solutions, Java
Runtime3 guide).

7. Deploy the Artix JCA Connector RAR file and your EJB JAR file to your
J2EE application server. For details, see Deploying Artix JCA
Connector on page 57.

3 http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html

29

Service Implemented as a Message Driven Bean

http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html

Service Implemented as a Stateless Session Bean

Overview In this scenario you implement your service as a Stateless Session Bean
(SLSB). Artix provides a generic MDB implementation that notifies the Artix
JCA Connector when it starts. The Artix JCA Connector then activates the CXF
service endpoint facade, which dispatches client requests to the generic MDB.
The MDB dispatches incoming requests to your SLSB, using the SLSB's EJB
local reference (as implemented in its Local Home interface).

Advantages The advantage of this approach is that you do not have to edit the Artix JCA
Connector deployment descriptor.

In addition, there is no need for a service WSDL file. Artix uses the service
endpoint interface to build a service model as it is defined in the activation
specification serviceInterfaceClass property in your application's
deployment descriptor file, ejb-jar.xml.

Disadvantages The disadvantage of this approach is that it may not preform as fast as the
approach described in Service Implemented as a Message Driven
Bean on page 24.

Sample application Artix includes a working example of this scenario. You can find it in the
following directory of your Artix installation:

InstallDir/samples/integration/jca/inbound-mdb-dispatch

If you want to build and run this sample, please follow the instructions outlined
in the README.txt file located in this directory. The example code shown in
this section is taken from this sample application.

High-level Implementation Steps Complete the following steps if you want to use the Artix JCA Connector to
expose your J2EE application, implemented as a SLSB, as a Web service:

1. Write a SLSB that implements the service that you want to expose. See,
for instance, GreeterBean.java located in

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/src/demo/ejb

and shown in Example 5 on page 31.

30

Exposing a J2EE application as a Web Service

Example 5. Stateless Session Bean—GreeterBean.java

package demo.ejb;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class GreeterBean implements SessionBean {

//------------- Business Methods
public String sayHi() {

System.out.println("sayHi invoked");
return "Hi from an EJB";

}

public String greetMe(String user) {
System.out.println("greetMe invoked user:" + user);
return "Hi " + user + " from an EJB";

}

//------------- EJB Methods
public void ejbActivate() {
}

public void ejbRemove() {
}

public void ejbPassivate() {
}

public void ejbCreate() throws CreateException {
}

public void setSessionContext(SessionContext con) {
}

}

2. Write an EJB Local Home interface for your SLSB. See, for instance,
GreeterLocalHome.java located in ArtixInstallDir

/samples/integration/jca/inbound-mdb-dispatch/src/demo/ejb

and shown in Example 6 on page 32.

31

Service Implemented as a Stateless Session Bean

Example 6. GreeterLocalHome.java

package demo.ejb;

import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;

public interface GreeterLocalHome extends EJBLocalHome {
GreeterLocal create() throws CreateException;

}

3. Write a deployment descriptor for your SLSB and ensure that it includes:

a. A message-driven element under enterprise-beans that references

to the generic MDB as follows:

• ejb-class is

org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl

• messaging-type is

org.apache.cxf.jca.inbound.DispatchMDBMessageListener

b. An ejb-local-ref element, which is required by the MDB so it can

look up the local EJB object reference for your SLSB.

See, for instance, the ejb-jar.xml located in
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc
and shown in Example 7 on page 32.

Example 7. Stateless Session Bean Deployment Descriptor—ejb-jar.xml

<?xml version="1.0"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0" metadata-complete="true">

<enterprise-beans>
<session>

32

Exposing a J2EE application as a Web Service

<ejb-name>DispatchedGreeterBean</ejb-name>
<home>demo.ejb.GreeterHome</home>
<remote>demo.ejb.GreeterRemote</remote>
<local-home>demo.ejb.GreeterLocalHome</local-home>
<local>demo.ejb.GreeterLocal</local>
<ejb-class>demo.ejb.GreeterBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>

<message-driven>
<ejb-name>GreeterEndpointActivator</ejb-name>
<ejb-class>org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl</ejb-class>
<messaging-type>org.apache.cxf.jca.inbound.DispatchMDBMessageListener</messaging-type>

<transaction-type>Bean</transaction-type>

<activation-config>
<!-- display name-->
<activation-config-property>
<activation-config-property-name>
DisplayName

</activation-config-property-name>
<activation-config-property-value>
DispatchedGreeterEndpoint

</activation-config-property-value>
</activation-config-property>
<!-- service endpoint interface -->
<activation-config-property>
<activation-config-property-name>
serviceInterfaceClass

</activation-config-property-name>
<activation-config-property-value>
org.apache.hello_world_soap_http.Greeter

</activation-config-property-value>
</activation-config-property>
<!-- address -->
<activation-config-property>
<activation-config-property-name>
address

</activation-config-property-name>
<activation-config-property-value>
http://localhost:9999/GreeterBean

</activation-config-property-value>
</activation-config-property>
<!-- targetBeanJndiName -->
<activation-config-property>
<activation-config-property-name>
targetBeanJndiName

33

Service Implemented as a Stateless Session Bean

</activation-config-property-name>
<activation-config-property-value>
java:comp/env/DispatchedGreeterLocalHome

</activation-config-property-value>
</activation-config-property>

</activation-config>

<ejb-local-ref>
<ejb-ref-name>DispatchedGreeterLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>demo.ejb.GreeterLocalHome</local-home>
<local>demo.ejb.GreeterLocal</local>
<ejb-link>DispatchedGreeterBean</ejb-link>

</ejb-local-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

For more information about the supported activation configuration
properties, see Inbound Activation Configuration on page 64.

If you are using EJB 3.0, the only change you need to make to the
deployment descriptor is in the opening <ejb-jar> element. For EJB 3.0
it should read as shown in Example 3 on page 27.

4. Package your application in an EJB JAR file.

5. Build the Artix JCA Connector RAR file. It must have the following structure
and contents:

a. META-INF directory: Must contain the ra.xml, located in:

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc

b. Root directory: Must contain the JAR files listed under Root in
Table 1 on page 28.

The sample application build.xml file includes a generate.rar target
that you can use to build the RAR file (see Example 4 on page 28).

Note that the ra.xml file activation spec is set to
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec, which
includes a targetBeanJndiName configuration property that enables you
to specify your SLSB's JNDI name.

34

Exposing a J2EE application as a Web Service

6. Deploy the Artix JCA Connector RAR file and your EJB JAR file to your
J2EE application server. For details, see Deploying Artix JCA
Connector on page 57.

35

Service Implemented as a Stateless Session Bean

WSDL First—Service Implemented as a SLSB

Overview In this scenario your service is defined in a WSDL file. You use the wsdl2java
utility to generate starting point JAX-WS compliant Java code from which you
implement your service as a Stateless Session Bean (SLSB).

It is similar to the scenario described in Service Implemented as a Stateless
Session Bean on page 30. Again you make use of the generic MDB
implementation provided by Artix. It notifies the Artix JCA Connector when it
starts and the Artix JCA Connector then activates the CXF service endpoint
facade. The service endpoint facade dispatches client requests to the generic
MDB. The MDB performs a JNDI lookup to obtain a reference to your SLSB
and dispatches incoming requests to it.

Differences between the
WSDL-first SSLB and Java-first
SLSB

The primary differences between this approach and the approach described
in Service Implemented as a Stateless Session Bean on page 30 is that:

• You can configure the Artix bus directly by including a cxf.xml Artix Java

configuration file in your EJB JAR file.

• Artix creates a service bean based on the service WSDL file and you must
include the WSDL file in the EJB JAR file.

• Your EJB deployment descriptor must contain additional activation
configuration properties, including:

• busConfigLocation, which points to the location of the Artix Java

configuration file.

• wsdlLocation, which points to the location of the service WSDL file.

• endpointName, which points to the PortType QName in the WSDL file.

• serviceName, which points to the Service Name QName in the WSDL

file.

36

Exposing a J2EE application as a Web Service

For more information on activation configuration properties, see Inbound
Activation Configuration on page 64.

Advantages One advantage of using this approach is the ability to configure directly the
Artix bus.

Sample application Artix includes a working example of this scenario. You can find it in the
following directory of your Artix installation:

InstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch-wsdl.

If you want to build and run this sample, please follow the instructions outlined
in the README.txt file located in this directory. The example code shown in
this section is taken from this sample application.

Implementation steps Complete the following steps if you want to use the Artix JCA Connector to
expose your J2EE application, defined in a WSDL file and implemented as a
SLSB, as a Web service:

1. Set your Artix environment using the artix_java_env script, which is

located in the ArtixInstallDir/bin directory.

For more information on the artix_java_env script, see the Getting
Started chapter in the Configuring and Deploying Artix Solutions, Java
Runtime4 guide.

2. Obtain a copy of, or details of the location of, the WSDL file that defines
the Web service that your application will implement.

This step assumes that the Web service WSDL file already exists. If,
however, you need to develop a WSDL file, please refer to the Writing Artix
Contracts5 guide.

3. Map the WSDL file to Java to obtain starting point JAX-WS compliant Java
code. Artix provides an wsdl2java command-line utility that does this for

you. To generate JAX-WS compliant Java code from your WSDL file, run
the following command:

4 http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
5 http://www.iona.com/support/docs/artix/5.5/contract/index.html

37

WSDL First—Service Implemented as a SLSB

http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/contract/index.html
http://www.iona.com/support/docs/artix/5.5/contract/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/contract/index.html

wsdl2java -d [output-directory] -p [wsdl-namespace=]
PackageName wsdlfile

The wsdl2javaparameters are defined as follows:

Table 2. wsdl2java Parameters

Specifies the directory to which the generated code is written. The
default is the current working directory.

-d [output-directory]

Specifies the name of the Java package to use for the generated
code. You can optionally map a WSDL namespace to a particular
package name if your contract has more than one namespace.

-p [wsdl-namespace=] PackageName

Specifies the WSDL file from which the Java code is being
generated.

wsdlfile

For more information on the wsdl2java command-line utility, see the
"Generating Code from WSDL" chapter in the Artix Command Line
Reference6.

4. Write a stateless session bean (SLSB) that implements the service that
you want to expose. See, for instance, GreeterBean.java located in

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dis
patch-wsdl/src/demo/ejb

and shown in Example 8 on page 38.

Example 8. WSDL First SLSB—GreeterBean.java

package demo.ejb;

import java.util.logging.Logger;
import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.types.FaultDetail;

6 http://www.iona.com/support/docs/artix/5.5/command_ref/index.html

38

Exposing a J2EE application as a Web Service

http://www.iona.com/support/docs/artix/5.5/command_ref/index.html
http://www.iona.com/support/docs/artix/5.5/command_ref/index.html
http://www.iona.com/support/docs/artix/5.5/command_ref/index.html

public class GreeterBean implements SessionBean, Greeter {

private static final Logger LOG =
Logger.getLogger(GreeterBean.class.getPackage().getName());

//------------- Business Methods
// (copied from wsdl_first sample)

public String greetMe(String me) {
LOG.info("Executing operation greetMe");
System.out.println("Executing operation greetMe");
System.out.println("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
LOG.info("Executing operation greetMeOneWay");
System.out.println("Executing operation greetMeOneWay\n");
System.out.println("Hello there " + me);

}

public String sayHi() {
LOG.info("Executing operation sayHi");
System.out.println("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
LOG.info("Executing operation pingMe, throwing PingMeFault exception");
System.out.println("Executing operation pingMe, throwing PingMeFault
exception\n");
throw new PingMeFault("PingMeFault raised by server", faultDetail);

}

//------------- EJB Methods
public void ejbActivate() {
}

public void ejbRemove() {
}

public void ejbPassivate() {
}

public void ejbCreate() throws CreateException {
}

39

WSDL First—Service Implemented as a SLSB

public void setSessionContext(SessionContext con) {
}

}

5. Write an EJB Local Home interface for your SLSB. See, for instance,
GreeterLocalHome.java located in

ArtixInstallDir/samples/cxf/integration/jca/
inbound-mdb-dispatch-wsdl/src/demo/ejb

and shown in Example 9 on page 40.

Example 9. WSDL First—GreeterLocalHome.java

package demo.ejb;

import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;

public interface GreeterLocalHome extends EJBLocalHome {
GreeterLocal create() throws CreateException;
}

6. Write an Artix Java configuration file if you want to configure the Artix bus
directly. See, for instance, the cxf.xml Artix Java configuration file located

in

ArtixInstallDir/samples/cxf/integration/jca/
inbound-mdb-dispatch-wsdl/etc

and shown in Example 10 on page 41. It shows how you configure logging.

For more information on how to configure the Artix bus, see Configuring
and Deploying Artix Solutions, Java Runtime7.

For information on how to configure Artix security, see the Artix Security
Guide, Java Runtime8.

7 http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
8 http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html

40

Exposing a J2EE application as a Web Service

http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html

Example 10. cxf.xml—Configuring Logging

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://cxf.apache.org/core"
xsi:schemaLocation="
http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

...
<cxf:bus>

<cxf:features>
<cxf:logging/>

</cxf:features>
</cxf:bus>

</beans>

7. Write a deployment descriptor for your SLSB and ensure that it includes:

a. A message-driven element under enterprise-beans that references

to the generic MDB as follows:

• ejb-class is

org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl

• messaging-type is

org.apache.cxf.jca.inbound.DispatchMDBMessageListener

b. An ejb-local-ref element, which is required by the MDB so it can

look up the local EJB object reference for your SLSB.

See, for instance, the ejb-jar.xml file in

ArtixInstallDir/samples/cxf/integration/jca/
inbound-mdb-dispatch-wsdl/etc

and shown in Example 11 on page 41.

Example 11. WSDL First SLSB Deployment Descriptor—ejb-jar.xml

41

WSDL First—Service Implemented as a SLSB

<?xml version="1.0"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0" metadata-complete="true">

<enterprise-beans>
<session>
<ejb-name>GreeterWithWsdlBean</ejb-name>
<local-home>demo.ejb.GreeterLocalHome</local-home>
<local>demo.ejb.GreeterLocal</local>
<ejb-class>demo.ejb.GreeterBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>

<message-driven>
<ejb-name>GreeterEndpointActivator</ejb-name>
<ejb-class>org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl</ejb-class>
<messaging-type>org.apache.cxf.jca.inbound.DispatchMDBMessageListener</messaging-type>

<transaction-type>Bean</transaction-type>

<activation-config>
<!-- bus configuration location -->
<activation-config-property>
<activation-config-property-name>
busConfigLocation

</activation-config-property-name>
<activation-config-property-value>
etc/cxf.xml

</activation-config-property-value>
</activation-config-property>
<!-- wsdl location -->
<activation-config-property>
<activation-config-property-name>
wsdlLocation

</activation-config-property-name>
<activation-config-property-value>
wsdl/hello_world.wsdl

</activation-config-property-value>
</activation-config-property>
<!-- service name -->
<activation-config-property>
<activation-config-property-name>
serviceName

</activation-config-property-name>

42

Exposing a J2EE application as a Web Service

<activation-config-property-value>
{http://apache.org/hello_world_soap_http}SOAPService

</activation-config-property-value>
</activation-config-property>
<!-- endpoint name -->
<activation-config-property>
<activation-config-property-name>
endpointName

</activation-config-property-name>
<activation-config-property-value>
{http://apache.org/hello_world_soap_http}SoapPort

</activation-config-property-value>
</activation-config-property>
<!-- service interface class -->
<activation-config-property>
<activation-config-property-name>
serviceInterfaceClass

</activation-config-property-name>
<activation-config-property-value>
org.apache.hello_world_soap_http.Greeter

</activation-config-property-value>
</activation-config-property>
<!-- address -->
<activation-config-property>
<activation-config-property-name>
address

</activation-config-property-name>
<activation-config-property-value>
http://localhost:9000/SoapContext/SoapPort

</activation-config-property-value>
</activation-config-property>
<!-- display name-->
<activation-config-property>
<activation-config-property-name>
displayName

</activation-config-property-name>
<activation-config-property-value>
GreeterWithWsdlEndpoint

</activation-config-property-value>
</activation-config-property>
<!-- targetBeanJndiName -->
<activation-config-property>
<activation-config-property-name>
targetBeanJndiName

</activation-config-property-name>
<activation-config-property-value>
java:comp/env/GreeterWithWsdlLocalHome

</activation-config-property-value>
</activation-config-property>

43

WSDL First—Service Implemented as a SLSB

</activation-config>

<ejb-local-ref>
<ejb-ref-name>GreeterWithWsdlLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>demo.ejb.GreeterLocalHome</local-home>
<local>demo.ejb.GreeterLocal</local>
<ejb-link>GreeterWithWsdlBean</ejb-link>

</ejb-local-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

The ejb-jar.xml file in this scenario includes additional activation
configuration properties. These properties are used during endpoint
activation and point to:

• The Artix Java configuration file: busConfigLocation

• The service WSDL file: wsdlLocation

• The service name QName as defined in the WSDL file: serviceName

• The PortType QName as defined in the WSDL file: endpointName

For more information on activation configuration properties, see Configuring
Artix JCA Connector on page 63.

8. Build your EJB JAR file and remember to include the service WSDL file in
a wsdl directory and the Artix Java configuration file, if you have one, in

an etc directory.

9. Build the Artix JCA Connector RAR file. It must have the following structure
and contents:

a. META-INF directory: Must contain the ra.xml, located in:

ArtixInstallDir/samples/integration/jca/inbound-mdb-dispatch-wsdl\etc

b. Root directory: Must contain the JAR files listed under Root in
Table 1 on page 28.

The sample application build.xml file includes a generate.rar target
that you can use to build the RAR file (see Example 4 on page 28).

44

Exposing a J2EE application as a Web Service

10. Deploy the Artix JCA Connector RAR file and your EJB JAR file to your
J2EE application server. For details, see Deploying Artix JCA
Connector on page 57.

45

WSDL First—Service Implemented as a SLSB

46

Exposing a Web Service to a J2EE
Application
You can use the Artix JCA Connector to connect your J2EE applications to Web services, otherwise known as
outbound connections. This chapter walks you through the steps involved.

Introduction .. 48
Implementation Steps ... 49
Writing Your Application .. 51
Packaging Your Application .. 55

47

Introduction

Overview The Artix JCA Connector includes a connection management API that allows
you to get a connection from your J2EE application to an Artix Web service.
The Artix JCA Connector API usage pattern is consistent with general
connection management in J2EE.

Sample applications Artix includes a working sample that demonstrates how outbound connections
work. You can find it in the following directory of your Artix installation:

• ArtixInstallDir/samples/cxf/integration/jca/outbound

If you want to build and run this sample, follow the instructions outlined in
the README.txt file located in this directory. The example code shown in
this chapter is taken from this sample application.

48

Exposing a Web Service to a J2EE Application

Implementation Steps

Steps The following is a list of the steps that you need to complete to expose your
J2EE application to a Web service using the Artix JCA Connector. It assumes
that the Web service WSDL file already exists. If, however, you need to develop
a WSDL file, please refer to the Writing Artix Contracts1 guide.

1. Set your Artix environment (see the Getting Started chapter in the
Configuring and Deploying Artix Solutions, Java Runtime2 guide).

2. Obtain a copy of, or details of the location of, the WSDL file that defines
the Web service to which your application needs to connect.

3. Map the WSDL file to Java to obtain the Java interfaces that you will use
when writing your application. Artix provides a wsdl2java command-line

utility that does this for you. The WSDL-to-Java mapping is based on the
JAX-WS standard.

To generate JAX-WS compliant Java from your WSDL file, run the following
command:

wsdl2java -d [output-directory] -p [wsdl-namespace=]
PackageName wsdlfile

The wsdl2java parameters are defined as shown in Table 2 on page 38.

4. Write your application. For details, see Writing Your Application on page 51.

5. Package your application. For details, see Packaging Your
Application on page 55.

6. Build the Artix JCA Connector RAR file. It must have the following structure
and contents:

Table 3. Outbound Connections: RAR File Structure & Contents

ContentsDirectory

The ra.xml file located in

ArtixInstallDir/samples/cxf/integration/jca/outbound/etc

META-INF

1 http://www.iona.com/support/docs/artix/5.5/contract/index.html
2 http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html

49

Implementation Steps

http://www.iona.com/support/docs/artix/5.5/contract/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/contract/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html

ContentsDirectory

The cxf-integration-jca-*.jars from the ArtixInstallDir/lib/cxf/integration
directory and all of the JARs in the ArtixInstallDir/lib/cxf directory, except the:

Root

• cxf-manifest.jar

The sample application build.xml file includes a generate.rar target
that you can use to build the RAR file (see Example 4 on page 28).

7. Deploy the Artix JCA Connector RAR file and your application to your J2EE
application server. For details, see Deploying Artix JCA
Connector on page 57.

50

Exposing a Web Service to a J2EE Application

Writing Your Application

Connection Management API
Definition

The Artix JCA Connector connection management API is packaged in
org.apache.cxf.jca.outbound and consists of two
interfaces—CXFConnectionFactory and CXFConnection. It is packaged
in the following .jar file:

ArtixInstallDir/lib/cxf/integration/cxf-integration-jca-Version-fuse.jar

The CXFConnectionFactory interface provides the methods to create a
CXFConnection that represents a Web service defined by the supplied
parameters. It is the type returned from an environment naming context lookup
of the Artix JCA Connector by a J2EE component and is the entry point to
gaining access to a Web service.

The CXFConnection interface provides a handle to a connection managed
by the J2EE application server. It is the super interface of the Web service
proxy returned by CXFConnectionFactory.

Usage pattern To use CXFConnectionFactory your application needs to:

1. Look up a CXFConnectionFactory in the application server's JNDI registry.

2. Use the CXFConnectionFactory.getConnection method to get a

CXFConnection.

The CXFConnectionFactory.getConnection method takes one
parameter, CXFConnectionSpec, which the takes following fields:

• serviceName: the QName of the service. This is required.

• endpointName: the QName of the endpoint; i.e. the port name. This is

required.

• wsdlURL: the URL of the WSDL file. Note that the URL can point to a

WSDL file located in the application WAR file or to a location outside
the application WAR file, such as a file location on a file system. For
more information, see the "Finding WSDL at Runtime" chapter in the
Developing Artix Applications with JAX-WS3 guide.

3 http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html

51

Writing Your Application

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html

• serviceClass: the service interface class. This is required.

• busConfigURL: the URL of Artix Java bus configuration, if such

configuration exists. It allows you to configure directly the Artix bus. This
is optional.

For more information on how to configure the Artix bus, see Configuring
and Deploying Artix Solutions, Java Runtime4.

For information on how to configure Artix security, see the Artix Security
Guide, Java Runtime5.

The busConfigURL setting overrides any configuration that has been
set using the Artix JCA Connector busConfigLocation activation
configuration property (See Inbound Activation Configuration on page 64
for more detail).

• address: the transport address. This is optional.

3. Use the CXFConnection.getService method to obtain a Web service

client.

4. Close the CXFConnection.

5. Invoke on the service.

The Web service client can still be used after the CXFConnection is closed.

Example of using the Connection
Management API

The code shown in Example 12 on page 53 is taken from the
HelloWorldServlet.java file, which is part of the outbound sample. It
shows how to use the Artix JCA Connector connection management API. It
has been simplified to make it easier to explain.

The HelloWorldServlet.java file is located in:

ArtixInstallDir/samples/cxf/integration/jca/
outbound/src/demo/servlet

4 http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
5 http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html

52

Exposing a Web Service to a J2EE Application

http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html
http://www.iona.com/support/docs/artix/5.5/deploy/java/index.html
http://www.iona.com/support/docs/artix/5.5/security_guide_java/index.html

Example 12. HelloWorldServlet—Outbound Connections

❶Context ctx = new InitialContext();
CXFConnectionFactory factory = (CXFConnectionFactory)ctx.lookup(EIS_JNDI_NAME);

❷CXFConnectionSpec spec = new CXFConnectionSpec();
spec.setServiceClass(Greeter.class);
spec.setServiceName(new QName("http://apache.org/hello_world_soap_http", "SOAPService"));

spec.setEndpointName(new QName("http://apache.org/hello_world_soap_http", "SoapPort"));

spec.setWsdlURL(getClass().getResource("/wsdl/hello_world.wsdl"));
CXFConnection connection = null;
try {

connection = getConnection(spec);

❸Greeter greeter = connection.getService(Greeter.class);

❹connection.close();

❺greeter.sayHi();
...

}

The code shown in Example 12 on page 53 can be explained as follows:

❶ Retrieve the connection factory from JNDI.

❷ Create the connection and use CXFConnectionSpecto specifying:

• The service class.

• A QName that identifies which service in the WSDL file to use.

• A QName that identifies which port in the WSDL file to use

• The WSDL file URL.

❸ Obtain a Web service client.

❹ Close the connection to the service and return to the application server
connection pool. Remember you can close the connection and continue
using the client.

53

Writing Your Application

❺ Invoke on the service.

Accessing request/response
contexts

The outbound samples show how you can use message contexts. See the
getResponseFromWebService() method in the HelloWorldServlet.java
file, which is located in:

ArtixInstallDir/samples/cxf/integration/jca/outbound/src/demo/servlet

For more information on message contexts, see the "Working with Contexts"
chapter in the Developing Artix Applications with JAX-WS6 guide.

Javadoc For more detail on the Artix JCA Connector API, see the Artix JAX-WS API
javadoc7.

6 http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html
7 http://www.iona.com/support/docs/artix/5.5/javadoc/ws/index.html

54

Exposing a Web Service to a J2EE Application

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html
http://www.iona.com/support/docs/artix/5.5/javadoc/ws/index.html
http://www.iona.com/support/docs/artix/5.5/javadoc/ws/index.html
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/index.html
http://www.iona.com/support/docs/artix/5.5/javadoc/ws/index.html

Packaging Your Application

Overview When packaging and deploying your J2EE application you must declare the
resource reference used in your code in your application deployment descriptor
and map that resource reference to a resource. In addition, you need to
package the Web service interface classes with your application.

Declaring the resource reference You must declare the resource reference used in your code in your application
deployment descriptor, web.xml, by adding a resource-ref tag. See
Example 13 on page 55.

Example 13. Declaring the resource reference

<resource-ref>
<res-ref-name>eis/CXFConnectionFactory</res-ref-name>
<res-type>org.apache.cxf.jca.outbound.CXFConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Mapping the resource reference You must map the resource reference used in your code to the resource. How
you do this is dependent on the application server that you are using. For
example, if you are using WebSphere you can use the WebSphere
Administrative Console to map the resource reference to the resource while
deploying the Artix JCA Connector. See Deploying Artix JCA
Connector on page 57 and the WebSphere documentation for details.

Packaging details When packaging your application, include the Java classes that are generated
by the wsdl2java utility and any other classes that are associated with your
application. You can include the service

WSDL file, however, this is not necessary (see the description of wsdlURL in
Usage pattern on page 51.

For example, the outbound sample application is packaged in a WAR file as
follows:

• WEB-INF/classes: includes the application Java class files, the Java

classes that are generated from the WSDL file.

55

Packaging Your Application

• WEB-INF/classes/wsdl: WSDL file.

• WEB-INF/lib: includes a common.jar file that contains the

DemoServletBase.class file, which the sample application extends.

Please refer to the J2EE specification and your J2EE vendor documentation
for more information on application packaging.

56

Exposing a Web Service to a J2EE Application

Deploying Artix JCA Connector
How you deploy the Artix JCA Connector is dependent on the J2EE application server that you are using. This
chapter provides some basic deployment steps and uses WebSphere 7.0 as an example application server.

Introduction .. 58
Setting your Environment ... 59
Deploying to WebSphere 7.0 .. 60

57

Introduction

Overview How you deploy the Artix JCA Connector is dependent on the J2EE application
server that you are using. This chapter describes how to set your Artix
environment and provides some basic deployment steps for WebSphere 7.0.
It assumes that you have already built the Artix JCA Connector RAR file and
your application JAR file. If not, please refer to either:

• Exposing a J2EE application as a Web Service on page 21

• Exposing a Web Service to a J2EE Application on page 47

More detailed information For more detailed information on how to deploy a JCA resource adapter,
please refer to your J2EE application server documentation.

58

Deploying Artix JCA Connector

Setting your Environment

Overview To use Artix JCA Connector with your application server, ensure that the JDK
and the Apache ant bin directories are on your PATH.

You do not need to, and should not, source the Artix environment before
running your application server.

59

Setting your Environment

Deploying to WebSphere 7.0

Overview This section provides basic information on deploying the Artix JCA Connector
and your application to WebSphere 7.0. For more detailed information, please
refer to your WebSphere documentation.

Prerequisites The following prerequisites apply to WebSphere 7.0:

• Make sure your environment is set correctly. See Setting your
Environment on page 59 for details.

Deploying the Artix JCA
Connector

You must deploy the Artix JCA Connector to WebSphere before you deploy
your application. In addition, please make sure that the Artix JCA Connector
has not already been deployed to your application server.

To deploy the Artix JCA Connector in WebSphere 7.0 complete the following
steps:

1. Logon to WebSphere Integrated Solution Console. The default address is:

http://hostname:9060/ibm/console/login.do

2. Navigate to Resources | Resource adapters | Resource adapters.

3. On the Resource adapters page, click Install RAR.

4. On the Install RAR File page, select the Local path radio button if the
browser that you are running is on the same machine as the WebSphere
server. Otherwise, select the Server path radio button.

5. Specify or browse to where you have built the cxf.rar file and click Next.

6. On the next page, click OK to install the Resource Adapter.

7. On the next page, click the CXF JCA Connector link to edit the Resource
Adapter.

8. On the Configuration page, click the J2C activation specification link.

9. On the next page, click New to create a new Activation Specification.

60

Deploying Artix JCA Connector

10. On the next page, enter MyActivationSpec in the Name textbox and click

OK.

The JNDI name is optional. If it is omitted, a JNDI name is created for you
as eis/<ActivationSpecName>, where <ActivationSpecName> is
MyActivationSpec.

11. Click Save to commit the configuration.

You can specify activation configuration values in the new activation
specification you just created.

For inbound connections, the activation specification is associated with your
MDB later. The MDB's deployment descriptor can define activation
configuration values to override the values specified in the associated activation
specification. See Inbound Activation Configuration on page 64 for more
detail.

Deploying Your application To deploy your application to WebSphere 7.0, complete the following steps.
For more detail, please consult your WebSphere documentation.

1. Logon to WebSphere Integrated Solution Console. The default address is:

http://<hostname>:9060/ibm/console/login.do

2. Navigate to Applications | Install new Applications

3. On the Preparing for the application installation page, select the Local
path radio button if the browser that you are running is on the same
machine as the WebSphere server. Otherwise, select the Server path radio
button.

4. Specify or browse to the path where you have your application JAR file
stored and click Next.

5. On the Step 1: Select installation options page, click Next.

6. On the Step 2: Map modules to servers page, click Next.

7. On the Step 3: Bind listeners for message-driven beans page, in the far
right column, click the Activation Specification radio button.

8. Specify the Target Resource JNDI Name as below and click Next.

eis/MyActivationSpec

61

Deploying to WebSphere 7.0

9. On the Step 4: Summary page, click Finish.

10. Click the Save link to commit the configuration.

11. Navigate to Applications | Enterprise Applications.

12. Select the box next to your application JAR file and click Start to start the
MDB.

62

Deploying Artix JCA Connector

Configuring Artix JCA Connector
Inbound Activation Configuration ... 64

63

Inbound Activation Configuration

Introduction Activation specifications are part of the configuration of inbound messaging
support provided by a JCA 1.5 resource adapter, such as Artix JCA Connector.
Resource adapters that support inbound messaging define one or more types
of message listener in their deployment descriptors. This is defined in the
messagelistener element in the ra.xml file. The message listener is the
interface that the resource adapter uses to communicate inbound messages
to the message endpoint. For each type of message listener that a resource
adapter implements, the resource adapter defines an associated activation
specification, which defines configuration properties for the receiving endpoint.

The Artix JCA Connector inbound support includes two types of message
listener and two activation specification classes, one for each message listener
type.

Table 4. Message Listeners and Activation Specifications

Supported
Properties

Activation Specification ClassMessage Listener Type

See
Table 5onpage65.

org.apache.cxf.jca.inbound.MDBActivationSpecTarget service interface, used when
MDB also implements the target
service.

See Service Implemented as a
Message Driven Bean on page 24 for
an example use case.

See
Table 5 on page 65

org.apache.cxf.jca.inbound.DispatchMDBActivationSpecorg.apache.cxf.jca.inbound.

DispatchMDBMessageListener and
Table 6onpage65.

See Service Implemented as a
Stateless Session Bean on page 30for
an example use case.

Supported Properties Table 5 on page 65 shows the activation configuration properties that are
supported when the target service interface is specified as the message listener
type and org.apache.cxf.jca.inbound.MDBActivationSpec is specified
as the activation specification class in the Artix JCA Connector ra.xml file.

64

Configuring Artix JCA Connector

Table 5. Service Implemented as MDB: Supported Activation Configuration Properties

DescriptionRequiredProperty Name

A string that specifies the location of the Web service
WSDL file.

NowsdlLocation

String that specifies the schema locations, each one
separated by a comma.

NoschemaLocations

String that specifies the service interface class name.YesserviceInterfaceClass

String that specifies the location of any Artix Java bus
configuration files.

NobusConfigLocation

String the specifies the transport address.No (if specified in
WSDL file)

address

String that specifies the PortType QName in the WSDL
file.

YesendpointName

String that specifies the service name QName in the
WSDL file.

YesserviceName

String that specifies the name used for logging and as a
key in a map of endpoints.

YesdisplayName

Table 5 on page 65 and Table 6 on page 65 show the activation
configuration properties that are supported when
org.apache.cxf.jca.inbound.DispatchMDBMessageListener is specified
as the message listener type and
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec is specified
as the activation specification class in the Artix JCA Connector ra.xml file.

Table 6. Service Implemented as a SLSB: Supported Activation Configuration Properties

DescriptionRequiredProperty Name

A string that specifies the JNDI name of the target session
bean.

YestargetBeanJndiName

Setting activation configuration
properties

Activation configuration properties can be set in any of the following:

a. The application deployment descriptor.

b. Activation specification, which can be set when deploying Artix JCA
Connector.

65

Inbound Activation Configuration

c. The Artix JCA Connector deployment descriptor, ra.xml.

Values specified in the ejb-jar.xml file override those set in the activation
specification and the ra.xml file. Values specified in the activation
specification override those set in the ra.xml file.

Examples of setting For an example of how the activation configuration properties are set, see:

a. The ra.xml located in

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc,

the relevant sections of which are shown in Example 14 on page 66.

b. The ejb-jar.xml file located in

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc,

the relevant sections of which are shown in Example 15 on page 66.

Example 14. Activation Specification in ra.xml

<messagelistener>
<messagelistener-type>

org.apache.cxf.jca.inbound.DispatchMDBMessageListener
</messagelistener-type>
<activationspec>

<activationspec-class>
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec

</activationspec-class>
<required-config-property>

<config-property-name>displayName
</config-property-name>

</required-config-property>
<required-config-property>

<config-property-name>targetBeanJndiName
</config-property-name>

</required-config-property>
</activationspec>

</messagelistener>

Example 15. Activation Specification in ejb-jar.xml

<activation-config>
<!-- display name-->
<activation-config-property>

66

Configuring Artix JCA Connector

<activation-config-property-name>
DisplayName

</activation-config-property-name>
<activation-config-property-value>

DispatchedGreeterEndpoint
</activation-config-property-value>
</activation-config-property>

<!-- service endpoint interface -->
<activation-config-property>

<activation-config-property-name>
serviceInterfaceClass

</activation-config-property-name>
<activation-config-property-value>

org.apache.hello_world_soap_http.Greeter
</activation-config-property-value>

</activation-config-property>
<!-- address -->
<activation-config-property>

<activation-config-property-name>
address

</activation-config-property-name>
<activation-config-property-value>

http://localhost:9999/GreeterBean
</activation-config-property-value>

</activation-config-property>
<!-- targetBeanJndiName -->
<activation-config-property>

<activation-config-property-name>
targetBeanJndiName

</activation-config-property-name>
<activation-config-property-value>

java:comp/env/DispatchedGreeterLocalHome
</activation-config-property-value>

</activation-config-property>
</activation-config>

67

Inbound Activation Configuration

68

Index
A
activation specification, 64

address, 65
busConfigLocation, 65
configuring, 65
displayName, 65
endpointName, 65
schemaLocations, 65
serviceInterfaceClass, 65
serviceName, 65
supported properties, 64
targetBeanJndiName, 65

address, 65
Artix bus

accessing directly, 40
configuring, 40

artix environment
setting for deployment, 59

B
busConfigLocation, 65

C
cxf.rar

deploying to WebSphere, 60

D
deployment, 58

setting Artix environment, 59
to WebSphere, 60

displayName, 65

E
EJB 2.1, 22

deployment descriptor, 25
EJB 3.0

deployment descriptor, 27
endpointName, 65

G
generate.rar (see RAR file, building)

I
inbound connections, 21

MDB scenario, 24
MDB scenario implementation steps, 24
sample applications, 24
SLSB scenario, 30
usage scenarios, 22
WSDL first scenario, 36

J
J2EE Connector Architecture, 18
JCA 1.5 specification, 22

message inflow contract, 22

M
message driven beans, 22
messagelistener-type, 24, 28
messaging-type, 28

O
outbound connections

sample applications, 48

R
ra.xml, 27
RAR file

building, 28, 49
deployment descriptor (see ra.xml)

S
sample applications

inbound connections, 24
outbound connections, 48

schemaLocations, 65
serviceInterfaceClass, 24, 65
serviceName, 65

69

T
targetBeanJndiName, 65

70

	Table of Contents
	Preface
	Book Details
	The Artix Documentation Library
	Third Party Acknowledgements

	Introduction
	J2EE Connector Architecture Overview
	Artix JCA Connector Overview

	Exposing a J2EE application as a Web Service
	Introduction
	Service Implemented as a Message Driven Bean
	Service Implemented as a Stateless Session Bean
	WSDL First—Service Implemented as a SLSB

	Exposing a Web Service to a J2EE Application
	Introduction
	Implementation Steps
	Writing Your Application
	Packaging Your Application

	Deploying Artix JCA Connector
	Introduction
	Setting your Environment
	Deploying to WebSphere 7.0

	Configuring Artix JCA Connector
	Inbound Activation Configuration

	Index

