
Artix® ESB
Developing Artix® Applications with JAX-WS

Version 5.6
May 2011

Developing Artix® Applications with JAX-WS
Version 5.6

Publication date 26 May 2011
Copyright © 2001-2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights

reserved.

Legal Notices

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements -- See Third Party Acknowledgements on page 22.

Table of Contents
Preface ... 17

What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21
Third Party Acknowledgements ... 22

I. Starting from Java Code ... 25
Bottom-Up Service Development .. 27

Creating the SEI .. 28
Annotating the Code ... 31

Required Annotations ... 32
Optional Annotations .. 35

Generating WSDL .. 50
Developing a Consumer Without a WSDL Contract ... 53

Creating a Service Object ... 54
Adding a Port to a Service .. 56
Getting a Proxy for an Endpoint ... 58
Implementing the Consumer's Business Logic ... 60

II. Starting from a WSDL Contract .. 63
A Starting Point WSDL Contract ... 65
Top-Down Service Development .. 69

Generating the Starting Point Code ... 70
Implementing the Service Provider ... 73

Developing a Consumer From a WSDL Contract ... 75
Generating the Stub Code .. 76
Implementing a Consumer ... 79

III. Developing RESTful Services ... 85
Introduction to RESTful Services .. 87
Using Automatic REST Mappings .. 91
Using Java REST Annotations .. 95
Publishing a RESTful Service ... 99

IV. Common Development Tasks ... 103
Finding WSDL at Runtime ... 105

Instantiating a Proxy by Injection ... 106
Using a JAX-WS Catalog .. 109
Using a ServiceContractResolver Object .. 111

Publishing a Service ... 115
APIs Used to Publish a Service .. 116
Publishing a Service in a Plain Java Application ... 119

Generic Fault Handling ... 123
Runtime Faults .. 124

3

Protocol Faults .. 125
V. Working with Data Types ... 127

Basic Data Binding Concepts ... 129
Including and Importing Schema Definitions ... 130
XML Namespace Mapping .. 133
The Object Factory ... 136
Adding Classes to the Runtime Marshaller .. 138

Using XML Elements .. 141
Using Simple Types .. 147

Primitive Types .. 148
Simple Types Defined by Restriction ... 151
Enumerations .. 154
Lists ... 157
Unions .. 161
Simple Type Substitution ... 163

Using Complex Types ... 165
Basic Complex Type Mapping .. 166
Attributes ... 172
Deriving Complex Types from Simple Types .. 178
Deriving Complex Types from Complex Types .. 181
Occurrence Constraints .. 185

Occurrence Constraints on the All Element ... 186
Occurrence Constraints on the Choice Element .. 187
Occurrence Constraints on Elements ... 190
Occurrence Constraints on Sequences ... 191

Using Model Groups ... 194
Using Wild Card Types .. 199

Using Any Elements ... 200
Using the XML Schema anyType Type ... 205
Using Unbound Attributes .. 208

Element Substitution .. 211
Substitution Groups in XML Schema ... 212
Substitution Groups in Java .. 215
Widget Vendor Example ... 222

The checkWidgets Operation ... 224
The placeWidgetOrder Operation .. 227

Customizing How Types are Generated ... 231
Basics of Customizing Type Mappings ... 232
Specifying the Java Class of an XML Schema Primitive .. 235
Generating Java Classes for Simple Types ... 242
Customizing Enumeration Mapping .. 244
Customizing Fixed Value Attribute Mapping .. 249
Specifying the Base Type of an Element or an Attribute .. 252

4

Using A JAXBContext Object ... 255

VI. Advanced Programming Tasks ... 257
Developing Asynchronous Applications ... 259

WSDL for Asynchronous Examples ... 260
Generating the Stub Code .. 262
Implementing an Asynchronous Client with the Polling Approach 266
Implementing an Asynchronous Client with the Callback Approach 269
Catching Exceptions Returned from a Remote Service ... 273

Using Raw XML Messages ... 275
Using XML in a Consumer .. 276

Usage Modes .. 277
Data Types ... 279
Working with Dispatch Objects .. 281

Using XML in a Service Provider .. 287
Messaging Modes .. 288
Data Types ... 290
Implementing a Provider Object .. 292

Working with Contexts .. 297
Understanding Contexts ... 298
Working with Contexts in a Service Implementation .. 302
Working with Contexts in a Consumer Implementation .. 309
Working with JMS Message Properties .. 313

Inspecting JMS Message Headers .. 314
Inspecting the Message Header Properties .. 316
Setting JMS Properties .. 318

Writing Handlers ... 321
Handlers: An Introduction .. 322
Implementing a Logical Handler .. 327
Handling Messages in a Logical Handler .. 328
Implementing a Protocol Handler ... 336
Handling Messages in a SOAP Handler .. 338
Initializing a Handler ... 343
Handling Fault Messages ... 344
Closing a Handler .. 346
Releasing a Handler ... 347
Configuring Endpoints to Use Handlers .. 348

Programmatic Configuration .. 349
Spring Configuration ... 354

Index .. 357

5

6

List of Figures
1. Message Contexts and Message Processing Path 299
2. Message Exchange Path .. 322
3. Message Exchange Path with Handlers 324

7

8

List of Tables
1. @WebService Properties ... 32

2. @SOAPBinding Properties .. 36

3. @WebMethod Properties ... 38

4. @RequestWrapper Properties ... 39

5. @ResponseWrapper Properties ... 40

6. @WebFault Properties ... 40

7. @WebParam Properties ... 42

8. @WebResult Properties ... 43

9. Generated Classes for a Service Provider 72
10. Common JAX-WS Catalog Elements 109
11. APIs that Throw WebServiceException 124

12. Types of Generic Protocol Exceptions 125
13. Attributes Used to Define an Element 141
14. Properties for the @XmlRootElement Annotation 145
15. XML Schema Primitive Type to Java Native Type Mapping 148
16. Primitive Schema Type to Java Wrapper Class Mapping 150
17. List Type Facets ... 157
18. Elements for Defining How Elements Appear in a Complex
Type ... 166
19. Optional Attributes Used to Define Attributes in XML Schema 172
20. Attributes of the XML Schema Any Element 201
21. Properties for Declaring a JAXB Element is a Member of a
Substitution Group ... 215
22. Attributes for Customizing the Generation of a Java Class for an
XML Schema Type ... 235
23. Values for Customizing Enumeration Member Name
Generation ... 244
24. Attributes for Customizing a Generated Enumeration Class 245
25. Parameters for createDispatch() 282

26. @WebServiceProvider Properties 293

27. Properties Available in the Service Implementation Context 304
28. Consumer Context Properties ... 312
29. JMS Header Properties .. 316
30. Settable JMS Header Properties ... 318
31. Elements Used to Define a Server-Side Handler Chain 352

9

10

List of Examples
1. Simple SEI ... 29
2. Simple Implementation Class .. 29
3. Interface with the @WebService Annotation 33

4. Annotated Service Implementation Class 34
5. Specifying a Document Bare SOAP Binding with the SOAP Binding
Annotation ... 37
6. SEI with Annotated Methods ... 41
7. Fully Annotated SEI .. 43
8. An @WSDLDocumentation annotation 45

9. An @DataBinding annotation ... 46

10. An @Logging annotation ... 47

11. An @EndpointProperty annotation 47

12. An @Policy annotation ... 48

13. Calling the WSDL Generator from Ant 50
14. Generated WSDL from an SEI ... 51
15. Service create() Methods .. 54

16. Creating a Service Object ... 55

17. The addPort() Method .. 56

18. Adding a Port to a Service Object ... 57

19. The getPort() Method .. 58

20. Getting a Service Proxy .. 58
21. Consumer Implemented without a WSDL Contract 60
22. HelloWorld WSDL Contract ... 65
23. Generating Service Starting Point Code from Ant 71
24. Implementation of the Greeter Service 73
25. Generating Service Starting Point Code from Ant 76
26. Outline of a Generated Service Class 79
27. The Greeter Service Endpoint Interface 80
28. Consumer Implementation Code .. 81
29. Invalid REST Request .. 89
30. Wrapped REST Request ... 89
31. Widget Catalog CRUD Class ... 91
32. URI Template Syntax .. 96
33. Using a URI Template ... 96
34. SEI for a Widget Ordering Service ... 96
35. WidgetOrdering with REST Annotations 97

36. Setting a Server Factory's Service Class 99

11

37. Setting Wrapped Mode .. 99
38. Selecting the REST Binding .. 100
39. Setting the Base URI ... 100
40. Setting the Service Invoker ... 100
41. Publishing the WidgetCatalog Service as a RESTful Endpoint 100
42. Configuration for a Proxy to be Injected into a Service
Implementation ... 107
43. Injecting a Proxy into a Service Implementation 108
44. ServiceContractResolver Interface 111

45. Registering a Contract Resolver .. 112
46. Service Contract Resolver that can be Registered Using
Configuration .. 113
47. Bean Configuring a Contract Resolver 114
48. Method for Stopping a Published Endpoint 118
49. Generated Server Mainline .. 119
50. Custom Server Mainline ... 120
51. Throwing a SOAP Protocol Exception 126
52. Getting the Fault from a SOAP Protocol Exception 126
53. Example of a Schema that Includes Another Schema 130
54. Example of an Included Schema .. 131
55. Example of a Schema that Includes Another Schema 131
56. Example of an Included Schema .. 132
57. Complex Type Object Factory Entry 136
58. Element Object Factory Entry .. 137
59. Syntax for Adding Classes to the JAXB Context 138
60. Adding Classes to the JAXB Context 139
61. Simple XML Schema Element Definition 142
62. XML Schema Element Definition with an In-Line Type 142
63. Object Factory Method for a Globally Scoped Element 143
64. Object Factory for a Simple Element 143
65. Using a Globally Scoped Element ... 144
66. WSDL Using an Element as a Message Part 144
67. Java Method Using a Global Element as a Part 145
68. XML Schema Element with a Default Value 146
69. Object Factory Method for an Element with a Default Value 146
70. Simple Type Syntax ... 151
71. Postal Code Simple Type ... 152
72. Credit Request with Simple Types ... 152
73. Service Provider Configured to Use Schema Validation 153
74. XML Schema Defined Enumeration 154
75. Generated Enumerated Type for a String Bases XML Schema
Enumeration ... 155
76. List Type Example .. 157

12

77. Syntax for XML Schema List Types .. 157
78. Definition of a List Type ... 158
79. Alternate Syntax for List Types ... 158
80. WSDL with a List Type Message Part 159
81. Java Method with a List Type Parameter 159
82. Simple Union Type ... 161
83. Union with an Anonymous Member Type 161
84. XML Schema Complex Type .. 167
85. Mapping of an All Complex Type .. 168
86. Mapping of a Choice Complex Type 169
87. Mapping of a Sequence Complex Type 170
88. XML Schema Defining and Attribute 173
89. Attribute with an In-Line Data Description 173
90. Attribute Group Definition ... 174
91. Complex Type with an Attribute Group 174
92. techDoc Description ... 174
93. techDoc Java Class ... 175
94. dvdType Java Class ... 176
95. Deriving a Complex Type from a Simple Type by Extension 178
96. Deriving a Complex Type from a Simple Type by Restriction 178
97. idType Java Class ... 179
98. Deriving a Complex Type by Extension 181
99. Defining a Complex Type by Restriction 182
100. WidgetOrderBillInfo ... 183
101. Choice Occurrence Constraints ... 187
102. Java Representation of Choice Structure with an Occurrence
Constraint .. 189
103. Sequence with Occurrence Constraints 191
104. Java Representation of Sequence with an Occurrence
Constraint .. 193
105. XML Schema Model Group ... 194
106. Complex Type with a Model Group 195
107. Instance of a Type with a Model Group 195
108. Type with a Group .. 195
109. XML Schema Type Defined with an Any Element 200
110. XML Document with an Any Element 200
111. Complex Type Defined with an Any Element 202
112. Java Class with an Any Element ... 202
113. Complex Type with a Wild Card Element 205
114. Java Representation of a Wild Card Element 205
115. Complex Type with an Undeclared Attribute 208
116. Examples of Elements Defined with a Wild Card Attribute 208
117. Class for a Complex Type with an Undeclared Attribute 209
118. Working with Undeclared Attributes 210

13

119. Using a Substitution Group ... 212
120. Substitution Group with Complex Types 213
121. XML Document using a Substitution Group 213
122. Abstract Head Definition .. 214
123. Object Factory Method for a Substitution Group 215
124. WSDL Interface Using a Substitution Group 217
125. Generated Interface Using a Substitution Group 217
126. Complex Type Using a Substitution Group 218
127. Java Class for a Complex Type Using a Substitution Group 218
128. Setting a Member of a Substitution Group 219
129. Getting the Value of a Member of the Substitution Group 221
130. Widget Ordering Interface ... 222
131. Widget Ordering SEI .. 222
132. Consumer Invoking checkWidgets() 224

133. Service Implementation of checkWidgets() 225

134. Setting a Substitution Group Member 227
135. Implementation of placeWidgetOrder() 229

136. JAXB Customization Namespace .. 232
137. Specifying the JAXB Customization Version 232
138. Customized XML Schema ... 233
139. JAXB External Binding Declaration Syntax 233
140. XML Schema File ... 234
141. External Binding Declaration ... 234
142. Global Primitive Type Customization 236
143. Binding File for Customizing a Simple Type 236
144. Binding File for Customizing an Element in a Complex Type 237
145. JAXB Adapter Class .. 238
146. Customized Object Factory Method for a Global Element 239
147. Customized Complex Type .. 240
148. in-Line Customization to Force Generation of Java Classes for
SimpleTypes ... 242
149. Binding File to Force Generation of Constants 242
150. Simple Type for Customized Mapping 243
151. Customized Mapping of a Simple Type 243
152. Customization to Force Type Safe Member Names 245
153. In-line Customization of an Enumerated Type 246
154. In-line Customization of an Enumerated Type Using a Combined
Mapping .. 247
155. Binding File for Customizing an Enumeration 248
156. in-Line Customization to Force Generation of Constants 249
157. Binding File to Force Generation of Constants 250
158. In-Line Customization to Force Generation of Constants 250
159. Binding File to Force Generation of Constants 250

14

160. Mapping of a Fixed Value Attribute to a Java Constant 251
161. Fixed Value Attribute Mapped to a Java Constant 251
162. In-Line Customization of a Base Type 253
163. External Binding File to Customize a Base Type 253
164. Java Class with a Modified Base Class 254
165. Getting a JAXB Context Using Classes 256
166. Getting a JAXB Context Using Classes 256
167. WSDL Contract for Asynchronous Example 260
168. Template for an Asynchronous Binding Declaration 262
169. WSDL with Embedded Binding Declaration for Asynchronous
Mapping .. 263
170. Service Endpoint Interface with Methods for Asynchronous
Invocations .. 264
171. Non-Blocking Polling Approach for an Asynchronous Operation
Call .. 266
172. Blocking Polling Approach for an Asynchronous Operation
Call .. 268
173. The javax.xml.ws.AsyncHandler Interface 270

174. Callback Implementation Class .. 270
175. Callback Approach for an Asynchronous Operation Call 271
176. Catching an Exception using the Polling Approach 273
177. The createDispatch() Method 281

178. Creating a Dispatch Object .. 282

179. The Dispatch.invoke() Method 284

180. Making a Synchronous Invocation Using a Dispatch

Object ... 284
181. The Dispatch.invokeAsync() Method for Polling 285

182. The Dispatch.invokeAsync() Method Using a Callback 285

183. The Dispatch.invokeOneWay() Method 285

184. Making a One Way Invocation Using a Dispatch Object 286

185. Specifying that a Provider Implementation Uses Message

Mode .. 288
186. Specifying that a Provider Implementation Uses Payload

Mode .. 289
187. Provider<SOAPMessage> Implementation 294

188. Provider<DOMSource> Implementation 295

189. The MessageContext.setScope() Method 300

190. Obtaining a Context Object in a Service Implementation 302

15

191. The MessageContext.get() Method 303

192. Getting a Property from a Service's Message Context 303
193. The MessageContext.put() Method 304

194. Setting a Property in a Service's Message Context 304
195. The getRequestContext() Method 309

196. The getResponseContext() Method 310

197. Getting a Consumer's Request Context 310
198. Reading a Response Context Property 310
199. Setting a Request Context Property 311
200. Getting JMS Message Headers in a Service Implementation 314
201. Getting the JMS Headers from a Consumer Response
Header .. 315
202. Reading the JMS Header Properties 316
203. Setting JMS Properties using the Request Context 319
204. LogicalHandler Synopsis ... 327

205. Method for Getting the Message Payload in a Logical
Handler ... 328
206. Logical Message Holder ... 328
207. Getting the Message Body as a JAXB Object 329
208. Updating the Message Body Using a JAXB Object 330
209. Getting the Message's Direction from the SOAP Message
Context ... 330
210. Logical Message Handler Message Processing 333
211. SOAPHandler Synopsis .. 336

212. The SOAPHander.getHeaders() Method 337

213. The SOAPMessageContext.getHeaders() Method 338

214. Getting the Message's Direction from the SOAP Message
Context ... 339
215. Handling a Message in a SOAP Handler 342
216. Handling a Fault in a Message Handler 345
217. Adding a Handler Chain to a Consumer 350
218. Service Implementation that Loads a Handler Chain 351
219. Handler Configuration File .. 353
220. Configuring an Endpoint to Use a Handler Chain In Spring 355

16

Preface
What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21
Third Party Acknowledgements ... 22

17

What is Covered in This Book
This book describes how to use the JAX-WS 2.1 APIs to develop applications
with Artix ESB. It also describes how to develop RESTful services as POJOs.

18

Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you
have a good understanding of the following:

• general programming concepts.

• general SOA concepts.

• Java 6.

• the runtime environment into which you are deploying services.

19

How to Use This Book
This book is organized into the following chapters:

• Part I on page 25 describes how to develop SOA applications with out
using WSDL documents.

• Part II on page 63 describes how to develop SOA applications using a
WSDL document as a starting point.

• Part V on page 127 describes how XML Schema data definitions are mapped
into Java for use in developing services.

• Publishing a Service on page 115 describes how to publish a service using
a stand alone Java application.

• Developing Asynchronous Applications on page 259 describes how to
develop service consumers that can interact with service providers
asynchronously.

• Using Raw XML Messages on page 275 describes how to use the Dispatch

and Provider interfaces to develop applications that work with raw XML

instead of JAXB object.

• Working with Contexts on page 297 describes how to manipulate message
and transport properties programaticaly.

• Part III on page 85 describes how to use the Artix ESB API's annotations
to create RESTful services.

20

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library1.
See the entire documentation set at the Artix Product Documentation Web
Site2

1 http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
2 http://communities.progress.com/pcom/docs/DOC-106903

21

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903

Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright
(c) 2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgement may appear in
the software itself, if and wherever such third-party acknowledgements
normally appear. 4. The names "Apache", "The Jakarta Project", "Commons",
and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", "Apache" nor may "Apache"
appear in their name without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

==

This software consists of voluntary contributions made by many individuals
on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see http://www.apache.org/.

22

http://www.apache.org/

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3.
The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

23

24

Part I. Starting from Java Code
One of the advantages of JAX-WS is that it does not require you to start with a WSDL document that defines
their service. You can start with Java code that defines the features you want to expose as services. The code
may be a class, or classes, from a legacy application that is being upgraded. It may also be a class that is currently
being used as part of a non-distributed application and implements features that you want to use in a distributed
manner. You annotate the Java code and generate a WSDL document from the annotated code. If you do not
wish to work with WSDL at all, you can create the entire application without ever generating WSDL.

Bottom-Up Service Development .. 27
Creating the SEI .. 28
Annotating the Code ... 31

Required Annotations ... 32
Optional Annotations .. 35

Generating WSDL .. 50
Developing a Consumer Without a WSDL Contract ... 53

Creating a Service Object ... 54
Adding a Port to a Service .. 56
Getting a Proxy for an Endpoint ... 58
Implementing the Consumer's Business Logic ... 60

Bottom-Up Service Development
There are many instances where you have Java code that already implements a set of functionality that you want
to expose as part of a service oriented application. You may also simply want to avoid using WSDL to define your
interface. Using JAX-WS annotations, you can add the information required to service enable a Java class. You
can also create a Service Endpoint Interface (SEI) that can be used in place of a WSDL contract. If you want a
WSDL contract, Artix ESB provides tools to generate a contract from annotated Java code.

Creating the SEI .. 28
Annotating the Code ... 31

Required Annotations ... 32
Optional Annotations .. 35

Generating WSDL .. 50

To create a service starting from Java you must do the following:

1. Create a Service Endpoint Interface (SEI) that defines the methods you
want to expose as a service.

Tip
You can work directly from a Java class, but working from an
interface is the recommended approach. Interfaces are better
suited for sharing with the developers who are responsible for
developing the applications consuming your service. The
interface is smaller and does not provide any of the service's
implementation details.

2. Add the required annotations to your code.

3. Generate the WSDL contract for your service.

Tip
If you intend to use the SEI as the service's contract, it is not
necessary to generate a WSDL contract.

4. Publish the service as a service provider.

27

Creating the SEI

Overview The service endpoint interface (SEI) is the piece of Java code that is shared
between a service implementation and the consumers that make requests on
that service. The SEI defines the methods implemented by the service and
provides details about how the service will be exposed as an endpoint. When
starting with a WSDL contract, the SEI is generated by the code generators.
However, when starting from Java, it is the developer's responsibility to create
the SEI.

There are two basic patterns for creating an SEI:

• Green field development — In this pattern, you are developing a new service
without any existing Java code or WSDL. It is best to start by creating the
SEI. You can then distribute the SEI to any developers that are responsible
for implementing the service providers and consumers that use the SEI.

Note
The recommended way to do green field service development is
to start by creating a WSDL contract that defines the service and
its interfaces. See Part II: on page 63.

• Service enablement — In this pattern, you typically have an existing set of
functionality that is implemented as a Java class, and you want to service
enable it. This means that you must do two things:

1. Create an SEI that contains only the operations that are going to be
exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

Writing the interface The SEI is a standard Java interface. It defines a set of methods that a class
implements. It can also define a number of member fields and constants to
which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to
operations exposed by a service. The SEI corresponds to a wsdl:portType
element. The methods defined by the SEI correspond to wsdl:operation
elements in the wsdl:portType element.

28

Bottom-Up Service Development

Tip
JAX-WS defines an annotation that allows you to specify methods
that are not exposed as part of a service. However, the best practice
is to leave those methods out of the SEI.

Example 1 on page 29 shows a simple SEI for a stock updating service.

Example 1. Simple SEI

package com.iona.demo;

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

Implementing the interface Because the SEI is a standard Java interface, the class that implements it is
a standard Java class. If you start with a Java class you must modify it to
implement the interface. If you start with the SEI, the implementation class
implements the SEI.

Example 2 on page 29 shows a class for implementing the interface in
Example 1 on page 29.

Example 2. Simple Implementation Class

package com.iona.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
...

public Quote getQuote(String ticker)
{
Quote retVal = new Quote();
retVal.setID(ticker);
retVal.setVal(Board.check(ticker));1

Date retDate = new Date();
retVal.setTime(retDate.toString());
return(retVal);

1
Board is an assumed class whose implementation is left to the reader.

29

Creating the SEI

}
}

30

Bottom-Up Service Development

Annotating the Code
Required Annotations ... 32
Optional Annotations .. 35

JAX-WS relies on the annotation feature of Java 6. The JAX-WS annotations
specify the metadata used to map the SEI to a fully specified service definition.
Among the information provided in the annotations are the following:

• The target namespace for the service.

• The name of the class used to hold the request message

• The name of the class used to hold the response message

• If an operation is a one way operation

• The binding style the service uses

• The name of the class used for any custom exceptions

• The namespaces under which the types used by the service are defined

Tip
Most of the annotations have sensible defaults and it is not necessary
to provide values for them. However, the more information you
provide in the annotations, the better your service definition is
specified. A well-specified service definition increases the likelihood
that all parts of a distributed application will work together.

31

Annotating the Code

Required Annotations
In order to create a service from Java code you are only required to add one
annotation to your code. You must add the @WebService annotation on both
the SEI and the implementation class.

The @WebService annotation The @WebService annotation is defined by the javax.jws.WebService
interface and it is placed on an interface or a class that is intended to be used
as a service. @WebService has the properties described in
Table 1 on page 32

Table 1. @WebService Properties

DescriptionProperty

Specifies the name of the service interface. This property is mapped to the name attribute of

the wsdl:portType element that defines the service's interface in a WSDL contract. The

default is to append PortType to the name of the implementation class. a

name

Specifies the target namespace where the service is defined. If this property is not specified,
the target namespace is derived from the package name.

targetNamespace

Specifies the name of the published service. This property is mapped to the name attribute

of the wsdl:service element that defines the published service. The default is to use the

name of the service's implementation class. a

serviceName

Specifies the URL where the service's WSDL contract is stored. This must be specified using
a relative URL. The default is the URL where the service is deployed.

wsdlLocation

Specifies the full name of the SEI that the implementation class implements. This property
is only specified when the attribute is used on a service implementation class.

endpointInterface

Specifies the name of the endpoint at which the service is published. This property is mapped
to the name attribute of the wsdl:port element that specifies the endpoint details for a

portName

published service. The default is the append Port to the name of the service's implementation

class.a

aWhen you generate WSDL from an SEI the interface's name is used in place of the implementation class' name.

32

Bottom-Up Service Development

Tip
It is not necessary to provide values for any of the @WebService
annotation's properties. However, it is recommended that you provide
as much information as you can.

Annotating the SEI The SEI requires that you add the @WebService annotation. Because the SEI
is the contract that defines the service, you should specify as much detail as
possible about the service in the @WebService annotation's properties.

Example 3 on page 33 shows the interface defined in Example 1 on page 29
with the @WebService annotation.

Example 3. Interface with the @WebService Annotation

package com.iona.demo;

import javax.jws.*;

@WebService(name="quoteUpdater", ❶
targetNamespace="http:\\demos.iona.com", ❷

serviceName="updateQuoteService", ❸
wsdlLocation="http:\\demos.iona.com\quoteExampleService?wsdl", ❹
portName="updateQuotePort") ❺

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

The @WebService annotation in Example 3 on page 33 does the following:

❶ Specifies that the value of the name attribute of the wsdl:portType

element defining the service interface is quoteUpdater.

❷ Specifies that the target namespace of the service is
http:\\demos.iona.com.

❸ Specifies that the value of the name of the wsdl:service element

defining the published service is updateQuoteService.

❹ Specifies that the service will publish its WSDL contract at
http:\\demos.iona.com\quoteExampleService?wsdl.

33

Required Annotations

❺ Specifies that the value of the name attribute of the wsdl:port element

defining the endpoint exposing the service is updateQuotePort.

Annotating the service
implementation

In addition to annotating the SEI with the @WebService annotation, you also
must annotate the service implementation class with the @WebService
annotation. When adding the annotation to the service implementation class
you only need to specify the endpointInterface property. As shown in
Example 4 on page 34 the property must be set to the full name of the SEI.

Example 4. Annotated Service Implementation Class

package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.iona.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
{
...
}

}

34

Bottom-Up Service Development

Optional Annotations
While the @WebService annotation is sufficient for service enabling a Java
interface or a Java class, it does not fully describe how the service will be
exposed as a service provider. The JAX-WS programming model uses a number
of optional annotations for adding details about your service, such as the
binding it uses, to the Java code. You add these annotations to the service's
SEI.

Tip
The more details you provide in the SEI the easier it is for developers
to implement applications that can use the functionality it defines.
It also makes the WSDL documents generated by the tools more
specific.

Defining the Binding Properties with Annotations

Overview If you are using a SOAP binding for your service, you can use JAX-WS
annotations to specify a number of the bindings properties. These properties
correspond directly to the properties you can specify in a service's WSDL
contract. Some of the settings, such as the parameter style, can restrict how
you implement a method. These settings can also effect which annotations
can be used when annotating method parameters.

The @SOAPBinding annotation The @SOAPBinding annotation is defined by the
javax.jws.soap.SOAPBinding interface. It provides details about the SOAP
binding used by the service when it is deployed. If the @SOAPBinding
annotation is not specified, a service is published using a wrapped doc/literal
SOAP binding.

You can put the @SOAPBinding annotation on the SEI and any of the SEI's
methods. When it is used on a method, setting of the method's @SOAPBinding
annotation take precedence.

Table 2 on page 36 shows the properties for the @SOAPBinding annotation.

35

Optional Annotations

Table 2. @SOAPBinding Properties

DescriptionValuesProperty

Specifies the style of the SOAP message. If RPC style is specified,

each message part within the SOAP body is a parameter or return

Style.DOCUMENT (default)

Style.RPC

style

value and appears inside a wrapper element within the soap:body

element. The message parts within the wrapper element correspond
to operation parameters and must appear in the same order as the
parameters in the operation. If DOCUMENT style is specified, the

contents of the SOAP body must be a valid XML document, but its
form is not as tightly constrained.

Specifies how the data of the SOAP message is streamed.Use.LITERAL (default)use

Use.ENCODED
a

Specifies how the method parameters, which correspond to message
parts in a WSDL contract, are placed into the SOAP message body.

ParameterStyle.BARE

ParameterStyle.WRAPPED
(default)

parameterStyle
b

If BARE is specified, each parameter is placed into the message body

as a child element of the message root. If WRAPPED is specified, all

of the input parameters are wrapped into a single element on a
request message and all of the output parameters are wrapped into
a single element in the response message.

a
Use.ENCODED is not currently supported.

bIf you set the style to RPC you must use the WRAPPED parameter style.

Document bare style parameters Document bare style is the most direct mapping between Java code and the
resulting XML representation of the service. When using this style, the schema
types are generated directly from the input and output parameters defined in
the operation's parameter list.

You specify you want to use bare document\literal style by using the
@SOAPBinding annotation with its style property set to Style.DOCUMENT,
and its parameterStyle property set to ParameterStyle.BARE.

To ensure that an operation does not violate the restrictions of using document
style when using bare parameters, your operations must adhere to the following
conditions:

• The operation must have no more than one input or input/output parameter.

36

Bottom-Up Service Development

• If the operation has a return type other than void, it must not have any
output or input/output parameters.

• If the operation has a return type of void, it must have no more than one
output or input/output parameter.

Note
Any parameters that are placed in the SOAP header using the
@WebParam annotation or the @WebResult annotation are not counted
against the number of allowed parameters.

Document wrapped parameters Document wrapped style allows a more RPC like mapping between the Java
code and the resulting XML representation of the service. When using this
style, the parameters in the method's parameter list are wrapped into a single
element by the binding. The disadvantage of this is that it introduces an
extra-layer of indirection between the Java implementation and how the
messages are placed on the wire.

To specify that you want to use wrapped document\literal style use the
@SOAPBinding annotation with its style property set to Style.DOCUMENT,
and its parameterStyle property set to ParameterStyle.WRAPPED.

You have some control over how the wrappers are generated by using the
@RequestWrapper annotation and the @ResponseWrapper annotation.

Example Example 5 on page 37 shows an SEI that uses document bare SOAP
messages.

Example 5. Specifying a Document Bare SOAP Binding with the SOAP
Binding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter
{

37

Optional Annotations

...
}

Defining Operation Properties with Annotations

When the runtime maps your Java method definitions into XML operation
definitions it provides details such as:

• What the exchanged messages look like in XML

• If the message can be optimized as a one way message

• The namespaces where the messages are defined

The @WebMethod annotation The @WebMethod annotation is defined by the javax.jws.WebMethod
interface. It is placed on the methods in the SEI. The @WebMethod annotation
provides the information that is normally represented in the wsdl:operation
element describing the operation to which the method is associated.

Table 3 on page 38 describes the properties of the @WebMethod annotation.

Table 3. @WebMethod Properties

DescriptionProperty

Specifies the value of the associated wsdl:operation

element's name. The default value is the name of the

method.

operationName

Specifies the value of the soapAction attribute of the

soap:operation element generated for the method. The

default value is an empty string.

action

Specifies if the method should be excluded from the
service interface. The default is false.

exclude

The @RequestWrapper
annotation

The @RequestWrapper annotation is defined by the
javax.xml.ws.RequestWrapper interface. It is placed on the methods in
the SEI. The @RequestWrapper annotation specifies the Java class
implementing the wrapper bean for the method parameters of the request
message starting a message exchange. It also specifies the element names,

38

Bottom-Up Service Development

and namespaces, used by the runtime when marshalling and unmarshalling
the request messages.

Table 4 on page 39 describes the properties of the @RequestWrapper
annotation.

Table 4. @RequestWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the request message. The default

localName

value is either the name of the method, or the value of
the @WebMethod annotation's operationName property.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

Important
If the method is also annotated with the @SOAPBinding annotation,
and its parameterStyle property is set to ParameterStyle.BARE,
this annotation is ignored.

The @ResponseWrapper
annotation

The @ResponseWrapper annotation is defined by the
javax.xml.ws.ResponseWrapper interface. It is placed on the methods in
the SEI. The @ResponseWrapper specifies the Java class implementing the
wrapper bean for the method parameters in the response message in the
message exchange. It also specifies the element names, and namespaces,
used by the runtime when marshaling and unmarshalling the response
messages.

Table 5 on page 40 describes the properties of the @ResponseWrapper
annotation.

39

Optional Annotations

Table 5. @ResponseWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the response message. The default

localName

value is either the name of the method with Response

appended, or the value of the @WebMethod annotation's

operationName property with Response appended.

Specifies the namespace where the XML wrapper element
is defined. The default value is the target namespace of
the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

Important
If the method is also annotated with the @SOAPBinding annotation
and its parameterStyle property is set to ParameterStyle.BARE,
this annotation is ignored.

The @WebFault annotation The @WebFault annotation is defined by the javax.xml.ws.WebFault
interface. It is placed on exceptions that are thrown by your SEI. The
@WebFault annotation is used to map the Java exception to a wsdl:fault
element. This information is used to marshall the exceptions into a
representation that can be processed by both the service and its consumers.

Table 6 on page 40 describes the properties of the @WebFault annotation.

Table 6. @WebFault Properties

DescriptionProperty

Specifies the local name of the fault element.name

Specifies the namespace under which the fault element
is defined. The default value is the target namespace
of the SEI.

targetNamespace

40

Bottom-Up Service Development

DescriptionProperty

Specifies the full name of the Java class that
implements the exception.

faultName

Important
The name property is required.

The @Oneway annotation The @Oneway annotation is defined by the javax.jws.Oneway interface. It
is placed on the methods in the SEI that will not require a response from the
service. The @Oneway annotation tells the run time that it can optimize the
execution of the method by not waiting for a response and by not reserving
any resources to process a response.

This annotation can only be used on methods that meet the following criteria:

• They return void

• They have no parameters that implement the Holder interface

• They do not throw any exceptions that can be passed back to a consumer

Example Example 6 on page 41 shows an SEI with its methods annotated.

Example 6. SEI with Annotated Methods

package com.iona.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.iona.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.iona.com/types",

className="org.eric.demo.Quote")
public Quote getQuote(String ticker);

}

41

Optional Annotations

Defining Parameter Properties with Annotations

The method parameters in the SEI correspond to the wsdl:message elements
and their wsdl:part elements. JAX-WS provides annotations that allow you
to describe the wsdl:part elements that are generated for the method
parameters.

The @WebParam annotation The @WebParam annotation is defined by the javax.jws.WebParam interface.
It is placed on the parameters of the methods defined in the SEI. The
@WebParam annotation allows you to specify the direction of the parameter,
if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 7 on page 42 describes the properties of the @WebParam annotation.

Table 7. @WebParam Properties

DescriptionValuesProperty

Specifies the name of the parameter as it appears in the generated WSDL
document. For RPC bindings, this is the name of the wsdl:part

name

representing the parameter. For document bindings, this is the local name
of the XML element representing the parameter. Per the JAX-WS
specification, the default is argN, where N is replaced with the zero-based

argument index (i.e., arg0, arg1, etc.).

Specifies the namespace for the parameter. It is only used with document
bindings where the parameter maps to an XML element. The default is
to use the service's namespace.

targetNamespace

Specifies the direction of the parameter.Mode.IN (default)amode

Mode.OUT

Mode.INOUT

Specifies if the parameter is passed as part of the SOAP header.false (default)header

true

42

Bottom-Up Service Development

DescriptionValuesProperty

Specifies the value of the name attribute of the wsdl:part element for

the parameter. This property is used for document style SOAP bindings.

partName

aAny parameter that implements the Holder interface is mapped to Mode.INOUT by default.

The @WebResult annotation The @WebResult annotation is defined by the javax.jws.WebResult
interface. It is placed on the methods defined in the SEI. The @WebResult
annotation allows you to specify the properties of the wsdl:part that is
generated for the method's return value.

Table 8 on page 43 describes the properties of the @WebResult annotation.

Table 8. @WebResult Properties

DescriptionProperty

Specifies the name of the return value as it appears in the
generated WSDL document. For RPC bindings, this is the

name

name of the wsdl:part representing the return value.

For document bindings, this is the local name of the XML
element representing the return value. The default value
is return.

Specifies the namespace for the return value. It is only
used with document bindings where the return value maps

targetNamespace

to an XML element. The default is to use the service's
namespace.

Specifies if the return value is passed as part of the SOAP
header.

header

Specifies the value of the name attribute of the wsdl:part

element for the return value. This property is used for
document style SOAP bindings.

partName

Example Example 7 on page 43 shows an SEI that is fully annotated.

Example 7. Fully Annotated SEI

package com.iona.demo;

import javax.jws.*;

43

Optional Annotations

import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.iona.com",
name="quoteReporter")

@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.iona.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.iona.com/types",

className="org.eric.demo.Quote")
@WebResult(targetNamespace="http://demo.iona.com/types",

name="updatedQuote")
public Quote getQuote(

@WebParam(targetNamespace="http://demo.iona.com/types",
name="stockTicker",
mode=Mode.IN)

String ticker
);

}

Annotations added in Artix 5.6

Artix 5.6 adds the following new annotations:

• @WSDLDocumentation

• @SchemaValidation

• @DataBinding

• @GZIP

• @FastInfoset

• @Logging

• @EndpointProperty

44

Bottom-Up Service Development

• @Policy

The @WSDLDocumentation
annotation

The @WSDLDocumentation annotation is intended for "java first" scenarios
where the WSDL is derived from the Java interfaces/code. The
@WSDLDocumentation annotations allow for adding wsd:documentation
elements to various locations in the generated wsdl.

Example Example 8 on page 45 shows an @WSDLDocumentation annotation.

Example 8. An @WSDLDocumentation annotation

@WebService
@WSDLDocumentationCollection(

{
@WSDLDocumentation("My portType documentation"),
@WSDLDocumentation(value = "My top level documentation",

placement = WSDLDocumentation.Placement.TOP),
@WSDLDocumentation(value = "My binding doc",

placement = WSDLDocumentation.Placement.BINDING)
}

)
public interface MyService {

@WSDLDocumentation("The docs for echoString")
String echoString(String s);

}
}

The @SchemaValidation
annotation

The @SchemaValidation annotation turns on SchemaValidation for messages.
By default, for performance reasons, Artix does not validate messages against
the schema. By turning on validation, problems with messages not matching
the schema are easier to determine.

The @DataBinding annotation The @DataBinding annotation sets the DataBinding class associated with
the service. By default, Artix assumes you are using the JAXB data binding.
However, Artix supports different databindings such as XMLBeans, Aegis,

45

Optional Annotations

and SDO. The @DataBinding annotation can be used in place of configuration
to select the databinding class.

Example Example 9 on page 46 shows an @DataBindings annotation.

Example 9. An @DataBinding annotation

@DataBinding(org.apache.cxf.sdo.SDODataBinding.class)
public interface MyService {

public commonj.sdo.DataObject echoStruct(
commonj.sdo.DataObject struct

);
}

The @GZIP annotation The @GZIP annotation enables GZIP compression of on-the-wire data. The
@GZIP annotation supports the following attribute:

DescriptionAttribute

The threshold under which messages are not gzipped.threshold

GZIP is a negotiated annotation. An initial request from a client is not gzipped,
but an Accept header is added and if the server supports GZIP. If the server
supports GZIP, the response is gzipped, and any subsequent requests are as
well.

The @FastInfoset annotation The @FastInfoset annotation enables FastInfoset of on-the-wire data. The
@FastInfoset annotation supports the following attribute:

DescriptionAttribute

Forces the use of fastinfoset instead of negotiating. The default is
false.

force

FastInfoset is a negotiated enhancement. An initial request from a client is
not in fastinfoset, but an Accept header is added and if the server supports

46

Bottom-Up Service Development

fastinfoset. If the server supports fastinfoset, the response is in fastinfoset
and any subsequent requests are as well.

The @Logging annotation The @Logging annotation turns on logging for the endpoint. The @Logging
annotation can be used to control the size limits of what gets logged as well
as the location. The @Logging annotation supports the following attributes:

DescriptionAttribute

Sets the size limit after which the message is truncated in the
logs. The default is 64K.

limit

Sets the location to log incoming messages. Can be <stderr>,
<stdout>, <logger>, or a file: URL. The default is <logger>.

inLocation

Sets the location to log outgoing messages. Can be <stderr>,
<stdout>, <logger>, or a file: URL. The default is <logger>.

outLocation

Example Example 10 on page 47 shows an @Logging annotation.

Example 10. An @Logging annotation

@Logging(limit=16000, inLocation="<stdout>")
public interface MyService {

String echoString(String s);

}

The @EndpointProperty
annotation

The @EndpointProperty annotation adds a property to an endpoint. Many
items, such as WS-Security related settings, can be configured via endpoint
properties. Traditionally, these are set via the <jaxws:properties> element
on the <jaxws:endpoint> element in the spring config, but the
@EndpointProperty annotation allows these properties to be configured
into the code.

Example Example 11 on page 47 shows an @EndpointProperty annotation.

Example 11. An @EndpointProperty annotation

@WebService

47

Optional Annotations

@EndpointProperties(
{

@EndpointProperty(key = "my.property",
value="some value"),

@EndpointProperty(key = "my.other.property",
value="some other value"),

})
>public interface MyService {

String echoString(String s);
}

The @Policy annotation The @Policy is used to attach WS-Policy fragments to a service or operation.
The @Policy annotation supports the following attributes:

DescriptionAttribute

REQUIRED. The location of the file containing the Policy
definition.

uri

Determines whether to include the policy in the generated
WSDL when generating a wsdl. The default it true.

includeInWSDL

Specifies where to place the policy.placement

If placement is a FAULT, faultClass specifies which

fault the policy would apply to.

faultClass

Important
When using a custom Spring configuration, you need to import
META-INF/cxf/cxf-extension-policy.xml.

Example Example 12 on page 48 shows an @Policy annotation.

Example 12. An @Policy annotation

@Policies({
@Policy(uri = "annotationpolicies/TestInterfacePol

icy.xml"),
@Policy(uri = "annotationpolicies/TestImplPolicy.xml",

placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",

placement = Policy.Placement.PORT_TYPE)

48

Bottom-Up Service Development

}
)
@WebService
public static interface TestInterface {

@Policies({
@Policy(uri = "annotationpolicies/TestOperation

Policy.xml"),
@Policy(uri = "annotationpolicies/TestOperationInput

Policy.xml",
placement = Policy.Placement.BINDING_OPERA

TION_INPUT),
@Policy(uri = "annotationpolicies/TestOperationOutput

Policy.xml",
placement = Policy.Placement.BINDING_OPERA

TION_OUTPUT),
@Policy(uri = "annotationpolicies/TestOperationPT

Policy.xml",
placement = Policy.Placement.PORT_TYPE_OPERA

TION),
@Policy(uri = "annotationpolicies/TestOperationPTIn

putPolicy.xml",
placement = Policy.Placement.PORT_TYPE_OPERA

TION_INPUT),
@Policy(uri = "annotationpolicies/TestOperationPTOut

putPolicy.xml",
placement = Policy.Placement.PORT_TYPE_OPERA

TION_OUTPUT)
}
)
int echoInt(int i);

}

49

Optional Annotations

Generating WSDL

Using the command line tool Once your code is annotated, you can generate a WSDL contract for your
service using the java2ws command's -wsdl flag. For a detailed listing of
options for the java2ws command see java2ws in Artix ESB Java Runtime
Command Reference.

Using Ant To call the WSDL generator from Ant use the java task to execute the
org.apache.cxf.tools.java2ws.JavaToWS class and pass -wsdl as one
of its arguments. Example 13 on page 50 shows a sample Ant target that
calls the WSDL generator.

Example 13. Calling the WSDL Generator from Ant

<project name="java2ws" basedir=".">
<property name="fsf.home" location ="/usr/myapps/fsf-trunk"/>
<property name="build.classes.dir" location ="${basedir}/build/classes"/>

<path id="fsf.classpath">
<pathelement location="${build.classes.dir}"/>
<fileset dir="${fsf.home}/lib">

<include name="*.jar"/>
</fileset>

</path>

<target name="WSDLGen">
<java classname="org.apache.cxf.tools.java2ws.JavaToWS" fork="true">

<arg value="-wsdl"/>
<arg value="service.Greeter"/>
<classpath>

<path refid="fsf.classpath"/>
</classpath>

</java>
</target>

</project>

Important
You must set the Java task's fork to true.

Example Example 14 on page 51 shows the WSDL contract that is generated for the
SEI shown in Example 7 on page 43.

50

Bottom-Up Service Development

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

Example 14. Generated WSDL from an SEI

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"

xmlns:tns="http://demo.eric.org/"
xmlns:ns1=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://demo.eric.org/types"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema>
<xs:complexType name="quote">
<xs:sequence>
<xs:element name="ID" type="xs:string" minOccurs="0"/>
<xs:element name="time" type="xs:string" minOccurs="0"/>
<xs:element name="val" type="xs:float"/>

</xs:sequence>
</xs:complexType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="getStockQuote">
<wsdl:part name="stockTicker" type="xsd:string">
</wsdl:part>

</wsdl:message>
<wsdl:message name="getStockQuoteResponse">
<wsdl:part name="updatedQuote" type="tns:quote">
</wsdl:part>

</wsdl:message>
<wsdl:portType name="quoteReporter">
<wsdl:operation name="getStockQuote">
<wsdl:input name="getQuote" message="tns:getStockQuote">

</wsdl:input>
<wsdl:output name="getQuoteResponse" message="tns:getStockQuoteResponse">

</wsdl:output>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getStockQuote">
<soap:operation style="rpc" />
<wsdl:input name="getQuote">
<soap:body use="literal" />

</wsdl:input>
<wsdl:output name="getQuoteResponse">
<soap:body use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

51

Generating WSDL

<wsdl:service name="quoteReporterService">
<wsdl:port name="quoteReporterPort" binding="tns:quoteReporterBinding">
<soap:address location="http://localhost:9000/quoteReporterService" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

52

Bottom-Up Service Development

Developing a Consumer Without a WSDL
Contract
You do not need a WSDL contract to develop a service consumer. You can create a service consumer from an
annotated SEI. Along with the SEI you need to know the address at which the endpoint exposing the service is
published, the QName of the service element that defines the endpoint exposing the service, and the QName
of the port element defining the endpoint on which your consumer makes requests. This information can be
specified in the SEI's annotations or provided separately.

Creating a Service Object ... 54
Adding a Port to a Service .. 56
Getting a Proxy for an Endpoint ... 58
Implementing the Consumer's Business Logic ... 60

To create a consumer without a WSDL contract you must do the following:

1. Create a Service object for the service on which the consumer will

invoke operations.

2. Add a port to the Service object.

3. Get a proxy for the service using the Service object's getPort()

method.

4. Implement the consumer's business logic.

53

Creating a Service Object

Overview The javax.xml.ws.Service class represents the wsdl:service element
which contains the definition of all of the endpoints that expose a service. As
such, it provides methods that allow you to get endpoints, defined by
wsdl:port elements, that are proxies for making remote invocations on a
service.

Note
The Service class provides the abstractions that allow the client
code to work with Java types as opposed to working with XML
documents.

The create() methods The Service class has two static create() methods that can be used to
create a new Service object. As shown in Example 15 on page 54, both
of the create() methods take the QName of the wsdl:service element
the Service object will represent, and one takes a URI specifying the location
of the WSDL contract.

Tip
All services publish their WSDL contracts. For SOAP/HTTP services
the URI is usually the URI for the service appended with ?wsdl.

Example 15. Service create() Methods

public static Service create(URL wsdlLocation,
QName serviceName)

throws WebServiceException;

public static Service create(QName serviceName)
throws WebServiceException;

The value of the serviceName parameter is a QName. The value of its
namespace part is the target namespace of the service. The service's target
namespace is specified in the targetNamespace property of the @WebService
annotation. The value of the QName's local part is the value of wsdl:service
element's name attribute. You can determine this value in one of the following
ways:

54

Developing a Consumer Without a WSDL Contract

1. It is specified in the serviceName property of the @WebService annotation.

2. You append Service to the value of the name property of the @WebService

annotation.

3. You append Service to the name of the SEI.

Example Example 16 on page 55 shows code for creating a Service object for the
SEI shown in Example 7 on page 43.

Example 16. Creating a Service Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{

❶ QName serviceName = new QName("http://demo.iona.com", "stockQuoteReporter");
❷ Service s = Service.create(serviceName);

...
}

}

The code in Example 16 on page 55 does the following:

❶ Builds the QName for the service using the targetNamespace property
and the name property of the @WebService annotation.

❷ Calls the single parameter create() method to create a new Service

object.

Note
Using the single parameter create() frees you from having
any dependencies on accessing a WSDL contract.

55

Creating a Service Object

Adding a Port to a Service
The endpoint information for a service is defined in a wsdl:port element,
and the Service object creates a proxy instance for each of the endpoints
defined in a WSDL contract, if one is specified. If you do not specify a WSDL
contract when you create your Service object, the Service object has no
information about the endpoints that implement your service, and therefore
cannot create any proxy instances. In this case, you must provide the Service
object with the information needed to represent a wsdl:port element using
the addPort() method.

The addPort() method The Service class defines an addPort() method, shown in
Example 17 on page 56, that is used in cases where there is no WSDL
contract available to the consumer implementation. The addPort() method
allows you to give a Service object the information, which is typically stored
in a wsdl:port element, necessary to create a proxy for a service
implementation.

Example 17. The addPort() Method

void addPort(QName portName,
String bindingId,
String endpointAddress)

throws WebServiceException;

The value of the portName is a QName. The value of its namespace part is
the target namespace of the service. The service's target namespace is
specified in the targetNamespace property of the @WebService annotation.
The value of the QName's local part is the value of wsdl:port element's
name attribute. You can determine this value in one of the following ways:

1. Specify it in the portName property of the @WebService annotation.

2. Append Port to the value of the name property of the @WebService

annotation.

3. Append Port to the name of the SEI.

The value of the bindingId parameter is a string that uniquely identifies the
type of binding used by the endpoint. For a SOAP binding you use the standard
SOAP namespace: http://schemas.xmlsoap.org/soap/. If the endpoint is not
using a SOAP binding, the value of the bindingId parameter is determined
by the binding developer.

56

Developing a Consumer Without a WSDL Contract

The value of the endpointAddress parameter is the address where the
endpoint is published. For a SOAP/HTTP endpoint, the address is an HTTP
address. Transports other than HTTP use different address schemes.

Example Example 18 on page 57 shows code for adding a port to the Service object
created in Example 16 on page 55.

Example 18. Adding a Port to a Service Object

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
...

❶ QName portName = new QName("http://demo.fusesource.com", "stockQuoteReporterPort");
❷ s.addPort(portName,
❸ "http://schemas.xmlsoap.org/soap/",
❹ "http://localhost:9000/StockQuote");

...
}

}

The code in Example 18 on page 57 does the following:

❶ Creates the QName for the portName parameter.

❷ Calls the addPort() method.

❸ Specifies that the endpoint uses a SOAP binding.

❹ Specifies the address where the endpoint is published.

57

Adding a Port to a Service

Getting a Proxy for an Endpoint
A service proxy is an object that provides all of the methods exposed by a
remote service and handles all of the details required to make the remote
invocations. The Service object provides service proxies for all of the
endpoints it is aware of through the getPort() method. Once you have a
service proxy, you can invoke its methods. The proxy forwards the invocation
to the remote service endpoint using the connection details specified in the
service's contract.

The getPort() method The getPort() method, shown in Example 19 on page 58, returns a service
proxy for the specified endpoint. The returned proxy is of the same class as
the SEI.

Example 19. The getPort() Method

public <T> T getPort(QName portName,
Class<T> serviceEndpointInterface)

throws WebServiceException;

The value of the portName parameter is a QName that identifies the
wsdl:port element that defines the endpoint for which the proxy is created.
The value of the serviceEndpointInterface parameter is the fully qualified
name of the SEI.

Tip
When you are working without a WSDL contract the value of the
portName parameter is typically the same as the value used for the
portName parameter when calling addPort().

Example Example 20 on page 58 shows code for getting a service proxy for the
endpoint added in Example 18 on page 57.

Example 20. Getting a Service Proxy

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{

58

Developing a Consumer Without a WSDL Contract

public static void main(String args[])
{
...
quoteReporter proxy = s.getPort(portName, quoteReporter.class);
...

}
}

59

Getting a Proxy for an Endpoint

Implementing the Consumer's Business Logic

Overview Once you instantiate a service proxy for a remote endpoint, you can invoke
its methods as if it were a local object. The calls block until the remote method
completes.

Note
If a method is annotated with the @OneWay annotation, the call
returns immediately.

Example Example 21 on page 60 shows a consumer for the service defined in
Example 7 on page 43.

Example 21. Consumer Implemented without a WSDL Contract

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");

❶ Service s = Service.create(serviceName);

QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
❷ s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStock
Quote");

❸ quoteReporter proxy = s.getPort(portName, quoteReporter.class);

❹ Quote quote = proxy.getQuote("ALPHA");
System.out.println("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of

"+quote.getTime());
}

}

The code in Example 21 on page 60 does the following:

60

Developing a Consumer Without a WSDL Contract

❶ Creates a Service object.

❷ Adds an endpoint definition to the Service object.

❸ Gets a service proxy from the Service object.

❹ Invokes an operation on the service proxy.

61

Implementing the Consumer's Business Logic

62

Part II. Starting from a WSDL Contract
The recommended way to develop service-oriented applications is to start from a WSDL contract. The WSDL
contract provides an implementation neutral way of defining the operations a service exposes and the data that
is exchanged with the service. Artix ESB provides tools to generate JAX-WS annotated starting point code from
a WSDL contract. The code generators create all of the classes needed to implement any abstract data types
defined in the contract. This approach simplifies the development of widely distributed applications.

A Starting Point WSDL Contract ... 65
Top-Down Service Development .. 69

Generating the Starting Point Code ... 70
Implementing the Service Provider ... 73

Developing a Consumer From a WSDL Contract ... 75
Generating the Stub Code .. 76
Implementing a Consumer ... 79

A Starting Point WSDL Contract
Example 22 on page 65 shows the HelloWorld WSDL contract. This contract
defines a single interface, Greeter, in the wsdl:portType element. The
contract also defines the endpoint which will implement the service in the
wsdl:port element.

Example 22. HelloWorld WSDL Contract

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">

<element name="sayHi">
<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="sayHiResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMe">
<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMeResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

65

</sequence>
</complexType>

</element>
<element name="greetMeOneWay">
<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="pingMe">
<complexType/>

</element>
<element name="pingMeResponse">
<complexType/>

</element>
<element name="faultDetail">
<complexType>
<sequence>
<element name="minor" type="short"/>
<element name="major" type="short"/>

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>

</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeRequest">
<wsdl:part element="x1:greetMe" name="in"/>

</wsdl:message>
<wsdl:message name="greetMeResponse">
<wsdl:part element="x1:greetMeResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">
<wsdl:part element="x1:greetMeOneWay" name="in"/>

</wsdl:message>
<wsdl:message name="pingMeRequest">
<wsdl:part name="in" element="x1:pingMe"/>

</wsdl:message>
<wsdl:message name="pingMeResponse">
<wsdl:part name="out" element="x1:pingMeResponse"/>

</wsdl:message>
<wsdl:message name="pingMeFault">

66

A Starting Point WSDL Contract

<wsdl:part name="faultDetail" element="x1:faultDetail"/>
</wsdl:message>

<wsdl:portType name="Greeter">
❶ <wsdl:operation name="sayHi">

<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>

❷ <wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>

</wsdl:operation>

❸ <wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>

</wsdl:operation>

❹ <wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
...

</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The Greeter interface defined in Example 22 on page 65 defines the
following operations:

❶ sayHi — Has a single output parameter, of xsd:string.

❷ greetMe — Has an input parameter, of xsd:string, and an output
parameter, of xsd:string.

❸ greetMeOneWay — Has a single input parameter, of xsd:string. Because
this operation has no output parameters, it is optimized to be a oneway
invocation (that is, the consumer does not wait for a response from the
server).

67

❹ pingMe — Has no input parameters and no output parameters, but it
can raise a fault exception.

68

A Starting Point WSDL Contract

Top-Down Service Development
In the top-down method of developing a service provider you start from a WSDL document that defines the
operations and methods the service provider will implement. Using the WSDL document, you generate starting
point code for the service provider. Adding the business logic to the generated code is done using normal Java
programming APIs.

Generating the Starting Point Code ... 70
Implementing the Service Provider ... 73

Once you have a WSDL document, the process for developing a JAX-WS
service provider is as follows:

1. Generate starting point code.

2. Implement the service provider's operations.

3. Publish the implemented service.

69

Generating the Starting Point Code
JAX-WS specifies a detailed mapping from a service defined in WSDL to the
Java classes that will implement that service as a service provider. The logical
interface, defined by the wsdl:portType element, is mapped to a service
endpoint interface (SEI). Any complex types defined in the WSDL are mapped
into Java classes following the mapping defined by the Java Architecture for
XML Binding (JAXB) specification. The endpoint defined by the wsdl:service
element is also generated into a Java class that is used by consumers to
access service providers implementing the service.

The wsdl2java command automates the generation of this code. It also
provides options for generating starting point code for your implementation,
along with an Ant based makefile to build the application. wsdl2java provides
a number of arguments for controlling the generated code.

Running the code generator You can generate the code needed to develop your service provider using the
following command:

wsdl2java -ant -impl -server -d outputDir myService.wsdl

This command does the following:

• The -ant argument generates an Ant makefile, called build.xml, for your

application.

• The -impl argument generates a shell implementation class for each

wsdl:portType element in the WSDL contract.

• The -server argument generates a simple main() to run your service

provider as a stand alone application.

• The -d outputDir argument directs wsdl2java to write the generated code

to a directory called outputDir.

• myService.wsdl is the WSDL contract from which code is generated.

70

Top-Down Service Development

For a complete list of the arguments for wsdl2java see wsdl2java in Artix
ESB Java Runtime Command Reference.

Generating code from Ant If you are using Apache Ant as your build system, you can call the code
generator using Ant's java task as shown in Example 23 on page 71.

Example 23. Generating Service Starting Point Code from Ant

<project name="myProject" basedir=".">
<property name="fsf.home" location ="InstallDir"/>

<path id="fsf.classpath">
<fileset dir="${fsf.home}/lib">

<include name="*.jar"/>
</fileset>

</path>

<target name="ServiceGen">
<java classname="org.apache.cxf.tools.wsdlto.WSDLToJava" fork="true">
<arg value="-ant"/>
<arg value="-impl"/>
<arg value="-server"/>
<arg value="-d"/>
<arg value="outputDir"/>
<arg value="myService.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>

</classpath>
</java>
...

</target>
...

</project>

The command line options are passed to the code generator using the task's
arg element. Arguments that require two strings, such as -d, must be split
into two arg elements.

Generated code Table 9 on page 72 describes the files generated for creating a service
provider.

71

Generating the Starting Point Code

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

Table 9. Generated Classes for a Service Provider

DescriptionFile

The SEI. This file contains the interface your
service provider implements. You should not
edit this file.

portTypeName.java

The endpoint. This file contains the Java class
consumers use to make requests on the service.

serviceName.java

The skeleton implementation class. Modify this
file to build your service provider.

portTypeNameImpl.java

A basic server mainline that allows you to
deploy your service provider as a stand alone

portTypeNameServer.java

process. For more information see Publishing
a Service on page 115.

In addition, wsdl2java will generate Java classes for all of the types defined
in the WSDL contract.

Generated packages The generated code is placed into packages based on the namespaces used
in the WSDL contract. The classes generated to support the service (based
on the wsdl:portType element, the wsdl:service element, and the
wsdl:port element) are placed in a package based on the target namespace
of the WSDL contract. The classes generated to implement the types defined
in the types element of the contract are placed in a package based on the
targetNamespace attribute of the types element.

The mapping algorithm is as follows:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid Internet domain, for example
it ends in .com or .gov, then the leading www. is stripped off the string,

and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, then the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

72

Top-Down Service Development

Implementing the Service Provider

Generating the implementation
code

You generate the implementation class used to build your service provider
with wsdl2java's -impl flag.

Tip
If your service's contract includes any custom types defined in XML
Schema, you must ensure that the classes for the types are generated
and available.

For more information on using wsdl2java see wsdl2java in Artix ESB Java
Runtime Command Reference.

Generated code The implementation code consists of two files:

• portTypeName.java — The service interface(SEI) for the service.

• portTypeNameImpl.java — The class you will use to implement the

operations defined by the service.

Implement the operation's logic To provide the business logic for your service's operations complete the stub
methods in portTypeNameImpl.java. You usually use standard Java to
implement the business logic. If your service uses custom XML Schema types,
you must use the generated classes for each type to manipulate them. There
are also some Artix ESB specific APIs that can be used to access some
advanced features.

Example For example, an implementation class for the service defined in
Example 22 on page 65 may look like Example 24 on page 73. Only the
code portions highlighted in bold must be inserted by the programmer.

Example 24. Implementation of the Greeter Service

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
targetNamespace = "http://apache.org/hello_world_soap_http",

73

Implementing the Service Provider

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

endpointInterface = "org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

public String greetMe(String me) {
System.out.println("Executing operation greetMe");
System.out.println("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
System.out.println("Executing operation greetMeOneWay\n");
System.out.println("Hello there " + me);

}

public String sayHi() {
System.out.println("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
System.out.println("Executing operation pingMe, throwing PingMeFault exception\n");

throw new PingMeFault("PingMeFault raised by server", faultDetail);
}

}

74

Top-Down Service Development

Developing a Consumer From a WSDL
Contract
One way method of creating a consumer is to start from a WSDL contract. The contract defines the operations,
messages, and transport details of the service on which a consumer makes requests. The starting point code for
the consumer is generated from the WSDL contract. The functionality required by the consumer is added to the
generated code.

Generating the Stub Code .. 76
Implementing a Consumer ... 79

75

Generating the Stub Code

Overview The wsdl2java tool generates the stub code from the WSDL contract. The
stub code provides the supporting code that is required to invoke operations
on the remote service.

For consumers, the wsdl2java tool generates the following types of code:

• Stub code — Supporting files for implementing a consumer.

• Starting point code — Sample code that connects to the remote service
and invokes every operation on the remote service.

• Ant build file — A build.xml file intended for use with the Ant build utility.

It has targets for building and for running the sample consumer.

Generating the consumer code To generate consumer code use the wsdl2java tool. Enter the following
command at a command-line prompt:

wsdl2java -ant -client -d outputDir hello_world.wsdl

Where outputDir is the location of a directory where the generated files are
placed and hello_world.wsdl is a file containing the contract shown in
Example 22 on page 65. The -ant option generates an ant build.xml file,
for use with the ant build utility. The -client option generates starting point
code for the consumer's main() method.

For a complete list of the arguments available for the wsdl2java tool see
wsdl2java in Artix ESB Java Runtime Command Reference.

Generating code from Ant If you are using Apache Ant as your build system, you can call the code
generator using Ant's java task, as shown in Example 25 on page 76.

Example 25. Generating Service Starting Point Code from Ant

<project name="myProject" basedir=".">
<property name="fsf.home" location ="InstallDir"/>

<path id="fsf.classpath">
<fileset dir="${fsf.home}/lib">

<include name="*.jar"/>
</fileset>

76

Developing a Consumer From a WSDL Contract

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

</path>

<target name="ServiceGen">
<java classname="org.apache.cxf.tools.wsdlto.WSDLToJava" fork="true">
<arg value="-ant"/>
<arg value="-client"/>
<arg value="-d"/>
<arg value="outputDir"/>
<arg value="myService.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>

</classpath>
</java>
...

</target>
...

</project>

The command line options are passed to the code generator using the task's
arg element. Arguments that require two strings, such as -d, must be split
into two arg elements.

Generated code The preceding command generates the following Java packages:

• org.apache.hello_world_soap_http — This package is generated from

the http://apache.org/hello_world_soap_http target namespace. All of the
WSDL entities defined in this namespace (for example, the Greeter port
type and the SOAPService service) map to Java classes this Java package.

• org.apache.hello_world_soap_http.types — This package is

generated from the http://apache.org/hello_world_soap_http/types target
namespace. All of the XML types defined in this namespace (that is,
everything defined in the wsdl:types element of the HelloWorld contract)

map to Java classes in this Java package.

The stub files generated by the wsdl2java tool fall into the following categories:

• Classes representing WSDL entities in the
org.apache.hello_world_soap_http package. The following classes

are generated to represent WSDL entities:

• Greeter — A Java interface that represents the Greeter wsdl:portType

element. In JAX-WS terminology, this Java interface is the service
endpoint interface (SEI).

77

Generating the Stub Code

• SOAPService — A Java service class (extending

javax.xml.ws.Service) that represents the SOAPService

wsdl:service element.

• PingMeFault — A Java exception class (extending

java.lang.Exception) that represents the pingMeFault wsdl:fault

element.

• Classes representing XML types in the
org.objectweb.hello_world_soap_http.types package. In the

HelloWorld example, the only generated types are the various wrappers for
the request and reply messages. Some of these data types are useful for
the asynchronous invocation model.

78

Developing a Consumer From a WSDL Contract

Implementing a Consumer

Overview To implement a consumer when starting from a WSDL contract, you must
use the following stubs:

• Service class

• SEI

Using these stubs, the consumer code instantiates a service proxy to make
requests on the remote service. It also implements the consumer's business
logic.

Generated service class Example 26 on page 79 shows the typical outline of a generated service
class, ServiceName_Service1, which extends the javax.xml.ws.Service
base class.

Example 26. Outline of a Generated Service Class

@WebServiceClient(name="..." targetNamespace="..."
wsdlLocation="...")

public class ServiceName extends javax.xml.ws.Service
{
...
public ServiceName(URL wsdlLocation, QName serviceName) { }

public ServiceName() { }

@WebEndpoint(name="...")
public SEI getPortName() { }
.
.
.

}

The ServiceName class in Example 26 on page 79 defines the following
methods:

• ServiceName(URL wsdlLocation, QName serviceName) — Constructs

a service object based on the data in the wsdl:service element with the

1If the name attribute of the wsdl:service element ends in Service the _Service is not used.

79

Implementing a Consumer

QName ServiceName service in the WSDL contract that is obtainable from

wsdlLocation.

• ServiceName() — The default constructor. It constructs a service object

based on the service name and the WSDL contract that were provided at
the time the stub code was generated (for example, when running the
wsdl2java tool). Using this constructor presupposes that the WSDL contract
remains available at a specified location.

• getPortName() — Returns a proxy for the endpoint defined by the

wsdl:port element with the name attribute equal to PortName. A getter

method is generated for every wsdl:port element defined by the

ServiceName service. A wsdl:service element that contains multiple

endpoint definitions results in a generated service class with multiple
getPortName() methods.

Service endpoint interface For every interface defined in the original WSDL contract, you can generate
a corresponding SEI. A service endpoint interface is the Java mapping of a
wsdl:portType element. Each operation defined in the original
wsdl:portType element maps to a corresponding method in the SEI. The
operation's parameters are mapped as follows:

1. The input parameters are mapped to method arguments.

2. The first output parameter is mapped to a return value.

3. If there is more than one output parameter, the second and subsequent
output parameters map to method arguments (moreover, the values of
these arguments must be passed using Holder types).

For example, Example 27 on page 80 shows the Greeter SEI, which is
generated from the wsdl:portType element defined in
Example 22 on page 65. For simplicity, Example 27 on page 80 omits the
standard JAXB and JAX-WS annotations.

Example 27. The Greeter Service Endpoint Interface

package org.apache.hello_world_soap_http;
...

public interface Greeter
{

80

Developing a Consumer From a WSDL Contract

public String sayHi();
public String greetMe(String requestType);
public void greetMeOneWay(String requestType);
public void pingMe() throws PingMeFault;

}

Consumer main function Example 28 on page 81 shows the code that implements the HelloWorld
consumer. The consumer connects to the SoapPort port on the SOAPService
service and then proceeds to invoke each of the operations supported by the
Greeter port type.

Example 28. Consumer Implementation Code

package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

private static final QName SERVICE_NAME =
new QName("http://apache.org/hello_world_soap_http",

"SOAPService");

private Client()
{
}

public static void main(String args[]) throws Exception
{

❶ if (args.length == 0)
{
System.out.println("please specify wsdl");
System.exit(1);

}

❷ URL wsdlURL;
File wsdlFile = new File(args[0]);
if (wsdlFile.exists())
{
wsdlURL = wsdlFile.toURL();

}
else

81

Implementing a Consumer

{
wsdlURL = new URL(args[0]);

}

System.out.println(wsdlURL);
❸ SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
❹ Greeter port = ss.getSoapPort();

String resp;

❺ System.out.println("Invoking sayHi...");
resp = port.sayHi();
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMe...");
resp = port.greetMe(System.getProperty("user.name"));
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMeOneWay...");
port.greetMeOneWay(System.getProperty("user.name"));
System.out.println("No response from server as method is OneWay");
System.out.println();

❻ try {
System.out.println("Invoking pingMe, expecting exception...");
port.pingMe();

} catch (PingMeFault ex) {
System.out.println("Expected exception: PingMeFault has occurred.");
System.out.println(ex.toString());

}
System.exit(0);

}
}

The Client.main() method from Example 28 on page 81 proceeds as
follows:

❶ Provided that the Artix ESB runtime classes are on your classpath, the
runtime is implicitly initialized. There is no need to call a special function
to initialize Artix ESB.

❷ The consumer expects a single string argument that gives the location
of the WSDL contract for HelloWorld. The WSDL contract's location is
stored in wsdlURL.

❸ You create a service object using the constructor that requires the WSDL
contract's location and service name.

82

Developing a Consumer From a WSDL Contract

❹ Call the appropriate getPortName() method to obtain an instance of
the required port. In this case, the SOAPService service supports only
the SoapPort port, which implements the Greeter service endpoint
interface.

❺ The consumer invokes each of the methods supported by the Greeter

service endpoint interface.
❻ In the case of the pingMe() method, the example code shows how to

catch the PingMeFault fault exception.

83

Implementing a Consumer

84

Part III. Developing RESTful Services
RESTful services take the concepts of lose coupling and coarse grained interfaces one step farther than standard
Web services. Built using the REST architectural style, they rely solely on the four HTTP verbs to access the
operations provided by a service. Artix ESB provides a robust mechanism for building RESTful services using
straightforward Java classes and annotations.

Introduction to RESTful Services .. 87
Using Automatic REST Mappings .. 91
Using Java REST Annotations .. 95
Publishing a RESTful Service ... 99

Introduction to RESTful Services
Representational State Transfer (REST)is a software architecture style that centers around the transmission of
data over HTTP, using only the four basic HTTP verbs. It also eschews the use of any additional wrappers such
as a SOAP envelope and the use of any state data.

Overview Representational State Transfer (REST) is an architectural style first described
in a doctoral dissertation by a researcher named Roy Fielding. In REST, servers
expose resources using a URI, and clients access these resources using the
four HTTP verbs. As clients receive representations of a resource they are
placed in a state. When they access a new resource, typically by following a
link, they change, or transition, their state. In order to work, REST assumes
that resources are capable of being represented using a pervasive standard
grammar.

The World Wide Web is the most ubiquitous example of a system designed
on REST principles. Web browsers act as clients accessing resources hosted
on Web servers. The resources are represented using HTML or XML grammars
that all Web browsers can consume. The browsers can also easily follow the
links to new resources.

The advantages of REST style systems is that they are highly scalable and
highly flexible. Because the resources are accessed and manipulated using
the four HTTP verbs, the resources are exposed using a URI, and the resources
are represented using standard grammars, clients are not as affected by
changes to the servers. Also, REST style systems can take full advantage of
the scalability features of HTTP such as caching and proxies.

Basic REST principles RESTful architectures adhere to the following basic principles:

• Application state and functionality are divided into resources.

• Resources are addressable using standard URIs that can be used as
hypermedia links.

• All resources use only the four HTTP verbs.

• DELETE

• GET

87

• POST

• PUT

• All resources provide information using the MIME types supported by HTTP.

• The protocol is stateless.

• The protocol is cacheable.

• The protocol is layered.

Resources Resources are central to REST. A resource is a source of information that can
be addressed using a URI. In the early days of the Web, resources were largely
static documents. In the modern Web, a resource can be any source of
information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address.
A representation is a document containing the data provided by the resource.
For example, the method of a Web service that provides access to a customer
record wourld be a resource, the copy of the customer record exchanged
between the service and the consumer is a representation of the resource.

REST best practices When designing RESTful services it is helpful to keep in mind the following:

• Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records,
each record should have a unique URI. If the system also provides
information on parking violations and speeding fines, each type of resource
should also have a unique base. For example, speeding fines could be
accessed through /speeding/driverID and parking violations could be
accessed through /parking/driverID.

• Use nouns in your URIs.

Using nouns highlights the fact that resources are things and not actions.
URIs such as /ordering imply an actions, whereas /orders implies a
thing.

• Methods that map to GET should not change any data.

88

Introduction to RESTful Services

• Use links in your responses.

Putting links to other resources in your responses makes it easier for clients
to follow a chain of data. For example, if your service returns a collection
of resources, it would be easier for a client to access each of the individual
resources using the provided links. If links are not included, a client needs
to have additional logic to follow the chain to a specific node.

• Make your service stateless.

Requiring the client or the service to maintain state information forces a
tight coupling between the two. Tight couplings make upgrading and
migrating more difficult. Maintaining state can also make recovery from
communication errors more difficult.

Wrapped mode vs. unwrapped
mode

RESTful services can only send or receive one XML element. To enable the
mapping of methods that use more than one parameter, Artix ESB can use
wrapped mode. In wrapped mode, Artix ESB wraps the parameters with a
root element derived from the operation name. For example, the operation
Car findCar(String make, String model) could not be mapped to an
XML POST request like the one shown in Example 29 on page 89.

Example 29. Invalid REST Request

<name>Dodge</name>
<model>Daytona</company>

Example 29 on page 89 is invalid because it has two root XML elements,
which is not allowed. Instead, the parameters would have to be wrapped with
the operation name to make the POST valid. The resulting request is shown
in Example 30 on page 89.

Example 30. Wrapped REST Request

<findCar>
<make>Dodge</make>
<model>Daytona</model>

</findCar>

By default, Artix ESB uses unwrapped mode, because, for cases where
operations use a single parameter, it creates prettier XML. Using unwrapped
mode, however, requires that you constrain your service interfaces to sending
and receiving single elements. If your operation needs to take multiple
parameters, you must combine them in an object. With the findCar()

89

example above, you would want to create a FindCar class that holds the
make and model data.

Implementing REST with Artix
ESB

Artix ESB uses an HTTP binding to map Java interfaces into RESTful services.
There are two ways to map the methods of the Java interface into resources:

• Convention based mapping (see Using Automatic REST
Mappings on page 91)

• Java REST annotations (see Using Java REST Annotations on page 95)

90

Introduction to RESTful Services

Using Automatic REST Mappings
To simplify the creation of RESTful services, Artix ESB can automatically map a Java service to a RESTful interface.
The mapping requires that the Java service is defined as a CRUD based class.

Overview To simplify the creation of RESTful service endpoints, Artix ESB can map the
methods of a CRUD (Create, Read, Update, and Destroy) based Java bean
class to URIs automatically. The mapping looks for keywords in the method
names of the bean, such as get, add, update, or remove, and maps them
onto HTTP verbs. It then uses the remainder of the method name to create
a URI by pluralizing the field name and appending it to the base URI at which
the endpoint is published.

Note
For more information about publishing RESTful endpoints, see
Publishing a RESTful Service on page 99.

Typical CRUD class Example 31 on page 91 shows a CRUD based class for updating a catalog
of widgets.

Example 31. Widget Catalog CRUD Class

import javax.jws.WebService;

@WebService
public interface WidgetCatalog
{
Collection<Widget> getWidgets();
Widget getWidget(long id);
void addWidget(Widget widget);
void updateWidget(Widget widget);
void removeWidget(String type, long num);
void deleteWidget(Widget widget);

}

Important
You must use the @WebService annotation on any class or interface
that you wish to expose as a RESTful endpoint.

91

The class has six operations that are mapped to a URI/verb pair:

• getWidgets() is mapped to a GET at baseURI/widgets.

• getWidget() is mapped to a GET at baseURI/widgets/id.

• addWidget() is mapped to a POST at baseURI/widgets.

• updateWidget() is mapped to a PUT at baseURI/widgets.

• removeWidget() is mapped to a DELETE at baseURI/widgets/type/num.

• deleteWidget() is mapped to a DELETE at baseURI/widgets.

Mapping to GET When Artix ESB sees a method name in the form of getResource(), it maps
the method to a GET. The URI is generated by appending the plural form of
Resource to the base URI at which the endpoint is published. If Resource
is already plural, it is not pluralized. For example, getCustomer() is mapped
to a GET on /customers. The method getCustomers() would result in the
same mapping.

Any method parameters are appended to the URI. For example,
getWidget(long id) is mapped to /widgets/id and getCar(String
make, String model) would be mapped to /cars/make/model. A call to
getCar(plymouth, roadrunner) would be executed by a GET to
/cars/plymouth/roadrunner.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to POST Methods of the form addResource() or createResource() are mapped to
POST. The URI is generated by pluralizing Resource. For example
createCar(Car car) would be mapped to a POST at /cars.

Mapping to PUT Methods of the form updateResource() are mapped to PUT. The URI is
generated by pluralizing Resource and appending any parameters except the
resource to be updated. For example updateHitter(long number, long

92

Using Automatic REST Mappings

rotation, Hitter hitter) would be mapped to a PUT at
/hitters/number/rotation.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to DELETE Methods of the form deleteResource() or removeResource() are mapped
to DELETE. The URI is generated by pluralizing Resource and appending any
parameters. For example removeCar(String make, long num) would be
mapped to a DELETE at /cars/make/num.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

93

94

Using Java REST Annotations
Artix ESB recognizes a set of annotations that allow you to dictate the mappings of Java operations to a RESTful
interface.

Overview While the convention-based REST mappings provide an easy way to create
a service that maintains a collection of data, or looks like it does, it does not
provide the flexibility to create a full range of RESTful services that require
operations whose names don't fit into the CRUD format. Artix ESB provides
a collection of annotations that allows you to define the mapping of an
operation to an HTTP verb/URI combination. The REST annotations allow
you to specify which verb to use for an operation and to specify a template
for creating a URI for the exposed resource.

Specifying the HTTP verb Artix ESB uses four annotations for specifying the HTTP verb that will be used
for a method:

• org.codehaus.jra.Delete specifies that the method maps to a DELETE.

• org.codehaus.jra.Get specifies that the method maps to a GET.

• org.codehaus.jra.Post specifies that the method maps to a POST.

• org.codehaus.jra.Put specifies that the method maps to a PUT.

When you map your methods to HTTP verbs, you must ensure that the
mapping makes sense. For example, if you map a method that is intended
to submit a purchase order, you would map it to a PUT or a POST. Mapping
it to a GET or a DELETE would result in unpredictable behavior.

Specifying the URI You specify the URI of the resource using the
org.codehaus.jra.HttpResource annotation. HttpResource has one
required attribute, location, that specifies the location of the resource in
relationship to the base URI specified when publishing the service (see
Publishing a RESTful Service on page 99. For example, if you specify carts
as the location of the resource and the base URI is

95

http://myexample.iona.org, the full URI for the resource will be
http://myexample.iona.org/carts.

Using URI templates In addition to specifying hard coded resource locations, Artix ESB provides a
facility for creating URIs on the fly using either the method's parameters or a
field from the JAXB bean in the parameter list. When providing a value for
the HttpResource annotation's location parameter you provide a URI
template using the syntax in Example 32 on page 96.

Example 32. URI Template Syntax

@HttpResource(location="resourceName/{param1}/../{paramN}")

resourceName can be any valid string, and forms the base of the location.
Each param is the name of either a method parameter or a field in the JAXB
bean in the parameter list. To create the URI, Artix ESB replaces param with
the value of the associated parameter. For example, if you have the method
shown in Example 33 on page 96 and wanted to access the record at id 42,
you would perform a GET at http://myexample.iona.com/records/42.

Example 33. Using a URI Template

@Get
@HttpResource(location="\records\{id}")
Record fetchRecord(long id);

Important
Artix ESB only supports XML primitives in URI templates.

Example If you wanted to implement a system for ordering widgets out of the catalog
defined by Example 31 on page 91 you may use an SEI like the one shown
in Example 34 on page 96.

Example 34. SEI for a Widget Ordering Service

@WebService
public interface WidgetOrdering
{
void placeOrder(WidgetOrder order);
OrderStatus checkOrder(long orderNum);
void changeOrder(WidgetOrder order, long orderNum);
void cancelOrder(long orderNum);

}

96

Using Java REST Annotations

WidgetOrdering does not match any of the naming conventions outlined in
Using Automatic REST Mappings on page 91 so the RESTful binding cannot
automatically map the methods to verb/URI combinations. You will need to
provide the mappings using the Java REST annotations. To do this, you need
to consider what each method in the interface does and how it correlates to
one of the HTTP verbs:

• placeOrder() creates a new order on the system. Resource creation

correlates with POST.

• checkOrder() looks up an order's status and returns it to the user.

Returning resources correlates with GET.

• changeOrder() updates an order that has already been placed. Updating

an existing record correlates with PUT.

• cancelOrder() removes an order from the system. Removing a resource

correlates with DELETE.

For the URI, you would use a resource name that hinted at the purpose of
the resource. For this example, the resource name used is orders because
it is assumed that the base URI at which the endpoint is published provides
information about what is being ordered. For the methods that use orderNum
to identify a particular order, URI templating is used to append the value of
the parameter to the end of the URI.

Example 35 on page 97 shows WidgetOrdering with the required
annotations.

Example 35. WidgetOrdering with REST Annotations

import org.codehause.jra.*;

@WebService
public interface WidgetOrdering
{
@Post
@HttpResource(location="\orders")
void placeOrder(WidgetOrder order);

@Get
@HttpResource(location="\orders\{orderNum}")
OrderStatus checkOrder(long orderNum);

97

@Put
@HttpResource(location="\orders\{orderNum}")
void changeOrder(WidgetOrder order, long orderNum);

@Delete
@HttpResource(location="\orders\{orderNum}")
void cancelOrder(long orderNum);

}

To check the status of order number 236, you would perform a GET at
baseURI/orders/236.

98

Using Java REST Annotations

Publishing a RESTful Service
The Artix ESB APIs provide a simple means of publishing a RESTful service using the JaxWsServiceFactoryBean.

Overview You publish RESTful services using the JaxWsServerFactoryBean object.
Using the JaxWsServerFactoryBean object, you specify the base URI for
the resources implemented by the service and whether the resources use
wrapped messages. You can then create a Server object to start listening
for requests to access the service's resources.

Procedure To publish your RESTful service, do the following:

1. Create a new JaxWsServerFactoryBean.

2. Set the server factory's service class to the class of your RESTful service's
SEI using the factory's setServiceClass() method as shown in
Example 36 on page 99.

Example 36. Setting a Server Factory's Service Class

// Service factory sf obtained previously
sf.setServiceClass(widgetService.class);

3. If you want to use wrapped mode, set the factory's wrapped property to
true using the setWrapped() method as shown in
Example 37 on page 99.

Example 37. Setting Wrapped Mode

sf.getServiceFactory().setWrapped(true);

Note
For more information about using wrapped mode or unwrapped
mode, see Wrapped mode vs. unwrapped mode on page 89.

4. Set the server factory's binding to the REST binding using the
setBindingId() method.

99

The REST binding is selected using the constant
HttpBindingFactory.HTTP_BINDING_ID as shown in
Example 38 on page 100.

Example 38. Selecting the REST Binding

// Server factory sf obtained previously
sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);

5. Set the base URI for the service's resources using the setAddress()
method as shown in Example 39 on page 100.

Example 39. Setting the Base URI

sf.setAddress("http://localhost:9000");

6. Set server factory's service invoker to an instance of your service's
implementation class as shown in Example 40 on page 100.

Example 40. Setting the Service Invoker

widgetService service = new widgetServiceImpl();
sf.getServiceFactory().setInvoker(new BeanInvoker(ser
vice));

7. Create a new Server object from the server factory using the factory's

create() method.

Example Example 41 on page 100 shows the code for publishing a RESTful service at
http://jfu:9000. All of the resources implemented by the service will use
the published URI as the base address.

Example 41. Publishing the WidgetCatalog Service as a RESTful Endpoint

JaxWsServerFactoryBean sf = new JaxWsServerFactoryBean();
sf.setServiceClass(WidgetCatalog.class);

sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);
sf.setAddress("http://jfu:9000");

widgetService service = new WidgetCatalogImpl();
sf.setServiceFactory.setInvoker(new BeanInvoker(service));

100

Publishing a RESTful Service

Server svr = sf.create();

If you used Example 41 on page 100 to publish the service defined by
Example 31 on page 91, you would:

• Retrieve a list of all widgets in the catalog using a GET at

http://jfu:9000/widgets.

• Retrieve information about widget 34 using a GET at

http://jfu:9000/widgets/34.

• Modify a widget using a PUT at http://jfu:9000/widgets with an XML

document describing the widget to modify.

• Delete 15 round widgets from the catalog using a DELETE at

http://jfu:9000/widgets/round/15.

101

102

Part IV. Common Development Tasks
Aside from basic service provider and consumer implementation, there are a number of tasks that developers
will commonly need to perform.

Finding WSDL at Runtime ... 105
Instantiating a Proxy by Injection ... 106
Using a JAX-WS Catalog .. 109
Using a ServiceContractResolver Object .. 111

Publishing a Service ... 115
APIs Used to Publish a Service .. 116
Publishing a Service in a Plain Java Application ... 119

Generic Fault Handling ... 123
Runtime Faults .. 124
Protocol Faults .. 125

Finding WSDL at Runtime
Hard coding the location of WSDL documents into an application is not scalable. In real deployment environments,
you will want to allow the WSDL document's location be resolved at runtime. Artix ESB provides a number of
tools to make this possible.

Instantiating a Proxy by Injection ... 106
Using a JAX-WS Catalog .. 109
Using a ServiceContractResolver Object .. 111

When developing consumers using the JAX-WS APIs you are must provide a
hard coded path to the WSDL document that defines your service. While this
is OK in a small environment, using hard coded paths does not translate to
enterprise deployments.

To address this issue, Artix ESB provides three mechanisms for removing the
requirement of using hard coded paths:

• inject a configured proxy object

• a JAX-WS catalog

• the ServiceContractResolver interface

Tip
Injecting the proxy into your implementation code is generally the
best option.

105

Instantiating a Proxy by Injection

Overview Artix ESB's use of the Spring Framework allows you to avoid the hassle of
using the JAX-WS APIs to create service proxies. It allows you to define a
client endpoint in a configuration file and then inject a proxy directly into the
implementation code. When the runtime instantiates the implementation
object, it will also instantiate a proxy for the external service based on the
configuration. The implementation is handed a reference to the instantiated
proxy.

Because the proxy is instantiated using information in the configuration file,
the WSDL location does not need to be hard coded. It can be changed at
deployment time. You can also specify that the runtime should search the
application's classpath for the WSDL.

Procedure To inject a proxy for an external service into a service provider's implementation
do the following:

1. Deploy the required WSDL documents in a well known location that all
parts of the application can access.

Tip
If you are deploying the application as a WAR file, it is
recommended that you place all of the WSDL documents and
XML Schema documents in the WEB-INF/wsdl folder of the
WAR.

Tip
If you are deploying the application as a JAR file, it is
recommended that you place all of the WSDL documents and
XML Schema documents in the META-INF/wsdl folder of the
JAR.

2. Configure a JAX-WS client endpoint for the proxy that is being injected.

106

Finding WSDL at Runtime

3. Inject the proxy into your service provide using the @Resource annotation.

Configuring the proxy You configure a JAX-WS client endpoint using the jaxws:client element in
you application's configuration file. This tells the runtime to instantiate a
org.apache.cxf.jaxws.JaxWsClientProxy object with the specified
properties. This object is the proxy that will be injected into the service
provider.

At a minimum you need to provide values for the following attributes:

• id—Specifies the ID used to identify the client to be injected.

• serviceClass—Specifies the SEI of the service on which the proxy makes

requests.

Example 42 on page 107 shows the configuration for a JAX-WS client endpoint.

Example 42. Configuration for a Proxy to be Injected into a Service Implementation

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:client id="bookClient"
serviceClass="org.apache.cxf.demo.BookService"
wsdlLocation="classpath:books.wsdl"/>

...
</beans>

Note
In Example 42 on page 107 the wsdlLocation attribute instructs
the runtime to load the WSDL from the classpath. If books.wsdl in
on the classpath, the runtime will be able to find it.

For more information on configuring a JAX-WS client see Configuring Consumer
Endpoints in Artix® ESB Deployment Guide.

Coding the provider
implementation

You inject the configured proxy into a service implementation as a resource
using the @Resource as shown in Example 43 on page 108.

107

Instantiating a Proxy by Injection

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

Example 43. Injecting a Proxy into a Service Implementation

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName =
"SOAPService",

targetNamespace = "ht
tp://apache.org/hello_world_soap_http",

endpointInterface =
"org.apache.hello_world_soap_http.Greeter")
public class StoreImpl implements Store {

@Resource(name="bookClient")
private BookService proxy;

}

The annotation's name property corresponds to the value of the JAX-WS
client's id attribute. The configured proxy is injected into the BookService
object declared immediately after the annotation. You can use this object to
make invocations on the proxy's external service.

108

Finding WSDL at Runtime

Using a JAX-WS Catalog

Overview The JAX-WS specification mandates the all implementations support:

support for a standard catalog facility to be used when
resolving any Web service document that is part of the
description of a Web service, specifically WSDL and XML
Schema documents.

This catalog facility uses the XML catalog facility specified by OASIS. All of
the JAX-WS APIs and annotation that take a WSDL URI use the catalog to
resolve the WSDL document's location.

This means that you can provide an XML catalog file that rewrites the locations
of your WSDL documents to suite specific deployment environments.

Writing the catalog JAX-WS catalogs are standard XML catalogs as defined by the OASIS XML
Catalogs 1.11 specification. They allow you to specify mapping:

• a document's public identifier and/or a system identifier to a URI.

• the URI of a resource to another URI.

Table 10 on page 109 lists some common elements used for WSDL location
resolution.

Table 10. Common JAX-WS Catalog Elements

DescriptionElement

Maps a URI to an alternate URI.uri

Rewrites the beginning of a URI. For example, this element allows you to map all URIs that start
with http://cxf.apache.org to URIs that start with classpath:.

rewriteURI

Maps a URI to an alternate URI based on the suffix of the original URI. For example you could map
all URIs that end in foo.xsd to classpath:foo.xsd.

uriSuffix

Packaging the catalog The JAX-WS specification mandates that the catalog used to resolve WSDL
and XML Schema documents is assembled using all available resources named

1 http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html

109

Using a JAX-WS Catalog

http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html

META-INF/jax-ws-catalog.xml. If your application is packaged into a
single JAR, or WAR, you can place the catalog into a single file.

If your application is packaged as multiple JARs, you can split the catalog
into a number of files. Each catalog file could be modularized to only deal
with WSDLs accessed by the code in the specific JARs.

110

Finding WSDL at Runtime

Using a ServiceContractResolver Object

Overview The most involved mechanism for resolving WSDL document locations at
runtime is to implement your own custom contract resolver. This requires
that you provide an implementation of the Artix ESB specific
ServiceContractResolver interface. You also need to register your custom
resolver with the bus.

Once properly registered, the custom contract resolver will be used to resolve
the location of any required WSDL and schema documents.

Implementing the contract
resolver

A contract resolver is an implementation of the
org.apache.cxf.endpoint.ServiceContractResolver interface. As
shown in Example 44 on page 111, this interface has a single method,
getContractLocation(), that needs to be implemented.
getContractLocation() takes the QName of a service and returns the URI
for the service's WSDL contract.

Example 44. ServiceContractResolver Interface

public interface ServiceContractResolver
{

URI getContractLocation(QName qname);
}

The logic used to resolve the WSDL contract's location is application specific.
You can add logic that to resolve contract locations from a UDDI registry, a
database, a custom location on a file system, or any other mechanism you
choose.

Registering the contract resolver
programmatically

Before the Artix ESB runtime will use your contract resolver, you must register
it with a contract resolver registry. Contract resolver registries implement the
org.apache.cxf.endpoint.ServiceContractResolverRegistry
interface. However, you do not need to implement your own registry. Artix
ESB provides a default implementation in the
org.apache.cxf.endpoint.ServiceContractResolverRegistryImpl
class.

To register a contract resolver with the default registry you do the following:

1. Get a reference to the default bus object.

111

Using a ServiceContractResolver Object

2. Get the service contract registry from the bus using the bus'
getExtension() method.

3. Create an instance of your contract resolver.

4. Register your contract resolver with the registry using the registry's
register() method.

Example 45 on page 112 shows the code for registering a contract resolver
with the default registry.

Example 45. Registering a Contract Resolver

BusFactory bf=BusFactory.newInstance(); ❶
Bus bus=bf.createBus();

ServiceContractResolverRegistry registry = bus.getExtension(ServiceContractResolverRegistry);
❷

JarServiceContractResolver resolver = new JarServiceContractResolver(); ❸

registry.register(resolver); ❹

The code in Example 45 on page 112 does the following:

❶ Gets a bus instance.

❷ Gets the bus' contract resolver registry.

❸ Creates an instance of a contract resolver.

❹ Registers the contract resolver with the registry.

Registering a contract resolver
using configuration

You can also implement a contract resolver so that it can be added to a client
through configuration. The contract resolver is implemented in such a way
that when the runtime reads the configuration and instantiates the resolver,
the resolver registers itself. Because the runtime handles the initialization,
you can decide at runtime if a client needs to use the contract resolver.

To implement a contract resolver so that it can be added to a client through
configuration do the following:

1. Add an init() method to your contract resolver implementation.

112

Finding WSDL at Runtime

2. Add logic to your init() method that registers the contract resolver with

the contract resolver registry as shown in Example 45 on page 112.

3. Decorate the init() method with the @PostConstruct annotation.

Example 46 on page 113 shows a contract resolver implementation that can
be added to a client using configuration.

Example 46. Service Contract Resolver that can be Registered Using Configuration

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.xml.namespace.QName;

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;

public class UddiResolver implements ServiceContractResolver
{
private Bus bus;
...

@PostConstruct
public void init()
{
BusFactory bf=BusFactory.newInstance();
Bus bus=bf.createBus();
if (null != bus)
{
ServiceContractResolverRegistry resolverRegistry = bus.getExtension(ServiceContract

ResolverRegistry.class);
if (resolverRegistry != null)
{
resolverRegistry.register(this);

}
}

}

public URI getContractLocation(QName serviceName)
{
...

}
}

To register the contract resolver with a client you need to add a bean element
to the client's configuration. The bean element's class attribute is the name
of the class implementing the contract resolver.

113

Using a ServiceContractResolver Object

Example 47 on page 114 shows a bean for adding a configuration resolver
implemented by the org.apache.cxf.demos.myContractResolver class.

Example 47. Bean Configuring a Contract Resolver

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">
...
<bean id="myResolver" class="org.apache.cxf.demos.myContractResolver" />
...

</beans>

Contract resolution order When a new proxy is created, the runtime uses the contract registry resolver
to locate the remote service's WSDL contract. The contract resolver registry
calls each contract resolver's getContractLocation() method in the order
in which the resolvers were registered. It returns the first URI returned from
one of the registered contract resolvers.

If you registered a contract resolver that attempted to resolve the WSDL
contract at a well known shared file system, it would be the only contract
resolver used. However, if you subsequently registered a contract resolver
that resolved WSDL locations using a UDDI registry, the registry could use
both resolvers to locate a service's WSDL contract. The registry would first
attempt to locate the contract using the shared file system contract resolver.
If that contract resolver failed, the registry would then attempt to locate it
using the UDDI contract resolver.

114

Finding WSDL at Runtime

Publishing a Service
When you want to deploy a JAX-WS service as a standalone Java application or in an OSGi container without
Spring-DM, you must to implement the code that publishes the service provider.

APIs Used to Publish a Service .. 116
Publishing a Service in a Plain Java Application ... 119

Artix ESB provides a number of ways to publish a service as a service provider.
How you publish a service depends on the deployment environment you are
using. Many of the containers supported by Artix ESB do not require writing
logic for publishing endpoints. There are two exceptions:

• deploying a server as a standalone Java application

• deploying a server into an OSGi container without Spring-DM

For detailed information in deploying applications into the supported containers
see Artix® ESB Deployment Guide.

115

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

APIs Used to Publish a Service

Overview The javax.xml.ws.Enddpoint class does the work of publishing a JAX-WS
service provider. To publishing an endpoint do the following:

1. Create an Endpoint object for your service provider.

2. Publish the endpoint.

3. Stop the endpoint when application shuts down.

The Endpoint class provides methods for creating and publishing service
providers. It also provides a method that can create and publish a service
provider in a single method call.

Instantiating an service provider A service provider is instantiated using an Endpoint object. You instantiate
an Endpoint object for your service provider using one of the following
methods:

• static Endpoint create(Object implementor);

This create() method returns an Endpoint for the specified service
implementation. The Endpoint object is created using the information
provided by the implementation class' javax.xml.ws.BindingType
annotation, if it is present. If the annotation is not present, the Endpoint
uses a default SOAP 1.1/HTTP binding.

• static Endpoint create(URI bindingID,
Object implementor);

This create() method returns an Endpoint object for the specified
implementation object using the specified binding. This method overrides
the binding information provided by the javax.xml.ws.BindingType
annotation, if it is present. If the bindingID cannot be resolved, or it is
null, the binding specified in the javax.xml.ws.BindingType is used
to create the Endpoint. If neither the bindingID or the
javax.xml.ws.BindingType can be used, the Endpoint is created using
a default SOAP 1.1/HTTP binding.

• static Endpoint publish(String address,
Object implementor);

116

Publishing a Service

The publish() method creates an Endpoint object for the specified
implementation, and publishes it. The binding used for the Endpoint object
is determined by the URL scheme of the provided address. The list of
bindings available to the implementation are scanned for a binding that
supports the URL scheme. If one is found the Endpoint object is created
and published. If one is not found, the method fails.

Tip
Using publish() is the same as invoking one of the create()
methods, and then invoking the publish() method used in
publish to an address.

Important
The implementation object passed to any of the Endpoint creation
methods must either be an instance of a class annotated with
javax.jws.WebService and meeting the requirements for being
an SEI implementation or it must be an instance of a class annotated
with javax.xml.ws.WebServiceProvider and implementing the
Provider interface.

Publishing a service provider You can publish a service provider using either of the following Endpoint
methods:

• void publish(String address);

This publish() method publishes the service provider at the address
specified.

Important
The address's URL scheme must be compatible with one of the
service provider's bindings.

• void publish(Object serverContext);

This publish() method publishes the service provider based on the
information provided in the specified server context. The server context

117

APIs Used to Publish a Service

must define an address for the endpoint, and the context must also be
compatible with one of the service provider's available bindings.

Stopping a published service
provider

When the service provider is no longer needed you should stop it using its
stop() method. The stop() method, shown in Example 48 on page 118,
shuts down the endpoint and cleans up any resources it is using.

Example 48. Method for Stopping a Published Endpoint

void stop();

Important
Once the endpoint is stopped it cannot be republished.

118

Publishing a Service

Publishing a Service in a Plain Java Application

Overview When you want to deploy your application as a plain java application you
need to implement the logic for publishing your endpoints in the application's
main() method. Artix ESB provides you two options for writing your
application's main() method.

• use the main() method generated by the wsdl2java tool

• write a custom main() method that publishes the endpoints

Generating a Server Mainline The wsdl2java tool's -server flag makes the tool generate a simple server
mainline. The generated server mainline, as shown in
Example 49 on page 119, publishes one service provider for each port element
in the specified WSDL contract.

For more information see wsdl2java in Artix ESB Java Runtime Command
Reference.

Example 49 on page 119 shows a generated server mainline.

Example 49. Generated Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

protected GreeterServer() throws Exception {
System.out.println("Starting Server");

❶ Object implementor = new GreeterImpl();
❷ String address = "http://localhost:9000/SoapContext/SoapPort";
❸ Endpoint.publish(address, implementor);

}

public static void main(String args[]) throws Exception {
new GreeterServer();
System.out.println("Server ready...");

Thread.sleep(5 * 60 * 1000);
System.out.println("Server exiting");
System.exit(0);

119

Publishing a Service in a Plain Java Application

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

}
}

The code in Example 49 on page 119 does the following:

❶ Instantiates a copy of the service implementation object.

❷ Creates the address for the endpoint based on the contents of the
address child of the wsdl:port element in the endpoint's contract.

❸ Publishes the endpoint.

Writing a Server Mainline If you used the Java first development model or you do not want to use the
generated server mainline you can write your own. To write your server
mainline you must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

2. Create an optional server context to use when publishing the service
provider.

3. Publish the service provider using one of the publish() methods.

4. Stop the service provider when the application is ready to exit.

Example 50 on page 120 shows the code for publishing a service provider.

Example 50. Custom Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
protected GreeterServer() throws Exception
{
}

public static void main(String args[]) throws Exception
{

❶ GreeterImpl impl = new GreeterImpl();
❷ Endpoint endpt.create(impl);
❸ endpt.publish("http://localhost:9000/SoapContext/SoapPort");

boolean done = false;
❹ while(!done)

120

Publishing a Service

{
...

}

❺ endpt.stop();
System.exit(0);

}
}

The code in Example 50 on page 120 does the following:

❶ Instantiates a copy of the service's implementation object.

❷ Creates an unpublished Endpoint for the service implementation.

❸ Publishes the service provider at
http://localhost:9000/SoapContext/SoapPort.

❹ Loops until the server should be shutdown.

❺ Stops the published endpoint.

121

Publishing a Service in a Plain Java Application

122

Generic Fault Handling
The JAX-WS specification defines two type of faults. One is a generic JAX-WS runtime exception. The other is
a protocol specific class of exceptions that is thrown during message processing.

Runtime Faults .. 124
Protocol Faults .. 125

123

Runtime Faults

Overview Most of the JAX-WS APIs throw a generic
javax.xml.ws.WebServiceException exception.

APIs that throw
WebServiceException

Table 11 on page 124 lists some of the JAX-WS APIs that can throw the
generic WebServiceException exception.

Table 11. APIs that Throw WebServiceException

ReasonAPI

There is an error in the handler chain configuration.Binding.setHandlerChain()

The specified class is not assigned from a
W3CEndpointReference.

BindingProvider.getEndpointReference()

There is an error in the Dispatch instance's configuration or

an error occurred while communicating with the service.

Dispatch.invoke()

There is an error in the Dispatch instance's configuration.Dispatch.invokeAsync()

There is an error in the Dispatch instance's configuration or

an error occurred while communicating with the service.

Dispatch.invokeOneWay()

An error occurred when using a supplied JAXBContext to

unmarshall the payload. The cause field of the

LogicalMessage.getPayload()

WebServiceException contains the original

JAXBException.

An error occurred when setting the payload of the message.
If the exception is thrown when using a JAXBContext, the

LogicalMessage.setPayload()

cause field of the WebServiceException contains the

original JAXBException.

The specified class is not assigned from a
W3CEndpointReference.

WebServiceContext.getEndpointReference()

124

Generic Fault Handling

Protocol Faults

Overview Protocol exceptions are thrown when an error occurs during the processing
of a request. All synchronous remote invocations can throw a protocol
exception. The underlying cause occurs either in the consumer's message
handling chain or in the service provider.

The JAX-WS specification defines a generic protocol exception. It also specifies
a SOAP-specific protocol exception and an HTTP-specific protocol exception.

Types of protocol exceptions The JAX-WS specification defines three types of protocol exception. Which
exception you catch depends on the transport and binding used by your
application.

Table 12 on page 125 describes the three types of protocol exception and
when they are thrown.

Table 12. Types of Generic Protocol Exceptions

When ThrownException Class

This exception is the generic protocol exception. It can be caught
regardless of the protocol in use. It can be cast into a specific fault

javax.xml.ws.ProtocolException

type if you are using the SOAP binding or the HTTP binding. When
using the XML binding in combination with the HTTP or JMS
transports, the generic protocol exception cannot be cast into a
more specific fault type.

This exception is thrown by remote invocations when using the
SOAP binding. For more information see Using the SOAP protocol
exception on page 125.

javax.xml.ws.soap.SOAPFaultException

This exception is thrown when using the Artix ESB HTTP binding
to develop RESTful services. For more information see
Part III on page 85.

javax.xml.ws.http.HTTPException

Using the SOAP protocol
exception

The SOAPFaultException exception wraps a SOAP fault. The underlying
SOAP fault is stored in the fault field as a javax.xml.soap.SOAPFault
object.

If a service implementation needs to throw an exception that does not fit any
of the custom exceptions created for the application, it can wrap the fault in

125

Protocol Faults

a SOAPFaultException using the exceptions creator and throw it back to
the consumer. Example 51 on page 126 shows code for creating and throwing
a SOAPFaultException if the method is passed an invalid parameter.

Example 51. Throwing a SOAP Protocol Exception

public Quote getQuote(String ticker)
{
...
if(tickers.length()<3)
{
SOAPFault fault = SOAPFactory.newInstance().createFault();

fault.setFaultString("Ticker too short");
throw new SOAPFaultException(fault);

}
...

}

When a consumer catches a SOAPFaultException exception they can retrieve
the underlying cause of the exception by examining the wrapped SOAPFault
exception. As shown in Example 52 on page 126, the SOAPFault exception
is retrieved using the SOAPFaultException exception's getFault() method.

Example 52. Getting the Fault from a SOAP Protocol Exception

...
try
{
proxy.getQuote(ticker);

}
catch (SOAPFaultException sfe)
{
SOAPFault fault = sfe.getFault();
...

}

126

Generic Fault Handling

Part V. Working with Data Types
Service-oriented design abstracts data into a common exchange format. Typically, this format is an XML grammar
defined in XML Schema. To save the developer from working directly with XML documents, the JAX-WS
specification calls for XML Schema types to be marshaled into Java objects. This marshaling is done in accordance
with the Java Architecture for XML Binding (JAXB) specification. JAXB defines bindings for mapping between
XML Schema constructs and Java objects and rules for how to marshal the data. It also defines an extensive
customization framework for controlling how data is handled.

Basic Data Binding Concepts ... 129
Including and Importing Schema Definitions ... 130
XML Namespace Mapping .. 133
The Object Factory ... 136
Adding Classes to the Runtime Marshaller .. 138

Using XML Elements .. 141
Using Simple Types .. 147

Primitive Types .. 148
Simple Types Defined by Restriction ... 151
Enumerations .. 154
Lists ... 157
Unions .. 161
Simple Type Substitution ... 163

Using Complex Types ... 165
Basic Complex Type Mapping .. 166
Attributes ... 172
Deriving Complex Types from Simple Types .. 178
Deriving Complex Types from Complex Types .. 181
Occurrence Constraints .. 185

Occurrence Constraints on the All Element ... 186
Occurrence Constraints on the Choice Element .. 187
Occurrence Constraints on Elements ... 190
Occurrence Constraints on Sequences ... 191

Using Model Groups ... 194
Using Wild Card Types .. 199

Using Any Elements ... 200
Using the XML Schema anyType Type ... 205
Using Unbound Attributes .. 208

Element Substitution .. 211
Substitution Groups in XML Schema ... 212
Substitution Groups in Java .. 215
Widget Vendor Example ... 222

The checkWidgets Operation ... 224

The placeWidgetOrder Operation .. 227
Customizing How Types are Generated ... 231

Basics of Customizing Type Mappings ... 232
Specifying the Java Class of an XML Schema Primitive .. 235
Generating Java Classes for Simple Types ... 242
Customizing Enumeration Mapping .. 244
Customizing Fixed Value Attribute Mapping .. 249
Specifying the Base Type of an Element or an Attribute .. 252

Using A JAXBContext Object ... 255

Basic Data Binding Concepts
There are a number of general topics that apply to how Artix ESB handles type mapping.

Including and Importing Schema Definitions ... 130
XML Namespace Mapping .. 133
The Object Factory ... 136
Adding Classes to the Runtime Marshaller .. 138

129

Including and Importing Schema Definitions

Overview Artix ESB supports the including and importing of schema definitions, using
the <include/> and <import/> schema tags. These tags enable you to
insert definitions from external files or resources into the scope of a schema
element. The essential difference between including and importing is:

• Including brings in definitions that belong to the same target namespace
as the enclosing schema element.

• Importing brings in definitions that belong to a different target namespace
from the enclosing schema element.

xsd:include syntax The include directive has the following syntax:

<include schemaLocation="anyURI" />

The referenced schema, given by anyURI, must either belong to the same
target namespace as the enclosing schema, or not belong to any target
namespace at all. If the referenced schema does not belong to any target
namespace, it is automatically adopted into the enclosing schema’s namespace
when it is included.

Example 53 on page 130 shows an example of an XML Schema document
that includes another XML Schema document.

Example 53. Example of a Schema that Includes Another Schema

<definitions targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns:tns="http://schemas.iona.com/tests/schema_parser"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"

xmlns="http://www.w3.org/2001/XMLSchema">
<include schemaLocation="included.xsd"/>
<complexType name="IncludingSequence">
<sequence>
<element name="includedSeq" type="tns:IncludedSequence"/>

</sequence>
</complexType>

</schema>
</types>

130

Basic Data Binding Concepts

...
</definitions>

Example 54 on page 131 shows the contents of the included schema file.

Example 54. Example of an Included Schema

<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns="http://www.w3.org/2001/XMLSchema">

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

</sequence>
</complexType>

</schema>

xsd:import syntax The import directive has the following syntax:

<import namespace="namespaceAnyURI"
schemaLocation="schemaAnyURI" />

The imported definitions must belong to the namespaceAnyURI target
namespace. If namespaceAnyURI is blank or remains unspecified, the
imported schema definitions are unqualified.

Example 55 on page 131 shows an example of an XML Schema that imports
another XML Schema.

Example 55. Example of a Schema that Includes Another Schema

<definitions targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns:tns="http://schemas.iona.com/tests/schema_parser"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"

xmlns="http://www.w3.org/2001/XMLSchema">
<import namespace="http://schemas.iona.com/tests/imported_types"

schemaLocation="included.xsd"/>
<complexType name="IncludingSequence">
<sequence>
<element name="includedSeq" type="tns:IncludedSequence"/>

</sequence>
</complexType>

</schema>

131

Including and Importing Schema Definitions

</types>
...

</definitions>

Example 56 on page 132 shows the contents of the imported schema file.

Example 56. Example of an Included Schema

<schema targetNamespace="http://schemas.iona.com/tests/imported_types"
xmlns="http://www.w3.org/2001/XMLSchema">

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

</sequence>
</complexType>

</schema>

Using non-referenced schema
documents

Using types defined in a schema document that is not referenced in the
service's WSDL document is a three step process:

1. Convert the schema document to a WSDL document using the xsd2wsdl
tool.

2. Generate Java for the types using the wsdl2java tool on the generated
WSDL document.

Important
You will get a warning from the wsdl2java tool stating that the
WSDL document does not define any services. You can ignore
this warning.

3. Add the generated classes to your classpath.

132

Basic Data Binding Concepts

XML Namespace Mapping

Overview XML Schema type, group, and element definitions are scoped using
namespaces. The namespaces prevent possible naming clashes between
entities that use the same name. Java packages serve a similar purpose.
Therefore, Artix ESB maps the target namespace of a schema document into
a package containing the classes necessary to implement the structures
defined in the schema document.

Package naming The name of the generated package is derived from a schema's target
namespace using the following algorithm:

1. The URI scheme, if present, is stripped.

Note
Artix ESB will only strip the http:, https:, and urn: schemes.

For example, the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd becomes
\\widgetvendor.com\types\widgetTypes.xsd.

2. The trailing file type identifier, if present, is stripped.

For example, \\www.widgetvendor.com\types\widgetTypes.xsd
becomes \\widgetvendor.com\types\widgetTypes.

3. The resulting string is broken into a list of strings using / and : as

separators.

So, \\www.widgetvendor.com\types\widgetTypes becomes the list
{"www.widegetvendor.com", "types", "widgetTypes"}.

4. If the first string in the list is an internet domain name, it is decomposed
as follows:

a. The leading www. is stripped.

b. The remaining string is split into its component parts using the .

as the separator.

c. The order of the list is reversed.

133

XML Namespace Mapping

So, {"www.widegetvendor.com", "types", "widgetTypes"}
becomes {"com", "widegetvendor", "types", "widgetTypes"}

Note
Internet domain names end in one of the following: .com, .net,
.edu, .org, .gov, or in one of the two-letter country codes.

5. The strings are converted into all lower case.

So, {"com", "widegetvendor", "types", "widgetTypes"} becomes
{"com", "widegetvendor", "types", "widgettypes"}.

6. The strings are normalized into valid Java package name components
as follows:

a. If the strings contain any special characters, the special characters
are converted to an underscore(_).

b. If any of the strings are a Java keyword, the keyword is prefixed
with an underscore(_).

c. If any of the strings begin with a numeral, the string is prefixed with
an underscore(_).

7. The strings are concatenated using . as a separator.

So, {"com", "widegetvendor", "types", "widgettypes"} becomes
the package name com.widgetvendor.types.widgettypes.

The XML Schema constructs defined in the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java
package com.widgetvendor.types.widgettypes.

Package contents A JAXB generated package contains the following:

• A class implementing each complex type defined in the schema

For more information on complex type mapping see on page 165.

• An enum type for any simple types defined using the enumeration facet

134

Basic Data Binding Concepts

For more information on how enumerations are mapped see
Enumerations on page 154.

• A public ObjectFactory class that contains methods for instantiating

objects from the schema

For more information on the ObjectFactory class see The Object
Factory on page 136.

• A package-info.java file that provides metadata about the classes in

the package

135

XML Namespace Mapping

The Object Factory

Overview JAXB uses an object factory to provide a mechanism for instantiating instances
of JAXB generated constructs. The object factory contains methods for
instantiating all of the XML schema defined constructs in the package's scope.
The only exception is that enumerations do not get a creation method in the
object factory.

Complex type factory methods For each Java class generated to implement an XML schema complex type,
the object factory contains a method for creating an instance of the class.
This method takes the form:

typeName createtypeName();

For example, if your schema contained a complex type named widgetType,
Artix ESB generates a class called WidgetType to implement it.
Example 57 on page 136 shows the generated creation method in the object
factory.

Example 57. Complex Type Object Factory Entry

public class ObjectFactory
{
...
WidgetType createWidgetType()
{
return new WidgetType();

}
...

}

Element factory methods For elements that are declared in the schema's global scope, Artix ESB inserts
a factory method into the object factory. As discussed in on page 141, XML
Schema elements are mapped to JAXBElement<T> objects. The creation
method takes the form:

public JAXBElement<elementType> createelementName(elementType
value);

For example if you have an element named comment of type xsd:string, Artix
ESB generates the object factory method shown in Example 58 on page 137

136

Basic Data Binding Concepts

Example 58. Element Object Factory Entry

public class ObjectFactory
{
...
@XmlElementDecl(namespace = "...", name = "comment")
public JAXBElement<String> createComment(String value) {

return new JAXBElement<String>(_Comment_QNAME, String.class, null, value);
}

...
}

137

The Object Factory

Adding Classes to the Runtime Marshaller

Overview When the Artix ESB runtime reads and writes XML data it uses a map that
associates the XML Schema types with their representative Java types. By
default, the map contains all of the types defined in the target namespace of
the WSDL contract's schema element. It also contains any types that are
generated from the namespaces of any schemas that are imported into the
WSDL contract.

The addition of types from namespaces other than the schema namespace
used by an application's schema element is accomplished using the
@XmlSeeAlso annotation. If your application needs to work with types that
are generated outside the scope of your application's WSDL document, you
can edit the @XmlSeeAlso annotation to add them to the JAXB map.

Using the @XmlSeeAlso
annotation

The @XmlSeeAlso annotation can be added to the SEI of your service. It
contains a comma separated list of classes to include in the JAXB context.
Example 59 on page 138 shows the syntax for using the @XmlSeeAlso
annotation.

Example 59. Syntax for Adding Classes to the JAXB Context

import javax.xml.bind.annotation.XmlSeeAlso;
@WebService()
@XmlSeeAlso({Class1.class,

Class2.class,
...,
ClassN.class})

public class GeneratedSEI {
...

}

Tip
In cases where you have access to the JAXB generated classes, it is
more efficient to use the ObjectFactory classes generated to
support the needed types. Including the ObjectFactory class
includes all of the classes that are known to the object factory.

Example Example 60 on page 139 shows an SEI annotated with @XmlSeeAlso.

138

Basic Data Binding Concepts

Example 60. Adding Classes to the JAXB Context

...
import javax.xml.bind.annotation.XmlSeeAlso;
...
@WebService()
@XmlSeeAlso({org.apache.schemas.types.test.ObjectFactory.class,org.apache.schem
as.tests.group_test.ObjectFactory.class})

public interface Foo {
...

}

139

Adding Classes to the Runtime Marshaller

140

Using XML Elements
XML Schema elements are used to define an instance of an element in an XML document. Elements are defined
either in the global scope of an XML Schema document, or they are defined as a member of a complex type.
When they are defined in the global scope, Artix ESB maps them to a JAXB element class that makes manipulating
them easier.

Overview An element instance in an XML document is defined by an XML Schema
element element in the global scope of an XML Schema document To make
it easier for Java developers to work with elements, Artix ESB maps globally
scoped elements to either a special JAXB element class or to a Java class
that is generated to match its content type.

How the element is mapped depends on if the element is defined using a
named type referenced by the type attribute or if the element is defined using
an in-line type definition. Elements defined with in-line type definitions are
mapped to Java classes.

Tip
It is recommended that elements are defined using a named type
because in-line types are not reusable by other elements in the
schema.

XML Schema mapping In XML Schema elements are defined using element elements. element
elements has one required attribute. The name specifies the name of the
element as it appears in an XML document.

In addition to the name attribute element elements have the optional attributes
listed in Table 13 on page 141.

Table 13. Attributes Used to Define an Element

DescriptionAttribute

Specifies the type of the element. The type can be any XML Schema primitive type or any
named complex type defined in the contract. If this attribute is not specified, you will need
to include an in-line type definition.

type

Specifies if an element can be left out of a document entirely. If nillable is set to true,

the element can be omitted from any document generated using the schema.

nillable

141

DescriptionAttribute

Specifies if an element can be used in an instance document. true indicates that the

element cannot appear in the instance document. Instead, another element whose

abstract

substitutionGroup attribute contains the QName of this element must appear in this

element's place. For information on how this attribute effects code generation see Java
mapping of abstract elements on page 145.

Specifies the name of an element that can be substituted with this element. For more
information on using type substitution see on page 211.

substitutionGroup

Specifies a default value for an element. For information on how this attribute effects code
generation see Java mapping of elements with a default value on page 146.

default

Specifies a fixed value for the element.fixed

Example 61 on page 142 shows a simple element definition.

Example 61. Simple XML Schema Element Definition

<element name="joeFred" type="xsd:string" />

An element can also define its own type using an in-line type definition. In-line
types are specified using either a complexType element or a simpleType
element. Once you specify whether the type of data is complex or simple, you
can define any type of data needed using the tools available for each type of
data.

Example 62 on page 142 shows an element definition with an in-line type
definition.

Example 62. XML Schema Element Definition with an In-Line Type

<element name="skate">
<complexType>
<sequence>
<element name="numWheels" type="xsd:int" />
<element name="brand" type="xsd:string" />

</sequence>
</complexType>

</element>

Java mapping of elements with a
named type

By default, globally defined elements are mapped to JAXBElement<T> objects
where the template class is determined by the value of the element element's
type attribute. For primitive types, the template class is derived using the

142

Using XML Elements

wrapper class mapping described in Wrapper classes on page 149. For complex
types, the Java class generated to support the complex type is used as the
template class.

To support the mapping and to relieve the developer of unnecessary worry
about an element's QName, an object factory method is generated for each
globally defined element, as shown in Example 63 on page 143.

Example 63. Object Factory Method for a Globally Scoped Element

public class ObjectFactory {

private final static QName _name_QNAME = new QName("targetNamespace", "localName");

...

@XmlElementDecl(namespace = "targetNamespace", name = "localName")
public JAXBElement<type> createname(type value);

}

For example, the element defined in Example 61 on page 142 results in the
object factory method shown in Example 64 on page 143.

Example 64. Object Factory for a Simple Element

public class ObjectFactory {

private final static QName _JoeFred_QNAME = new QName("...", "joeFred");

...

@XmlElementDecl(namespace = "...", name = "joeFred")
public JAXBElement<String> createJoeFred(String value);

}

Example 65 on page 144 shows an example of using a globally scoped element
in Java.

143

Example 65. Using a Globally Scoped Element

JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

Using elements with named types
in WSDL

If a globally scoped element is used to define a message part, the generated
Java parameter is not an instance of JAXBElement<T>. Instead it is mapped
to a regular Java type or class.

Given the WSDL fragment shown in Example 66 on page 144, the resulting
method has a parameter of type String.

Example 66. WSDL Using an Element as a Message Part

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">

<element name="sayHi" type="string"/>
<element name="sayHiResponse" type="string"/>

</schema>
</wsdl:types>

<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>

</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>

</wsdl:message>

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>
</wsdl:portType>
...

</wsdl:definitions>

144

Using XML Elements

Example 67 on page 145 shows the generated method signature for the sayHi
operation.

Example 67. Java Method Using a Global Element as a Part

String sayHi(String in);

Java mapping of elements with
an in-line type

When an element is defined using an in-line type, it is mapped to Java
following the same rules used for mapping other types to Java. The rules for
simple types are described in on page 147. The rules for complex types are
described in on page 165.

When a Java class is generated for an element with an in-line type definition,
the generated class is decorated with the @XmlRootElement annotation. The
@XmlRootElement annotation has two useful properties: name and
namespace. These attributes are described in Table 14 on page 145.

Table 14. Properties for the @XmlRootElement Annotation

DescriptionProperty

Specifies the value of the XML Schema element element's name attribute.name

Specifies the namespace in which the element is defined. If this element is defined in the target
namespace, the property is not specified.

namespace

The @XmlRootElement annotation is not used if the element meets one or
more of the following conditions:

• The element's nillable attribute is set to true

• The element is the head element of a substitution group

For more information on substitution groups see Element
Substitution on page 211.

Java mapping of abstract
elements

When the element's abstract attribute is set to true the object factory
method for instantiating instances of the type is not generated. If the element

145

is defined using an in-line type, the Java class supporting the in-line type is
generated.

Java mapping of elements with a
default value

When the element's default attribute is used the defaultValue property is
added to the generated @XmlElementDecl annotation. For example, the
element defined in Example 68 on page 146 results in the object factory
method shown in Example 69 on page 146.

Example 68. XML Schema Element with a Default Value

<element name="size" type="xsd:int" default="7"/>

Example 69. Object Factory Method for an Element with a Default Value

@XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")
public JAXBElement<Integer> createUnionJoe(Integer value) {

return new JAXBElement<Integer>(_Size_QNAME, Integer.class, null, value);
}

146

Using XML Elements

Using Simple Types
XML Schema simple types are either XML Schema primitive types like xsd:int, or are defined using the simpleType
element. They are used to specify elements that do not contain any children or attributes. They are generally
mapped to native Java constructs and do not require the generation of special classes to implement them.
Enumerated simple types do not result in generated code because they are mapped to Java enum types.

Primitive Types .. 148
Simple Types Defined by Restriction ... 151
Enumerations .. 154
Lists ... 157
Unions .. 161
Simple Type Substitution ... 163

147

Primitive Types

Overview When a message part is defined using one of the XML Schema primitive types,
the generated parameter's type is mapped to a corresponding Java native
type. The same pattern is used when mapping elements that are defined
within the scope of a complex type. The resulting field is of the corresponding
Java native type.

Mappings Table 15 on page 148 lists the mapping between XML Schema primitive types
and Java native types.

Table 15. XML Schema Primitive Type to Java Native Type Mapping

Java TypeXML Schema Type

Stringxsd:string

BigIntegerxsd:integer

intxsd:int

longxsd:long

shortxsd:short

BigDecimalxsd:decimal

floatxsd:float

doublexsd:double

booleanxsd:boolean

bytexsd:byte

QNamexsd:QName

XMLGregorianCalendarxsd:dateTime

byte[]xsd:base64Binary

byte[]xsd:hexBinary

longxsd:unsignedInt

intxsd:unsignedShort

shortxsd:unsignedByte

XMLGregorianCalendarxsd:time

148

Using Simple Types

Java TypeXML Schema Type

XMLGregorianCalendarxsd:date

XMLGregorianCalendarxsd:g

Objectxsd:anySimpleType a

Stringxsd:anySimpleType b

Durationxsd:duration

QNamexsd:NOTATION
aFor elements of this type.
bFor attributes of this type.

Wrapper classes Mapping XML Schema primitive types to Java primitive types does not work
for all possible XML Schema constructs. Several cases require that an XML
Schema primitive type is mapped to the Java primitive type's corresponding
wrapper type. These cases include:

• An element element with its nillable attribute set to true as shown:

<element name="finned" type="xsd:boolean"
nillable="true" />

• An element element with its minOccurs attribute set to 0 and its

maxOccurs attribute set to 1, or its maxOccurs attribute not specified, as

shown :

<element name="plane" type="xsd:string" minOccurs="0" />

• An attribute element with its use attribute set to optional, or not

specified, and having neither its default attribute nor its fixed attribute

specified, as shown:

<element name="date">
<complexType>
<sequence/>
<attribute name="calType" type="xsd:string"

use="optional" />

149

Primitive Types

</complexType>
</element>

Table 16 on page 150 shows how XML Schema primitive types are mapped
into Java wrapper classes in these cases.

Table 16. Primitive Schema Type to Java Wrapper Class Mapping

Java TypeSchema Type

java.lang.Integerxsd:int

java.lang.Longxsd:long

java.lang.Shortxsd:short

java.lang.Floatxsd:float

java.lang.Doublexsd:double

java.lang.Booleanxsd:boolean

java.lang.Bytexsd:byte

java.lang.Shortxsd:unsignedByte

java.lang.Integerxsd:unsignedShort

java.lang.Longxsd:unsignedInt

java.math.BigIntegerxsd:unsignedLong

java.lang.Stringxsd:duration

150

Using Simple Types

Simple Types Defined by Restriction

Overview XML Schema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described using a
simpleType element.

The new types are described by restricting the base type with one or more
facets. These facets limit the possible valid values that can be stored in the
new type. For example, you could define a simple type, SSN, which is a string
of exactly 9 characters.

Each of the primitive XML Schema types has their own set of optional facets.

Procedure To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Determine what restrictions define the new type based on the available
facets for the chosen base type.

3. Using the syntax shown in this section, enter the appropriate simpleType

element into the types section of your contract.

Defining a simple type in XML
Schema

Example 70 on page 151 shows the syntax for describing a simple type.

Example 70. Simple Type Syntax

<simpleType name="typeName">
<restriction base="baseType">
<facet value="value" />
<facet value="value" />
...

</restriction>
</simpleType>

The type description is enclosed in a simpleType element and identified by
the value of the name attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the
xsd:restriction element. Each facet element is specified within the
restriction element. The available facets and their valid settings depend
on the base type. For example, xsd:string has a number of facets including:

151

Simple Types Defined by Restriction

• length

• minLength

• maxLength

• pattern

• whitespace

Example 71 on page 152 shows the definition for a simple type that represents
the two-letter postal code used for US states. It can only contain two,
uppercase letters. TX is a valid value, but tx or tX are not valid values.

Example 71. Postal Code Simple Type

<xsd:simpleType name="postalCode">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}" />

</xsd:restriction>
</xsd:simpleType>

Mapping to Java Artix ESB maps user-defined simple types to the Java type of the simple type’s
base type. So, any message using the simple type postalCode, shown in
Example 71 on page 152, is mapped to a String because the base type of
postalCode is xsd:string. For example, the WSDL fragment shown in
Example 72 on page 152 results in a Java method, state(), that takes a
parameter, postalCode, of String.

Example 72. Credit Request with Simple Types

<message name="stateRequest">
<part name="postalCode" type="postalCode" />

</message>
...
<portType name="postalSupport">
<operation name="state">
<input message="tns:stateRequest" name="stateRec" />
<output message="tns:stateResponse" name="credResp" />

152

Using Simple Types

</operation>
</portType>

Enforcing facets By default, Artix ESB does not enforce any of the facets that are used to
restrict a simple type. However, you can configure Artix ESB endpoints to
enforce the facets by enabling schema validation.

To configure Artix ESB endpoints to use schema validation set the
schema-validation-enabled property to true. Example 73 on page 153 shows
the configuration for a service provider that uses schema validation

Example 73. Service Provider Configured to Use Schema Validation

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
wsdlLocation="wsdl/hello_world.wsdl"
createdFromAPI="true">

<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />

</jaxws:properties>
</jaxws:endpoint>

For more information on configuring Artix ESB see Artix® ESB Deployment
Guide.

153

Simple Types Defined by Restriction

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

Enumerations

Overview In XML Schema, enumerated types are simple types that are defined using
the xsd:enumeration facet. Unlike atomic simple types, they are mapped
to Java enums.

Defining an enumerated type in
XML Schema

Enumerations are a simple type using the xsd:enumeration facet. Each
xsd:enumeration facet defines one possible value for the enumerated type.

Example 74 on page 154 shows the definition for an enumerated type. It has
the following possible values:

• big

• large

• mungo

• gargantuan

Example 74. XML Schema Defined Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
<enumeration value="gargantuan"/>

</restriction>

Mapping to Java XML Schema enumerations where the base type is xsd:string are automatically
mapped to Java enum type. You can instruct the code generator to map
enumerations with other base types to Java enum types by using the
customizations described in Customizing Enumeration Mapping on page 244.

The enum type is created as follows:

1. The name of the type is taken from the name attribute of the simple type

definition and converted to a Java identifier.

154

Using Simple Types

In general, this means converting the first character of the XML Schema's
name to an uppercase letter. If the first character of the XML Schema's
name is an invalid character, an underscrore (_) is prepended to the
name.

2. For each enumeration facet, an enum constant is generated based on

the value of the value attribute.

The constant's name is derived by converting all of the lowercase letters
in the value to their uppercase equivalent.

3. A constructor is generated that takes the Java type mapped from the
enumeration's base type.

4. A public method called value() is generated to access the facet value

that is represented by an instance of the type.

The return type of the value() method is the base type of the XML
Schema type.

5. A public method called fromValue() is generated to create an instance

of the enum type based on a facet value.

The parameter type of the value() method is the base type of the XML
Schema type.

6. The class is decorated with the @XmlEnum annotation.

The enumerated type defined in Example 74 on page 154 is mapped to the
enum type shown in Example 75 on page 155.

Example 75. Generated Enumerated Type for a String Bases XML Schema
Enumeration

@XmlType(name = "widgetSize")
@XmlEnum
public enum WidgetSize {

@XmlEnumValue("big")
BIG("big"),
@XmlEnumValue("large")
LARGE("large"),
@XmlEnumValue("mungo")
MUNGO("mungo"),
@XmlEnumValue("gargantuan")

155

Enumerations

GARGANTUAN("gargantuan");
private final String value;

WidgetSize(String v) {
value = v;

}

public String value() {
return value;

}

public static WidgetSize fromValue(String v) {
for (WidgetSize c: WidgetSize.values()) {

if (c.value.equals(v)) {
return c;

}
}
throw new IllegalArgumentException(v);

}

}

156

Using Simple Types

Lists

Overview XML Schema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, primeList, using
a list type is shown in Example 76 on page 157.

Example 76. List Type Example

<primeList>1 3 5 7 9 11 13<\primeList>

XML Schema list types are generally mapped to Java List<T> objects. The
only variation to this pattern is when a message part is mapped directly to
an instance of an XML Schema list type.

Defining list types in XML Schema XML Schema list types are simple types and as such are defined using a
simpleType element. The most common syntax used to define a list type is
shown in Example 77 on page 157.

Example 77. Syntax for XML Schema List Types

<simpleType name="listType">
<list itemType="atomicType">
<facet value="value" />
<facet value="value" />
...

</list>
</simpleType>

The value given for atomicType defines the type of the elements in the list.
It can only be one of the built in XML Schema atomic types, like xsd:int or
xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type.
Table 17 on page 157 shows the facets used by list types.

Table 17. List Type Facets

EffectFacet

Defines the number of elements in an instance of the list type.length

Defines the minimum number of elements allowed in an instance of the list type.minLength

Defines the maximum number of elements allowed in an instance of the list type.maxLength

157

Lists

EffectFacet

Defines the allowable values for elements in an instance of the list type.enumeration

Defines the lexical form of the elements in an instance of the list type. Patterns are defined using
regular expressions.

pattern

For example, the definition for the simpleList element shown in
Example 76 on page 157, is shown in Example 78 on page 158.

Example 78. Definition of a List Type

<simpleType name="primeListType">
<list itemType="int"/>

</simpleType>
<element name="primeList" type="primeListType"/>

In addition to the syntax shown in Example 77 on page 157 you can also
define a list type using the less common syntax shown in
Example 79 on page 158.

Example 79. Alternate Syntax for List Types

<simpleType name="listType">
<list>
<simpleType>
<restriction base="atomicType">
<facet value="value"/>
<facet value="value"/>
...

</restriction>
</simpleType>

</list>
</simpleType>

Mapping list type elements to
Java

When an element is defined a list type, the list type is mapped to a collection
property. A collection property is a Java List<T> object. The template class
used by the List<T> is the wrapper class mapped from the list's base type.
For example, the list type defined in Example 78 on page 158 is mapped to
a List<Integer>.

158

Using Simple Types

For more information on wrapper type mapping see Wrapper
classes on page 149.

Mapping list type parameters to
Java

When a message part is defined as a list type, or is mapped to an element
of a list type, the resulting method parameter is mapped to an array instead
of a List<T> object. The base type of the array is the wrapper class of the
list type's base class.

For example, the WSDL fragment in Example 80 on page 159 results in the
method signature shown in Example 81 on page 159.

Example 80. WSDL with a List Type Message Part

<definitions ...>
...
<types ...>
<schema ... >
<simpleType name="primeListType">
<list itemType="int"/>

</simpleType>
<element name="primeList" type="primeListType"/>

</schemas>
</types>
<message name="numRequest">
<part name="inputData" element="xsd1:primeList" />

</message>
<message name="numResponse">;
<part name="outputData" type="xsd:int">

...
<portType name="numberService">
<operation name="primeProcessor">
<input name="numRequest" message="tns:numRequest" />
<output name="numResponse" message="tns:numResponse" />

</operation>
...

</portType>
...

</definitions>

Example 81. Java Method with a List Type Parameter

public interface NumberService {

@XmlList
@WebResult(name = "outputData", targetNamespace = "", partName = "outputData")
@WebMethod
public int primeProcessor(

159

Lists

@WebParam(partName = "inputData", name = "primeList", targetNamespace = "...")
java.lang.Integer[] inputData

);
}

160

Using Simple Types

Unions

Overview In XML Schema, a union is a construct that allows you to describe a type
whose data can be one of a number of simple types. For example, you can
define a type whose value is either the integer 1 or the string first. Unions
are mapped to Java Strings.

Defining in XML Schema XML Schema unions are defined using a simpleType element. They contain
at least one union element that defines the member types of the union. The
member types of the union are the valid types of data that can be stored in
an instance of the union. They are defined using the union element's
memberTypes attribute. The value of the memberTypes attribute contains a
list of one or more defined simple type names. Example 82 on page 161
shows the definition of a union that can store either an integer or a string.

Example 82. Simple Union Type

<simpleType name="orderNumUnion">
<union memberTypes="xsd:string xsd:int" />

</simpleType>

In addition to specifying named types as a member type of a union, you can
also define an anonymous simple type as a member type of a union. This is
done by adding the anonymous type definition inside of the union element.
Example 83 on page 161 shows an example of a union containing an
anonymous member type that restricts the possible values of a valid integer
to the range 1 through 10.

Example 83. Union with an Anonymous Member Type

<simpleType name="restrictedOrderNumUnion">
<union memberTypes="xsd:string">
<simpleType>
<restriction base="xsd:int">
<minInclusive value="1" />
<maxInclusive value="10" />

</restriction>
</simpleType>

161

Unions

</union>
</simpleType>

Mapping to Java XML Schema union types are mapped to Java String objects. By default,
Artix ESB does not validate the contents of the generated object. To have
Artix ESB validate the contents you will must configure the runtime to use
schema validation as described in Enforcing facets on page 153.

162

Using Simple Types

Simple Type Substitution

Overview XML allows for simple type substitution between compatible types using the
xsi:type attribute. The default mapping of simple types to Java primitive
types, however, does not fully support simple type substitution. The runtime
can handle basic simple type substitution, but information is lost. The code
generators can be customized to generate Java classes that facilitate lossless
simple type substitution.

Default mapping and marshaling Because Java primitive types do not support type substitution, the default
mapping of simple types to Java primitive types presents problems for
supporting simple type substitution. The Java virtual machine will balk if an
attempt is made to pass a short into a variable that expects an int even though
the schema defining the types allows it.

To get around the limitations imposed by the Java type system, Artix ESB
allows for simple type substitution when the value of the element's xsi:type
attribute meets one of the following conditions:

• It specifies a primitive type that is compatible with the element's schema
type.

• It specifies a type that derives by restriction from the element’s schema
type.

• It specifies a complex type that derives by extension from the element’s
schema type.

When the runtime does the type substitution it does not retain any knowledge
of the type specified in the element's xsi:type attribute. If the type
substitution is from a complex type to a simple type, only the value directly
related to the simple type is preserved. Any other elements and attributes
added by extension are lost.

Supporting lossless type
substitution

You can customize the generation of simple types to facilitate lossless support
of simple type substitution in the following ways:

• Set the globalBindings customization element's mapSimpleTypeDef to

true.

163

Simple Type Substitution

This instructs the code generator to create Java value classes for all named
simple types defined in the global scope.

For more information see Generating Java Classes for Simple
Types on page 242.

• Add a javaType element to the globalBindings customization element.

This instructs the code generators to map all instances of an XML Schema
primitive type to s specific class of object.

For more information see Specifying the Java Class of an XML Schema
Primitive on page 235.

• Add a baseType customization element to the specific elements you want

to customize.

The baseType customization element allows you to specify the Java type
generated to represent a property. To ensure the best compatibility for
simple type substitution, use java.lang.Object as the base type.

For more information see Specifying the Base Type of an Element or an
Attribute on page 252.

164

Using Simple Types

Using Complex Types
Complex types can contain multiple elements and they can have attributes. They are mapped into Java classes
that can hold the data represented by the type definition. Typically, the mapping is to a bean with a set of
properties representing the elements and the attributes of the content model..

Basic Complex Type Mapping .. 166
Attributes ... 172
Deriving Complex Types from Simple Types .. 178
Deriving Complex Types from Complex Types .. 181
Occurrence Constraints .. 185

Occurrence Constraints on the All Element ... 186
Occurrence Constraints on the Choice Element .. 187
Occurrence Constraints on Elements ... 190
Occurrence Constraints on Sequences ... 191

Using Model Groups ... 194

165

Basic Complex Type Mapping

Overview XML Schema complex types define constructs containing more complex
information than a simple type. The most simple complex types define an
empty element with an attribute. More intricate complex types are made up
of a collection of elements.

By default, an XML Schema complex type is mapped to a Java class, with a
member variable to represent each element and attribute listed in the XML
Schema definition. The class has setters and getters for each member variable.

Defining in XML Schema XML Schema complex types are defined using the complexType element.
The complexType element wraps the rest of elements used to define the
structure of the data. It can appear either as the parent element of a named
type definition, or as the child of an element element anonymously defining
the structure of the information stored in the element. When the complexType
element is used to define a named type, it requires the use of the name
attribute. The name attribute specifies a unique identifier for referencing the
type.

Complex type definitions that contain one or more elements have one of the
child elements described in Table 18 on page 166. These elements determine
how the specified elements appear in an instance of the type.

Table 18. Elements for Defining How Elements Appear in a Complex Type

DescriptionElement

All of the elements defined as part of the complex type must
appear in an instance of the type. However, they can appear in
any order.

all

Only one of the elements defined as part of the complex type can
appear in an instance of the type.

choice

All of the elements defined as part of the complex type must
appear in an instance of the type, and they must also appear in
the order specified in the type definition.

sequence

Note
If a complex type definition only uses attributes, you do not need
one of the elements described in Table 18 on page 166.

166

Using Complex Types

After deciding how the elements will appear, you define the elements by
adding one or more element element children to the definition.

Example 84 on page 167 shows a complex type definition in XML Schema.

Example 84. XML Schema Complex Type

<complexType name="sequence">
<sequence>
<element name="name" type="xsd:string" />
<element name="street" type="xsd:short" />
<element name="city" type="xsd:string" />
<element name="state" type="xsd:string" />
<element name="zipCode" type="xsd:string" />

</sequence>
</complexType>

Mapping to Java XML Schema complex types are mapped to Java classes. Each element in
the complex type definition is mapped to a member variable in the Java class.
Getter and setter methods are also generated for each element in the complex
type.

All generated Java classes are decorated with the @XmlType annotation. If
the mapping is for a named complex type, the annotations name is set to the
value of the complexType element's name attribute. If the complex type is
defined as part of an element definition, the value of the @XmlType
annotation's name property is the value of the element element's name
attribute.

Note
As described in Java mapping of elements with an in-line
type on page 145, the generated class is decorated with the
@XmlRootElement annotation if it is generated for a complex type
defined as part of an element definition.

To provide the runtime with guidelines indicating how the elements of the
XML Schema complex type should be handled, the code generators alter the
annotations used to decorate the class and its member variables.

All Complex Type
All complex types are defined using the all element. They are annotated

as follows:

167

Basic Complex Type Mapping

• The @XmlType annotation's propOrder property is empty.

• Each element is decorated with the @XmlElement annotation.

• The @XmlElement annotation's required property is set to true.

Example 85 on page 168 shows the mapping for an all complex type
with two elements.

Example 85. Mapping of an All Complex Type

@XmlType(name = "all", propOrder = {

})
public class All {

@XmlElement(required = true)
protected BigDecimal amount;
@XmlElement(required = true)
protected String type;

public BigDecimal getAmount() {
return amount;

}

public void setAmount(BigDecimal value) {
this.amount = value;

}

public String getType() {
return type;

}

public void setType(String value) {
this.type = value;

}
}

Choice Complex Type
Choice complex types are defined using the choice element. They are

annotated as follows:

• The @XmlType annotation's propOrder property lists the names of the

elements in the order they appear in the XML Schema definition.

• None of the member variables are annotated.

168

Using Complex Types

Example 86 on page 169 shows the mapping for a choice complex type
with two elements.

Example 86. Mapping of a Choice Complex Type

@XmlType(name = "choice", propOrder = {
"address",
"floater"

})
public class Choice {

protected Sequence address;
protected Float floater;

public Sequence getAddress() {
return address;

}

public void setAddress(Sequence value) {
this.address = value;

}

public Float getFloater() {
return floater;

}

public void setFloater(Float value) {
this.floater = value;

}

}

Sequence Complex Type
A sequence complex type is defined using the sequence element. It is

annotated as follows:

• The @XmlType annotation's propOrder property lists the names of the

elements in the order they appear in the XML Schema definition.

• Each element is decorated with the @XmlElement annotation.

• The @XmlElement annotation's required property is set to true.

Example 87 on page 170 shows the mapping for the complex type defined
in Example 84 on page 167.

169

Basic Complex Type Mapping

Example 87. Mapping of a Sequence Complex Type

@XmlType(name = "sequence", propOrder = {
"name",
"street",
"city",
"state",
"zipCode"

})
public class Sequence {

@XmlElement(required = true)
protected String name;
protected short street;
@XmlElement(required = true)
protected String city;
@XmlElement(required = true)
protected String state;
@XmlElement(required = true)
protected String zipCode;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public short getStreet() {
return street;

}

public void setStreet(short value) {
this.street = value;

}

public String getCity() {
return city;

}

public void setCity(String value) {
this.city = value;

}

public String getState() {
return state;

}

170

Using Complex Types

public void setState(String value) {
this.state = value;

}

public String getZipCode() {
return zipCode;

}

public void setZipCode(String value) {
this.zipCode = value;

}
}

171

Basic Complex Type Mapping

Attributes

Overview Artix ESB supports the use of attribute elements and attributeGroup
elements within the scope of a complexType element. When defining
structures for an XML document attribute declarations provide a means of
adding information that is specified within the tag, not the value that the tag
contains. For example, when describing the XML element <value
currency="euro">410<\value> in XML Schema the currency attribute is
described using an attribute element as shown in Example 88 on page 173.

The attributeGroup element allows you to define a group of reusable
attributes that can be referenced by all complex types defined by the schema.
For example, if you are defining a series of elements that all use the attributes
category and pubDate, you could define an attribute group with these
attributes and reference them in all the elements that use them. This is shown
in Example 90 on page 174.

When describing data types for use in developing application logic, attributes
whose use attribute is set to either optional or required are treated as
elements of a structure. For each attribute declaration contained within a
complex type description, an element is generated in the class for the attribute,
along with the appropriate getter and setter methods.

Defining an attribute in XML
Schema

An XML Schema attribute element has one required attribute, name, that
is used to identify the attribute. It also has four optional attributes that are
described in Table 19 on page 172.

Table 19. Optional Attributes Used to Define Attributes in XML Schema

DescriptionAttribute

Specifies if the attribute is required. Valid values are required,

optional, or prohibited. optional is the default value.

use

Specifies the type of value the attribute can take. If it is not used
the schema type of the attribute must be defined in-line.

type

Specifies a default value to use for the attribute. It is only used
when the attribute element's use attribute is set to optional.

default

Specifies a fixed value to use for the attribute. It is only used when
the attribute element's use attribute is set to optional.

fixed

172

Using Complex Types

Example 88 on page 173 shows an attribute element defining an attribute,
currency, whose value is a string.

Example 88. XML Schema Defining and Attribute

<element name="value">
<complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:integer">
<xsd:attribute name="currency" type="xsd:string"

use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

If the type attribute is omitted from the attribute element, the format of
the data must be described in-line. Example 89 on page 173 shows an
attribute element for an attribute, category, that can take the values
autobiography, non-fiction, or fiction.

Example 89. Attribute with an In-Line Data Description

<attribute name="category" use="required">
<simpleType>
<restriction base="xsd:string">
<enumeration value="autobiography"/>
<enumeration value="non-fiction"/>
<enumeration value="fiction"/>

</restriction>
</simpleType>

</attribute>

Using an attribute group in XML
Schema

Using an attribute group in a complex type definition is a two step process:

1. Define the attribute group.

An attribute group is defined using an attributeGroup element with
a number of attribute child elements. The attributeGroup requires
a name attribute that defines the string used to refer to the attribute
group. The attribute elements define the members of the attribute
group and are specified as shown in Defining an attribute in XML
Schema on page 172. Example 90 on page 174 shows the description of
the attribute group catalogIndecies. The attribute group has two
members: category, which is optional, and pubDate, which is required.

173

Attributes

Example 90. Attribute Group Definition

<attributeGroup name="catalogIndices">
<attribute name="category" type="catagoryType" />
<attribute name="pubDate" type="dateTime"

use="required" />
</attributeGroup>

2. Use the attribute group in the definition of a complex type.

You use attribute groups in complex type definitions by using the
attributeGroup element with the ref attribute. The value of the ref
attribute is the name given the attribute group that you want to use as
part of the type definition. For example if you want to use the attribute
group catalogIndecies in the complex type dvdType, you would use
<attributeGroup ref="catalogIndecies" /> as shown in
Example 91 on page 174.

Example 91. Complex Type with an Attribute Group

<complexType name="dvdType">
<sequence>
<element name="title" type="xsd:string" />
<element name="director" type="xsd:string" />
<element name="numCopies" type="xsd:int" />

</sequence>
<attributeGroup ref="catalogIndices" />

</complexType>

Mapping attributes to Java Attributes are mapped to Java in much the same way that member elements
are mapped to Java. Required attributes and optional attributes are mapped
to member variables in the generated Java class. The member variables are
decorated with the @XmlAttribute annotation. If the attribute is required,
the @XmlAttribute annotation's required property is set to true.

The complex type defined in Example 92 on page 174 is mapped to the Java
class shown in Example 93 on page 175.

Example 92. techDoc Description

<complexType name="techDoc">
<all>
<element name="product" type="xsd:string" />
<element name="version" type="xsd:short" />

174

Using Complex Types

</all>
<attribute name="usefullness" type="xsd:float"

use="optional" default="0.01" />
</complexType>

Example 93. techDoc Java Class

@XmlType(name = "techDoc", propOrder = {

})
public class TechDoc {

@XmlElement(required = true)
protected String product;
protected short version;
@XmlAttribute
protected Float usefullness;

public String getProduct() {
return product;

}

public void setProduct(String value) {
this.product = value;

}

public short getVersion() {
return version;

}

public void setVersion(short value) {
this.version = value;

}

public float getUsefullness() {
if (usefullness == null) {

return 0.01F;
} else {

return usefullness;
}

}

public void setUsefullness(Float value) {
this.usefullness = value;

}
}

As shown in Example 93 on page 175, the default attribute and the fixed
attribute instruct the code generators to add code to the getter method

175

Attributes

generated for the attribute. This additional code ensures that the specified
value is returned if no value is set.

Important
The fixed attribute is treated the same as the default attribute.
If you want the fixed attribute to be treated as a Java constant you
can use the customization described in Customizing Fixed Value
Attribute Mapping on page 249.

Mapping attribute groups to Java Attribute groups are mapped to Java as if the members of the group were
explicitly used in the type definition. If the attribute group has three members,
and it is used in a complex type, the generated class for that type will include
a member variable, along with the getter and setter methods, for each member
of the attribute group. For example, the complex type defined in
Example 91 on page 174, Artix ESB generates a class containing the member
variables category and pubDate to support the members of the attribute
group as shown in Example 94 on page 176.

Example 94. dvdType Java Class

@XmlType(name = "dvdType", propOrder = {
"title",
"director",
"numCopies"

})
public class DvdType {

@XmlElement(required = true)
protected String title;
@XmlElement(required = true)
protected String director;
protected int numCopies;
@XmlAttribute
protected CatagoryType category;
@XmlAttribute(required = true)
@XmlSchemaType(name = "dateTime")
protected XMLGregorianCalendar pubDate;

public String getTitle() {
return title;

}

public void setTitle(String value) {
this.title = value;

176

Using Complex Types

}

public String getDirector() {
return director;

}

public void setDirector(String value) {
this.director = value;

}

public int getNumCopies() {
return numCopies;

}

public void setNumCopies(int value) {
this.numCopies = value;

}

public CatagoryType getCatagory() {
return catagory;

}

public void setCatagory(CatagoryType value) {
this.catagory = value;

}

public XMLGregorianCalendar getPubDate() {
return pubDate;

}

public void setPubDate(XMLGregorianCalendar value) {
this.pubDate = value;

}

}

177

Attributes

Deriving Complex Types from Simple Types

Overview Artix ESB supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

There are two ways of deriving a complex type from a simple type:

• By extension

• By restriction

Derivation by extension Example 95 on page 178 shows an example of a complex type,
internationalPrice, derived by extension from the xsd:decimal primitive type
to include a currency attribute.

Example 95. Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
<simpleContent>

<extension base="xsd:decimal">
<attribute name="currency" type="xsd:string"/>

</extension>
</simpleContent>
</complexType>

The simpleContent element indicates that the new type does not contain
any sub-elements. The extension element specifies that the new type extends
xsd:decimal.

Derivation by restriction Example 96 on page 178 shows an example of a complex type, idType, that
is derived by restriction from xsd:string. The defined type restricts the possible
values of xsd:stringto values that are ten characters in length. It also adds an
attribute to the type.

Example 96. Deriving a Complex Type from a Simple Type by Restriction

<complexType name="idType">
<simpleContent>
<restriction base="xsd:string">
<length value="10" />
<attribute name="expires" type="xsd:dateTime" />

178

Using Complex Types

</restriction>
</simpleContent>

</complexType>

As in Example 95 on page 178 the simpleContent element signals that the
new type does not contain any children. This example uses a restriction
element to constrain the possible values used in the new type. The attribute
element adds the element to the new type.

Mapping to Java A complex type derived from a simple type is mapped to a Java class that is
decorated with the @XmlType annotation. The generated class contains a
member variable, value, of the simple type from which the complex type is
derived. The member variable is decorated with the @XmlValue annotation.
The class also has a getValue() method and a setValue() method. In
addition, the generated class has a member variable, and the associated
getter and setter methods, for each attribute that extends the simple type.

Example 97 on page 179 shows the Java class generated for the idType type
defined in Example 96 on page 178.

Example 97. idType Java Class

@XmlType(name = "idType", propOrder = {
"value"

})
public class IdType {

@XmlValue
protected String value;
@XmlAttribute
@XmlSchemaType(name = "dateTime")
protected XMLGregorianCalendar expires;

public String getValue() {
return value;

}

public void setValue(String value) {
this.value = value;

}

public XMLGregorianCalendar getExpires() {
return expires;

}

public void setExpires(XMLGregorianCalendar value) {
this.expires = value;

179

Deriving Complex Types from Simple Types

}

}

180

Using Complex Types

Deriving Complex Types from Complex Types

Overview Using XML Schema, you can derive new complex types by either extending
or restricting other complex types using the complexContent element. When
generating the Java class to represent the derived complex type, Artix ESB
extends the base type’s class. In this way, the generated Java code preserves
the inheritance hierarchy intended in the XML Schema.

Schema syntax You derive complex types from other complex types by using the
complexContent element, and either the extension element or the
restriction element. The complexContent element specifies that the
included data description includes more than one field. The extension
element and the restriction element, which are children of the
complexContent element, specify the base type being modified to create
the new type. The base type is specified by the base attribute.

Extending a complex type To extend a complex type use the extension element to define the additional
elements and attributes that make up the new type. All elements that are
allowed in a complex type description are allowable as part of the new type’s
definition. For example, you can add an anonymous enumeration to the new
type, or you can use the choice element to specify that only one of the new
fields can be valid at a time.

Example 98 on page 181 shows an XML Schema fragment that defines two
complex types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetOrderInfo to include two new elements:
orderNumber and amtDue.

Example 98. Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element name="order_date" type="xsd:dateTime"/>
<element name="type" type="xsd1:widgetSize"/>
<element name="shippingAddress" type="xsd1:Address"/>

</sequence>
<attribute name="rush" type="xsd:boolean" use="optional" />

</complexType>
<complexType name="widgetOrderBillInfo">
<complexContent>
<extension base="xsd1:widgetOrderInfo">
<sequence>

181

Deriving Complex Types from Complex Types

<element name="amtDue" type="xsd:decimal"/>
<element name="orderNumber" type="xsd:string"/>

</sequence>
<attribute name="paid" type="xsd:boolean"

default="false" />
</extension>

</complexContent>
</complexType>

Restricting a complex type To restrict a complex type use the restriction element to limit the possible
values of the base type's elements or attributes. When restricting a complex
type you must list all of the elements and attributes of the base type. For each
element you can add restrictive attributes to the definition. For example, you
can add a maxOccurs attribute to an element to limit the number of times it
can occur. You can also use the fixed attribute to force one or more of the
elements to have predetermined values.

Example 99 on page 182 shows an example of defining a complex type by
restricting another complex type. The restricted type, wallawallaAddress, can
only be used for addresses in Walla Walla, Washington because the values
for the city element, the state element, and the zipCode element are fixed.

Example 99. Defining a Complex Type by Restriction

<complexType name="Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short" maxOccurs="3"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zipCode" type="xsd:string"/>

</sequence>
</complexType>
<complexType name="wallawallaAddress">
<complexContent>
<restriction base="xsd1:Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short"

maxOccurs="3"/>
<element name="city" type="xsd:string"

fixed="WallaWalla"/>
<element name="state" type="xsd:string"

fixed="WA" />
<element name="zipCode" type="xsd:string"

fixed="99362" />

182

Using Complex Types

</sequence>
</restriction>

</complexContent>
</complexType>

Mapping to Java As it does with all complex types, Artix ESB generates a class to represent
complex types derived from another complex type. The Java class generated
for the derived complex type extends the Java class generated to support the
base complex type. The base Java class is also modified to include the
@XmlSeeAlso annotation. The base class' @XmlSeeAlso annotation lists all
of the classes that extend the base class.

When the new complex type is derived by extension, the generated class will
include member variables for all of the added elements and attributes. The
new member variables will be generated according to the same mappings as
all other elements.

When the new complex type is derived by restriction, the generated class will
have no new member variables. The generated class will simply be a shell
that does not provide any additional functionality. It is entirely up to you to
ensure that the restrictions defined in the XML Schema are enforced.

For example, the schema in Example 98 on page 181 results in the generation
of two Java classes: WidgetOrderInfo and WidgetBillOrderInfo.
WidgetOrderBillInfo extends WidgetOrderInfo because
widgetOrderBillInfo is derived by extension from widgetOrderInfo.
Example 100 on page 183 shows the generated class for widgetOrderBillInfo.

Example 100. WidgetOrderBillInfo

@XmlType(name = "widgetOrderBillInfo", propOrder = {
"amtDue",
"orderNumber"

})
public class WidgetOrderBillInfo

extends WidgetOrderInfo
{

@XmlElement(required = true)
protected BigDecimal amtDue;
@XmlElement(required = true)
protected String orderNumber;
@XmlAttribute
protected Boolean paid;

public BigDecimal getAmtDue() {

183

Deriving Complex Types from Complex Types

return amtDue;
}

public void setAmtDue(BigDecimal value) {
this.amtDue = value;

}

public String getOrderNumber() {
return orderNumber;

}

public void setOrderNumber(String value) {
this.orderNumber = value;

}

public boolean isPaid() {
if (paid == null) {

return false;
} else {

return paid;
}

}

public void setPaid(Boolean value) {
this.paid = value;

}
}

184

Using Complex Types

Occurrence Constraints
Occurrence Constraints on the All Element ... 186
Occurrence Constraints on the Choice Element .. 187
Occurrence Constraints on Elements ... 190
Occurrence Constraints on Sequences ... 191

XML Schema allows you to specify the occurrence constraints on four of the
XML Schema elements that make up a complex type definition:

• all

• choice

• element

• sequence

185

Occurrence Constraints

Occurrence Constraints on the All Element

XML Schema Complex types defined with the all element do not allow for multiple
occurrences of the structure defined by the all element. You can, however,
make the structure defined by the all element optional by setting its
minOccurs attribute to 0.

Mapping to Java Setting the all element's minOccurs attribute to 0 has no effect on the
generated Java class.

186

Using Complex Types

Occurrence Constraints on the Choice Element

Overview By default, the results of a choice element can only appear once in an
instance of a complex type. You can change the number of times the element
chosen to represent the structure defined by a choice element is allowed to
appear using its minOccurs attribute and its mxOccurs attribute. Using these
attributes you can specify that the choice type can occur zero to an unlimited
number of times in an instance of a complex type. The element chosen for
the choice type does not need to be the same for each occurrence of the type.

Using in XML Schema The minOccurs attribute specifies the minimum number of times the choice
type must appear. Its value can be any positive integer. Setting the minOccurs
attribute to 0 specifies that the choice type does not need to appear inside
an instance of the complex type.

The maxOccurs attribute specifies the maximum number of times the choice
type can appear. Its value can be any non-zero, positive integer or unbounded.
Setting the maxOccurs attribute to unbounded specifies that the choice type
can appear an infinite number of times.

Example 101 on page 187 shows the definition of a choice type, ClubEvent,
with choice occurrence constraints. The choice type overall can be repeated
0 to unbounded times.

Example 101. Choice Occurrence Constraints

<complexType name="ClubEvent">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="MemberName" type="xsd:string"/>
<element name="GuestName" type="xsd:string"/>

</choice>
</complexType>

Mapping to Java Unlike single instance choice structures, XML Schema choice structures that
can occur multiple times are mapped to a Java class with a single member
variable. This single member variable is a List<T> object that holds all of
the data for the multiple occurrences of the sequence. For example, if the
sequence defined in Example 101 on page 187 occurred two times, then the
list would have two items.

The name of the Java class' member variable is derived by concatenating the
names of the member elements. The element names are separated by Or and

187

Occurrence Constraints on the Choice Element

the first letter of the variable name is converted to lower case. For example,
the member variable generated from Example 101 on page 187 would be
named memberNameOrGuestName.

The type of object stored in the list depends on the relationship between the
types of the member elements. For example:

• If the member elements are of the same type the generated list will contain
JAXBElement<T> objects. The base type of the JAXBElement<T> objects

is determined by the normal mapping of the member elements' type.

• If the member elements are of different types and their Java representations
implement a common interface, the list will contains objects of the common
interface.

• If the member elements are of different types and their Java representations
extend a common base class, the list will contains objects of the common
base class.

• If none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member
variable. The getter method returns a reference to the live list. Any
modifications made to the returned list will effect the actual object.

The Java class is decorated with the @XmlType annotation. The annotation's
name property is set to the value of the name attribute from the parent element
of the XML Schema definition. The annotation's propOrder property contains
the single member variable representing the elements in the sequence.

The member variable representing the elements in the choice structure are
decorated with the @XmlElements annotation. The @XmlElements annotation
contains a comma separated list of @XmlElement annotations. The list has
one @XmlElement annotation for each member element defined in the XML
Schema definition of the type. The @XmlElement annotations in the list have
their name property set to the value of the XML Schema element element's
name attribute and their type property set to the Java class resulting from the
mapping of the XML Schema element element's type.

Example 102 on page 189 shows the Java mapping for the XML Schema
choice structure defined in Example 101 on page 187.

188

Using Complex Types

Example 102. Java Representation of Choice Structure with an Occurrence Constraint

@XmlType(name = "ClubEvent", propOrder = {
"memberNameOrGuestName"

})
public class ClubEvent {

@XmlElementRefs({
@XmlElementRef(name = "GuestName", type = JAXBElement.class),
@XmlElementRef(name = "MemberName", type = JAXBElement.class)

})
protected List<JAXBElement<String>> memberNameOrGuestName;

public List<JAXBElement<String>> getMemberNameOrGuestName() {
if (memberNameOrGuestName == null) {

memberNameOrGuestName = new ArrayList<JAXBElement<String>>();
}
return this.memberNameOrGuestName;

}

}

minOccurs set to 0 If only the minOccurs element is specified and its value is 0, the code
generators generate the Java class as if the minOccurs attribute were not
set.

189

Occurrence Constraints on the Choice Element

Occurrence Constraints on Elements

Overview You can specify how many times a specific element in a complex type appears
using the element element's minOccurs attribute and maxOccurs attribute.
The default value for both attributes is 1.

minOccurs set to 0 When you set one of the complex type's member element's minOccurs
attribute to 0, the @XmlElement annotation decorating the corresponding
Java member variable is changed. Instead of having its required property set
to true, the @XmlElement annotation's required property is set to false.

minOccurs set to a value greater
than 1

In XML Schema you can specify that an element must occur more than once
in an instance of the type by setting the element element's minOccurs
attribute to a value greater than one. However, the generated Java class will
not support the XML Schema constraint. Artix ESB generates the supporting
Java member variable as if the minOccurs attribute were not set.

Elements with maxOccurs set When you want a member element to appear multiple times in an instance
of a complex type, you set the element's maxOccurs attribute to a value
greater than 1. You can set the maxOccurs attribute's value to unbounded
to specify that the member element can appear an unlimited number of times.

The code generators map a member element with the maxOccurs attribute
set to a value greater than 1 to a Java member variable that is a List<T>
object. The base class of the list is determined by mapping the element's type
to Java. For XML Schema primitive types, the wrapper classes are used as
described in Wrapper classes on page 149. For example, if the member element
is of type xsd:int the generated member variable is a List<Integer> object.

190

Using Complex Types

Occurrence Constraints on Sequences

Overview By default, the contents of a sequence element can only appear once in an
instance of a complex type. You can change the number of times the sequence
of elements defined by a sequence element is allowed to appear using its
minOccurs attribute and its maxOccurs attribute. Using these attributes you
can specify that the sequence type can occur zero to an unlimited number of
times in an instance of a complex type.

Using XML Schema The minOccurs attribute specifies the minimum number of times the sequence
must occur in an instance of the defined complex type. Its value can be any
positive integer. Setting the minOccurs attribute to 0 specifies that the
sequence does not need to appear inside an instance of the complex type.

The maxOccurs attribute specifies the upper limit for how many times the
sequence can occur in an instance of the defined complex type. Its value can
be any non-zero, positive integer or unbounded. Setting the maxOccurs
attribute to unbounded specifies that the sequence can appear an infinite
number of times.

Example 103 on page 191 shows the definition of a sequence type, CultureInfo,
with sequence occurrence constraints. The sequence can be repeated 0 to 2
times.

Example 103. Sequence with Occurrence Constraints

<complexType name="CultureInfo">
<sequence minOccurs="0" maxOccurs="2">
<element name="Name" type="string"/>
<element name="Lcid" type="int"/>

</sequence>
</complexType>

Mapping to Java Unlike single instance sequences, XML Schema sequences that can occur
multiple times are mapped to a Java class with a single member variable.
This single member variable is a List<T> object that holds all of the data
for the multiple occurrences of the sequence. For example, if the sequence
defined in Example 103 on page 191 occurred two times, then the list would
have four items.

The name of the Java class' member variable is derived by concatenating the
names of the member elements. The element names are separated by And

191

Occurrence Constraints on Sequences

and the first letter of the variable name is converted to lower case. For
example, the member variable generated from Example 103 on page 191 is
named nameAndLcid.

The type of object stored in the list depends on the relationship between the
types of the member elements. For example:

• If the member elements are of the same type the generated list will contain
JAXBElement<T> objects. The base type of the JAXBElement<T> objects

is determined by the normal mapping of the member elements' type.

• If the member elements are of different types and their Java representations
implement a common interface, the list will contains objects of the common
interface.

• If the member elements are of different types and their Java representations
extend a common base class, the list will contain objects of the common
base class.

• If none of the other conditions are met, the list will contain Object objects.

The generated Java class only has a getter method for the member variable.
The getter method returns a reference to the live list. Any modifications made
to the returned list effects the actual object.

The Java class is decorated with the @XmlType annotation. The annotation's
name property is set to the value of the name attribute from the parent element
of the XML Schema definition. The annotation's propOrder property contains
the single member variable representing the elements in the sequence.

The member variable representing the elements in the sequence are decorated
with the @XmlElements annotation. The @XmlElements annotation contains
a comma separated list of @XmlElement annotations. The list has one
@XmlElement annotation for each member element defined in the XML
Schema definition of the type. The @XmlElement annotations in the list have
their name property set to the value of the XML Schema element element's
name attribute and their type property set to the Java class resulting from the
mapping of the XML Schema element element's type.

Example 104 on page 193 shows the Java mapping for the XML Schema
sequence defined in Example 103 on page 191.

192

Using Complex Types

Example 104. Java Representation of Sequence with an Occurrence
Constraint

@XmlType(name = "CultureInfo", propOrder = {
"nameAndLcid"

})
public class CultureInfo {

@XmlElements({
@XmlElement(name = "Name", type = String.class),
@XmlElement(name = "Lcid", type = Integer.class)

})
protected List<Serializable> nameAndLcid;

public List<Serializable> getNameAndLcid() {
if (nameAndLcid == null) {

nameAndLcid = new ArrayList<Serializable>();
}
return this.nameAndLcid;

}

}

minOccurs set to 0 If only the minOccurs element is specified and its value is 0, the code
generators generate the Java class as if the minOccurs attribute is not set.

193

Occurrence Constraints on Sequences

Using Model Groups

Overview XML Schema model groups are convenient shortcuts that allows you to
reference a group of elements from a user-defined complex type.For example,
you can define a group of elements that are common to several types in your
application and then reference the group repeatedly. Model groups are defined
using the group element, and are similar to complex type definitions. The
mapping of model groups to Java is also similar to the mapping for complex
types.

Defining a model group in XML
Schema

You define a model group in XML Schema using the group element with the
name attribute. The value of the name attribute is a string that is used to refer
to the group throughout the schema. The group element, like the
complexType element, can have the sequence element, the all element,
or the choice element as its immediate child.

Inside the child element, you define the members of the group using element
elements. For each member of the group, specify one element element.
Group members can use any of the standard attributes for the element
element including minOccurs and maxOccurs. So, if your group has three
elements and one of them can occur up to three times, you define a group
with three element elements, one of which uses maxOccurs="3".
Example 105 on page 194 shows a model group with three elements.

Example 105. XML Schema Model Group

<group name="passenger">
<sequence>
<element name="name" type="xsd:string" />
<element name="clubNum" type="xsd:long" />
<element name="seatPref" type="xsd:string"

maxOccurs="3" />
</sequence>

</group>

Using a model group in a type
definition

Once a model group has been defined, it can be used as part of a complex
type definition. To use a model group in a complex type definition, use the
group element with the ref attribute. The value of the ref attribute is the
name given to the group when it was defined. For example, to use the group
defined in Example 105 on page 194 you use <group ref="tns:passenger"
/> as shown in Example 106 on page 195.

194

Using Complex Types

Example 106. Complex Type with a Model Group

<complexType name="reservation">
<sequence>
<group ref="tns:passenger" />
<element name="origin" type="xsd:string" />
<element name="destination" type="xsd:string" />
<element name="fltNum" type="xsd:long" />

</sequence>
</complexType>

When a model group is used in a type definition, the group becomes a member
of the type. So an instance of reservation has four member elements. The
first element is the passenger element and it contains the member elements
defined by the group shown in Example 105 on page 194. An example of an
instance of reservation is shown in Example 107 on page 195.

Example 107. Instance of a Type with a Model Group

<reservation>
<passenger>
<name>A. Smart</name>
<clubNum>99</clubNum>
<seatPref>isle1</seatPref>

</passenger>
<origin>LAX</origin>
<destination>FRA</destination>
<fltNum>34567</fltNum>

</reservation>

Mapping to Java By default, a model group is only mapped to Java artifacts when it is included
in a complex type definition. When generating code for a complex type that
includes a model group, Artix ESB simply includes the member variables for
the model group into the Java class generated for the type. The member
variables representing the model group are annotated based on the definitions
of the model group.

Example 108 on page 195 shows the Java class generated for the complex
type defined in Example 106 on page 195.

Example 108. Type with a Group

@XmlType(name = "reservation", propOrder = {
"name",
"clubNum",
"seatPref",

195

Using Model Groups

"origin",
"destination",
"fltNum"

})
public class Reservation {

@XmlElement(required = true)
protected String name;
protected long clubNum;
@XmlElement(required = true)
protected List<String> seatPref;
@XmlElement(required = true)
protected String origin;
@XmlElement(required = true)
protected String destination;
protected long fltNum;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public long getClubNum() {
return clubNum;

}

public void setClubNum(long value) {
this.clubNum = value;

}

public List<String> getSeatPref() {
if (seatPref == null) {

seatPref = new ArrayList<String>();
}
return this.seatPref;

}

public String getOrigin() {
return origin;

}

public void setOrigin(String value) {
this.origin = value;

}

public String getDestination() {

196

Using Complex Types

return destination;
}

public void setDestination(String value) {
this.destination = value;

}

public long getFltNum() {
return fltNum;

}

public void setFltNum(long value) {
this.fltNum = value;

}

Multiple occurrences You can specify that the model group appears more than once by setting the
group element's maxOccurs attribute to a value greater than one. To allow
for multiple occurrences of the model group Artix ESB maps the model group
to a List<T> object. The List<T> object is generated following the rules for
the group's first child:

• If the group is defined using a sequence element see Occurrence Constraints

on Sequences on page 191.

• If the group is defined using a choice element see Occurrence Constraints

on the Choice Element on page 187.

197

Using Model Groups

198

Using Wild Card Types
There are instances when a schema author wants to defer binding elements or attributes to a defined type. For
these cases, XML Schema provides three mechanisms for specifying wild card place holders. These are all mapped
to Java in ways that preserve their XML Schema functionality.

Using Any Elements ... 200
Using the XML Schema anyType Type ... 205
Using Unbound Attributes .. 208

199

Using Any Elements

Overview The XML Schema any element is used to create a wild card place holder in
complex type definitions. When an XML element is instantiated for an XML
Schema any element, it can be any valid XML element. The any element
does not place any restrictions on either the content or the name of the
instantiated XML element.

For example, given the complex type defined in Example 109 on page 200
you can instantiate either of the XML elements shown in
Example 110 on page 200.

Example 109. XML Schema Type Defined with an Any Element

<element name="FlyBoy">
<complexType>
<sequence>
<any />
<element name="rank" type="xsd:int" />

</sequence>
</complexType>

</element>

Example 110. XML Document with an Any Element

<FlyBoy>
<learJet>CL-215</learJet>
<rank>2</rank>

</element>
<FlyBoy>
<viper>Mark II</viper>
<rank>1</rank>

</element>

XML Schema any elements are mapped to either a Java Object object or a
Java org.w3c.dom.Element object.

Specifying in XML Schema The any element can be used when defining sequence complex types and
choice complex types. In most cases, the any element is an empty element.
It can, however, take an annotation element as a child.

Table 20 on page 201 describes the any element's attributes.

200

Using Wild Card Types

Table 20. Attributes of the XML Schema Any Element

DescriptionAttribute

Specifies the namespace of the elements that can be used to instantiate the element in an
XML document. The valid values are:

namespace

##any

Specifies that elements from any namespace can be used. This is the default.

##other

Specifies that elements from any namespace other than the parent element's namespace
can be used.

##local

Specifies elements without a namespace must be used.

##targetNamespace

Specifies that elements from the parent element's namespace must be used.

A space delimited list of URIs, ##local, and ##targetNamespace

Specifies that elements from any of the listed namespaces can be used.

Specifies the maximum number of times an instance of the element can appear in the parent
element. The default value is 1. To specify that an instance of the element can appear an

unlimited number of times, you can set the attribute's value to unbounded.

maxOccurs

Specifies the minimum number of times an instance of the element can appear in the parent
element. The default value is 1.

minOccurs

Specifies how the element used to instantiate the any element should be validated. Valid
values are:

processContents

strict

Specifies that the element must be validated against the proper schema. This is the
default value.

lax

Specifies that the element should be validated against the proper schema. If it cannot
be validated, no errors are thrown.

skip

Specifies that the element should not be validated.

201

Using Any Elements

Example 111 on page 202 shows a complex type defined with an any element

Example 111. Complex Type Defined with an Any Element

<complexType name="surprisePackage">
<sequence>
<any processContents="lax" />
<element name="to" type="xsd:string" />
<element name="from" type="xsd:string" />

</sequence>
</complexType>

Mapping to Java XML Schema any elements result in the creation of a Java property named
any. The property has associated getter and setter methods. The type of the
resulting property depends on the value of the element's processContents
attribute. If the any element's processContents attribute is set to skip, the
element is mapped to a org.w3c.dom.Element object. For all other values
of the processContents attribute an any element is mapped to a Java
Object object.

The generated property is decorated with the @XmlAnyElement annotation.
This annotation has an optional lax property that instructs the runtime what
to do when marshaling the data. Its default value is false which instructs
the runtime to automatically marshal the data into a org.w3c.dom.Element
object. Setting lax to true instructs the runtime to attempt to marshal the
data into JAXB types. When the any element's processContents attribute
is set to skip, the lax property is set to its default value. For all other values
of the processContents attribute, lax is set to true.

Example 112 on page 202 shows how the complex type defined in
Example 111 on page 202 is mapped to a Java class.

Example 112. Java Class with an Any Element

public class SurprisePackage {

@XmlAnyElement(lax = true)
protected Object any;
@XmlElement(required = true)
protected String to;
@XmlElement(required = true)
protected String from;

public Object getAny() {
return any;

202

Using Wild Card Types

}

public void setAny(Object value) {
this.any = value;

}

public String getTo() {
return to;

}

public void setTo(String value) {
this.to = value;

}

public String getFrom() {
return from;

}

public void setFrom(String value) {
this.from = value;

}

}

Marshalling If the Java property for an any element has its lax set to false, or the property
is not specified, the runtime makes no attempt to parse the XML data into
JAXB objects. The data is always stored in a DOM Element object.

If the Java property for an any element has its lax set to true, the runtime
attempts to marshal the XML data into the appropriate JAXB objects. The
runtime attempts to identify the proper JAXB classes using the following
procedure:

1. It checks the element tag of the XML element against the list of elements
known to the runtime. If it finds a match, the runtime marshals the XML
data into the proper JAXB class for the element.

2. It checks the XML element's xsi:type attribute. If it finds a match, the

runtime marshals the XML element into the proper JAXB class for that
type.

3. If it cannot find a match it marshals the XML data into a DOM Element

object.

203

Using Any Elements

Usually an application's runtime knows about all of the types generated from
the schema's included in its contract. This includes the types defined in the
contract's wsdl:types element, any data types added to the contract through
inclusion, and any types added to the contract through importing other
schemas. You can also make the runtime aware of additional types using the
@XmlSeeAlso annotation which is described in Adding Classes to the Runtime
Marshaller on page 138.

Unmarshalling If the Java property for an any element has its lax set to false, or the property
is not specified, the runtime will only accept DOM Element objects.
Attempting to use any other type of object will result in a marshalling error.

If the Java property for an any element has its lax set to true, the runtime
uses its internal map between Java data types and the XML Schema constructs
they represent to determine the XML structure to write to the wire. If the
runtime knows the class and can map it to an XML Schema construct, it
writes out the data and inserts an xsi:type attribute to identify the type of
data the element contains.

If the runtime cannot map the Java object to a known XML Schema construct,
it will throw a marshaling exception. You can add types to the runtime's map
using the @XmlSeeAlso annotation which is described in Adding Classes to
the Runtime Marshaller on page 138.

204

Using Wild Card Types

Using the XML Schema anyType Type

Overview The XML Schema type xsd:anyType is the root type for all XML Schema types.
All of the primitives are derivatives of this type, as are all user defined complex
types. As a result, elements defined as being of xsd:anyType can contain data
in the form of any of the XML Schema primitives as well as any complex type
defined in a schema document.

In Java the closest matching type is the Object class. It is the class from
which all other Java classes are sub-typed.

Using in XML Schema You use the xsd:anyType type as you would any other XML Schema complex
type. It can be used as the value of an element element's type element. It
can also be used as the base type from which other types are defined.

Example 113 on page 205 shows an example of a complex type that contains
an element of type xsd:anyType.

Example 113. Complex Type with a Wild Card Element

<complexType name="wildStar">
<sequence>
<element name="name" type="xsd:string" />
<element name="ship" type="xsd:anyType" />

</sequence>
</complexType>

Mapping to Java Elements that are of type xsd:anyType are mapped to Object objects.
Example 114 on page 205 shows the mapping of Example 113 on page 205
to a Java class.

Example 114. Java Representation of a Wild Card Element

public class WildStar {

@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected Object ship;

public String getName() {
return name;

}

205

Using the XML Schema anyType Type

public void setName(String value) {
this.name = value;

}

public Object getShip() {
return ship;

}

public void setShip(Object value) {
this.ship = value;

}
}

This mapping allows you to place any data into the property representing the
wild card element. The Artix ESB runtime handles the marshaling and
unmarshaling of the data into usable Java representation.

Marshalling When Artix ESB marshals XML data into Java types, it attempts to marshal
anyType elements into known JAXB objects. To determine if it is possible to
marshal an anyType element into a JAXB generated object, the runtime
inspects the element's xsi:type attribute to determine the actual type used
to construct the data in the element. If the xsi:type attribute is not present,
the runtime attempts to identify the element's actual data type by introspection.
If the element's actual data type is determined to be one of the types known
by the application's JAXB context, the element is marshaled into a JAXB object
of the proper type.

If the runtime cannot determine the actual data type of the element, or the
actual data type of the element is not a known type, the runtime marshals
the content into a org.w3c.dom.Element object. You will then need to work
with the element's content using the DOM APis.

An application's runtime usually knows about all of the types generated from
the schema's included in its contract. This includes the types defined in the
contract's wsdl:types element, any data types added to the contract through
inclusion, and any types added to the contract through importing other schema
documents. You can also make the runtime aware of additional types using
the @XmlSeeAlso annotation which is described in Adding Classes to the
Runtime Marshaller on page 138.

Unmarshalling When Artix ESB unmarshals Java types into XML data, it uses an internal
map between Java data types and the XML Schema constructs they represent
to determine the XML structure to write to the wire. If the runtime knows the

206

Using Wild Card Types

class and can map the class to an XML Schema construct, it writes out the
data and inserts an xsi:type attribute to identify the type of data the element
contains. If the data is stored in a org.w3c.dom.Element object, the runtime
writes the XML structure represented by the object but it does not include an
xsi:type attribute.

If the runtime cannot map the Java object to a known XML Schema construct,
it throws a marshaling exception. You can add types to the runtime's map
using the @XmlSeeAlso annotation which is described in Adding Classes to
the Runtime Marshaller on page 138.

207

Using the XML Schema anyType Type

Using Unbound Attributes

Overview XML Schema has a mechanism that allows you to leave a place holder for
an arbitrary attribute in a complex type definition. Using this mechanism, you
can define a complex type that can have any attribute. For example, you can
create a type that defines the elements <robot name="epsilon" />, <robot
age="10000" />, or <robot type="weevil" /> without specifying the three
attributes. This can be particularly useful when flexibility in your data is
required.

Defining in XML Schema Undeclared attributes are defined in XML Schema using the anyAttribute
element. It can be used wherever an attribute element can be used. The
anyAttribute element has no attributes, as shown in
Example 115 on page 208.

Example 115. Complex Type with an Undeclared Attribute

<complexType name="arbitter">
<sequence>
<element name="name" type="xsd:string" />
<element name="rate" type="xsd:float" />

</sequence>
<anyAttribute />

</complexType>

The defined type, arbitter, has two elements and can have one attribute of
any type. The elements three elements shown in Example 116 on page 208
can all be generated from the complex type arbitter.

Example 116. Examples of Elements Defined with a Wild Card Attribute

<officer rank="12"><name>...</name><rate>...</rate></officer>
<lawyer type="divorce"><name>...</name><rate>...</rate></law
yer>
<judge><name>...</name><rate>...</rate></judge>

Mapping to Java When a complex type containing an anyAttribute element is mapped to
Java, the code generator adds a member called otherAttributes to the
generated class. otherAttributes is of type java.util.Map<QName,
String> and it has a getter method that returns a live instance of the map.
Because the map returned from the getter is live, any modifications to the

208

Using Wild Card Types

map are automatically applied. Example 117 on page 209 shows the class
generated for the complex type defined in Example 115 on page 208.

Example 117. Class for a Complex Type with an Undeclared Attribute

public class Arbitter {

@XmlElement(required = true)
protected String name;
protected float rate;

@XmlAnyAttribute
private Map<QName, String> otherAttributes = new HashMap<QName, String>();

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public float getRate() {
return rate;

}

public void setRate(float value) {
this.rate = value;

}

public Map<QName, String> getOtherAttributes() {
return otherAttributes;

}

}

Working with undeclared
attributes

The otherAttributes member of the generated class expects to be populated
with a Map object. The map is keyed using QNames. Once you get the map ,
you can access any attributes set on the object and set new attributes on the
object.

Example 118 on page 210 shows sample code for working with undeclared
attributes.

209

Using Unbound Attributes

Example 118. Working with Undeclared Attributes

Arbitter judge = new Arbitter();
Map<QName, String> otherAtts = judge.getOtherAttributes(); ❶

QName at1 = new QName("test.apache.org", "house"); ❷
QName at2 = new QName("test.apache.org", "veteran");

otherAtts.put(at1, "Cape"); ❸
otherAtts.put(at2, "false");

String vetStatus = otherAtts.get(at2); ❹

The code in Example 118 on page 210 does the following:

❶ Gets the map containing the undeclared attributes.

❷ Creates QNames to work with the attributes.

❸ Sets the values for the attributes into the map.

❷ Retrieves the value for one of the attributes.

210

Using Wild Card Types

Element Substitution
XML Schema substitution groups allow you to define a group of elements that can replace a top level, or head,
element. This is useful in cases where you have multiple elements that share a common base type or with
elements that need to be interchangeable.

Substitution Groups in XML Schema ... 212
Substitution Groups in Java .. 215
Widget Vendor Example ... 222

The checkWidgets Operation ... 224
The placeWidgetOrder Operation .. 227

211

Substitution Groups in XML Schema

Overview A substitution group is a feature of XML schema that allows you to specify
elements that can replace another element in documents generated from that
schema. The replaceable element is called the head element and must be
defined in the schema’s global scope. The elements of the substitution group
must be of the same type as the head element or a type that is derived from
the head element’s type.

In essence, a substitution group allows you to build a collection of elements
that can be specified using a generic element. For example, if you are building
an ordering system for a company that sells three types of widgets you might
define a generic widget element that contains a set of common data for all
three widget types. Then you can define a substitution group that contains a
more specific set of data for each type of widget. In your contract you can
then specify the generic widget element as a message part instead of defining
a specific ordering operation for each type of widget. When the actual message
is built, the message can contain any of the elements of the substitution
group.

Syntax Substitution groups are defined using the substitutionGroup attribute of
the XML Schema element element. The value of the substitutionGroup
attribute is the name of the element that the element being defined replaces.
For example, if your head element is widget, adding the attribute
substitutionGroup="widget" to an element named woodWidget specifies that
anywhere a widget element is used, you can substitute a woodWidget
element. This is shown in Example 119 on page 212.

Example 119. Using a Substitution Group

<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"

substitutionGroup="widget" />

Type restrictions The elements of a substitution group must be of the same type as the head
element or of a type derived from the head element’s type. For example, if
the head element is of type xsd:int all members of the substitution group must
be of type xsd:int or of a type derived from xsd:int. You can also define a
substitution group similar to the one shown in Example 120 on page 213
where the elements of the substitution group are of types derived from the
head element’s type.

212

Element Substitution

Example 120. Substitution Group with Complex Types

<complexType name="widgetType">
<sequence>
<element name="shape" type="xsd:string" />
<element name="color" type="xsd:string" />

</sequence>
</complexType>
<complexType name="woodWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="woodType" type="xsd:string" />

</sequence>
</extension>

</complexContent>
</complexType>
<complexType name="plasticWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="moldProcess" type="xsd:string" />

</sequence>
</extension>

</complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"

substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"

substitutionGroup="widget" />
<complexType name="partType">
<sequence>
<element ref="widget" />

</sequence>
</complexType>
<element name="part" type="partType" />

The head element of the substitution group, widget, is defined as being of
type widgetType. Each element of the substitution group extends widgetType
to include data that is specific to ordering that type of widget.

Based on the schema in Example 120 on page 213, the part elements in
Example 121 on page 213 are valid.

Example 121. XML Document using a Substitution Group

<part>
<widget>

213

Substitution Groups in XML Schema

<shape>round</shape>
<color>blue</color>

</widget>
</part>
<part>
<plasticWidget>
<shape>round</shape>
<color>blue</color>
<moldProcess>sandCast</moldProcess>

</plasticWidget>
</part>
<part>
<woodWidget>
<shape>round</shape>
<color>blue</color>
<woodType>elm</woodType>

</woodWidget>
</part>

Abstract head elements You can define an abstract head element that can never appear in a document
produced using your schema. Abstract head elements are similar to abstract
classes in Java because they are used as the basis for defining more specific
implementations of a generic class. Abstract heads also prevent the use of
the generic element in the final product.

You declare an abstract head element by setting the abstract attribute of
an element element to true, as shown in Example 122 on page 214. Using
this schema, a valid review element can contain either a positiveComment
element or a negativeComment element, but cannot contain a comment
element.

Example 122. Abstract Head Definition

<element name="comment" type="xsd:string" abstract="true" />
<element name="positiveComment" type="xsd:string"

substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"

substitutionGroup="comment" />
<element name="review">
<complexContent>
<all>
<element name="custName" type="xsd:string" />
<element name="impression" ref="comment" />

</all>
</complexContent>

</element>

214

Element Substitution

Substitution Groups in Java

Overview Artix ESB, as specified in the JAXB specification, supports substitution groups
using Java's native class hierarchy in combination with the ability of the
JAXBElement class' support for wildcard definitions. Because the members
of a substitution group must all share a common base type, the classes
generated to support the elements' types also share a common base type. In
addition, Artix ESB maps instances of the head element to JAXBElement<?
extends T> properties.

Generated object factory methods The object factory generated to support a package containing a substitution
group has methods for each of the elements in the substitution group. For
each of the members of the substitution group, except for the head element,
the @XmlElementDecl annotation decorating the object factory method
includes two additional properties, as described in Table 21 on page 215.

Table 21. Properties for Declaring a JAXB Element is a Member of a Substitution Group

DescriptionProperty

Specifies the namespace where the head element is defined.substitutionHeadNamespace

Specifies the value of the head element's name attribute.substitutionHeadName

The object factory method for the head element of the substitution group's
@XmlElementDecl contains only the default namespace property and the
default name property.

In addition to the element instantiation methods, the object factory contains
a method for instantiating an object representing the head element. If the
members of the substitution group are all of complex types, the object factory
also contains methods for instantiating instances of each complex type used.

Example 123 on page 215 shows the object factory method for the substitution
group defined in Example 120 on page 213.

Example 123. Object Factory Method for a Substitution Group

public class ObjectFactory {

private final static QName _Widget_QNAME = new QName(...);
private final static QName _PlasticWidget_QNAME = new QName(...);
private final static QName _WoodWidget_QNAME = new QName(...);

215

Substitution Groups in Java

public ObjectFactory() {
}

public WidgetType createWidgetType() {
return new WidgetType();

}

public PlasticWidgetType createPlasticWidgetType() {
return new PlasticWidgetType();

}

public WoodWidgetType createWoodWidgetType() {
return new WoodWidgetType();

}

@XmlElementDecl(namespace="...", name = "widget")
public JAXBElement<WidgetType> createWidget(WidgetType value) {

return new JAXBElement<WidgetType>(_Widget_QNAME, WidgetType.class, null, value);
}

@XmlElementDecl(namespace = "...", name = "plasticWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")

public JAXBElement<PlasticWidgetType> createPlasticWidget(PlasticWidgetType value) {
return new JAXBElement<PlasticWidgetType>(_PlasticWidget_QNAME, PlasticWidget

Type.class, null, value);
}

@XmlElementDecl(namespace = "...", name = "woodWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")

public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType value) {
return new JAXBElement<WoodWidgetType>(_WoodWidget_QNAME, WoodWidgetType.class,

null, value);
}

}

Substitution groups in interfaces If the head element of a substitution group is used as a message part in one
of an operation's messages, the resulting method parameter will be an object
of the class generated to support that element. It will not necessarily be an
instance of the JAXBElement<? extends T> class. The runtime relies on
Java's native type hierarchy to support the type substitution, and Java will
catch any attempts to use unsupported types.

To ensure that the runtime knows all of the classes needed to support the
element substitution, the SEI is decorated with the @XmlSeeAlso annotation.
This annotation specifies a list of classes required by the runtime for

216

Element Substitution

marshalling. Fore more information on using the @XmlSeeAlso annotation
see Adding Classes to the Runtime Marshaller on page 138.

Example 125 on page 217 shows the SEI generated for the interface shown
in Example 124 on page 217. The interface uses the substitution group defined
in Example 120 on page 213.

Example 124. WSDL Interface Using a Substitution Group

<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />

</message>
<message name="numWidgets">
<part name="numInventory" type="xsd:int" />

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int" />

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order" />
<output message="tns:widgetOrderBill" name="bill" />
<fault message="tns:badSize" name="sizeFault" />

</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />

</operation>
</portType>

Example 125. Generated Interface Using a Substitution Group

@WebService(targetNamespace = "...", name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
@WebMethod
public int checkWidgets(

@WebParam(partName = "widgetPart", name = "widget", targetNamespace = "...")
com.widgetvendor.types.widgettypes.WidgetType widgetPart

);
}

217

Substitution Groups in Java

Tip
The SEI shown in Example 125 on page 217 lists the object factory
in the @XmlSeeAlso annotation. Listing the object factory for a
namespace provides access to all of the generated classes for that
namespace.

Substitution groups in complex
types

When the head element of a substitution group is used as an element in a
complex type, the code generator maps the element to a JAXBElement<?
extends T> property. It does not map it to a property containing an instance
of the generated class generated to support the substitution group.

For example, the complex type defined in Example 126 on page 218 results
in the Java class shown in Example 127 on page 218. The complex type uses
the substitution group defined in Example 120 on page 213.

Example 126. Complex Type Using a Substitution Group

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element ref="xsd1:widget"/>

</sequence>
</complexType>

Example 127. Java Class for a Complex Type Using a Substitution Group

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "widgetOrderInfo", propOrder =
{"amount","widget",})
public class WidgetOrderInfo {

protected int amount;
@XmlElementRef(name = "widget", namespace = "...", type

= JAXBElement.class)
protected JAXBElement<? extends WidgetType> widget;
public int getAmount() {

return amount;
}

public void setAmount(int value) {
this.amount = value;

}

public JAXBElement<? extends WidgetType> getWidget() {

218

Element Substitution

return widget;
}

public void setWidget(JAXBElement<? extends WidgetType>
value) {

this.widget = ((JAXBElement<? extends WidgetType>)
value);

}

}

Setting a substitution group
property

How you work with a substitution group depends on whether the code
generator mapped the group to a straight Java class or to a JAXBElement<?
extends T> class. When the element is simply mapped to an object of the
generated value class, you work with the object the same way you work with
other Java objects that are part of a type hierarchy. You can substitute any
of the subclasses for the parent class. You can inspect the object to determine
its exact class, and cast it appropriately.

Tip
The JAXB specification recommends that you use the object factory
methods for instantiating objects of the generated classes.

When the code generators create a JAXBElement<? extends T> object to
hold instances of a substitution group, you must wrap the element's value in
a JAXBElement<? extends T> object. The best method to do this is to use
the element creation methods provided by the object factory. They provide
an easy means for creating an element based on its value.

Example 128 on page 219 shows code for setting an instance of a substitution
group.

Example 128. Setting a Member of a Substitution Group

ObjectFactory of = new ObjectFactory(); ❶
PlasticWidgetType pWidget = of.createPlasticWidgetType(); ❷
pWidget.setShape = "round';
pWidget.setColor = "green";
pWidget.setMoldProcess = "injection";

JAXBElement<PlasticWidgetType> widget = of.createPlasticWidget(pWidget); ❸

219

Substitution Groups in Java

WidgetOrderInfo order = of.createWidgetOrderInfo(); ❹
order.setWidget(widget); ❺

The code in Example 128 on page 219 does the following:

❶ Instantiates an object factory.

❷ Instantiates a PlasticWidgetType object.

❸ Instantiates a JAXBElement<PlasticWidgetType> object to hold a

plastic widget element.
❹ Instantiates a WidgetOrderInfo object.

❺ Sets the WidgetOrderInfo object's widget to the JAXBElement object

holding the plastic widget element.

Getting the value of a substitution
group property

The object factory methods do not help when extracting the element's value
from a JAXBElement<? extends T> object. You must to use the
JAXBElement<? extends T> object's getValue() method. The following
options determine the type of object returned by the getValue() method:

• Use the isInstance() method of all the possible classes to determine

the class of the element's value object.

• Use the JAXBElement<? extends T> object's getName() method to

determine the element's name.

The getName() method returns a QName. Using the local name of the
element, you can determine the proper class for the value object.

• Use the JAXBElement<? extends T> object's getDeclaredType()

method to determine the class of the value object.

The getDeclaredType() method returns the Class object of the element's
value object.

Warning
There is a possibility that the getDeclaredType() method will
return the base class for the head element regardless of the actual
class of the value object.

220

Element Substitution

Example 129 on page 221 shows code retrieving the value from a substitution
group. To determine the proper class of the element's value object the example
uses the element's getName() method.

Example 129. Getting the Value of a Member of the Substitution Group

String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{
WoodWidgetType widget=order.getWidget().getValue();

}
else if (elementName.equals("plasticWidget")
{
PlasticWidgetType widget=order.getWidget().getValue();

}
else
{
WidgetType widget=order.getWidget().getValue();

}

221

Substitution Groups in Java

Widget Vendor Example
The checkWidgets Operation ... 224
The placeWidgetOrder Operation .. 227

This section shows an example of substitution groups being used in Artix ESB
to solve a real world application. A service and consumer are developed using
the widget substitution group defined in Example 120 on page 213. The
service offers two operations: checkWidgets and placeWidgetOrder.
Example 130 on page 222 shows the interface for the ordering service.

Example 130. Widget Ordering Interface

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>

</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"

type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />

</message>
<message name="numWidgets">
<part name="numInventory" type="xsd:int" />

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />

</operation>
</portType>

Example 131 on page 222 shows the generated Java SEI for the interface.

Example 131. Widget Ordering SEI

@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm", name = "orderWid
gets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

222

Element Substitution

@WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
@WebMethod
public int checkWidgets(

@WebParam(partName = "widgetPart", name = "widget", targetNamespace = "http://wid
getVendor.com/types/widgetTypes")

com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "widgetOrderConformation", targetNamespace = "", partName = "widget

OrderConformation")
@WebMethod
public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(

@WebParam(partName = "widgetOrderForm", name = "widgetOrderForm", targetNamespace
= "")

com.widgetvendor.types.widgettypes.WidgetOrderInfo widgetOrderForm
) throws BadSize;

}

Note
Because the example only demonstrates the use of substitution
groups, some of the business logic is not shown.

223

Widget Vendor Example

The checkWidgets Operation

Overview checkWidgets is a simple operation that has a parameter that is the head
member of a substitution group. This operation demonstrates how to deal
with individual parameters that are members of a substitution group. The
consumer must ensure that the parameter is a valid member of the substitution
group. The service must properly determine which member of the substitution
group was sent in the request.

Consumer implementation The generated method signature uses the Java class supporting the type of
the substitution group's head element. Because the member elements of a
substitution group are either of the same type as the head element or of a
type derived from the head element's type, the Java classes generated to
support the members of the substitution group inherit from the Java class
generated to support the head element. Java's type hierarchy natively supports
using subclasses in place of the parent class.

Because of how Artix ESB generates the types for a substitution group and
Java's type hierarchy, the client can invoke checkWidgets() without using
any special code. When developing the logic to invoke checkWidgets() you
can pass in an object of one of the classes generated to support the widget
substitution group.

Example 132 on page 224 shows a consumer invoking checkWidgets().

Example 132. Consumer Invoking checkWidgets()

System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
case '1':
{
WidgetType widget = new WidgetType();
...
break;

}
case '2':

224

Element Substitution

{
WoodWidgetType widget = new WoodWidgetType();
...
break;

}
case '3':
{
PlasticWidgetType widget = new PlasticWidgetType();
...
break;

}
default :
System.out.println("Invaid Widget Selection!!");

}

proxy.checkWidgets(widgets);

Service implementation The service's implementation of checkWidgets() gets a widget description
as a WidgetType object, checks the inventory of widgets, and returns the
number of widgets in stock. Because all of the classes used to implement the
substitution group inherit from the same base class, you can implement
checkWidgets() without using any JAXB specific APIs.

All of the classes generated to support the members of the substitution group
for widget extend the WidgetType class. Because of this fact, you can use
instanceof to determine what type of widget was passed in and simply cast
the widgetPart object into the more restrictive type if appropriate. Once you
have the proper type of object, you can check the inventory of the right kind
of widget.

Example 133 on page 225 shows a possible implementation.

Example 133. Service Implementation of checkWidgets()

public int checkWidgets(WidgetType widgetPart)
{
if (widgetPart instanceof WidgetType)
{
return checkWidgetInventory(widgetType);

}
else if (widgetPart instanceof WoodWidgetType)
{
WoodWidgetType widget = (WoodWidgetType)widgetPart;
return checkWoodWidgetInventory(widget);

}
else if (widgetPart instanceof PlasticWidgetType)

225

The checkWidgets Operation

{
PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
return checkPlasticWidgetInventory(widget);

}
}

226

Element Substitution

The placeWidgetOrder Operation

Overview placeWidgetOrder uses two complex types containing the substitution
group. This operation demonstrates to use such a structure in a Java
implementation. Both the consumer and the service must get and set members
of a substitution group.

Consumer implementation To invoke placeWidgetOrder() the consumer must construct a widget order
containing one element of the widget substitution group. When adding the
widget to the order, the consumer should use the object factory methods
generated for each element of the substitution group. This ensures that the
runtime and the service can correctly process the order. For example, if an
order is being placed for a plastic widget, the
ObjectFactory.createPlasticWidget() method is used to create the
element before adding it to the order.

Example 134 on page 227 shows consumer code for setting the widget
property of the WidgetOrderInfo object.

Example 134. Setting a Substitution Group Member

ObjectFactory of = new ObjectFactory();

WidgetOrderInfo order = new of.createWidgetOrderInfo();
...
System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
System.out.println();
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
case '1':
{
WidgetType widget = of.createWidgetType();

227

The placeWidgetOrder Operation

widget.setColor(color);
widget.setShape(shape);
JAXB<WidgetType> widgetElement = of.createWidget(widget);
order.setWidget(widgetElement);
break;

}
case '2':
{
WoodWidgetType woodWidget = of.createWoodWidgetType();
woodWidget.setColor(color);
woodWidget.setShape(shape);
System.out.println();
System.out.println("What type of wood are your widgets?");
String wood = reader.readLine();
woodWidget.setWoodType(wood);
JAXB<WoodWidgetType> widgetElement = of.createWoodWidget(woodWidget);
order.setWoodWidget(widgetElement);
break;

}
case '3':
{
PlasticWidgetType plasticWidget = of.createPlasticWidgetType();
plasticWidget.setColor(color);
plasticWidget.setShape(shape);
System.out.println();
System.out.println("What type of mold to use for your

widgets?");
String mold = reader.readLine();
plasticWidget.setMoldProcess(mold);
JAXB<WidgetType> widgetElement = of.createPlasticWidget(plasticWidget);
order.setPlasticWidget(widgetElement);
break;

}
default :
System.out.println("Invaid Widget Selection!!");
}

Service implementation The placeWidgetOrder() method receives an order in the form of a
WidgetOrderInfo object, processes the order, and returns a bill to the
consumer in the form of a WidgetOrderBillInfo object. The orders can be
for a plain widget, a plastic widget, or a wooden widget. The type of widget
ordered is determined by what type of object is stored in widgetOrderForm
object’s widget property. The widget property is a substitution group and can
contain a widget element, a woodWidget element, or a plasticWidget
element.

228

Element Substitution

The implementation must determine which of the possible elements is stored
in the order. This can be accomplished using the JAXBElement<? extends
T> object's getName() method to determine the element's QName. The
QName can then be used to determine which element in the substitution
group is in the order. Once the element included in the bill is known, you can
extract its value into the proper type of object.

Example 135 on page 229 shows a possible implementation.

Example 135. Implementation of placeWidgetOrder()

public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(WidgetOrderInfo
widgetOrderForm)
{
ObjectFactory of = new ObjectFactory(); ❶

WidgetOrderBillInfo bill = new WidgetOrderBillInfo() ❷

// Copy the shipping address and the number of widgets
// ordered from widgetOrderForm to bill
...

int numOrdered = widgetOrderForm.getAmount(); ❸

String elementName = widgetOrderForm.getWidget().getName().getLocalPart(); ❹
if (elementName.equals("woodWidget") ❺
{
WoodWidgetType widget=order.getWidget().getValue(); ❻
buildWoodWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<WoodWidgetType> widgetElement = of.createWoodWidget(widget); ❼
bill.setWidget(widgetElement); ❽

float amtDue = numOrdered * 0.75;
bill.setAmountDue(amtDue); ❾

}
else if (elementName.equals("plasticWidget")
{
PlasticWidgetType widget=order.getWidget().getValue();
buildPlasticWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<PlasticWidgetType> widgetElement = of.createPlasticWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.90;

229

The placeWidgetOrder Operation

bill.setAmountDue(amtDue);
}
else
{
WidgetType widget=order.getWidget().getValue();
buildWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.30;
bill.setAmountDue(amtDue);

}

return(bill);
}

The code in Example 135 on page 229 does the following:

❶ Instantiates an object factory to create elements.

❷ Instantiates a WidgetOrderBillInfo object to hold the bill.

❸ Gets the number of widgets ordered.

❹ Gets the local name of the element stored in the order.

❺ Checks to see if the element is a woodWidget element.

❻ Extracts the value of the element from the order to the proper type of
object.

❼ Creates a JAXBElement<T> object placed into the bill.

❽ Sets the bill object's widget property.

❾ Sets the bill object's amountDue property.

230

Element Substitution

Customizing How Types are Generated
The JAXB default mappings cover most uses of XML Schema used when using service-oriented design to create
Java applications. For instances where the default mappings are insufficient, JAXB provides an extensive
customization mechanism.

Basics of Customizing Type Mappings ... 232
Specifying the Java Class of an XML Schema Primitive .. 235
Generating Java Classes for Simple Types ... 242
Customizing Enumeration Mapping .. 244
Customizing Fixed Value Attribute Mapping .. 249
Specifying the Base Type of an Element or an Attribute .. 252

Important
JAXB customizations are ignored if you are using the wsdlgen tool.

231

Basics of Customizing Type Mappings

Overview The JAXB specification defines a number of XML elements that customize
how Java types are mapped to XML Schema constructs. These elements can
be specified in-line with XML Schema constructs. If you cannot, or do not
want to, modify the XML Schema definitions, you can specify the
customizations in external binding document.

Namespace The elements used to customize the JAXB data bindings are defined in the
namespace http://java.sun.com/xml/ns/jaxb. You must add a namespace
declaration similar to the one shown in Example 136 on page 232. This is
added to the root element of all XML documents defining JAXB customizations.

Example 136. JAXB Customization Namespace

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

Version declaration When using the JAXB customizations, you must indicate the JAXB version
being used. This is done by adding a jaxb:version attribute to the root
element of the external binding declaration. If you are using in-line
customization, you must include the jaxb:version attribute in the schema
element containing the customizations. The value of the attribute is always
2.0.

Example 137 on page 232 shows an example of the jaxb:version attribute
used in a schema element.

Example 137. Specifying the JAXB Customization Version

< schema ...
jaxb:version="2.0">

Using in-line customization The most direct way to customize how the code generators map XML Schema
constructs to Java constructs is to add the customization elements directly
to the XML Schema definitions. The JAXB customization elements are placed
inside the xsd:appinfo element of the XML schema construct that is being
modified.

Example 138 on page 233 shows an example of a schema containing an
in-line JAXB customization.

232

Customizing How Types are Generated

Example 138. Customized XML Schema

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<complexType name="size">
<annotation>
<appinfo>
<jaxb:class name="widgetSize" />

</appinfo>
</annotation>
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />

</sequence>
</complexType>

<schema>

Using an external binding
declaration

When you cannot, or do not want to, make changes to the XML Schema
document that defines your type, you can specify the customizations using
an external binding declaration. An external binding declaration consists of a
number of nested jaxb:bindings elements. Example 139 on page 233
shows the syntax of an external binding declaration.

Example 139. JAXB External Binding Declaration Syntax

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings [schemaLocation="schemaUri" | wsdlLocation="wsdlUri">
<jaxb:bindings node="nodeXPath">
binding declaration

</jaxb:bindings>
...

</jaxb:bindings>
<jaxb:bindings>

The schemaLocation attribute and the wsdlLocation attribute are used to
identify the schema document to which the modifications are applied. Use
the schemaLocation attribute if you are generating code from a schema
document. Use the wsdlLocation attribute if you are generating code from
a WSDL document.

233

Basics of Customizing Type Mappings

The node attribute is used to identify the specific XML schema construct that
is to be modified. It is an XPath statement that resolves to an XML Schema
element.

Given the schema document widgetSchema.xsd, shown in
Example 140 on page 234, the external binding declaration shown in
Example 141 on page 234 modifies the generation of the complex type size.

Example 140. XML Schema File

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
version="1.0">

<complexType name="size">
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />

</sequence>
</complexType>

<schema>

Example 141. External Binding Declaration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="wsdlSchema.xsd">
<jaxb:bindings node="xsd:complexType[@name='size']">

<jaxb:class name="widgetSize" />
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

To instruct the code generators to use the external binging declaration use
the wsdl2java tool's -b binding-file option, as shown below:

wsdl2java -b widgetBinding.xml widget.wsdl

234

Customizing How Types are Generated

Specifying the Java Class of an XML Schema Primitive

Overview By default, XML Schema types are mapped to Java primitive types. While
this is the most logical mapping between XML Schema and Java, it does not
always meet the requirements of the application developer. You might want
to map an XML Schema primitive type to a Java class that can hold extra
information, or you might want to map an XML primitive type to a class that
allows for simple type substitution.

The JAXB javaType customization element allows you to customize the
mapping between an XML Schema primitive type and a Java primitive type.
It can be used to customize the mappings at both the global level and the
individual instance level. You can use the javaType element as part of a
simple type definition or as part of a complex type definition.

When using the javaType customization element you must specify methods
for converting the XML representation of the primitive type to and from the
target Java class. Some mappings have default conversion methods. For
instances where there are no default mappings, Artix ESB provides JAXB
methods to ease the development of the required methods.

Syntax The javaType customization element takes four attributes, as described in
Table 22 on page 235.

Table 22. Attributes for Customizing the Generation of a Java Class for an XML Schema Type

DescriptionRequiredAttribute

Specifies the name of the Java class to which the XML Schema primitive type is mapped.
It must be either a valid Java class name or the name of a Java primitive type. You must

Yesname

ensure that this class exists and is accessible to your application. The code generator
does not check for this class.

Specifies the XML Schema primitive type that is being customized. This attribute is only
used when the javaType element is used as a child of the globalBindings element.

NoxmlType

Specifies the method responsible for parsing the string-based XML representation of the
data into an instance of the Java class. For more information see Specifying the
converters on page 237.

NoparseMethod

Specifies the method responsible for converting a Java object to the string-based XML
representation of the data. For more information see Specifying the converters on page 237.

NoprintMethod

The javaType customization element can be used in three ways:

235

Specifying the Java Class of an XML Schema Primitive

• To modify all instances of an XML Schema primitive type — The javaType

element modifies all instances of an XML Schema type in the schema
document when it is used as a child of the globalBindings customization

element. When it is used in this manner, you must specify a value for the
xmlType attribute that identifies the XML Schema primitive type being

modified.

Example 142 on page 236 shows an in-line global customization that
instructs the code generators to use java.lang.Integer for all instances
of xsd:short in the schema.

Example 142. Global Primitive Type Customization

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings ...>
<jaxb:javaType name="java.lang.Integer"

xmlType="xsd:short" />
</globalBindings

</appinfo>
</annotation>
...

</schema>

• To modify a simple type definition — The javaType element modifies the

class generated for all instances of an XML simple type when it is applied
to a named simple type definition. When using the javaType element to

modify a simple type definition, do not use the xmlType attribute.

Example 143 on page 236 shows an external binding file that modifies the
generation of a simple type named zipCode.

Example 143. Binding File for Customizing a Simple Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings wsdlLocation="widgets.wsdl">
<jaxb:bindings node="xsd:simpleType[@name='zipCode']">

236

Customizing How Types are Generated

<jaxb:javaType name="com.widgetVendor.widgetTypes.zipCodeType"
parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"
printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />

</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings>

• To modify an element or attribute of a complex type definition — The
javaType can be applied to individual parts of a complex type definition

by including it as part of a JAXB property customization. The javaType

element is placed as a child to the property's baseType element. When

using the javaType element to modify a specific part of a complex type

definition, do not use the xmlType attribute.

Example 144 on page 237 shows a binding file that modifies an element
of a complex type.

Example 144. Binding File for Customizing an Element in a Complex Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
<jaxb:bindings node="xsd:element[@name='cost']">
<jaxb:property>
<jaxb:baseType>
<jaxb:javaType name="com.widgetVendor.widgetTypes.costType"

parseMethod="parseCost"
printMethod="printCost" >

</jaxb:baseType>
</jaxb:property>

</jaxb:bindings>
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

For more information on using the baseType element see Specifying the
Base Type of an Element or an Attribute on page 252.

Specifying the converters The Artix ESB cannot convert XML Schema primitive types into random Java
classes. When you use the javaType element to customize the mapping of
an XML Schema primitive type, the code generator creates an adapter class

237

Specifying the Java Class of an XML Schema Primitive

that is used to marshal and unmarshal the customized XML Schema primitive
type. A sample adapter class is shown in Example 145 on page 238.

Example 145. JAXB Adapter Class

public class Adapter1 extends XmlAdapter<String, javaType>
{
public javaType unmarshal(String value)
{
return(parseMethod(value));

}

public String marshal(javaType value)
{
return(printMethod(value));

}
}

parseMethod and printMethod are replaced by the value of the
corresponding parseMethod attribute and printMethod attribute. The values
must identify valid Java methods. You can specify the method's name in one
of two ways:

• A fully qualified Java method name in the form of
packagename.ClassName.methodName

• A simple method name in the form of methodName

When you only provide a simple method name, the code generator assumes
that the method exists in the class specified by the javaType element's
name attribute.

Important
The code generators do not generate parse or print methods. You
are responsible for supplying them. For information on developing
parse and print methods see Implementing converters on page 241.

If a value for the parseMethod attribute is not provided, the code generator
assumes that the Java class specified by the name attribute has a constructor
whose first parameter is a Java String object. The generated adapter's
unmarshal() method uses the assumed constructor to populate the Java
object with the XML data.

238

Customizing How Types are Generated

If a value for the printMethod attribute is not provided, the code generator
assumes that the Java class specified by the name attribute has a toString()
method. The generated adapter's marshal() method uses the assumed
toString() method to convert the Java object to XML data.

If the javaType element's name attribute specifies a Java primitive type, or
one of the Java primitive's wrapper types, the code generators use the default
converters. For more information on default converters see Default primitive
type converters on page 241.

What is generated As mentioned in Specifying the converters on page 237, using the javaType
customization element triggers the generation of one adapter class for each
customization of an XML Schema primitive type. The adapters are named in
sequence using the pattern AdapterN. If you specify two primitive type
customizations, the code generators create two adapter classes: Adapter1
and Adapter2.

The code generated for an XML schema construct depends on whether the
effected XML Schema construct is a globally defined element or is defined as
part of a complex type.

When the XML Schema construct is a globally defined element, the object
factory method generated for the type is modified from the default method
as follows:

• The method is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when
processing instances of this element. The adapter class is specified as a
class object.

• The default type is replaced by the class specified by the javaType

element's name attribute.

Example 146 on page 239 shows the object factory method for an element
affected by the customization shown in Example 142 on page 236.

Example 146. Customized Object Factory Method for a Global Element

@XmlElementDecl(namespace = "http://widgetVendor.com/types/wid
getTypes", name = "shorty")

@XmlJavaTypeAdapter(org.w3._2001.xmlschema.Adapter1 .class)

public JAXBElement<Integer> createShorty(Integer value)

239

Specifying the Java Class of an XML Schema Primitive

{
return new JAXBElement<Integer>(_Shorty_QNAME, In

teger.class, null, value);
}

When the XML Schema construct is defined as part of a complex type, the
generated Java property is modified as follows:

• The property is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when
processing instances of this element. The adapter class is specified as a
class object.

• The property's @XmlElement includes a type property.

The value of the type property is the class object representing the generated
object's default base type. In the case of XML Schema primitive types, the
class is String.

• The property is decorated with an @XmlSchemaType annotation.

The annotation identifies the XML Schema primitive type of the construct.

• The default type is replaced by the class specified by the javaType

element's name attribute.

Example 147 on page 240 shows the object factory method for an element
affected by the customization shown in Example 142 on page 236.

Example 147. Customized Complex Type

public class NumInventory {

@XmlElement(required = true, type = String.class)
@XmlJavaTypeAdapter(Adapter1 .class)
@XmlSchemaType(name = "short")
protected Integer numLeft;
@XmlElement(required = true)
protected String size;

public Integer getNumLeft() {
return numLeft;

}

public void setNumLeft(Integer value) {

240

Customizing How Types are Generated

this.numLeft = value;
}

public String getSize() {
return size;

}

public void setSize(String value) {
this.size = value;

}

}

Implementing converters The Artix ESB runtime has does not know how to convert XML primitive types
to and from the Java class specified by the javaType element, except that
it should call the methods specified by the parseMethod attribute and the
printMethod attribute. You are responsible for providing implementations
of the methods the runtime calls. The implemented methods must be capable
of working with the lexical structures of the XML primitive type.

To simplify the implementation of the data conversion methods, Artix ESB
provides the javax.xml.bind.DatatypeConverter class. This class provides
methods for parsing and printing all of the XML Schema primitive types. The
parse methods take string representations of the XML data and they return
an instance of the default type defined in Table 15 on page 148. The print
methods take an instance of the default type and they return a string
representation of the XML data.

The Java documentation for the DatatypeConverter class can be found at
http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/
DatatypeConverter.html.

Default primitive type converters When specifying a Java primitive type, or one of the Java primitive type
Wrapper classes, in the javaType element's name attribute, it is not necessary
to specify values for the parseMethod attribute or the printMethod attribute.
The Artix ESB runtime substitutes default converters if no values are provided.

The default data converters use the JAXB DatatypeConverter class to parse
the XML data. The default converters will also provide any type casting
necessary to make the conversion work.

241

Specifying the Java Class of an XML Schema Primitive

http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html
http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html

Generating Java Classes for Simple Types

Overview By default, named simple types do not result in generated types unless they
are enumerations. Elements defined using a simple type are mapped to
properties of a Java primitive type.

There are instances when you need to have simple types generated into Java
classes, such as is when you want to use type substitution.

To instruct the code generators to generate classes for all globally defined
simple types, set the globalBindings customization element's
mapSimpleTypeDef to true.

Adding the customization To instruct the code generators to create Java classes for named simple types
add the globalBinding element's mapSimpleTypeDef attribute and set its
value to true.

Example 148 on page 242 shows an in-line customization that forces the
code generator to generate Java classes for named simple types.

Example 148. in-Line Customization to Force Generation of Java Classes for SimpleTypes

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings mapSimpleTypeDef="true" />

</appinfo>
</annotation>
...

</schema>

Example 149 on page 242 shows an external binding file that customizes the
generation of simple types.

Example 149. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="types.xsd">
<jaxb:globalBindings mapSimpleTypeDef="true" />

242

Customizing How Types are Generated

<jaxb:bindings>
<jaxb:bindings>

Important
This customization only affects named simple types that are defined
in the global scope.

Generated classes The class generated for a simple type has one property called value. The value
property is of the Java type defined by the mappings in Primitive
Types on page 148. The generated class has a getter and a setter for the value
property.

Example 151 on page 243 shows the Java class generated for the simple type
defined in Example 150 on page 243.

Example 150. Simple Type for Customized Mapping

<simpleType name="simpleton">
<restriction base="xsd:string">
<maxLength value="10"/>

</restriction>
</simpleType>

Example 151. Customized Mapping of a Simple Type

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "simpleton", propOrder = {"value"})
public class Simpleton {

@XmlValue
protected String value;

public String getValue() {
return value;

}

public void setValue(String value) {
this.value = value;

}

}

243

Generating Java Classes for Simple Types

Customizing Enumeration Mapping

Overview If you want enumerated types that are based on a schema type other than
xsd:string, you must instruct the code generator to map it. You can also control
the name of the generated enumeration constants.

The customization is done using the jaxb:typesafeEnumClass element
along with one or more jaxb:typesafeEnumMember elements.

There might also be instances where the default settings for the code generator
cannot create valid Java identifiers for all of the members of an enumeration.
You can customize how the code generators handle this by using an attribute
of the globalBindings customization.

Member name customizer If the code generator encounters a naming collision when generating the
members of an enumeration or if it cannot create a valid Java identifier for a
member of the enumeration, the code generator, by default, generates a
warning and does not generate a Java enum type for the enumeration.

You can alter this behavior by adding the globalBinding element's
typesafeEnumMemberName attribute. The typesafeEnumMemberName
attribute's values are described in Table 23 on page 244.

Table 23. Values for Customizing Enumeration Member Name Generation

DescriptionValue

Specifies that the Java enum type is not
generated and generates a warning.

skipGeneration(default)

Specifies that member names will be generated
following the pattern VALUE_N. N starts off at

generateName

one, and is incremented for each member of the
enumeration.

Specifies that the code generator generates an
error when it cannot map an enumeration to a
Java enum type.

generateError

Example 152 on page 245 shows an in-line customization that forces the
code generator to generate type safe member names.

244

Customizing How Types are Generated

Example 152. Customization to Force Type Safe Member Names

<schema targetNamespace="http://widget.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings typesafeEnumMemberName="generate

Name" />
</appinfo>

</annotation>
...

</schema>

Class customizer The jaxb:typesafeEnumClass element specifies that an XML Schema
enumeration should be mapped to a Java enum type. It has two attributes
that are described in Table 24 on page 245. When the
jaxb:typesafeEnumClass element is specified in-line, it must be placed
inside the xsd:annotation element of the simple type it is modifying.

Table 24. Attributes for Customizing a Generated Enumeration Class

DescriptionAttribute

Specifies the name of the generated Java enum type. This value
must be a valid Java identifier.

name

Specifies if the enumeration should be mapped to a Java enum
type. The default value is true.

map

Member customizer The jaxb:typesafeEnumMember element specifies the mapping between
an XML Schema enumeration facet and a Java enum type constant. You
must use one jaxb:typesafeEnumMember element for each enumeration
facet in the enumeration being customized.

When using in-line customization, this element can be used in one of two
ways:

• It can be placed inside the xsd:annotation element of the enumeration

facet it is modifying.

245

Customizing Enumeration Mapping

• They can all be placed as children of the jaxb:typesafeEnumClass

element used to customize the enumeration.

The jaxb:typesafeEnumMember element has a name attribute that is
required. The name attribute specifies the name of the generated Java enum
type constant. It's value must be a valid Java identifier.

The jaxb:typesafeEnumMember element also has a value attribute. The
value is used to associate the enumeration facet with the proper
jaxb:typesafeEnumMember element. The value of the value attribute must
match one of the values of an enumeration facets' value attribute. This
attribute is required when you use an external binding specification for
customizing the type generation, or when you group the
jaxb:typesafeEnumMember elements as children of the
jaxb:typesafeEnumClass element.

Examples Example 153 on page 246 shows an enumerated type that uses in-line
customization and has the enumeration's members customized separately.

Example 153. In-line Customization of an Enumerated Type

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<simpleType name="widgetInteger">
<annotation>
<appinfo>
<jaxb:typesafeEnumClass />

</appinfo>
</annotation>
<restriction base="xsd:int">
<enumeration value="1">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="one" />

</appinfo>
</annotation>

</enumeration>
<enumeration value="2">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="two" />

</appinfo>
</annotation>

246

Customizing How Types are Generated

</enumeration>
<enumeration value="3">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="three" />

</appinfo>
</annotation>

</enumeration>
<enumeration value="4">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="four" />

</appinfo>
</annotation>

</enumeration>
</restriction>

</simpleType>
<schema>

Example 154 on page 247 shows an enumerated type that uses in-line
customization and combines the member's customization in the class
customization.

Example 154. In-line Customization of an Enumerated Type Using a Combined Mapping

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<simpleType name="widgetInteger">
<annotation>
<appinfo>
<jaxb:typesafeEnumClass>

<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />

</jaxb:typesafeEnumClass>
</appinfo>

</annotation>
<restriction base="xsd:int">
<enumeration value="1" />
<enumeration value="2" />
<enumeration value="3" />
<enumeration value="4" >

</restriction>
</simpleType>

<schema>

247

Customizing Enumeration Mapping

Example 155 on page 248 shows an external binding file that customizes an
enumerated type.

Example 155. Binding File for Customizing an Enumeration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:simpleType[@name='widgetInteger']">

<jaxb:typesafeEnumClass>
<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />

</jaxb:typesafeEnumClass>
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

248

Customizing How Types are Generated

Customizing Fixed Value Attribute Mapping

Overview By default, the code generators map attributes defined as having a fixed value
to normal properties. When using schema validation, Artix ESB can enforce
the schema definition. However, using schema validation increases message
processing time.

Another way to map attributes that have fixed values to Java is to map them
to Java constants. You can instruct the code generator to map fixed value
attributes to Java constants using the globalBindings customization
element. You can also customize the mapping of fixed value attributes to Java
constants at a more localized level using the property element.

Global customization You can alter this behavior by adding the globalBinding element's
fixedAttributeAsConstantProperty attribute. Setting this attribute to
true instructs the code generator to map any attribute defined using fixed
attribute to a Java constant.

Example 156 on page 249 shows an in-line customization that forces the
code generator to generate constants for attributes with fixed values.

Example 156. in-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings fixedAttributeAsConstantProp

erty="true" />
</appinfo>

</annotation>
...

</schema>

Example 157 on page 250 shows an external binding file that customizes the
generation of fixed attributes.

249

Customizing Fixed Value Attribute Mapping

Example 157. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="types.xsd">
<jaxb:globalBindings fixedAttributeAsConstantProperty="true" />

<jaxb:bindings>
<jaxb:bindings>

Local mapping You can customize attribute mapping on a per-attribute basis using the
property element's fixedAttributeAsConstantProperty attribute. Setting
this attribute to true instructs the code generator to map any attribute defined
using fixed attribute to a Java constant.

Example 158 on page 250 shows an in-line customization that forces the
code generator to generate constants for a single attribute with a fixed value.

Example 158. In-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<complexType name="widgetAttr">
<sequence>
...

</sequence>
<attribute name="fixer" type="xsd:int" fixed="7">
<annotation>
<appinfo>
<jaxb:property fixedAttributeAsConstantProperty="true" />

</appinfo>
</annotation>
</attribute>

</complexType>
...

</schema>

Example 159 on page 250 shows an external binding file that customizes the
generation of a fixed attribute.

Example 159. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

250

Customizing How Types are Generated

jaxb:version="2.0">
<jaxb:bindings schemaLocation="types.xsd">
<jaxb:bindings node="xsd:complexType[@name='widgetAttr']">
<jaxb:bindings node="xsd:attribute[@name='fixer']">

<jaxb:property fixedAttributeAsConstantProperty="true" />
</jaxb:bindings>

</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings>

Java mapping In the default mapping, all attributes are mapped to standard Java properties
with getter and setter methods. When this customization is applied to an
attribute defined using the fixed attribute, the attribute is mapped to a Java
constant, as shown in Example 160 on page 251.

Example 160. Mapping of a Fixed Value Attribute to a Java Constant

@XmlAttribute
public final static type NAME = value;

type is determined by mapping the base type of the attribute to a Java type
using the mappings described in Primitive Types on page 148.

NAME is determined by converting the value of the attribute element's name
attribute to all capital letters.

value is determined by the value of the attribute element's fixed attribute.

For example, the attribute defined in Example 158 on page 250 is mapped
as shown in Example 161 on page 251.

Example 161. Fixed Value Attribute Mapped to a Java Constant

@XmlRootElement(name = "widgetAttr")
public class WidgetAttr {

...

@XmlAttribute
public final static int FIXER = 7;

...

}

251

Customizing Fixed Value Attribute Mapping

Specifying the Base Type of an Element or an Attribute

Overview Occasionally you need to customize the class of the object generated for an
element, or for an attribute defined as part of an XML Schema complex type.
For example, you might want to use a more generalized class of object to
allow for simple type substitution.

One way to do this is to use the JAXB base type customization. It allows a
developer, on a case by case basis, to specify the class of object generated
to represent an element or an attribute. The base type customization allows
you to specify an alternate mapping between the XML Schema construct and
the generated Java object. This alternate mapping can be a simple
specialization or a generalization of the default base class. It can also be a
mapping of an XML Schema primitive type to a Java class.

Customization usage To apply the JAXB base type property to an XML Schema construct use the
JAXB baseType customization element. The baseType customization element
is a child of the JAXB property element, so it must be properly nested.

Depending on how you want to customize the mapping of the XML Schema
construct to Java object, you add either the baseType customization element's
name attribute, or a javaType child element. The name attribute is used to
map the default class of the generated object to another class within the same
class hierarchy. The javaType element is used when you want to map XML
Schema primitive types to a Java class.

Important
You cannot use both the name attribute and a javaType child
element in the same baseType customization element.

Specializing or generalizing the
default mapping

The baseType customization element's name attribute is used to redefine the
class of the generated object to a class within the same Java class hierarchy.
The attribute specifies the fully qualified name of the Java class to which the
XML Schema construct is mapped. The specified Java class must be either
a super-class or a sub-class of the Java class that the code generator normally
generates for the XML Schema construct. For XML Schema primitive types
that map to Java primitive types, the wrapper class is used as the default
base class for the purpose of customization.

252

Customizing How Types are Generated

For example, an element defined as being of xsd:int uses java.lang.Integer
as its default base class. The value of the name attribute can specify any
super-class of Integer such as Number or Object.

Tip
For simple type substitution, the most common customization is to
map the primitive types to an Object object.

Example 162 on page 253 shows an in-line customization that maps one
element in a complex type to a Java Object object.

Example 162. In-Line Customization of a Base Type

<complexType name="widgetOrderInfo">
<all>
<element name="amount" type="xsd:int" />
<element name="shippingAdress" type="Address>
<annotation>
<appinfo>

<jaxb:property>
<jaxb:baseType name="java.lang.Object" />

</jaxb:property>
</appinfo>

</annotation>
</element>
<element name="type" type="xsd:string"/>

</all>
</complexType>

Example 163 on page 253 shows an external binding file for the customization
shown in Example 162 on page 253.

Example 163. External Binding File to Customize a Base Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
<jaxb:bindings node="xsd:element[@name='shippingAddress']">
<jaxb:property>
<jaxb:baseType name="java.lang.Object" />

</jaxb:property>
</jaxb:bindings>

</jaxb:bindings>

253

Specifying the Base Type of an Element or an Attribute

</jaxb:bindings>
<jaxb:bindings>

The resulting Java object's @XmlElement annotation includes a type property.
The value of the type property is the class object representing the generated
object's default base type. In the case of XML Schema primitive types, the
class is the wrapper class of the corresponding Java primitive type.

Example 164 on page 254 shows the class generated based on the schema
definition in Example 163 on page 253.

Example 164. Java Class with a Modified Base Class

public class WidgetOrderInfo {

protected int amount;
@XmlElement(required = true)
protected String type;
@XmlElement(required = true, type = Address.class)
protected Object shippingAddress;

...
public Object getShippingAddress() {

return shippingAddress;
}

public void setShippingAddress(Object value) {
this.shippingAddress = value;

}

}

Usage with javaType The javaType element can be used to customize how elements and attributes
defined using XML Schema primitive types are mapped to Java objects. Using
the javaType element provides a lot more flexibility than simply using the
baseType element's name attribute. The javaType element allows you to
map a primitive type to any class of object.

For a detailed description of using the javaType element, see Specifying the
Java Class of an XML Schema Primitive on page 235.

254

Customizing How Types are Generated

Using A JAXBContext Object
The JAXBContext object allows the Artix ESB's runtime to transform data between XML elements and Java object.
Application developers need to instantiate a JAXBContext object they want to use JAXB objects in message
handlers and when implementing consumers that work with raw XML messages.

Overview The JAXBContext object is a low-level object used by the runtime. It allows
the runtime to convert between XML elements and their corresponding Java
representations. An application developer generally does not need to work
with JAXBContext objects. The marshaling and unmarshaling of XML data
is typically handled by the transport and binding layers of a JAX-WS
application.

However, there are instances when an application will need to manipulate
the XML message content directly. In two of these instances:

• Implementing consumers that use raw XML data on page 276

• Working with messages in a handler on page 321

You will need instantiate a JAXBContext object using one of the two available
JAXBContext.newInstance() methods.

Best practices JAXBContext objects are resource intensive to instantiate. It is recommended
that an application create as few instances as possible. One way to do this
is to create a single JAXBContext object that can manage all of the JAXB
objects used by your application and share it among as many parts of your
application as possible.

Tip
JAXBContext objects are thread safe.

Getting a JAXBContext object
using an object factory

The JAXBContext class provides a newInstance() method, shown in
Example 165 on page 256, that takes a list of classes that implement JAXB
objects.

255

Example 165. Getting a JAXB Context Using Classes

static JAXBContext newInstance(Class... classesToBeBound)
throws JAXBException;

The returned JAXBObject object will be able to marshal and unmarshal data
for the JAXB object implemented by the classes passed into the method. It
will also be able to work with any classes that are statically referenced from
any of the classes passed into the method.

While it is possible to pass the name of every JAXB class used by your
application to the newInstance() method it is not efficient. A more efficient
way to accomplish the same goal is to pass in the object factory, or object
factories, generated for your application. The resulting JAXBContext object
will be able to manage any JAXB classes the specified object factories can
instantiate.

Getting a JAXBContext object
using package names

The JAXBContext class provides a newInstance() method, shown in
Example 166 on page 256, that takes a colon (:) seperated list of package
names. The specified packages should contain JAXB objects derived from
XML Schema.

Example 166. Getting a JAXB Context Using Classes

static JAXBContext newInstance(String contextPath)
throws JAXBException;

The returned JAXBContext object will be able to marshal and unmarshal
data for all of the JAXB objects implemented by the classes in the specified
packages.

256

Using A JAXBContext Object

Part VI. Advanced Programming Tasks
The JAX-WS programming model offers a number of advanced features.

Developing Asynchronous Applications ... 259
WSDL for Asynchronous Examples ... 260
Generating the Stub Code .. 262
Implementing an Asynchronous Client with the Polling Approach ... 266
Implementing an Asynchronous Client with the Callback Approach ... 269
Catching Exceptions Returned from a Remote Service ... 273

Using Raw XML Messages ... 275
Using XML in a Consumer .. 276

Usage Modes .. 277
Data Types ... 279
Working with Dispatch Objects .. 281

Using XML in a Service Provider .. 287
Messaging Modes .. 288
Data Types ... 290
Implementing a Provider Object .. 292

Working with Contexts .. 297
Understanding Contexts ... 298
Working with Contexts in a Service Implementation .. 302
Working with Contexts in a Consumer Implementation .. 309
Working with JMS Message Properties .. 313

Inspecting JMS Message Headers .. 314
Inspecting the Message Header Properties .. 316
Setting JMS Properties .. 318

Writing Handlers ... 321
Handlers: An Introduction .. 322
Implementing a Logical Handler .. 327
Handling Messages in a Logical Handler .. 328
Implementing a Protocol Handler ... 336
Handling Messages in a SOAP Handler .. 338
Initializing a Handler ... 343
Handling Fault Messages ... 344
Closing a Handler .. 346
Releasing a Handler ... 347
Configuring Endpoints to Use Handlers .. 348

Programmatic Configuration .. 349
Spring Configuration ... 354

Developing Asynchronous Applications
JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify additional
methods that can be used to access a service asynchronously. The Artix ESB code generators generate the extra
methods for you. You simply add the business logic.

WSDL for Asynchronous Examples ... 260
Generating the Stub Code .. 262
Implementing an Asynchronous Client with the Polling Approach ... 266
Implementing an Asynchronous Client with the Callback Approach ... 269
Catching Exceptions Returned from a Remote Service ... 273

In addition to the usual synchronous mode of invocation, Artix ESB supports
two forms of asynchronous invocation:

• Polling approach — To invoke the remote operation using the polling
approach, you call a method that has no output parameters, but returns a
javax.xml.ws.Response object. The Response object (which inherits
from the javax.util.concurrency.Future interface) can be polled to
check whether or not a response message has arrived.

• Callback approach — To invoke the remote operation using the callback
approach, you call a method that takes a reference to a callback object (of
javax.xml.ws.AsyncHandler type) as one of its parameters. When the
response message arrives at the client, the runtime calls back on the
AsyncHandler object, and gives it the contents of the response message.

259

WSDL for Asynchronous Examples
Example 167 on page 260 shows the WSDL contract that is used for the
asynchronous examples. The contract defines a single interface,
GreeterAsync, which contains a single operation, greetMeSometime.

Example 167. WSDL Contract for Asynchronous Example

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions xmlns="http://schem
as.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_async_soap_http"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://apache.org/hello_world_async_soap_http"
name="HelloWorld">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
elementFormDefault="qualified">

<element name="greetMeSometime">
<complexType>
<sequence>
<element name="requestType" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="greetMeSometimeResponse">
<complexType>
<sequence>
<element name="responseType"

type="xsd:string"/>
</sequence>

</complexType>
</element>

</schema>
</wsdl:types>

<wsdl:message name="greetMeSometimeRequest">
<wsdl:part name="in" element="x1:greetMeSometime"/>

</wsdl:message>
<wsdl:message name="greetMeSometimeResponse">
<wsdl:part name="out"

element="x1:greetMeSometimeResponse"/>
</wsdl:message>

260

Developing Asynchronous Applications

<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<wsdl:input name="greetMeSometimeRequest"

message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"

message="tns:greetMeSometimeResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="GreeterAsync_SOAPBinding"
type="tns:GreeterAsync">

...
</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port name="SoapPort"

binding="tns:GreeterAsync_SOAPBinding">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

261

WSDL for Asynchronous Examples

Generating the Stub Code

Overview The asynchronous style of invocation requires extra stub code for the dedicated
asynchronous methods defined on the SEI. This special stub code is not
generated by default. To switch on the asynchronous feature and generate
the requisite stub code, you must use the mapping customization feature
from the WSDL 2.0 specification.

Customization enables you to modify the way the wsdl2java generates stub
code. In particular, it enables you to modify the WSDL-to-Java mapping and
to switch on certain features. Here, customization is used to switch on the
asynchronous invocation feature. Customizations are specified using a binding
declaration, which you define using a jaxws:bindings tag (where the jaxws
prefix is tied to the http://java.sun.com/xml/ns/jaxws namespace). There are
two ways of specifying a binding declaration:

External Binding Beclaration
When using an external binding declaration the jaxws:bindings element

is defined in a file separatel from the WSDL contract. You specify the
location of the binding declaration file to wsdl2java when you generate
the stub code.

Embedded Binding Declaration
When using an embedded binding declaration you embed the
jaxws:bindings element directly in a WSDL contract, treating it as a

WSDL extension. In this case, the settings in jaxws:bindings apply

only to the immediate parent element.

Using an external binding
declaration

The template for a binding declaration file that switches on asynchronous
invocations is shown in Example 168 on page 262.

Example 168. Template for an Asynchronous Binding Declaration

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="AffectedWSDL"
xmlns="http://java.sun.com/xml/ns/jaxws">

<bindings node="AffectedNode">
<enableAsyncMapping>true</enableAsyncMapping>

</bindings>
</bindings>

262

Developing Asynchronous Applications

Where AffectedWSDL specifies the URL of the WSDL contract that is affected
by this binding declaration. The AffectedNode is an XPath value that specifies
which node (or nodes) from the WSDL contract are affected by this binding
declaration. You can set AffectedNode to wsdl:definitions, if you want
the entire WSDL contract to be affected. The jaxws:enableAsyncMapping
element is set to true to enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the
GreeterAsync interface, you can specify <bindings
node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the
preceding binding declaration.

Assuming that the binding declaration is stored in a file, async_binding.xml,
you generate the requisite stub files with asynchronous support by entering
the following command:

wsdl2java -client -b async_binding.xml hello_world.wsdl

When you run wsdl2java, you specify the location of the binding declaration
file using the -b option.

For more information on wsdl2java see wsdl2java in Artix ESB Java Runtime
Command Reference.

Using an embedded binding
declaration

You can also embed the binding customization directly into the WSDL
document defining the service by placing the jaxws:bindings element and
its associated jaxws:enableAsynchMapping child directly into the WSDL.
You also must add a namespace declaration for the jaxws prefix.

Example 169 on page 263 shows a WSDL file with an embedded binding
declaration that activates the asynchronous mapping for an operation.

Example 169. WSDL with Embedded Binding Declaration for Asynchronous Mapping

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
...
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
...>

...
<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<jaxws:bindings>
<jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>

</jaxws:bindings>
<wsdl:input name="greetMeSometimeRequest"

message="tns:greetMeSometimeRequest"/>

263

Generating the Stub Code

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf

<wsdl:output name="greetMeSometimeResponse"
message="tns:greetMeSometimeResponse"/>

</wsdl:operation>
</wsdl:portType>
...

</wsdl:definitions>

When embedding the binding declaration into the WSDL document you can
control the scope affected by the declaration by changing where you place
the declaration. When the declaration is placed as a child of the
wsdl:definitions element the code generator creates asynchronous
methods for all of the operations defined in the WSDL document. If it is placed
as a child of a wsdl:portType element the code generator creates
asynchronous methods for all of the operations defined in the interface. If it
is placed as a child of a wsdl:operation element the code generator creates
asynchronous methods for only that operation.

It is not necessary to pass any special options to the code generator when
using embedded declarations. The code generator will recognize them and
act accordingly.

Generated interface After generating the stub code in this way, the GreeterAsync SEI (in the file
GreeterAsync.java) is defined as shown in Example 170 on page 264.

Example 170. Service Endpoint Interface with Methods for Asynchronous Invocations

package org.apache.hello_world_async_soap_http;

import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
public Future<?> greetMeSometimeAsync(

java.lang.String requestType,
AsyncHandler<GreetMeSometimeResponse> asyncHandler

);

public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
java.lang.String requestType

);

public java.lang.String greetMeSometime(
java.lang.String requestType

);
}

264

Developing Asynchronous Applications

In addition to the usual synchronous method, greetMeSometime(), two
asynchronous methods are also generated for the greetMeSometime operation:

• Callback approach

public Future<?> greetMeSomtimeAsync(java.lang.String requestType,
AsyncHandler<GreetMeSomtimeResponse> asyncHandler);

• Polling approach

public Response<GreetMeSomeTimeResponse> greetMeSometimeAsync(java.lang.String requestType);

265

Generating the Stub Code

Implementing an Asynchronous Client with the Polling
Approach

The polling approach is the more straightforward of the two approaches to
developing an asynchronous application. The client invokes the asynchronous
method called OperationNameAsync() and is returned a Response<T> object
that it polls for a response. What the client does while it is waiting for a
response is depends on the requirements of the application. There are two
basic patterns for handling the polling:

• Non-blocking polling — You periodically check to see if the result is ready
by calling the non-blocking Response<T>.isDone() method. If the result

is ready, the client processes it. If it not, the client continues doing other
things.

• Blocking polling — You call Response<T>.get() right away, and block

until the response arrives (optionally specifying a timeout).

Using the non-blocking pattern Example 171 on page 266 illustrates using non-blocking polling to make an
asynchronous invocation on the greetMeSometime operation defined in
Example 167 on page 260. The client invokes the asynchronous operation
and periodically checks to see if the result is returned.

Example 171. Non-Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

private Client() {}

266

Developing Asynchronous Applications

public static void main(String args[]) throws Exception {

// set up the proxy for the client

❶ Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

❷ while (!greetMeSomeTimeResp.isDone()) {
// client does some work
}

❸ GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response

System.exit(0);
}

}

The code in Example 171 on page 266 does the following:

❶ Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the Response<GreetMeSometimeResponse>
object to the client immediately. The Artix ESB runtime handles the
details of receiving the reply from the remote endpoint and populating
the Response<GreetMeSometimeResponse> object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the
asynchronous nature of the call transparently. The endpoint,
and therefore the service implementation, never worries about
the details of how the client intends to wait for a response.

❷ Checks to see if a response has arrived by checking the isDone() of

the returned Response object.

If the response has not arrived, the client continues working before
checking again.

267

Implementing an Asynchronous Client with the Polling
Approach

❸ When the response arrives, the client retrieves it from the Response

object using the get() method.

Using the blocking pattern When using the block polling pattern, the Response object's isDone() is
never called. Instead, the Response object's get() method is called
immediately after invoking the remote operation. The get() blocks until the
response is available.

Tip
You can also pass a timeout limit to the get() method.

Example 172 on page 268 shows a client that uses blocking polling.

Example 172. Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception {

// set up the proxy for the client

Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response
System.exit(0);

}
}

268

Developing Asynchronous Applications

Implementing an Asynchronous Client with the
Callback Approach

An alternative approach to making an asynchronous operation invocation is
to implement a callback class. You then call the asynchronous remote method
that takes the callback object as a parameter. The runtime returns the response
to the callback object.

To implement an application that uses callbacks, do the following:

1. Create a callback class that implements the AsyncHandler interface.

Note
Your callback object can perform any amount of response
processing required by your application.

2. Make remote invocations using the operationNameAsync() that takes

the callback object as a parameter and returns a Future<?> object.

3. If your client requires access to the response data, you can poll the
returned Future<?> object's isDone() method to see if the remote

endpoint has sent the response.

Tip
If the callback object does all of the response processing, it is
not necessary to check if the response has arrived.

Implementing the callback The callback class must implement the javax.xml.ws.AsyncHandler
interface. The interface defines a single method:

void handleResponse(Response<T> res);

The Artix ESB runtime calls the handleResponse() method to notify the
client that the response has arrived. Example 173 on page 270 shows an
outline of the AsyncHandler interface that you must implement.

269

Implementing an Asynchronous Client with the Callback
Approach

Example 173. The javax.xml.ws.AsyncHandler Interface

public interface javax.xml.ws.AsyncHandler
{
void handleResponse(Response<T> res)

}

Example 174 on page 270 shows a callback class for the greetMeSometime
operation defined in Example 167 on page 260.

Example 174. Callback Implementation Class

package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>
{
❶ private GreetMeSometimeResponse reply;

❷ public void handleResponse(Response<GreetMeSometimeResponse>
response)

{
try
{
reply = response.get();

}
catch (Exception ex)
{
ex.printStackTrace();

}
}

❸ public String getResponse()
{
return reply.getResponseType();

}
}

The callback implementation shown in Example 174 on page 270 does the
following:

❶ Defines a member variable, response, that holds the response returned

from the remote endpoint.

270

Developing Asynchronous Applications

❷ Implements handleResponse().

This implementation simply extracts the response and assigns it to the
member variable reply.

❸ Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply
and returns it.

Implementing the consumer Example 175 on page 271 illustrates a client that uses the callback approach
to make an asynchronous call to the GreetMeSometime operation defined in
Example 167 on page 260.

Example 175. Callback Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
...

public static void main(String args[]) throws Exception
{
...
// Callback approach

❶ GreeterAsyncHandler callback = new GreeterAsyncHandler();

❷ Future<?> response =
port.greetMeSometimeAsync(System.getProperty("user.name"),

callback);
❸ while (!response.isDone())

{
// Do some work

}
❹ resp = callback.getResponse();

...
System.exit(0);

}
}

271

Implementing an Asynchronous Client with the Callback
Approach

The code in Example 175 on page 271 does the following:

❶ Instantiates a callback object.

❷ Invokes the greetMeSometimeAsync() that takes the callback object

on the proxy.

The method call returns the Future<?> object to the client immediately.
The Artix ESB runtime handles the details of receiving the reply from
the remote endpoint, invoking the callback object's handleResponse()
method, and populating the Response<GreetMeSometimeResponse>
object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the
asynchronous nature of the call without the remote endpoint's
knowledge. The endpoint, and therefore the service
implementation, does not need to worry about the details of
how the client intends to wait for a response.

❸ Uses the returned Future<?> object's isDone() method to check if the

response has arrived from the remote endpoint.
❹ Invokes the callback object's getResponse() method to get the response

data.

272

Developing Asynchronous Applications

Catching Exceptions Returned from a Remote Service

Overview Consumers making asynchronous requests will not receive the same exceptions
returned than when they make synchronous requests. Any exceptions returned
to the consumer asynchronously are wrapped in an ExecutionException
exception. The actual exception thrown by the service is stored in the
ExecutionException exception's cause field.

Catching the exception Exceptions generated by a remote service are thrown locally by the method
that passes the response to the consumer's business logic. When the consumer
makes a synchronous request, the method making the remote invocation
throws the exception. When the consumer makes an asynchronous request,
the Response<T> object's get() method throws the exception. The consumer
will not discover that an error was encountered in processing the request until
it attempts to retrieve the response message.

Unlike the methods generated by the JAX-WS framework, the Response<T>
object's get() method does not throw either user modeled exceptions nor
the generic JAX-WS exceptions. Instead, it throws a
java.util.concurrent.ExecutionException exception.

Getting the exception details The framework stores the exception returned from the remote service in the
ExecutionException exception's cause field. The details about the remote
exception are extracted by getting the value of the cause field and examining
the stored exception. The stored exception can be any user defined exception
or one of the generic JAX-WS exceptions.

Example Example 176 on page 273 shows an example of catching an exception using
the polling approach.

Example 176. Catching an Exception using the Polling Approach

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

273

Catching Exceptions Returned from a Remote Service

public final class Client
{
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception
{
...
// port is a previously established proxy object.
Response<GreetMeSometimeResponse> resp =

port.greetMeSometimeAsync(System.getProperty("user.name"));

while (!resp.isDone())
{
// client does some work

}

try ❶
{
GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response

}
catch (ExecutionException ee) ❷
{

Throwable cause = ee.getCause(); ❸
System.out.println("Exception "+cause.getClass().getName()+" thrown by the remote

service.");
}

}
}

The code in Example 176 on page 273 does the following:

❶ Wraps the call to the Response<T> object's get() method in a try/catch

block.
❷ Catches a ExecutionException exception.

❸ Extracts the cause field from the exception.

If the consumer was using the callback approach the code used to catch the
exception would be placed in the callback object where the service's response
is extracted.

274

Developing Asynchronous Applications

Using Raw XML Messages
The high-level JAX-WS APIs shield the developer from using native XML messages by marshaling the data into
JAXB objects. However, there are cases when it is better to have direct access to the raw XML message data that
is passing on the wire. The JAX-WS APIs provide two interfaces that provide access to the raw XML: the Dispatch
interface is the client-side interface, and the Provider interface is the server-side interface.

Using XML in a Consumer .. 276
Usage Modes .. 277
Data Types ... 279
Working with Dispatch Objects .. 281

Using XML in a Service Provider .. 287
Messaging Modes .. 288
Data Types ... 290
Implementing a Provider Object .. 292

275

Using XML in a Consumer
Usage Modes .. 277
Data Types ... 279
Working with Dispatch Objects .. 281

The Dispatch interface is a low-level JAX-WS API that allows you work
directly with raw messages. It accepts and returns messages, or payloads, of
a number of types including DOM objects, SOAP messages, and JAXB objects.
Because it is a low-level API, the Dispatch interface does not perform any
of the message preparation that the higher-level JAX-WS APIs perform. You
must ensure that the messages, or payloads, that you pass to the Dispatch
object are properly constructed, and make sense for the remote operation
being invoked.

276

Using Raw XML Messages

Usage Modes

Overview Dispatch objects have two usage modes:

• Message mode

• Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount
of detail that is passed to the user level code.

Message mode In message mode, a Dispatch object works with complete messages. A
complete message includes any binding specific headers and wrappers. For
example, a consumer interacting with a service that requires SOAP messages
must provide the Dispatch object's invoke() method a fully specified SOAP
message. The invoke() method also returns a fully specified SOAP message.
The consumer code is responsible for completing and reading the SOAP
message's headers and the SOAP message's envelope information.

Tip
Message mode is not ideal when working with JAXB objects.

To specify that a Dispatch object uses message mode provide the value
java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch object.
For more information about creating a Dispatch object see Creating a
Dispatch object on page 281.

Payload mode In payload mode, also called message payload mode, a Dispatch object
works with only the payload of a message. For example, a Dispatch object
working in payload mode works only with the body of a SOAP message. The
binding layer processes any binding level wrappers and headers. When a
result is returned from the invoke() method the binding level wrappers and
headers are already striped away, and only the body of the message is left.

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

277

Usage Modes

To specify that a Dispatch object uses payload mode provide the value
java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object.
For more information about creating a Dispatch object see Creating a
Dispatch object on page 281.

278

Using Raw XML Messages

Data Types

Overview Because Dispatch objects are low-level objects, they are not optimized for
using the same JAXB generated types as the higher level consumer APIs.
Dispatch objects work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

• JAXB

Using Source objects A Dispatch object accepts and returns objects that are derived from the
javax.xml.transform.Source interface. Source objects are supported by
any binding, and in either message mode or payload mode.

Source objects are low level objects that hold XML documents. Each Source
implementation provides methods that access the stored XML documents
and then manipulate its contents. The following objects implement the Source
interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that are accessed using the

getNode() method. Nodes can be either updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that holds the raw data and an

XMLReader object that parses the raw data.

279

Data Types

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated the same as any other data stream.

Using SOAPMessage objects Dispatch objects can use javax.xml.soap.SOAPMessage objects when
the following conditions are true:

• The Dispatch object is using the SOAP binding

• The Dispatch object is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart
object and zero or more AttachmentPart objects. The SOAPPart object
contains the SOAP specific portions of the SOAP message including the SOAP
envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects Dispatch objects can use objects that implement the
javax.activation.DataSource interface when the following conditions
are true:

• The Dispatch object is using the HTTP binding

• The Dispatch object is using message mode

DataSource objects provide a mechanism for working with MIME typed data
from a variety of sources, including URLs, files, and byte arrays.

Using JAXB objects While Dispatch objects are intended to be low level APIs that allow you to
work with raw messages, they also allow you to work with JAXB objects. To
work with JAXB objects a Dispatch object must be passed a JAXBContext
that can marshal and unmarshal the JAXB objects in use. The JAXBContext
is passed when the Dispatch object is created.

You can pass any JAXB object understood by the JAXBContext object as the
parameter to the invoke() method. You can also cast the returned message
into any JAXB object understood by the JAXBContext object.

For information on creating a JAXBContext object see Using A JAXBContext
Object on page 255.

280

Using Raw XML Messages

Working with Dispatch Objects

Procedure To use a Dispatch object to invoke a remote service the following sequence
should be followed:

1. Create a Dispatch object.

2. Construct a request message.

3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element that

defines the service on which the Dispatch object will make invocations.

See Creating a Service Object on page 54.

2. Create the Dispatch object using the Service object's

createDispatch() method, shown in Example 177 on page 281.

Example 177. The createDispatch() Method

public Dispatch<T> createDispatch(QName portName,
java.lang.Class<T> type,
Service.Mode mode)

throws WebServiceException;

Note
If you are using JAXB objects the method signature for
createDispatch() is:

public Dispatch<T> createDispatch(QName portName,
javax.xml.bind.JAXBContext context,
Service.Mode mode)

throws WebServiceException;

281

Working with Dispatch Objects

Table 25 on page 282 describes the parameters for the
createDispatch() method.

Table 25. Parameters for createDispatch()

DescriptionParameter

Specifies the QName of the wsdl:port element that represents the service provider where the

Dispatch object will make invocations.

portName

Specifies the data type of the objects used by the Dispatch object. See Data Types on page 279.type

When working with JAXB objects, this parameter specifies the JAXBContext object used to marshal
and unmarshal the JAXB objects.

Specifies the usage mode for the Dispatch object. See Usage Modes on page 277.mode

Example 178 on page 282 shows the code for creating a Dispatch object
that works with DOMSource objects in payload mode.

Example 178. Creating a Dispatch Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
Service s = Service.create(serviceName);

QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
Dispatch<DOMSource> dispatch = s.createDispatch(portName,

DOMSource.class,
Service.Mode.PAYLOAD);

...

Constructing request messages When working with Dispatch objects, requests must be built from scratch.
The developer is responsible for ensuring that the messages passed to a
Dispatch object match a request that the targeted service provider can
process. This requires precise knowledge about the messages used by the
service provider and what, if any, header information it requires.

282

Using Raw XML Messages

This information can be provided by a WSDL document or an XML Schema
document that defines the messages. While service providers vary greatly
there are a few guidelines to be followed:

• The root element of the request is based in the value of the name attribute

of the wsdl:operation element corresponding to the operation being

invoked.

Warning
If the service being invoked uses doc/literal bare messages, the
root element of the request is based on the value of the name
attribute of the wsdl:part element referred to by the
wsdl:operation element.

• The root element of the request is namespace qualified.

• If the service being invoked uses rpc/literal messages, the top-level elements
in the request will not be namespace qualified.

Important
The children of top-level elements may be namespace qualified.
To be certain you must check their schema definitions.

• If the service being invoked uses rpc/literal messages, none of the top-level
elements can be null.

• If the service being invoked uses doc/literal messages, the schema definition
of the message determines if any of the elements are namespace qualified.

For more information about how services use XML messages see, the WS-I
Basic Profile1.

Synchronous invocation For consumers that make synchronous invocations that generate a response,
use the Dispatch object's invoke() method shown in
Example 179 on page 284.

1 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

283

Working with Dispatch Objects

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Example 179. The Dispatch.invoke() Method

T invoke(T msg)
throws WebServiceException;

The type of both the response and the request passed to the invoke() method
are determined when the Dispatch object is created. For example if you
create a Dispatch object using createDispatch(portName,
SOAPMessage.class, Service.Mode.MESSAGE), both the response and
the request are SOAPMessage objects.

Note
When using JAXB objects, both the response and the request can
be of any type the provided JAXBContext object can marshal and
unmarshal. Also, the response and the request can be different JAXB
objects.

Example 180 on page 284 shows code for making a synchronous invocation
on a remote service using a DOMSource object.

Example 180. Making a Synchronous Invocation Using a Dispatch Object

// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root = requestDoc.createElementNS("http://org.apache.cxf/stockExample",

"getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Asynchronous invocation Dispatch objects also support asynchronous invocations. As with the higher
level asynchronous APIs discussed in Developing Asynchronous
Applications on page 259, Dispatch objects can use both the polling approach
and the callback approach.

When using the polling approach, the invokeAsync() method returns a
Response<t> object that can be polled to see if the response has arrived.
Example 181 on page 285 shows the signature of the method used to make
an asynchronous invocation using the polling approach.

284

Using Raw XML Messages

Example 181. The Dispatch.invokeAsync() Method for Polling

Response <T> invokeAsync(T msg)
throws WebServiceException;

For detailed information on using the polling approach for asynchronous
invocations see Implementing an Asynchronous Client with the Polling
Approach on page 266.

When using the callback approach, the invokeAsync() method takes an
AsyncHandler implementation that processes the response when it is
returned. Example 182 on page 285 shows the signature of the method used
to make an asynchronous invocation using the callback approach.

Example 182. The Dispatch.invokeAsync() Method Using a Callback

Future<?> invokeAsync(T msg,
AsyncHandler<T> handler)

throws WebServiceException;

For detailed information on using the callback approach for asynchronous
invocations see Implementing an Asynchronous Client with the Callback
Approach on page 269.

Note
As with the synchronous invoke() method, the type of the response
and the type of the request are determined when you create the
Dispatch object.

Oneway invocation When a request does not generate a response, make remote invocations using
the Dispatch object's invokeOneWay(). Example 183 on page 285 shows
the signature for this method.

Example 183. The Dispatch.invokeOneWay() Method

void invokeOneWay(T msg)
throws WebServiceException;

The type of object used to package the request is determined when the
Dispatch object is created. For example if the Dispatch object is created
using createDispatch(portName, DOMSource.class,
Service.Mode.PAYLOAD), then the request is packaged into a DOMSource
object.

285

Working with Dispatch Objects

Note
When using JAXB objects, the response and the request can be of
any type the provided JAXBContext object can marshal and
unmarshal.

Example 184 on page 286 shows code for making a oneway invocation on a
remote service using a JAXB object.

Example 184. Making a One Way Invocation Using a Dispatch Object

// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc = JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk
File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

// Dispatch disp created previously
disp.invokeOneWay(request);

286

Using Raw XML Messages

Using XML in a Service Provider
Messaging Modes .. 288
Data Types ... 290
Implementing a Provider Object .. 292

The Provider interface is a low-level JAX-WS API that allows you to
implement a service provider that works directly with messages as raw XML.
The messages are not packaged into JAXB objects before being passed to an
object that implements the Provider interface.

287

Using XML in a Service Provider

Messaging Modes

Overview Objects that implement the Provider interface have two messaging modes:

• Message mode

• Payload mode

The messaging mode you specify determines the level of messaging detail
that is passed to your implementation.

Message mode When using message mode, a Provider implementation works with complete
messages. A complete message includes any binding specific headers and
wrappers. For example, a Provider implementation that uses a SOAP binding
receives requests as fully specified SOAP message. Any response returned
from the implementation must be a fully specified SOAP message.

To specify that a Provider implementation uses message mode by provide
the value java.xml.ws.Service.Mode.MESSAGE as the value to the
javax.xml.ws.ServiceMode annotation, as shown in
Example 185 on page 288.

Example 185. Specifying that a Provider Implementation Uses Message
Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements Provider<SOAPMes
sage>
{
...

}

Payload mode In payload mode a Provider implementation works with only the payload
of a message. For example, a Provider implementation working in payload
mode works only with the body of a SOAP message. The binding layer
processes any binding level wrappers and headers.

288

Using Raw XML Messages

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

To specify that a Provider implementation uses payload mode by provide
the value java.xml.ws.Service.Mode.PAYLOAD as the value to the
javax.xml.ws.ServiceMode annotation, as shown in
Example 186 on page 289.

Example 186. Specifying that a Provider Implementation Uses Payload
Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class stockQuoteProvider implements Provider<DOMSource>
{
...

}

Tip
If you do not provide a value for the @ServiceMode annotation, the
Provider implementation uses payload mode.

289

Messaging Modes

Data Types

Overview Because they are low-level objects, Provider implementations cannot use
the same JAXB generated types as the higher level consumer APIs. Provider
implementations work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

Using Source objects A Provider implementation can accept and return objects that are derived
from the javax.xml.transform.Source interface. Source objects are low
level objects that hold XML documents. Each Source implementation provides
methods that access the stored XML documents and manipulate its contents.
The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that are accessed using the

getNode() method. Nodes can be either updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that holds the raw data and an

XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated the same as any other data stream.

Important
When using Source objects the developer is responsible for ensuring
that all required binding specific wrappers are added to the message.
For example, when interacting with a service expecting SOAP

290

Using Raw XML Messages

messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP
envelope's contents are correct.

Using SOAPMessage objects Provider implementations can use javax.xml.soap.SOAPMessage objects
when the following conditions are true:

• The Provider implementation is using the SOAP binding

• The Provider implementation is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart
object and zero or more AttachmentPart objects. The SOAPPart object
contains the SOAP specific portions of the SOAP message including the SOAP
envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects Provider implementations can use objects that implement the
javax.activation.DataSource interface when the following conditions
are true:

• The implementation is using the HTTP binding

• The implementation is using message mode

DataSource objects provide a mechanism for working with MIME typed data
from a variety of sources, including URLs, files, and byte arrays.

291

Data Types

Implementing a Provider Object

Overview The Provider interface is relatively easy to implement. It only has one
method, invoke(), that must be implemented. In addition it has three simple
requirements:

• An implementation must have the @WebServiceProvider annotation.

• An implementation must have a default public constructor.

• An implementation must implement a typed version of the Provider

interface.

In other words, you cannot implement a Provider<T> interface. You must
implement a version of the interface that uses a concrete data type as listed
in Data Types on page 290. For example, you can implement an instance
of a Provider<SAXSource>.

The complexity of implementing the Provider interface is in the logic handling
the request messages and building the proper responses.

Working with messages Unlike the higher-level SEI based service implementations, Provider
implementations receive requests as raw XML data, and must send responses
as raw XML data. This requires that the developer has intimate knowledge
of the messages used by the service being implemented. These details can
typically be found in the WSDL document describing the service.

WS-I Basic Profile2 provides guidelines about the messages used by services,
including:

• The root element of a request is based in the value of the name attribute

of the wsdl:operation element that corresponds to the operation that is

invoked.

Warning
If the service uses doc/literal bare messages, the root element of
the request is based on the value of name attribute of the
wsdl:part element referred to by the wsdl:operation element.

2 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

292

Using Raw XML Messages

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

• The root element of all messages is namespace qualified.

• If the service uses rpc/literal messages, the top-level elements in the
messages are not namespace qualified.

Important
The children of top-level elements might be namespace qualified,
but to be certain you will must check their schema definitions.

• If the service uses rpc/literal messages, none of the top-level elements can
be null.

• If the service uses doc/literal messages, then the schema definition of the
message determines if any of the elements are namespace qualified.

The @WebServiceProvider
annotation

To be recognized by JAX-WS as a service implementation, a Provider
implementation must be decorated with the @WebServiceProvider
annotation.

Table 26 on page 293 describes the properties that can be set for the
@WebServiceProvider annotation.

Table 26. @WebServiceProvider Properties

DescriptionProperty

Specifies the value of the name attribute of the wsdl:port element that defines the service's

endpoint.

portName

Specifies the value of the name attribute of the wsdl:service element that contains the service's

endpoint.

serviceName

Specifies the targetname space of the service's WSDL definition.targetNamespace

Specifies the URI for the WSDL document defining the service.wsdlLocation

293

Implementing a Provider Object

All of these properties are optional, and are empty by default. If you leave
them empty, Artix ESB creates values using information from the
implementation class.

Implementing the invoke()
method

The Provider interface has only one method, invoke(), that must be
implemented. The invoke() method receives the incoming request packaged
into the type of object declared by the type of Provider interface being
implemented, and returns the response message packaged into the same
type of object. For example, an implementation of a Provider<SOAPMessage>
interface receives the request as a SOAPMessage object and returns the
response as a SOAPMessage object.

The messaging mode used by the Provider implementation determines the
amount of binding specific information the request and the response messages
contain. Implementations using message mode receive all of the binding
specific wrappers and headers along with the request. They must also add
all of the binding specific wrappers and headers to the response message.
Implementations using payload mode only receive the body of the request.
The XML document returned by an implementation using payload mode is
placed into the body of the request message.

Examples Example 187 on page 294 shows a Provider implementation that works
with SOAPMessage objects in message mode.

Example 187. Provider<SOAPMessage> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")

❷@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements Provider<SOAPMessage>
{
❸public stockQuoteReporterProvider()
{
}

❹public SOAPMessage invoke(SOAPMessage request)
{

❺ SOAPBody requestBody = request.getSOAPBody();
❻ if(requestBody.getElementName.getLocalName.equals("getStockPrice"))

294

Using Raw XML Messages

{
❼ MessageFactory mf = MessageFactory.newInstance();

SOAPFactory sf = SOAPFactory.newInstance();

❽ SOAPMessage response = mf.createMessage();
SOAPBody respBody = response.getSOAPBody();
Name bodyName = sf.createName("getStockPriceResponse");
respBody.addBodyElement(bodyName);
SOAPElement respContent = respBody.addChildElement("price");
respContent.setValue("123.00");
response.saveChanges();

❾ return response;
}
...

}
}

The code in Example 187 on page 294 does the following:

❶ Specifies that the following class implements a Provider object that

implements the service whose wsdl:service element is named

stockQuoteReporter, and whose wsdl:port element is named

stockQuoteReporterPort.
❷ Specifies that this Provider implementation uses message mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

SOAPMessage object and returns a SOAPMessage object.

❺ Extracts the request message from the body of the incoming SOAP
message.

❻ Checks the root element of the request message to determine how to
process the request.

❼ Creates the factories required for building the response.

❽ Builds the SOAP message for the response.

❾ Returns the response as a SOAPMessage object.

Example 188 on page 295 shows an example of a Provider implementation
using DOMSource objects in payload mode.

Example 188. Provider<DOMSource> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;

295

Implementing a Provider Object

import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort" servi
ceName="stockQuoteReporter")
❷@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements Pro
vider<DOMSource>
❸public stockQuoteReporterProvider()
{
}

❹public DOMSource invoke(DOMSource request)
{
DOMSource response = new DOMSource();
...
return response;

}
}

The code in Example 188 on page 295 does the following:

❶ Specifies that the class implements a Provider object that implements

the service whose wsdl:service element is named stockQuoteReporter,

and whose wsdl:port element is named stockQuoteReporterPort.

❷ Specifies that this Provider implementation uses payload mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

DOMSource object and returns a DOMSource object.

296

Using Raw XML Messages

Working with Contexts
JAX-WS uses contexts to pass metadata along the messaging chain. This metadata, depending on its scope, is
accessible to implementation level code. It is also accessible to JAX-WS handlers that operate on the message
below the implementation level.

Understanding Contexts ... 298
Working with Contexts in a Service Implementation .. 302
Working with Contexts in a Consumer Implementation .. 309
Working with JMS Message Properties .. 313

Inspecting JMS Message Headers .. 314
Inspecting the Message Header Properties .. 316
Setting JMS Properties .. 318

297

Understanding Contexts

Overview In many instances it is necessary to pass information about a message to
other parts of an application. Artix ESB does this using a context mechanism.
Contexts are maps that hold properties relating to an outgoing or an incoming
message. The properties stored in the context are typically metadata about
the message, and the underlying transport used to communicate the message.
For example, the transport specific headers used in transmitting the message,
such as the HTTP response code or the JMS correlation ID, are stored in the
JAX-WS contexts.

The contexts are available at all levels of a JAX-WS application. However,
they differ in subtle ways depending upon where in the message processing
stack you are accessing the context. JAX-WS Handler implementations have
direct access to the contexts and can access all properties that are set in
them. Service implementations access contexts by having them injected, and
can only access properties that are set in the APPLICATION scope. Consumer
implementations can only access properties that are set in the APPLICATION
scope.

Figure 1 on page 299 shows how the context properties pass through Artix
ESB. As a message passes through the messaging chain, its associated
message context passes along with it.

298

Working with Contexts

Figure 1. Message Contexts and Message Processing Path

How properties are stored in a
context

The message contexts are all implementations of the
javax.xml.ws.handler.MessageContext interface. The MessageContext
interface extends the java.util.Map<String key, Object value>
interface. Map objects store information as key value pairs.

In a message context, properties are stored as name/value pairs. A property's
key is a String that identifies the property. The value of a property can be
any value stored in any Java object. When the value is returned from a
message context, the application must know the type to expect and cast
accordingly. For example, if a property's value is stored in a UserInfo object
it is still returned from a message context as an Object object that must be
cast back into a UserInfo object.

299

Understanding Contexts

Properties in a message context also have a scope. The scope determines
where a property can be accessed in the message processing chain.

Property scopes Properties in a message context are scoped. A property can be in one of the
following scopes:

APPLICATION

Properties scoped as APPLICATION are available to JAX-WS Handler

implementations, consumer implementation code, and service provider
implementation code. If a handler needs to pass a property to the service
provider implementation, it sets the property's scope to APPLICATION.

All properties set from either the consumer implementation or the service
provider implementation contexts are automatically scoped as
APPLICATION.

HANDLER

Properties scoped as HANDLER are only available to JAX-WS Handler

implementations. Properties stored in a message context from a Handler

implementation are scoped as HANDLER by default.

You can change a property's scope using the message context's setScope()
method. Example 189 on page 300 shows the method's signature.

Example 189. The MessageContext.setScope() Method

void setScope(String key,
MessageContext.Scope scope)

throws java.lang.IllegalArgumentException;

The first parameter specifies the property's key. The second parameter specifies
the new scope for the property. The scope can be either:

• MessageContext.Scope.APPLICATION

• MessageContext.Scope.HANDLER

Overview of contexts in handlers Classes that implement the JAX-WS Handler interface have direct access to
a message's context information. The message's context information is passed
into the Handler implementation's handleMessage(), handleFault(),
and close() methods.

300

Working with Contexts

Handler implementations have access to all of the properties stored in the
message context, regardless of their scope. In addition, logical handlers use
a specialized message context called a LogicalMessageContext.
LogicalMessageContext objects have methods that access the contents of
the message body.

Overview of contexts in service
implementations

Service implementations can access properties scoped as APPLICATION from
the message context. The service provider's implementation object accesses
the message context through the WebServiceContext object.

For more information see Working with Contexts in a Service
Implementation on page 302.

Overview of contexts in consumer
implementations

Consumer implementations have indirect access to the contents of the message
context. The consumer implementation has two separate message contexts:

• Request context — holds a copy of the properties used for outgoing requests

• Response context — holds a copy of the properties from an incoming
response

The dispatch layer transfers the properties between the consumer
implementation's message contexts and the message context used by the
Handler implementations.

When a request is passed to the dispatch layer from the consumer
implementation, the contents of the request context are copied into the
message context that is used by the dispatch layer. When the response is
returned from the service, the dispatch layer processes the message and sets
the appropriate properties into its message context. After the dispatch layer
processes a response, it copies all of the properties scoped as APPLICATION
in its message context to the consumer implementation's response context.

For more information see Working with Contexts in a Consumer
Implementation on page 309.

301

Understanding Contexts

Working with Contexts in a Service Implementation

Overview Context information is made available to service implementations using the
WebServiceContext interface. From the WebServiceContext object you
can obtain a MessageContext object that is populated with the current
request's context properties in the application scope. You can manipulate the
values of the properties, and they are propagated back through the response
chain.

Note
The MessageContext interface inherits from the java.util.Map
interface. Its contents can be manipulated using the Map interface's
methods.

Obtaining a context To obtain the message context in a service implementation do the following:

1. Declare a variable of type WebServiceContext.

2. Decorate the variable with the javax.annotation.Resource annotation
to indicate that the context information is being injected into the variable.

3. Obtain the MessageContext object from the WebServiceContext object
using the getMessageContext() method.

Important
getMessageContext() can only be used in methods that are
decorated with the @WebMethod annotation.

Example 190 on page 302 shows code for obtaining a context object.

Example 190. Obtaining a Context Object in a Service Implementation

import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

@WebServiceProvider
public class WidgetServiceImpl
{

302

Working with Contexts

@Resource
WebServiceContext wsc;

@WebMethod
public String getColor(String itemNum)
{
MessageContext context = wsc.getMessageContext();

}

...
}

Reading a property from a context Once you have obtained the MessageContext object for your implementation,
you can access the properties stored there using the get() method shown
in Example 191 on page 303.

Example 191. The MessageContext.get() Method

V get(Object key);

Note
This get() is inherited from the Map interface.

The key parameter is the string representing the property you want to retrieve
from the context. The get() returns an object that must be cast to the proper
type for the property. Table 27 on page 304 lists a number of the properties
that are available in a service implementation's context.

Important
Changing the values of the object returned from the context also
changes the value of the property in the context.

Example 192 on page 303 shows code for getting the name of the WSDL
operation element that represents the invoked operation.

Example 192. Getting a Property from a Service's Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example

303

Working with Contexts in a Service Implementation

QName wsdl_operation = (QName)context.get(Message.WSDL_OPER
ATION);

Setting properties in a context Once you have obtained the MessageContext object for your implementation,
you can set properties, and change existing properties, using the put()
method shown in Example 193 on page 304.

Example 193. The MessageContext.put() Method

V put(K key,
V value)

throws ClassCastException, IllegalArgumentException, NullPointerException;

If the property being set already exists in the message context, the put()
method replaces the existing value with the new value and returns the old
value. If the property does not already exist in the message context, the put()
method sets the property and returns null.

Example 194 on page 304 shows code for setting the response code for an
HTTP request.

Example 194. Setting a Property in a Service's Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example
context.put(Message.RESPONSE_CODE, new Integer(404));

Supported contexts Table 27 on page 304 lists the properties accessible through the context in a
service implementation object.

Table 27. Properties Available in the Service Implementation Context

Base Class

DescriptionProperty Name

org.apache.cxf.message.Message

Specifies the transport specific header information. The value is stored as a
java.util.Map<String, List<String>>.

PROTOCOL_HEADERS
a

304

Working with Contexts

Base Class

DescriptionProperty Name

Specifies the response code returned to the consumer. The value is stored
as an Integer object.

RESPONSE_CODE
a

Specifies the address of the service provider. The value is stored as a String.ENDPOINT_ADDRESS

Specifies the HTTP verb sent with a request. The value is stored as a String.HTTP_REQUEST_METHOD
a

Specifies the path of the resource being requested. The value is stored as a
String.

PATH_INFO
a

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URI is
http://cxf.apache.org/demo/widgets the path is /demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is stored as a String.

QUERY_STRING
a

Queries appear at the end of the URI after a ?. For example, if a request is
made to http://cxf.apache.org/demo/widgets?color the query is
color.

Specifies whether or not the service provider can use MTOM for SOAP
attachments. The value is stored as a Boolean.

MTOM_ENABLED

Specifies whether or not the service provider validates messages against a
schema. The value is stored as a Boolean.

SCHEMA_VALIDATION_ENABLED

Specifies if the runtime provides a stack trace along with a fault message.
The value is stored as a Boolean.

FAULT_STACKTRACE_ENABLED

Specifies the MIME type of the message. The value is stored as a String.CONTENT_TYPE

Specifies the path of the resource being requested. The value is stored as a
java.net.URL.

BASE_PATH

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the base path is /demo/widgets.

Specifies the encoding of the message. The value is stored as a String.ENCODING

Specifies whether the parameters must appear in the message in a particular
order. The value is stored as a Boolean.

FIXED_PARAMETER_ORDER

305

Working with Contexts in a Service Implementation

Base Class

DescriptionProperty Name

Specifies if the consumer wants to maintain the current session for future
requests. The value is stored as a Boolean.

MAINTAIN_SESSION

Specifies the WSDL document that defines the service being implemented.
The value is stored as a org.xml.sax.InputSource object.

WSDL_DESCRIPTION
a

Specifies the qualified name of the wsdl:service element that defines the

service being implemented. The value is stored as a QName.

WSDL_SERVICE
a

Specifies the qualified name of the wsdl:port element that defines the

endpoint used to access the service. The value is stored as a QName.

WSDL_PORT
a

Specifies the qualified name of the wsdl:portType element that defines

the service being implemented. The value is stored as a QName.

WSDL_INTERFACE
a

Specifies the qualified name of the wsdl:operation element that

corresponds to the operation invoked by the consumer. The value is stored
as a QName.

WSDL_OPERATION
a

javax.xml.ws.handler.MessageContext

Specifies if a message is outbound. The value is stored as a Boolean. true

specifies that a message is outbound.

MESSAGE_OUTBOUND_PROPERTY

Contains any attachments included in the request message. The value is
stored as a java.util.Map<String, DataHandler>.

INBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

Contains any attachments for the response message. The value is stored as
a java.util.Map<String, DataHandler>.

OUTBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

Specifies the WSDL document that defines the service being implemented.
The value is stored as a org.xml.sax.InputSource object.

WSDL_DESCRIPTION

Specifies the qualified name of the wsdl:service element that defines the

service being implemented. The value is stored as a QName.

WSDL_SERVICE

Specifies the qualified name of the wsdl:port element that defines the

endpoint used to access the service. The value is stored as a QName.

WSDL_PORT

306

Working with Contexts

Base Class

DescriptionProperty Name

Specifies the qualified name of the wsdl:portType element that defines

the service being implemented. The value is stored as a QName.

WSDL_INTERFACE

Specifies the qualified name of the wsdl:operation element that

corresponds to the operation invoked by the consumer. The value is stored
as a QName.

WSDL_OPERATION

Specifies the response code returned to the consumer. The value is stored
as an Integer object.

HTTP_RESPONSE_CODE

Specifies the HTTP headers on a request. The value is stored as a
java.util.Map<String, List<String>>.

HTTP_REQUEST_HEADERS

Specifies the HTTP headers for the response. The value is stored as a
java.util.Map<String, List<String>>.

HTTP_RESPONSE_HEADERS

Specifies the HTTP verb sent with a request. The value is stored as a String.HTTP_REQUEST_METHOD

Contains the servlet's request object. The value is stored as a
javax.servlet.http.HttpServletRequest.

SERVLET_REQUEST

Contains the servlet's response object. The value is stored as a
javax.servlet.http.HttpResponse.

SERVLET_RESPONSE

Contains the servlet's context object. The value is stored as a
javax.servlet.ServletContext.

SERVLET_CONTEXT

Specifies the path of the resource being requested. The value is stored as a
String.

PATH_INFO

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path is /demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is stored as a String.

QUERY_STRING

Queries appear at the end of the URI after a ?. For example, if a request is
made to http://cxf.apache.org/demo/widgets?color the query string
is color.

307

Working with Contexts in a Service Implementation

Base Class

DescriptionProperty Name

Specifies the WS-Addressing reference parameters. This includes all of the
SOAP headers whose wsa:IsReferenceParameter attribute is set to true.

The value is stored as a java.util.List.

REFERENCE_PARAMETERS

org.apache.cxf.transport.jms.JMSConstants

Contains the JMS message headers. For more information see Working with
JMS Message Properties on page 313.

JMS_SERVER_HEADERS

aWhen using HTTP this property is the same as the standard JAX-WS defined property.

308

Working with Contexts

Working with Contexts in a Consumer Implementation

Overview Consumer implementations have access to context information through the
BindingProvider interface. The BindingProvider instance holds context
information in two separate contexts:

Request Context

The request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port
instance and, once set, the properties affect every subsequent operation
invocation made on the port, until such time as a property is explicitly
cleared. For example, you might use a request context property to set a
connection timeout or to initialize data for sending in a header.

Response Context

The response context enables you to read the property values set by the
response to the last operation invocation made from the current thread.
Response context properties are reset after every operation invocation.
For example, you might access a response context property to read header
information received from the last inbound message.

Important
Only information that is placed in the application scope of a message
context can be accessed by the consumer implementation.

Obtaining a context Contexts are obtained using the javax.xml.ws.BindingProvider interface.
The BindingProvider interface has two methods for obtaining a context:

getRequestContext()

The getRequestContext() method, shown in
Example 195 on page 309, returns the request context as a Map object.
The returned Map object can be used to directly manipulate the contents
of the context.

Example 195. The getRequestContext() Method

Map<String, Object> getRequestContext();

309

Working with Contexts in a Consumer Implementation

getResponseContext()

The getResponseContext(), shown in Example 196 on page 310,
returns the response context as a Map object. The returned Map object's
contents reflect the state of the response context's contents from the
most recent successful request on a remote service made in the current
thread.

Example 196. The getResponseContext() Method

Map<String, Object> getResponseContext();

Since proxy objects implement the BindingProvider interface, a
BindingProvider object can be obtained by casting a proxy object. The
contexts obtained from the BindingProvider object are only valid for
operations invoked on the proxy object used to create it.

Example 197 on page 310 shows code for obtaining the request context for
a proxy.

Example 197. Getting a Consumer's Request Context

// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy;
Map<String, Object> responseContext = bp.getResponseContext();

Reading a property from a context Consumer contexts are stored in java.util.Map<String, Object> objects.
The map has keys that are String objects and values that contain arbitrary
objects. Use java.util.Map.get() to access an entry in the map of response
context properties.

To retrieve a particular context property, ContextPropertyName, use the
code shown in Example 198 on page 310.

Example 198. Reading a Response Context Property

// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =

310

Working with Contexts

((javax.xml.ws.BindingProvider)port).getResponseContext();
PropertyType propValue = (PropertyType) responseContext.get(ContextPropertyName);

Setting properties in a context Consumer contexts are hash maps stored in java.util.Map<String,
Object> objects. The map has keys that are String objects and values that
are arbitrary objects. To set a property in a context use the
java.util.Map.put() method.

Tip
While you can set properties in both the request context and the
response context, only the changes made to the request context have
any impact on message processing. The properties in the response
context are reset when each remote invocation is completed on the
current thread.

The code shown in Example 199 on page 311 changes the address of the
target service provider by setting the value of the
BindingProvider.ENDPOINT_ADDRESS_PROPERTY.

Example 199. Setting a Request Context Property

// Set request context property.
java.util.Map<String, Object> requestContext =

((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/wid
gets");

// Invoke an operation.
port.SomeOperation();

Important
Once a property is set in the request context its value is used for all
subsequent remote invocations. You can change the value and the
changed value will then be used.

Supported contexts Artix ESB supports the following context properties in consumer
implementations:

311

Working with Contexts in a Consumer Implementation

Table 28. Consumer Context Properties

Base Class

DescriptionProperty Name

javax.xml.ws.BindingProvider

Specifies the address of the target service. The value is stored as a String.ENDPOINT_ADDRESS_PROPERTY

Specifies the username used for HTTP basic authentication. The value is
stored as a String.

USERNAME_PROPERTY
a

Specifies the password used for HTTP basic authentication. The value is
stored as a String.

PASSWORD_PROPERTY
b

Specifies if the client wants to maintain session information. The value is
stored as a Boolean object.

SESSION_MAINTAIN_PROPERTY
c

org.apache.cxf.ws.addressing.JAXWSAConstants

Specifies the WS-Addressing information used by the consumer to contact
the desired service provider. The value is stored as a
org.apache.cxf.ws.addressing.AddressingProperties.

CLIENT_ADDRESSING_PROPERTIES

org.apache.cxf.transports.jms.context.JMSConstants

Contains the JMS headers for the message. For more information see Working
with JMS Message Properties on page 313.

JMS_CLIENT_REQUEST_HEADERS

aThis property is overridden by the username defined in the HTTP security settings.
bThis property is overridden by the password defined in the HTTP security settings.
cThe Artix ESB ignores this property.

312

Working with Contexts

Working with JMS Message Properties
Inspecting JMS Message Headers .. 314
Inspecting the Message Header Properties .. 316
Setting JMS Properties .. 318

The Artix ESB JMS transport has a context mechanism that can be used to
inspect a JMS message's properties. The context mechanism can also be used
to set a JMS message's properties.

313

Working with JMS Message Properties

Inspecting JMS Message Headers
Consumers and services use different context mechanisms to access the JMS
message header properties. However, both mechanisms return the header
properties as a
org.apache.cxf.transports.jms.context.JMSMessageHeadersType
object.

Getting the JMSMessage Headers
in a Service

To get the JMS message header properties from the WebServiceContext
object, do the following:

1. Obtain the context as described in Obtaining a context on page 302.

2. Get the message headers from the message context using the message
context's get() method with the parameter

org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.

Example 200 on page 314 shows code for getting the JMS message headers
from a service's message context:

Example 200. Getting JMS Message Headers in a Service Implementation

import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

@WebService(serviceName = "HelloWorldService",
portName = "HelloWorldPort",
endpointInterface = "org.apache.cxf.hello_world_jms.HelloWorld

PortType",
targetNamespace = "http://cxf.apache.org/hello_world_jms")

public class GreeterImplTwoWayJMS implements HelloWorldPortType
{
@Resource
protected WebServiceContext wsContext;
...

@WebMethod
public String greetMe(String me)
{
MessageContext mc = wsContext.getMessageContext();
JMSMessageHeadersType headers = (JMSMessageHeadersType) mc.get(JMSConstants.JMS_SERV

ER_HEADERS);
...

}

314

Working with Contexts

...
}

Getting JMS Message Header
Properties in a Consumer

Once a message is successfully retrieved from the JMS transport you can
inspect the JMS header properties using the consumer's response context. In
addition, you can see how long the client waits for a response before timing
out.

You can To get the JMS message headers from a consumer's response context
do the following:

1. Get the response context as described in Obtaining a context on page 309.

2. Get the JMS message header properties from the response context using
the context's get() method with

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS

as the parameter.

Example 201 on page 315 shows code for getting the JMS message header
properties from a consumer's response context.

Example 201. Getting the JMS Headers from a Consumer Response Header

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶BindingProvider bp = (BindingProvider)greeter;
❷Map<String, Object> responseContext = bp.getResponseContext();
❸JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)

responseContext.get(JMSConstants.JMS_CLIENT_REQUEST_HEADERS);
...
}

The code in Example 201 on page 315 does the following:

❶ Casts the proxy to a BindingProvider.

❷ Gets the response context.

❸ Retrieves the JMS message headers from the response context.

315

Inspecting JMS Message Headers

Inspecting the Message Header Properties

Standard JMS Header Properties Table 29 on page 316 lists the standard properties in the JMS header that
you can inspect.

Table 29. JMS Header Properties

Getter MethodProperty TypeProperty Name

getJMSCorralationID()stringCorrelation ID

getJMSDeliveryMode()intDelivery Mode

getJMSExpiration()longMessage Expiration

getJMSMessageID()stringMessage ID

getJMSPriority()intPriority

getJMSRedlivered()booleanRedelivered

getJMSTimeStamp()longTime Stamp

getJMSType()stringType

getTimeToLive()longTime To Live

Optional Header Properties In addition, you can inspect any optional properties stored in the JMS header
using JMSMessageHeadersType.getProperty(). The optional properties
are returned as a List of
org.apache.cxf.transports.jms.context.JMSPropertyType. Optional
properties are stored as name/value pairs.

Example Example 202 on page 316 shows code for inspecting some of the JMS
properties using the response context.

Example 202. Reading the JMS Header Properties

// JMSMessageHeadersType messageHdr retrieved previously
❶System.out.println("Correlation ID: "+messageHdr.getJMSCorrelationID());
❷System.out.println("Message Priority: "+messageHdr.getJMSPriority());
❸System.out.println("Redelivered: "+messageHdr.getRedelivered());

JMSPropertyType prop = null;

316

Working with Contexts

❹List<JMSPropertyType> optProps = messageHdr.getProperty();
❺Iterator<JMSPropertyType> iter = optProps.iterator();
❻while (iter.hasNext())
{
prop = iter.next();
System.out.println("Property name: "+prop.getName());
System.out.println("Property value: "+prop.getValue());

}

The code in Example 202 on page 316 does the following:

❶ Prints the value of the message's correlation ID.

❷ Prints the value of the message's priority property.

❸ Prints the value of the message's redelivered property.

❹ Gets the list of the message's optional header properties.

❺ Gets an Iterator to traverse the list of properties.

❻ Iterates through the list of optional properties and prints their name and
value.

317

Inspecting the Message Header Properties

Setting JMS Properties
Using the request context in a consumer endpoint, you can set a number of
the JMS message header properties and the consumer endpoint's timeout
value. These properties are valid for a single invocation. You must reset them
each time you invoke an operation on the service proxy.

Note
You cannot set header properties in a service.

JMS Header Properties Table 30 on page 318 lists the properties in the JMS header that can be set
using the consumer endpoint's request context.

Table 30. Settable JMS Header Properties

Setter MethodProperty TypeProperty Name

setJMSCorralationID()stringCorrelation ID

setJMSDeliveryMode()intDelivery Mode

setJMSPriority()intPriority

setTimeToLive()longTime To Live

To set these properties do the following:

1. Create an
org.apache.cxf.transports.jms.context.JMSMessageHeadersType

object.

2. Populate the values you want to set using the appropriate setter methods
described in Table 30 on page 318.

3. Set the values to the request context by calling the request context's
put() method using

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS

318

Working with Contexts

as the first argument, and the new JMSMessageHeadersType object as

the second argument.

Optional JMS Header Properties You can also set optional properties to the JMS header. Optional JMS header
properties are stored in the JMSMessageHeadersType object that is used to
set the other JMS header properties. They are stored as a List object
containing org.apache.cxf.transports.jms.context.JMSPropertyType
objects. To add optional properties to the JMS header do the following:

1. Create a JMSPropertyType object.

2. Set the property's name field using setName().

3. Set the property's value field using setValue().

4. Add the property to the JMS message header using
JMSMessageHeadersType.getProperty().add(JMSPropertyType).

5. Repeat the procedure until all of the properties have been added to the
message header.

Client Receive Timeout In addition to the JMS header properties, you can set the amount of time a
consumer endpoint waits for a response before timing out. You set the value
by calling the request context's put() method with
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT
as the first argument and a long representing the amount of time in
milliseconds that you want the consumer to wait as the second argument.

Example Example 203 on page 319 shows code for setting some of the JMS properties
using the request context.

Example 203. Setting JMS Properties using the Request Context

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶InvocationHandler handler = Proxy.getInvocationHandler(greeter);

BindingProvider bp= null;
❷if (handler instanceof BindingProvider)

319

Setting JMS Properties

{
❸ bp = (BindingProvider)handler;
❹ Map<String, Object> requestContext = bp.getRequestContext();

❺ JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
❻ requestHdr.setJMSCorrelationID("WithBob");
❼ requestHdr.setJMSExpiration(3600000L);

❽ JMSPropertyType prop = new JMSPropertyType;
❾ prop.setName("MyProperty");
prop.setValue("Bluebird");

❿ requestHdr.getProperty().add(prop);

11 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS, requestHdr);

12 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new Long(1000));
}

The code in Example 203 on page 319 does the following:

❶ Gets the InvocationHandler for the proxy whose JMS properties you

want to change.
❷ Checks to see if the InvocationHandler is a BindingProvider.

❸ Casts the returned InvocationHandler object into a BindingProvider

object to retrieve the request context.
❹ Gets the request context.

❺ Creates a JMSMessageHeadersType object to hold the new message

header values.
❻ Sets the Correlation ID.

❼ Sets the Expiration property to 60 minutes.

❽ Creates a new JMSPropertyType object.

❾ Sets the values for the optional property.

❿ Adds the optional property to the message header.

11 Sets the JMS message header values into the request context.
12 Sets the client receive timeout property to 1 second.

320

Working with Contexts

Writing Handlers
JAX-WS provides a flexible plug-in framework for adding message processing modules to an application. These
modules, known as handlers, are independent of the application level code and can provide low-level message
processing capabilities.

Handlers: An Introduction .. 322
Implementing a Logical Handler .. 327
Handling Messages in a Logical Handler .. 328
Implementing a Protocol Handler ... 336
Handling Messages in a SOAP Handler .. 338
Initializing a Handler ... 343
Handling Fault Messages ... 344
Closing a Handler .. 346
Releasing a Handler ... 347
Configuring Endpoints to Use Handlers .. 348

Programmatic Configuration .. 349
Spring Configuration ... 354

321

Handlers: An Introduction

Overview When a service proxy invokes an operation on a service, the operation's
parameters are passed to Artix ESB where they are built into a message and
placed on the wire. When the message is received by the service, Artix ESB
reads the message from the wire, reconstructs the message, and then passes
the operation parameters to the application code responsible for implementing
the operation. When the application code is finished processing the request,
the reply message undergoes a similar chain of events on its trip to the service
proxy that originated the request. This is shown in Figure 2 on page 322.

Figure 2. Message Exchange Path

JAX-WS defines a mechanism for manipulating the message data between
the application level code and the network. For example, you might want the

322

Writing Handlers

message data passed over the open network to be encrypted using a
proprietary encryption mechanism. You could write a JAX-WS handler that
encrypted and decrypted the data. Then you could insert the handler into the
message processing chains of all clients and servers.

As shown in Figure 3 on page 324, the handlers are placed in a chain that is
traversed between the application level code and the transport code that
places the message onto the network.

323

Handlers: An Introduction

Figure 3. Message Exchange Path with Handlers

Handler types The JAX-WS specification defines two basic handler types:

Logical Handler

Logical handlers can process the message payload and the properties
stored in the message context. For example, if the application uses pure

324

Writing Handlers

XML messages, the logical handlers have access to the entire message.
If the application uses SOAP messages, the logical handlers have access
to the contents of the SOAP body. They do not have access to either the
SOAP headers or any attachments unless they were placed into the
message context.

Logical handlers are placed closest to the application code on the handler
chain. This means that they are executed first when a message is passed
from the application code to the transport. When a message is received
from the network and passed back to the application code, the logical
handlers are executed last.

Protocol Handler

Protocol handlers can process the entire message received from the
network and the properties stored in the message context. For example,
if the application uses SOAP messages, the protocol handlers would have
access to the contents of the SOAP body, the SOAP headers, and any
attachments.

Protocol handlers are placed closest to the transport on the handler chain.
This means that they are executed first when a message is received from
the network. When a message is sent to the network from the application
code, the protocol handlers are executed last.

Tip
The only protocol handler supported by Artix ESB is specific to
SOAP.

Implementation of handlers The differences between the two handler types are very subtle and they share
a common base interface. Because of their common parentage, logical handlers
and protocol handlers share a number of methods that must be implemented,
including:

handleMessage()

The handleMessage() method is the central method in any handler. It
is the method responsible for processing normal messages.

handleFault()

handleFault() is the method responsible for processing fault messages.

325

Handlers: An Introduction

close()

close() is called on all executed handlers in a handler chain when a
message has reached the end of the chain. It is used to clean up any
resources consumed during message processing.

The differences between the implementation of a logical handler and the
implementation of a protocol handler revolve around the following:

• The specific interface that is implemented

All handlers implement an interface that derives from the Handler interface.
Logical handlers implement the LogicalHandler interface. Protocol
handlers implement protocol specific extensions of the Handler interface.
For example, SOAP handlers implement the SOAPHandler interface.

• The amount of information available to the handler

Protocol handlers have access to the contents of messages and all of the
protocol specific information that is packaged with the message content.
Logical handlers can only access the contents of the message. Logical
handlers have no knowledge of protocol details.

Adding handlers to an application To add a handler to an application you must do the following:

1. Determine whether the handler is going to be used on the service
providers, the consumers, or both.

2. Determine which type of handler is the most appropriate for the job.

3. Implement the proper interface.

To implement a logical handler see Implementing a Logical
Handler on page 327.

To implement a protocol handler see Implementing a Protocol
Handler on page 336.

4. Configure on page 348 your endpoint(s) to use the handlers.

326

Writing Handlers

Implementing a Logical Handler

Overview Logical handlers implement the javax.xml.ws.handler.LogicalHandler
interface. The LogicalHandler interface, shown in Example 204 on page 327
passes a LogicalMessageContext object to the handleMessage() method
and the handleFault() method. The context object provides access to the
body of the message and to any properties set into the message exchange's
context.

Example 204. LogicalHandler Synopsis

public interface LogicalHandler extends Handler
{
boolean handleMessage(LogicalMessageContext context);
boolean handleFault(LogicalMessageContext context);
void close(LogicalMessageContext context);

}

Procedure To implement a logical hander you do the following:

1. Implement any initialization logic required by the handler.

2. Implement the message handling logic.

3. Implement the fault handling logic.

4. Implement the logic for closing the handler when it is finished.

5. Implement any logic for cleaning up the handler's resources before it is
destroyed.

327

Implementing a Logical Handler

Handling Messages in a Logical Handler

Overview Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a LogicalMessageHandler object
that provides access to the message body and any properties stored in the
message context.

The handleMessage() method returns either true or false depending on
how message processing is to continue. It can also throw an exception.

Getting the message data The LogicalMessageContext object passed into logical message handlers
allows access to the message body using the context's getMessage() method.
The getMessage() method, shown in Example 205 on page 328, returns
the message payload as a LogicalMessage object.

Example 205. Method for Getting the Message Payload in a Logical Handler

LogicalMessage getMessage();

Once you have the LogicalMessage object, you can use it to manipulate
the message body. The LogicalMessage interface, shown in
Example 206 on page 328, has getters and setters for working with the actual
message body.

Example 206. Logical Message Holder

LogicalMessage {

Source getPayload();

Object getPayload(JAXBContext context);

void setPayload(Object payload,
JAXBContext context);

void setPayload(Source payload);

}

Important
The contents of the message payload are determined by the type of
binding in use. The SOAP binding only allows access to the SOAP

328

Writing Handlers

body of the message. The XML binding allows access to the entire
message body.

Working with the message body
as an XML object

One pair of getters and setters of the logical message work with the message
payload as a javax.xml.transform.dom.DOMSource object.

The getPayload() method that has no parameters returns the message
payload as a DOMSource object. The returned object is the actual message
payload. Any changes made to the returned object change the message body
immediately.

You can replace the body of the message with a DOMSource object using the
setPayload() method that takes the single Source object.

Working with the message body
as a JAXB object

The other pair of getters and setters allow you to work with the message
payload as a JAXB object. They use a JAXBContext object to transform the
message payload into JAXB objects.

To use the JAXB objects you do the following:

1. Get a JAXBContext object that can manage the data types in the

message body.

For information on creating a JAXBContext object see Using A
JAXBContext Object on page 255.

2. Get the message body as shown in Example 207.

Example 207. Getting the Message Body as a JAXB Object

JAXBContext jaxbc = JAXBContext(myObjectFactory.class);
Object body = message.getPayload(jaxbc);

3. Cast the returned object to the proper type.

4. Manipulate the message body as needed.

5. Put the updated message body back into the context as shown in
Example 208.

329

Handling Messages in a Logical Handler

Example 208. Updating the Message Body Using a JAXB Object

message.setPayload(body, jaxbc);

Working with context properties The logical message context passed into a logical handler is an instance of
the application's message context and can access all of the properties stored
in it. Handlers have access to properties at both the APPLICATION scope and
the HANDLER scope.

Like the application's message context, the logical message context is a
subclass of Java Map. To access the properties stored in the context, you use
the get() method and put() method inherited from the Map interface.

By default, any properties you set in the message context from inside a logical
handler are assigned a scope of HANDLER. If you want the application code
to be able to access the property you need to use the context's setScope()
method to explicitly set the property's scope to APPLICATION.

For more information on working with properties in the message context see
Understanding Contexts on page 298.

Determining the direction of the
message

It is often important to know the direction a message is passing through the
handler chain. For example, you would want to retrieve a security token from
incoming requests and attach a security token to an outgoing response.

The direction of the message is stored in the message context's outbound
message property. You retrieve the outbound message property from the
message context using the MessageContext.MESSAGE_OUTBOUND_PROPERTY
key as shown in Example 209 on page 330.

Example 209. Getting the Message's Direction from the SOAP Message
Context

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUT
BOUND_PROPERTY);

The property is stored as a Boolean object. You can use the object's
booleanValue() method to determine the property's value. If the property

330

Writing Handlers

is set to true, the message is outbound. If the property is set to false the
message is inbound.

Determining the return value How the handleMessage() method completes its message processing has
a direct impact on how message processing proceeds. It can complete by
doing one of the following actions:

I. Return true—Returning true signals to the Artix ESB runtime that

message processing should continue normally. The next handler, if any,
has its handleMessage() invoked.

II. Return false—Returning false signals to the Artix ESB runtime that

normal message processing must stop. How the runtime proceeds depends
on the message exchange pattern in use for the current message.

For request-response message exchanges the following happens:

1. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the
message stops progressing toward the service's implementation object.
Instead, it is sent back towards the binding for return to the consumer
that originated the request.

2. Any message handlers that reside along the handler chain in the new
processing direction have their handleMessage() method invoked

in the order in which they reside in the chain.

3. When the message reaches the end of the handler chain it is
dispatched.

For one-way message exchanges the following happens:

1. Message processing stops.

2. All previously invoked message handlers have their close() method

invoked.

3. The message is dispatched.

III. Throw a ProtocolException exception—Throwing a ProtocolException

exception, or a subclass of this exception, signals the Artix ESB runtime

331

Handling Messages in a Logical Handler

that fault message processing is beginning. How the runtime proceeds
depends on the message exchange pattern in use for the current message.

For request-response message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime
wraps the message in a fault message.

2. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the
message stops progressing toward the service's implementation object.
Instead, it is sent back towards the binding for return to the consumer
that originated the request.

3. Any message handlers that reside along the handler chain in the new
processing direction have their handleFault() method invoked in

the order in which they reside in the chain.

4. When the fault message reaches the end of the handler chain it is
dispatched.

For one-way message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime
wraps the message in a fault message.

2. Message processing stops.

3. All previously invoked message handlers have their close() method

invoked.

4. The fault message is dispatched.

IV. Throw any other runtime exception—Throwing a runtime exception other
than a ProtocolException exception signals the Artix ESB runtime that

message processing is to stop. All previously invoked message handlers
have the close() method invoked and the exception is dispatched. If the

message is part of a request-response message exchange, the exception

332

Writing Handlers

is dispatched so that it is returned to the consumer that originated the
request.

Example Example 210 on page 333 shows an implementation of handleMessage()
message for a logical message handler that is used by a service consumer. It
processes requests before they are sent to the service provider.

Example 210. Logical Message Handler Message Processing

public class SmallNumberHandler implements LogicalHandler<LogicalMessageContext>
{

public final boolean handleMessage(LogicalMessageContext messageContext)
{

try
{

boolean outbound = (Boolean)messageContext.get(MessageContext.MESSAGE_OUT
BOUND_PROPERTY);

if (outbound) ❶
{

LogicalMessage msg = messageContext.getMessage(); ❷

JAXBContext jaxbContext = JAXBContext.newInstance(ObjectFactory.class);
Object payload = msg.getPayload(jaxbContext); ❸
if (payload instanceof JAXBElement)
{

payload = ((JAXBElement)payload).getValue();
}

if (payload instanceof AddNumbers) ❹
{

AddNumbers req = (AddNumbers)payload;

int a = req.getArg0();
int b = req.getArg1();
int answer = a + b;

if (answer < 20) ❺
{
AddNumbersResponse resp = new AddNumbersResponse(); ❻
resp.setReturn(answer);
msg.setPayload(new ObjectFactory().createAddNumbersResponse(resp),

jaxbContext);

return false; ❼
}

333

Handling Messages in a Logical Handler

}
else
{

throw new WebServiceException("Bad Request"); ❽
}

}
return true; ❾

}
catch (JAXBException ex) ❿
{

throw new ProtocolException(ex);
}

}
...
}

The code in Example 210 on page 333 does the following:

❶ Checks if the message is an outbound request.

If the message is an outbound request, the handler does additional
message processing.

❷ Gets the LogicalMessage representation of the message payload from

the message context.
❸ Gets the actual message payload as a JAXB object.

❹ Checks to make sure the request is of the correct type.

If it is, the handler continues processing the message.
❺ Checks the value of the sum.

If it is less than the threshold of 20 then it builds a response and returns
it to the client.

❻ Builds the response.

❼ Returns false to stop message processing and return the response to

the client.
❽ Throws a runtime exception if the message is not of the correct type.

This exception is returned to the client.
❾ Returns true if the message is an inbound response or the sum does

not meet the threshold.

Message processing continues normally.
❿ Throws a ProtocolException if a JAXB marshalling error is

encountered.

334

Writing Handlers

The exception is passed back to the client after it is processed by the
handleFault() method of the handlers between the current handler
and the client.

335

Handling Messages in a Logical Handler

Implementing a Protocol Handler

Overview Protocol handlers are specific to the protocol in use. Artix ESB provides the
SOAP protocol handler as specified by JAX-WS. A SOAP protocol handler
implements the javax.xml.ws.handler.soap.SOAPHandler interface.

The SOAPHandler interface, shown in Example 211 on page 336, uses a
SOAP specific message context that provides access to the message as a
SOAPMessage object. It also allows you to access the SOAP headers.

Example 211. SOAPHandler Synopsis

public interface SOAPHandler extends Handler
{
boolean handleMessage(SOAPMessageContext context);
boolean handleFault(SOAPMessageContext context);
void close(SOAPMessageContext context);
Set<QName> getHeaders()

}

In addition to using a SOAP specific message context, SOAP protocol handlers
require that you implement an additional method called getHeaders(). This
additional method returns the QNames of the header blocks the handler can
process.

Procedure To implement a logical hander do the following:

1. Implement any initialization logic required by the handler.

2. Implement the message handling logic.

3. Implement the fault handling logic.

4. Implement the getHeaders() method.

5. Implement the logic for closing the handler when it is finished.

336

Writing Handlers

6. Implement any logic for cleaning up the handler's resources before it is
destroyed.

Implementing the getHeaders()
method

The getHeaders(), shown in Example 212 on page 337, method informs
the Artix ESB runtime what SOAP headers the handler is responsible for
processing. It returns the QNames of the outer element of each SOAP header
the handler understands.

Example 212. The SOAPHander.getHeaders() Method

Set<QName> getHeaders();

For many cases simply returning null is sufficient. However, if the application
uses the mustUnderstand attribute of any of the SOAP headers, then it is
important to specify the headers understood by the application's SOAP
handlers. The runtime checks the set of SOAP headers that all of the registered
handlers understand against the list of headers with the mustUnderstand
attribute set to true. If any of the flagged headers are not in the list of
understood headers, the runtime rejects the message and throws a SOAP
must understand exception.

337

Implementing a Protocol Handler

Handling Messages in a SOAP Handler

Overview Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a SOAPMessageHandler object that
provides access to the message body as a SOAPMessage object and the SOAP
headers associated with the message. In addition, the context provides access
to any properties stored in the message context.

The handleMessage() method returns either true or false depending on
how message processing is to continue. It can also throw an exception.

Working with the message body You can get the SOAP message using the SOAP message context's
getMessage() method. It returns the message as a live SOAPMessage object.
Any changes to the message in the handler are automatically reflected in the
message stored in the context.

If you wish to replace the existing message with a new one, you can use the
context's setMessage() method. The setMessage() method takes a
SOAPMessage object.

Getting the SOAP headers You can access the SOAP message's headers using the SOAPMessage object's
getHeader() method. This will return the SOAP header as a SOAPHeader
object that you will need to inspect to find the header elements you wish to
process.

The SOAP message context provides a getHeaders() method, shown in
Example 213 on page 338, that will return an array containing JAXB objects
for the specified SOAP headers.

Example 213. The SOAPMessageContext.getHeaders() Method

Ojbect[] getHeaders(QName header,
JAXBContext context,
boolean allRoles);

You specify the headers using the QName of their element. You can further
limit the headers that are returned by setting the allRoles parameter to
false. That instructs the runtime to only return the SOAP headers that are
applicable to the active SOAP roles.

If no headers are found, the method returns an empty array.

338

Writing Handlers

For more information about instantiating a JAXBContext object see Using A
JAXBContext Object on page 255.

Working with context properties The SOAP message context passed into a logical handler is an instance of
the application's message context and can access all of the properties stored
in it. Handlers have access to properties at both the APPLICATION scope and
the Handler scope.

Like the application's message context, the SOAP message context is a
subclass of Java Map. To access the properties stored in the context, you use
the get() method and put() method inherited from the Map interface.

By default, any properties you set in the context from inside a logical handler
will be assigned a scope of HANDLER. If you want the application code to be
able to access the property you need to use the context's setScope() method
to explicitly set the property's scope to APPLICATION.

For more information on working with properties in the message context see
Understanding Contexts on page 298.

Determining the direction of the
message

It is often important to know the direction a message is passing through the
handler chain. For example, you would want to add headers to an outgoing
message and strip headers from an incoming message.

The direction of the message is stored in the message context's outbound
message property. You retrieve the outbound message property from the
message context using the MessageContext.MESSAGE_OUTBOUND_PROPERTY
key as shown in Example 214 on page 339.

Example 214. Getting the Message's Direction from the SOAP Message
Context

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUT
BOUND_PROPERTY);

The property is stored as a Boolean object. You can use the object's
booleanValue() method to determine the property's value. If the property

339

Handling Messages in a SOAP Handler

is set to true, the message is outbound. If the property is set to false the
message is inbound.

Determining the return value How the handleMessage() method completes its message processing has
a direct impact on how message processing proceeds. It can complete by
doing one of the following actions:

I. return true—Returning true signals to the Artix ESB runtime that message

processing should continue normally. The next handler, if any, has its
handleMessage() invoked.

II. return false—Returning false signals to the Artix ESB runtime that

normal message processing is to stop. How the runtime proceeds depends
on the message exchange pattern in use for the current message.

For request-response message exchanges the following happens:

1. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the
message will stop progressing toward the service's implementation
object. It will instead be sent back towards the binding for return to
the consumer that originated the request.

2. Any message handlers that reside along the handler chain in the new
processing direction have their handleMessage() method invoked

in the order in which they reside in the chain.

3. When the message reaches the end of the handler chain it is
dispatched.

For one-way message exchanges the following happens:

1. Message processing stops.

2. All previously invoked message handlers have their close() method

invoked.

3. The message is dispatched.

III. throw a ProtocolException exception—Throwing a ProtocolException

exception, or a subclass of this exception, signals the Artix ESB runtime

340

Writing Handlers

that fault message processing is to start. How the runtime proceeds depends
on the message exchange pattern in use for the current message.

For request-response message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime
wraps the message in a fault message.

2. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the
message will stop progressing toward the service's implementation
object. It will be sent back towards the binding for return to the
consumer that originated the request.

3. Any message handlers that reside along the handler chain in the new
processing direction have their handleFault() method invoked in

the order in which they reside in the chain.

4. When the fault message reaches the end of the handler chain it is
dispatched.

For one-way message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime
wraps the message in a fault message.

2. Message processing stops.

3. All previously invoked message handlers have their close() method

invoked.

4. The fault message is dispatched.

IV. throw any other runtime exception—Throwing a runtime exception other
than a ProtocolException exception signals the Artix ESB runtime that

message processing is to stop. All previously invoked message handlers
have the close() method invoked and the exception is dispatched. If the

341

Handling Messages in a SOAP Handler

message is part of a request-response message exchange the exception is
dispatched so that it is returned to the consumer that originated the request.

Example Example 215 on page 342 shows a handleMessage() implementation that
prints the SOAP message to the screen.

Example 215. Handling a Message in a SOAP Handler

public boolean handleMessage(SOAPMessageContext smc)
{
PrintStream out;

Boolean outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY); ❶

if (outbound.booleanValue()) ❷
{
out.println("\nOutbound message:");

}
else
{
out.println("\nInbound message:");

}

SOAPMessage message = smc.getMessage(); ❸

message.writeTo(out); ❹
out.println();

return true;
}

The code in Example 215 does the following:

❶ Retrieves the outbound property from the message context.

❷ Tests the messages direction and prints the appropriate message.

❸ Retrieves the SOAP message from the context.

❹ Prints the message to the console.

342

Writing Handlers

Initializing a Handler

Overview When the runtime creates an instance of a handler, it creates all of the
resources the hander needs to process messages. While you can place all of
the logic for doing this in the handler's constructor, it may not be the most
appropriate place. The handler framework performs a number of optional
steps when it instantiates a handler. You can add resource injection and other
initialization logic that will be executed during the optional steps.

Tip
You do not have to provide any initialization methods for a handler.

Order of initialization The Artix ESB runtime initializes a handler in the following manner:

1. The handler's constructor is called.

2. Any resources that are specified by the @Resource annotation are

injected.

3. The method decorated with @PostConstruct annotation, if it is present,

is called.

Note
Methods decorated with the @PostConstruct annotation must
have a void return type and have no parameters.

4. The handler is place in the Ready state.

343

Initializing a Handler

Handling Fault Messages

Overview Handlers use the handleFault() method for processing fault messages
when a ProtocolException exception is thrown during message processing.

The handleFault() method receives either a LogicalMessageContext
object or SOAPMessageContext object depending on the type of handler.
The received context gives the handler's implementation access to the message
payload.

The handleFault() method returns either true or false, depending on
how fault message processing is to proceed. It can also throw an exception.

Getting the message payload The context object received by the handleFault() method is similar to the
one received by the handleMessage() method. You use the context's
getMessage() method to access the message payload in the same way. The
only difference is the payload contained in the context.

For more information on working with a LogicalMessageContext see
Handling Messages in a Logical Handler on page 328.

For more information on working with a SOAPMessageContext see Handling
Messages in a SOAP Handler on page 338.

Determining the return value How the handleFault() method completes its message processing has a
direct impact on how message processing proceeds. It completes by performing
one of the following actions:

Return true

Returning true signals that fault processing should continue normally.

The handleFault() method of the next handler in the chain will be

invoked.

Return false

Returning false signals that fault processing stops. The close() method

of the handlers that were invoked in processing the current message are
invoked and the fault message is dispatched.

344

Writing Handlers

Throw an exception
Throwing an exception stops fault message processing. The close()

method of the handlers that were invoked in processing the current
message are invoked and the exception is dispatched.

Example Example 216 on page 345 shows an implementation of handleFault() that
prints the message body to the screen.

Example 216. Handling a Fault in a Message Handler

public final boolean handleFault(LogicalMessageContext message
Context)
{
System.out.println("handleFault() called with message:");

LogicalMessage msg=messageContext.getMessage();
System.out.println(msg.getPayload());

return true;
}

345

Handling Fault Messages

Closing a Handler
When a handler chain is finished processing a message, the runtime calls
each executed handler's close() method. This is the appropriate place to
clean up any resources that were used by the handler during message
processing or resetting any properties to a default state.

If a resource needs to persist beyond a single message exchange, you should
not clean it up during in the handler's close() method.

346

Writing Handlers

Releasing a Handler

Overview The runtime releases a handler when the service or service proxy to which
the handler is bound is shutdown. The runtime will invoke an optional release
method before invoking the handler's destructor. This optional release method
can be used to release any resources used by the handler or perform other
actions that would not be appropriate in the handler's destructor.

Tip
You do not have to provide any clean-up methods for a handler.

Order of release The following happens when the handler is released:

1. The handler finishes processing any active messages.

2. The runtime invokes the method decorated with the @PreDestroy

annotation.

This method should clean up any resources used by the handler.

3. The handler's destructor is called.

347

Releasing a Handler

Configuring Endpoints to Use Handlers
Programmatic Configuration .. 349
Spring Configuration ... 354

348

Writing Handlers

Programmatic Configuration

Important
Any handler chains configured using the Spring configuration override
the handler chains configured programmaticaly.

Adding a Handler Chain to a Consumer

Overview Adding a handler chain to a consumer involves explicitly building the chain
of handlers. Then you set the handler chain directly on the service proxy's
Binding object.

Procedure To add a handler chain to a consumer you do the following:

1. Create a List<Handler> object to hold the handler chain.

2. Create an instance of each handler that will be added to the chain.

3. Add each of the instantiated handler objects to the list in the order they
are to be invoked by the runtime.

4. Get the Binding object from the service proxy.

Tip
Artix ESB provides an implementation of the Binding interface
called
org.apache.cxf.jaxws.binding.DefaultBindingImpl.

5. Set the handler chain on the proxy using the Binding object's

setHandlerChain() method.

Example Example 217 on page 350 shows code for adding a handler chain to a
consumer.

349

Programmatic Configuration

Example 217. Adding a Handler Chain to a Consumer

import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;
import java.util.ArrayList;
import java.util.List;

import org.apache.cxf.jaxws.binding.DefaultBindingImpl;
...
SmallNumberHandler sh = new SmallNumberHandler(); ❶
List<Handler> handlerChain = new ArrayList<Handler>(); ❷
handlerChain.add(sh); ❸

DefaultBindingImpl binding = ((BindingProvider)proxy).getBinding(); ❹
binding.getBinding().setHandlerChain(handlerChain); ❺

The code in Example 217 on page 350 does the following:

❶ Instantiates a handler.

❷ Creates a List object to hold the chain.

❸ Adds the handler to the chain.

❹ Gets the Binding object from the proxy as a DefaultBindingImpl

object.
❺ Assigns the handler chain to the proxy's binding.

Adding a Handler Chain to a Service Provider

Overview You add a handler chain to a service provider by decorating either the SEI or
the implementation class with the @HandlerChain annotation. The annotation
points to a meta-data file defining the handler chain used by the service
provider.

Procedure To add handler chain to a service provider you do the following:

1. Decorate the provider's implementation class with the @HandlerChain

annotation.

350

Writing Handlers

2. Create a handler configuration file that defines the handler chain.

The @HandlerChain annotation The javax.jws.HandlerChain annotation decorates service provider's
implementation class. It instructs the runtime to load the handler chain
configuration file specified by its file property.

The annotation's file property supports two methods for identifying the handler
configuration file to load:

• a URL

• a relative path name

Example 218 on page 351 shows a service provider implementation that will
use the handler chain defined in a file called handlers.xml. handlers.xml
must be located in the directory from which the service provider is run.

Example 218. Service Implementation that Loads a Handler Chain

import javax.jws.HandlerChain;
import javax.jws.WebService;
...

@WebService(name = "AddNumbers",
targetNamespace = "http://apache.org/handlers",
portName = "AddNumbersPort",
endpointInterface = "org.apache.handlers.AddNumbers",
serviceName = "AddNumbersService")

@HandlerChain(file = "handlers.xml")
public class AddNumbersImpl implements AddNumbers
{
...
}

Handler configuration file The handler configuration file defines a handler chain using the XML grammar
that accompanies JSR 109(Web Services for Java EE, Version 1.2). This
grammar is defined in the http://java.sun.com/xml/ns/javaee.

The root element of the handler configuration file is the handler-chains
element. The handler-chains element has one or more handler-chain
elements.

The handler-chain element define a handler chain. Table 31 on page 352
describes the handler-chain element's children.

351

Programmatic Configuration

Table 31. Elements Used to Define a Server-Side Handler Chain

DescriptionElement

Contains the elements that describe a handler.handler

Specifies the QName of the WSDL service element defining the service to which

the handler chain is bound. You can use * as a wildcard when defining the QName.

service-name-pattern

Specifies the QName of the WSDL port element defining the endpoint to which the

handler chain is bound. You can use * as a wildcard when defining the QName.

port-name-pattern

Specifies the message binding for which the handler chain is used. The binding is
specified as a URI or using one of the following aliases: ##SOAP11_HTTP,
##SOAP11_HTTP_MTOM, ##SOAP12_HTTP, ##SOAP12_HTTP_MTOM, or ##XML_HTTP.

protocol-binding

For more information about message binding URIs see Appendix A in Artix® ESB
Deployment Guide.

The handler-chain element is only required to have a single handler
element as a child. It can, however, support as many handler elements as
needed to define the complete handler chain. The handlers in the chain are
executed in the order they specified in the handler chain definition.

Important
The final order of execution will be determined by sorting the specified
handlers into logical handlers and protocol handlers. Within the
groupings, the order specified in the configuration will be used.

The other children, such as protocol-binding, are used to limit the scope
of the defined handler chain. For example, if you use the
service-name-pattern element, the handler chain will only be attached
to service providers whose WSDL port element is a child of the specified
WSDL service element. You can only use one of these limiting children in
a handler element.

The handler element defines an individual handler in a handler chain. Its
handler-class child element specifies the fully qualified name of the class
implementing the handler. The handler element can also have an optional
handler-name element that specifies a unique name for the handler.

Example 219 on page 353 shows a handler configuration file that defines a
single handler chain. The chain is made up of two handlers.

352

Writing Handlers

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

Example 219. Handler Configuration File

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee">

<handler-chain>
<handler>
<handler-name>LoggingHandler</handler-name>
<handler-class>demo.handlers.common.LoggingHandler</handler-class>

</handler>
<handler>
<handler-name>AddHeaderHandler</handler-name>
<handler-class>demo.handlers.common.AddHeaderHandler</handler-class>

</handler>
</handler-chain>

</handler-chains>

353

Programmatic Configuration

Spring Configuration

Overview The easiest way to configure an endpoint to use a handler chain is to define
the chain in the endpoint's configuration. This is done by adding a
jaxwxs:handlers child to the element configuring the endpoint.

Important
A handler chain added through the configuration file takes precedence
over a handler chain configured programatically.

Procedure To configure an endpoint to load a handler chain you do the following:

1. If the endpoint does not already have a configuration element, add one.

For more information on configuring Artix ESB endpoints see Configuring
Artix ESB Endpoints in Artix® ESB Deployment Guide.

2. Add a jaxws:handlers child element to the endpoint's configuration

element.

3. For each handler in the chain, add a bean element specifying the class

that implements the handler.

Tip
If your handler implementation is used in more than one place
you can reference a bean element using the ref element.

The handlers element The jaxws:handlers element defines a handler chain in an endpoint's
configuration. It can appear as a child to all of the JAX-WS endpoint
configuration elements. These are:

• jaxws:endpoint configures a service provider.

• jaxws:server also configures a service provider.

354

Writing Handlers

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

• jaxws:client configures a service consumer.

You add handlers to the handler chain in one of two ways:

• add a bean element defining the implementation class

• use a ref element to refer to a named bean element from elsewhere in

the configuration file

The order in which the handlers are defined in the configuration is the order
in which they will be executed. The order may be modified if you mix logical
handlers and protocol handlers. The run time will sort them into the proper
order while maintaining the basic order specified in the configuration.

Example Example 220 on page 355 shows the configuration for a service provider that
loads a handler chain.

Example 220. Configuring an Endpoint to Use a Handler Chain In Spring

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="HandlerExample"
implementor="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo">

<jaxws:handlers>
<bean class="demo.handlers.common.LoggingHandler" />
<bean class="demo.handlers.common.AddHeaderHandler" />

</jaxws:handlers>
</jaws:endpoint>

</beans>

355

Spring Configuration

356

Index
Symbols
@DataBinding, 45
@Delete, 95
@EndpointProperty, 47
@FastInfoset, 46
@Get, 95
@GZIP, 46
@HandlerChain, 351
@HttpResource, 95
@Logging, 47
@Oneway, 41
@Policy, 48
@Post, 95
@PostConstruct, 343
@PreDestroy, 347
@Put, 95
@RequestWrapper, 38

className property, 39
localName property, 39
targetNamespace property, 39

@Resource, 107, 302, 343
@ResponseWrapper, 39

className property, 40
localName property, 40
targetNamespace property, 40

@SchemaValidation, 45
@ServiceMode, 288
@SOAPBinding, 35

parameterStyle property, 36
style property, 36
use property, 36

@WebFault, 40
faultName property, 41
name property, 40
targetNamespace property, 40

@WebMethod, 38, 302
action property, 38
exclude property, 38
operationName property, 38

@WebParam, 42
header property, 42
mode property, 42
name property, 42
partName property, 43
targetNamespace property, 42

@WebResult, 43
header property, 43
name property, 43
partName property, 43
targetNamespace property, 43

@WebService, 32
endpointInterface property, 32
name property, 32
portName property, 32
serviceName property, 32
targetNamespace property, 32
wsdlLocation property, 32

@WebServiceProvider, 293
@WSDLDocumentation, 45
@XmlAnyElement, 202
@XmlAttribute, 174
@XmlElement, 167, 187, 191

required property, 190
type property, 239, 252

@XmlElementDecl
defaultValue, 146
substitutionHeadName, 215
substitutionHeadNamespace, 215

@XmlElements, 187, 191
@XmlEnum, 154
@XmlJavaTypeAdapter, 239
@XmlRootElement, 145
@XmlSchemaType, 239
@XmlSeeAlso, 138, 183, 216
@XmlType, 167, 187, 191

A
annotation

@HandlerChain (see @HandlerChain)
annotations

@DataBindingn (see @DataBinding)
@Delete (see @Delete)

357

@EndpointProperty (see @EndpointProperty)
@FastInfoset (see @FastInfoset)
@Get (see @Get)
@GZIP (see @GZIP)
@HttpResource (see @HttpResource)
@Logging (see @Logging)
@Oneway (see @Oneway)
@Policy (see @Policy)
@Post (see @Post)
@PostConstruct (see @PostConstruct)
@PreDestroy (see @PreDestroy)
@Put (see @Post)
@RequestWrapper (see @RequestWrapper)
@Resource (see @Resource)
@ResponseWrapper (see @ResponseWrapper)
@SchemaValidation (see @SchemaValidation)
@ServiceMode (see @ServiceMode)
@SOAPBinding (see @SOAPBinding)
@WebFault (see @WebFault)
@WebMethod (see @WebMethod)
@WebParam (see @WebParam)
@WebResult (see @WebResult)
@WebService (see @WebService)
@WebServiceProvider (see @WebServiceProvider)
@WSDLDocumentation (see @WSDLDocumentation)
@XmlAttribute (see @XmlAttribute)
@XmlElement (see @XmlElement)
@XmlElementDecl (see @XmlElementDecl)
@XmlEnum (see @XmlEnum)
@XmlJavaTypeAdapter (see @XmlJavaTypeAdapter)
@XmlRootElement (see @XmlRootElement)
@XmlSchemaType (see @XmlSchemaType)
@XmlType (see @XmlType)

any element, 200
anyAttribute, 208
anyType, 205

mapping to Java, 205
asynchronous applications

callback approach, 259
implementation

callback approach, 269, 284
polling approach, 266, 284

polling approach, 259
implementation patterns, 266

using a Dispatch object, 284
asynchronous methods, 264

callback approach, 265
pooling approach, 265

attributes
optional, 149

B
baseType, 163, 252

name attribute, 252
BindingProvider

getRequestContext() method, 309
getResponseContext() method, 310

C
close(), 326
code generation

consumer, 76
customization, 262
service provider, 70
service provider implementation, 73
WSDL contract, 50

constants, 249
consumer

implementing business logic, 60, 82
consumer contexts, 309
context

request
consumer, 309

WebServiceContext (see WebServiceContext)
contract resolver

implementing, 111
registering, 111

createDispatch(), 281

D
DataSource, 280, 291
DatatypeConverter, 241
deploying

RESTful service endpoint, 99
Dispatch object

creating, 281

358

invoke() method, 283
invokeAsync() method, 284
invokeOneWay() method, 285
message mode, 277
message payload mode, 277
payload mode, 277

DOMSource, 279, 290

E
element, 141
elements

custom mapping, 249
mapping to Java

in-line type definition, 145
named type definition, 142

XML Schema definition, 141
endpoint

adding to a Service object, 56
determining the address, 56
determining the binding type, 56
determining the port name, 56
getting, 58, 80, 116

Endpoint
create(), 116
creating, 116
publish(), 116, 117
stop, 118

enumerations
custom mapping, 244
defining in schema, 154

ExecutionException, 273

F
facets

enforcing, 153

G
generated code

asynchronous operations, 264
consumer, 77
packages, 72, 77
server mainline, 119

service implementation, 73
service provider, 71
stub code, 77
WSDL contract, 50

getRequestContext(), 309
getResource(), 92
getResponseContext(), 310
globalBindings

fixedAttributeAsConstantProperty attribute, 249
mapSimpleTypeDef, 163
mapSimpleTypeDef attribute, 242
typesafeEnumMemberName attribute, 244

H
handleFault(), 325
handleMessage(), 325
handler, 351, 352
handler-chain, 351
handler-chains, 351
handler-class, 351
handler-name, 351
handleResponse(), 269
handlers

constructor, 343
initializing, 343
logical, 324
protocol, 325

HTTP
DELETE, 93, 95
GET, 92, 95
POST, 92, 95
PUT, 92, 95

I
implementation

asynchronous callback object, 269
asynchronous client

callback approach, 269
callbacks, 271
polling approach, 266

consumer, 60, 82, 276
SEI, 29
server mainline, 120

359

service, 292
service operations, 29, 73

J
java.util.concurrent.ExecutionException, 273
java2ws, 50
javaType, 235, 254

parseMethod attribute, 237
printMethod attribute, 237

javax.xml.ws.AsyncHandler, 269
javax.xml.ws.Service (see Service object)
javax.xml.ws.WebServiceException, 124
jaxb:bindings, 233
jaxb:property, 252
JAXBContext, 255

newInstance(Class...), 255
newInstance(String), 256

jaxws:client
wsdlLocation, 107

jaxws:handlers, 354
JMS

getting JMS message headers in a service, 314
getting optional header properties, 316
inspecting message header properties, 314
setting message header properties, 318
setting optional message header properties, 319
setting the client's timeout, 319

L
list type

XML Schema definition, 157
logical handler, 324
LogicalHander

handleFault(), 344
handleMessage(), 328

LogicalHandler
close(), 346

LogicalMessage, 328
LogicalMessageContext, 300

getMessage(), 328

M
message context

getting a property, 303
properties, 299, 300
property scopes

APPLICATION, 300
HANDLER, 300

reading values, 310
request

consumer, 318
response

consumer, 309, 315
setting a property, 304
setting properties, 311

MessageContext, 302
get() method, 303
put() method, 304
setScope() method, 300

MessageContext.MESSAGE_OUTBOUND_PROPERTY,
330, 339

N
namespace

package name mapping, 133
nillable, 149

O
object factory

creating complex type instances, 136
creating element instances, 136

ObjectFactory
complex type factory, 136
element factory, 136

P
package name mapping, 72
parameter mapping, 80
port-name-pattern, 352
primitive types, 148
property

fixedAttributeAsConstantProperty attribute, 250
protocol handler, 325

360

protocol-binding, 352
Provider

invoke() method, 294
message mode, 288
payload mode, 288

publishing
RESTful service endpoint, 99

R
request context, 309, 318

accessing, 309
consumer, 309
setting properties, 311

response context, 309
accessing, 309
consumer, 309, 315
getting JMS message headers, 315
reading values, 310

Response<T>.get()
exceptions, 273

REST binding
activating, 99

S
SAXSource, 279, 290
schema validation, 153
SEI, 28, 77, 80

annotating, 31
creating, 28
creation patterns, 28
generated from WSDL contract, 72
relationship to wsdl:portType, 28, 80
required annotations, 33

service
implementing the operations, 73

service enablement, 28
service endpoint interface (see SEI)
service implementation, 72, 292

operations, 29
required annotations, 34

Service object, 54
adding an endpoint, 56

determining the port name, 56

addPort() method, 56
bindingId parameter, 56
endpointAddress parameter, 56
portName parameter, 56

create() method, 54
serviceName parameter, 54

createDispatch() method, 281
creating, 54, 80
determining the service name, 54
generated from a WSDL contract, 78
generated methods, 79
getPort() method, 58

portName parameter, 58
getting a service proxy, 58
relationship to wsdl:service element, 54, 78

service provider
implementation, 292
publishing, 117

service provider implementation
generating, 73

service providers contexts, 302
service proxy

getting, 58, 80, 83
service-name-pattern, 352
Service.Mode.MESSAGE, 277, 288
Service.Mode.PAYLOAD, 277, 288
ServiceContractResolver, 111
setAddress(), 100
setBindingId(), 99
setServiceClass(), 99
setWrapped(), 99
simple type

define by restriction, 151
simple types

enumerations, 154
mapping to Java, 152
primitive, 148
wrapper classes, 149

SOAP headers
mustUnderstand, 337

SOAPHander
getHeaders(), 337
handleFault(), 344
handleMessage(), 338

361

SOAPHandler
close(), 346

SOAPMessage, 280, 291, 338
SOAPMessageContext

get(), 339
getMessage(), 338

Source, 279, 290
StreamSource, 279, 290
substitution group

in complex types, 218
in interfaces, 216
object factory, 215

T
type customization

external declaration, 233
in-line, 232
JAXB version, 232
namespace, 232

type packages
contents, 134
name generation, 133

typesafeEnumClass, 245
typesafeEnumMember, 245

U
union types

mapping to Java, 162
XML Schema definition, 161

W
WebServiceContext

getMessageContext() method, 302
getting the JMS message headers, 314

WebServiceException, 124
wrapped mode, 89

activating, 99
WSDL contract

generation, 50
wsdl2java, 70, 73, 76, 119
wsdl:portType, 28, 77, 80
wsdl:service, 54, 78

362

	Developing Artix® Applications with JAX-WS
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library
	Third Party Acknowledgements

	Part I. Starting from Java Code
	Bottom-Up Service Development
	Creating the SEI
	Annotating the Code
	Required Annotations
	Optional Annotations
	Defining the Binding Properties with Annotations
	Defining Operation Properties with Annotations
	Defining Parameter Properties with Annotations
	Annotations added in Artix 5.6

	Generating WSDL

	Developing a Consumer Without a WSDL Contract
	Creating a Service Object
	Adding a Port to a Service
	Getting a Proxy for an Endpoint
	Implementing the Consumer's Business Logic

	Part II. Starting from a WSDL Contract
	A Starting Point WSDL Contract
	Top-Down Service Development
	Generating the Starting Point Code
	Implementing the Service Provider

	Developing a Consumer From a WSDL Contract
	Generating the Stub Code
	Implementing a Consumer

	Part III. Developing RESTful Services
	Introduction to RESTful Services
	Using Automatic REST Mappings
	Using Java REST Annotations
	Publishing a RESTful Service

	Part IV. Common Development Tasks
	Finding WSDL at Runtime
	Instantiating a Proxy by Injection
	Using a JAX-WS Catalog
	Using a ServiceContractResolver Object

	Publishing a Service
	APIs Used to Publish a Service
	Publishing a Service in a Plain Java Application

	Generic Fault Handling
	Runtime Faults
	Protocol Faults

	Part V. Working with Data Types
	Basic Data Binding Concepts
	Including and Importing Schema Definitions
	XML Namespace Mapping
	The Object Factory
	Adding Classes to the Runtime Marshaller

	Using XML Elements
	Using Simple Types
	Primitive Types
	Simple Types Defined by Restriction
	Enumerations
	Lists
	Unions
	Simple Type Substitution

	Using Complex Types
	Basic Complex Type Mapping
	Attributes
	Deriving Complex Types from Simple Types
	Deriving Complex Types from Complex Types
	Occurrence Constraints
	Occurrence Constraints on the All Element
	Occurrence Constraints on the Choice Element
	Occurrence Constraints on Elements
	Occurrence Constraints on Sequences

	Using Model Groups

	Using Wild Card Types
	Using Any Elements
	Using the XML Schema anyType Type
	Using Unbound Attributes

	Element Substitution
	Substitution Groups in XML Schema
	Substitution Groups in Java
	Widget Vendor Example
	The checkWidgets Operation
	The placeWidgetOrder Operation

	Customizing How Types are Generated
	Basics of Customizing Type Mappings
	Specifying the Java Class of an XML Schema Primitive
	Generating Java Classes for Simple Types
	Customizing Enumeration Mapping
	Customizing Fixed Value Attribute Mapping
	Specifying the Base Type of an Element or an Attribute

	Using A JAXBContext Object

	Part VI. Advanced Programming Tasks
	Developing Asynchronous Applications
	WSDL for Asynchronous Examples
	Generating the Stub Code
	Implementing an Asynchronous Client with the Polling Approach
	Implementing an Asynchronous Client with the Callback Approach
	Catching Exceptions Returned from a Remote Service

	Using Raw XML Messages
	Using XML in a Consumer
	Usage Modes
	Data Types
	Working with Dispatch Objects

	Using XML in a Service Provider
	Messaging Modes
	Data Types
	Implementing a Provider Object

	Working with Contexts
	Understanding Contexts
	Working with Contexts in a Service Implementation
	Working with Contexts in a Consumer Implementation
	Working with JMS Message Properties
	Inspecting JMS Message Headers
	Inspecting the Message Header Properties
	Setting JMS Properties

	Writing Handlers
	Handlers: An Introduction
	Implementing a Logical Handler
	Handling Messages in a Logical Handler
	Implementing a Protocol Handler
	Handling Messages in a SOAP Handler
	Initializing a Handler
	Handling Fault Messages
	Closing a Handler
	Releasing a Handler
	Configuring Endpoints to Use Handlers
	Programmatic Configuration
	Adding a Handler Chain to a Consumer
	Adding a Handler Chain to a Service Provider

	Spring Configuration

	Index

